SJVDP LIBRARY 5576

See MP Library No. 1400B

The Agroforestry Demonstration Program in the San Joaquin Valley Progress Report

March 1988

Prepared under contract for the FEDERAL-STATE SAN JOAQUIN VALLEY DRAINAGE PROGRAM By the CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE

This progress report presents the status of research activities being conducted for the Agroforestry Demonstration Program by the California Department of Food and Agriculture and the U.S. Department of Agriculture's Soil Conservation Service. The report was prepared under provisions of a cooperative agreement for the Federal-State San Joaquin Valley Drainage Program, one of the funding entities sponsoring the demonstration Publication of the findings and project. recommendations included in the report should not be construed as representing the concurrence of any Federal or State agency participating in the San Joaquin Valley Drainage Program. Also, mention of trade names or commercial products does not constitute endorsement or recommendation by the agencies. The purpose of this report is to provide the Drainage Program agencies with information and alternatives for further consideration.

The San Joaquin Valley Drainage Program was established in mid-1984 as a cooperative effort of the U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service, U.S. Geological Survey, California Department of Fish and Game, and California Department of Water Resources. The purposes of the Program are to investigate the problems associated with the drainage of irrigated agricultural lands in the San Joaquin Valley and to formulate, evaluate, and recommend alternatives for the immediate and long-term management of those problems. Consistent with these purposes, Program objectives address the following key areas: (1) Public health, (2) surface- and ground-water resources, (3) agricultural productivity, and (4) fish and wildlife resources.

Inquiries concerning the San Joaquin Valley Drainage Program may be directed to:

> San Joaquin Valley Drainage Program 2800 Cottage Way, Room W-2143 Sacramento, California 95825-1898

The Agroforestry Demonstration Program in the San Joaquin Valley Progress Report

March 1988

Prepared under contract for the FEDERAL-STATE SAN JOAQUIN VALLEY DRAINAGE PROGRAM By the CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE

This progress report presents the status of research activities being conducted for the Agroforestry Demonstration Program by the California Department of Food and Agriculture and the U.S. Department of Agriculture's Soil Conservation The report was prepared under provisions of Service. a cooperative agreement for the Federal-State San Joaquin Valley Drainage Program, one of the funding entities sponsoring the demonstration project. Publication of the findings and Publication of the findings and recommendations included in the report should not be construed as representing the concurrence of any Federal or State agency participating in the San Joaquin Valley Drainage Program. Also, mention of trade names or commercial products does not constitute endorsement or recommendation by the agencies. The purpose of this report is to provide the Drainage Program agencies with information and alternatives for further consideration.

The San Joaquin Valley Drainage Program was established in mid-1984 as a cooperative effort of the U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service, U.S. Geological Survey, California Department of Fish and Game, and California Department of Water Resources. The purposes of the Program are to investigate the problems associated with the drainage of irrigated agricultural lands in the San Joaquin Valley and to formulate, evaluate, and recommend alternatives for the immediate and long-term management of those problems. Consistent with these purposes, Program objectives address the following key areas: (1) Public health, (2) surface- and ground-water resources, (3) agricultural productivity, and (4) fish and wildlife resources.

Inquiries concerning the San Joaquin Valley Drainage Program may be directed to:

> San Joaquin Valley Drainage Program 2800 Cottage Way, Room W-2143 Sacramento, California 95825-1898

THE AGROFORESTRY DEMONSTRATION PROGRAM IN THE SAN JOAQUIN VALLEY

Progress Report March 1988

Prepared for the

Federal-State San Joaquin Valley Drainage Program 2800 Cottage Way, Room W-2143 Sacramento, California 95825-1898

and other contributing agencies

Under

U.S. Bureau of Reclamation Cooperative Agreement No. 7-FC-20-04900

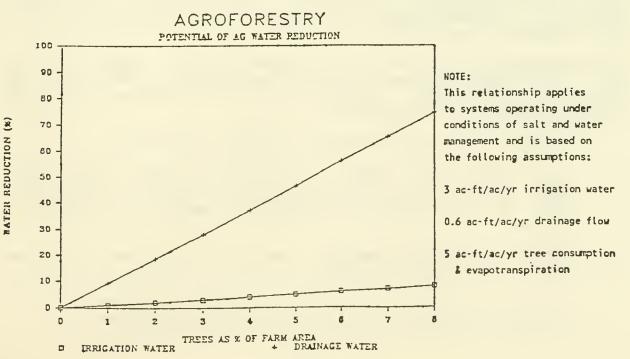
By the

California Department of Food and Agriculture Agricultural Resources Branch 1220 N Street, Room 104 Sacramento, California 95814

TABLE OF CONTENTS

		Page
Execu	tive Summary	i
1.0	Introduction	1- 1
2.0	Present Status of the Agroforestry Demonstration Program	2- 1
3.0	Future Plans for the Agroforestry Demonstration Program	3- 1
4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Progress of the Field Trials Murrieta Farms Peck Ranch Thomsen Brothers Sal Carollo Verdigaal Brothers Haynes Ranch Way Farms Arthur Williams & Sons Buttonwillow Land & Cattle Co. Allen Ranch Kings Boys Ranch Bloemhof Agricultural Enterprises Other Farm Reports	$\begin{array}{r} 4-1\\ 4-3\\ 4-12\\ 4-19\\ 4-26\\ 4-41\\ 4-51\\ 4-61\\ 4-61\\ 4-72\\ 4-72\\ 4-77\\ 4-81\\ 4-85\\ 4-89\end{array}$
5.0	Tree Selection and Propagation Project Roy Woodward, Roy Sachs, Miles Merwin (ITCI) Department of Environmental Horticulture University of California, Davis	5- 1
6.0	Economic and Marketing Study Luanne Lohr Department of Agricultural Economics University of California, Davis	6- 1
7.0	Wildlife Study Andrew R. Dyer, David L. Chesemore Department of Biology California State University, Fresno	7- 1
8.0	Salt/Water Balance Study	8- 1
9.0	Halophyte Biofilter Trial Carol Watson Environmental Research Laboratory University of Arizona, Tuscon	9- 1
10.0	Financial Information	10- 1
11.0	Agroforestry Directory	11- 1
12.0	Glossary	12- 1

.


EXECUTIVE SUMMARY

The California Department of Food and Agriculture (CDFA) and the United States Department of Agriculture - Soil Conservation Service (USDA - SCS) are currently conducting research on the potential use of agroforestry as an option to help San Joaquin Valley farmers manage drainage water and salinity problems. The use of agroforestry for this purpose is based on salinity management practices used in world regions with soil and climatic conditions similar to those in California.

Irrigation of farmland creates the need to leach accumulated salts from the soil in order to allow the continued production of crops. Problems in the San Joaquin Valley involve shallow ground water tables created when saline water accumulates above lowpermeable clay layers in the soil. These high water tables must be lowered below crop root zones in order to prevent losses in production. Additional problems involve potentially harmful elements, such as selenium and boron, which may be contained in this saline water.

The Agroforestry Demonstration Program currently underway is testing and evaluating the feasibility of utilizing trees to reduce the amount of agricultural drainage water generated within the San Joaquin Valley. Salt-tolerant trees have the potential to lower the water table and reduce the volume of this drainage water through evapotranspiration and consumptive uses. Agroforestry can therefore lower the costs of drainage water management by reducing the amount of water which must be treated and/or disposed of in evaporation ponds, solar ponds, or deep-injection wells. Figure 1 illustrates the potential of the agroforestry system to reduce both the volume of drainage water and the volume of irrigation water used on farms in the San Joaquin Valley.

FIGURE 1

The trees can contribute to more than just the reduction of water volume. They can also help increase the production of conventional crops by lowering high water tables. Additionally, the trees, in combination with selected plants grown as biofilters, may help remove some of the selenium and other elements from the drainage water. The trees and biofilter crops, irrigated with drainage water on a given percentage of land, would also reduce the total requirements for irrigation water supplied by canals and rivers (for example, a 100 acre farm with 10% agroforestry would require fresh irrigation water for only 90 acres of crops). Consequently, agroforestry would also reduce the amount of salts brought into the San Joaquin Valley with fresh water deliveries.

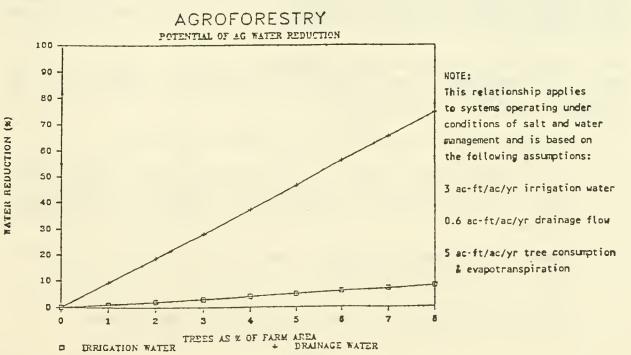
In addition to assisting farmers with the management of drainage and salinity problems, the trees can also provide: (1) a marketable commodity in the form of harvested biomass, (2) windbreaks, (3) a wildlife habitat amid flat farmland, and (4) an opportunity for farmers to gain additional income from beekeeping or establishing hunting areas for sportsmen.

Fast-growing eucalyptus and casuarina trees may produce up to 15 to 20 tons biomass per acre per year, although under saline conditions yields can be expected to be lower, yet still substantial, amounts. The plantations are still too young at this point to determine actual yields, but it is apparent that land which might otherwise be either not cultivated or kept as evaporation ponds can instead be utilized productively. The plantations may also help the farmer by providing effective windbreaks to help protect adjacent crops and reduce soil erosion.

The wildlife study being conducted as part of this program indicates that many birds and small mammals are using the trees for shelter. The study will continue to determine the wildlife uses of the plantations as well as the possible effects of the drainage water irrigation on wildlife. Farmers may also obtain additional income through the management of the plantations for game hunting or bee hives.

The demonstration plantations, planted in 1985, 1986, and 1987, are now becoming mature enough so that positive results can be observed. Preliminary analyses of the data obtained from the program thus far indicate that:

- 1. Drainage water can be used to irrigate the trees.
- Once established, trees can use ground water from higher water tables and do not need to be irrigated; planting of trees as water flow interceptors needs to be further studied.
- 3. Trees can be used to manage a water/salt balance; the system needs to be further studied.
- 4. Trees are growing at rates of 1/3 foot to 2/3 foot or more per month, depending on soil and growing conditions.


EXECUTIVE SUMMARY

The California Department of Food and Agriculture (CDFA) and the United States Department of Agriculture - Soil Conservation Service (USDA - SCS) are currently conducting research on the potential use of agroforestry as an option to help San Joaquin Valley farmers manage drainage water and salinity problems. The use of agroforestry for this purpose is based on salinity management practices used in world regions with soil and climatic conditions similar to those in California.

Irrigation of farmland creates the need to leach accumulated salts from the soil in order to allow the continued production of crops. Problems in the San Joaquin Valley involve shallow ground water tables created when saline water accumulates above lowpermeable clay layers in the soil. These high water tables must be lowered below crop root zones in order to prevent losses in production. Additional problems involve potentially harmful elements, such as selenium and boron, which may be contained in this saline water.

The Agroforestry Demonstration Program currently underway is testing and evaluating the feasibility of utilizing trees to reduce the amount of agricultural drainage water generated within the San Joaquin Valley. Salt-tolerant trees have the potential to lower the water table and reduce the volume of this drainage water through evapotranspiration and consumptive uses. Agroforestry can therefore lower the costs of drainage water management by reducing the amount of water which must be treated and/or disposed of in evaporation ponds, solar ponds, or deep-injection wells. Figure 1 illustrates the potential of the agroforestry system to reduce both the volume of drainage water and the volume of irrigation water used on farms in the San Joaquin Valley.

FIGURE 1

The trees can contribute to more than just the reduction of water volume. They can also help increase the production of conventional crops by lowering high water tables. Additionally, the trees, in combination with selected plants grown as biofilters, may help remove some of the selenium and other elements from the drainage water. The trees and biofilter crops, irrigated with drainage water on a given percentage of land, would also reduce the total requirements for irrigation water supplied by canals and rivers (for example, a 100 acre farm with 10% agroforestry would require fresh irrigation water for only 90 acres of crops). Consequently, agroforestry would also reduce the amount of salts brought into the San Joaquin Valley with fresh water deliveries.

In addition to assisting farmers with the management of drainage and salinity problems, the trees can also provide: (1) a marketable commodity in the form of harvested biomass, (2) windbreaks, (3) a wildlife habitat amid flat farmland, and (4) an opportunity for farmers to gain additional income from beekeeping or establishing hunting areas for sportsmen.

Fast-growing eucalyptus and casuarina trees may produce up to 15 to 20 tons biomass per acre per year, although under saline conditions yields can be expected to be lower, yet still substantial, amounts. The plantations are still too young at this point to determine actual yields, but it is apparent that land which might otherwise be either not cultivated or kept as evaporation ponds can instead be utilized productively. The plantations may also help the farmer by providing effective windbreaks to help protect adjacent crops and reduce soil erosion.

The wildlife study being conducted as part of this program indicates that many birds and small mammals are using the trees for shelter. The study will continue to determine the wildlife uses of the plantations as well as the possible effects of the drainage water irrigation on wildlife. Farmers may also obtain additional income through the management of the plantations for game hunting or bee hives.

The demonstration plantations, planted in 1985, 1986, and 1987, are now becoming mature enough so that positive results can be observed. Preliminary analyses of the data obtained from the program thus far indicate that:

- 1. Drainage water can be used to irrigate the trees.
- Once established, trees can use ground water from higher water tables and do not need to be irrigated; planting of trees as water flow interceptors needs to be further studied.
- 3. Trees can be used to manage a water/salt balance; the system needs to be further studied.
- 4. Trees are growing at rates of 1/3 foot to 2/3 foot or more per month, depending on soil and growing conditions.

- 5. Tree plantations attract wildlife; the interaction of plantations and wildlife needs to be further studied from both economic and ecological standpoints.
- 6. Trees can recover from the damage of cotton defoliants.
- 7. Weed control is needed mostly during the first year.
- 8. Tree production may be a low cost operation, especially considering the economic aspects of drainage water management.
- 9. Trees offer an opportunity for economic use of land.
- Power and pulp companies are expressing an interest in contracting with growers for supplies of biomass; composition of the biomass and environmental effects of its conversion need to be studied.
- 11. Trees and biofilter plants may provide an opportunity to diversify production and marketing options.
- 12. Biofilter crops potentially uptake selenium; the feasibility of using "selenium enriched" forage for livestock needs to be studied.

The challenge of salinity and drainage water problems needs to be addressed at the on-farm level. The solution can be found in a combination of measures, such as irrigation management, agroforestry, biofilter crops, and water treatment or disposal facilities, all of which would operate as a system. This approach may also offer an opportunity to manage selenium and other elements as resources rather than hazardous waste.

The goal of the Agroforestry Demonstration Program is to develop a practical farming solution to drainage and salinity problems in order to maintain the viability of the agriculture industry in the San Joaquin Valley.

* *

*

Acknowledgement

.

The Agroforestry Demonstration Program has been partially funded by the San Joaquin Valley Drainage Program (SJVDP) and the State Water Resources Control Board (SWRCB). The California Department of Forestry (CDF) has been supplying a portion of the seedlings required and the Department of Water Resources (DWR) has committed additional financial support for the program. The United States Department of Agriculture - Soil Conservation Service (USDA - SCS) and the California Department of Food and Agriculture (CDFA) enjoy the cooperation of farmers and numerous professionals working in the private sector, federal and state agencies, and universities. This report was produced in order to document the progress of the San Joaquin Valley Agroforestry Demonstration Program for the San Joaquin Valley Drainage Program, in compliance with the agreement between the CDFA and the United States Bureau of Reclamation, and for other interested individuals and agencies.

*

lV

1.0 Introduction

The agroforestry demonstration program for the management of saline drainage water was introduced in the San Joaquin Valley during the spring of 1985 and is scheduled to continue through at least 1991. Twenty-one trial plantations, ranging in size from less than one acre to 28 acres and totaling about 179 acres, include plantings of eucalyptus, casuarina, poplar, mesquite, and Elderica pine. These trial plantations are located on private farms. Seeds for <u>Eucalyptus camaldulensis</u>, the most commonly planted species of eucalyptus, were obtained from the Lake Albacutya, Mt. Bernstead, and Alice Springs areas of Australia. Casuarina seeds were obtained from both Australia and Egypt. The poplar cuttings and mesquite seedlings were obtained from two commercial nurseries and the University of California, Riverside.

Fresh water is used to irrigate the seedlings during the first year in order to establish the trees. Thereafter, the trees receive saline drainage water and/or they directly utilize ground water from high water tables. The level of weed control varies from farm to farm, as does the application of fertilizers and amendments. The trees show hardy growth under a variety of conditions and have problems only in the most highly saline areas of some fields.

A comprehensive 5-year program has been implemented for monitoring the soil, water, and plant conditions. Levels of ground water are measured at regular intervals and laboratory tests are conducted on samples of soil, water, and plant tissues. The California Department of Food and Agriculture (CDFA), the U.S. Department of Agriculture - Soil Conservation Service (USDA-SCS), and the California State University, Fresno - Center for Irrigation Technology (CSUF-CIT) gather the monitored data. The farm reports (Sections 4.0 through 4.13) show some of this data, including planting history and the depth of ground water and its electric conductivity. The trends of the monitored data are continuously analyzed. Tabular and graphical presentations of some of these results are included in several of the farm reports. Contracts have been signed with Dellavalle Laboratories, Inc., for analysis of soil, water, and plant tissue samples and CSUF-CIT for water monitoring.

In March of 1987 a report on the agroforestry program was presented at the Pacific Region Meeting of the American Society of Agricultural Engineers in Tucson, Arizona. This report, along with additional information on the agroforestry program, can be found in the April 1987 progress report, available upon request from the Agricultural Resources. Branch of the CDFA.

*

2.0 Present Status of the Agroforestry Demonstration Program

As mentioned previously, the Agroforestry Demonstration Program includes approximately 179 acres of trees planted on 21 farms. Table 1 lists the size and county of participating farms along with planting information and portions of the program in which each farm participates. The map in Section 4.0 indicates the locations of the individual farms and the farm reports in Sections 4.1 through 4.13 give more detailed accounts of the plantings. Typical eucalyptus and casuarina trees are shown in the photographs in Figure 2.

In addition to the trial field plantings, which include monitoring and laboratory analyses of soil, water, and plant samples, the Agroforestry Demonstration Program is conducting research studies on other aspects of agroforestry. All of these activities are oriented toward the successful integration of agroforestry farming practices in the San Joaquin Valley. These projects include:

- 1. the selection and propagation of superior performing trees (Section 5.0)
- 2. the economic analysis of agroforestry and marketing of value-added agroforestry products (Section 6.0)
- 3. the study of the wildlife uses of the plantations, the economic and other values of the wildlife, and the potential effects of contaminants in drainage water on this wildlife (Section 7.0)
- 4. the study of the salt and water balance of the system (Section 8.0)
- 5. the study of biofilter crops for the management of drainage water within the framework of agroforestry and of livestock feeding trials with harvested forage in selenium deficient areas (Section 9.0)
- 6. the study of biomass characteristics, the distribution of elements, such as selenium, within the biomass, and the ultimate destiny of these elements after biomass utilization (potential for air pollution, etc.)

Contracts have been signed between the CDFA and the University of California, Davis (UCD) and California State University, Fresno (CSUF) to perform these research studies. The University of Arizona (UA), Tuscon is involved in the biofilter study. The biomass study is scheduled to start in 1988 at UCD.

TABLE 1 Agroforestry Program Demonstration Plantations

SELECTION OF TREES FOR HALOPHYTE		1987 1988 TRIAL		× × ×	××	×	×					×	×										×			×	
WATER/SALT (STUDY		×						8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8												8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
	WILDLIFE	STUDY	1 1 1 1 1 1 1 1	×	×	×	×						×														
INTENSIVE WATER	MONITORING	(CSUF)		×	×	×	×			1 5 5 0 0 0 0 0 0 0												8 9 8 8 8 8 8 8 8 8 8 8 8					
SCS TABLE	RING	EC		×	×	×	×				×	×	×									1	×	×	×	×	
USDA-SCS WATER TABLE	MONITORING	Depth EC	8	×	×	×	×			8 8 8 9 9 9	×	×	×									3 8 8 8 8	×	×	×	×	
ED ORY ES	Plant	Water Tissue		×	×	×				5 9 8 8 9 8 9 9	×	×										8	×			×	
DETAILED LABORATORY ANALYSES				×	×	×				5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	×	×										8 6 6 6 6	×			×	
		Soil	1	×	×	×				1	×	×										5 7 5	×			×	
	PLANTED	Mes Pine										×	×												×		
	REES	_		×						1			×													×	
	TYPES OF TREES	Cas F		×	×	×	×	×		1 1 1 1	×	×	×				×							×	×		
	TYPE	Euc Cas Pop		×	×	×	×	×	×	1 1 1 1	×	×	×	×	×	×	×	×	×	×	×	8 6 8 6 8	×	×	×	×	
	ED	1987	1			×			×	8 8 9	×	×	×		×	×	×	×	×	×	×						
	YEAR PLANTED	1986	8	×	×	×	×	×			×	×	×	×								2 2 1 1	×	×	×	×	
	YEAR	1985 1986 1987	1 1 1 1	×	×					8 8 8 8 8												2 2 2 2 2 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4					
ACREAGE	1 N	TREES	8 9 9 9 9 9	23.3	8.2	15	5	e	28		Ø	10	11.3	2	7	4	3.4	2	2	1.2	<1>	1	4.5	19	13	12	
		COUNTY	1	Fresno	Fresno	Fresno	Fresno	Fresno	Fresno	8 8 8 8 8	Kings	Kings	Kings	Kings	Kings	Kings	Kings	Kings	Kings	Kings	Kings	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kern	Kern	Kern	Kern	
		FARM		Murrieta	Peck	Thomsen	Allen	Gowen	Meyers		Verdîgaal	Carollo	Haynes	Kings Boys Ranch	Stratford P.U.	Orton	Iulare Lake D.D.	Stanton	Rowan	Rio Vista	Van Groninger	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Buttonwillow	Bloemhof	Williams	Way	

2-2

FIGURE 2

San Joaquin Valley Field Sites for the Agroforestry Demonstration Program

EUCALYPTUS TREES

CASUARINA TREES

Funding for these research projects and the field trials and associated analyses has been obtained from grants by the CDFA, the USDA-SCS, the Federal - State San Joaquin Valley Drainage Program (SJVDP), the State Water Resources Control Board (SWRCB), and the Department of Water Resources (DWR). The California Department of Forestry (CDF) has contributed over 80,000 seedlings to the program, with a cash value of approximately \$32,500. Table 2 lists the contributions of these agencies and Table 3 shows the activities supported by each of the funding sources, along with the names of the contracted institutions and the investigators.

The CDFA has been keeping records on the expenditures and reimbursements for the previously mentioned activities. Financial summaries for this information are included in Section 10.0.

Other agencies are also supporting the Agroforestry Demonstration Program with contributions such as supplying seedlings or providing consulting services. All of the participants and their activities are included in Table 4. Section 11.0 contains a directory of the individual Agroforestry Program participants.

TABLE	2	Funding	for	the	Agroforestry	Program
		(October	198	37)		

FUNDING AGENCY	CONTRIBUTION
CDFA	\$ 95,000
SJVDP	60,000
SWRCB	50,000
USDA-SCS	15,000
DWR	9,500
CDF	32,500 (equivalent)
total funding	\$262,000

TABLE 3 Agroforestry Program Grants and Activities

FUNDING		INSTITUTION OR COMPANY	
SOURCE	ACTIVITY	UNDER CONTRACT	INVESTIGATORS
CDF	Provide seedling	n/a	Gene Hartzel
SWRCB	Analysis of samples	Dellavalle Labs	n/a
	Seedling purchases	Contracted and non-contracted commercial nurseries	n/a
	Other field trial related expenses	n/a	n/a
SJVDP	Selection and propagation of trees	UCD	Dr. R. Sachs Dr. R. Woodward M. Merwin (ITCI)
	Economic study	UCD (direct salary payment)	Dr. J. Wilen Luanne Lohr
	Wildlife study	CSUF	Dr. D. Chesemore Andy Dyer
CDFA	Salt & water	UCD	Dr. K. Tanji
	balance	CSUF	Dr. S. Gratton Dr. K. Solomon Dr. G. Jorgensen
	Water monitoring	CSUF	Dr. K. Solomon Dr. G. Jorgensen
USDA-SCS	Analyses Equipment	USDA Laboratory Lincoln, Neb.	Fresno, Hanford & Bakersfield Offices
DWR	Evapotranspiration study	UCD	Dr. S. Gratton

TABLE 4 Participating Agencies

PARTICIPA	NT	ACTIVITIES
CDFA	-California Department of Food & Agriculture	-Administration -Funding -Consultation in plant pathology
USDA-SCS	-USDA-Soil Conservation Service	-Tree planting -Monitoring field trials -Funding -Relations with participating farmers
CDF	-California Department of Forestry	-Consulting -Seedlings
SJVDP	-Federal-State San Joaquin Valley Drainage Program	-Funding -Consulting
SWRCB	-State Water Resource Control Board	-Funding -Consulting
DWR	-Department of Water Resources	-Funding -Consulting
USBR	-U.S. Department of the Interior, Bureau of Reclamation	-Consulting
USFW	-U.S. Fish & Wildlife	-Consulting
USDA-FS	-USDA Forest Service	-Consulting -Economic study
CVRQCB	-Central Valley Regional Quality Control Board	-Consulting -Quality control in lab testing
DOC	-Department of Conservation	-Consulting
DFG	-Department of Fish & Game	-Consulting
UCD	-University of California, Davis	-Research
UCR	-University of California, Riverside	-Consulting -Seedlings

(continued on next page)

TABLE 4 Participating Agencies (continued)

PARTICIPAN	<u>TT</u>	ACTIVITIES
UCB	-University of California, Berkeley Dept. of Forestry	-Consulting
CSUF	-California State University, Fresno	-Research -Consulting
	-CSUF Experimental Range Station	-Consulting -Use of Se enriched forage
UA	-University of Arizona	-Research -Consulting
CFF	-Chapman Forestry Foundation	-Consulting -Seedlings
ITCI	-International Tree Crop Institute	-Seeds -Assist in propagation of casuarina

* * *

3.0 Future Plans for the Agroforestry Demonstration Program

The agroforestry system needs to be tested and evaluated over several growing seasons. It is scheduled to continue through at least 1991, at which time the field plantations will have begun to reach maturity and all of the individual projects should be completed. Trees and biofilter crops will be harvested and analyzed for yield, composition, contaminants, economic value, and regrowth efficiencies. This program will develop practical field data on the agroforestry system, including information on agricultural water management and salinity control, integration of agroforestry with technologies for final treatment or disposal of drainage water, guidelines for the management of the plantations and biofilters, establishment of seed plantations, the processing of biomass into marketable commodities, and the development of markets for these products. Workshops will be organized and literature will be prepared to help disseminate this information to the farmers. The program also includes studies to investigate the environmental effects of the agroforestry system on wildlife and farming.

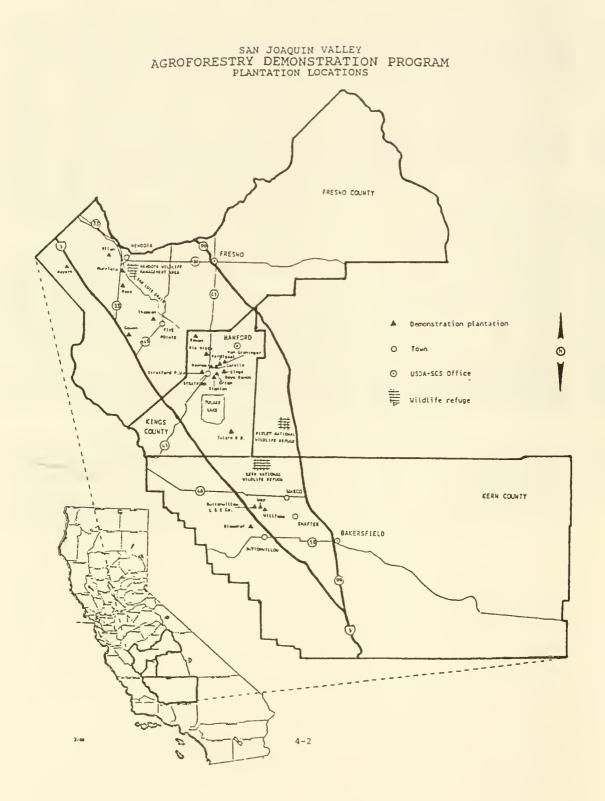
The goals of the Agroforestry Demonstration Program will be accomplished with the following activities:

- continue the detailed laboratory analyses of water, soil, and plant tissue on selected farms
- expand the quality assurance program for laboratory analyses
- continue intensive monitoring of water conditions on selected farms
- continue analysis of the monitored data from the demonstration plantations
- continue the economic and marketing study
- conduct the water/salt balance study, including the investigation of evapotranspiration characteristics of trees and biofilter crops
- continue selection of outstanding trees on farms which have been irrigated with drainage water for more than one year
- further test the selected trees in the laboratory
- propagate these trees and establish seed plantations in the San Joaquin Valley in order to have a local material source for further expansion of the plantings
- continue the wildlife study, including monitoring the wildlife in tree plantations of different ages, analyzing for contaminants in wildlife and their food chains, and

evaluating the economic value of agroforestry for additional income from hunting

- test halophytes as biofilters for uptake of selenium, and conduct feeding trials to investigate potential uses of the biofilter crops as selenium enriched forage for livestock in those areas of California which are selenium deficient
- characterize the biomass for its potential for conversion into marketable products, including the technology and economics of the conversion and the environmental impacts of biomass production and utilization
- coordinate with SWRCB, SJVDP, Westlands Water District, and other agencies the integration of agroforestry farming methods with the technologies considered for final removal and disposal of the salts concentrated in the reduced volume of drainage water
- study the feasibility of handling selenium and other elements (contained in the drainage water) as resources rather than waste materials
- organize workshops and prepare literature on agroforestry and its potential to help San Joaquin Valley farmers with the management of irrigation and drainage water and the development of marketable commodities

The Agroforestry Demonstration Program consists of several interrelated projects coordinated towards finding a practical farming solution to drainage and salinity problems. This program will help keep farming viable and will support the development of a new agriuclture-based industry in the San Joaquin Valley.


* * *

3-2

4.0 Progress of the Field Trials

Thus far, trees planted for the agroforestry program have shown rapid growth, with average heights of 4 to 7 feet in their first six months of growth. Some outstanding trees, usually growing in the better soils, stand 10 feet high or more when six months old. Other trees have suffered from problems such as highly saline soils or ground water or damage from the drift of cotton defoliants. Hot weather and lack of immediate irrigation at planting time caused high mortality of seedlings planted on some farms late in the season. From these experiences guidelines are being developed for planting and care during the first year so that seedling mortality can be reduced. Once established, the trees suffering from cotton defoliant damage have surprisingly sprouted vigorous new growth.

The apparent low maintenance requirements indicate that the production of these trees is a low cost operation. Weed control is needed mostly during the first year. After this the trees seem to out-compete the weeds. The trees also seem to maintain high growth rates even while being irrigated with saline drainage water of up to 10,000 ppm TDS. The demonstration plantations have created an interest among farmers, some of whom wish to plant more trees. The effects of varying degrees of care and soil conditions on tree growth can be observed in the following farm reports (Sections 4.1 through 4.13), the first nine of which include brief summaries of the plantations.

4.1 Murrieta Farms

Murrieta Farms has put much effort into their 24 acres of agroforestry plantings and thus they exemplify an intensively cared for plantation. The field site, which includes 1985 and 1986 plantings of several species and seed sources of eucalyptus, casuarina, and poplar, has been both hand weeded and sprayed with herbicides (both Fusilade and a mixture of Goal and Roundup). The lower lateral limbs are pruned and the trees have received some fertilizer. Although fresh irrigation water was used during the first year of growth, the trees now receive drainage water diluted with fresh water to reduce the salinity to approximately 10,000 ppm. The trees are growing well and typical trees have been harvested to determine the biomass yield.

The USDA-SCS in Fresno has provided soil and water analyses on Murrieta Farms. Detailed analyses have been run on soil and water samples. These are included in the following farm report. In addition to the detailed analyses, monthly readings of water table depth and electric conductivity (EC) of ground water are taken by CSUF - CIT.

Several of the fastest growing trees have been harvested to provide cuttings for the tree selection and propagation trials at UCD. This project is further described in Section 5.0.

This plantation is also included in the wildlife study being conducted by the CSUF - Department of Biology. Many birds and small mammals have been seen in the area and several bird nests have been found in the casuarina trees. Refer to the report in Section 7.0 for a more complete description of this program.

A field of saltbush (<u>Atriplex</u>) was planted on the farm in cooperation with the University of Arizona (UA). This has been harvested in two cuttings for a total production rate of about 3 tons per acre. The forage has been fed to sheep and cattle on the ranch, which appear to like the hay. Detailed analyses are being run to determine the constituents and nutritional value of the plants in order to determine their suitablity as a biofilter crop. A description of this project is included in Section 9.0.

Murrieta Farms has been chosen as the field site for the salt/ water balance study being conducted by researchers at UCD, CSUF -CIT, and UA, Tucson. This research will help track the water, salts, and elements going into and coming out of the agroforestry system. A tile drainage system will be installed under the agroforestry and biofilter site in order to conduct the study. Evapotranspiration values of trees and biofilter plants will also be measured. A more detailed outline of this project is included with the Salt/Water Balance project description in Section 8.0.

	ta s	~				road) feet	road		road			
MURRIETA FARMS AGROFORESTRY DEMONSTRATION PLANTINGS	field road	Atriplex Nursery 3 rows Casuarina, various species, 7-2-85	7 rows Eucalyptus camaldulensis (Lake Albacutya), San Joaguin Foliage, 7/85 p	D. 3 rows Casuarina, Cornflower Farms, 7-10-86	8 rows E. camaldulensis, 7-10-86	0 7 rows E. camaldulensis (Lake Albacutya), San Joaquin Foliage, 5-8-86	9 rows E. camaldulensis (Lake Albacutya), San Joaquin Foliage, 5-8-86	11 rows E. camaldulensis (Alice Springs), San Joaquin Foliage, 5-7-86	<pre>1 row E. camaldulensis (Alice Springs), San Joaquin Foliage, 5-7-86 Elderica Pine (93 plants), 8-10-87 1 row E. camaldulensis (Alice Springs), San Joaquin Foliage, 5-7-86</pre>	20 rows E. camaldulensis (Lake Albacutya), Ca. Dept. of Forestry, 5-8-86	11 rows E. camaldulensis (Lake Albacutya), Ca. Dept. of Forestry, 5-8-86	l row Eucalyptus grandis, Cornflower Farms, 5-8-86; Elderica Pine (72 plants) 8-15-87	

not to scale

2640 feet

Jeltuo noijepirijo Sqmuq nisib

6[ait

4-4

AGROFORE	STRY - TREE	PLANTING			lisc: AGRC ast updat	DFORESTRY te 9/8/87		file: AGFO	MURI	
county:	FRESNO									
farm:	MURRIETA		acreage:	23.3		av.tr/ac:	1560			
PLANTING DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-gla	CAS-cun	CAS-oth	POPLAR	MESQUITE	gr.tot.
		total:	32900	1085	0	138	855	1376	0	36354
7/2/85 7/22/85	CORNEL CDE	ITCI		285			855			
8/19/85 2/24/86	SJV CHAPMAN	L.ALBACUT FORSTER	3200					415		
3/4/86	ZAPATTINI	4 VAR'S						961		
3/4/86	CORNEL	CHAPMAN				138				
5/7/86	SJV	L.ALBACUT	29700							
5/8/86	CORNEL	"ROSE GUM"		800						
	Mo./Yr.	3/87		7/87						
Comments	:		damage on new							
			trees staked							
			gs 2' shorter		reduced					
			l., possibly	irrig.,						
		crossed w/	E. globulus							
SOILS	Mo./Yr.	9/86		3/87		7/87				
Lab Ana	lysis:									
	RISOIL &	-		See May '86 a						
	Plan"			of soil befor						
in fil			1	ing in MURIS	SOIL					
site d	escription									
Amendme	nts:	-	t	ione						
Feetili		Foloslay of	untion r			aerially appl	lied urea			
Fertili	zer:	Foloplex ap		none		a 60lb/ac, no				
		III Adgust	00			results impre				
IRRIGATI	ON WATER									
	Mo./Yr.	1985		3/87		7/87				
Lab Ana		-		after drains	plugged	water to tree	es is			
	·		1	opm = 10,000	12,000	~7 to 9 ppt s	salts, Se hi			
						in Spring bet	f. irrig.			
Amount	&	yearly tota	il of 16 acres	season total	= 3 acft					
Freque	ency:	feet for 3.	5 acres	6 irrigation	5					

VATE	R TABL	LE									
Dep	th (fe	eet):									
		23-Sep-85	09-0ct-85	21-Nov-85	19-Dec-85		10-Feb- 86	24-Mar-86			
		Sep-85	Oct-85	Nov-85	Dec-85	Jan-86	Feb-86	Mar-86	Apr-86	Hay-86	Jun-86
WEST	END	4.83	5.83	5.00	6.17		6.75	5.75			
EAST	END	5.50	5.00	4.92	5.67		5.92	5.83			
					29-0ct-86		30-Dec-86				
		Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86	Jan-87			
WEST	END				5.50		5.92				
EAST	END				5.50		5.75				
	•	26-Feb- 87		16-Apr-87	27-May-87	23- jun-87	20-Jul-87				
		Feb-87	Mar-87	Apr-87	Hay-87	Jun-87	Jul - 87				
WEST	END	8.67		5.00	3.58	4.42	5.33				
EAST	END	9.00		4.75	3.33	5.00	5.58				
7/87	lette	er states th	at water teb	le in area h	as lowered d	ue to					

in area has lo water drains being blocked (court order), water table varies according to irrigation of nearby lands where drain blocked

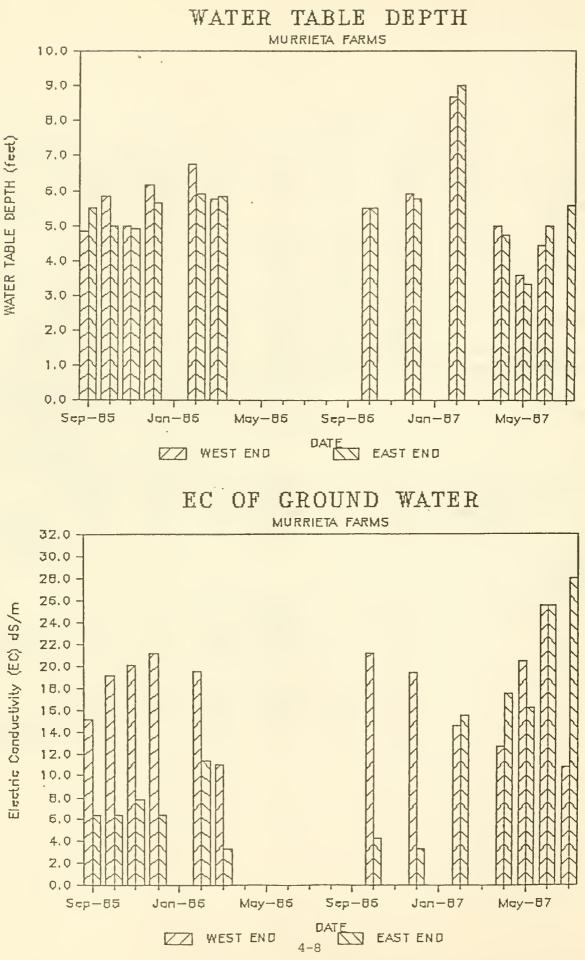
Lap	Ana	lysis
-----	-----	-------

EAST END 15.5

Electric Conductivity (Ec) of Ground water

	23-Sep-85	09-0ct-85 *	21-Nov-85	19-Dec-85		10-Feb-86	24-Mar-86			
	Sep-85	Oct-85	Nov-85	Dec-85	Jan-86	Feb-86	Mar-86	Apr-86	Nay-86	Jun-86
WEST END	15.2	19.2	20.1	21.1		19.5	11.0			
EAST END	6.4	6.4	7.8	6.4		11.3	3.3			
SAMPLE #0	26								22.5	
SAMPLE #0	27								29.6	
									See "HURIVA	TRH
									for more de	tail
		×.								
				29-0ct-86		30-0ec-86				
	Jul -86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86	Jan-87			
WEST END				21.2		19.4				
EAST END				4.3		3.4				
	26-Feb-87		16-Apr-87	27-May-87	23-Jun-87	20-Jul-87				
	Feb-87	Mar-87	Apr-87	Hay-87	Jun-87	Jul - 87				
WEST END	14.5		12.7	20.5	25.5	10.8				

28.0


17.5 16.2 25.5

TREES			
Growth:			
2/15/87			
TREE	ROW	AVE. HT.	AVE. DBH
Casuarina			
	1	8.41	1.2"
	2	9.1/	1.3"
Eucalyptus			
(Lake Albacutya)			
	1	9.61	1.4"
	2	9.01	1.4"
	3	9.61	1.5"
	4	9.91	1.5"
	5	9.5/	1.5"
overall averages		9.51	1.5"

(rows of trees measured from north to south)

in 7/87, growth was estimated to be - 1/2 rate expected in soils w/o salt problems

	Mo./Yr.	3/87		
Lab An	alysis:			
wood		-		
leave	S	-		
WEEDS	Mo./Yr.	9/86	3/87	
		Fusilade applied in	no problem	
		July & August, see	hand weeded	
		file for detail map		

MURRIETA	FARMS				disc: AGRC last updat	DFORESTRY 1 :e: 9/18/87		file: MUR	WATR			
WATER DA	TA											
DATE	SAMPLE # E	C × 1000	Na (units?)	SAR	SATURATED PASTE (units?)	Ca (units?)	Mg (units?)	K (units?)	Cl (units?)	SO4 (units?)	NO3 (units?)	TOTAL SALIS (units?)
May 1986	026 027	22.5 29.6	343.9 194.5	56 39	2.3	35.3 30.8	40.8 19.4	0.2	238.9 90.8	174.1 154.4	12.4	1.1 1.6
	027	27.0	174-3	37	2.7	50.5	17.4	0.5	70.0	124.4		1.0
Depth (feet):											
	23-Sep-85 0	9-Oct-85	21-Nov-85	19-Dec-85		10-Feb-86	24-Mar-86					
	Sep-85	Oct-85	Nov-85	Dec-85		Feb-86	Mar-86	Apr-86				
WEST END	4.83	5.83	5.00	6.17		6.75	5.75					
EAST END	5.50	5.00	4.92	5.67		5.92	5.83					
						29-Oct-86		30-Dec-86				
	May-86	Jun-86	Jul-86	Aug-86	\$ep-86	Oct-86	Nov-86	Dec-86				
WEST END						5.50		5.92				
EAST END						5.50		5.75				
	Jan-87 2	6-Feb-87		16-Apr-87	27-May-87	23-Jun-87	20- Jul - 87					
		Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87					
WEST END		8.67		5.00	3.58	4.42	5.33					
EAST END		9.00		4.75	3.33	5.00	5.58					
7/87 let	ter states t	hat water	table in	area has	lowered due	e to						
	eing blocked g to irrigat					4						
according	g to mingat	iten of he	arby tands		BIII DIOCKE	-						
Electric	Conductivit											
	23-Sep-85 0						24-Mar-86					
	Sep-85	Oct-85	Nov-85	Dec-85		Feb-86	Mar-86	Apr-86	May-86			
WEST END		19.2	20.1	21.1		19.5	11.0					
EAST END		6.4	7.8	6.4		11.3	3.3		22.5			
SAMPLE #									22.5			
SAMPLE #	027								See "MURI	UAT 2 1		
									for more			
					29-Oct-86		30-Dec-86					
	Jun-86	Jul-86	Aug-86	Sep-86				Jan-87				
WEST END					21.2		19.4					
EAST END					4.3		3.4					
	26-Feb-87		16-Apr-87	27-May-87	23-Jun-87	20-Jul-87						
	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87						
WEST END	14.5		12.7	20.5	25.5	10.8						
EAST END	15.5		17.5	16.2	25.5	28.0						

MURRIETA FARMS

disc: AGROFORESTRY II last update 9/8/87

SOIL DATA

Chemical Analysis

Trace Elements-Inductively Coupled Plasma Spectrophotometry before planting (1985?)

	AL	As	В	Cd	Cr	Cu	Fe
SAMPLE #	ug/ml						
87P470	0.2	0	24.5	0	0	0.2	0.4
87P471	0.6	0	10.1	0	0.	0.1	0.9
	Нg	Mn	Мо	Pb	Se	Si	Zn
	ug/ml						
87P470	0	0.1	0.1	0	0.8	11.4	0.5
87P471	0	0.1	0.1	0	0.2	12.8	0.1

DATE: MAY 1986

Units not shown

Soil samples from before planting

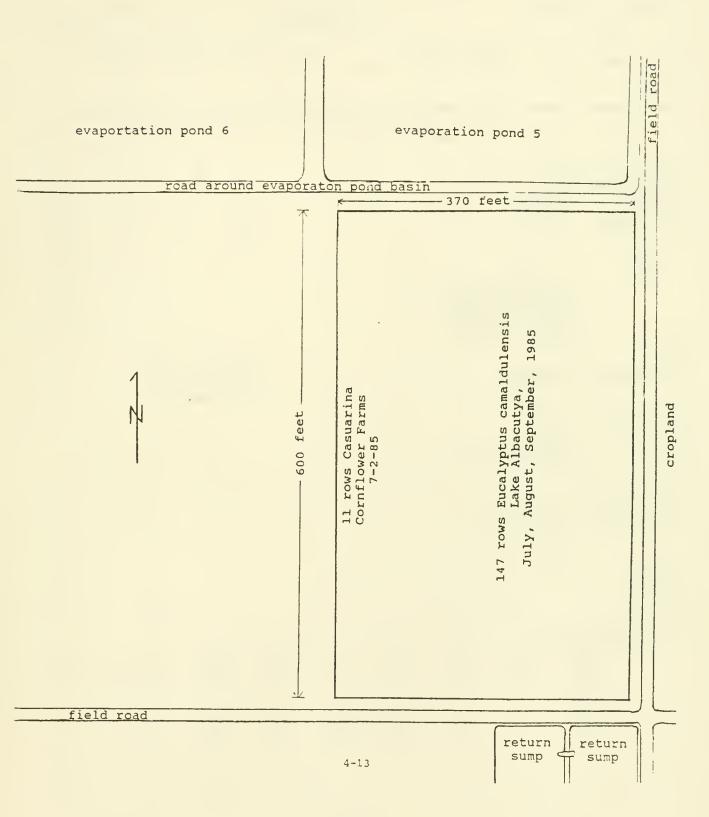
Summary of USDA-SCS report

SAMPLE #									TOTAL	
OEPIH (inches)	15 BAR	Ca	Mg	Na	κ	СІ	S04	мо3	SALTS	EC
#001										
0 - 5.91	21.3	3.6	1.1	20.8	0.2	8.7	16.4		0.2	2.55
5.91 - 15.76	21.1	17.7	4.6	79.2	0.4	8.5	93.6		0.9	8.66
15.76 - 30.73	22.3	22.7	4.6	103.3	0.8	16.4	115.2		1.1	10.73
30.73 - 48.07	20.9	22.5	4.2	105.1	0.2	16.8	115.7		1.1	10.86
48.07 - 65.01	20.2	23.3	5.4	124.4	0.2	27.5	126.1		1	12.55
#002										
0 - 5.91	18.9	8.8	1	14.7	0.2	8.7	11.9		0.1	1.94
5.91 - 23.64	21.4	20.3	4.7	85.3	0.4	13.7	25.6		0.9	9.15
23.64 - 47.28	21.7	21.5	4.3	102.1	0.3	18.4	110.3		1.2	10.44
#003										
0 - 5.91	19.9	9	2.5	25.1	0.3	4.3	29.2		0.2	3.46
5.91 - 23.64	21.1	20.8	5	71.1	0.4	7.1	88.1	0.4	0.7	7.96
23.64 - 47.28	20.4	5	1.6	21.8	0.2	3.8	19.4		0.1	2.78
#004										
0 - 5.91	19.4	21.4	4.3	106	0.3	13.4	120		1	10.74
5.91 - 23.64	20.9	20.4	5	69	0.4	6.5	86.9		0.8	7.79
23.64 - 47.28	20.1	17.4	4	87.9	0.3	12.7	96.8		0.8	9.28
#005										
0 - 5.91	20.2	4.7	1.5	23.9	0.3	4.1	20.1		0.2	2.27
5.91 - 23.64	21.5	14.3	3.4	64.7	0.3	8.1	74.8		0.9	7.23
23.64 - 47.28	22.3	21.3	4.2	93	0.2	14.9	103.8		1.2	9.78

MURISOIL (page 2)

SAMPLE #									TOTAL	
DEPTH (inches)	15 BAR	Ca	Mg	Na	κ	сι	S04	NO3	SALTS	EC
#006										
0 - 5.91	18.1	4.9	1.2	10.7	0.2	1.2	12		0.1	1.66
5.91 - 23.64	21	22.4	6	61.5	0.4	3.7	85.5		0.5	7.33
23.64 - 47.28	21.8	20.5	5.3	81.7	0.4	7.8	116.7		0.9	9.68
#007										
0 - 5.91	21.3	1.3	0.5	14.1	0.2	4.2	4.9		0.1	1.63
5.91 - 23.64	20.9	21.8	5.6	86.7	0.4	14.5	99.5		0.9	9.42
23.64 - 47.28	21.1	21.9	4.9	107.8	0.3	24.2	112.6		1.1	11.1
#008						_				
0 - 5.91	21.5	1.6	0.5	10.4	0.2	2	2.4		0.1	1.25
5.91 - 23.64	20.6	9.3	2.9	55.5	0.2	5.7	60.8	0.0	0.6	6.26
23.64 - 47.28	21.6	4.3	5.2	102.7	0.2	14.2	111.4	0.8	1.1	10.64
#000										
#009 0 - 5.91	19.7	3.0	0.8	9.4	0.2	1.0	10.4		0.1	1.39
5.91 - 23.64	20.0	17.7	4.7	45.3	0.2	2.4	63.2	0.4	0.4	5.77
23.64 - 47.28	20.0	21.0	5.1	83.8	0.4	7.8	105.3	0.4	1.0	9.23
23.04 47.20	23.2	21.0	2.1	05.0	0.5	7.0	105.5	0.0		/125
#010										
0 - 5.91	20.4	11.9	3.3	18.2	0.4	2.2	29	0.3	0.2	3.08
5.91 - 23.64	22.1	5.8	2.1	36.2	0.2	4	38.7	1.6	0.4	4.87
23.64 - 47.28	21.8	21.8	6.1	93.6	0.2	9.4	111	0.9	0.9	9.9
#011										
0 - 5.91	19.8	3.3	0.8	8.9	0.2	2	8.8		0.1	1.35
5.91 - 23.64	1	19.4	5.2	81.4	0.4	8.2	93.1		0.8	3.84
23.64 - 47.28	21.2	20.3	4.4	109.8	0.3	12.2	122.7		1	11.11
DATE	SAMPLE #	DEPTH EC	X 1000	CATIONS	ALIQUOT	VERSINATE		Na	SAR	ESP
		inches		meq/l		mls	meq/l	meq/l		
4-8-86	M80	0	3.0		2			21	9	11
	MB1	12	3.6	40	2	0.4	4	36	25	25
	MB2	24	9.6	118	2	3.0	30	88	23	24
	M83	36	12.8	160	2	3.1	31	129	33	33
					-				7.5	0
4-8-86	MAO	0	2.2	23	2	0.8	8	15	7.5	9
	MA1	12	8.2	98	2	3.2	32	66 176	16.5	17
	MA2	24	13.3	165	2	2.9	29	136	36 39	34 36
	MA3	36	14.8	188	2	3.2	32	156	24	20

4.2 Peck Ranch

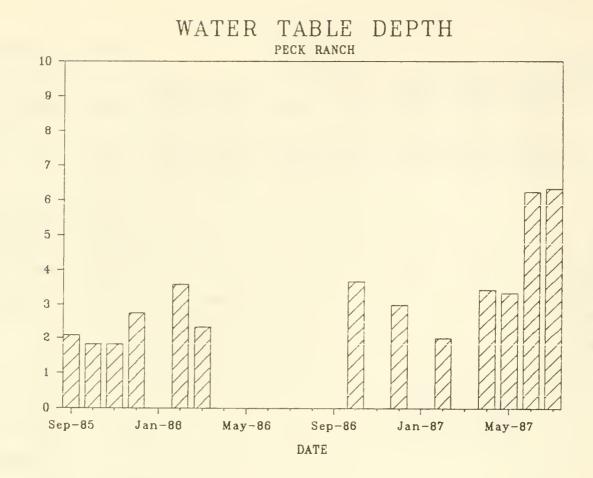

While Murrieta Farms exemplifies the intensively cared for plantation, Peck Ranch is an example of a neglected agroforestry planting. Although this farm site was well planned at the time of planting in 1985, due to a change of management it now receives little maintenance. Yet a surprising number of trees have survived heavy weed competition, damage from cotton defoliants, irrigation with saline water of up to 18,000 ppm TDS during the first year, and other hardships. This helps show the hardiness of the trees and the lack of upkeep they can tolerate.

The 8+ acre Peck plantation of eucalyptus and casuarina is located adjacent to 160 acres of evaporation ponds. The original plan was to allow the trees to establish with fresh irrigation water during the first year, and then to utilize the water from the adjacent pond. But the seedlings were accidentally irrigated with pond water during the first year. Defoliant, which drifted from nearby cotton fields, caused severe leaf damage in the fall of 1985. With no weed control implemented, many weeds took over the field, including morning glory, sunflower, lambsquarter, ragweed, and cocklebur. The heavy competition, with some plants overtopping or crawling up the branches of the trees, appears to have reduced tree growth. Yet, despite the lack of care this plantation has received, the trees stand at a density of around 50% of the original plantings. Surviving trees had reached the average heights of 7' 8" and 5' 6" for casuarina and eucalyptus, respectively, in March of 1987.

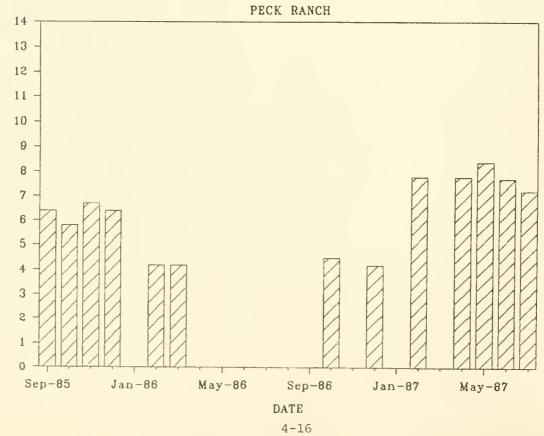
Although care of the farm has been neglected, the USDA-SCS in Fresno has continued to monitor the water table depth and electric conductivity as well as run several detailed soil and water analyses. These can be found in the following farm report. Students from CSUF - CIT began monthly monitoring of the water table in August 1987.

Trees from the Peck field trial have also been cut for the selection and propagation trials at UCD which are further discussed in Section 5.0. This farm is also part of the wildlife study.

PECK RANCH AGROFORESTRY DEMONSTRATION PLANTINGS


AGROFORESTRY - TREE PLANTING					ROFORESTRY ate: 9/4/87		file: AGFOPECK			
county:	FRESNO					ate. 7/4/0/				
farm:	PECK		acreage:	8.	2	av.tr/ac:	1052			
PLANTING										
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-ot	h CAS-GL	A CAS-CUN	CAS-oth	POPLAR	MESQUIT	gr.tot.
		total:	7700		0 C) 7:	5 0	0	0	7775
7/2/85	CORNEL	ITCI					855			
7/22/85	planted 400	Euc, no more	e info							
8/19/85	SJN	L.ALBACUT	6000							
9/9/85	NLS	L.ALBACUT	1700							
3/4/86	CORNEL	CHAPMAN				75	i			
Comments										
Mo./Y	r	3/87								
			d competition							
		approx. star								
			ton defoliant							
		damage in fa	all 1985							
SOILS										
Lab Anal	lysis:	see PECKSOIL								
	Mo./Yr.	3/87								
Amendmer		none								
Fertiliz	er:	none except return water								
IRRIGATIO	W UATED									
	Quarter	3/87								
Lab Anal		1/2 water fr	OT AVAD							
		ponds	on crop.							
Amount &										
Frequen		2 acft for p	ast year							
WATER TAB	LE									
Water Ta	ble Depth (f	eet):								•
	23-Sep-85	03-0ct-85	21-Nov-85	19-Dec-85		10-Feb-86	24-Mar-86			
	Sep-85	Oct-85	Nov-85	Dec-85				Apr-86	May-86	Jun-86
	2.08	1.83	1.83	2.75		3.58	2.33		,	
	29-0ct-86	30-Dec-86	26-Feb-87	14-Apr-87	27-May-87	23-Jun-87	20-Jul-87			
	Oct-86	Dec-86	Feb-87	Apr-87			Jul - 87			
	3.67	3	2	3.42		6.25	6.33			

Lab Analysis: Electric Conductivity	(Ec) of Wat	er Table							
23-Sep-85	03-0ct-85	21-Nov-85	19-Dec-85		10-Feb-86	24-Mar-86			
Sep-85	Oct-85	Nov-85	Dec-85	Jan-86	Feb-86	Mar-86	Apr-86	May-86	Jun-86
6.4	5.8	6.7	6.4		4.2	4.2			
29-0ct-86	30-Dec-86	26-Feb-87	14-Apr-87 2	27-May-87	23-Jun-87	20-Jul-87			
Oct-86	Dec-86	Feb-87	Apr-87	May-87	Jun-87	Jul-87			
4.5	4.2	7.8	7.8	8.4	7.70	7.21			


T	R	E	E	s
	~	•••	-	~

Growth	: Quarter	3/87	
Tree		AVE. HT.	AVE. DBH
casua	rina	7/8*	1.0"
eucal	yptus	5/6"	D.9"
Lab An wood	alysis:		
leave	S	-	
WEEDS	Quarter	3/87	
		heave comp.,	morning
		glory, sunfl	ower, tambs-
		quarter, rag	weed, cockle-

bur. Reduced tree growth

EC OF GROUND WATER

DEPTH (feet)

С Ы

PECK RANCH				disk: AGRO			fil	e: PECKSO	I L		
SOIL DATA			1	last updat	e: 9/4/8	(
Before Plan Inductively micrograms/H	Coupled Pl	asma Spe	ectrophoto	ometry							
SAMPLE											
NUMBER	AL	As	В	Cd	Cr	Cu	Fe	Hg	Mn	Mo	
87P472	1.0	0.0	1.5	0.0	0.0	0.1	1_4	0.0	0.1	0.0	
SAMPLE											
NUMBER	Pb	Se	Si	Zn							
NONDER	0.0	0.0	17.7	0.1							
	0.0	0.0		0.1							
1/24/86											
SAMPLE	DEPTH T	EXTURE	DEFICIT	ESP	ECe						
NUMBER	inches		OISTURE								
PAO	0	С	0.8	4.5	6.2						
PA1	12	С	0.2	1.5	5.0						
PAZ	24	С	0.2	1.5	3.7						
PA3	36	с	0.2	1.5	3.8						
PBO	0				6.7						
PB1	12				4.7						
PB2	24	•			3.5						
РВЗ	36				3.7						
	DEPTH			ESP E	C X 1000	CATIONS	ALIQUOT	VERSINATE	Ca+Mg	Na	SAR
4/8/86	inches					meq/l	mls	mls	meq/l	meq/l	
PAO	0			4.5	6.2	72	2	5.2	52	20	4
PA1	12			1.5	5.0	56	2	4.5	45	11	2
PA2	24			1.5	3.7	41	2	3.4	34	7	2
PA3	36			1.5	3.8	43	2	3.5	35	8	2
PB1	0			3	6.7	79	2	6.1	61	18	3
PB2	12			4.5	4.7	53	2	3.7	37	16	4
PB3	24			1.5	3.5	38	2	3.0	30	8	2
	36			0.5	3.7	41	2	3.8	38	3	0.5
	4/8/86 resu thus second				1/24/86,						
Rough data MAY, 1986 RI		rietta 1	file						TOTAL		
DEPTH	15 BAR	Са	Mg	Na	κ	сι	s04	ло3	SALTS	EC	
	pct of <2mm		MEQ/L	MEQ/L	MEQ/L	MEQ/L	MEQ/L			mmhos/cm	
#013											
0-5.91	18.4	32.5	6.9	9	0.7	11.5	35	2.2	0.2	4.17	
5.91-23.64	21.4	30	6.6	12.6	0.4	10.8	35	2.2	0.2	4.03	
23.64-47.28	20.8	23.2	4.1	22.5	0.2	7.2	39.3	0.3	0.2	1.71	
#014											
0-5.91	18.4	19.2	4.6	6.1	0.5	3.8	18.9	5.3	0.1	2.61	
5.91-23.64	19.9	16.3	4.4	5.8	0.3	4.2	17.1	3.8	0.1	2.35	
23.64-47.28		27.3	6	12.5	0.3	5.2	39.9		0.2	3.65	

PECKSOIL (continued)

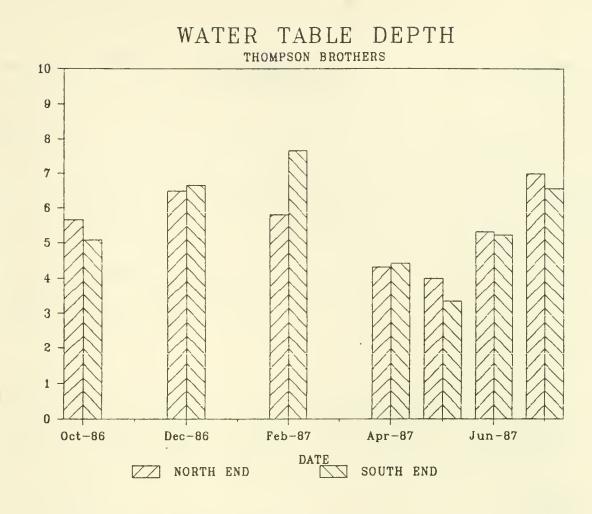
6C570	15 010				6		50/	107	CALTE	C C
	15 BAR	Са	Mg	Na	K	CL	SO4 MEQ/L	NO3 MEQ/L	SALTS	EC mmhos/cm
inches po	t of <2mm	MEG/L	MEQ/L	MEQ/L	MEQ/L	MEQ/L	ME4/L	MC9/L		
#015										
0-5.91	19.8	18.6	3.7	6.9	0.6	4.1	12	10.1	0.1	2.65
5.91-23.64	21.9	14.2	3	7.9	0.3	4.2	16	3.3	0.1	2.29
23.64-47.28	19.5	27.4	4.6	19.5	0.3	5.8			0.2	3.99
#016										
0-5.91	20.5	42.7	9.2	20.9	0.8	18.9	32.4	18.1	0.4	6.04
5.91-23.64	22.3	29.5	6.7	14.5	0.4	11.1	30.3	5.6	0.3	4.13
23.64-47.28	21.3	25.7	3.9	16.9	0.2	2.8	39.3	1.2	0.2	3.54
#017										
0-5.91	18.6	29.3	6.7	14.1	0.7	8.6	34.1	3.9	0.2	3.89
5.91-23.64	21.2	30.3	7.6	15.4	0.3	10.5	35.3	3.8	0.3	4.25
23.64-47.28	21.8	28.1	5.1	14.4	0.2	5	38.9	2.6	0.2	3.61
4040										
#018 0-5.91	21.7	34.2	7.8	12.7	0.7	12.1	28.8	10.4	0.3	4.5
5.91-23.64	21.3 23.4	29	6.6	12.7 10.9	0.5	8.6	30.7	4.2	0.2	3.73
23.64-47.28	23.4	27.6	4.9	9.9	0.5	5.2	32.3	2.6	0.2	3.29
23.04 47.20	23.1	27.0	·· · 7	7.7	0.4	3.2	52.5	2.0	0.2	3.67
#019										
0-5.91	21.7	27.9	5.7	31.7	0.6	10.7	45.1	6.3	0.3	5.33
5.91-23.64	22.2	28.3	5.5	20.5	0.5	8.8	39.7	3.3	0.3	4.33
23.64-47.28	24.2	27	4.8	23.6	0.3	6.4	46.7	1.6	0.3	4.36
#020										
0-5.91	24.2	38.1	8.7	20.6	0.8	23.2	33.2	9.1	0.3	5.52
5.91-23.64	24.5	22.1	5.1	11.3	0.5	8.3	26.1	1	0.2	3.14
23.64-47.28	23.7	29.4	5.7	16.5	0.3	9.9	39		0.3	3.99
#021										
0-5.91	23.4	8.2	2	5.4	0.4	1.6	10.6		0.1	1.43
5.91-23.64	22.7	5.4	1.5	4.7	0.2	1.5	7.8		0.1	1.21
23.64-47.28	21.2	17.4	3.3	17	0.3	3	35.6		0.2	3.21
#022										
0-5.91	21.6	34.5	7.9	10.9	0.9	16	27	12.2	0.3	4.67
5.91-23.64	25.3	31.1	7.1	9.8	0.6	12.5	30.1	5.3	0.2	3.83
23.64-47.28	23.2	14.4	2.9	8.5	0.3	4	21.2	0.8	0.1	2.38
					••••			010		2150
#023										
0-5.91	16.8	2.7	0.6	4.4	0.4	2.5	1.7	1.3	TR	0.89
5.91-23.64	16.6	37.9	6.2	6.3	0.4	43.3	37.1	24.5	0.5	9.74
23.64-47.28	22	25.5	4.1	118.1	0.4	36.8	96	18.4	0.9	12.57
#024										
0-5.91	14.2	26.5	7.8	8.9	1.1	1.1	39.5		0.1	3.29
5.91-23.64	15.8	25.3	5.2	41.5	0.7	13.6	44.5		0.3	6.37
23.64-47.28	21.2	21.5	3.5	111.2	0.3	29.6	94.8	14.4	0.7	11.94

4.3 Thomsen Brothers

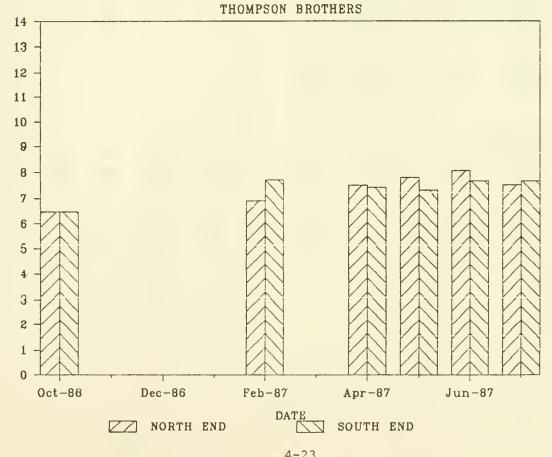
The Thomsen Brothers farm was planted with 8,700 Eucalyptus camaldulensis (Lake Albacutya seed source) and 475 Casuarina cunninghamiana in May of 1986. Three additional acres of Eucalyptus camaldulensis (Lake Albacutya) were planted in June of 1987. October 1987 plantings include 3 acres of E. camaldulensis, planted in a high water table area which was previously drained into the San Luis Drain (and to Kesterson Reservoir), and 2 acre extension of the first planting of 1986. a The rows of trees on this plantation run nearly 1/2 mile in length and should help reduce soil erosion in adjacent fields by providing a windbreak. The trees have been staked to prevent the trunks from bending due to the strong winds in the area. Young casuarina have been found to be more resistant to wind stress than the young eucalyptus, possibly because of their slender, needle-like leaves which allow the wind to pass.

The trees on the Thomsen Brothers farm appear to be growing quite well and some trees are reaching heights of 14 to 16 feet in one year. The seedlings received good quality Westlands water last year and are using ground water supplemented with drainage water from the adjacent sump this year. Weeds have been adequately controlled both with chemical sprays and by hand. No fertilizer or soil amendments have been added. Some trees appear to be slightly damaged by the drift of herbicides.

The USDA-SCS in Fresno took bimonthly and later monthly measurements of water table depth and EC until last August, when CSUF students began biweekly monitoring. Soil and water samples have been (and in the future will be) sent to Dellavalle Labs for analysis. The results of the first analyses are included with the following farm report.


This farm is also under observation as part of the wildlife study and outstanding trees will be utilized next year for the UCD selection and propagation project.

THOMSEN BROTHERS AGROFORESTRY DEMONSTRATION PLANTINGS


Δ				3	Locat	ion	S				
M	no	t to scale									
ſ	obse	ervation well=	Ø					1	1 11		
X	18 rows E. camaldulensis (Lake Albacutya) Calif. Dept. of Forestry planted October, 1987										
1/2 mile farm road	lana planted May 30, 1986 65 trees Casuarina Cunninghamiana	<pre>Eucalyptus camaldulensis Lake Albacutya a. Dept. of Forestry (CDF) planted May 30, 1986</pre>		farm road	800.		6 rows E. camaldulensis (Lake Albacutya) San Joaquin Foliage planted June 15, 1987	dwns		6 rows E. camaldulensis (Lake Albacutya) San Joaquin Foliage planted October, 1987	ດ້ພາຮ
	1 row Casuarina Cunninghami	11 rows Eucaly Lake Ca. Dept PPo planted	sump 0000000	fa				farm road	1 1/11		San Diego Avenue
		9 acres		-	4	-20	3 acres	1	 1	3 acres	,

AGROFORESTAGROFORESTR	Y PLANTINGS			FORESTRY	-	file: AGFC	THOM	
county: FRESNO		las	st update	e: 10/17/8				
farm: THOMSEN PLANTINGS	acreage:	15	á	av.tr/ac:	1192			
DATE NURSERY	SOURCE EUCA-CA	4 EUCA-oth C	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.
	total: 1740	0 0	0	475	0	0	0	17875
5/30,6?/86 CDF	L.ALBACUT 870	D		/ 75				
5/30,6?/86 CDF	AUSTRALIA			475				
6/15/87 SJF	L.ALBACUTYA 300							
10/87 SJF		0 ?#						
10/87 CDF	L.ALBACUTYA 150	0						
Mo./Yr.	3/87	9/87		10/87				
Comments:	look very good,	Trees planted	d 6/15	3 ac spac	ed 6.5X5	r		
	staked trees	in 6 rows, 1,		-				
	1st planting	long, 6.5'X5.		area, had				
	7 acres	3 acres, next		tiled to		,		
		sump, 1 mi. S		next to s				
		1/2 mi. E of		extends 1				
		planting		ting to 1				
		, ,		spacing 6		1		
				by San Di				
SOIL Mo./Yr.	3/87 7/87							
Lab Analysis:	- see THOMSO	IL						
Amendments:	none							
Fertilizer:	none							
IRRIGATION WATER								
Ho./Yr.	3/87							
Lab Analysis:	good quality Westlands							
LOD ANDLYSTS.	1st year, sump water							
	this year							
	,							
Amount &	total this past year							
Frequency:	= 1.5 ac ft							
UNTED TADIE								
WATER TABLE								
Depth (feeet): 29-Oct-80	5 30-Dec-8	6 26	- Feb-87	2	0-Apr-87	27-May-87	23-Jun-87	20-Jul-87
29-0ct-80 Oct-80			Feb-87	Mar-87	Apr-87			Jul-87
			5.83		4.33		5.33	7
	·		7.67		4.42			6.58
SOUTH END 5.08	0.0	,	1.07		7.72	5.55	5.05	

(Ec) of ground w	ater							
•		20	6-Feb-87		20-Apr-87	27-May-87	23-Jun-87	20-Jul-87
Nov-86	Dec-86	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87
			6.9		7.5	7.8	8.08	7.52
			7.7		7.4	7.3	7.67	7.66
3/87								
-								
-								
-								
3/87								
chemical sprays a	& hand							
weeding adequate								
	Nov-86 3/87 - - 3/87 chemical sprays	Nov-86 Dec-86 3/87 - -	24 Nov-86 Dec-86 Jan-87 3/87 - 3/87 chemical sprays & hand	26-Feb-87 Nov-86 Dec-86 Jan-87 Feb-87 6.9 7.7 3/87 - 3/87 chemical sprays & hand	26-Feb-87 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 6.9 7.7 3/87 -	26-Feb-87 20-Apr-87 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 Apr-87 6.9 7.5 7.7 7.4 3/87 - 3/87 chemical sprays & hand	26-Feb-87 20-Apr-87 27-May-87 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 Apr-87 May-87 6.9 7.5 7.8 7.7 7.4 7.3 3/87 - 3/87 chemical sprays & hand	26-Feb-87 20-Apr-87 27-May-87 23-Jun-87 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 Apr-87 May-87 Jun-87 6.9 7.5 7.8 8.08 7.7 7.4 7.3 7.67 3/87 - - - -

EC OF GROUND WATER

DEPTH (feet)

EC

Thompson Ranch

WATER DATA

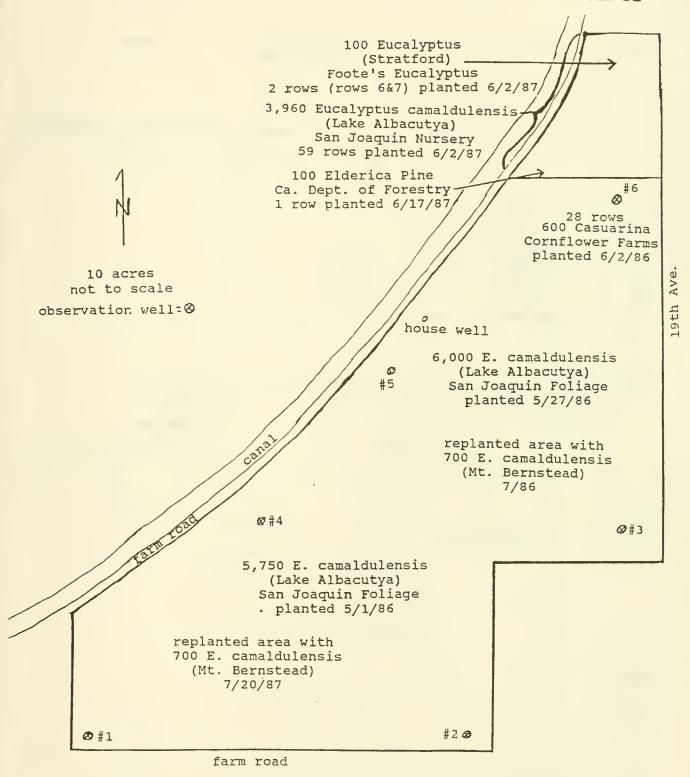
		DEPTH	EC						
DATE	SAMPLE	feet							
10-29-86	North End	5.67	6.5						
	South End	5.08	6.5						
12-30-86	North End	6.5							
	South End	6.67							
2-26-87	North End	5.83	6.9						
	South End	7.67	7.7						
4-20-87	North End	4.33	7.5						
	South End	4.42	7.4						
	boutin End	4146	1						
5-27-87	North End	4.00	7.8						
	South End	3.33	7.3						
6-23-87	North End	5.33	8.08						
	South End	5.25	7.67						
7-20-87	North End	7	7.52						
	South End	6.58	7.66						
5 . /									
5/4/87	1 1 1 1								
Dellaval									
	ed Sample	N.	11 e	64.0			70211202	co/ c	
EC		Mg	Na	SAR	SAR		03+HC03		B
dS/m 7.16		Meq/l	Meq/l 46.0	0 0	adj	Meq/l 15.4	•		mg/l
7.10	26.1	22	40.0	8.8	27.1	12.4	8.7	1000	6.8
N03-N	Fe	Mn	Li	F	рH				
mg/l		mg/l	mg/l	mg/l	P				
54.6	-	<0.05	0.3	0.16	7.5				
Oigested	Sample								
Р	K	Zn	Mn	Na	Fe	Cu	Ca	Mg	Be
mg/l		mg∕l	mg/l	mg/l	mg/l	mg∕l	mg/l	mg/l	mg/l
2.8	9.9	4.1	1.6	955	28.6	3.9	807	334	<0.025
V		Cr	Cd	As	Kg	Se	Mo	AL	Si
mg/l		mg/l	mg/l	ug/l	ug/l	ug/l	mg/l	mg/l	mg/l
<0.8	0.3	0.27	<0.025	7	<0.2	32	0.4	16.5	29.0

THOMPSON RANCH	disc: AGROFORESTRY II last update: 9/4/87	file: THOMSOIL
SOIL DATA		
Dellavalle Labs		
5/5/87		

					Und	ligested		********			
SP	pHs	ECe	Ca	Mg	Na	cl	ESP	8	N03-N	P04-P	K (AA)
		dS/m	Meq/l	Meq/l	Meq/l	Meq/l		mg∕l	mg/kg	mg/kg	mg/kg
39	7.5	6.0	37	16	24	17.2	5.3	2.4	88	16	320

Undigested									
Zn	Mn	Fe	Cu	S04 - S					
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
0.7	9.1	9.4	1.1	310					

	DTPA E	xtract		Saturated Paste Extract								
Nī	РЬ	Cr	Cd	Hg	As	Se	N03-N	PO4 - P	К	S04-S		
mg/kg	mg/kg	mg/kg	mg/kg	ug/l	ug/l	ug/l	mg∕l	mg/l	mg/l	mg/l		
1.4	0.6	<0.25	·0.05	<0.2	17	76	225	<0.1	68	710		


4.4 Carollo

Sal Carollo planted 7 acres of his farm with Eucalyptus camaldulensis (various seed sources) and various casuarina species in May and June of 1986. This year he added about 3 acres of eucalyptus and one row of Elderica pine (Pinus elderica). This plantation clearly shows the differences between planting on good and poor quality soil. The variation in growth characteristics is dramatically evident, with a sudden change from the area of lush growth to that with stunted trees. At 3 to 4 months of age (October 1986), the largest trees stood 6 to 7 feet tall, while seedlings planted in the highest sodium areas showed very little growth (7 to 12 inches tall) and poor color. Gypsum was applied to two rows of these trees, and the response was evident almost immediately, with the leaf yellowing gone in two weeks and the trees outgrowing the untreated, sodium affected plants in two months. Gypsum was later applied to the entire eucalyptus planting.

This plantation has also received 2 applications of fertilizer. Weeds have been kept under control with Round-up and Fusilade. The seedlings received good quality irrigation water for the first year. This year irrigation frequency has been reduced because the trees seem to be utilizing ground water. No weeding has been necessary this year for the 1986 plantings.

The USDA-SCS in Hanford has monitored the water table depth and EC and has run several analyses of soil and ground water. Samples have also been sent to Dellavalle Labs. These data are included in the following farm report. In 1988 cuttings from superior trees will be taken for the selection and propagation project.

SAL CAROLLO AGROFORESTRY DEMONSTRATION PLANTINGS

4-27

AGROFOREST	Y - TREE PL	ANTING			disc: AGROF			file: AGFOO	TARO	
county:	KINGS				last update	: 10/23/87				
farm:	CAROLLO		acreage:	10		av.tr/ac:	1641			
(d) 111.	CAROLLO		acreage.	10		av. (1) ac.	1041			
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	ELDER. PINE	gr.tot.
		total:	15710	100	0	600	0	C) 100	16410
5/1/86	NLS	L.ALBACUT	5750							
5/?/86	SJN(replant	C)MT BERNSTEAU	(700)							
	*	1 row Alice	Springs							
5/27/86	NLS	L.ALBACUT	6000							
6/2/86	CORNEL	AUSTRALIA				600				
86	CDF(replant	L.ALBACUTYA	(2000)							
6/2/87	SJN	L.ALBACUTYA	3960							
6/2/87	Foote	STRATFORD		100						
6/2/87	CDF	Elderica Pir	ne						100	
7/20/87	SJF(replant)MT BERNSTEAD	(700)							
* unclear i	nfo									
Comments:	begin 86		end 86		3/87		9/87			
Mo./Yr.	irrig. 2 da planting, 1 2nd plantir soil, <4% 1	lost 10%. ng in moist	Alice Spr. doing bette bacut.), bu leaves may defoliant d side, phos. better colo	r than (Al- t larger catch wind, amage South gyp. plot	-			eplant 30% ck info on eath prob.		
SOILS										
Mo./Yr.		86		3/87		5/87		7/87		
Lab Analys	ist	with Na, no	Ca+Mg Ec	see CAROSOIL		see CAROS	oti	see CAROSOI		
		4.0 mmhos/cm		Sec encoure		SCC CARDS	012	See enterer	-	
Amendments	•	4.0 111103/ 01	, 2000 ppi	gypsum arour	vi trees in i	2 20 T 90%	gypsum on			
				rows,leaf ye in 2 weeks, others in 2	ellowing gon out-growing	e Eucalyptu				
Fertilizer	6 4			2 applicatio and 17 units		N none this ?)	quarter			
IRRIGATION Lab Analys										
Date				Ec X 1000	ppm TD:	S amount (ac	. ft.)			
25-Mar-87				0.04	25					
29-Apr-87				0.04	25					
Mo./Yr. Amount & Frequency	: 7/27,8/1, 9/30. Tot	6/15,7/14,	3/87	5/87 see above						

Water Tal	ble Depths (feet)	(3/86 - 10/	86 from carow	watr):						
WELL #	13-Mar-86		12-May-86		21-Jul-86		26-Sep-86	13-0ct-86		
	Mar-86	Apr-86	May-86	Jun-86	Jul - 86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
1	5		4.1		3.1		5.0	5.5		
2			4.1		3.5		4.4	5.8		
3			4.1		3.2		5.6	5.6		
4					2.8		5.0	5.3		
5					2.4		5.0	5		
6					2.3		4.8	4.8		
				3	days aft.			7 days aft.		
				i	rrigation			irrigation		
				car	al running			canal dry		
WELL #						25-Jun-87		12-Aug-87		
	Jan-87	Feb-87	Mar-87	Apr - 87	May-87	Jun-87	Jul-87	Aug-87		
1					4.5	3.6		3.1		
2					5	4.0		3.8		
3					4.5	3.6		3.7		
4					4.5	3.5		3.0		
5					4.2	2.8		2.5		
6					4	2.8		2.5		
	ysis: also see CA Conductivity of G		(Fo X 1000)	(from caro	inte)					
WELL #	13-Mar-86	noona water	12-May-86	(11 Oill Carow	21-Jul-86		15-Sep-86	13-0ct-86		
****	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
1	0.53	Api 00	1.42	4011 00	0.76	A09 00	360 00	0.73	NOV 00	000
2	0.00		0.52		0.97			0.21		
3			0.51		0.65			0.64		
4			0.01		0.64			0.63		
5					0.61			0.8		
6					0.23			0.66		
Ŭ					0.25			0.00		
						25-Jun-87		12-Aug-87		
WELL #	Jan-87	Feb-87	Mar•87	Apr-87	May-87	Jun- 87	Jul-87	Aug-87		
						0.6		0.5		
1						0.5		0.4		
2						0.5		0.4		
3						0.5		0.6		
4						1.6		1.1		
5						0.2		0.3		

TREES

Growth:

6

WATER TABLES

Mo./Yr.	10/86	12/86	3/87	5/87
	largest trees 6'-7',	See	2.72 ft ave. growth	excellent in better
	in hi SAR & ESP areas	CAROGROW	9% died	soils, trees respond
	7"-12" tall		(91% survival)	to gypsum

Lab Analysis:

,		
wood	•	-
Leaves		•

WEEDS	Quarter	3/87	5/87
		satisfactory control	Fusilade to Euc. & Cas.
		Round-up on Johnson	on 5-20-87
		grass, some tree damage	

SAL CAROL	ιο			disc: AGA last upda			file: CAR	DWATR			
WATER DAT	A				116. 77570						
OATE	SAMPLE #	DEPTH feet	рН ЕС х 10	00 CATIONS meq/l	ALIQUOT mls	VERSINATE mls	Ca + Mg meq/l	Na meq∕l	SAR	ESP	REMARKS
3/31/86	1	5	.53	5.3	2	0.4	4.0	1.3	(18)	(20)	(?) data on records unclear
5/12/86	1 2	4.1 4.1	1.42	14.2 5.2	2 2	0.2	2.0 2.0	12.2 3.2	12.2 3.2	12.5 3.6	Perched water tables Perched water tables
	3	4.1	.51	5.1	2	0.2	2.0	3.1	3.1	3.5	Perched water tables
7/21/86	1 2 3 4	3.1 3.5 3.2 2.8	.76 .97 .65 .64	7.6 9.7 6.5 6.4		2.0 3.0 1.0 2.0					
	5 6	2.4 2.3	.61 .23	6.1 2.3		2.0 1.0					
9/26/86	1 2 3 4 5 6	5.0 4.4 5.6 5.0 5.0 4.8									
10/13/86	1 2 3 4 5 6	5.5 5.8 5.6 5.3 5.0 4.8	8.1 .73 8.2 .21 8.6 .64 8.4 .63 8.1 .80 8.0 .66	7.3 2.1 6.4 6.3 8.0 6.6			2.0 1.0 2.0 2.5 2.2	5.3 1.1 4.4 4.3 5.5 4.4	5.3 1.5 4.4 4.3 4.4 4.1	5.7 1.7 4.8 4.7 4.9 4.3	
5/87	1 2 3 4 5 6	4.5 5 4.5 4.2 4									
6/25/87	1 2 3 4 5 6	3.6 4.0 3.6 3.5 2.8 2.8	0 0 *- 1	.6 .5 .5 .6 .2							

4-31

CAROWAT	R (cont	inued)

OATE	WELL #	DEPTH	рH	EC x 1000			VERSINATE		Na	SAR	ESP	REMARKS
		feet			meq/l	mls	mls	meq/l	meq/l			
8-12-87	1	3.1		0.5								
	2	3.8		0.4								
	3	3.7		0.4								
	4	3.0		0.6								
	5	2.5		1.1								
	6	2.5		0.3								
5/4/87												
Dellavall	e Labs											
Undigested	d Sample											
EC	Ca	Mg	Na	SAR	SAR	сι	со3+нсо3	\$04 - S	8	N03-N		
d\$/m	Meq/l	Meq/l	Heq/l		adj	Meq/l	Meq/l	mg/l	mg/l	mg∕l		
0.52	2.1	2.2	1.5	1.0	2.2	0.2	4.9	4	0.2	0.8		
Fe	Hn	Li	F	рH								
mg/l	mg/l	ang∕l	mg/l									
<0.1	<0.05	<0.04	1.7	7.5								
Digested S	amolo			•								
P	K	Zn	Ял	Na	Fe	Cu	Ca	Ма				
mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Mig mg/l	Be	V. mg/l		
0.2	0.9	0.1	0.07	34.9	1.3	0.1	25.9	26.1	mg/l <0.025	<0.8		
0.2	0.7	0.1	0.07	34.7	1.2	0.1	63.9	20.1	KU.U25	\$0.0		
								1				
Pb	Cr	Cd	As	Hg	Se	Мо	AL	Si				
mg/l	mg/l	mg/l	ug/l	ug/l	ug/l	mg∕l	mg/l	mg/l				
<0.1	<0.25	<0.025	26	<0.2	<2	<0.1	1.0	31.3				

SAL CAR	DLLO			OFORESTRY II	file: CAR	OSDIL			
SOIL DAT	TA		tust upud	11.6. 773707					
DATE	SAMPLE # DEPTH inches	рн ЕС x 100	D CATIONS meq/l		SINATE Ca + Mg mis meq/i	Na meq/l	\$AR	ESP	REMARKS
2/18/86	2 0 - 12	4.7	53	2	.3 3.0	50	41	38	
	3 - 18	3.2	35	2	.4 4.D	31	22	23	
	3A 6-24	6.8	80		.0 10.0	70	31	31	
	3B 24 - 36	2.8	30	2	.4 4.0	26	(18)	(20)	(?) data on records unclesr
3/31/86	1 0 - 10	4.6	52		.2 2.0	50	50	52	
	2 10 - 20	2.10	22		.2 2.0	20	20	21	
	3 20 - 30	0.59	5.9		.2 5.7	57	34	36	
	4 30 - 40	0.76	7.6		.4 4.0	7.2	5.0	5.2	
	5 40 - 50	0.51	5.1		.2 2.2	4.9	4.67	5.05	5
7/2/86	0 - 12	3.5	38		.1 1.0	37	52	53	Trees have died twice
7/21/86	0 - 12	8.6 7.5	85		.2 2.0	83	83	84	Before gyp
7/28/86	1 0 - 12	8.4 2.45	27		.2 2.0	25	25	26	Large tree 4' tall
	2 0 - 6	9.2 9.60	118		.1 1.0	117	167	169	Trees planted 2Xs & died
	3 6 - 12	9.5 9.30	113		.1 1.0	112	160	163	Trees planted 2Xs & died
10/13/8	6 0 - 12	9.0 6.7	80		.6 6.0	74	42	45	After gyp
10/13/8	6 1 0 - 12	9.1 1.56	15.6		.3 3.0	12.6	10	12	Large tree 7' tall
	2 0 - 12	8.9 2.1	22	2	.2 22	0	Ð	D	Alice Springs 3' tall
	3 12 - 24	8.0 3.8	43		.3 3.0	40	32	33	Alice Springs 3' tall
	4 0 - 12	9.3 8.6	105		.1 1.0	104	147	150	No gyp, trees died twice
4/87	live trees D - 12	9.2 4.2	47		0.2 2.0	45	45		just staying alive
	dead trees 0 - 12	9.3 8.1	96		0.3 3.0	93	76		
OATE	SAMPLE # DEPTH	рН ЕС x 100			SINATE Ca + Mg	Na	SAR	ESP	REMARKS
(inches		meq/{		mls meq/l	meq/l	70		two and ave / the t/87
6/22/87	E. side 0 - 12	8.8 5.6		2	0.5 5	59	38 ?50		1 yr old, avg 4' in 4/87
	W. side D - 12	8.3 1.1	11	2	0 <1	10.9			
8/87	new plant. 0 - 12	8.4 6.5	78		0.6 6.0	72	41		New euc planting
	12 - 24	8.8 3.8	43		0.2 2.0	41	41		
	24 - 36	8.3 1.94	19		0.4 4.0	15	11		
	36 - 48	7.9 0.83	8.3		0.6 6.0	2.3	1		

CAROSOIL (continued)

Dellavalle Labs 5/5/87

					-Undigest	ed				
SP	pHs	ECe	Ça	Mg	Na	Cl	ESP	8	N03-N	P04 - P
		d\$/m	Meq/l	Heq/l	Heq/l	Heq/l		mg∕l	mg/kg	mg/kg
54	8.8	6.8	2.3	2.0	57	9.8	36	3.4	29	4
		Undig	ested							
K (AA)	Zn	Hn	Fe	Cu	SO4 - S					
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
111	0.3	2.0	14.0	1.0	190					
	0704 5					0	1.0			
		xtract					ed Paste			
Nī	Pb	Cr	Cd	Hg	As	Se	N03-N	P04-P	ĸ	so4-s
mg/kg	mg/kg	mg/kg	mg/kg	ug/l	ug/l	ug/l	mg∕l	mg/l	mg/l	mg/l
0.4	0.6	<0.25	<0.025	14.0	149	16	28	10	4	820

Sal Carollo

disk: AGROFORESTRY II file: CAROGROW

last update: 9/24/87

TREE GROWTH DATA

Dec 31, 1986 EUCALYPTUS (rows 1 through 88) Planting date: May, 1986

ROW 10 FROM S (W-E)

TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet) (inches)	1	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)
1	4.6	0.05	20	· 2.7		39	D		1 5	8 3.2	2	77	6.1	0.35
2	2.4		21	3.2		40	0		1 :	9 3.0)	78	8.2	0.60
3	2.8		22	4		41	0.3		1 0	0 2.7	7	79	7.6	0.60
4	1.4		23	4.6	0.05	42	0.5		1 0	1 2.8	3	80	6.9	0.50
5	2.6		24	3.6		43	0.5		1 0	2 3.0	5	81	8.0	0.65
6	2.9		25	4.8	0.10	44	D		1 0	3 3.3	7	82	7.7	0.60
7	3.7		26	3.4		45	D		1 0	4 4.1	3 0.05	83	6.5	0.30
8	4.5		27	4.9	0.05	46	0.7		1 0	5 4.3	2	84	7.2	0.55
9	3.6		28	2.7		47	1.1		1 0	6 4.	5	85	8.2	0.65
10	4.3		29	2.9		48	0.5		1 0	57 5.0	0.15	86	5.0	0.10
11	4.2		30	2.0		49	D		1 0	58 5.0	0.15	87	2.8	1.00
12	4.8	0.10	j 31	2.1		50	1.0		1 0	59 1)	88	D	
13	3.8		32	1.0		51	0.8		1	r0 I)	89	1.2	
14	4.8		33	0.6		1 52	1.5		1 3	71 6.1	1 0.35	90	6.4	0.25
15	3.8		34	d		53	1.4		1 3	2 6.	5 0.35	91	7.1	0.35
16	2.8		35	0.5		54	1.7	,	1	73 7.0	0.60	92	4.5	
17	2.8		36	0.5		55	2.1		1	74 9.0	0.70			
18	2.5		37	D		56	D		1	75 7.0	5 0.50			
19	2.1		38	D		57	2.2		1 3	6 7.0	0.60			
subtot	64.4	0.2		43.5	0.2		14.3	0.0		85.	7 3.5		93.4	
# of D	BH data	2			3			0			9			13
	We a												42.0	
AVER	AGE HEIGH	T FOR RC	w 10 =	3.8		AVERAG	SE DBH FC	R ROW 10 =	= 0.3	31	No. d	ead trees =	12.0	

CARDGROW (page 2)

,

	HEIGHT	(E-W) DBH			DBH	ITREE #	HEIGHT	DBH	TREE #	HEI	знт	DBH	TREE	#	HEIGHT	OBH
		(inches)	1	(feet)	(inches)	1	(feet)	(inches)	i	(fee	et)	(inches)	i		(feet)	(inches
	7.7			2.5			1.3		j o	61	1.0				D	
2	7.2	0.40	•	3.3		42	1.2		j (62	D			82	1.7	
3	7.8	0.50	23	2.3		43	1.7		j e	63	0.9		1	83	1.0	
4	7.4	0.40	24	1		44	1.0		j e	64	1.4		1	84	3.7	
5	5.1	0.10	25	3.4		45	0.7		i e	65	0.8		1	85	D	
6	8.2	0.60	26	2.1		46	D		1	66	0.9		1	86	0.7	
7	8.5	0.60	27	3.1		47	0.8		1 0	67	1.6		1	87	2.4	
8	8.2	0.55	28	6.0	0.15	48	1.2		1 0	68	1.6		1	88	4.5	
9	6.5	0.45	29	3.8		49	0.9		1	69	D		1	89	3.2	
10	3.7		30	2.1		50	D		1	70	1.4		1	90	3.1	
11	7.0	0.50	31	3.5		51	D		1	71	1.6			91	1.5	
12	7.3	0.40	32	3.1		52	0.9	F. C.	1	72	1.0		1	92	2.0	
13	6.8	0.40	33	3.3		53	0.8	1		73	1.6		1	93	2.1	
14	7.1	0.45	34	2.2		54	1.2	2	1	74	1.2		1	94	2.3	
15	7.3	0.45	35	3.0		55	1.1		1	75	2.1		1	95	3.4	
16	6.0	0.25	36	1.2		56	D		1	76	1.8		1	96	2.9	
17	6.0	0.20	37	1.0		57	1.4		1	77	1.5			97	2.5	
18	6.5	0.20	38	2.4		58	0		1	78	2.2			98	3.0	
19	5.3	0.15	39	?		59	0.7	•	1	79	?					
20	2.2		40	?		60	0.7	,		80	?					
btot	131.8	7.05		49.3	0.15		15.6	, o		:	22.6	0			40	
of DE	BH data	18			1			0				0				
AVED	CE VEL	THE FOR RO	×υ 20 ≖	2 01		AVERA	SE DRN FO	R ROW 20	= 03	70		No.d	ead tr	PPS =	9.0	

CAROGROW (page 3)

ROW 40	FROM SC	UTH SIDE	(W-E)											
TREE #	HEIGHT	DBH	TREE	# HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches)	i i	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)
1	1.0		26	2.0		51	2.9		j 7	6 6.2	0.25	101	2.2	
2	1.4		27	1.7		52	2.2		7	7 7.9	0.45	102	4.5	
3	0.5		28	2.5		53	4.5		7	8 6.3	0.30	103	5.3	0.15
4	1.1		29	4.1		54	3.0		7	9 7.2	0.50	104	5.1	0.15
5	1.4		30	4.5		55	3.3		8	0 5.6	0.20	105	5.2	0.20
6	1.7		31	3.7		56	3.8		8	1 5.5	0.15	106	5.3	0.15
7	2.4		32	2.6		57	3.9		8	2 5.4	0.20	107	5.6	0.25
8	3.0		33	3.1		58	4.3		8	3 6.5	0.35	108	1.0	
9	2.0		34			59	1.6		8	4 7.7	0.40	109	5.2	0.15
10	2.9		35			60	4.5		8				6.2	0.30
11	1.9		36			61	4.0		8			*	7.4	0.40
12	3.1		37			62			8				6.7	0.35
13	1.2		38			63	3.7		8			113	4.4	
14	1.0		39			64	4.3		8				5.1	0.10
15	0.7		40			65	2.4		9			•	6.0	0.15
16	0.2		41			66	4.4		9			•	4.5	
17	0.3		42			67	7.0					•	3.5	
18	2.5		43			68	5.4		•			•	2.1	0.40
19	0.7		44			1	6.1		•			,	4.7 5.5	0.10
20	0.6		45			70	2.4		9	-			5.5	0.20
21	0.6		46			71	2.6		9 9			•		
22 23	1.9 1.6		47			72 73	7.0 7.1		•			,		
23	2.0		40			73 74	6.1		•			•		
25	2.0		1 47			1 75	6.2		•					
25	2.1		50	0.0		15	0.2	0.20	1 10	0 0.0	0.00	1 123		
subtot	38.4	0		85.4	0.05		106.3	2.1		165.5	8.55		95.5	2.65
# of DE		0		03.4	1		,00.5	7			24			13
		Ū												
AVERA	GE HEIG	HT FOR R	ow 40 =	4.1		AVERAG	GE OBH FO	r row 40 =	0.29	7	No. de	ead trees =	0.0	

CAROGROW (page 4)

. .

ROW 50	FROM S	OUTH (E-W)														
TREE #	HEIGHT	DBH	TREE	# HEIGHT	DBH	Įτ	REE #	HEIGHT	DBH	TREE	#	HEIGHT	DBH	TREE #	E	HEIGHT	DBH
	(feet)	(inches)	1 C	(feet)	(inches)	[(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)
1	2.5		20	4.6		1	39	2.0		1	58	2.0		1	77	D	
2	3.7		21	3.6			40	?		1	59	2.2		1	78	1.1	
3	2.9		22	2.2		1	41	2.7			60	2.3			79	1.3	
4	2.0		23	0		1	42	2.9		1	61	2.0		1	80	?	
5	2.2		24	3.3			43	0.9		1	62	0.9		1	81	1.7	
6	2.0		25	2.5			44	1.5		1	63	1.3		1	82	0.9	
7	2.5		26	1.9]	45	2.2		1	64	1.1		1	83	2.0	
8	2.1		27	2.0		1	46	2.0		1	65	1.0		1	84	1.6	
9	2.1		28	1.6			47	2.5		1	66	1.5		1	85	1.6	
10	2.7		29	2.9			48	1.9		1	67	1.0		1	86	2.4	
11	D		30	2.7			49	3.3			68	1.7		1	87	1.2	
12	2.8		31	2.1			50	2.3		1	69	1.0		1	88	0.7	
13	3.9		32	3.7			51	2.0		1	70	2.2		1	89	1.7	
14	3.0		33	5.7	0.20		52	4.2		1	71	1.8		1	90	1.9	
15	5.1	0.15	34	2.6		1	53	1.5		1	72	2.8		1	91	1.7	
16	2.2		35	3.1			54	1.5			73	3.4			92		
17	4.4		36	3.0		1	55	1.3		1	74	1.3		ł	93		
18	3.8		37	D		1	56	2.5		1	75	1.4		1	94		
19	5.0	0.20	38	2.2		I	57	2.0		I	76	2.0		I	95		
subtot	54.9	0.4		49.7	0.2			39.2	0.0			32.9	0.0			19.8	0.0
# of DE	3H data	2			1				0				0				٥
AVER	AGE HEI	GHT FOR R	O₩ 5D =	2.3		A	/ERAG	E DBH FOR	ROW 50 =	: (0.18		No. de	ead tree	s =	4.0	

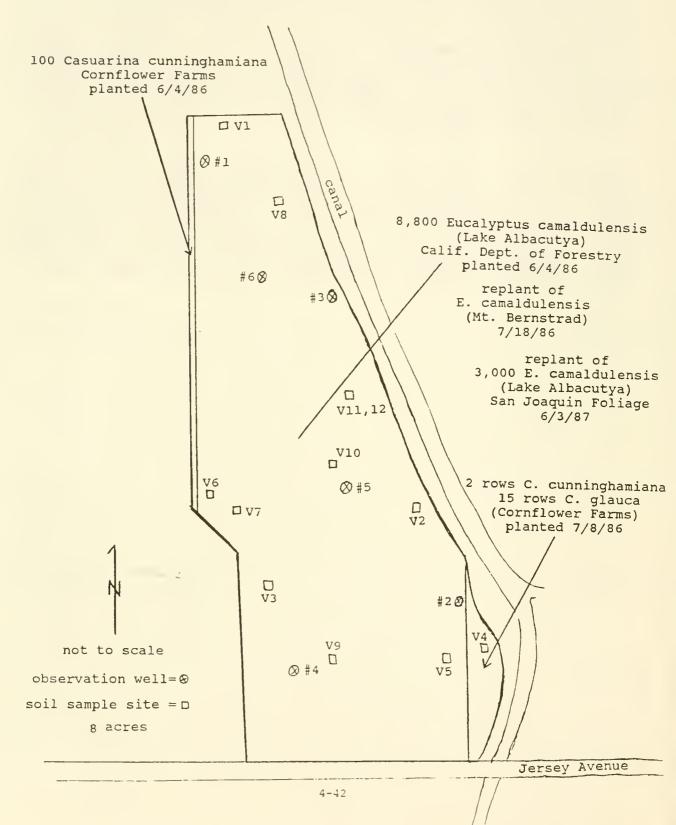
ROW 60	from SOL	JTH (₩-E))											
TREE #	REIGHT	DBH	TREE	# HEIGHT	DBH	TREE	# HEIGHT	08H	TREE #	HEIGHT	08H	TREE #	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)		(feet)	(inches)
1	2.3		16	2.0		31	2.5		46	2.0		61	1.3	
2	0.7		17	1.8		32	1.6		47	2.0		62	2.7	
3	3.0		18	2.4		33	0.8		48	3.0		63	7.2	0.50
4	1.8		19	2.3		34	2.0		49	2.7		64	3.3	
5	2.2		20	1.0		35	2.5		50	2.2		65	2.9	
6	1.8		21	1.2		36	2.9		51	3.1		66	5.0	0.15
7	1.7		55	0.6		37	1.5		52	4.4		67	5.6	0.20
8	3.1		23	1.0		38	1.0		53	6.4	0.25	68	6.1	0.20
9	3.5		24	1.D		39	2.6		54	7.0	0.55	69	4.4	
10	1.1		25	1.0		40	?		55	6.1	0.35	70	2.7	
11	1.4		26	1.0		41	2.5		56	3.5		71		
12	1.8		27	0.8		42	2.3		57	D		72		
13	2.4		28	2.0		43	3.2		58	6.0	0.30	73		
14	2.5		29	2.0		44	2.6		59	2.7		74		
15	1.9		30	2.1		45	2.2		60	2.0] 75		
subtot	31.2	0.00		22.2			30.2	0.00		53.1			41.2	
# of Di	BH data	0			0			0			4.00			4
AVE	RAGE HEIG	SHT FOR R	OW 60	= 2 .6		AVERA	GE DBH FO	R ROW 60 =	0.31		No. de	ad trees =	1	

CAROGRO	W (page	5)												
ROW 70	from SOL	JTH (E-₩)												
TREE #	HEIGHT	DBH	TREE #	F HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet) ((inches)	1	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)
1	4.0		14	Ð		27	1.4		40	?		53	3.5	
2	2.6		15	4.1		28	4.6		41	6.4	0.30	54	4.6	
3	1.4		16	D		1 29	4.5		42	5.8	0.30	55	0.9	
4	D		I 17	2.4		1 30	2.0		43	5.7			1.2	
5	0		I 18	1.3		31	4.7	0.05	44	5.0				
6	D		1 19	2.2		1 32	3.6	0.05	45	3.6		1 58		
7	2.0		20	3.2		33	2.4		46	6.3				
8	D		20 21	5.2	0.2			0.25	1			•		
9	D		22				6.7	0.25		5.3		1		
			•	4.7	0.05	•	4.4		48	2.2		61		
10	1.0		23	6.7			6.4	0.25		3.9		62		
11	1.1		24	2.0		•	3.6		•	3.6		63		
12	4.4		25	5.7		1	7.2	0.3		3.3		64		
13	4.0		26	6.9	0.3	39	5.0		52	4.6		65		
subtot	20.5	0.0		44.4	1.1		56.5	0.9		55.7	1.3		10.2	0.0
# of DB	H data	0			5			4			6			0
AVER	AGE HEIC	GHT FOR R	ow 70 ≈	3.8		AVERAG	E DBH FOI	R RO₩ 70 =	0.22		No. de	ad trees =	- 7	
ROW 88	FROM SOL	JTH (W-E)												
TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet) ((inches)	i	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)
1	0.6		9	3.7		17	2.3		25	3.7		I 33		
2	2.0		1 10	3.9		1 18	3.2		1 26	3.2		34		
3	2.3		1 11	2.5		1 19	3.4		1 27	2.3		35		
4	2.4		l 12	1.8		1 20	2.0		28	3.2		36		
5	2.9		1 13	3.2		1 21			29					
			-			1	3.6			2.1		37		
6	2.7		14	3.0		22	3.1		30	1.3		38		
7	3.3		15	3.1		23	2.2		31			39		
8	1.6		16	2.3		24	3.9		32			40		
	17.8	0.00		23.5	0.00		23.7	0.00		15.8			0.0	
# of DB		0			0			0			0			0
AVERA	GE HEIGH	IT FOR ROL	= 88 -	2.7		AVERAG	E DBH FOR	ROW 88 =	ERR		No. de	ad trees =	0	
CASUARI	NA (rows	s 89 thro	ugh 116)										
Plantin	g date:	June, 198	36											
ROW 90	FROM SOL	JTH (E-W)												
TREE #	HEIGHT	DBK	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBK	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet) ((inches)	1	(feet)	(inches)	Ì	(feet)	(inches)	Ì	(feet)	(inches)	1	(feet)	(inches)
1	4.4		9			1 17	2.3		25	2.6		33		
2	2.6		10			18	1.0		26			34		
3	3.9		11			1 19	2.6		1 27			35		
4	3.0		1 12	3.0		20	3.5		28	3.2		36		
5	3.0		1 13	2.5		21	2.7		29	3.6		37		
6	3.2		14	2.5		1 21 I 22	3.6		30	3.2		38		
						•			·	5.2		•		
7	2.4		15	-		23	3.5		31			39		
8	2.7		16	3.2		24	3.7		32			40		
		0.00		24.4	0.00			0.00		17.3			0.0	
		0			0			× 0			0			0
AVEDA														
AVERA	GE HEIGH	T FOR RON	90 =	3.0		AVERAG	DBH FOR	ROW =	ERR		No. de	ad trees =	0	

4-39

CAROGROW (page 6)

ROW	91 FROM	SOUTH (W-E)												
TREE	# HEIGH	т рвн	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet) (inches)	Í	(feet)	(inches)	i	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)
	1 2.	5	9	3.0		17	2.4		25	3.0		33	3.3	
	2 3.	5	10	2.0		18	2.6		26	3.3		34	3.7	
	3 2	4	1 11	3.1		19	2.6		27	3.0		35		
	4 2.	6	12	3.0		20	1.9		28	4.5		36		
	5 3.	1	13	2.9		21	2.4		29	3.2		37		
	6 3.	0	1 14	3.0		22	3.0		30	2.8		38		
	7 2.	7	15	2.2		23	2.5		31	3.0		39		
	8 3.	7	16	3.0		24	2.7		32	3.5		40		
cubi	ot 23.	5 0.00		22.2	0.00		20.1	0.00		26.3	0.00		7.0	0.0
	DBH dat			22.2	0.00		20.1	0.00		20.5	0.00		1.0	0.0
~ 01	2011 (321	a 0			U			0			Ŭ			0
A۱	ERAGE HE	IGHT FOR RO	W 91 =	2.9		AVERAG	E DBH FO	ROW =	ERR		No. de	ad trees =	0	
RUN	98 FROM	SOUTH (E-W)												
		T DBK		HEIGHT	Dew	-	HEIGHT	Dev	ITREE #	RETORT	DBM	ITREE #	HEIGHT	084
11120) (inches)												
	1 2.		9			 17			1 25			1 33	(1001)	(menes)
	2 3.		1 10	2.4		1 18	2.9		1 26			1 34		
	3 3.		1 11	2.5		1 19	2.9		1 27	2.0		1 35		
	4 2.	-	1 12	3.7		1 20	2.1		1 28			1 36		
	5 2.		1 13	4.4		21	3.4		1 29) 30 37		
	6 3.		1 14	3.4		1 22	2.6		I 30			1 38		
	7 2.		I 15	3.0		1 23	3.6		31			1 39		
	8 2.		1 16	2.8		24	2.9		1 32			I 40		
				2.0		1 24	6/		1 52			1 40		
subt	ot 22.	5 0.00		24.5	0.00		23.0	0.00		4.2	0.00		0.0	0.0
# of	DBH dat	a 0			0			0			0			0
A\	ERAGE HE	IGHT FOR RO	₩ 98 =	2.9		AVERAG	E DBH FOF	ROW =	ERR		No. de	ad trees =	0	
0.00	102 500	SOUTH (W-E												
		T DBH		HETCHT	084	-	HEICHT	DPH		HEICHT	Den	TPEE #	HEICHT	DBH
17.66) (inches)	•			•			•		(inches)			(inches)
	1 2.			2.1		I 1 11			•		(mones)	I I 21		(menes)
	2 2.		6 7			1 12	2.7		16 17			1 22		
	3 2.		1 8	2.3		12 13	2.7		•			1 23		
	4 2.	-	° 9	2.9		15 14	2.8		18 1 19	3.5		23 24	5.5	
	4 2. 5 1.		1 10	2.3		14 15	2.8		1 20	3.5		24 25		
	- 1.	·	1 10	2.3		() ()	2.1		20	5.4		23		
subt	ot 12.	3 0.00		12.7	0.00		13.9	0.00		14.7	0.00		8.5	0.00
# of	DBH dat	a 0			0			0			0			0


AVERAGE HEIGHT FOR ROW 102 = 2.7 AVERAGE DBH FOR ROW = ERR No. dead trees = 0

4.5 Verdigaal Brothers

In June and July of 1986, 8 acres on the Verdigaal Brothers farm was planted with 8,800 Eucalyptus camaldulensis (Lake Albacutya) and 600 casuarina. Initially, there were high mortality rates and portions of the field had to be replanted. The poor results of the initial planting are thought to have been experienced for two reasons: hot weather (100+ degrees F) and delayed watering at planting time, and highly saline and sodic conditions in portions of the field. Better survival rates were attained with replants which were planted in moist soil and around which the soil had been loosened to allow more water to get to the trees.

The Verdigaal plantation lies above very high water tables, ranging from 3.2 to 5 feet below the ground surface. This may also be contributing to the below average growth rates on this farm. Tree height measurements from 3 typical rows on the plantation showed average heights of about 3 feet at 5 to 6 months of age. The USDA-SCS in Hanford has monitored the water table depth and EC and also has run several detailed analyses of water and soil samples. Samples from this farm have also been sent to Dellavalle Labs for analysis.

VERDIGAAL BROTHERS AGROFORESTRY DEMONSTRATION PLANTINGS

AGROFORESTR	Y - TREE PLA	NTING			disc: AGROF last update		f	ile: AGFOVER	D	
county:	KINGS					. ,,,,,,,,,,				
farm:	VEROIGAAL		acreage:	8		av.tr/ac:	1175			
PLANTINGS										
OATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.
		total:	8800	0	0	100	500	0	0	9400
6/4/86 6/4/86 7/8/86 7/18/86 6/3/87 * Unclear p	CDF CDF CORNFL replant* SJN(replant blanting data	L.ALBACUTYA AUSTRALIA AUSTRALIA MT BERNSTEA ()L.ALBACUTYA		(3000)		100	500			
Comments: Mo./Yr.	7/8d Euc. from C as well as died 2Xs in down on rep that that w	0F not doing others, cas 1 area. Dug blants so mater > 1 to 1 plant, re- irrig.,	were damag defoliant,	died back or ed by cotton Cas. just to Na in soil	other pla due to mo	ntings bette re		hi SAR		
SOILS Lab Analys Amendments		2/86 see VERDSDIL	6/86 Ec 15.4 - 4 prior to pl Gypsum appl	.2 mmhos/cm anting	3/87 see VERDSOIL none	5/87 - none	7/87 see VERDSOIL			
			years back							
Fertilize			none at thi	s time	none	none				
IRRIGATION Lab Analys	No./Yr.	Ec ≈ 0.04 m irrigation Ec ≈ 3.2 mm	(used 1st) mhos/cm pump water hos/cm	Canal Ec = 0 Well Ec = 3.2 & Canal Ec =	2 0.04	5/87 none				
		drainage wa Ec = 5.0 -		Well & Drain together Ec						
Amount & Frequency	/:	86 pre-irrig. 6/15, 3.2 E 6/17 canal 7/7 canal 7/24 canal		86 8/4 drain, ci 8/18 drain, c 9/12 canal 9/30 drain		3/87 8 times (in 86?)	5/87 once this yea (3/87)	r		

Depths (f	eet) (7/86 - 1	0/86 from ve	rdwatr):					
	22-Jul-86		29-Sep-86	08-0ct-86				
WELL #	Jul -86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86	Jan-87	Feb-87
1	3.8		4.5	4				
2	4		3.9	4				
3	3.7		3.7	4.4				
4	4.7		5	4.5				
5	4.5		4.9	4.5				
6	3.8		4.4	4.6				
	27-May-87	25-Jun-87		12-Aug-87				
WELL #	May-87	Jun-87	Jul-87	Aug-87				
1	3.8	4.6		4.8				
2	4.8	4.9		4.2				
3	4.6	4.4		4.4				
4	5.1	4.6		3.2				
5	5	3.6		3.5				
6	4.7	3.7		3.65				

1 ah	Ana	lveie	alco	 VEDDUATE	

WATER TABLE

Electric Conductivity (Ec X 1000) of ground water (from verdwater)

VELL #	31-Mar-86				22-Jul-86			08-0ct-86		
	Mar-86	Apr-86	May-86	Jun-86	Jul-86	Aug-86	Sep-86	Oct-86	Nov-86	Dec-86
1	3.3				2.9			2.5		
2	0.98				1.03			0.93		
3	5				0.93			0.54		
4					8.9			12.1		
5					2.8			4.1		
6					1.98			2.04		
								01-Oct-86		
casuarina								19.2		
eucalyptus								32		
WELL #						25-Jun-87		12-Aug-87		
	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87		

Har-87

Apr-87

	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	Jul-87	Aug-87
1						1.3		1.5
2						0.4		0.5
3						0.4		0.4
4						5.1		6.6
5						3.4		2.6
6						1.7		1.6

see VERDWATR for more detail

TREES

INCLU					
Mo./Yr.	12/86	3/87		5/87	
Growth:	see	ave. ht. $= 2.8$	l ft	new growth looks	
	VERDGROW	13% mortality,		good	
		87% survival			
Lab Analysi	s:				
wood		-	+		
leaves		-	-		

-

WEEDS

Mo./Yr.	6/86	3/87	5/87
	Fusilade in Eucs but	3 applications Fusilade	none yet this year
	not Cas, 1 treatment	for Burmuda & Water	
	killed watergrass &	grass, good results	
	strangletop, burmuda		
	grass showing stress		

VERDEGAAL BROS.				disc: AGROFORESTRY II last update: 8/14/87			file: VERDWATR					
WATER DATA												
DATE	SAMPLE #	DEPTH	PH	EC x 1000		ALIQUOT			Na	SAR	ESP	REMARKS
		feet			meq/l	mls	mls	meq/l	meq/l			
3/31/86	1			3.30	36		1.1	11	25	9	11	
0,00,00	2			0.98	9.8		0.3	3	9.5	7	9	
	3			5.00	56		3.0	30	26	6	7	
7/22/86	1	3.8		2.9			7.0					
	2	4.0		1.03								
	3	3.7		0.93								
	4	4.7		8.9			20.0					
	5	4.5		2.8								
	6	3.8		1.98								
9/29/86	1	4.5										
7727700	2	3.9										
	3	3.7										
	4	5										
	5	4.9										
	6	4.4										
10/1/86	casuarina		9.1	19.2	248		0.80	8.0	240	120	124	Barely alive
	eucalypt.		9.4	32.0	420		0.90	9.0	411	194	197	Planted 3 times
												& died 3 times
10/8/86	1	4.0		2.5	27			4.0	23	16	17	
10/0/00	2	4.0		0.93	9.3			2.0	7.3	7.3	7.9	
	3	4.4		0.54	5.4			1.7	3.7	4	5	
	4	4.5		12.10	150			15.0	135	49	53	
	5	4.5		4.1	47			2.8	44.2	37	41	
	6	4.6		2.04	22			2.0	20	20	23	
5/4/87												
Dellavalle Labs												
Undigested Samp												
E		Mg	Na		SAR		CO3+KCO3	\$04 - S	В	N03-N	Fe	
dS/r	F	Meq/l	Meq/l		adj	Meq/1	Meq/l	mg/l	mg/l	mg/l	mg/l	
6.50	5 7.2	8.1	63.6	23.0	68.8	10.8	22.8	690	1.3	4.6	<0.1	
Hr	n Li	F	рН									
mg/l		, mg/l	ph									
0.3		1.3	7.6									
Digested Sample												
ţ.		Zn	Hn		Fe	Cu	Ca	Mg	8e	v	Pb	
mg/l		mg/l	mg/l		mg/l	mg/l	mg/l	mg∕l	mg/l	mg/l	mg/l	
1.6	6.4	0.6	0.62	1430	3.6	0.7	118	106	<0.025	<0.8	0.2	
Cr	- Cd	As	Нg	C.c.	Me		Si					
ung/ĭ		ug/l	Ng Ug/l		Mo .mg/l	Al mg/l	S1 mg/l					
<0.25		20	<0.2		0.8	3.3	7.7					
				-	0.0	5.5	* * *					

VERDEGAA	L BROS.					OFORESTRY		file: VER	SDIL			
SOIL DAT	A											
												TOTAL
DATE	SAMPLE #		рH	EC x 1000					Na	SAR	ESP	SALTS REMARKS
		inches			meq/l	mls	mls	meq/l	meq/l			meq/l
1/31/86	1			4.2			3.3	33	14	3	3	
	1			8.9			7.1	71	38	6	7	
	2	0 - 12 12 - 24		15.4 5.9			0.4	4.0 4.0	190 64	134 45	66 39	
	2			5.6			0.4	4.0	60	43	36	
	-	12 - 24		5.0 8.8			0.4 0.7	7.0	101	42 54	43	
	د	12 - 24		0.0			0.7	7.0	101	24	45	100
3/86	1	0 - 12		7.2			1.0					
	1	12 - 24		3.0			0.60					
	1	24 - 36		2.6			0.40					
	2	0 - 12		5.9			1.0					
	2	12 - 24		1.47			0.20					
	2	24 - 36		1.57			0.20					
	3	0 - 12		11.5			0.50					
	3	12 - 24		15.8			1.0					
	3	24 - 36		9.80			0.30					
3/31/86	¥-1	0 - 12		3.30	36		1.1	11	25	9	11	
	٧-2	0 - 12		0.98	9.8		0.3	3	9.5	7	9	
	٧-3	0 - 12		5.00	56		3.0	30	26	6	7	
7/22/86	٧٠6	0 - 12	3.9	38	550		26+	260	290	1.49	1.60	Planted twice & died, acid dump area
10/1/86	¥-4	0 - 12	9.1	19.2	248		0.80	8.0	240	120	124	Casuarina, just living
, .,	V-5	0 - 12	9.4	32.0	420		0.90	9.0	411	194	197	Eucalyptus, planted 3 times & died 3 times
10/7/86	٧-7	0 - 18	7.5	7.5	90		4.5	45	45	9.48	9.70	Trees 3-4'tall,near acid area 10' E
	. ∀-8	0 - 18	8.3	1.97	19		0.3	3	16	13	15	Trees 2-3' tall
10/13/86	5 V-9	0 - 18	9.2	20.1	270		1.2	12.0	255	104	107	Trees dead, twice
	V-10	0 - 18	9.5	11.9	149		0.2	2.0	147	147	150	Trees dead, twice
	V-11	0 - 12	8.1	12.1	150		2.3	23	127	11	14	Trees alive
	V-12	12 - 24	8.6	0.54	5.4		0.1	1.0	4.4	6	7	

VERDSOIL (continued)

Dellavalle Labs 5/5/87

SP 35	рНs 9.2	ECe dS/m 10.1	Ca Meq/l 1.7	Mg Meq/l 1.2	Undigested Na Meq/l 103	Cl Meq/l 20.6	ESP 56	B mg/l 3.9	NO3-N mg/kg 4	PO4-P mg/kg 20
K (AA) mg/kg 1139	Zn mg/kg 1.1	Undig Mn mg/kg 4.3	ested Fe mg/kg 6.0	Cu mg/kg 0.4	SO4-S mg/kg 440					
Ni mg/kg 0.4	DTPA E Pb mg/kg 0.4	xtract Cr mg/kg <0.25	Cd mg/kg <0.025	Нд ug/l <0.2	As ug/l 51	Saturat Se ug/l 14	ed Paste NO3-N mg/l 2	Extract- PO4-P mg/l 20	K mg/l 369	so4-s mg/l 1500

VERDIGAAL BROTHERS

disk: AGROFORESTRY II file: VERDGROW last update: 8/31/87

TREE GROWTH DATA

Dec 29, 1986

ROW 6 (S-N)

NON U	(5 4)															
TREE #	HEIGHT	DBH	TREE #	F HEIGHT	DBH	TREE	# HEIGHT	DBH	TREE	#	HEIGHT	OBH	TREE	#	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)
1	2.5		14	2.8		2	7 3.0		1	40	1.7		1	53	2.5	
2	0		15	2.2		21	B 3. 3			41	1.9		1	54	1.4	
3	0.9		16	3.7		2	9 2.9		1	42	3.3		1	55	3.0	
4	2.6		17	3.8		3	0 3.5		1	43	2.2		1	56	3.8	
5	4.5		18	3.9		3	1 3.1			44	2.8		1	57	1.7	
6	4.0		19	1.0		3	2 0.6		1	45	2.5		1	58	2.5	
7	5.5		20	4.5		3	3 3.6		1	46	2.7		1	59	2.0	
8	2.8		1 21	2.5		34	4.8		1	47	D		1	60	2.1	
9	3.0		22	2.9		3	5 3.5		1	48	4.8		1	61	1.4	
10	D		23	0.9		3	6 1.0		1	49	1.0		1	62	2.5	
11	D		24	3.4		3	7 2.9]	50	1.6		1			
12	2.5		25	2.4		3	B 2.2		1	51	2.6		1			
13	1.3] 26	1.0		3	9 2.8		1	52	1.4		1			
	29.6			35.0			37.2				28.5				22.9	

AVERAGE HEIGHT FOR ROW 6 = 2.64

Number of dead trees = 4

ROW 16 (S-N)

TREE #	HEIGHT	OBH	TREE #	HEIGHT	DBH	TREE #	# HEIGHT	DBH	TREE	#	HEIGHT	DBH	TREE	#	HEIGHT	DBK
	(feet)	(inches)	i	(feet)	(inches)	i	(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)
	3.8		20	1.7		39			1	58			1	77	D	
2	4.0] 21	0.6		40	1.4		1	59	3.8		1	78	2.2	
3	4.9		22	4.6		41	3.0		1	60	4.6		1	79	3.3	
4	3.9		23	4.5		42	1.7			61	3.5		1	80	1.5	
5	2.8		24	3.6		43	3.0		1	62	0.8		1	81	0.6	
6	3.8		25	1.8		44	5.1		1	63	2.1		1	82	2.0	
7	2.7		26	0] 45	3.4		1	64	0.9		1	83	D	
8	2.3		27	3.4		46	3.0		1	65	2.3		1	84	D	
9	4.7		28	2.6		47	3.3		1	66	2.0		1	85	1.3	
10	3.0		29	4.0		48	2.6		1	67	3.3		1	86	1.4	
11	4.D		30	3.4		49	1.3		1	68	5.0		1	87	2.8	
12	6.7		31	3.5		50	4.6		1	69	4.1		1	88	D	
13	4.D		32	2.D		51	4.2		J	70	2.3		1	89	D	
14	2.5		33	4.6		52	3.9			71	4.3		1	90	D	
15	2.7		34	4.0		53	D		1	72	2.4]	91	0.9	
16	2.5		35	2.2		54	2.8		1	73	3.5		1	92	0.5	
17	4.5		36	D		55	4.6			74	2.4		}	93	D	
18	2.5		37	2.3		56	3.1		1	75	1.0					
19	0.9		38	3.9		57	2.7			76	0.4					
	66.2			52.7			57.3				52.6				16.5	

AVERAGE HEIGHT FOR ROW 16 = 2.96

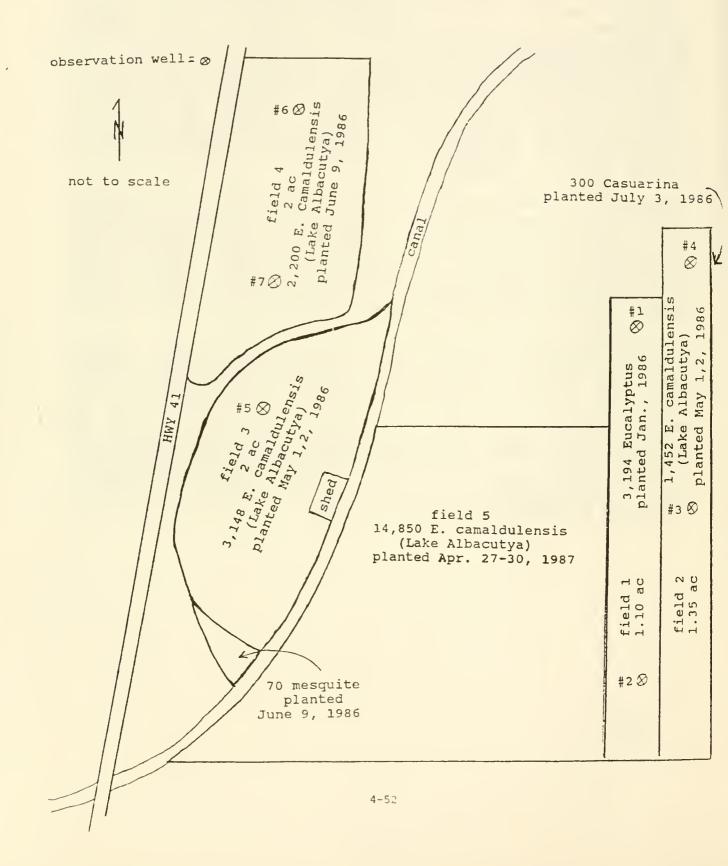
```
Number of dead trees = 10
```

4

VERDGROW (page 2)

REE #	HEIGHT	DBH	TREE	# HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches
1	4.3		28	D		55	2.9		82	3.0		j 10	09 2.	9
2	3.8		29	D		56	3.9		83	1.0		1	10 1.	8
3	5.6		30	D		57	2.8		84	D		1 1	11 2.	9
4	3.8] 31	2.5		58	3.3		85	D		1 1	12 3.	6
5	5.4		32	2.5		59	4.5		86	0.6		1 1	13 1.	3
6	2.8		33	3.2		60	D		87			1 1	14 2.	6
7	2.5		34	2.5		61	3.9		88	1.4		1 11	15 2.	7
8	4.4		35			62	4.2		89			•	16 1.	
9	3.5		36			63	3.5		90	0.7] 11	17 1.	9
10	5.0		37			64	3.0		91] 11		
11	3.7		38			65	4.4		92			11		3
12	D		39			66	D		93				20 1.	0
13	2.4		40			67	1.5		1 94			12		4
14	4.1		41			68	4.0		95			1 12		
15	4.2		42			69	1.3		96] 12		
16	4.0		43			70	3.8		97			12		
17	4.6		44] 71	4.8		98			12		
18	4.7		45			72	2.5		99			12		
19	2.2		46			73	4.2		100			12		7
20	2.5		47			74	2.9		101			12		D
21	2.4		48			1 75	1.0		102	D		12	29	D
22	D		49			76	3.4		103	D] 13	50	D
23	D		50	5.5		1 77	3.2		104	D] 13	31 1.	0
24	D		51	5.0		78	3.0		105	D		13	32	D
25	D		52			79	2.6		106	1.2		1		
26	D		53	3.5		80	3.7		107	2.8		1		
27	2.5		54	4.1] 81	3.7		108	3.3		1		
	78.4			89.1			82			27.8			44.	6

4.6 Haynes


Jim Haynes planted one acre of eucalyptus in January of 1986, before he actually joined the Agroforestry Demonstration Program. Although nearly 1/3 of the seedlings were lost to frost damage, the trees were originally spaced at 3' X 5' so that densities sufficient for study remained after the initial mortalities. In May and June of 1986 approximately 5 1/2 more acres of eucalyptus were planted as part of the Agroforestry Demonstration Program. Poplars, mesquite, and casuarina were also planted on the farm in April, June, and July, respectively. In April of 1987 an additional 10,000 seedlings were planted. At approximately six months of age the trees showed variable growth, depending on the soil conditions, ranging from under 2 feet in highly saline areas to over 10 feet in the better soils.

Because this planting is surrounded by native habitat rather than cultivated fields it has experienced more severe pest problems than most of the other farms. Within one week of planting rabbits had destroyed 95% of the casuarina. Plastic guards were effective in protecting the remaining seedlings. The rabbits damaged some of the eucalyptus but did not appear to like to eat them as they did the casuarina. The poplars are barely staying alive and have suffered from grasshopper damage.

An interesting dilemma has arisen in relation to weed control. Although the field has many weeds, when extensive weed control was tried in one area the rabbits moved in and damaged or killed the trees. Very little weed control has been implemented.

This agroforestry planting is monitored by the Hanford office of the USDA-SCS. Results of previous monitoring and analyses are in the farm report. This farm is also part of the CSUF - Department of Biology wildlife study, which is further discussed in Section 7.0. Cuttings from the two-year-old trees will be used for the selection and propagation study in 1988.

AGROFORESTR	Y - TREE PLA	NTING			isc: AGROF		f	ile: AGFOHA	YN	
county:	KINGS				,					
farm:	HAYNES		acreage:	11.3		av.tr/ac:	2253			
PLANTING										
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.
		total:	21650	3194	D	0	300	250	70	25464
1/86	plant 1 acr	re Eucalyptus		3194						
4/23/86	DULAS	CHAPMAN						25D		250
5/1/86	SJN	L.ALBACUT	4600							4600
5/28/86 6/9/86	CDF	10%, 145 tree L.ALBACUT	s? 2200							2200
6/9/86	UCR	Hemet forli							70	70
0, , , 00			West Moreland							
7/3/86	CORNEL	AUSTRALIA					300			300
7/18/86	replant 288	3 trees?								
10/86	replanted s	some casuarin	ia?							
4/11/87	CDF	L.ALBACUTYA	14850							
Comments:										
Mo./Yr.	4/86	5	10/86		3/87		5/87		9/87	
	Jan. spacir	ng 3′ X 5′	rabbits destr	oyed R	abbits eat	casuarinas	Due to dry ye	ar	1987 planting	on 6 ac,
	lost ~33% d		95% of the ca				rabbit proble		spacing 3.5'X	51
	planting, m		immed. aft. p				are severe, n			
	to frost, o gating So.		installed pro mesq. spacing		ut down, n		<pre>ing spaced 5/2 9/87 entry)</pre>	44' (? See		
	corrected	end, but	poplars just				yor eneryy			
			alive, grassh							
			damage							
SOILS	Mo./Yr.	86		3/87		5/87				
Lab Analys				ee HAYNSOI	L	see HAYNSOIL				
,		trees do we								
		EC 20.2 or	13,184 ppm							
		Ca+Mg 32mg/	•							
		longer w/ 0	-							
		also see HA	THSUIL							
Amendments	:		r	ione		none				
Fertilizer		nor	ne t	ablespoon	15-15-15	tablespoon 1	15-15-15			
				per tree		per tree, 3	applic.			
						from 1/87 to	5/87			
1001010101										
IRRIGATION Lab Analys										
Date		anal Ec X 100	10 well	Ec X 1000						
86		0.04 (25 pp		ive 1.4 (89	5 ppm)					
				ittle/no C						
Mar-87	7	0.08	3 C	.27 to 1.2	7					
May-87	7	0.04	, 1	.2 to 2.0						
						5.2				

Amount & Mo./Yr. 86	3/87	5/87
Frequency: Apr,May,Jun 1X a week,	Field: 1 2 times	FIELD: 1 1 time
over irrig., July 2,13	2 Avg Q 3 wk	2 1 time
or 8+18?, Aug 13, 8?,	3 Avg a 2 wk	3 @ 2 weeks
Sept 1, 2Xs in Oct	4 2 times	4 bef. & aft.
		planting

WATER TABLE

3

Water Table Depths (feet)(4/86 - 10/86 from haynwatr):

	08-Apr-86	24-Apr-86	22-Jul-86	01-Oct-86	
	Apr-86	Apr-86	Jul-86	Oct-86	May-87
NE well	18	32			
NW well	18				
E side				0.67	
WELL #					
1		6.2	7		>7
2		6.5	7.4		7.2
3		9	7.6		7.3
4			7		8.1
5			5.8		6.5
6			6		6.6
7			5.5		6.1

Lab Analysis:

Electric Conductivity (Ec X 1000) OF GROUND WATER (from haynwatr) 08-Apr-86 24-Apr-86 22-Jul-86 01-Oct-86 Apr-86 Apr-86 Jul-86 Oct-86 NE well 0.17 0.90 NW well 0.25 E side 9.6 WELL # 1 0.77 2 3.0 2.8 3 2.8 4.3 4 1.2 5 22.2 6 0.50 7 44.0

See HAYNWATR for more detail

TREES:	Mo./Yr.	12/86	3/87	5/87
Growth:		see	Field 1 ave. 5 ft,	excellent Field 3
		HAYNGROW	31% died	(irrigated a 2 weeks)
			(69% survival)	other fair to good
Lab Anal	ysis:			
wood		-		
leaves		-	-	

WEEDS			
Мо./Үг.	86	3/87	5/87
	very little or no weed	-	no control
	control, when tried ex-		
	tensive control in one		
	area rabbits moved in		

HAYNES					disc: AGR last upda			file: HAY	NWATR			
WATER DA	TA				tast upua	110: 9/1/0	DI					
OATE	SAMPLE #	0EPTH feet	pН	EC x 1000	CATIONS meq/l	ALIQUOT mls	VERSINATE mls	Ca + Mg meq/l	Na meq∕l	SAR	ESP	REMARKS
4/8/86	NE well NW well	18 18		0.17 0.25	1.7 2.5		0.1 0.2	1.0 2.0	0.7	1.0 0.4	0.7 0.7	
4/24/86	NE well	32		0.90	9.0		0.3	3.0	6.0			
	1 2 3	6.2 6.5 9.0		0.77 3.0 2.8								
7/22/86	1 2 3 4 5	7.0 7.4 7.6 7.0 5.8		2.8 4.3 1.2 22.2	30 48 12 300		4.7	47	253			
Wells #	6 7 1 - 4 east	6.0 5.5 of canal		0.50 44.0	5.0 640		62.0	620	20			

Wells # 1 - 4 east of canal Wells # 5-7 west of canal

> disc: AGROFORESTRY II file: MAYNSOIL last update: 9/1/87

SOIL DATA

HAYNES

OATE	SAMPLE #	OEPTH	рH	EC x 1000			VERSINATE		Na	SAR	ESP	REMARKS
		inches			meq/l	mls	mls	meq/l	meq/l			
4/86	well 2 #1	0 - 12	!	20.2	260		3.2	32	228	57	59	
	well 2 #2	12 - 24		24.8	400		3.9	39	361	82	88	
	well 2 #3	24 - 40		22.7	290		3.3	33	257	63	67	
	well 1	0 - 12		1.51	15.0		0.1	1.0	14.0	20	22	
	well 3	0 - 12		4.6	52.0		0.6	6.0	51.4	30	30	
	near tree	0 - 12		7.6	90.0		2.9	29	61	16	15	
10/1/86	1	0 - 8	9.5	9.6	118		0.10	1.0	117	165	169	East side N.S. middle dead trees
	2	0 - 8	8.5	5.0	56			7.1	48.9	26	28	Trees alive 6 - 7' tall
	3-1-	0 - 8	8.2	52.6	700			67	633	109	116	Dead, planted twice
12/86	well 1 #1	0 - 12	8.4	18	230		3.3	30.3	200	52	45	planted 5-6-86
	well 1 #2	12 - 24	8.5	33	450		6.0	60	390	71	68	trees 3'- 4' tall
	wetl 1 #3	24 - 36	8.5	32	420		9.0	90	330	49	45	
	well 1 #4	36 - 48	8.6	80	1100		21.5	210.5	890	271	263	
	well 1 #5	48 - 52	8.4	53	790		14.5	140.5	650	78	75	
4/87	field #3	0 - 12	9.0	25.5	340		1.8	18.0	322	107		dead trees
							4-56					

disk: AGROFORESTRY II file: HAYNGROW

HAYNES

TREE GROWTH DATA

Dec, 1986

EAST FIELD

ROW 6 FROM EAST SIDE (N-S)

TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	I	TREE #	REIGHT	DBH	TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches	0		(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)
1	0.7		28	1.8		1	55	0.1		J 82	D		109	6.2	0.30
2	3.1		29	1.8		1	56	D		83	0.5		110	6	0.25
3	0.2		30	D		1	57	D		84	D		111	8.0	0.53
4	0.4		31	1.8		1	58	D		85	D		112	5.6	0.15
5	?		32	1.9		1	59	0.1		86	D		113	6.3	0.35
6	1.6		33	0.2		1	60	D		87	2.0		114	6	0.20
7	1.8		34	D		1	61	D		88	4.0	0.10	115	3.8	
8	D		35	0.9		1	62	D		89	3.9		116	4.7	0.05
9	D		36	3.8		1	63	D		90	1.2		117	D	
10	0.2		37	D		1	64	D		91	4.0		118	4.4	
11	D		j 38	3.5		1	65	0.6		92	5.9	0.25	119	4.2	
12	D		39	4.6		1	66	D		93	5.0	0.10	120	4.3	
13	D		40	D		- 1	67	D		94	6.1	0.25	121	D	
14	D		41	D		1	68	D		95	5.0	0.10	122	2.D	
15	3.0		42	D		J	69	D		96	4.4		123	D	
16	3.0		43	D.4		1	70	D		97	4.7	0.05	124	0.8	
17	1.5		44	D			71	D		98	4.2		125	1.0	
18	3.6		45	D		1	72	D		99	5.5	0.15	126	D	
19	6.3	0.25	46	0.3		1	73	D		100	1.6		127	2.0	
20	3.1		47	D		1	74	2.6		101	5.5	0.15	128	D	
21	D		48	0.7		1	75	4.D		102	4.0		129	D	
22	D		49	0.7			76	5.3	0.10	103	4.0		130	D	
23	1.9		50	D		1	77	0.6		104	5.3	0.15	131	D	
24	D		51	D		1	78	D		105	7.2		1		
25	1.9		52	D		1	79	5.3	0.15	106	4.9	0.10	1		
26	D		53	D		1	80	4.0		107	5.3	0.20	1		
27	D		54	D		- 1	81	4.7	0.05	108	6.8	0.25	1		
subtot	32.3	0.25		22.4	0.0	0		27.3	0.30		101	2.20		65.3	1.83
# of Di	BH data	1				0			3			14			7
AVE	RAGE HEI	GHT FOR R	10W 6 =	1.99			AVERAG	E DBH FO	R RO¥ 6 =	0.183		No. de	ad trees =	54.0	

NORTHW	NORTHWEST FIELD																
ROW 8	FROM EAS	ST (N-S)															
TREE #	HEIGHT	DBH	TREE	# HEIGHT	DBH	TRE	E #	HEIGHT	DBH	TREE	#	HEIGHT	DBH	TREE	#	HEIGHT	DBH
	(feet)	(inches)		(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)
1	2.6		2	1.3		3	39	D		1	58	2.6		1	-77	1.9	
2	3.3		2	1 3.7		1 4	0	0.2		1	59	D		1	78	?	
3	2.0		2	2 4.6		4	41	2.5		1	60	2.2		1	79	?	
4	5.5		2	3.4		1 4	2	2.1		1	61	D		1	80	3.0	
5	3.0		2	4 1.0		4	3	D		1	62	2.3		1	81	D	
6	4.2		Z	5 3.0		4	4	D		1	63	2.3		1	82	2.9	
7	4.2		20	5 D		4	5	D		1	64	1.0		1	83	2.6	
8	3.7		2	2.3		4	6	D		1	65	2.6		1			
9	3.6		1 2	3 0.6		14	7	0.5		1	66	2.4		1			
10	2.4		29	р р		1 4	8	D		1	67	1.3		1			
11	4.4		30	0.2		4	9	2.0		1	68	D		1			
12	4.3		3	0.3		5	0	0.2		1	69	D		1			
13	4.0		37	2.2		5	51	1.6		1	70	2.0		1			
14	4.2		33	5 4.5		5	Z	D		1	71	?		1			
15	1.5		34	3.4		5	3	2.1		1	72	1.6		1			
16	4.5		3!	5 0.1		1 5	4	D		1	73	1.3		1			
17	3.3		30	5 0.1		1 5	5	2.7		1	74	D		1			
18	3.3		37	3.4		5	i6	2.5		1	75	1.0					
19	1.4		38	2.3		5	7	3.3			76	2.0					
	65.4			36.4				19.7				24.6				10.4	

AVERAGE HEIGHT FOR ROW 8 = 2.45

No. dead trees = 16.0

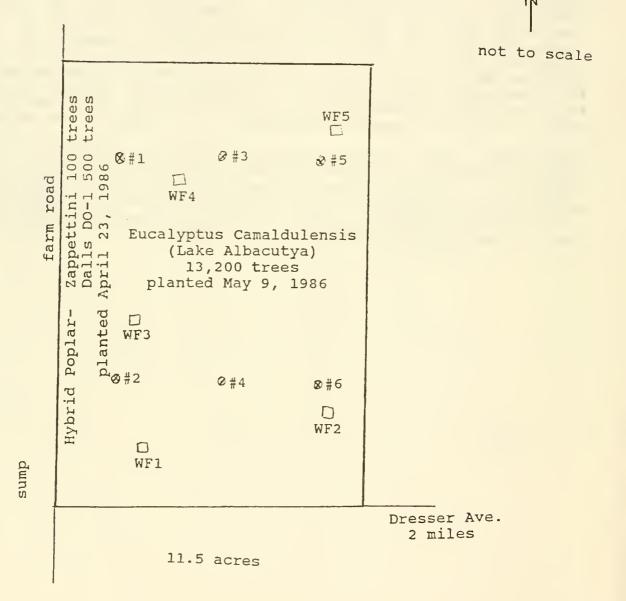
NDRTHWEST FIELD

ROW 16 FROM EAST (N-S)

TREE #	HEIGHT	DBH	TREE #	HEIGHT	DBH	TREE A	HEIGHT	DBH	TREE	#	HEIGHT	DBH	TREE	#	HEIGHT	DBH
	(feet)	(inches)	1	(feet)	(inches)	1	(feet)	(inches)	1		(feet)	(inches)	1		(feet)	(inches)
1	D		18	D		35	D		1	52	٥		1	69	2.7	
2	0.4		19	D		36	D		1	53	D		1	70	3.4	
3	0.3		20	D		37	1.9		1	54	D		1	71	D	
4	2.0		21	D		38	D		1	55	1.8		1	72	D	
5	D		22	D		39	D		1	56	3.3		1	73	D	
6	D		23	D		40	2.6		1	57	2.6		1	74	D	
7	0.4		24	D		41	D		1	58	D		1	75	D	
8	0.4		25	D		42	D		1	59	1.0		1	76	D	
9	0.4		26	D		43	2.1		1	60	2.0		1	77	D	
10	2.2		27	D		44	3.3		1	61	1.8		1			
11	2.0		28	D		45	4.4		1	62	1.2		1			
12	1.0		29	D		46	D		1	63	D		1			
13	D		30	0		47	D		1	64	D		1			
14	D		31	D		48	0.9		1	65	D		1			
15	D		32	D		49	2.7			66	D		1			
16	D		33	D		50	D		1	67	D		1			
17	D		34	D		51	D		1	68	D		I			
subtot	9.1	0.0		0.0	0.0		17.9	0.0			13.7	0.0			6.1	0.0
# of DE	BH data	0			0			0				0				0
AVE	RAGE HE	IGHT FOR	ROW 16	1.9		AVERAG	E DBH FO	R ROW 16 =		ERR		No. de	ad tree	es =	52	

4-58

SOUTHWES		.D WTH (E-W)												
				NEIGHT	DBH		REIGHT	DBH	TREE #	HEIGHT	DRH	TREE #	NEIGHT	DBH
					(inches)						(inches)			(inches)
	3.5	(4.5	0.125		3.7		•	0.1875			1.1	(menes)
	3.9		•	4.5	0.125	•	3.7			0.125		I 18	D	
	3.9		1 7		0,1875	•	3.5			3.8		1 19	-	
	2.1		8			•	2.3		1 16	2.3		1 12	4.0	
·			-			1	2.0		1 10			1		
subtot	13.4	0.0		18.8	0.4		13.2	0.0		6.4	0.0		5.1	0.0
		0			3			0			0		2.1	0.0
AVERA	GE HEI	GHT FOR R	OV 15 =	= 3.2		AVERAG	E DBH FO	r row 15 =	0.146		No. de	ad trees =	1	
SOUTH WE														
ROW 31 F	ROM S													
TREE # H			•			•			TREE #			TREE #		
		(inches)	1						1					(inches)
	6.0	0.2	•				4.5		•	2.0		41		
2	5.9		•			22	2.5		32			42		
3	6.8	0.25	•			•	2.0		33	3.0		43		
4	8.6	0.4	•			•	0		34	3.0		44	1.4	
5	2.5	0.4	•		0.3	•	D		35	D		45	D	
6	6.4	0.3	•		0.4	•	4.7		-36	D		46	D	
7	3.3					•	3.0		37	1.6		47	0	
8	0.3		18		0.35	28	5.5	0.15	•	0		1		
	0.3		19			29	4.3			1.6				
10	D		20	9.0	0.7	30	5.0	0.1	40	0		I		
subtot	40.1	1.8		50.8	2.7		31.5	0.3		15.2	0.0		10.8	0.0
# of OBH	data	6			6			2			0			0
AVERA	GE HEI	GHT FOR R	o¥ 31 ÷	= 4.2		AVERAG	E DBH FO	R ROW 31 =	0.332		No. de	ad trees =	12	
SOUTHWES														
		WTH (W-E)				Irecc 4		0.011	ITOTE #	UCICUT	8.0.4	TREE #	NETCHT	DBH
									TREE #			•		(inches)
		(Inches)					(reet) 5.5			(reet) 4.0			7.6	
	4.0			0		•	2.2 4.9			7.9			9.7	
	4.5			1.0		-						. –		
									28	7.5				
4	7.2		12			20	2.8		29			•		
5	8.6		13			21 22	1.6 1.2		29			•		0.1
6	7.6		•				1.2		•	8.3		•	2.7	••••
7	6.2		•			23			32	6.6		•	2.6	
8	1.3		16	4.9	0.05	24	2.8		1 32	0.0	0.25	40	2.0	
cubrot	47.0	2.0		25.2	0.1		24.5	0.3		63.8	4.2		46.1	1.9
subtot # of OBH		2.0		23.2	2		24.3	2		00.0	7			6
# UT U8/	uara	5			٢			2						
AVERA	AGE HE	GHT FOR R	OW 40 :	= 5.3		AVERAG	E OBN FO	R ROW 40 =	0.380		No. de	ad trees =	1.0	


4-59

	ST PLAN	TING UTH (E-W)														
				HEIGHT	DBH	ITREE #	HEIGHT	DBH	TREE	#	HEIGHT	DBH	TREE	#	HEIGHT	DBH
					(inches)											
1	4.9	0.10	9	8.3	0.50	17	6.4	0.25	i l	25	3.5		İ.	33	1.6	
2	D		10				3.2		1		3.0		}	34	D	
3	2.5		1 11	9.3	0.70	19	2.3		1	27	2.3		1	35	D	
4	4.0		12	7.7	0.50	20	2.5		1	28	D		1	36	D	
5	2.9		13	8.1	0.60	21	1.0		1	29	2.7		1	37	D	
6	7.6	0.35	14	10.8	0.80	22	2.4		1	30	D		1			
7	6.1	0.30	15	8.9		23			1	31	3.3		1			
8	5.2	0.15	16	8.5	0.80	24	D		1	32	2.3		I			
subtot	33.2	0.9		70.8	5.3		20.1	0.3			17.1	0.0			1.6	0.0
# of DB	H data	4			8			1				0				0
AVER	AGE HEI	GHT FOR P	ROW 58 =	4.9		AVERAG	E DBH FD	r row 58 =	- 0	.496		No. de	ad tre	es =	8.0	
	ST PLAN															
		JTH (W-E)														
					08H											
					(inches)											
	1.2															
	2.4			9.3		'		0.90					II .			
3	5.8			10.2					•		4.0		1			
4	8.8		12								3.0		I.			
5	5.0		13						1	29			!			
6	1.4		14							30			•			
7	9.3		15			23				31	5.0	0.10	!			
8	9.8	0.60	16	9.9	1.00	24	3.7	0.30	I				1			
subtot	43.7	2.1		70.2	5.3		54.9	3.2			36.8	0.5			0.0	0.0
# of D8	H data	5			7			7				3				0
AVER	AGE HEI	GHT FOR R	ROW 74 =	6.6		AVERAG	E DBH FOI	R ROW 74 =	= 0.	.501		No. de	ad tre	es =	0.0	

4.7 Way Farms

The Way Farms agroforestry plantation was planted with 600 poplar cuttings and 11,900 Eucalyptus camaldulensis seedlings (Lake Albacutya seed source) in April and May of 1986. Some of the poplar cuttings were held in cold storage for one month prior to planting and this appears to have had an effect on their growth. They were slower at leafing out and a few of the cuttings died. The Oregon poplar variety has grown well, reaching heights of about 6 feet only 6 months after planting. The eucalyptus have grown well, with the exception of those in the north east corner where the soil is highly saline. Some leaf damage was experienced by trees on the north end due to cotton defoliant. The leaves spotted but did not fall and the trees recovered by the Although the lower 1/3 of the field was in beginning of 1987. standing water for most of the winter, the trees do not appear to have been adversely affected. No weed control has been used on this field and although there is a weed problem, once the trees grow to a suitable height they appear to out-compete the weeds.

Observation well monitoring and lab analysis of water and soil samples have been performed by the Bakersfield office of the USDA-SCS. In addition, soil and water samples taken in May 1987 were sent to Dellavalle Labs. These results are included in the following farm report. Trees from this farm will be used next year in the selection and propagation study.

observation well: &
soil sample area =0

AGROFORESTR	Y - TREE PLA	NTING			sc: AGROFORE		fi	ile: AGFOWAY		
county:	KERN				or aport.	, , , , , ,				
farm:	WAY		acreage:	11.5	97	.tr/ac:	1087			
PLANTINGS DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.
		total:	11900	0	0	0	0	600	0	12500
4/23/86 4/23/86 5/9/86	ZAPATTINI OULAS CDF	CHAPMAN L.ALBACUT	11900					100 500		
Comments: Mo./Yr.	5/86 poplar plan cuttings sh others stil few dead, m good, Zappa poor (held storage 1 m Euc look go	ting, some ow buds, l dormant, aj. look ttini look in cold onth),	3/87 Leaf damage on from cotton de leaves spotted no leaf fall, frost, cultiva some trees dyin lower 1/3 field standing water	foliants ve but de some He ted 1X, NE		l cotton age. n in Jan. field nal in				
SOILS M Lab Analys	o./yr. is:	86 see WAYSOIL, see file for description of soils in area	1 2 3 4 5	3/87 Ec 1.4 2.9 3.7 1.2 15.6 e depth = 3.	71 12 17 65 39	7/87 see WAYSOIL				
	Quarter	3/87								
Amendments	:	•								
Fertilizer	:									
IRRIGATION		7 / 97								
Lab Analys	Quarter is:	3/87								
Amounts & Frequency	:									
WATER TABLE										
Depth: WELL # 3 4 5 6	28-Oct-86 Oct-86 4.9 5.4 5.6 5.2	Nov-86	Dec-86	Jan-87 4.9 5.8 5.3	Feb-87	Mar-87	Арг-87	Мау-87	Jun-87 3.9 4.6 3.8 4.3	
7	6.3								4.3	

Lab Analysis: also see WAYWATR

	28-0ct-86									
WELL #	Oct-86	Nov-86	Dec. 9(
	Ec	NOV-00	Dec-86	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87	
3	3.6								Ec	
4	5.5								2.6	
5	3.2								6.6	
6	3.6								9.3	
7	5.0								4.8	
ditch									6.9	
									1.1	
WELL #	Oct-86	Nov-86	Dec-86	Jan-87	5.5 07					
	SAR		000	19(1-0/	Feb-87	Mar-87	Apr-87	May-87	Jun-87	
3	37								SAR	
4	42								20.4	
5	31								44.9	
6	38								79.1	
7									35.4	
ditch									47.4	
									6.53	
conflict	ing report (DBASE	8706181								
	EC	SAR								
	Oct-86	Oct-86								
3	3.6	37	for more	da a sta						
4	5.5	42	see WAYW							
5*	4.7	31	See WATH	AIK						
6*	3.2	22								
7*	3.6	38								
		50								
TREES										
Mo./Yr	10/86		3/87		6/87					
Growth:	doing exceptiona	lly av	e. Euc. 5 to 6	ft coo	-					
	well, ave 5-6',		plar ave. 6 ft.		map in file					
	lest in areas of		n 3/87 report bu		visual aspec					
	salinity w/ 6'+		me as 10/86)		8"-12" new g					
	on outer perimet		-2" new growth	atsi	o see WAYGROW	1				
	Oregon poplar abo		so see WAYGROW							
	6' & look strong		Sec WATGROW							
Lab Analys	is:									
Hood										
leaves										
WEEDS										
Mo./Yr.	3/87		6/87							
	no herbicides	pla	gued with weeds							
			om Williams repo	(170						

WAY FARMS

disc: AGROFORESTRY II file: WAYWATR last update: 9/3/87

WATER DATA

												TOTAL
DATE	WELL #	DEPTH	рН	EC x 1000	CATIONS	ALIQUOT	VERSINATE	Ca + Mg	Na	SAR	ESP	SALTS
		feet		mmhos	meq/l	mls	mls	meq/l	meq/l			meq/l
10-28-86	3	4.9		3.6			0.2	2	37	37		39
	4	5.4		5.5			0.4	4	60	42		64
	5	5.6		4.7			0.5	5	49	31		54
	6	5.2		3.2			0.4	4	31	22		35
	7	6.25		3.6			0.1	1	38	38		39
Jan 87	3	4.9										
	4	5										
	5	5.8										
	6	5.3										
											9	
6-15-87	3	3.9		2.6		1	0.3	3	25	20.4		28
	4	4.6		6.6		1	0.5	5	71	44.9		76
	5	3.8		9.3		1	0.5	5	125	79.1		130
	6	4.3		4.8		1	0.4	4	50	35.4		54
	7	4.3		6.9		1	0.5	5	75	47.4		80
	ditch	0		1.1		1	0.3	3	8	6.53		11

Ditch is located along west boundary of agroforestry field

5/5/87

Dellavalle Labs

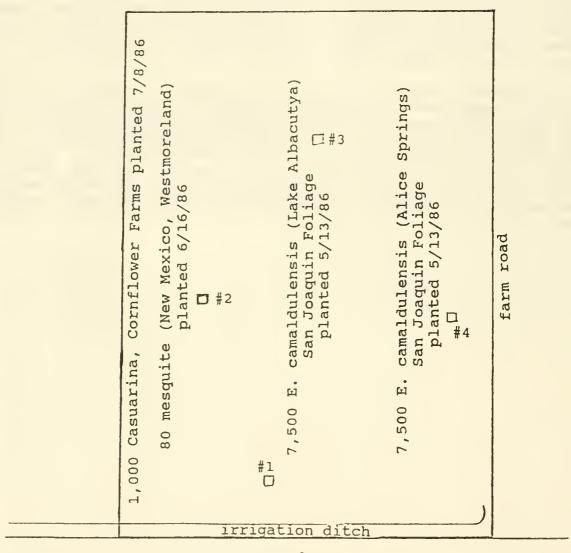
Well #4 (see map in file for location)

.

Undigested Sam	ole
----------------	-----

EC	Ca	Mg	Na	SAR	SAR	Cl	CO3+HCO3	SO4 - S	В
dS/m	Meq/l	Meq/l	Meq/l		adj	Meq/l	Meq/l	mg/l	mg/l
2.57	5.7	2.2	20.5	10.3	25.8	10.0	9.5	1100	1.5
N03-N	Fe	Mn	Li	F	рН				
mg/l	mg/l	mg/l	mg/l	mg/l					
0.3	<0.1	<0.05	<0.04	0.66	7.3				

Digested Sample


Р	κ	Zn	Mn	Na	Fe	Cu	Ca	Mg	Be
mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
0.3	9.6	0.1	0.05	293	0.6	<0.1	89.2	26.8	<0.025
V	Pb	Cr	Cd	As	Hg	Se	Мо	AL	Si
mg/l	mg/l	mg/l	mg/l	ug/l	ug/l	ug/l	mg/l	mg/l	mg/l
<0.08	0.2	<0.25	<0.025	6	3.9	<2	<0.1	0.7	18.9

WAY FARM	S				disc: AGRO last updat			file: WAY	rsoil	
SOIL DAT	A									
				TOTAL	VERSINATE					
DATE	SAMPLE #	DEPTH	EC X 1000	SALTS	TITRATION	Ca+Mg	Na	SAR	REMARKS	
		inches	mmhos	meq/l		meq/l	meq/l			
6-23-87	1	0 - 6	2.6						non-salin	e
	1	12	1.0						non-salin	e
	2	0 - 6	9.6						moderatel	y saline
	2	12	8.4						moderatel	y saline
10-28-86	1	3 - 6	1.4	14	0.4	4	10	7.1	see map i	n
	2	3 - 6	2.9	32	0.8	8	24	12	file for	
	3	3 - 6	3.7	42	D.8	8	34	17	locations	
	4	3 - 6	1.2	11	0.3	3	8	6.5		
	5	3 - 6	15.6	200	3.6	36	164	39		
Dellaval 5/5/87										
SP	pHs		Ca							
	7.0		Meq/l							mg/kg
35	7.9	3.1	8.2	2.6	22	19.2	11	1.4	4	10
		Und	igested							
K (AA)	Zn	Mn	Fe	Cu	SO4 - S					
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
272	2.3	16.0	31.0	3.2	66					
	DTPA	Extract-				Satura	ted Paste	e Extract		
Nī	РЬ	Cr	Cď	Hg	As	Se	N03-N	P04-P	κ	S04 - S
mg/kg	mg/kg	mg/kg	mg∕kg	ug/l	ug/l	ug/l	mg/l	mg/l	mg/l	mg/l
1.0				1.2	58	2	0.3	5	15	190

4.8 Arthur Williams & Sons

Thirteen acres on the Williams farm were planted with 15,000 Eucalyptus camaldulensis (half from Alice Springs and half from Lake Albacutya), 1,000 casuarina, and 80 mesquite (from New Mexico and West Moreland) in May, June, and July of 1986. A high mortality rate (around 50%) was experienced with the seedlings; this is thought to have been caused by high air and soil temperatures at the time of planting and high soil salinity. The tendency of the soil to crack as it dries, tearing the roots of the plants apart, may also have contributed to the mortality problem. The casuarina were hand planted and immediately irrigated with good water and thus faired better than the previously planted eucalyptus, for which irrigation was delayed for 1 to 2 days after planting. Although the casuarina suffered animal damage (rabbits), they have regrown. By the beginning of 1987 surviving trees ranged from 6 to 6.5 feet in height. The field has not been weeded and thus suffers from heavy weed competition.

Soil analyses, taken in November of 1986 from areas with average growth, poor growth, no growth of trees but growth of weeds, and no growth of trees or weeds, revealed that those areas in which all of the seedlings had died had SAR levels (see glossary) twice those for the areas in which the trees had survived. The best growth occurred in the area with the lowest EC and SAR readings. The USDA-SCS in Bakersfield conducts the soil and water analyses and monitors the site. Details of the above mentioned analyses can be found in the farm report.

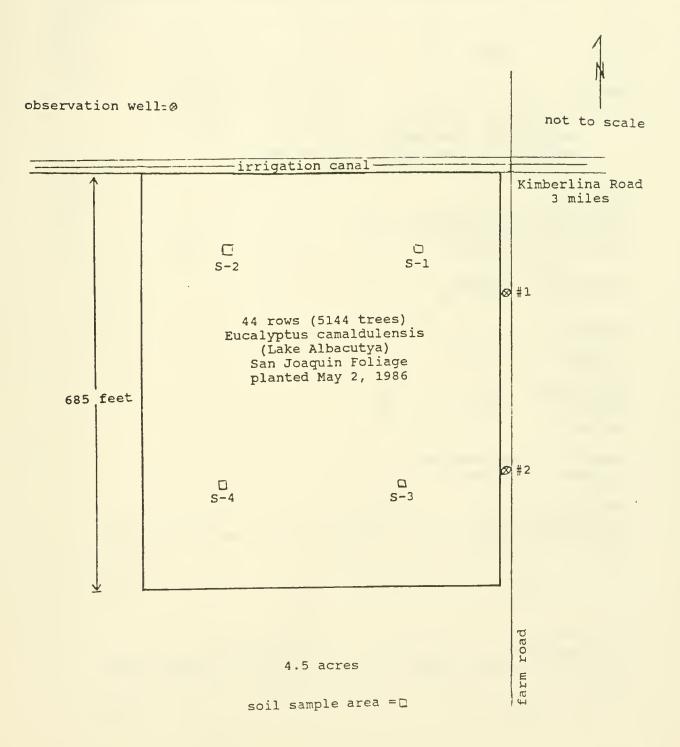
farm road

13 acres not to scale soil sample area =□

AGROFORE	STRY - TRE	E PLANTING			disc: AG			file: AGFOWILL			
county:	KERN				last upd	ate: 9/3/	87				
farm:	WILLIAMS		acreage:	13		av.tr/ac	: 1237				
PLANTING DATE	NURSERY	SOURCE	EUCA-CAM E	UCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.	
	•	total:	15000	0	0	C	1000) (0 80	16080	
5/13/86	NLS	ALICE SPR L ALBACUT									
6/16/86	UCR	NEW MEX. W MORELND							80		
7/8/86	CORNEL	AUSTRALIA	l.				1000				
Comments											
Mo./Y	r 6/86	6	7/86			3/87		6/8			
	Euc doing	, poorly,	hand pla	anted cas	-	high mor			tion from		
	~50% loss	s, planted	uarina,			probably		WAY file	e		
		furrows so	fallowed				in soil,				
		uld be no	rig. wat			100 F+ c					
		etting,	far loo			•	, mortal-				
		dries it		fered ro-		ity now	stabilize	d			
		acks, some		nage, is							
		rn apart,	regrowi	ng							
		age noted,									
		eq. irrig.									
	keep grou	und moist									
SOILS	also see Wi	ILLSOIL									
site	description	n in file									
Lab An	alysis:	6/23/86			Nov. 86						
		Sample		Sample #	Ec	SAI	R				
		Depth	EC	1	14.6	3	2				
		0-6"	8.4	2	24	71	В				
		12"	44.0	3							
				4							
				(taken at	3 to 8 i	n. depth)				
	Mo./Yr.	3/87									
Amendm	ents:	-									
Fertil	izer:	-									
IRRIGAT	ION WATER										
	Mo./Yr.	3/87	6/87								
Lab An	alysis:	-	EC X 1000								
			0.3								
			(well wat	er)							
			see WILLW	ATR for							
			detailed	analysis							

 irrig. 3 times Amounts and since Jan. 1, cur-Frequency: rently using 24 hr sets, last irrig. completed June 4 WATER TABLE Depth: 29-0ct-86 Oct-86 WELL # 1 5.15 WELL # 2 9.0 Lab Analysis: -Electric Conductivity (EC) 29-0ct-86 Oct-86 WELL # 1 0.9 WELL # 2 2.4 SAR 29-0ct-86 Oct-86 WELL # 1 8 WELL # 2 19.0 1/87 3/87 6/87 TREES Mo./Yr. height ranges from - see map in file Growth: inches to 6-6.5 ft for visual aspect Lab Analysis: wood leaves -WEEDS Mo./Yr. 9/86 3/87 6/87 weed competition - field plagued with weeds is bad

ARTHUR WILL	IAMS & SC	DNS			lisc: AGR ast upda			file: WILL	WATR				
WATER DATA	WELL #	DEPTH feet	рН	EC x 1000 mmhos	CATIONS meq/l	AL IQUOT mis	VERSINATE mls	Ca+Hg meq/l	Na meq/l	SAR	ESP	TOTAL SALTS meq/l	REMARKS
29-0ct-86	1 2	5.15 9.0		0.9 2.4							8 19		
26-Jun-87	Irrig. Ditch	n/a		0.3		1	0.1	1		2	3		3 Irrigation water


. . . .

SOIL DATA DATE SAMP	LE #	DEPTH	рН	EC x 1000	CATIONS meq/l	ALICUOT mis	VERSINATE mis	Ca + Mg meq/l	Na meq/l	SAR	TOTAL SALTS REMARKS meq/l very strongly
6/3/86	1 2	0 - 6 12		8.4 44.00							saline
11/4/86	2	3 - 6 3 - 6 3 - 6 3 - 6		- 14.6 24 15.4 7.6			4.3 2.8 3.5 D.4	43 28 35 4	147 292 160 86	32 78 38 61	190 see map in file 320 for locations 195 90

4.9 Buttonwillow Land and Cattle Co.

Although nearly 1/3 of the 4.5 acres of Eucalyptus camaldulensis planted on this trial plantation died soon after planting, the remainder of the field has done surprisingly well. These trees ranged from 4 to 6 feet in height five months after planting, with 25% to 30% around 6 feet tall. Soil samples analysed by the USDA-SCS in Bakersfield revealed that the areas of initial dieoff were very strongly saline and sodic. Surviving trees were in moderately saline and slightly sodic and in slightly saline soils. Soil samples from this farm have also been sent to Dellavalle Labs for analysis. These analyses are included in the farm report. Because these trees seem to be growing well under saline conditions cuttings will be used in 1988 for the selection and propagation project.

BUTTONWILLOW LAND CO. AGROFORESTRY DEMONSTRATION PLANTINGS

AGROFORESTRY ~ TREE PLANTING disc: AGROFORESTRY file: AGFOBUTT last update: 9/10/87 county: KERN farm: BUTTONWILLOW acreage: 4.5 av.tr/ac: 1143 PLANTING DATE NURSERY SOURCE EUCA-CAM EUCA-oth CAS-GLA CAS-CUN CAS-oth POPLAR MESQUITE gr.tot. total: 5144 0 0 0 0 0 0 5144 5/2/86 SJN L.ALBACUT 5144 Comments: Mo./Yr. 5/86 3/87 6/87 spacing 88" X 5', initial die off Status has reupper ~1/3 looks stabilized, hi Ec mained the same dead, prob. sal- & SAR in mortality since last report inity, rest looks area (1/3 area) Report in WAY file good SOILS Ground condition at time of planting: 1st 1/3? cloddy & rough, last 3/4? looked good See file for soil description Lab Analysis: see BUTTSOIL Mo./Yr. 3/87 7/87 Amendments: Fertilizer: IRRIGATION WATER Mo./Yr 5/86 3/87 Lab Analysis: Amount & hand watered with Frequency: 1 qt/tree WATER TABLE Water Table Depth feet): DATE 29-Oct-86 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 Apr-87 May-87 Jun-87 WELL # 1 5.15 dry 4.8 2 9.01 7.3 Lab Analysis: Ec of Ground Water DATE 29-Oct-86 Nov-86 Dec-86 Jan-87 Feb-87 Mar-87 Apr-87 May-87 Jun-87 WELL # 1 0.88 1.02 2 2.4 6.3

	Ground Water 29-Oct-86	Nov-86	Dec-86	Jan-87	Feb-87	Mar-87	Apr-87	May-87	Jun-87
1	8								12.7
2	19								61.2

see BUTTWATR for more detail

TREES

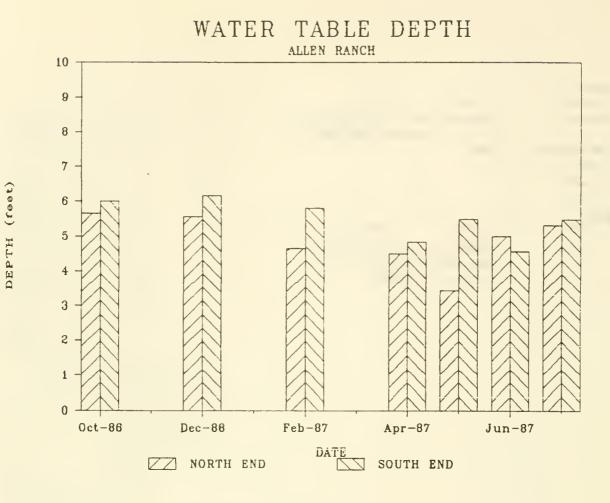
Mo./Yr.	10/86	6/87
Growth:	4 - 6 ft w/ 25-	see map in file for
	30% at 6', doing	specific height &
	well except in	new growth
	high Na areas.	

Lab Analysis:	
wood	-
leaves	-
WEEDS	
Quarter	3/87
	5701
	-

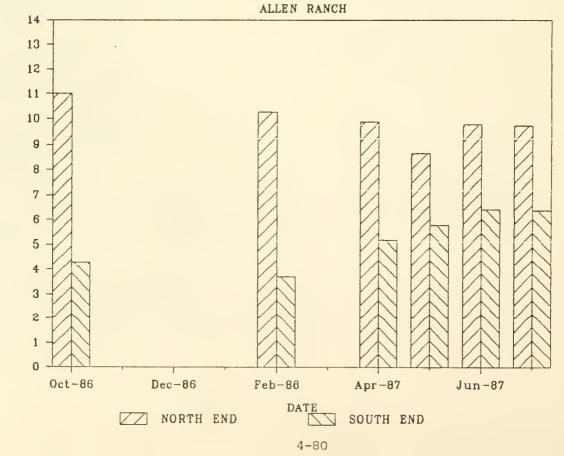
BUTTONWILL	DW LAND C	0.				OFORESTRY ate: 9/10/8		file: BUTT	WATR				
WATER DATA					·								
DATE	WELL #	DEPTH feet	рн	EC x 1000 mmhos	CATIONS meq/l	ALIQUOT mis	VERSINATE mis	Ca + Mg meq/l	Na meq/l	SAR	ESP	TOTAL SALTS meq/l	REMAR
29-0ct-86	1	5.15		0.88			0.2	2	8	8		10	
27 000 00	2	9.01		2.4			0.3	3	23	19		26	
05-May-87	1	well dry											
26-Jun-87	1	4.8		1.02		1	0.1	1	9			10	
	2	7.3		6.3		1	0.3	3	75	61.2		78	
BUTTONWILL	.OW FARMS					ROFORESTRI ate: 9/10/		file: BUT	TSOIL				
SOIL DATA					tust opo								
						VERSINATE							
DATE	SAMPLE #	TEXTURE	рH	EC X 1000 mmhos	sALTS meq/l	TITRATION	łCa + Mg meq/l		SAR	REMARKS			
23-Jul-86	S-1	с	8.5	45	640			606	146	very stror	ngly		
										saline &	sodic		
	s-2	c		25	350	16.6	33.2	317	77	very stror saline &			
	s-3	с		8.7	100	18	36	64	15	mod. salir			
										slightly			
see map in	S-4 n file fo	c r sample lo	ocations	6.9						slightly s	aline		
Nov-86	1			14.6					32				
NOV 00	2			24					78				
	3			15.4					38				
	4			7.6					61				
Dellavalle	Labs										,		
5/5/87	2003												
				Un	digested								
SP	pHs	ECe	Ca	Mg	Na	Cl	ESP	8	N03-N	P04 - P	•		
		d\$/m	Meq/l		Meq/l			mg/l	mg/kg		r		
75	8.1	13.8	25	4.9	134	55	33	3.7	6	49	r.		
		Undig	-										
K (AA)	Zn		Fe		\$04 - S								
mg/kg	mg/kg 7 5	mg/kg	mg/kg		mg/kg 770								
481	3.5	9.8	46.0	4.8	739								
		Extract						e Extract-					
Ni		Cr	60 Cd	_	As		N03-N		K				
mg/kg	mg/kg	mg/kg	mg/kg	ug/l	ug/l		mg/l		mg/l				
0.2	1.2	<0.25	0.1	4.6	18	<2	0.4	5	294	1680			

SECTION 4.10 Allen Ranch

.*


AGROFORES	TRY - TREE	PLANTING			disc: AGRC last updat			file: AGF	OALLE	
county:	FRESNO									
farm:	ALLEN	а	creage:	5		av.tr/ac	: 1400	I		
PLANTING										
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	gr.tot.
		total:	6500	0	0	0	500	0	0	7000
	S JN ?	L.ALBACUT	6500				500			
	, Sjn	MT BERNSTEAD	?				200			
Comments:										
Mo./Yr.	3/87	6/87								
	look very		ll, well							
	good, trees	cared for, bl	anks will							
:	staked	be replanted	w/trees							
		from other pl	antings							
		in the area,								
		of cas on win								
		side appears								
		good practice								
SOILS I	Mg./Yr.	3/87								
Lab Anal	ysis:	none								
Amendmen	ts:	none								
Fertiliz	er:	none								
8										
IRRIGATIO	WATER									
Mo./Yr		3/87								
Lab Analy	ysis:	Ec of sump water= 7.0								
		1								
and Free		sprinkler, -1.5 ac. ft								
WATER TABL										
Depth (fe			70.0		(s.) 07					20 1.1 07
	29-Oct-86 Oct-86	Nov-86	30-Dec-86 Dec-86		6-Feb-87 Feb-87	Hor. 97			23-Jun-87 Jun-87	Jul-87 Jul-87
north end	5.67		5.58	Jan-07	4.67	ma(*8/	Apr-87 4.5			5.33
south end	6		6.17		5.83		4.83		4.58	5.5
Lab Analy	vsis:									
		ity (Ec) of Wa	ter Table							
	29-0ct-86			2	6-Feb-86		20-Apr-87	29-May-87	23-Jun-87	20-Jul-87
	Oct-86	Nov-86	Dec-86	Jan-87	Feb-86	Mar-87				Jul-87
north end	11				10.3		9.9		9.78	9.76
south end	4.3				3.7		5.2	5.8	6.44	6.40

TREES


No./Yr.	3/87	6/87
Growth:	no record	ave. ht5 ft.
		survival rate >95%
Lab Analysis:	none	
Wood		
Leaves		

WEEDS

Mo./Yr.	3/87	6/87
	Adequate,	Fusilade & Goal in
	Chem. sprays	combinaton with
	& by hand	Roundup

EC OF GROUND WATER

EC X 1000

SECTION 4.11

Kings Boys Ranch

AGROFORESTRY - T	REE PLANTING			AGROFORESTR		file: AGF0	DBOYS
county: KINGS			last u	odate: 9/17	/87		
farm: KINGS B	OYS RANCH acr	eage: 1	. 93	av.tr/ac	: 1140		
PLANTING DATE NURSERY	SOURCE EUC	A-CAN EUCA-A		CAC- CUN	CAC- ash		ESQUITE gr.tot.
DATE HORSERT	SOURCE EUL	A-CAM EUCA-U		A CAS-CON	CAS-0th	PUPLAR	esquire gritot.
	total:	2200	0	0 0	0	0	0 2200
6/17/86 CDF 7/18/86 Replant	L.ALBACUT s? Mt. Bernste	2200 ad					
7 wind break tre	es, Rose Gum &	Hana Gum?					
Comments:							
Мо./Үг 8	6 3	/87					
hard ti	me estab. soi	ls hi in Na,	ow				
	st >50% in						
from 1s	t planting sta			•			
	LOM	s since Oct					
SOILS							
Lab Analysis:	see BOYSSOIL	•					
Ho./Yr.	86	3/	87				
Amendments:		pit rur	gypsum				
		around	each tree				
Fertilizer:	~5 tons dair	y none					
	manure befor	e					
	planting						
IRRIGATION WATER							
Mo./Yr.	3/87						
Lab Analysis:	Canal Ec = 0						
	Pump Ec = 1.						
	pH = 9.9						
	Ca+Mg = 1.0 Na = 16	U					
	N = 0.	15					
	(no units give						
Amount &	1986						
Frequency:		9/10					
		9/23					
welt Ec = 1.27	7/18	10/5					
		10/20					
		11/9					
	8/18						

WATER TABLE	E		
Мо	o./Yr.	7/86	3/87
Depth (fee	t):	ave. 2 holes	10.7
		= 10.6	
Lab Analys	is:	-	· · ·
TREES Mo	./Yr.		3/87
Growth:			Ave growth 2.2 ft
			17% died(83% surv.)
			Mt. Benstead out-
			grow Albacutya
Lab Analys	is:		
boow			•
leaves			-
VEEDS QU	arter	86	3/87
		disked between	no control, furrow
		rows & hoed a-	between rows twice
		round some trees	

BOYS RANCH		disc: AGROFORESTRY 11 last update: 8/21/87	file: BOYSWATR		
WATER DATA					
DATE SAMPLE # DEI fe	•	CATIONS ALIQUOT VERSINAT meq/l mis mis	ECa+Mg Na meq/l meq/l	SAR ESP	REMARKS
7/86 average 2 holes	10.6				
3/87	10.7				
BOYS RANCH		disc: AGROFORESTRY II last update: 8/21/87	file: BOYSSOIL		
SOIL DATA					
	PTH pH EC x 100D hes	CATIONS ALIQUOT VERSINAT meq/l mls mis	ECa+Mg Na meq/l meq/l	SAR ESP	REMARKS

	menes			incq/ s	Inc. a	int 5	inc qr v	inc dy i	
7/86	alive	9.2	8.4	100			2.0	98	98
	dead	10.7	18.6	240			1.0	239	341

SECTON 4.12

Bloemhof Agricultural Enterprises

AGROFORE	ESTRY - TR	REE PLANTI	NG			ROFORESTRY date: 9/17,		file: AG	FOBLOE	
county:	KERN					Jacc. 77 117				
farm:	BLOEMHOF	:	acreage:	18.7	,	av.tr/ac: some tree			est. 1146	6 trees/ac
PLANTING DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-GLA	CAS-CUN	CAS-oth	POPLAR	MESQUITE	E gr.tot.
		total:	31500	C	. () 0	1000) () (32500
6/26/86 & 6/29/8		NAPERBY	26000							
7/3/86	CORNEL	AUSTRALI	A				1000)		
7/3/86	NLS	MT.BERNS	t 5500 5000?							
Comments	5:									
Ho./Yı	6/86	b	7/86		10/80	5	6/87			
	planted	trees in	replants		-	s hit hard				
		of furrows	• ·			in soil,		ery margi		
		of top so	_		rabbit o			ild recom-		
	they wou water, w	-	plants of			as., tree		at more e applied	4	
	hot & dr		Side of	Hett	-	10-20%,		not avail		
	mortalit						-	r comment		
							Report	in WAY fi	le	
SOILS Lab Ar		e for site see BLOES		on)						
Mo./1	ſr.	3/87								
Amenda		-								
Fertil	lizer:	*								
IDDICATI										
Quarter	ON WATER	3/87	6/87							
	nalysis:	-	EC X 1000)						
			0.6							
			for more	detail						
			see BLOEV							
Amount	t and									
Frequ	ency:	-								
WATER TA	BLE									
Water T	able Dept	hs (feet)								
	.10/28/86	1/20/87	6/87							
Well #										
1	7.6		5.3							
2 3	7.9 8.7		5.8							
3 4	8.7		6.2 6.8							
4 5	7.2 8.1									
6	8.0		5.1							
7	7.9		5.3							

Analysis of Ground Water

also see BLOEWATR

Quarter	10	/28/86	1/1	6/	6/87	
	Ec	SAR Ec	X 1000	SAR Ec	X 1000	SAR
Well #						
1	88	210	29	97	45	179
2	63	159	5.6	18	62	221
3	27	87	41	177	32	126
4	47	123	50	156	69	224
5	88	219	0	-	26	111
6	30	77	47	169	68	212
7	71	23	54	188	7	27

TREES

Ho./Yr.	3/87	6/87
Growth:	1 - 3 ft,	see map in file
	10-20% survival	for ave growth
Lab Analysis:		
Wood	•	
Leaves	•	

.

Mo./Yr.	3/87
---------	------

WATER DATA													
												TOTAL	
DATE	WELL #	DEPTH	pH 1				VERSINATE	-	Na	SAR	ESP		REMARKS
		feet		mminos	meq/l	mls	mls	meq/l	meq/l			meq/l	
28-0ct-86	1	7.6		88			6.9	69	1231	210		1300	5
	2	7.9		63			6.1	61	879	159		930)
	3	8.7		27			3.2	32	348	87		380)
	4	7.2		47			4.9	49	611	123		660)
	5	8.1		88			6.4	64	1236	219		1300)
	6	8.0		30			4.3	43	357	77		400)
	7	7.9		7.1			1.7	17	66	23		83	5
15 - Jan - 87	1		6.7	29			2.9	29	371	97		400)
	2		6.3	5.6			1.5	15	49	18		64	
	3		6.8	41			2.0	20	560	177		580)
	4		6.6	50			3.6	36	664	156		700)
	5		6.6	0			0.1	1	-	-		-	,
	6		7.1	47			2.8	28	632	169		660)
	7		7.3	54			3.0	30	730	188		760)
		pH may be	depth re	-									
		ported in	wrong ro	a									
22-Jun-87	1	5.3		45		1	2.3	23	607	179		630)
	2	5.8		62		1	3.1	31	869	221		900)
	3	6.2		32		1	2.1	21	409	126		430)
	4	6.8		69		1	3.6	36	949	224		995	5
	5	6.3		26		1	1.8	18	332	111		350)
	6	5.1		68		1	4	40	950	212		990)
	7	5.3		7		1	1.3	13	69	27		82	2
	canal	n/a		0.6		1	0.25	2.5	4.5	4		7	,

	last up	xdate: 9/17/8	7			
						TOTAL
ОЕРТН рН Е	C x 1000 CATION	S VERSINATE	Ca + Mg	Na	SAR	ESP SALTS REMARKS
inches	mmhos meq/l	mls	meq/l	meq/l		meq/l
3 - 8	37	4.5	45	465	98	510 saline-sodi
3 - 8	5.8	4.6	46	22	4.6	68 saline
3 - 8	28	3.5	35	255	61	380 saline-sodi
3 - 8	24.5	3.4	34	299	73	333 saline-sodi
	inches 3 - 8 3 - 8 3 - 8	inches mmhos meq/1 3 - 8 37 3 - 8 5.8 3 - 8 28 3 - 8 24.5	inches mmhos meq/l mls 3 - 8 37 4.5 3 - 8 5.8 4.6 3 - 8 28 3.5 3 - 8 24.5 3.4	inches mmhos meq/l mls meq/l 3 - 8 37 4.5 45 3 - 8 5.8 4.6 46 3 - 8 28 3.5 35 3 - 8 24.5 3.4 34	inches mmhos meq/l mls meq/l meq/l 3 - 8 37 4.5 45 465 3 - 8 5.8 4.6 46 22 3 - 8 28 3.5 35 255 3 - 8 24.5 3.4 34 299	inches mmhos meq/l mls meq/l meq/l 3 - 8 37 4.5 45 465 98 3 - 8 5.8 4.6 46 22 4.6 3 - 8 28 3.5 35 255 61 3 - 8 24.5 3.4 34 299 73

se THE TOP

disc: AGROFORESTRY II file: BLOEWATR last update: 9/17/87

BLOEMHOF AG ENTERPRISES NATED DATA

SECTION 4.13

Other Farm Reports

Gowen Meyers Orton Rio Vista Rowan Stanton Stratford Public Utility Tulare Lake Drainage District Van Groninger

AGROFORESTRY - TR	REE PLANTING	disc: AGRO last updat		file: AGFOGOWE		
county: FRESNO						
farm: GOWEN	acreage:	1 a	v.tr/ac: 1588			
PLANTING DATE NURSERY	SOURCE EUCA-CAM EUCA	A-oth CAS-GLA	CAS-CUN CAS-oth	POPLAR MESQUITE	gr.tot.	
	total: 1060	0 0	0 528	0 0	1588	
5/28/86 CDF 5/28/86 CORNFL	L.ALBACUT 1060 AUSTRALIA		528			
Quarte	er 3/87					
Comments:	trees look average aqueduct seepage seems to keep the					
	water table high					
SOILS			•			
Quarter						
Lab Analysis: Amendments:	- none					
Fertilizer:	none		•			
	none					
IRRIGATION WATER Quarter						
Lab Analysis:	good quality Westlands water					
Amounts &	~1 ft during 1986					
Frequency:	after planting					
WATER TABLE						
Quarter Depth:	3/87 24 inches					
Lab Analysis:	Ec = 2 to 3					
	prior to planting					
TREES						
Quarter	3/87					
Growth:	*					
Lab Analysis:						
wood	-					
leaves	-					
WEEDS Quarter	3/87 chemical sprays & hand weeding					
	adequate					

AGROFORESTRY - TREE	PLANTING			OFORESTRY te: 9/24/8		file: AGFOMEYE			
county: FRESNO									
farm: MEYERS	acreage:	28		av.tr/ac:	1371				
PLANTING DATE NURSERY SO	DURCE EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	ELDERICA PINE	gr.tot.	
to	otal: 38000	0	0	0	0	0	400	38400	
8/20/87 SJF L.	ALBACUT 20000 ALBACUT 18000 DNDEL PINE						400		
si of gr	9/87 lanted for ero- ion control, west f I-5 on sloping round, spacing .5'X 5'								
\$01LS									
Lab Analysis: Amendments: Fertilizer:									
IRRIGATION WATER									
Lab Analysis:									
Amounts & Frequency:									
WATER TABLE									
Depth:									
Lab Analysis:									
TREES									
Growth: Lab Analysis: wood leaves									
WEEDS									

AGROFORE	STRY - TR Kings	EE PLANTI	NG			OFORESTRY		file: AG	FOORTO	
farm:	ORTON		acreage:	4		av.tr/ac:	1500			
PLANTING DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	ELDERICA PINE	gr.tot.
		totel:	6000	0	0	0	0	0	0	6000
7/8/87	CDF		6000							

7/8/87 CDF

Comments: Mo./Yr. 9/87

SOILS

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER

Lab Analysis:

Amounts &

Frequency:

WATER TABLE

Depth:

Lab Analysis:

TREES

Growth: Lab Analysis: wood leaves

	STRY - TREE	PLANTING				ROFORESTRY ate: 9/30/8	7	file: AGF	ORIOV	
country.	KINGS									
farm:	RID VISTA		acreage:	1.19		av.tr/ac:	378			
PLANTING									ELDERICA	
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	PINE	gr.tot.
		total:	450	0	0	0	0	0	0	450
8/4/87	CDF	L.ALBACUTYA	450							

Comments: Mo./Yr. 9/87 spaced 6'X 8', 2 rows, 2600' long? planted as an interceptor

\$

SOILS

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER Lab Analysis:

Amounts & Frequency:

WATER TABLE Depth:

Lab Analysis:

TREES

Growth:

Lab Analysis: wood leaves

.....

AGROFORESTRY - TREE PLANTING			disc: AGROFORESTRY file: AGFORDWA last update: 9/30/87								
county:	KINGS										
farm:	ROWAN		acreage:	2		av.tr/ac:	1816				
PLANTING									ELDERIC	:A	
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUIT	E PINE	9	gr.tot.
		total:	3631	0	0	0	0		0	0	3631
'87	SJN	L.ALBACUTYA	3631								

Comments:	Mo./Yr.	9/87							
		' 87	ng info						
		incomplete, spacing							
		4'X	plantings?						
			#rows	#trees					
		#1	29	1,089					
		#2	23	726					
		#3	· 32	908					
		#4	22	545					
		#5	22	363					

SOILS

.

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER Lab Analysis:

Amounts &

Frequency:

WATER TABLE

Depth:

Lab Analysis:

TREES

Growth: Lab Analysis: wood leaves

AGROFORE		EE PLANTING				ROFORESTRY ate: 9/25/8	file: AGFOSTAN			
farm:	STANTON		acreage:	2		av.tr/ac:	1500			
PLANTING	i								ELDERICA	
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	PINE	gr.tot.
		total:	3000	0	0	0	0	0	0	3000
7/14/87	CDF		3000							
Comments	: Mo./Yr.	9/87								

ц.

.

SOILS

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER

Lab Analysis:

Amounts & Frequency:

WATER TABLE

Depth:

Lab Analysis:

TREES

Growth: Lab Analysis: wood leaves

AGROFORESTRY - TREE PLANTING					disc: AGROFORESTRY file: AGFOSTRA last update: 9/30/87						
county:	KINGS										
farm:	STRATFORD PUBLIC UTIL	.ITY	acreage:	7		av.tr/ac:	1600				
PLANTING									ELDERICA		
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	PINE	gr.tot.	
		total:	11200	0	0	0	0	0	0	11200	
9/10/87	CDF	L.ALBACUTYA	11200								

Comments: Mo./Yr. 9/87 ave. spaced 4.5'X 6' in 112 rows 4 rows W/ more gypsum?(note)

SOILS

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER

Lab Analysis:

Amounts &

Frequency:

WATER TABLE

Depth:

Lab Analysis:

TREES

Growth: Lab Analysis: wood leaves

AGROFOREST	RY - TREE I	PLANTING		disc: AGROFORESTRY file: AGFOTULA last update: 9/30/87						
county: K	INGS					112. 775070	,			
	ULARE LAKE RAINAGE DIS		acreage:	3.4		av.tr/ac:	794			
PLANTING DATE NU	URSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	ELDERICA PINE	gr.tot.
		total:	2100	400	0	200	0	0	0	2700
5/1/87 CC 5/1/87 S	DF ORNFLOWER JF OOTE	L.ALBACUTYA C. glauca MT BERNSTEAD FOOTSEI	2000 100	400		200				
Comments:	Mo./Yr.	9/87 for '87 plan spaced 5'X 6 25 rows on 3 3 rows on 0. Bern in 2 ro ac, Foote in on .20 ac Showing stre	ting all ', CDF in ac, Cas 15 ac, ws on .05 4 rows							
SOILS Lab Analy: Amendment: Fertilize	s:									
IRRIGATION Lab Analy:										
Amounts & Frequency										
WATER TABLE Depth: Lab Analy:										
Lab Anaty:	515.									
TREES Growth:										
Lab Analy: wood leaves	sis:									
WEEDS										

AGROFORESTRY - TREE PLANTING						ROFORESTRY ate: 9/30/8	37	file: AGFOVANG			
county:	KINGS										
farm:	VAN GRONING	ER	acreage:	0.04		av.tr/ac:	1750				
PLANTING									ELDERICA		
DATE	NURSERY	SOURCE	EUCA-CAM	EUCA-oth	CAS-CUN	CAS-oth	POPLAR	MESQUITE	PINE	gr.tot.	
		total:	70	0	0	0	0	0	0	70	
7/18/87	CDF	L.ALBACUTYA	70								

Comments: Mo./Yr. 9/87 spaced 4'X 6' in 10 rows

SOILS

Lab Analysis: Amendments: Fertilizer:

IRRIGATION WATER

Lab Analysis:

Amounts &

Frequency:

WATER TABLE

Depth:

Lab Analysis:

TREES

Growth: Lab Analysis: wood leaves

SECTION 5.0

Tree Selection and Propagation Project

Roy Woodward, Roy Sachs and Miles Merwin (ITCI) Department of Environmental Horticulture University of California, Davis

Propagation of Salt Tolerant Eucalyptus and Casuarina

Progress Report August 1987

Roy Woodward, Roy Sachs and Miles Merwin Department of Environmental Horticulture University of California, Davis

INTRODUCTION

For many years certain tree species in Israel, China, and Australia have been grown with saline irrigation water. An agroforestry plantation on a saline site irrigated with saline water can improve the quality of the land, the quality of subsequent drainage water, and provide important forest biomass on sites that would otherwise be unproductive.

Plantations of hardwood tree species established in California in the past few years have exhibited great variation in survival, growth, and tree form when grown under saline conditions. Selection and clonal propagation of outstanding individual trees from existing plantations will provide a source of trees with known performance for use in future plantations in the San Joaquin Valley.

PROGRESS TO DATE

Selections of superior Eucalyptus camaldulensis (Red Gum), Casuarina glauca and Casuarina cunninghamiana (Beefwood) were made at Murrieta Farms and at the Peck Ranch in Fresno County. Trees were selected on the basis of height, basal diameter, form (straightness and unforked trunk), and general appearance of good health with a requirement that the plantation be two-years-old and have undergone irrigation with saline water. 20 E. camaldulensis, 9 C. cunninghamiana, and 2 C. glauca were selected at Murrieta Farms, and 14 E. camaldulensis and 4 C. cunninghamiana were selected at the Peck Ranch.

The selected trees were labelled and cut-off at the base in February 1987 leaving a 15 cm tall stump. These trees were revisited in April 1987 and stump sprouts were removed from 22 of the *E. camaldulensis*. None of the *Casuarina* had sprouted sufficiently to provide cuttings at this time. These cuttings were taken to UCD and rooted in heated mist benches. After rooting, the trees were replanted in indivdual containers and maintained in greenhouses at UCD from which subsequent cuttings can be taken. About 250 trees were successfully rooted from these initial cuttings.

The field sites were revisited in August 1987 and cuttings collected from 21 *E. camaldulensis*. These cuttings are now in the rooting benches at UCD and should provide an additional 500 rooted cuttings. The authors would like to thank Lu Lohr (UCD Department of Agricultural Economics) for her help with the field collections in April and August.

As stated above, none of the sprouts of *Casuarina* were big enough for cutting in April, but cuttings were collected from 4 large, uncut *C. glauca* and 4 *C. cunninghamiana* adjacent to the cut stumps. An attempt to root these cuttings produced only 8 rooted *C. glauca*. Collections of *Casuarina* were made in August from cut stumps at Peck Ranch, but none of the stumps at Murrieta Farms had sprouted adequately to provide cuttings, and in fact many of the stumps had apparently died. It is expected that about 100 rooted trees will be obtained from the cuttings collected in August.

Some of the originally selected*Eucalyptus* were not relocated during subsequent visits. The denseness of the stands and the weed situation (at Peck Ranch the weeds are over 2 m tall and form a solid wall throughout the plantation) made finding the cut stumps very difficult. Other trees have proven to have poor rooting properties and will not be used in subsequent tests.

In general, cutting of select trees for production of sprouts that can be used to obtain rooted cuttings has been a success. There seems to be a correlation between the apparent health of a tree in the field and the ability of the tree to root; healthier trees root faster and more prolifically.

The goal of making rooted cuttings was to obtain 3,000 trees for field planting in spring 1988. This goal will be achieved in the following ways; 1) one additional visit to the field sites will be made in October 1987 to collect stump sprouts, 2) additional cuttings will be derived from previously rooted trees at UCD, 3) seedling trees will be started at UCD from selected salt-tolerant seed from Australia and Israel, 4) rooted cuttings will be made of other select *E. camaldulensis* found to have exceptional growth at non-saline sites, such as the C-2 'Dale Chapman' clone.

Samples of rooted trees will undergo salinity screening in the laboratory at UCD. Trees in containers will be watered with increasing levels of saline solutions and the survival/growth of each tree monitored. Additional tree sections will be placed in the Scanning Calorimeter and subjected to increasing saline conditions and the temperature of metabolism measured with increasing stress. Sufficient rooted material now exists for these tests to commence in September 1987. We feel that the performance (survival and growth charicteristics) of the cloned material in plantations grown under

saline conditions can be correlated with the laboratory measurements to provide a means of screening future populations of trees prior to outplanting on saline sites.

Selections of the salt tolerant trees will also be included in cold tolerance screening that is now being conducted at UCD. We have obtained a growth chamber (in cooperation with the California Department of Forestry and Fire Protection) with which the temperature and lighting environment of containerized trees can be controlled over extended periods of time. Using this chamber the trees can be subjected to freezing conditions simulating cold-season events in the San Joaquin Valley. Trees not showing a capability of withstanding winter conditions will be eliminated from future use.

FUTURE RESEARCH

During the next six months additional trees will be selected from saline sites in the San Joaquin Valley. Because of the previously successful work of CDFA, many plantations will be two years old this next year and the number of trees available to make selections will increase tremendously. These trees will be prepared to obtain cuttings in the spring-summer of 1988.

Rooted cuttings from existing field grown trees and those selected in the future will be used to continue the screening process for saline and cold tolerance in the laboratory. It is important that the growth charicteristics of the trees be evaluated in the laboratory in order to operate an economical and successful rooted cutting program.

Micropropagation and clonal *in vitro* methods will be attempted with selected trees to increase the reliability and speed with which superior trees can be obtained for field planting. The efficacy of establishing seed plantations in California will also become more apparent as a result of this work.

The 3,000 rooted cuttings and seedlings will be planted in spring 1988 in an experiment to assess the practicality of using hardwood species for saline water management. Survival and growth measurements of these field planted trees will be important in determining the future direction of superior tree selection, laboratory screening procedures, salt-balance experiments, and bio-filter research.

SECTION 6.0

Economic and Marketing Study

Luanne Lohr Department of Agricultural Economics University of California, Davis

I. INTRODUCTION

The economic analysis of the California Department of Food and Agriculture's (CDFA) agroforestry project was begun in April 1987. The primary objectives during the first five months have been to 1) develop theoretical models for the biological and economic aspects of tree growth and 2) to collect data for estimating these models.

An overview of the economic project is given by the flow chart in Figure 1. There are three phases of analysis: 1) the tree production function, 2) the net present value model of tree farming, and 3) the comparison of returns from conventional crops and trees. Necessaryfunctional and data inputs are listed at each step. Collection of data for all phases is taking place simultaneously, in order to maintain as much consistency as possible across models, and to identify data deficiencies early in the project.

Each of the three phases is explained in the following sections. Progress toward completing each part is also described, along with plans for further work.

II. TREE PRODUCTION FUNCTION

In this phase, we will be developing a model for predicting the growth of short rotation trees species under differing climatological, site, and treatment conditions. Previous models of tree growth in California are not site-specific and are not based on cultural techniques which are being employed in the San Joaquin Valley (SJV).

Thus, they do not capture the variability across sites on which short rotation trees are or may be grown, including important factors like salinity.

Additionally, models such as that developed by the University of California Cooperative Extension in Forestry (UC Coop Extension), are based on a forestry concepts requiring previous growth information. For areas where tree farming is not now practiced, the index (low, medium, and high) must be guessed.

For this project, we are collecting climatological data for experimental and commercial sites for which data on growth and treatments for several species are available. Using regression techniques, we will determine the influence of these factors on growth of short rotation species. The regression results can be used to predict future growth for various regions in California. The equation may be used to provide farm-specific estimates of expected yield for farmers who are considering planting trees.

Data has been collected from experimental plots at UC Riverside, UC Davis, and the UC Sierra Agricultural Field Station, from grovers in the SJV project, and from published sources on other experimental and commercial stands. Site characteristics such as soil type and use limitations and climatological data from the National Oceanic and Atmospheric Administration (NOAA) such as precipitation and temperature readings have also been collected. This data set is being used to estimation a regression relationship for growth.

The growth function determined can be used to generate yield per acre under differing conditions. Yield is related to growth by tree height and diameter at breast height measurements, as well as by

percentage moisture. Yield functions will be determined from the literature and from discussions with UC Coop Extension and UC Environmental Horticulture personnel.

The results obtained from this portion of the project will be verified in four ways. First, predictions from this model will be compared with simulation results of the UC Coop Extension model and of standard theoretical models in the forestry literature. Development of models to use for comparison are proceeding now.

Second, more data will be collected from a statewide agroforestry inventory and production cost survey. A screening questionnaire is being prepared to determine where existing stands of <u>Eucalyptus</u> and <u>Casuarina</u> are located. Suitable respondents for a more detailed cost of production survey will be identified through this process.

The results of this survey will be used to verify both the growth model and the net present value models discussed below. The advantages of this data are that it will represent a larger cross-section of sites where agroforestry may be practiced, and it will provide information about different-aged trees. The inventory of current trees will help in the assessment of potential market demand for short rotation trees. Both the screening questionnaire and the detailed survey are being prepared for mailing now.

Third, we will continue to obtain growth data directly from CDFA from the agroforestry project as it becomes available. This data may be used both to update the data set for the model and to verify directly the predictions of the growth curve.

Finally, we will submit the estimated model and its predictions to experts in the area for their review. Comments by these specialists

will be taken into account in the final design of the growth function and subsequent production model.

III. NET PRESENT VALUE OF TREE FARMING

We will assess the net present value of tree farming during this phase of the project. A theoretical mathematical optimization model has been constructed which includes cost functions for planting, growing, harvesting, and transporting short rotation trees. Empirical data for estimating these functions will come from the results of the SJV agroforestry survey and the statewide cost of production survey. The advantage of this data is that it represents costs due to actual production practices, which may not necessarily represent ideal, least cost techniques.

Engineering data on costs is also being collected to verify the empirical data and to fill gaps in information about least cost practices. This data is being obtained from CDFA and UC Coop Extension.

Prices and transportation costs depend on which end use is selected for the trees. Existing end uses include chips for pulping, chips for cogeneration, and cordwood for residential use. Potential uses include chips for export, use as a chemical feedstock, and ethanol production. The location of the buyers and the price they currently pay for wood or for substitutes will determine the transportation costs and prices they can afford for SJV wood products. An additional factor is the amount of short rotation trees currently being grown in California and their market availability.

Location data is being collected from listings and maps of current and potential users of short rotation trees. Prices are being obtained by telephone contact with these consumers and from published sources.

UC Coop Extension is surveying cogenerators about the amounts of wood and prices paid for them. They have agreed to share this data with us when the survey is completed.

Other benefits to tree farming in the SJV will be assessed as information on them becomes available. Possibilities for other revenue include honey production and the selling of private hunting permits.

Linear or quadratic programming will most likely be used to determine the optimal economic rotation of the tree stands. This may or may not match recommendations currently being made on the basis of physical maturity, but should enable farm-specific planning to maximize returns. Dynamic programming will probably be used to determine these returns once the optimal rotation period is known. The specification of these models and the coding of them for computer analysis is underway. IV. OPTIMAL MIX OF CONVENTIONAL CROPS AND TREE FARMING

Growing trees in the SJV may serve two purposes. First, tree farming may be an additional source of revenue for farmers, given the relatively high salt tolerance of several species. They may be planted in fields as crops are and given special treatment which will maximize their growth.

A second, and more environmentally crucial use is as a partial solution to drainage and salinity problems in the area. Short rotation trees may be able to lower water tables, intercept lateral runoff flows, and serve as disposal sites for tile drainage water. These benefits may be measured by the costs of projects such as evaporation ponds which would be reduced or eliminated due to growing trees. These avoided costs will be included in the final analysis of the best mix of trees and crops.

For this phase, data is being collected on prices and costs associated with growing conventional crops in the SJV. Also, engineering estimates of the costs of projects necessary to control salinity and drainage problems will be obtained.

A mathematical optimization model will be used to determine the best mix of trees and crops under particular technical and financial constraints faced by farmers. The development of this model and the relevant constraints is proceeding. Estimation will take place when all necessary data and functional inputs have been obtained. SECTON 7.0

Wildlife Study

Andrew R. Dyer and David L. Chesemore Department of Biology California State University, Fresno

AGROFORESTRY FROJECT

The Use of Cultivated, Salt-Tolerant Vegetation by Wildlife- I

Quarterly Report Number 1

By: Andrew R. Dyer and David L. Chesemore

Department of Biology California State University, Fresno Fresno, California 93740-0073 (209) 294- 2010 or 2001

Submitted to: Dr. Vashek Cervinka

California Department of Food and Agriculture in partial fulfillment of Agreement No. 9076

15 September 1987

SUMMARY OF ACTIVITIES

June-August, 1987

The following pages summarize much of the data collected during the period June-August, 1987. There is more data that has yet to be fully analyzed and which will be reported later. This report contains survey information on the species of mammals, birds, herpetofauna and herbaceous vegetation found to date in the six study sites of the Agroforestry Project. Additionally, some analysis of this preliminary data has also been offered.

The 3 months of 'the project so far have been spent collecting as much base information as possible and has focused primarily on identification of species and measurement of trees. The point quarter method of measuring tree size and density was used for all sites, 50 points per site, and that information is being studied. Clip plot and line intercept methods were also used to quantify species' cover and diversity and to make early estimates of biomass and are included here.

Mammal trapping methods were employed using Sherman Live traps on established trapping grids for each site. Trap success and species information is summarized here for approximately 2000 trap nights. Additional survey trap lines are not discussed, but any new species recorded are included on the species lists. Trapping data was gathered on 8 by 8 trapping grids with bird seed used as bait.

Recapture methods were employed with success, but data will be reported after more information has been gathered. Each site was trapped for 5 nights simultaneously with 3 or more of the other sites for a total of about 300 trap nights per site.

Bird observations and counts were made at set stations for 6 minute intervals. A total of 10 sets of 6 minute observation intervals were recorded for each site. The information is summarized in the bird list.

Information regarding the herpetofauna of the sites was gathered on a general survey basis. At this point it can be stated that numbers and diversity of herpetofauna are extremely low with few exceptions. Data will be gathered coincidently with that for other animal groups for the duration of the project.

The information presented here reflects much of the activity of the summer months. Later reports will include data on scent stations, permanent marked-recapture of rodents, owl pellet analysis, home range size and foraging patterns of certain rodents, and nesting success of birds. Additionally, multiple regression analysis of tree growth rates will be summarized for the 6 sites.

The Allen site is a 5 acre plot approximately 100 feet wide and half a milelong. The trees are arranged in 11 rows of Eucalyptus at the south end and widening to 14 rows at the northern end. A single row of Casuarina border the western side. The site is bordered on the east side by an irrigation canal that continuously holds water; a small drainage canal borders on the north and only occasionally holds water. Opposite the northeast corner is a row of Tamarisk trees of undetermined age that shelters large numbers of roosting and nesting birds as well as mammals such as the coyote. The row of trees is about 50 m. long and 10 m. wide.

The site is actively managed; ground cover is very low (<1%). The trees have also been pruned .3-.5 m. off the ground. The trash from the pruning has been left on the site.

The site has proven to have a very dense population of rodents, particularly the Deer Mouse, <u>Peromyscus maniculatus</u>. There are numbers of pocket gophers (<u>Thomomys bottae</u>) as well although so far they are known solely from evidence of burrowing. A large number of birds have been sighted at the site although most were flying overhead in the direction of the Mendota Wildlife Refuge. Nesting has not been noted in the trees, but a large number of nests have been found in the Tamarisk row to the northeast. That corner of the plot is a very active area for birds.

MURIETTA RANCH

The Murietta Ranch site is the largest of the six sites and one of the most diverse in a number of ways. The two-year-old section (north side) is comprised of 3 rows of Poplars, 3 rows of Casuarina of 2 species and 7 rows of Eucalyptus. Very few of the Poplars survived to the second year; the Casuarina and Eucalyptus however have reached heights of 7 m. The ground cover in this area (Section 4) is about 2% with very low diversity. The rodents to date are exclusively <u>Peromyscus maniculatus</u> and are present in large numbers although accurate density levels are not yet available. This section is bounded on the north side by bare ground and a small drainage canal, normally dry.

The one-year-old trees have been divided into 3 sections for sampling purposes because the percentage of ground cover and the size of the trees was highly variable. It is difficult to accurately measure the density of herbaceous p[lants and ground cover because of the weed control activities taking place on the site, but it was felt at the time of sampling that stratification of the site was justified. This may not be true in the future, especially as the Eucalyptus canopy begins to close. Section 1 is the main body of one year old trees and is distinguished by moderate ground cover (25%) and a generally smaller size for the trees. Section 2 is a strip along the southeastern side approximately 100 m. long by 30 m. wide with ground cover estimated at 60%. Section 3 is the southeast corner. Earlier in the year

samples were taken. The trees are appreciably larger than those of similar age in other parts of the site. Additionally, Section 3 has much higher densities of Morning Glory. <u>Convolvulus arvensis</u>, and Curly Dock. <u>Rumex crisous</u>, than other areas.

The younger sections are comprised of 3 rows of Casuarina immediately adjacent to the older trees of the site and 68 rows of Eucalyptus to the south. In addition to a large population of <u>Peromyscus</u>, this site has also yielded two species of Muridae: the house mouse (<u>Mus musculus</u>) and the black rat (<u>Battus rattus</u>). There does not seem to be large numbers of these two however.

Nesting has been observed in the two year old Casuarina on several occasions. Nests discovered in June and July appeared to belong to House Finches (Carpodacus mexicanus) and Blackbirds (Euphagus cyanocephalus and Agelaius phoeniceus californicus), however no successful fledging was observed. In August, Mourning Dove nests were found with eggs and half-grown young. To this point, no nesting has been observed in the Eucalyptus regardless of age on this site. Abandoned nests found around the Casuarina appeared to have been victimized by predators and/or windthrow. There are also birds mesting around the site and making use of the trees. In particular, Western Kingbirds (Tyrannis verticalis), Barn Swallows (Hirundo rustica) and Killdeer (Charadrius vociferus) have been observed. ' Other water birds use the freshwater pond, but no nesting activity has been observed. However, the ranch foreman has informed the investigators that a Green-winged Teal (Anas <u>carolinensis</u>) successfully raised a brood in the spring of 1987.

WAKEFIELD RANCH

The Wakefield Ranch site is considered to be a control site of sorts. Although it has a different composition and history, no runoff water is being applied. This site is about 1.5 h. in size and contains trees of varying ages; a range from 2 to 4 years with additional trees added at the discretion of the owner. The tree and weed sampling techniques were done with this in mind and the data are divided into three sections.

For this site, rodent levels are very low in comparison to other sites. The reasons for that are not immediately clear, but it may be tied to the drip irrigation practices now in place. Vegetative cover is very low except in the younger trees and plant diversity is corrospondingly reduced.

Because of the age and height of the trees (10-12 m. at 4 years) large numbers of birds are active in the site. Diversity is not as high as other sites however. More nesting and roosting has been observed at Wakefield than elsewhere, especially for the Mourning Dove. Some migrants, such as the Western Tanager (<u>Firanga</u> <u>ludoviciana</u>) have also been making use of the cover offered by this site. Predatory birds, notably the Barn Owl (<u>Tyto alba</u>) and the Kestrel (<u>Falco Sparverius</u>) use the older trees for roosting. There are a number of other nests and pieces of evidence that have not yet been identified or linked to a particual species. Additionally, because the amount of cover offered by the large trees hinders identification of some species of smaller birds; the list of birds for Wakefield is incomplete.

```
7-9
```

The Peck site is situated approximately 0.0 k, south and east of the Wakefield site. Peck is unique in several ways. It is located adjacent to some 10 h, of evaporation ponds that have had a marked influence on the character of the site. Water for the site has been pumped directed from the ponds to the trees. Additionally, no weed management practices are in effect and the herbaceous species are dominating the site.

Peck is 3.3 h. of one year old trees in approximately a square shape. There are 9 rows of Casuarina trees on the eastern edge that are generally very healthy. The rest of the site is composed of Eucalyptus of various sizes and heights. Although, weed species grow unchecked, the diversity of plantlife is low. Only three or four species are responsible for 99% of the cover; Mare's Tail, <u>Convza canadensis</u>, Morning Glory, <u>Convolvulus arvensis</u> and Sunflower, <u>Helianthus annuus</u>. Of the three, <u>C. canadensis</u> makes up about 95% of the total.

The Eucalyptus trees of Peck appear to be struggling for survival. Many of the trees are yellowish rather than the dark green more common in other sites. This could be due to the high water table or to the quality of water used for irrigation. No irrigation has taken place since late May, 1987, yet the trees and weeds show no signs of water stress. This leads to the conclusion that the water table must be high enough to be accessed by the vegetation on the

site. Loss of individual trees can be traced to several causes. Several small trees were found either stripped of bark near the ground or with the roots or base gnawed through by rodents. Many smaller trees were found completely covered and pulled down by the weed species as well. <u>C. arvensis</u> commonly pulls the small trees down.

The degree to which the ground is covered and protected may account for the numbers and diversity of rodents found at Peck. To date <u>Peromyscus maniculatus</u> and the California Vole, <u>Microtis</u> <u>californicus</u> have been caught steadily and in large numbers.

As with Wakefield, the vegetation at Peck offers considerable cover and bird identification is often hampered. A number of species have been included on the Peck bird list due to being observed in and around the evaporation ponds to the north. The Thompson site is about 24 k, to the south and east of the Pack site and is similar in size and composition to the Allen site. The site is not as long as Allen, but is somewhat wider, the total being 2.4 h. The single row of Casuarina is found on the western edge. On the eastern edge for two thirds of the length from the south is a large holding ditch for runoff water similar to the one at Allen. An uncultivated field with uncontrolled weed species is located to the east of the northern half of the site. The side open to the fields, the western side, was on the edge of a tomato field through August.

Thompson is not irrigated regularly. The trees facing west are not as tall and robust as the rows farther in. Due to the heat and dryness of the summer many trees were observed in August bending down and with burnt and dried leaves.

Lack of irrigation water may also account for the sparse ground cover and low weed diversity at Thompson. Rodent captures were relatively low, about 40% of the capture rate found at Allen. Bird numbers and diversity were also reduced at this particular site. The only nest observed was a Western Kingbird on a telephone pole adjacent to the site.

HAYNES RANCH

The Haynes Ranch site is located about 56 k. south of Fresno on Highway 41 in Kings County. The area is very different than that of the other five sites. As a consequence, the species composition is significantly different at every level. The site was formerly alkali scrub and is still surrounded by that type of vegetation. The soil is powdery and extremely saline. The trees are located immediately adjacent to the highway and on either side of a small irrigation canal carrying water from the Kings River. It is difficult to quantify the present dimensions of the site for a number of reasons. The site is split and the trees on either side of the canal are experiencing different growth patterns. The trees on the eastern side suffered high losses early on and it is now difficult to locate entire rows of trees. On the western side, the trees seemed to survive the initial planting, but have suffered from rodent depredation and water stress since then. An area of mesquite was included originally, but none of the trees are now more then a few inches in height. The site is too small to easily stratify for sampling, but there is also very little uniformity.

The weed species found at Haynes include species from other sites as well as a number found no where else. The species run the gamut from saltgrass (<u>Distichlis</u>) and spikeweed (<u>Hemizonia</u>) to wet species such as bulrushes (<u>Scirpus</u>). The eastern side tends to be drier and with more species found in arid conditions while the western side is dominated by grasses and Five Hook Bassia, <u>Bassia</u>

any of the sites.

The rodents in the area are also diverse, but somewhat peculiar. There are high numbers of <u>Peromyscus</u> and <u>Digodomys</u> surrounding the site in the outlying vegetation, but the traps within the site were dominated by a single species, <u>Mus musculus</u>.

The birds numbers and diversity were also high. A number of species, such as Forster's Tern (<u>Sterna forsteri</u>) and the Western Bluebird (<u>Sialia mexicana</u>) indicate that Haynes may be in the path of travel for some species. A mating pair of Blue Grosbeaks (<u>Guiraca caerulea</u>) successfully fledged at least one young on the western side of the sight. The species is not common to that area.

The Haynes site also yielded a reptile, the Side-Blotched Lizard, <u>Uta stansburiana</u>, which is abundant around the site and makes some use of the margins.

AGROPORESTRY FROJECT

Mammal List

Common Name	Eamil/	Scientific Name	A_M_!	<u>W_E'_1</u>	<u>r_</u> H
<u>EODENTIA</u> Deer Mouse S. Grassnopper Mouse W. Harvest Mouse California Vole	Cricetidae " "	<u>Feromyscus_maniculatus Onychomys_torridus Reithrodontomys_megalotis</u> Microtis_californicus	x x : u	x x x x > U x	
Heermann's Kangaroo Rat	Heteromyidae	Digodomys heermanni			â
Valley Pocket Gopher	Geomyloae	Themomys_bottee	E	Е	Ε
House Mouse Black Rat	Muridae "	Mus_musculus Rattus_rattus	x x		х
<u>LAGOMOFFHA</u> Blacktailed Jackrabbit Desert Cottontail	Leporidae "	<u>Lepus_californicus Sylvilagus_auduboni</u>	X X		X X
<u>CAENIVDEA</u> Coyote	Canidae	<u>Capis_latrans</u>	E	ΕE	Ε
Domestic Cat	Felidae	Felis_domesticus			Е

Reptile List

Common Name	<u>Family</u>	Scientific Name	AMWPTH
SQUAMATA			
Side blotched Lizard	Iguanidae	<u>Uta stansburiana</u>	x
Gopher Snake	Colubridae	<u>Pituophis_melanoleucus</u>	U

Amphibian List

Common_Name	Eamily	Scientific_Name	<u>A_M</u>	<u>_W_E</u>	<u> </u>	Ħ
SALIENTIA Bullfrog	Fanidae	<u>Kana_catesbiana</u>	AA			A
Western Toad	Bufonidae	<u>Bufo boreas</u>	x	X	X	X ·
X= confirmed sighting or 0	capture on th	e site				_

A= confirmed sighting or capture around the site E= evidence of presence, i.e. prints, scat or burrows U= unconfirmed sighting

BIRD SIGHTING LIST

Common Name	<u>Eamily</u>	Scientific Name	<u>A_M_W_E_T_H</u>
Great Elue Heron Cattle Egret Great Egret Snowy Egret	Ardeidae "	Ardsalberodias Bubulcuslibis Casmerodiuslalbus Leucephoynltbula	0 A 0 (0)A A 0 0 0 0 0 0
Mallard Green-winged Teal	Anatinae "	<u>Anas_platyrhynchos</u> Anas_car <u>olinensis</u>	I O
Turkey Vulture	Cathartidae	<u>Cathartes_aura</u>	A
Black-Shouldered Fite	Elaninae	Elanus leucurus	O I I O
Sharp-Shinned Hawk	Accipitrinae	<u>Accipiter_striatus</u>	A A
Red-tailed Hawk	Buteoninae	<u>Buteo jamaicensis</u>	A A A A
Marsh Hawk	Circinae	Circus_cyaneus	I O A
American Kestrel	Falconinae	Falco_sparverius	AAIA
Ringnecked Pheasant	Fhasianidae	<u>Ehasianus colchicus</u>	I
American Cost	Rallidae	<u>Eulica_americana</u>	A
Killdeer	Charadriidae	<u>Charadrius_vociferus</u>	AI AA
Long-billed Curlew Greater Yellowlegs Least Sandpiper	Scolopacidae "	<u>Numenius_americanus</u> T <u>otanus_flavipes</u> Erolia_minutilla	0 0 A A 0 A A
American Avocet Black-necked Stilt	Recurvirostridae "	<u> Securvirostra_americana</u> Himantopus_mexicanus	A A A A A
California Gull	Larinae	Larus_californicus	0 A 0
Forster's Tern Caspian Tern	Sterninae "	<u>Sterna_forsteri</u> Hydroprogni_caspia	0 A
Rock Dove (Pigeon) Mourning Dove	Columbidae "	<u>Columba_livia</u> Zepaidura_macroura	
Barn Owl Great Horned Owl Long-eared Owl	Strigidae "	Tyto_alba Eubo_virginiaqus Asio_otus	II 2 E A E
I= Observed perching or O= Observed flying over A= Seen adjacent to or i	the site		

E= Evidence of presence, i.e. pellets, nest 2= Remains found on site ()= Unconfirmed sighting

.

7-16

BIRD SIGHTING LIST

Common_Name Lesser Nighthaw	<u>Eamily</u> Caprimulgidae	<u>Scientific Name</u> Chordeiles acutipennis	
Hummingbirds	Trochlidae	(species not known)	IIII
Western Kingburd Say's Phoebe	Tyrannıdae "	<u>Tyrannis verticalis</u> Saygrnis isaya	I I I I I I I I
Horned Lark	Alaudidae	<u>Eremophila_alpestris</u>	A A A
Bank Swallow Barn Swallow	Hirund:nidae "	<u>Bigaria riparia</u> Hirundo rustica	
Common Crow	Corvidae	<u>Corvus_brachyrhynches</u>	AAI
Mockingbird	Mimidae	<u>Mimus_polvglottos</u>	AII II
American Robin Western Bluebird	Turdidae "	<u>Turdus_migratorius</u> <u>Sialia_mexicana</u>	I A I
Loggerhead Shrike .	Laniidae	<u>Lanius ludovicianus</u>	A AIII
European Starling	Sturnidae	<u>Sturnus vulgaris</u>	AI
House Sparrow	Floceidae	<u>Passer_domesticus</u>	AA DII
Western Meadowlark Yellowheaded Blackbird Bicolor Blackbird Bullock's Oriole Brewer's Blackbird	Icteridae " " "	<u>Sturnella neglecta</u> <u>Xanthocephalus xanthoce</u> <u>Agelaius phoeniceus cal</u> <u>Icterus bullockii</u> Euphagus cyanocephalus	I I I I I A I
Western Tanager	Thraupidae	<u> Piranga_Iudoviciana</u>	2
Blue Grosbeak Evening Grosbeak House Finch Black Rosy Finch Chipping Sparrow Harris' Sparrow White-Crowned Sparrow Song Sparrow	Fringillidae " " " " " "	Guiraca_caerulea Hesperiohona_vespertina Carpodacus_mexicanus Leucosticte_atrata Soizella_passerina Zonotrichia_querula Zonotrichia_leucophrys Melospiza_melodia	I I I I I I I I I I I I I I I I I I I
56 species		A M b Confirmed- 29 31 1 Unconfirmed- 2 1	P T H 4 22 16 25 4 3 2
I= Observed perching or O= Observed flying over A= Seen adjacent to or in E= Evidence of presence, 2= Remains found on site ()= Unconfirmed sighting	feeding on the si the site n the vicinity o [.] i.e. pellets, no	ite f t he site	

Site Diversity

Site	<u>#_Hectares_</u>	#_ <u>Mammals</u>	# Birds	_#_Herps	#_Plants
Allen	2.0	4	29-2	2	29
Muriette	9.4	IJ	31-1	1	37
Watefield	1.ċ	3	14-4	1	11
Fech .		7	22	0	20
Thompson	2.4	2	16-3	1	22
Haynes	2.1	8	25-2	3	29

Table 1.1- A listing of the numbers of different species of each group of organisms found in or around the study sites.

- -

Site Similarity- Birds

	Murietta	Wakefield	Peck	Thompson	Haynes
Allen	70%	61%	74%	70%	74%
Murietta 74%		39%	42%	52%	48%
Wekefield 78%	67%		61%	67%	56%
Fect 74%	56%	48%		48%	52%
Thompson 60%	80%	60%	55%		60%
Haynes 61%	54%	48%	43%	43%	

Table 1.2- Data taken from the bird species list and compared between sites. The higher the percentage, the greater the similarity in species composition.

Sites: Allen	Allen_	Murietta 55%	<u>Wakefield</u>	<u>Reck</u>	<u>Thompson</u> 38%	<u>Haynes</u> 46%
		JJ/.	<u>~</u> 7/•	00%	20%	40%
Murietta	48%		24%	42%	52%	48%
Wakefield	64%	73%		36%	45%	55%
Feck	55%	70%	20%		50%	55%
Thompson	44%	68%	20%	40%		44%
Haynes	41%	47%	18%	32%	32%	

Site Similarity- Flants

Table 1.3- Data taken from the plant species list and compared between sites. The higher the percentage, the greater the similarity in species composition.

<u>Capturs_Success</u>

Site	Trag Nights	_XCaptures	£.a.	M.c.	0.t.	<u>R.m.</u>	M.m.	E.c.
Allen	318	15.4	49	0	<u>Ó</u>	Ū.	0	Ŭ.
Murietta	219	24.7	48	0	Q	1	नं	1
Wakefield	J1?	5.4	1.1	0	Ō.	0	0	Ŭ.
Fack	313	16.3	40	11	0	Ŭ.	0	0
Thompson	318	7.9	24	0	1	0	0	0
Haynes	315	4.1	0	0	0	4	9	0

Table 1.4- Summarizes trapping success for the period

<u>Total Captures</u>

Site	7-20	7=22	7-27	7-29	8-3	3-7	Т
Allen	8	12	13		9	7	47
Murietta	5*	7*	8		18	16	54
Wakefield	1	2	5	3	0		11
Feck	6	10	11	13	11		51
Thompson	4		7	7	3	4	25
Haynes	2		4	5	0	2	_13
							203

Table 1.5- Summarizes the trapping success for the study period in absolute numbers for each site.

Feromyscus Captures

Site	7-20	7-22	7-27	7-29	8_3	8-7	T_
Allen	8	12	13		5	7	49
Murietta	4*	7*	6		16	15	48
Wakefield	1	2	5	3	0		11
Feck	5	9	8	10	8		40
Thompson	3		7	7	3	4	24
Haynes	Ō		0	0	0	Ō	0
							172

Table 1.6- Summarizes the trapping success for the most prevalent rodent found in the study sites. Notice that no <u>Feremyscus</u> were caught at Haynes during the period.

Per Cent Traps Capturing Peromyscus

Şite	7-20	7-22	7-27	7-29	8-3	8_7
Allen	100%	100%	100%		100%	100%
Murietta	80%	100%	75%		87%	94%
Wakefield	100%	100%	100%	100%		
Peck	83%	90%	73%	77%	73%	
Thompson	75%		100%	100%	100%	100%
Haynes	0%		0%	0%		0%

Table 1.7- Data taken from Table 1.6 and expressed in percentages.

Note that for most sites few rodents other than <u>Peromyscus</u> were caught.

.

*only one quarter of the traps were set out due to irrigation

.

FLANT LIST

.

Compo Name	<u>Eamily</u>	Scientific_Name	Location
Wild Oat Barnyard Grass Rabbbitfoot Grass Littleseed Canarygrass Large Bermuda Grass Fearded Spappleton	Poaceae " " "	Avenalfalas Echinochigalcruspalli Epivopechlmonspeliensis Ehalecislminor Evnodoridactylon Leptocholalfascicularis	A M FTH FT A T A H M FT
Fearded Spangletop Timothy Grass Common Foxtail-Barley Alkalı Rye Rıpgut Brome Red Brome Quackgrass Johnson Grass Dallısgrass Saltgrass	н н н н н н н	Ehisum_pratense Hordeum_legorinum/vulgare Elymus_triticoides Bromus_rigidus Bromus_rubens Agrgoyron_repens Sorghum_halepense Faspalum_dilatatum Disticolis spicata	
Sunflower Western Goldenrod Common Groundsel Sowthistle Frickly Lettuce Mare's Tail Cocklebur Russian Knapweed Telegraph plant Bull (or Milk) Thistle Common Spikeweed	Asteraceae " " " " " " " " " "	Helianthus_annuus Solidago_occidentalis Senecio_vulgaris Sonchus_oleraceus Lactuca_scariola Convia_canadensis Xanthium_canadense Centaurea_repens Heterotheca_grandiflora Cirsium_vulgare Hemiionia_pugens	A M P T H A M P T H A M P T H A M P H A M P H P T M W F H H H H
Curly Dock Black Bindweed Common Knotweed Silversheath knotweed Swamp Smartweed	Folygonaceae " " "	Eumex_crispus Folygonum_convolvulus Folygonum_aviculare_ Folygonum_argyrocoleon Folygonum_lapathifolium	АМ F'H АМW Т А.
Jimson Weed Chinese Thornapple Deadly Nightshade Ground Cherry	Solanaceae " " "	<u>Datura metaloides</u> <u>Datura ferox</u> <u>Solanum nigrum</u> <u>Ebysalis angulata</u> var.	а н м Р ам тн ам и
Hedge Mustard London Rocket Black Mustard Nannie's Furse Shepherd's Furse	Frassicaceae " " "	Sisymbrium_officinale Sisymbrium_irio Brassica_nigra Capsella_procumbens Capsella_bursa-pastoris	A T A A A M F
Burclover Alfalfa Annual Yellow Sweetclov White Melilot	Fabaceae " ver " - "	Medicago_bispida Medicago_satiya Melilotus_indica Melilotus_albus	AMF AWPH H

.

AGREFERESTRY FROJECT

FLANT LIST

Wild Morning Glary Cressa	Convolutaceae "	<u>Cocyclywlws acyscais</u> <u>Cossaltoaxilleosis</u>	AM I	РТ Н
Largeseed Dodder	Cuscutaceae	<u>Cuscuta_indacora</u>	I	÷ H
Tumbling Figweed Frostrate Figweed Rough Figweed	Amaranthaceae " "	Amaranthus_bliteides Amaranthus_albus Amaranthus_retroflexus		РТН РТР ТН
Common Furslane Red Maids	Fortulacaceae "	<u>Eortulaca_oleracea</u> Calendrinia_ciliata	M W M W	т
Lambsquarters Saltbush Five-hook Bassia AIkali Elite Eussian Thistle (Tum	Chenopodiacese " " bleweed)"	<u>Chencoodium_album</u> <u>Atriols:_patula</u> var. <u>Bassia_byssopifolia</u> <u>Suaeda_fruticosa</u> Salsola_iberica	A M M A M W I M	H TH FTH H H
Cheeseweed Alkali Mallow	Malvaceae	<u>Malva parviflora</u> Sida leorosa	м	т н
Panicled Willow-herb	Onagraceae	Epilpbium_paniculatum	М	
Red-stemmed Filaree	Gerinaceae	<u>Erodium_cicutarium</u>	A W	н
Yellow Nutgrass Hardstem Bulrush	Cyperaceae "	<u>Cyperus_esculentus</u> Scirpus_acutus	A	H H
Functure Vine Horse Furslane	Zygophyllaceae "	<u>Tribulus_terrestris</u> <u>Trianthema_portulacastrum</u>	M	т
Corn Spurry Spurry	Caryllophyllaceae "	<u>Spergula_arvensis</u> Spercula <u>ria_bocconii</u>	M M	т
Turkey Mullein	Euphorbiaceae	<u>Eremocarpus_setigerus</u>	ິພ	
.Seaside Heliotrope	Boraginaceae	<u>Heliotropum_curassivicum</u>		н
Common Cattail	Typhaceae	<u>Typha_latifolia</u>		н
65 species	21 families		W P 1 5-11-20-3	

.....

.

T

Clip Flot Analysis

 $\frac{\text{ALLEN-}}{2 \text{ bectares}} = 20000 \text{ sq. m.}$

Seedles	Stema	<u>Alotal</u>	Grage	%Tetal	6/5	Ccc.	S/H	G/H
<u>Ellackensis</u>	5	1/0/07.	72	1002	6.4	8%	22222	142222

 $\frac{MUEIETTA+ Ce samples = 2.04 sq. m.}{9.4 hectares = 94000 sq. m.}$

Species	Stens		Grame	<u>XTotal</u>	<u>6/3</u>	_Occ	S/H	G./H
A. patula	6	11%	113	42%	18.8	S%	25641	432908
S. arvensis	10	19%	22	12%	5.2	15%	42705	176752
S. oleraceus	9	17%	15.5	6%	1.8	9%	38462	70513
E. <u>cruseallı</u>	21	39%	1	<1%	< 1	12%	89744	4274
<u>A. blitoides</u>	1	2%	<1	<1	\leq 1	4%	4274	
Lscariola	3	6%	99	C7%	53	8%	12821	423077
Carvensis	4	7%	55	24	1.25	4%_	17094	21068
7 species	54	101%	266.5	59%			200771	1178670

WALEFIELD- Section 1, 2 year old trees 8 samples = .72 sq. m. exact acreage unknown

Species	Stems	%Total	Grams	%Total	G/S	Occ.	
A. albus	35	78%	223	97%	6.4	37.5%	-
<u>A. blitoides</u>	. 8	18%	3.5	2%	< 1	37.5%	
<u>E. cicutarium</u>	1	2%	1	< 1	1	12%	
Eoleracea	1	2%	3.5	2%	3.5	12%	
4 species	45	100%	227.5	101%			-

Section 2, 3 year old trees 13 samples = 1.17 sq. m. All samples empty

Section 3, 4 year old trees 8 samples = .72 sq. m. All samples empty

Stems= total number of stems of particular species %Total= ratio of species stems to total number of stems for site Grams= total number of grams of particular species %Total= ratio of species grams to total number of grams for site G/S= grams per stem average Dcc.= frequency of occurrence S/H= estimated stems for particular species per hectare G/H= estimated grams per particular species per hectare

Clip Flot Analysis

 $\frac{\text{ESDE}}{3.3 \text{ hettares}} = 1.8 \text{ sq. m.}$

Species Stead "Total

<u>C. Canadensis</u> <u>C. arvensis</u> <u>H. grandiflors</u> <u>C. Canadensis</u> 4 species	47	-1 <u>9131</u> 95% 4% <1% <u>≤1%</u> 99%	- <u>Scams</u> 2027 88.5 2 22 2109.5	<u>XTotal</u> 95% 4% <1% <u>100%</u>	<u>-9/9</u> 1.9 2 	- <u>Cec.</u> 100% 20% 5% 5%	<u>5735333</u> 261111 53536 <u>55556</u> 6105556	<u>9/8</u> 11241111 491667 11111 <u>122222</u> 11886111
--	----	---	---	--	-----------------------------	--	--	--

 $\frac{\text{IHOMFSON}}{2.4 \text{ bectares}} = 2.25 \text{ sq. m.}$ All samples empty

HAYNES East- 10 samples = .9 sq. m. 2.1 Hectares = 21000 sq. m.- Total

Species_____Stems %Total Gr

DSpicata HCurassiyicum LScaripla Malbus Calbum C. travillapsis	217 5 3 29 11	- <u>410031</u> 48% 2% 1% 9% 3%	<u>- Grams</u> 123.5 208 37.5 4.5 <1	<u>%Total</u> 24% 41% 7% 1% <1	<u>6/S</u> <1 41.6 12.5 <1 <1	<u>-Occ.</u> 35% 10% 15% 20%	<u>\$/H</u> 2411111 55556 33333 322222	<u>G/H</u> 1372222 2311111 416667 50000
<u>Ctraxillensis</u> <u>Ctraxillensis</u> <u>CCanadensis</u> <u>HPungens</u> <u>Cdactylon</u> <u>Unknown</u> 10 species	11 16 18 5 11 	3% 5% 6% 2% 3% <u>1%</u> 100%			<1 <1 2.4 15.8 <1 	20% 15% 20% 5% 10% 5% 10%	322222 122222 177778 200000 55556 122222 	

3522222 5611112

.

.

HAYNES	West-	10	samples	=	. 9	50.	

Species	Stems							
E. hyssopifolia	-95502_ 19	_XIotal	Grams	<u>_%Total</u>	G/S	Occ.	S/H	G/H
Cdectylon		8%	1124	62%	59.2	40%	211111	
	19	8%	78.5	6%	4.1	30%		12488889
<u>C. tramillensis</u>	75	31%	72	5%	4 4		211111	872222
E <u>crusgalli</u>	109	45%	2.5	<1%	1	50%	833333	800000
Malbus	6	2%			<1	10%	1211111	27778
LScariola	1	<1%	18	1%	3	20%	66667	200000
DSpicata	3		23	2%	23	10%	11111	255556
HBADdeus	5	1%	2	<1%	<1	10%	33333	
	1	<1	23	2%	33	10%		22222
Calbum	5	2%	2.5	<1%	<1		11111	366667
H	2	1%	2	<1%		10%	55556	27778
Unknown	1	<1	-		1	10%	22222	22222
11 species	241				1	10%	11111	11111
	471	98%	1363	99%			22677777	22944445

. •

Line Intercept Analysia

ALLEN- 10 samples = 5000 cm Total cover = .84%

 Species
 Dist.
 % Total
 Oct.
 Ave. Size
 % Cover

 C. ervensis
 42 cm
 100%
 10%
 42 cm
 .64%

MURIETTA- Section 1 10 samples = 5000 cm⁻¹ Total cover = 24.82%

Species	Dist.	<u> </u>	Cac.	Ave. Size	% Cover
Apatula	309 cm	25%	30%	103 cm	6%
Lscariola	202 cm	19%	50%	40.4 cm	5%
Hannues	195 cm	16%	20%	97.5 cm	4%
Eaviculare	140 cm	12%	30%	47.7 cm	
<u>Sbocconii</u>	121 cm	10%	40%	30.25 cm	2%
<u>Soleraceus</u>	114 ⊂m	5%	90%	12.7 cm	2%
<u>Canadensis</u>	54 cm	4%	30%	18 cm	1%
E <u>crusgallı</u>	50 cm	4%	20%	26.5 cm	17.
<u>Fangulata</u>	12 cm	1%	20%	6 cm	<1%
<u>Bilorispus</u>	6 cm	<1%	10%	6 cm	<1%
<u>Calbum</u>	<u> </u>	<1%	10%	<u> </u>	≤1%

24%

11 species 1241 cm 100%

Section 2 3 samples = 1500 cm

iotal cover	= 59.53%				
Species	Dist.	<u>% Total</u>	0cc.	Ave. Size	% Cover
L <u>scariola</u>	390 cm	44%	100%	130 cm	26%
<u>A. patula</u>	158 cm	18%	100%	52.7 cm	11%
<u>Calbum</u>	129 cm	14%	67%	64.5 cm	9%
H. annuus	112 cm	13%	67%	56 cm	7%
<u>Ccanadensis</u>	75 cm	8%	100%	25 cm	5%
Sbocconii	<u>31 cm</u>	3%	33%	<u>31_cm</u>	2%
6 species	890 cm	100%			60%

Dist.= total length of intercept by each species % Total= percentage of sum of intercept of all species Occ.= frequency of occurance on intercept Ave. Size= average size of species intercept % Cover= percentage of intercept for each species for entire site

Line Intercept Analysis

MURIEITA- Section 3 3 samples = Total cover Species Carvensis Ecruscalli Fmonspeliensis Soleraceus	= 28% _ <u>Dist</u> % 367 cm 38 cm 6 cm	<u>- Total</u> 88% 9% 1% 2%	33% 37% 33%	369 cm 38 cm	25% 3% <1%
4 species	420 cm	100%			28%
Section 4 3 samples = Total cover <u>Species</u> <u>S. becconii</u> S. oleraceus	1500 cm = 2.67 % 	<u>%_Total</u> 95%	67%	19 cm	<u>_%_Cover</u> 3%
2 species	40 cm	100%			3%
WAKEFIELD- Section 1 3 samples Total cove	= 1500 cm er = 67.27%				
Species	Dist.	<u>% Total</u>	Occ+	AveSize	<u>_%_Cover</u>
	830 cm	82%	100%	276.7 cm 38.5 cm	55% 5%
<u>A. blitoides</u>	77 cm 38 cm	8%	67%	38 cm	3%
H. grandiflora	38 CM	4%	33% 33%	34 cm	
<u>P. oleracea</u>	34 cm	3% 2%	33%	23 cm	
E. cicutarium	23 cm <u>7 cm</u>	1%	33%	7_cm	<1%
S. oleraceus		^/			
6 species	1009 ⊂m	100%			67%
Total cove Section 3 3 samples	= 2500 cm er = 0%				
	s = 6000 cm er = 115.12				
Species		<u>%_Total</u>	<u> 0cc</u> .	Ave. Size	
<u>Ccanadensis</u>	5524 cm	80%	100%	460.3 cm	92% 14%
<u>Carvensis</u>	861 cm	12%	्उउ% 17%	215.25 cm 182.5 cm	6%
Hannuus	365 cm	5%	17%	30 cm	1%
Hgrandiflora	60 cm	1%	42%	10.6 cm	1%
L. scariola	53 cm 34 cm	1%	8%	34_cm	<1%
<u>B. hyssopifolia</u>	34_6@				

6 species 6907 cm	99%	114 %
-------------------	-----	-------

,

.

Line Intercept Analysis

$\frac{\text{THOMESON}}{\text{Total cover}} = 5000 \text{ cm}$							
Species		Ictal	Ggi	A.e. Size	12 Cover		
A. albus	87 cm	741	10%	87 cm	2%		
5. vulgaris	25 cm	21%	1.0%	25 cm	<1%		
T. terrestria	7_cm	5%	10%	7_ <u>cm</u>	<1%		
3 species	121 cm	101%			2%		
HAYNES East-							
5 samples =							
Total cover	= 91.6%						
Species	Dist%	Total	Fic -	AveSize	% Fover		
<u>D. spicata</u>	<u>21231</u>	31%	<u></u>	175.25 cm	28%		
Hcurassivicum	617 cm	27%	40%	308.5 cm	25%		
Hpungens	561 cm	24%	40%	280.5 cm	22%		
<u>C. traxillensis</u>	290 cm	13%	60%	96.7 ⊂m	11%		
<u>Ccanadensis</u>	50 cm	2%	20%	50 cm	2%		
<u>Calbum</u>	38 cm	2%	20%	38 cm	2%		
Unknown	26 cm	1%	20%	28 cm	1%		
M <u>. albus</u>	20 cm	<1%	20%	 4 ⊂m	<1%		
Lscariola	3_⊂m	<1%	20%	S cm	<1%		
E							
9 species	2290 cm	100%			91%		
·							
<u>HAYNES</u> West-							
5 samples =	= 2500 cm (
Total cover	= 136.32%						
Species		T . L . J					
Species B. hyssopifolia	<u></u>	where were supply these times there is not been to	<u> </u>	<u>Ave. Size</u> 261 cm	<u>_%_Cover</u> 31%		
	783 cm	23%	60%	281 cm 225 cm	27%		
<u>C. dactylon</u>	675 cm	20%	60%				
C. traxillensis	578 cm	17%	60%	192.7 cm	23%		
E. <u>crusgalli</u>	465 cm	14%	40%	232.5 cm	19%		
M. albus	275 cm	8%	20%	275 cm	11%		
H. <u>Curassivicum</u>	187 cm	5%	40%	93.5 cm	7%		
Hpungens	180 cm	5%	40%	90 cm	7%		
<u>C. album</u>	112 cm	3%	40%	56 cm	4%		
L. <u>scariola</u>	102 cm	3%	40%	51 cm	4%		
H. annuus	45 cm	1% (20%	45 cm	2%		

H. grandiflora

11 species

3408 cm 99%

____6_cm_

<17_

20%___

_6_cm_

137%

<1%

SECTION 8.0

Salt/Water Balance Study

EXHIBIT A Agreement No. 9083 CSU, Fresno

Agroforestry Demonstration Program -- Water and Salt Balance

Principal Investigator: Kenneth H. Solomon, Ph.D., P.E., Director, Center for Irrigation Technology

PROJECT OBJECTIVES

The objectives of this project are to investigate: (1) the water and salt balance in the agroforestry system on a selected farm; and (2) the potential for reducing the volume of irrigation and drainage water and overall salt load in a farming system.

The objectives also include the installation of a drainage system and observation wells.

EXPECTED RESULTS

The water and salt balance in a farming system is affected by hydrological characteristics of the area, cropping systems, climatological conditions, water management practices on a given farm and in the surrounding area, and other factors. This type of project needs an operational period of several years to obtain results applicable to on-farm operations.

Under the assumption of project funding for 4 to 5 years, the following results are expected:

- 1. How effective trees and biofilter plants are in lowering the water table.
- 2. The input/output data on salts and water on a selected farm.
- 3. The evapotranspiration rates of trees and biofilter plants.
- 4. The salt absorption rates of trees and biofilter plants.
- 5. How effective trees and biofilter plants are in reducing the volume of irrigation water on a farm.
- 6. How effective trees and biofilter plants are in reducing the volume of drainage water on a farm.
- 7. How effective trees and biofilter plants are in reducing the salt load.
- . 8. The development of farm management techniques to achieve optimum stability of salt and water conditions on a farm.

EXHIBIT A Agreement No. 9083 CSU, Fresno Page Two

9. The effect of such techniques on crops, trees, and biofilter plants yield and quality.

METHOD

Project site:

Murietta farm, Fresno county

Data to monitor on the Murietta farm:

- * Level of water tables (using observation wells)
- * EC of water in observation wells
- * Volume and EC of irrigation water applied to crops in the research area (RA)
- * Volume and EC of drainage water outflow from RA
- * Volume and EC of drainage/irrigation water applied to trees
- * Volume and EC of drainage water outflow from the tree area
- * Volume and EC of drainage/irrigation water applied to biofilter plants
- * Volume and EC of drainage water outflow from the biofilter plant area
- * Volume and EC of water delivered from the project to a drainage water disposal site
- * Salt uptake by crops, trees, and biofilter plants
- * Soil and water analysis from the areas of crops, trees, and biofilter plants
- * Yields and production data on crops, trees, and biofilter plants
- * Chemical composition of crops, trees, and biofilter plants
- * Other data as needed for the study of water and salt balance

Technical and logistic support for the study:

- Boundaries of the research area -- the fields surrounding the Agroforestry Demonstration Site, west from the San Luis drain at Jensen Road.
- 2. Location of the site for biofilter plants -- next to the Agroforestry Demonstration Site.
- Location of a subsurface drain -- in the areas of the Agroforestry Demonstration Site and the biofilter plants.
- 4. Location of observation wells -- in a grid system, on the Agroforestry Demonstration Site and the biofilter plants.

EXHIBIT A Agreement No. 9083 CSU, Fresno Page Three

- Pumps and irrigation systems -- crops and trees presently installed and used; biofilter plants - new installation required.
- 6. Disposal of drainage water from the biofilter plant site -cooperation with the Westlands Water District required for the final disposal of this drainage water (selenium removal plant, deep well injection, or other method).

Frequency of data collection:

- Related to on-farm operations (e.g., corresponding to the frequency of irrigation).
- Two-week intervals (e.g., level of water tables, water EC in observation wells).
- 3. Semi-annually (e.g., soil, water, and plant tissue analysis).

COOPERATORS

The following agencies will cooperate in this project, and their responsibilities include:

Murietta Farms

Will provide land, crops, trees, and biofilter plants; farm management, irrigation, cultural practices; provide data about on-farm operations; installation of a subsurface drain (funded by the program) in cooperation with the USDA-SCS and other cooperators.

California Department of Food and Agriculture and U.S. Department of Agriculture-Soil Conservation Service

Overall program management; coordination of this water/salt balance study with other Agroforestry Demonstration Program projects, such as Tree Selection and Propagation, Wildlife Habitat, and Economics of Agroforestry; securing of funds for all phases of this project; interaction of agroforestry and water/salt management on farms.

University of California, Davis

Research design of the project; scientific evaluation of monitored data; preparation of progress and final reports.

EXHIBIT A Agreement No. 9083 CSU, Fresno Page Four

•.

California State University, Fresno

Data monitoring, analysis and reporting; installing of observation wells with the assistance of other cooperators.

SCHEDULE

	1987 ssfw	1988 ssfw	1989 ssfw	1990 ssfw	1991 ssfw
RESEARCH DESIGN SITE DESIGN SUBSURFACE DRAIN OBSERVATION WELLS	-xx- -xx- -xx- -xx-				
PUMPS/IRRI EQUIP DATA MONITORING	-xx- -xxx	xxxx	xxxx	xxxx	xxxx
DATA ANALYSIS	x	xxxx	xxxx	xxxx	xxxx
PROGRESS REPORTS FINAL REPORT	X	-x-x	-x-x (x)	-x-x	-x x
WORKSHOPS			-x	x-	x

Note: The present funding may be sufficient only until June 30, 1989. Additional funds are requested.

SECTION 9.0

.

.

Halophyte Biofilter Trial

Carolyn Watson Environmental Research Laboratory University of Arizona, Tuscon

AGROFORESTRY AND HALOPHYTE DEMONSTRATION PROGRAM FOR THE MANAGEMENT OF DRAINAGE WATER DISPOSAL

INTRODUCTION

Continuation of the agroforestry demonstration program on farms affected by drainage and salinity problems will further support this system as a method for management of San Joaquin's drainage water. This agroforestry system concept includes the reduction in drainage water volume and salt load and provision of tree by-products. Demonstration of this program is currently being conducted by cooperators headed by the California Department of Food and Agriculture (CDFA) and the U. S. Department of Agriculture-Soil Conservation Service (USDA-SCS).

The inclusion of halophytes as biofilter plants have been proposed to be an important component in the reduction of the salt/chemical load of drainage water. Field trial studies conducted in Mendota, California during 1986 have demonstrated the high productivies and regrowth abilities of Atriplex species, even when irrigated with saline water too high to support the growth of salt-tolerant trees. A summary of plant tissue chemical composition of various Atriplex species and other halophytes from these field trial studies is presented in Table Results indicate that halophytes differ in their abilities to 1. accumulate salt, Selenium and Boron. Average overall ash content of Atriplex species, which ranged from 17 to 36 percent, are relatively high when compared to conventional crops. Plant tissue Selenium levels of Atriplex barclayana, Atriplex lentiformis and Atriplex canescens were two to four times higher when irrigated with drainage water. The accumulation of Selenium in the plant tissue could provide a concentrated source of this element to be incorporated into a ruminant's feed ration. Crude protein content of clipped Atriplex plants averages around 15 percent and would also be a valuable component in a feed ration. Integration of the productivities, agronomic characteristics and chemical compostion of various halophytes have resulted in a selection of candidates for further evaluation in the proposed agroforesty and halophyte demonstration program.

Halophyte Research Area

PROJECT DESCRIPTION AND DEVELOPMENT

I. Site Location and Description

The halophyte research area will be south of the tree plantation site on Murrieta Farms in Mendota, California. Total area for the halophyte demonstration program will be five acres. Irrigation water to the trees will be with drainage water and/or a blend of drainage water. Irrigation water to the halophytes will be with the drainage water collected from the subsurface drains installed under the tree research area.

II. Salt and Water Balance Research Activities

The agroforestry demonstration program, coordinated by the CFDA, USDA-SCS, California Department of Water Resources, University of California (Davis), California State University (Fresno) and California Agriculture Technology Institute will provide the following supplies, services and activities during the proposed 1987/1988 fiscal year.

1. Design and installation of subsurface drains, observation wells and in-line flow meters for the agroforestry and halophyte research areas.

2. Data monitoring of salt and volume of groundwater, irrigation water and drainage water through the agroforestry and halophyte research areas and evaluation of the water/salt balance study.

3. Analyses of soil and plant material at tree research site and of soil at <u>Atriplex</u> research site.

4. Measuring the evapotranspiration rates of trees and selected halophytes.

PROJECT IMPLEMENTATION

Required funds to support the five acre halophyte research area in coordination with the agroforestry demonstration program are listed in the Budget. Responsibilities and activities of the cooperators are described below.

I. Murrieta Farms

1. Materials and installation of irrigation system in halophyte research area.

2. Weed, pest and disease control, planting and harvesting, irrigation, fertilization and other farm operations to implement appropriate cultural practices in the halophyte research area.

II. University of Arizona

1. Selection and provision of stem cuttings and seed stock for the halophyte research area.

2. Analyses and evaluation of harvested <u>Atriplex</u> material for salt and mineral uptake and forage quality.

3. Consultation on plant growth and development, planting dates, cultural practices, harvest times and method for the <u>Atriplex</u> and other halophyte crops.

III. Cultural practices of the halophyte research area

During the 1986 field trials conducted on Murrieta farms, a total of 20 halophyte accessions from the Environmental Research Laboratory were evaluated for overall performance. Accessions which demonstrated slow productivities, undesirable agronomic characteristics and slow regrowth were eliminated from the list of candidate plants. During the proposed 1988 halophyte field trials, a total of 10 <u>Atriplex</u> species and appromimately 5 species of other halophytes will be evaluated for productivities, chemical composition and forage quality. Some of the most promising candidates of which seed is not currently available will be propagated by stem cuttings. The remaining species have a commercially available seed source and will be direct-seeded. Demonstration of direct-seeding for halophyte establishment will be important in the long-term economics of a halophyte plantation.

Atriplex will be direct-seeded between January 15 and February 15. A late winter planting date allows exposure of the seed to rainfall and low temperatures which enhances overall germination. All seed will be pretreated with fungicide before planting to control seedling damping-off. After stand is established, some hand-thinning may be necessary to achieve the desired spacing. Stem cuttings of selected <u>Atriplex</u> and other halophytes will be started during mid-December through mid-January for transplanting into the research area no later than March 15.

Plant spacing between and within rows will be between 2.0 and 2.5 feet. Each species will be seeded or transplanted into plot strips having widths to accomodate harvest equipment. An intensive weed control program is anticipated during the first year of shrub establishment.

It has been shown that shedding of leaves and flower parts in <u>Atriplex</u> may increase the salinity and sodicity of the soil surface. Multiple clippings to remove the top plant portions will promote the removal of salt from the irrigated land.

It is anticipated that some of the most productive <u>Atriplex</u> species will have two clipping harvests during the establishment year. The criteria for timing of harvest and clipping height will vary among the various accessions. Scheduling of harvest times and clipping height will be critical to the regrowth recovery of the clipped plants.

Multiple clippings will reduce the size and growth form and modify the shrubs structural features, thereby reducing attractibility to game birds. This feature is considered to be ecologically important by discouraging Kesterson-type problems within the halophyte plantings. Table 1. Plant tissue analyses (dry weight basis) of halophytes grown at Site 1 (fresh water irrigated) and Site 2 (drainage water irrigated)

• .

Species: Accession #	Site #	Clipped #	Ash %	Protein	в ррт-	Se
A. numnularia - 489 A. numnularia - 489 A. numnularia - 709 A. numnularia - 709 A. canescens - 606 A. canescens - 606 A. canescens - 824 A. canescens - 824 A. canescens - 824 A. canescens - 824 A. barclayana A. barclayana A. barclayana A. lentiformis- 710 A. lentiformis- 710 A. lentiformis- 710 A. lentiformis- 710 A. camarones - 203 A. bolusii - 488 A. deserticola- 288 A. deserticola- 288 A. undulata - 163 A. undulata - 163 A. sp 873 ° A. bunburyana - 463 Salicornia	1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2	1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	27.9 25.8 27.3 23.7 19.5 14.9 18.8 16.5 39.5 33.7 33.2 22.5 18.2 21.3 28.9 36.0 31.1 29.8 30.8 34.5 26.6 25.8 33.1 29.3	17.4 13.3 19.0 18.6 14.6 12.9 16.2 14.7 22.0 12.6 11.1 17.2 9.1 11.3 13.3 16.1 20.4 11.9 19.5 12.5 18.7 18.6 10.1 19.2	43.9 55.3 12.8 6.7 6.3 28.7 6.4 30.0 132.0 31.3	1.34 0.46 1.04 0.54 0.91 0.25 0.63 0.52 0.81
-		plant				

SECTION 10.0

Financial Information

STATE WATER RESOURCES CONTROL BOARD (SWRCB) Agreement # 7859

Agroforestry Program

AGFO CONTRACT SUBFILES: DELLABAL SJVFBAL CORNFBAL ZAPPEBAL FOOTEBAL OTHERBAL

OATE	PAYMENT	INVOICE, PAYMENT OR CHECK NUMBER	PAID OUT BY CDFA	TO SWRCB	AMOUNT REIMBURSED BY SWRCB	BALANCE		COMMENTS
							50,000	
2/28/86	SJVFBAL	152063	5,550					Deposit on 100,000 Eucalyptus
2/28/86	CORNEBAL	152063	750					Deposit on 5,000 Casuarina
2/28/86	ZAPPEBAL	152063	530	-				1,000 poplar seedlings
3/7/86	CORNEBAL	I 4369	109					Seed procurement costs
?	SJVFBAL	?	5,580					Balance of previous order
?	CORNFBAL	I 7465	2,070					Balance of previous order
2/9/87		pmt req	#1	14,588				See payment request #1
2/25/87		D8870304			13,128	1,460	35,412	See DBese No. 870304
7/25/86+	OTHRBAL	5001-116	90					Farm Pump & Irrig. Co., PVC pipe & supplies
1/6/87	SJVFBAL	c07-05765	4 3,313					Down payment on agreement #8890
2/19/87	OTHRBAL	6002-116	(214)					The Bioengineering Corp., Selfin & Biotron ineligible for reimbursement
3/10/87?	OTHRBAL	6001-116	954					Planter from Miles Merwin
4/23/87+	FOOTEBAL	I 8744	153					576 Eucalyptus seedlings
6/3/87		pmt req	#2	4,723	;			See payment request #2
7/2/87	SJVFBAL	?	3,313					Final payment on agmt. 8890
8/17/87	OELLABAL	inv87297	4 2,970					5 soil @ \$290, 4 water @ \$380
9/23/87	DELLABAL	inv87358	2 75					Plant tissue:Se @\$35, Feed analysis @ \$40
9/30/87		RC97970			2,982	331	32,099	Reimbursement for SJF invoice only (\$3313) balance due=4723-214(inelig.)-3313 = 1196

DELLAVALLE LABORATORY, INC. Agreement # 8891 DELLABAL SWRCB SUBCONTRACT

Agroforestry Program

.

DATE	DESCRIPTION OF ITEM	CHECK OR INVOICE	AHOUNT BILLED TO CDFA	AMOUNT PAID BY CDEA	AMOUNT OUT- STANDING	BALANCE OF	COMMENTS
12/31/86						15,000	
7/27/87	5 soil samples 4 water sample:	872974 s	2,970		2,970		soil a \$290 ea. water a 380 ea.
8/17/87	pmt on 872974			2970	0	12030	date sent to accts payable
9/21/97	Plant tissue/Se Feed Analysis	e 873582	75		75		Tissue a \$35 Feed a \$40
9/23/87	pmt on 873582			75	0	11,955	date sent to accts payable

SAN JOAQUIN VALLEY FOLIAGE, INC. Seedling Purchases Agroforestry Program SJVFBAL SWRCB NON-CONTRACTED EXPENSES

DATE		BILLED TO CDFA	BY CDFA	OUT-		COMMENTS			
1/31/86	DB 860203			5,000		Deposit for 100,000 E. camaldulensis @ \$D.105 each			
2/28/86	C 152063		5,550	0	5,550	reimbursement to WRCD for deposit (1/2 of \$ 11,130 cost) Includes \$5,000 invoice			
7/9/86	none	5,580		5,580		Balance of previous order			
?	?		5,580	0	11,130	Payment of 7/9/86 invoice, See invoice for approval			
2/9/87 Payment request #1 including \$11,130 submitted to SWRCB									
12/1/86	none	3,313		3,313		invoice for contract # 8890 30,000 Euc., Lake Albacutya 18,000 Euc., Mt. Bernstein @ \$0.125 each, total \$6625			
1/6/87+	C07-05765	4	3,313	0	14,443	payment of contract invoice date of approval shown			
6/3/87	Payment r	equest #2	includi	ng \$3,312.	.50 submi	tted to SWRCB			
4/29/87?	none	3,313		3,313		2nd payment on agmt. 8890, same invoice as 1st pmt, date hand written in corner			
7/2/87	?		3,313	; 0	17,755	payment on contract 8890			

.

CORNFLOWER FARMS Seedling Purchases Agroforestry Program

CORNFBAL SWRCB NON-CONTRACTED EXPENSES

DATE	INVOICE	BILLED	PAID	AHOUNT OUT- STANDING	TOTAL PAID	COMMENTS		
2/14/86	I 4369	109		109		Seed procurement costs C. glauca, C. cunninghamiana		
?	I 9448	750		859		no date, deposit for 5,000 Casuarina @ \$0.30 each		
2/28/86	C 152063		750	109	750	reimbursement to WRCD for deposit payment		
3/7/86 ?	1 4369		109	0	859	date is when payment was approved for inv. 4369		
7/9/86	I 7465	2,070		2,070		3137 C. cunninghamiana, 3131 C. glauca, 382 E. grandis @ \$0.40 each (containers & tax included)		
?	1 7465		2,070	0	2,929	balance of invoice 7465 \$750 deposit already paid		
2/9/87 Payment Request #1 including \$2,929 submitted to SWRCB								
4/16/87		160		160		400 Casuarina seedlings @ \$0.40 each		

10-6

	APPETTINI Purchases stry Progr	Bm			ZAPPEBAL SWRCB NON-CONTRACTED EXPENSES			
DATE	NUMBER	AMOUNT BILLED TO CDFA	PAID BY CDFA	OUT - STANDING	PAID	COMMENTS		
2/6/86	I 4999			530		500 "Jaconotti" hybrid poplar 500 P. nigra-columme, @ \$0.50 ea.		
2/28/86	C 152063		530	0	530	payment for invoice 4999		
2/9/87	Payment r	equest #1	includir	ng \$530 su	ubmitted	to SWRCB		
FOOTE'S	EUCALUPTUS	SEEDLING	s		FOOTEBAL			
	Purchases				SWRCB NO	N-CONTRACTED EXPENSES		
Agronore		AMOUNT	AMOUNT	AMOUNT				
DATE	INVOICE	BILLED TO CDFA	PAID BY CDFA	OUT- STANDING	PAID			
4/23/87	1 8744			153		576 Eucalyptus seedlings, Stratford Provenence @ \$0.25 each		
?	I 8744		153	0	153	5 payment on invoice 8744		

6/3/87 Payment request #2 including \$152.64 submitted to SWRCB

OTHER EXPENSES

OTHERBAL SWRCB NON CONTRACTED EXPENSES

Agroforestry Program

DATE	VENDER	INVOICE NUMBER	AMOUNT BILLED TO CDFA	AMOUNT PAID BY CDFA	AMOUNT OUT- STANDING	TOTAL PAID	COMMENTS
7/25/86	Farm Pump & Irrigation Co.	5001-116	90		90		30 - 1.5" X 10' PVC class 125 pipe 37 - 1.2" slip PVC caps 1 quart 717 PVC cement shop labor:set up & cut 10' lengths
?	Farm Pump & Irrigation Co.	5001-116		90	0	90	
2/11/87	Bioengineering Corp.	6002-116	214		214		12 Kg Selfin & \$11.00/Kg 2 Kg Biotron & \$35.00/Kg
2/19/87	Bioengineering Corp.	6002-116		214	0	304	
2/27/87	Miles & Eliz. Merwin	6001-116	954	-	954		tree planter with trailer
3/10/87?	Miles & Eliz. Merwin	6001-116		954	0	1,258	cancels agreement #7878 for lease of planter

6/3/87 Payment Request #2 including \$1,257.72 for other submitted to SWRCB

.

.

U.S. DEPARTMENT OF THE INTERIOR-BUREAU OF RECLAIMATION (U CDFA Agreement # 9049 USBOR No. 7-FC-2D-04900 Agroforestry Program							USBRBAL AGFO CONTRACT SUBFILES:SACHSBAL LOHRBAL CHESEBAL
	PAYMENT LISTED IN	INVOICE		AMOUNT	AMOUNT	BALANCE OF	CRESEDAL
DATE	SUBFILE	NUMBER	BY COFA	TO USBR	BY USBR	CONTRACT	COMMENTS
		*****		********		60,000	
5/ /87	LOHRBAL	3239825	629				April wages
5/12/87+	SACHSBAL	050750	9,431				First contract payment Date payment approved is shown
6/ /87	LOHRBAL	3560132	718				May wages
7/3/87	LOHRBAL	3872823	754				June wages
8/4/87	LOHRBAL	1178614	790				July wages
8/ /87				12,323			Invoices submitted for reimbursement
9/3/87	LOHRBAL	1477289	790				August wages
10/5/87	LOHRBAL	1775250	799				September wages
10/7/87	CHESEBAL	13032	8,000				First contract payment Date payment approved is shown
10/5/87					12,323	47,677	1st reimbursement

Total Paid 8/4/87 21,912

10-9

UCD - ROY SACHS Agreement # 9016 SACHSBAL USBOR SUBCONTRACT

Agroforestry Program

DATE	DESCRIPTION OF ITEM	INVOICE	AMOUNT BILLED TO CDFA	AMOUNT PAID BY CDFA	AMOUNT OUT- STANDING	BALANCE OF CONTRACT	COMMENTS
3/1/87	contract					31,438	
4/29/87	contractor inv.	050750	9,431		9,341		
5/12/87+	approved pmt.	050750		9,431	0	22,007	Payment of invoice 050750

UCD - LU LOHR

LOHRBAL USBOR NON-CONTRACTED EXPENSE

Agroforestry Program

				GROSS	AMOUNT		
	MONTH			AMOUNT	SUBMITTED		
	OF PAY	HOURS	WARRANT	PAID	TO	TOTAL	
DATE	PERIOD	WORKED	NUMBER	BY CDFA	USBOR	PAID	COMMENTS
• • • • • • • • •		•••••					
5/ /87	April	70	3239825	628.60		628.60	
6/ /87	May	80	3560132	718.40		1347.00	
7/3/87	June	84	3872823	754.32		2101.32	
8/4/87	July	88	1178614	790.24		2891.56	
8/20/87					2891.56		
9/3/87	August	88	1477289	790.24		3681.80	
10/5/87	September	89	1775250	799.22		4481.02	

CSUF - CHESEMORE Agreement # 9076 CHESEBAL USBOR SUBCONTRACT

Agroforestry Program

DATE	DESCRIPTION OF ITEM	CHECK OR INVOICE NUMBER	AMOUNT BILLED TO CDFA	AMOUNT PAID BY CDFA	AMOUNT OUT- STANDING	BALANCE OF CONTRACT	COMMENTS
6/4/87	contract					26,000	•••••
7/1/87	1st payment	13032	8,000		8,000		1st pmt as per contract
10/7/87	1st payment	13032		8,000	0	18,000	date pmt approved is shown

CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE (CDFA) AGFO CONTRACT SUBFILES:TANJIBAL SOLOMBAL CITBAL

Agroforestry Program

	PAYMENT				
	LISTED	CHECK OR	AHOUNT	BALANCE	
	IN	INVOICE	PAID OUT	OF	
DATE	SUBFILE	NUMBER	BY CDFA	CONTRACT	COMMENTS
				80,000	
10/7/87	TANJIBAL	050918	5,000	75,000	1st payment on contract
10/7/87	TANJIBAL	050918	5,000		ist payment on contract

.

.

UCD - TANJI Agreement # 9084

TANJIBAL CDFA SUBCONTRACT

Agroforestry Program

DATE	DESCRIPTION OF ITEM	CHECK OR INVOICE NUMBER	AMOUNT BILLED TO CDFA	AMOUNT PAID BY CDFA	AMOUNT OUT- STANDING	BALANCE OF CONTRACT	COMMENTS
6/25/87	contract	•••••				25,000	
8/10/87	1st payment	050918	5,000		5,000		pmt upon approval & signing of contract
10/7/87	1st payment	050918		5,000	٥	20,000	date pmt approved is shown

CSUF - SOLOMON / WATER & SALT BALANCE	SOLOMBAL
Agreement # 9083	CDFA SUBCONTRACT

Agroforestry Program

	DESCRIPTION		AMOUNT	AMOUNT	AMOUNT	BALANCE
	OF	INVOICE	BILLED	PAID	OUT-	OF
DATE	ITEM	NUMBER	TO CDFA	BY CDFA	STANDING	CONTRACT COMMENTS
	• • • • • • • • • • • • • • • •	•••••				•••••
6/25/87	contract					50,000

CSUF - SOLOMON (CIT) / WATER MONITORING	CITBAL
Agreement # 3516	CDFA SUBCONTRACT

Agroforestry Program

	DESCRIPTION		AMOUNT	AMOUNT	AMOUNT	BALANCE	
	OF	INVOICE	BILLED	PAID	OUT-	0F	
DATE	ITEM	NUMBER	TO CDFA	BY CDFA	STANDING	CONTRACT	COMMENTS
6/19/87	contract					4,900	

SECTION 11.0

Agroforestry Directory

AGROFORESTRY MAILING LIST (3/18/88)

Dave Adams Department of Forestry P. O. Box 1590 Davis, California 95617	(916)	322-0126
Ron Adams P. O. Box 561 Davis, California 95617	(916)	753-2717
Gerald Ahlstrom Department of Forestry P. O. Box 944246 Sacramento, California 94244-2460	(916)	322-0174
A. D. Allen P. O. Box 696 Firebaugh, California 93622	(209)	659-3143
Eugene E. Andreuccetti State Conservationist Soil Conservation Service U. S. D. A. 2121-C Second Street, Suite 102 Davis, California 95616-2852	(916)	449-2848
Virgil Backlund Soil Conservation Service U. S. D. A. 2121-C Second Street Davis, California 95616	(916)	449-2819
Thor Bailey President Energy Production 2279 Nord Avenue Chico, California 95926	(916)	893-1368
David A. Bainbridge Dry Lands Research Institute University of California Riverside, California 92521	(714)	787-5797 787-3785
Dennis Beeson The Pacific Tree Company 904 East Brundage Lane Bakersfield, California 93307	(805)	322-7278

John Beyer (209) 487-5223 Soil Conservation Service U. S. D. A. 1130 O Street, Room 3302 Fresno, California 93721 Ted Bloemhof (805) 758-5105 17851 Palm Avenue Shafter, California 93263 W. (Bill) Brooks (916) 449-2881 Soil Conservation Service U. S. D. A. 2121 C - Second Street Davis, California 95616 Richard G. Burau (916) 752-0194 Director, Monterey Basin (916) 752-1491Pilot Monitoring Project (916) 752-1142 Dept. of Land, Air and Water Resources Dept. of Environmental Toxicology University of California Davis, California 95616 Jim Bushey (209) 584-9209Soil Conservation Service U. S. D. A. 1716 North 11th Avenue, Suite B Hanford, California 93230 Buttonwillow Land and Cattle Co. (805) 764-5865 Attn: Larry Frey Route 1, Box 177 Buttonwillow, California 93206 Sal Carollo (209) 924-9754 19212 19th Avenue Stratford, California 93266 John Carter (916) 322-0107 Wood Energy Program Department of Forestry P. O. Box 944246 Sacramento, California 94244-2460 Vashek Cervinka (916) 445-6719 Research Manager Agricultural Resources Branch Department of Food and Agriculture 1220 N Street, Room 104 Sacramento, California 94271-0001

A. Dale Chapman (916) 756-3107 Chapman Forestry Foundation P. O. Box 311 Davis, California 95616 Dave Chesemore (209) 294-2010 Department of Biology 294-2001 California State University Fresno, California 93740 Ed Craddock (916) 445-9958 Office of Water Conservation Department of Water Resources 1416 Ninth Street Sacramento, California 95814 Richard Daniel (916) 445-1383 Environmental Services Branch Department of Fish and Game 1416 Ninth Street Sacramento, California 95814 (209) 233-6129 Nat B. Dellavalle Dellavalle Laboratory, Inc. Res. (209) 229-1797 1910 W. McKinley, Suite 110 Fresno, California 93728 Robert Delzell (209) 449-2852 Soil Conservation Service U. S. D. A. 2121 C - Second Street Davis, California 95616 (209) 884-2234 John Diener (209) 884-2324 Round Rock Ranch P. O. Box 428 Five Points, California 93624 (209) 868-3349 Don Duncan San Joaquin Experimental Range P. O. Box 91 O'Neals, California 93645 (209) 266-0664 Andy Dyer Department of Biology California State University Fresno, California 93740 (209) 488-3285 Pamela Elam-Wenzel Farm Advisor Urban and Environmental Horticulture University of California 1720 South Maple Avenue Fresno, California 93702

Laora Fanger-Vexler (415) 642-0279Research Forester University of California 233 Mulford Hall Berkeley, California 94720 Steve Fedje (209) 584-9209 Soil Conservation Service U. S. D. A. 1716 North 11th Avenue, Suite B Hanford, California 93230 Peter F. Ffolliott (602) 621-7276 Professor School of Renewable Natural Resources The University of Arizona Tucson, Arizona 85721 Clarence Finch (209) 487-5125 Soil Conservation Service U. S. D. A. 1130 O Street, Room 2114 Fresno, California 93721 Sherman Finch (916) 449-2852 Forester RPF 190 Soil Conservation Service U. S. D. A. 2121 C - Second Street Davis, California 95616 Ann Fisher (916) 689-1015 Cornflower Farms P. O. Box 896 Elk Grove, California 95624 (209) 924-2736 Ray Foote 544 E. Meadow Lane Lemoore, California 93245 Louise Fortman (415) 642-7018 Department of Forestry Mulford Hall University of California Berkeley, California 94720 Terry Garvey (209) 224-1523 Chief Engineer Westlands Water District 3130 North Fresno Street Fresno, California 93703

Don Gasser (415) 642-5059Department of Forestry University of California Berkeley, California 94720 Randall Godden (916) 551-1715 Cooperative Watershed Program Forest Service U. S. D. A. 2121 C - Second Street, Suite 102 Davis, California 95616 Clarence Gowens (209) 884-2248 P. O. Box 215 Five Points, California 93624 Stephen Grattan (916) 752-1103 Land, Air and Water Resources 752-0453 University of California Davis, California 95616 (916) 324-5630 O. P. Gulati Senior Water Resources Control Engineer Division of Water Rights State Water Resources Control Board 901 P Street Sacramento, California 95814 (209) 294-2500 George Hanna School of Engineering 122 East Engineering Building Fresno, California 93740-0094 (916) 752-1130 Blaine Hanson 752-0453 Land, Air and Water Resources University of California Davis, California 95616 (916) 322-2299 Gene Hartzell Nurseries and Tree Improvement Department of Forestry P. O. Box 1590 Davis, California 95617 (209) 582-5449 Haynes and Sons Attn: James C. Haynes/James C. Haynes, Jr. 1335 Lassen Drive Hanford, California 93230 (209) 488-3510 Cosmo C. Insalaco Agricultural Commisioner 1730 South Maple Avenue Fresno, California 93702

International Council for Research in Agroforestry P. O. Box 30677 Nairobi KENYA, East Africa Farouk T. Ismail (916) 322-3408 Chief, Technical Support 322-3600 State Water Resources Control Board Division of Clean Water Grants 901 P Street Sacramento, California 95814 Wesley Jarrell (714) 787-3785 Department of Soil and Environmental Sciences University of California 2217 Geology Building Riverside, California 92521 Bryan Jenkins (916) 752-1422 Agricultural Engineering Department University of California Davis, California 95616 Dan Johnson (209) 487-5125 Soil Conservation Service U. S. D. A. 1130 O Street Fresno, California 93721 Greg Jorgensen (209) 294-2066 Center for Irrigation Technology California State University Fresno, California 93740 Amram (Ron) Kadish (805) 482-5827 1980 Hobart Drive Camarillo, California 93010 Martin M. Karpiscak (602) 621-1955 Research Scientist Office of Arid Lands Studies 845 N. Park Avenue The University of Arizona Tucson, Arizona 85719 Herschel Kimble (805) 861-4129 District Conservationist Soil Conservation Service U. S. D. A. 5500 Ming Avenue, Suite 165 Bakersfield, California 93309

Kings Outreach Boys Ranch (209) 584-0181 Attn: Wesley Champlin 13787 Kansas Avenue Hanford, California 93230 Mike Kobzeff (209) 275-3608 San Joaquin Foliage, Inc. 6171 W. Olive Avenue Fresno, California 93711 Tom Ledig (415) 486-3134 Institute of Forest Genetics P. O. Box 245 Berkeley, California 94701 Ed Lee (916) 978-4969 U. S. Bureau of Reclamation 280 Cottage Way, MP-190 (Room W-2143) Sacramento, California 95825 Luanne Lohr (916) 752-6457 Department of Agricultural Economics University of California Davis, California 95616 John B. Loomis (916) 752-0523 Division of Environmental Studies University of California Davis, California 95616 Phil Lopez (805) 861-4129 Soil Conservationist Soil Conservation Service U. S. D. A. 5500 Ming Avenue, Suite 165 Bakersfield, California 93309 (916) 322-6598 Cecil V. Martin Chief, Environmental Services Section State Water Resources Control Board Division of Water Quality 901 P Street Sacramento, California 95814 (916) 322-2299 Jeanne Martin Department of Forestry P. O. Box 1590 Davis, California 95617 (209) 584-9209 Frank Menezes Soil Conservation Service U. S. D. A. 1716 North 11th Avenue, #B Hanford, California 93230

Miles Merwin (916) 795-2440 International Tree Crops Institute P. O. Box 888 Winters, California 95694 George Miller, Jr. (916) 678-2496 7447 Pitt School Road Dixon, California 95620 Steve Moore (916) 978-4969 U.S. Fish and Wildlife Service San Joaquin Valley Drainage Program MP-190, Room W-2143 2800 Cottage Way Sacramento, California 95825 Murrieta Farms (209) 655-3221 Attn: David Woolley 5854 S. San Diego Avenue Mendota, California 93640 Jim Nee (916) 978-4969 U.S. Fish and Wildlife Service San Joaquin Valley Drainage Program MP-190, Room W-2143 2800 Cottage Way Sacramento, California 95825 Dan Nelson (209) 826-4043 San Luis Water District P. O. Box 2135 Los Banos, California 93635 Bob Norona (209) 526-4100 Tri-Valley Growers ext 2270 P. O. Box 3327 Modesto, California 95353 Ralph Osterling (415) 573-8733 1650 Borel Way, Suite 204 San Mateo, California 94402 Robert Peyton (415) 644-4235 Special Projects Agriculture and Natural Resources 2120 University Avenue, 7th Floor Berkeley, California 94720 Claude J. Phene (209) 251-0437 Agricultural Research Service 2021 S. Peach Avenue Fresno, California 93727

Pete Price (916) 445-1638 Principal Consultant Assembly Office of Research 1100 J Street, Fifth Floor Sacramento, California 95814 Larry K. Puckett (916) 978-4981 California Department of Fish and Game San Joaquin Valley Drainage Program MP-190, Room W-2143 2800 Cottage Way Sacramento, California 95825 Raul Ramirez (805) 861 - 4129Soil Conservationist Soil Conservation Service U. S. D. A. 5500 Ming Avenue, Suite 165 Bakersfield, California 93309 Ilona Rice (916) 322-6832 Research Assistant Agricultural Resources Branch Department of Food and Agriculture 1220 N Street, Room 104 Sacramento, California 94271-0001 Romeo A. "Rome" Rivera, P.E. (916) 449-2861 Leader, River Basin Planning Staff Soil Conservation Service U. S. D. A. 2121-C Second Street Davis, California 95616 Gary Rose (209)992 - 3145Tulare Lake Drainage District P. O. Box 985 Corcoran, California 93212 Roy Sachs (916) 752-3071 Department of Environmental Horticulture University of California Davis, California 95616 Ronald Schultz (916) 449-2852 Soil Conservation Service U. S. D. A. 2828 Chiles Road Davis, California 95616 Jon Shaver, Director (209) 294-2361 California Agricultural Technology Institute California State University Fresno, California 93740

Bob Slayback (916) 449-2852 Soil Conservation Service U. S. D. A. 2828 Chiles Road Davis, California 95616 Felix Smith (916) 978-4877 Habitat Resources U. S. Fish and Wildlife Service 2800 Cottage Way Sacramento, California 95825 Ken Solomon (209) 294-2066 Director Center for Irrigation Technology California State University Fresno, California 93740 Rich Standiford (415) 642-2360U. C. C. E. Forestry University of California Mulford Hall Berkeley, California 94720 Don Swain (916) 978-4969 Bureau of Reclamation San Joaquin Valley Drainage Program MP-190, Room W-2143 2800 Cottage Way Sacramento, California 95825 Ken Tanji (916) 752-0683 Land, Air and Water Resources 752-0453 University of California Davis, California 95616 Maurice H. Taylor (916) 978-4613 U. S. Fish and Wildlife Service 2800 Cottage Way Sacramento, California 95825 Ben Thompson (916) 674-2908 Nor-Cal Resources, Inc. 951 Live Oak Boulevard Yuba City, California 95991 Thomsen Brothers (209) 829-6469 Attn: Tom Thomsen P. O. Box 258 Cantua Creek, California 93608

Timothy Tidwell (916) 445-4521 Plant Pathologist Analysis and Identification Department of Food and Agriculture 1220 N Street, Room 340 Sacramento, California 94271-0001 James R. Tischer (209) 221-1388 President The Tischer Group 1551 East Shaw Avenue, Suite 120 Fresno, California 93710 Bill Verdeqaal (209) 582-9205 13821 Lacey Boulevard Hanford, California 93230 David Wakefield (209) 698-5186 33578 West Dinuba Cantua Creek, California 93608 (602) 621-7962 Carol Watson Environmental Research Lab 2601 East Airport Drive Tucson, Arizona 85706-6985 (805) 764-5264 Way Farms Rich Wegis Richard Young Route 1, Box 161 Buttonwillow, California 93206 (916) 361-5688 Dennis Westcot Central Valley Regional Water Quality Control Board 3443 Routier Road Sacramento, California 95827-3098 (805) 764-5543 Tolbert Williams 317 Sundan Avenue Buttonwillow, California 93206 (916) 758-2832 Roy Woodward Sequoia Research Laboratory P. O. Box 1802 Davis, California 95616 (209) 655-3221 David Woolley Murrieta Farms 5854 South San Diego Avenue Mendota, California 93640

Lin Wu (916) 752-7179 Associate Professor Department of Environmental Horticulture University of California Davis, California 95616

Mr. George Zappettini 17844 Yosemite Road Sonora, California 95370

(209) 928-3468

SECTION 12.0

Glossary

١

.

in the Profession of Stations and Maria Contenant (0157)

TREE Young It. The Second Seco

SHCHION LA. O

Gl.debary

12

1-51

12.0 Glossary

- AGROFORESTRY: A concept which uses tree plantings to support the production of farm crops through improved water management and reduced soil erosion. The trees also increase the production and marketing options for farmers.
- BIOFILTER: Plants which accumulate selenium and salts and which may be grown for the purpose of partial removal of these elements from a farming system.
- BIOMASS: Crops and trees grown and harvested as industrial or energy commodities.
- COPPICE: The regrowth of trees from stumps after cutting.
- CUTTINGS: Portion of a stem, root, or leaf cut from the parent plant for the production of a new independent plant by inducing it to form shoots and roots under favorable environmental conditions.
- DEFOLIANTS: Agricultural chemicals applied for removing foliage from plants (e.g., defoliants applied before cotton harvesting).
- DESALINIZATION PLANT: A water treatment facility which uses industrial technology for removing salts from water.
- ELECTRICAL CONDUCTIVITY (EC): One way of measuring salinity of water or soils, commonly expressed as millimhos per centimeter (mmhos/cm) or deciSiemens per meter (dS/m), equivalent terms. EC can also be related to osmotic pressure, which influences the amount of water a plant's roots can extract from the soil. One mmhos/cm or dS/m corresponds to about 640 parts per million total dissolved solids (see ppm, TDS).
- EVAPOTRANSPIRATION (ET): The quantity of water transpired and evaporated from plant tissues and the surrounding soil surface. Quantitatively, it is expressed in terms of volume of water per unit area over a specified period of time (i.e., acre-feet per acre per year) or depth of water during a specified period of time (i.e., meters per year).
- GYPSUM: Calcium containing soil amendment applied to soils with a high concentration of sodium. The calcium replaces sodium on soil particles so that the sodium may be leached below the root zone.
- HALOPHYTE: A plant with high salinity tolerance which may uptake salts and can be irrigated with highly saline water.
- LEACHING: The application of sufficient amounts of excess water to a field in order to flush out salts.

- LEACHING REQUIREMENT: The amount of water required to flush a sufficient quantity of salts from the root zone to maintain full crop productivity.
- PARTS PER MILLION (ppm): Equal to one part of a substance dissolved in one million parts of a solution. Nearly equivalent to milligrams per liter.
- PERCHED WATER TABLE: Ground water supported by a zone of material of low permeability and situated above an underlying main body of ground water with which it is not hydrostatically connected.
- PERCOLATION: Movement of water down through the soil toward the water table (the level at which water stands in a well).
- SALINE SINK: A body of water or soil too salty for crop production.
- SALINE SOIL: A soil high in soluble salts but without too much exchangeable sodium.
- SALINE-SODIC SOIL: A soil which has both high soluble salt and sodium levels.
- SALT BALANCE: Equilibrium achieved when the amount of salt entering an area (through irrigation) equals the amount of salt leaving (through leaching the root zone)
- SEEDLING: Young plant originating from seed.
- SEED SOURCE: A plant or geographical location from which seeds are obtained.
- SEEPAGE: The gradual movement of water through the soil; usually refers to canal or ditch banks.
- SELENIUM: Non-metallic trace element which is a necessary nutrient in very small amounts but can be toxic in high doses.
- SODIC SOIL: A soil high in sodium but low in soluble salts.
- SODIUM ABSORPTION RATIO (SAR): Ratio which indicates the relative activity of sodium ions as they react with clay. It can be determined by using the following equation:

- SOIL AMENDMENT: A substance mixed into the soil to improve its properties. Usually applied to materials used to improve physical conditions.
- SUBSURFACE DRAINAGE WATER: Water from perched water tables which has been removed by underground "tiles" or drainage systems.
- TOTAL DISSOLVED SOLIDS (TDS): Measure of salts dissolved in water.
- VALUE-ADDED PRODUCTS: Commodities processed from raw farm products which have a higher market value.

- -

.

Credits

Many people contributed to the San Joaquin Valley Agroforestry Demonstration Program and to the development of this report. The major contributors are identified below:

Program Administration/ Data Coordination & Analysis	Vashek Cervinka Ilona Rice	CDFA CDFA
Field Trial Management	Clarence Finch John Beyer Frank Menezes Raul Ramirez	USDA-SCS USDA-SCS USDA-SCS USDA-SCS
Tree Selection and Propagation Project	Roy Woodward Roy Sachs Miles Merwin	UC Davis UC Davis ITCI
Economic and Marketing Study	Luanne Lohr	UC Davis
Wildlife Study	Andrew Dyer David Chesemore	CSU Fresno CSU Fresno
Halophyte Biofilter Trial	Carol Watson	UA Tuscon
*	* *	

24

(.) 0)

.1 .1 .1