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Nature of the D∗
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We study the nature of the scalar D∗
0 meson from the viewpoint of chiral symmetry. With the linear

representation of chiral symmetry, we construct the Dπ scattering amplitude satisfying the chiral low-energy
theorem, in which the D∗

0 meson appears as an s-wave resonance. We show that the properties of the D∗
0 meson

can be successfully reproduced as the chiral partner of the D meson coupled with the Dπ scattering states. At the
same time, we find that the spectral function and the pole position of D∗

0 are not very sensitive to the reduction of
the chiral condensate, indicating the importance of the dressing of the bare state by the Dπ molecular component.

DOI: 10.1103/PhysRevC.99.065201

I. INTRODUCTION

There have been a lot of newly observed hadrons [1] thanks
to the recent developments of high-energy experiments. The
findings of various exotic states suggest possible configura-
tions of hadrons beyond the simple q̄q and qqq classifications
in conventional quark models. The suggestions for exotic
configurations include, for instance, multiquarks, hadronic
molecules, gluon hybrids, and so on. Investigations of un-
derstanding the nature of the exotic hadrons are intensively
performed both experimentally and theoretically [2–4].

Among many hadrons, charmed mesons composed of cū
or cd̄ are of particular interest from the viewpoint of QCD
symmetries. In the massless limit of the light up (u) and down
(d) quarks, QCD exhibits chiral SU(2)L × SU(2)R symmetry.
Important low-energy properties of hadrons are constrained
by chiral symmetry and its spontaneous breaking [5,6]. In the
limit of infinitely heavy mass of the charm (c) quark, hadrons
with a single charm quark follows the heavy quark symmetry
[7], which also governs the dynamics of those hadrons. Thus,
the heavy-light mesons provide a unique playground where
two distinct symmetries in QCD interplay with each other.
These symmetries are also important to study of the property
change of the charmed mesons in nuclear matter [8].

In this work, we focus on the scalar D∗
0 meson, which

was first observed as a broad peak in the Dπ invariant mass
distribution in 2004 [9]. Because D∗

0 has an opposite parity to
the ground-state pseudoscalar D meson, it can be regarded as
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a chiral partner of the D meson [10–14]. On the other hand,
its broad decay width to the Dπ state implies the picture of
the hadronic molecular state which is dynamically generated
by the meson-meson interaction [15–24]. D∗

0 is also regarded
as a flavor partner of the D∗

s0(2317) state in the strangeness
sector, which is known as a candidate of the exotic hadron.

The aim of this paper is to combine two pictures of the
D∗

0 state, the chiral partner of D and the hadronic molecule.
To this end, we utilize the linear representation of chiral sym-
metry to incorporate the chiral partner structure, and describe
the D∗

0 meson as a resonance in the scattering amplitude
through the nonperturbative resummation. This framework is
analogous to the analysis of the σ meson in the ππ scattering
in Refs. [25–28]. The nature of the D∗

0 resonance is then
studied by the property change with respect to the chiral
condensate.

The paper is organized as follows. In Sec. II, we start from
the effective Lagrangian of charmed mesons, respecting chiral
and heavy quark symmetries in QCD. The Dπ scattering
amplitude is then constructed, with the special emphasis of
the chiral low-energy theorem. In Sec. III, we numerically
study the properties of the D∗

0 meson, which is realized as a
resonance in the Dπ scattering amplitude. The last section is
devoted to a summary of this work.

II. FORMULATION

A. Effective Lagrangian

To include the chiral partner structure of charmed mesons,
we employ the effective Lagrangian based on the linear rep-
resentation of chiral symmetry [10–13]. We first introduce the
heavy-light meson fields HL,R ∼ Qq̄L,R, which transform as

HL,R → SHL,Rg†
L,R, (1)

under chiral symmetry (gL, gR) ∈ SU(2)L × SU(2)R and
heavy quark spin symmetry S ∈ SU(2)S . The light mesons σ
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and πa (a = 1, . . . , 3) are collected in the matrix field in the
isospin space M = σ + iπaτ a ∼ qLq̄R, which transforms as

M → gLMg†
R, (2)

under chiral SU(2)L × SU(2)R symmetry. The effective La-
grangian with no derivatives of the light meson fields, which
is invariant under chiral and heavy quark spin symmetries, can
be constructed as

L = −Tr [HL(iv · ∂ )H̄L] − Tr [HR(iv · ∂ )H̄R]

− �m

2 fπ
Tr [HLMH̄R + HRM†H̄L], (3)

where H̄L,R ≡ γ 0H†
L,Rγ 0, vμ is the vector to specify the

reference frame of the heavy quark, and the trace is taken
over the Dirac space.1 In the interaction term, the coupling
constant �m is normalized by the pion decay constant fπ
for later convenience. To establish the connection to physical
heavy-light mesons, we first introduce the negative (posi-
tive) parity heavy-light meson multiplet H (G) as HL,R =
[G ± iHγ5]/

√
2. In the charm quark sector, H (G) contains

pseudoscalar D and vector D∗ (scalar D∗
0 and axial vector D1)

as the heavy quark spin doublet, which are collected as

H = 1 + /v

2
(iDvγ5 + /D∗

v ), (4)

G = 1 + /v

2
(D∗

0v + iγ5 /D1v ). (5)

Substituting these into Eq. (3), we obtain the effective La-
grangian of heavy-light mesons. The relevant terms for the
present study are given by

L = ∂μD∂μD† − m2DD† + ∂μD∗
0∂

μD∗†
0 − m2D∗

0D∗†
0

+ m�m

2 fπ
[D(M + M†)D† − D∗

0(M + M†)D∗†
0

− D∗
0(M − M†)D† + D(M − M†)D∗†

0 ] + · · · , (6)

where D = (D0, D+), D† = (D̄0, D−)t and we have adopted
the relativistic notation as in Ref. [13] with m being the chiral
invariant mass of the charmed mesons. The first line of Eq. (6)
denotes the free fields of D and D∗

0, having the common mass
m due to the chiral partner structure, and the second and third
lines represent the interactions with σ and π , respectively. It
is a consequence of chiral symmetry that the couplings to σ

and π are dictated by a common coupling constant �m.
The light meson part of the effective Lagrangian is

L = 1

4
Tr

[
∂μM∂μM† − m2

0MM† − λ

4
(MM†)2

+ ε(M + M†)

]
, (7)

where the trace is taken over the isospin space. For a negative
m2

0, chiral symmetry is spontaneously broken at the mean-field

1Note that HL,R (H̄L,R) is a row (column) vector in the isospin space,
because it contains a light antiquark (quark).

level. Denoting the mean-field value of the σ field as σ̄ and
redefining the σ field as the fluctuation around σ̄ , we can read
off the hadron masses from Eqs. (6) and (7) as

m2
π = ε

σ̄
= m2

0 + λσ̄ 2, (8)

m2
σ = m2

0 + 3λσ̄ 2, (9)

MD = m − �mσ̄

2 fπ
, (10)

MD∗
0

= m + �mσ̄

2 fπ
. (11)

In the light meson sector, three parameters in the Lagrangian
m0, λ, and ε are determined by the physical values of mπ , mσ ,
and the chiral condensate in vacuum, which corresponds to the
pion decay constant σ̄ = fπ . Therefore, the mass difference
between D and D∗

0 in vacuum is given by �m = MD∗
0
− MD.

As mentioned above, the parameter �m also determines the
D∗

0Dπ vertex in the third line of Eq. (6). Thus, for a given
MD∗

0
, we can predict the decay width 
D∗

0
in the perturbative

calculation. However, if we use the central value adopted
by the Particle Data Group (PDG) [1] MD∗

0
= 2318 MeV to

determine �m, we obtain 
D∗
0
= 1115 MeV, which largely

deviates from the PDG value 
D∗
0
= 267 ± 40 MeV. In other

words, D∗
0 as a pure chiral partner state is not consistent with

the experimental data.2 In fact, the huge decay width obtained
by the perturbative estimate indicates the strong coupling, for
which the nonperturbative treatment of the coupling is needed.
In the following, we regard D∗

0 field in the Lagrangian as a
bare state, and describe the physical D∗

0 state as a resonance in
the nonperturbative Dπ scattering amplitude.

B. Tree-level Dπ interaction

Let us construct the Dπ scattering amplitude at tree level.
From Eq. (6), we have the DDσ and D∗

0Dπ vertices

L = m�m

fπ
DσD† + im�m

fπ
[Dπaτ aD∗†

0 − D∗
0π

aτ aD†], (12)

and from Eq. (7), we have σππ vertex

L = −m2
σ − m2

π

2σ̄
σπaπa. (13)

From these vertices, the Dπ scattering amplitude at tree level
can be constructed by the s-channel D∗

0 exchange, u-channel
D∗

0 exchange, and t-channel σ exchange, as shown in Fig. 1.3

Straightforward calculation leads to the tree-level amplitude
in the particle basis. For instance, in the total charge Q = +1

2See also the recent discussion on the PDG value in Ref. [24].
3In this work, we consider the single-channel s-wave Dπ scattering,

and the couplings to s-wave D∗
0σ channel and p-wave D∗σ , D1π

channels are not included. These channels are in higher energies and
do not contribute to the chiral low-energy theorem.
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FIG. 1. Feynman diagrams for the tree-level Dπ scattering. Solid, dashed, and double lines represent the pion, D, and D∗
0 (σ ) propagators,

respectively.

sector, we obtain

Vi j (s, t, u) =
(

1 −√
2

−√
2 2

)
m2�2

m

f 2
π

1

s − M2
D∗

0

+
(

1
√

2√
2 0

)
m2�2

m

f 2
π

1

u − M2
D∗

0

+
(−1 0

0 −1

)
m�m

(
m2

σ − m2
π

)
fπ σ̄

1

t − m2
σ

,

(14)

with π0D+ and π+D0 for i = 1 and 2, respectively. This
coupled-channel interaction can be diagonalized by taking the
isospin basis where the interaction V I for isospin I reads

V 1/2(s, t, u) =
3
(
M2

D∗
0
− M2

D

)2

4σ̄ 2

1

s − M2
D∗

0

−
(
M2

D∗
0
− M2

D

)2

4σ̄ 2

1

u − M2
D∗

0

−
(
M2

D∗
0
− M2

D

)(
m2

σ − m2
π

)
2σ̄ 2

1

t − m2
σ

, (15)

V 3/2(s, t, u) =
(
M2

D∗
0
− M2

D

)2

2σ̄ 2

1

u − M2
D∗

0

−
(
M2

D∗
0
− M2

D

)(
m2

σ − m2
π

)
2σ̄ 2

1

t − m2
σ

, (16)

with

(|Dπ (I = 1/2)〉
|Dπ (I = 3/2)〉

)
=

⎛
⎝

√
1
3 −

√
2
3

−
√

2
3 −

√
1
3

⎞
⎠(|π0D+〉

|π+D0〉
)

. (17)

In Eqs. (15) and (16), we replace the coupling strength m�m

by the masses of the D mesons using Eqs. (10) and (11).
Because of the isospin symmetry of the effective Lagrangians,
there is no transition between I = 1/2 and 3/2 sectors. Note
also that the s-channel pole term only exists in the I = 1/2
sector, reflecting the isospin of the D∗

0 state.

C. Chiral low-energy theorem

Before proceeding to the calculation of the nonpertur-
bative scattering amplitude, it is instructive to examine the

results (15) and (16) from the viewpoint of chiral low-energy
theorem. Regarding pions as Nambu-Goldstone (NG) bosons
associated with the spontaneous breaking of chiral symmetry,
we can impose several conditions on the low-energy dynamics
of pions. In particular, low-energy scattering of pions with any
target hadron is determined only by the pion decay constant
and the total isospin of the system, as a consequence of the
Weinberg-Tomozawa theorem [29,30]. In the case of the Dπ

scattering, the low-energy scattering should behave as

V I ∝ 1

σ̄ 2
[I (I + 1) − 11/4] = 1

σ̄ 2
×

{−2 (I = 1/2)

1 (I = 3/2)
.

(18)

This is an important constraint on the hadron scattering am-
plitude in the following sense. First, from Eq. (18) the sign
(either attractive or repulsive) and strength of the interaction
are uniquely determined, according to the total isospin of
the system. Second, as long as we consider the energy scale
where the target hadron (in the present case, the D meson)
can be regarded as a compact state, the relation is insen-
sitive to the internal structure of the target hadron, except
for the isospin of the state. This means that, for instance,
the πN system also follows the same relation (18), which
was confirmed experimentally to a good accuracy by the
πN scattering lengths [6]. In chiral perturbation theory, the
Weinberg-Tomozawa theorem is automatically satisfied by
the leading-order calculation, while a careful examination is
needed in the linear representation as in the present study.

To study the low-energy (near-threshold) behaviors of
Eqs. (15) and (16), we assign the meson momenta as
D(k)π (p) → D(k′)π (p′). We regard the three-momentum of
the mesons in the center-of-mass frame |p| = |k| = |p′| = |k′|
as a small quantity. Denoting it as O(Q), we expand the
interaction V I in powers of Q. Masses of non-NG bosons, mσ ,
MD, and MD∗

0
are counted as O(Q0), while the pion mass is

regarded as mπ ∼ O(Q1) according to the chiral counting. In
this case, the energy of pions is counted as O(Q1) that we
define p0 = p′

0 ≡ ω. The energy of the D mesons k0 = k′
0 is

counted as MD + O(Q2). Then the Mandelstam variables are
expanded as

s = M2
D + 2MDω + O(Q2),

t = O(Q2),

u = M2
D − 2MDω + O(Q2).
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We finally obtain the low-energy behaviors of Eqs. (15) and
(16) as

V 1/2 = 3

4

M2
D∗

0
− M2

D

σ̄ 2

[
−1 − 2MDω

M2
D∗

0
− M2

D

]

− 1

4

M2
D∗

0
− M2

D

σ̄ 2

[
−1 + 2MDω

M2
D∗

0
− M2

D

]

+ 2

4

M2
D∗

0
− M2

D

σ̄ 2
+ O(Q2)

= −2MDω

σ̄ 2
+ O(Q2), (19)

V 3/2 = MDω

σ̄ 2
+ O(Q2). (20)

We confirm that the results satisfy the relation (18) by the
Weinberg-Tomozawa theorem. Furthermore, the energy de-
pendence agrees with the prediction by chiral perturbation
theory V ∝ (s − u)/4 = MDω + O(Q2) [17].

It is worth noting that the contribution from each channel
has an O(Q0) term, in contradiction to the low-energy the-
orem, which requires O(Q1) as the leading order. In other
words, the use of the s-channel pole term with energy-
independent coupling is not consistent with the chiral low-
energy theorem. By summing up all the channels required
by the chiral invariant Lagrangian, the O(Q0) terms cancel
out with each other, and we obtain V I ∼ O(Q1) in agreement
with the low-energy theorem. This is analogous to the πN
scattering in the linear σ model, where the sum of the s-
and u-channel Born terms with pseudoscalar coupling leads
to O(Q0) contribution, and the inclusion of the t-channel
σ exchange recovers the result of the Weinberg-Tomozawa
theorem.

D. Nonperturbative Dπ scattering amplitude

To describe the D∗
0 meson as a resonance in the Dπ

scattering, we project the interaction V (s, t, u) to s wave, and
perform nonperturbative resummation to satisfy the unitarity.

From now on, we concentrate on the I = 1/2 channel and
suppress the isospin index. In the center-of-mass frame, the
t and u variables can be specified by the total energy

√
s and

the scattering angle cos θ = p · p′/|p · p′| with the momentum
assignment D(k)π (p) → D(k′)π (p′). The s-wave part V (

√
s)

is obtained by averaging over the scattering angle as

V (
√

s) = 1

2

∫ 1

−1
d cos θ V (

√
s, cos θ ). (21)

Defining the magnitude of the three-momentum as

p ≡ |p| = |p′| = λ1/2
(
s, m2

π , M2
D

)
2
√

s
, (22)

with the Källén function λ(x, y, z) = x2 + y2 + z2 − 2xy −
2yz − 2zx, we obtain the expression for the s-wave projected
interaction:

V (
√

s) =
3
(
M2

D∗
0
− M2

D

)2

4σ̄ 2

1

s − M2
D∗

0

−
(
M2

D∗
0
− M2

D

)2

4σ̄ 2

1

4p2
ln

M2
D∗

0
− (m2

π −M2
D )2

s

M2
D∗

0
− (m2

π −M2
D )2

s + 4p2

−
(
M2

D∗
0
− M2

D

)(
m2

σ − m2
π

)
2σ̄ 2

1

4p2
ln

m2
σ

m2
σ + 4p2

. (23)

Because the tree-level interaction does not satisfy the uni-
tarity condition of the S matrix, various resummation (unita-
rization) schemes have been proposed. Here we employ the
N/D method [28,31]. By neglecting the contribution from
the left-hand cut, we obtain the general expression of the
scattering amplitude T (

√
s) from the tree-level interaction

V (
√

s) as

T (
√

s) = 1

[V (
√

s)]−1 − G(
√

s)
(24)

with

G(
√

s) = 1

16π2

[
a(μ) + ln

mπMD

μ2
+ M2

D − m2
π

2s
ln

M2
D

m2
π

+ p√
s

[
ln

(
s − m2

π + M2
D + 2

√
s p

) + ln
(
s + m2

π − M2
D + 2

√
s p

)

− ln
(−s + m2

π − M2
D + 2

√
s p

) − ln
(−s − m2

π + M2
D + 2

√
s p

)]]
, (25)

where a(μ) is the subtraction constant at the subtraction scale
μ. This G(

√
s) function is obtained by the once-subtracted

dispersion integral on the unitarity cut, and is essentially
the same with the Dπ loop function with the dimensional
regularization. With this identification, Eq. (24) corresponds
to the resummation of the loop diagrams in the Bethe-Salpeter
equation.

A resonance in the Dπ scattering is expressed as the
pole of the analytically continued scattering amplitude in
the second Riemann sheet of the complex energy plane. When

the amplitude has a pole at
√

s = z ∈ C, the mass MR and
width 
R of the resonance can be identified by

MR = Re z, 
R = −2 Im z. (26)

Because of the nonperturbative resummation, the bare mass
MD∗

0
in the Lagrangian is shifted to MR − i
R/2, including the

decay width to the Dπ channel. Therefore, this resummation
procedure can also be regarded as the renormalization of the
D∗

0 propagator with the Dyson equation. We however note that
the self-energy should include not only the simple Dπ loop, as
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was done in Ref. [13], but also the crossed diagrams, in order
to satisfy the chiral low-energy theorem.

As we discussed in Sec. II C, the low-energy limit of our
interaction V (

√
s) reduces to the Weinberg-Tomozawa term,

which can dynamically generate a Dπ molecule state without
the explicit bare state [15–24]. On top of that, our interaction
contains the explicit coupling to the bare D∗

0 state, which
is introduced as a chiral partner of D. Thus, our model is
capable of describing both the chiral partner state and the Dπ

molecule state. In the following, we calibrate the model by
empirical data and study the nature of the D∗

0 resonance in the
Dπ scattering amplitude.

III. NUMERICAL ANALYSIS

A. D∗
0 resonance

Now we numerically study the property of the D∗
0 reso-

nance. We first set the parameters of the model to the empirical
values,

mπ = 138 MeV, MD = 1867 MeV, (27)

σ̄ = 92.4 MeV, mσ = 550 MeV. (28)

In addition, we need to specify one degree of freedom to
determine the ultraviolet cutoff in Eq. (25). Here we set μ =
1000 MeV and use the subtraction constant a at this scale as
a free parameter for the cutoff degree of freedom. The bare
mass MD∗

0
in the Lagrangian is also used as a free parameter.

As a physical input to determine the free parameters,
we use the mass and width of D∗

0 in PDG [1]. According
to Eq. (26), we should have a pole of the Dπ scattering
amplitude at

√
s = 2318 ± 29 − i(134 ± 20) MeV, (29)

Note however that the PDG values are obtained by the
Breit-Wigner parametrization, which is recently challenged
by Ref. [24]. At present, we simply adopt Eq. (29) as a
representative value, but it is also possible to use the updated
pole positions as suggested in Ref. [24]. Such analysis is
reserved for a future work.

The best fit values of the bare mass and the subtraction
constant are found to be MD∗

0
= 2024 MeV and a = 2.5, with

which we obtain the D∗
0 pole at

√
s = 2318 − i135 MeV, (30)

in good agreement with Eq. (29). We also find a virtual state
pole at

√
s = 1795 MeV. Although the location of the pole is

far below the threshold (2005 MeV), this may correspond to
the one found in the σ propagator in Refs. [32,33]. We show
the reduced Dπ cross section 
(

√
s − mπ − MD)|T (

√
s)|2/s

by solid line in Fig. 2. This corresponds to the spectrum of
the scalar channel with isospin I = 1/2, and the peak of the
D∗

0 resonance is seen. We also find that the pole position of
Eq. (29) cannot be reproduced with some values of the bare
mass, even if we vary the subtraction constant freely. Namely,
the bare mass should lie in the region 2001 MeV � MD∗

0
�

2045 MeV in order to satisfy Eq. (29) within the uncertainty.

0.005

0.004

0.003

0.002

0.001

0.000

Θ
(s

1/
2 -m

π-
M

D
)|T

|2 /s
 [1

/M
eV

2 ]

2600240022002000

s1/2 [MeV]

 Φ=1
 Φ=0.9
 Φ=0.8
 Φ=0.7

FIG. 2. Reduced Dπ cross section 
(
√

s − mπ −
MD )|T (

√
s)|2/s in isospin I = 1/2 channel. Solid line corresponds

to the result with σ̄ = fπ , and the other lines show the results with
modifying the chiral condensate σ̄ = � fπ by the reduction factor �.

B. Reduction of chiral condensate

While the chiral partner state is included in the model as a
bare state, the bare mass of 2024 MeV is more than 300 MeV
away from the actual pole position. This may indicate that
the bare pole contribution is not very relevant to the structure
of the physical state. To check this qualitatively, we vary the
value of the chiral condensate σ̄ from its vacuum value, and
study the response of the spectrum and the pole position. This
is partly motivated by the reduction of the chiral condensate
in nuclear medium [34], but the quantitative discussion on
the in-medium spectrum will require the actual many-body
calculation as was done in Refs. [13,14].

Here we introduce a reduction parameter � as

σ̄ = � fπ (31)

and vary it within 0.7 � � � 1. The masses of the D mesons
are given by Eqs. (10) and (11), with fixed m and �m. Namely,
the mass of D (bare mass of D∗

0) increases (decreases) as we
decrease � from unity. For the light mesons, we assume that
the pion mass is independent of � and the mass of σ varies
as m2

σ = m2
π + 2λσ̄ 2 with λ fixed, as suggested in Ref. [28].

Namely, the mass of σ decreases along with the reduction
of �.

The modification of the D∗
0 spectrum along with the re-

duction of σ̄ is shown in Fig. 2 by the dashed lines. We
find that the spectrum is barely changed, even if the chiral
condensate is reduced by 30%. This shows that the resonance
is not sensitive to the change of the chiral condensate. This can
also be seen by the trajectory of the pole shown in Fig. 3. The
change of the pole position is a few tens of MeV with the 30 %
reduction of σ̄ . Moreover, the real part of the pole increases
when the chiral condensate is reduced, although the bare mass
is moved to the lower energies. We also note that the virtual
state pole at 1795 MeV moves toward the threshold. This is
in line with the findings in Refs. [32,33], although the pole

065201-5



TAKUMI SUGIURA AND TETSUO HYODO PHYSICAL REVIEW C 99, 065201 (2019)

-150

-140

-130

-120

-110

-100

Im
 s1/

2  [M
eV

]

235023402330232023102300

Re s1/2 [MeV]

Φ=1

Φ=0.7

FIG. 3. Trajectory of the D∗
0 pole along with the reduction of

the chiral condensate. The arrow indicates the direction of the pole
movement.

locates still far away from the threshold (
√

s = 1864 MeV at
� = 0.7).

As found in Ref. [28], the pole of the chiral partner state is
naively expected to move toward the threshold with reducing
the imaginary part due to the decrease of the phase space.
We confirm this behavior by artificially tuning the subtraction
constant (a = 0) to have a narrow D0 resonance (pole at√

s = 2069 − 32i MeV with � = 1). This indicates that, in
the physical D∗

0 resonance (with a = 2.5), the dressing by the
Dπ molecule component is so large that it washes out the
chiral partner nature of the bare state. In this way, we conclude
that the Dπ molecule component is important for the physical
D∗

0 meson, on top of the bare state, which is the chiral partner
of the D meson.

IV. SUMMARY

We have studied the properties of the D∗
0 resonance in the

Dπ scattering, utilizing the chiral effective Lagrangian. We
introduce the chiral partner of the D meson as an explicit bare
state in the linear representation of chiral symmetry. At the
same time, we respect the chiral low-energy theorem, which
leads to the dynamical generation of the Dπ molecule state.
Because the empirical data can be explained by this model we
demonstrate that the physical D∗

0 resonance can be described
as a superposition of the chiral partner of D and the Dπ molec-
ular state. By studying the response to the modification of
the chiral condensate, we find that the bare D∗

0 state is highly
dressed by the Dπ molecular component to realize the phys-
ical D∗

0 resonance. Thus, we conclude that the Dπ molecular
component dominates the internal structure of the D∗

0 meson.
As future prospects, we can improve the empirical in-

formation of the D∗
0 state as suggested by Ref. [24]. It is

possible to use the updated pole position as an input, or to
directly analyze the B meson decay data. The generalization
to three-flavor case is also important, because the thresholds
of Dη and DK channels are located around 2400 MeV, whose
contribution may also affect to the D∗

0 resonance. In this case,
the D∗

s0(2317) can also be studied in the same framework.
Another direction would be to explore the modification of the
D∗

0 property in nuclear medium, which can be pursued with
the techniques developed in Refs. [13,14].
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