
LID.

TECHNICAL REPORT SECTION
NAVAL POSTGRADUATE SCHOOL
MONTEREY. CALIFORNIA 93940

NPS-53ZZ7306-1A

Naval
//

United States
Postgraduate Schoo

BENCHMARKED COMPARISON OF THE

TSS/360, CP/67, MTS and OS/MVT

COMPUTER OPERATING SYSTEMS

by

Gordon H. Syras

Approved for public release; distribution unlimited

FEDDOCS
D 208.14/2:NPS-53ZZ73061A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Mason Freeman, USN M. U. Clauser
Superintendent Provost

BENCHMARKED COMPARISON OF THE
TSS/360, CP/67, MTS and OS/MVT
COMPUTER OPERATING SYSTEMS

ABSTRACT

:

A set of terminal scripts and benchmarks have been derived for
comparing the performance of time sharing and batch computer operating
systems. Some of the problems encountered in designing valid bench-
marks for comparing computer operating systems under both terminal and
batch loads are discussed.

The results of comparing TSS/360, CP/67 and MTS time sharing systems
for the IBM 360/67 over a wide range of load conditions are presented.
The results of comparing TSS, MTS and OS/MVT under batch loads are also
presented

.

Serious performance degradation of the time sharing computer systems
from overloading was experienced and a simple solution is suggested to

prevent such degradation. The degradation was so severe as to render
the performance less than that of a sequential job processor system.

This task was supported by an NPS Foundation Grant for two and a

half academic quarters.

NPS-53ZZ73061A
June 1973

Acknowledgement

The author would like to express his appreciation to all the people

who assisted in this project and made this report possible. Specifically,

he would like to thank the following: the CS 4900 class of Quarter III

AY 72 for developing the scripts and for conducting the CP and TSS bench-

marking runs; William R. Haines and James H. Porterfield who performed

the original analysis of the CP and TSS test results; E. E. Gregeris and

R. F. Belanger who performed the terminal probing tests to determine the

normal terminal user loads; Elbert F. Hinson who almost single handedly

conducted the MTS tests and originally analyzed the results; the NPS

computer center personnel and Gerald L. Barksdale who conducted the batch

benchmarking runs and analyzed the results; and finally a special thanks

to Robert E. Graham and F. Douglas Meyers who painstakingly rechecked the

intermediate data and prepared many of the tables and graphs in this report

The author would also like to thank the NPS Computer Center for

providing the dedicated computer time and support for running the bench-

marking runs, and also any users who were inconvenienced by the tests.

Finally, he would like to express his appreciation for the NPS Foundation

grants that made this project and report financially feasible.

ii

Table of Contents

Page

1 INTRODUCTION AND SUMMARY 1

1.1 Introduction 1

1.2 Operating Systems 2

1.3 Computer Configuration at NPS 4

1.4 Configurations Tested 5

1.5 Summary of Objectives 6

1.6 Summary of Results 6

2 METHODS OF APPLYING LOADS AND MEASURING PERFORMANCE 9

2.1 Possible Methods of Applying Loads 9

2.2 Actual Loads Used 11

2.2.1 Terminal Benchmarks 13

2.2.2 Batch Benchmarks 17

2.3 Possible Methods of Measuring Performance 18

2.4 Actual Measurements Used 19

3 BENCHMARK TESTS PERFORMED 21

3.1 Terminal Benchmark Tests 21

3.2 Batch Benchmark Tests 25

3.3 Other Tests 25

4 DATA COLLECTION AND ANALYSIS 29

4.1 General Philosophy 29

4.2 Throughput Analysis 30

4.2.1 Measured Throughputs 30
4.2.2 Calculated Throughputs 31

4.2.3 Measured Versus Calculated Throughputs 33

4.3 Definition of Load Factors 34

4.4 Attempted Regression Analysis 36

5 OTHER TESTS AND INTERMEDIATE RESULTS 40

5.1 Terminal Mixed Script Tests 40
5.2 Terminal Mixed Script Results 41

5.3 Terminal Probe Tests 43

5.4 Terminal Probe Results 43

6 RESULTS AND COMPARISONS 46

6.1 General Philosophy 46

6.2 CP Test Results 47

6.2.1 CP Terminal Response Times 47

6.2.2 CP Measured Throughputs 49

in

PaS e

6.2.3 CP Calculated Throughputs 53

6.2.4 CP Effective Progress Rates 57

6.2.5 CP Software Monitor Results 64

6.3 TSS Test Results 70

6.3.1 TSS Terminal Response Times 70

6.3.2 TSS Throughputs 73

6.4 CP and TSS Performance Comparisons 73

6.4.1 Terminal Response Time Comparisons 73

6.4.2 Terminal Throughput Comparisons 79

6.5 MTS Test Results 84

6.5.1 MTS Terminal Response Times 84

6.5.2 MTS Throughputs 89

6.5.3 MTS Effective Progress Rates 94

6.6 CP and MTS Comparisons 98
6.6.1 CP and MTS Terminal Response Time Comparisons 100
6.6.2 CP and MTS Throughput Comparisons 104
6.6.3 CP and MTS Effective Progress Rates 104
6.7 CP, TSS and MTS Comparisons 110
6.7.1 Pair-Wise Comparisons 110
6.7.2 Performance at Typical Loading Conditions HI
6.8 Batch Benchmarking Results and Comparisons 113

6.8.1 Batch Benchmarking Results H3
6.8.2 Batch Performance Comparisons H6
6.8.3 Comparison of MTS with CP plus OS 121

7 CONCLUSIONS 124

References 129

List of Appendices

A Terminal Scripts and Programs 131

B Batch Benchmarking Programs 154

C CP Intermediate Results 159

D TSS Intermediate Results 174

E MTS Intermediate Results 177

F Batch Intermediate Results 187

IV

List of Figures

Page
1 NPS Computer Configuration 4a
2 CP Terminal Response Time for Each Script

under Various Loads 48
3 CP Measured Terminal Throughput for Various

Loads 50

4 CP Total Measured Throughput for Each Script 51

5 CP Total Measured Throughput for Each Script -

EDIT and FORTRAN 52

6 CP Total Measured Throughput with Various
Weightings 54

7 CP Mean Calculated Terminal Throughput vs
Measured Terminal Throughput - FORTEX, PLISM
and PLILG 55

8 Continuation of Figure 7 - EDIT and FORTRAN 56
9 CP Total Measured and Calculated Throughput 58

10 CP Effective Progress Rate per Script 60

11 CP Total Effective Progress Rates 61

12 CP Problem (CPU) Time and Paging Rates 65

13 CP Problem Time Versus Paging Rates 67

14 Problem and Supervisor Time for Runs
R41 to R47 68

15 Shift in Resource Allocation during
Runs R41 to R47 69

16 TSS Terminal Response Times for Various
CP Load Factors 71

17 TSS Terminal Response Times for Various
Combined Load Factors 72

18 TSS Terminal Throughputs - Measured and
Calculated 74

19 TSS Total Measured and Calculated Throughputs
per Script 75

20 CP Terminal Response Times versus Combined Load
Factors 77

21 CP versus TSS Response Times 78

22 CP versus TSS Terminal Response Times for
Three Configurations 80

23 CP versus TSS Calculated Terminal Throughputs 81

24 Comparison of CP and TSS Total Throughputs 83
25 MTS Response Times for Various Loads 87

26 MTS Response Times versus Combined Load Factors 88

27 MTS Measured Terminal Throughput 90

28 MTS Total Measured Throughput for Each Script 92

29 MTS Total Measured Throughput 95

30 MTS Effective Progress Rates per Script 96

Page

31 MTS Total Effective Progress Rates versus
MTS Load Factors 97

32 MTS Total Effective Progress Rates versus
Combined Load Factors 99

33 CP versus MTS Terminal Response Times for
Various MTS Loads 101

34 CP (Scaled) versus MTS Terminal Response
Times for Various MTS Loads 102

35 CP (Scaled) and MTS Terminal Response Times
for Various Combined Load Factors 103

36 CP (Scaled) and MTS Terminal Response Times
for Equivalent Runs 105

37 CP and MTS Total Throughput Comparisons 106

38 CP and MTS Total Effective Progress Rates 108

39 Some Typical Effective Progress Rates per
Script for CP and MTS 109

40 Terminal Response Times at Selected Load
Conditions for CP , TSS and MTS 112

41 Total Measured Throughput for Selected
Load Conditions for CP, TSS and MTS 114

42 OS Benchmarking Results 115

43 Comparison of Total Turnaround Times
for Batch Benchmarks 119

El Time Analysis of MTS Run R63 182

VI

List of Tables

Pages

1 Comparison of Loading Methods 12

2 Summary of CP Benchmarking Runs 22

3 Summary of TSS Benchmarking Runs 24

4 Summary of MTS Benchmarking Runs 24

5 Comparison of Terminal Benchmarking Runs 26

6 Results of Mixed Script Tests and a

Comparison with Fixed Script Results 42

7 Results of the Terminal Probing Tests 44

8 MTS and Combined Load Factors Corresponding
to the Normal User Loads 45

9 Total Conjectured Effective Progress Rates 63

10 CP versus TSS Comparison Configurations 76

11 Breakdown of Terminal Response Times for
Run R63 86

12 Hardware Monitor Results for Comparing
OS/MVT Performance with 768K bytes versus
512K bytes of Core Under Normal Operating
Conditions 117

Bl Batch Benchmarking Jobstream Characteristics 156

B2 Jobstream Summary by Region and CPU Time 157

B3 Jobstream C Execution and Region Used 158

CI CP Average Response Time at Each Terminal 161

C2 CP Mean Response Time for Each Script 166

C3 CP Mean Calculated Throughput for Each Script 167

C4 CP Measured Terminal Throughput 168

C5 CP Total Measured Throughput per Script 168
C6 CP Minimum Response Times 169

C7 CP Effective Progress Rates 170

C8 CP Software Monitor Results Summary 171

C9 CP Software Monitor Results - Test 3 172

CIO CP Individual Terminal Response Times for

Determining the Effect of Memory Size 173

Dl TSS Mean Response Time for Each Script 175

D2 TSS Measured Terminal Throughputs 175

D3 TSS Calculated Terminal Throughputs 175

D4 TSS Total Measured Throughputs per Script 175

D5 TSS Total Calculated Throughputs per Script 176

El MTS Original Response Times and Throughputs 180

E2 MTS Corrected Response Times and Throughputs 181

E3 MTS Mean Terminal Response Times Used in Graphs 184

E4 MTS Measured Throughputs per Script 185

E5 MTS Minimum Terminal Response Times 185

E6 MTS Effective Progress Rates 186

Fl MTS Batch Benchmarking Results - September 1971 188

F2 OS/MVT Batch Benchmarking Results 189

F3 Summary of Batch Benchmarking Turnaround Times 189

vn

Section 1

INTRODUCTION AND SUMMARY

1.1 Introduction

With the increased economic pressure on most computer centers, there

is an increased need for accurate comparison of different computer systems

and different operating systems on a particular computer system. The

problem of selecting an operating system for a large computer system is

a "difficult" task, especially when there are several available operating

systems. The selection is difficult because the techniques for comparing

computer performance are not well developed (especially for time sharing

systems), the number of variable system parameters is almost unlimited,

and the operating systems have significant effect on the performance of

the computer system. In fact, selecting a better operating system may

even double the performance of a four million dollar computer system.

Although monitoring the computer performance under actual operating

conditions is the most accurate, it is difficult to make comparisons or

measure improvements in performance under these conditions. Thus there is

a need for loading the computer in such a way that it is repeatable from

day to day and from one operating system to another. Although the tech-

nique of using a fixed benchmark or set of programs has been used on

numerous occasions to measure the performance of batch operating systems,

an equivalent technique apparently has not been widely used to measure

time sharing systems.

Although the problem of optimizing the performance of time sharing

systems is much more difficult than for its batch counterpart, it is felt

that the benchmarking technique is also useful for time sharing systems.

In a batch operating system, there are relatively few user programs com-

peting for system resources at any one time. Thus, it is relatively simple

to collect a set of benchmark programs that are representative of a "typical"

load and that could be used for evaluating and comparing the computer systems

On the other hand, in a time-sharing system there are many user programs

competing for resources and, at any one time, there may be many requests

for a particular resource. Since there are so many combinations of re-

quests, it is very difficult to construct a set of test programs (or scripts)

that will represent a "realistic" load for comparing several time-sharing

systems. Also, the time-sharing monitors (schedulers) handle the requests

differently and, as a result, the same scripts present very different

loads on the different systems thereby producing large differences in

performance. Thus the first objective of this project was to develop a set

of terminal test programs or scripts suitable for loading and comparing the

performance of time sharing systems. These scripts were then to be used to

compare the performance of four operating systems for the IBM 360/67

computer under a wide variety of loading conditions.

1. 2 Operating Systems

The four major operating systems for the IBM 360/67 computer and the

ones that were compared are:

(1) IBM's TSS/360 - Time Sharing System, version 7 with schedule

table T49 [1]*,

*Reference 1

(2) IBM's CP/67 - Control Program/1967 developed by the

Cambridge Research Center in Cambridge, Mass., version 3.0,

(3) MTS - Michigan Terminal System developed by University of

Michigan, versions 2.0 and 2.1, and

(4) IBM's OS/MVT - Operating System/Multiprogramming with a

Variable number of Tasks, Release 15/16.

In this report, these operating systems will be referred to as simply TSS,

CP, MTS and OS respectively.

Three of the operating systems, TSS, CP and MTS, were designed

primarily as time sharing (or terminal) systems, but TSS and MTS also have

batch handling capabilities. On the other hand, OS was designed primarily

as a batch operating system , although small time sharing operating systems

are sometimes run under OS as one of the tasks*. Another major distinction

in these systems is that TSS and MTS can operate with one or two processors

(CPU), while CP and OS can operate with only a single processor.

Since both batch and terminal services are required at this installa-

tion, the system (or systems) chosen must support both requirements. For

most of the time, the IBM 360/67 computer has been run as a split system

with CP providing the terminal services and OS providing the batch services

For a brief four month period from September to February 1971, TSS provided

both the batch and terminal services.

*Time sharing operating systems that run under OS/MVT-such as CALL/360-OS,
CPS (Conversational Programming System), ITF (Interactive Terminal Facilities)
ATS (Administrative Terminal Services), APL/360 and the new TSO (Time Sharing
Option of OS) offer only restrictive capabilities and generally poorer per-
formance than the general time sharing systems and therefore are not considered
here.

The second objective, and the reason for the initiation of this

project in January 1971, was to compare the performance of CP with that

of TSS. The third objective was to compare the total performance of the

split system (CP and OS) with that of TSS. The fourth objective was to

compare the performance of the split system with that of the Michigan

Terminal System, MTS. The performance was to be compared by placing a

terminal load on CP and a batch load on OS, and then placing the same

combined terminal and batch load on MTS, and measuring the resultant

performances in all cases.

The fifth and final objective was to supply management with informa-

tion that will assist in their decision of whether to continue running

the split system (CP and OS) or to adopt MTS as the one operating system

to handle both the terminal and the batch computing requirements.

The next sections will describe the NPS computer configuration and

the configurations that were tested in order to satisfy the above objectives

1. 3 Computer Configuration at NPS

The IBM 360/67 at NPS has the following configuration (Figure 1)

:

central processor units (CPUs)

,

core boxes (768K bytes)

,

direct access storage unit

(8 disk drives)

,

disk drives (1/2 the speed of 2314), and

drum storage unit.

For TSS and MTS the tests were conducted using the full configuration.

Two 2067

Three 2365

One 2314

Eight 2311

One 2301

<
X
o
z
o

>-
ul

Ori

U]
H
z

„ o

< :

a:

D
O
u.

z
o
u

>©

-i
uj

Q
O

d

1^
2 z

Figure 1 NPS Computer Configuration

4a

On the other hand, when the system was run as a split system, the

resources were divided in the following manner. OS was assigned:

One 2067 CPU,

Two 2365 core boxes (512K bytes), and

One 2314 direct access storage unit;

while CP was assigned:

One 2067 CPU,

One 2365 core box (256K bytes)

,

Eight 2311 disk drives, and

One 2301 drum.

1.4 Configurations Tested

Since one of the objectives was to compare the performance of TSS

with CP under the configurations used at NPS, the tests were conducted

with both systems configured as above, thereby giving CP a serious

disadvantage. In fact, CP had only one-third the core memory, the slower

disks and only one processor as compared to the full system for TSS. This

comparison was made to show that if CP could compete with TSS under these

conditions with terminal load only, then it would be much more economical

to run this installation as a split system rather than as a dual processor

system under TSS. Essentially the OS batch thoughput would be obtained

for free.

Thus the following six configurations were tested:

(1) TSS - Full System
(Dual processor, 768K memory, 2314 disks, drum)

(2) CP - Single Processor, 256K Memory, 2311 Disks, Drum

(3) CP - as above but with 512K Memory

(4) OS - Single Processor, 512K Memory, 2314 Disks, No Drum

(5) OS - Full system except for single processor

(6) MTS - Full System

1.5 Summary of Objectives

Thus the objectives of this project are summarized as follows:

(1) To develop a set of terminal scripts suitable for loading

and benchmarking the performance of different time sharing operating

systems.

(2) To compare the performance of CP with that of TSS under

the configurations at NPS (One core box, single processor and slower

disks for CP; three core boxes, dual processor and faster disks for TSS).

(3) To compare the performance of the split system (CP and OS)

with that of TSS with a full configuration.

(4) To compare the performance of the split system with that

of MTS - the Michigan Terminal System.

(5) To supply information for management to assist in making

the decision of whether to stay with the split system or to adopt a single

operating system like MTS for both batch and terminal services.

1.6 Summary of Results

Before describing the details of the tests performed and the performance

measured, a summary of the results are presented in this section. The major

results are:

(1) A basic set of six scripts was developed for loading and

comparing performance of different time sharing operating system. (Other

scripts were also developed for use in other conditions such as sampling

the normal operating load.)

(2) CP with a single core box (256K bytes) , one processor and slower

disks out-performed TSS with three core box (768K bytes) , two processors

and faster disks over almost all tested loading conditions.

(3) Operating the split system with CP and OS provided much better

performance than running the full system under TSS, because the batch

service from OS was obtained for essentially free. See result 2 above.

(4) MTS with a full system out-performed CP running with a limited

system of one or two core boxes by a wide margin. In fact, the performance

from MTS with two processors and three core boxes was more than three times

that of CP with one core box and a single processor.*

(5) CP with two core boxes (512K bytes) had almost double the per-

formance of CP with only one core box (256K bytes).

(6) From results 4 and 5 above, it was concluded that MTS would out-

perform CP even if both systems were given the same amount of core memory

and thus essentially same resources. (There was not sufficient justification

to do these tests.)

(7) TSS out-performed OS on batch-only jobs by a small margin.

(8) MTS out-performed OS on batch-only jobs by a wide margin.

*The single processor restriction is a limitation of CP , not the tests

performed.

Although the tests comparing CP and MTS under terminal load only

and the tests comparing OS and MTS under batch load only have been

completed and are reported here, the final MTS tests in which the load

includes the terminal load from CP plus the batch load from OS have not

yet been completed. The final testing of MTS is currently awaiting the

arrival of latest distribution of MTS, namely Distribution 3.0. Thus, it

is not yet possible to make a definite recommendation to management on

whether to retain the split system or to adopt MTS, although there is

significant evidence in favor of MTS.

The purpose of writing this report at this time is to consolidate

the results from the tests already performed, and to provide motivation

for completing the comparison of the performance of the split system to

that of MTS. Previously reported work from which this report has drawn

included Haines 1 and Porterf ield's thesis [2] and Hinson's thesis [3].

In both cases extensive analysis and several comparisons are made beyond

that reported previously.

Section 2

METHODS OF APPLYING LOADS AND MEASURING PERFORMANCE

Before discussing the actual tests performed and presenting the

results, this section will discuss some of the possible methods of

applying loads and methods of measuring performance of computer systems.

Even after deciding on a computer configuration, there are many

choices of techniques for empirically comparing operating systems. The

following selections must be made: first, the method of applying the

load; second, the method of measuring performance; third, the actual

test loads to be used within the selected methodology; and fourth, the

actual data to be collected within the performance measurement methology.

2.1 Possible Methods of Applying Loads

There are seven basic methods of applying loads to batch and terminal

oriented computer systems. These are:

(a) Normal User Load: the normal user load is applied under

actual operating conditions. This is the most realistic

load but is the most difficult to duplicate and therefore

unsatisfactory for comparing performance of different

operating systems.

(b) Batch Benchmark: a set of programs are selected as "typical"

jobs and run as a jobstream. This method is commonly used

for measuring batch oriented computer systems.

(c) Terminal Benchmark: a set of "typical" programs are

selected as in the batch benchmark case, a set of terminal

scripts are written to call these test programs in a pre-

determined order, and finally, the number of each script

to be run for each benchmark is selected.

(d) Terminal Probe: A terminal script containing several

"typical" programs is used to probe the response under

normal operating conditions. This is a combination of

methods (a) and (c) above.

(e) Indirect Synthetic Job: A program is written, normally

in a high level language, that has parameters to control

the memory, processor (CPU) and input/output requirements.

The same program with different parameters representing

different resource requirements is run on several terminals.

An example of such a job is a Fortran matrix multiplication

program that changes (possibly in some random fashion) its

memory, CPU and I/O requirements.

(f) Direct Synthetic Job: a program is written, normally in

assembler, that directly controls the memory, CPU, I/O and

supervisor requirements. As in case (e) above, the same

program with different parameters is run on several terminals

An example of such a job is A JOB written at the Naval Post-

graduate School [4].

(g) Direct load by another Computer: A mini-computer is used to

generate the memory, CPU, I/O and supervisor requirements for

the computer under evaluation. MITRE has developed such a

Remote Terminal Emulator [5]

.

10

The criteria for selecting a loading method include repeatability,

realism (accuracy in representing the real load) , interference with

normal operations, development effort, ease of performing the tests, and

transferability to other systems. Table 1 shows the rating of each loading

method against each criteria. Two comments concerning Table 1 are: (1)

that the realism depends greatly on how consistent the normal user load

is and how well it has been measured; and, (2) high interference means

that a dedicated system is required to perform the test, such as in the

benchmarking case.

A little simple arithmetic shows that there were a very large number

of possible test conditions, even after all the above selections have been

made. For example, since there were six operating systems configurations

to be tested and seven types of loading, there were a total of 42 possible

tests for each point on the load curve (independent variable) . The next

section will discuss how the number of possible test conditions was restricted.

2.2 Actual Loads Used

Four of the seven possible methods of loading a computer system were used

in this project. A batch benchmark was used to compare TSS, OS and MTS under

batch operation. A terminal benchmark was used to apply a terminal load for

comparing TSS, CP and MTS under time sharing operation. A terminal probe

was used to verify that ranges of loading used in the tests were realistic.

(The probe was also used to isolate users who were overloading the system.)

An indirect synthetic job was used to compare performance of CP and MTS at

NPS (and at the University of Alberta in Edmonton, Alberta, Canada [6]).

11

»a
4-> V
•W 4-1

—i en

t-i >
X CO

CO

»- c
0J 01 E O

C4-I 41 u 3 4J
w 5 •H •a
C 4J 01 •a 1-4 •a l-i o 13 l-i t-i

CO (U c --I 01 ~t c o H O
H X o CO E 3 00 o CO o
(-< z ftf ,i •i_i hfl U_l Oi

* *
00 »: *

>" c u >^ tJ 4-1

o t-i .—4 U] ^H »—

1

F 4-1 3 CO 3 3
<u C w CJ 01 u CJ B
0) 4) * —i •H H 3
nj u-i 4J • ^ 14-, >. U-i U-i •H
td i. < CO U-i 1-1 Ul 44-1 -o

01 • CO •r4 0) -H H 01

o. 2 01 -o > 13 •o R

4-1

C
0) o J3
e *-> 4J 00
o. I- E
o o F E O 3 B x;
.-I U-l * 3 3 4J -r-l 3 J3
cu u-i • T-4 T-| -o H 00 >,
> 01 < 3 a -o 3 cu -O i-l 14
01 * o 01 01 o E 0) J3 aa 2 I-l B B .-< E >

01

o
c
01 t-H

»-l Cfl K -K
01 * B fN K Km • j3 X T-l J^J ,n J3 x:
u < 00 oo c m 00 OO 60z 01 • -4 t-I T-4 ^ •H •H •Ho

c/}

4-1

CM
z X: X B j3 J3 x;

3 u O
a. e m O g O
2* 0) a 2 i-i 9 00 Rb T-l X 3 T-| 3o r-l •H l-i •a >i T-4 •o *o

3 0) -a -4 01 l-l T3 o
OS 01 X! 0) 3 g 01 n» o Do

S3

« *-j E U-l > a 00 00

>1
OS uW t-I

H >-l
>-i •H t. O O T3 •a
OS X o 4J 4-1 O o
CJ « o O ou a. a T) T3 00 00

3 3 O 3 O
01 >, T3 —

I

O a •H O ^ s^a 1-. O •a 00 o "O 00 l-l i-i

01 01 o 0) o 0) 41 o
ai > 00 e 00 E > >

.̂-i

nj t-l •—

1

i-4

>> c CO CO CO
t-l -< C C c

a e
*h i-l t-l

S
B

B
•H 01 l-i l-i

JQ AJ 01 01 0)

CD i-1 4J 4-1

CI 1-

H O u l-H .-(l-l U r-4

>H CO CO o o CO

O. X a c c
tx u X Xi •H H J3 J= H< 4J u cj

E
s u U E

M 1-1 u u 4-1 4-1 CX RJ 3 a 0) « CO 01

1

- X X i-i i-i J3 -Q 4-1

•3
o CJX T-l

4-1 -a 4-1 CJ

01 a 01 H M
5: o J3

4-1

4-1

CJ

^ o>

x *-•

00 c sz 3
c i-i >> 1-1 TJ 3.
T-4 01 co c co B
-o co .*: >, ° °.
0) 3 i-i 4-1 CO ^4 a
o 3 CJ t

J —I t u 01 i-l 4J T-l

ca x C CJ U XI CJ J3 O C
e cj -H J3 TT O 01 O 01 T-l

t-i c l-l TT -) u <~1 >- E
o 01 CJ l-i C —4 T-4

2 pa
1
C/l a. 1-1 Q c

CO

V4

CO

B
x:
o
c
4)

X)

•o
4)

B
3
en

0)

d
41

x:

c
<o

x;

41

Xi
*J

«
n

m
4)

X>
O
l-i

3.

in

01

a)

8

o
o
x
4-1

41

cH
•3
CO

O

X
3
H

3
J3
u
C
>%

41 CO

r-H

X 3
3 4-J

CJ 3
•H l-l

rH 3
O. 3.
a O
3

O
4-1 CO

o r-l

z 3

1
3
i-l

• 3
< O

CJ
z *
* *

12

A fifth method of loading - the Direct Synthetic Job - has not been

used in the evaluation tests although it was developed at NPS [4], The

sixth method - normal user load - was not used for the tests because of

its poor repeatability from day to day and its poor transferability from

system to system.

Since the number of configurations and loading methods was so large,

it was decided to limit the type of loading on each configuration: batch

and terminal benchmarks for TSS; terminal benchmarks, terminal probes and

indirect synthetic jobs for CP single core-box system; terminal benchmarks

for CP dual core-box system; batch benchmarks for the two OS configurations;

and batch and terminal benchmarks for MTS . This still meant that nine

different loading and configuration combinations were tested in this

project. Even this number was too large for evaluating over a reasonable

range of loads and thus the number of test loads had to be restricted on

certain configurations. Even so, a total of about 60 test runs were made.

2.2.1 Terminal Benchmarks

Although the development of the terminal benchmarks was really an out-

growth of the batch benchmark concept, the terminal benchmarks are described

first to be consistent with the later ordering of the performed tests.

Actually this script loading approach was first suggested by Karush as the

stimulus approach for benchmarking the ADEPT-50 time sharing system at

Systems Development Corporation [7]. Since a standard set of terminal

benchmarks apparently does not exist for comparing time sharing systems,

a set of terminal scripts was developed and used as terminal benchmarks.

13

The problem of developing terminal benchmarks was more difficult than

its batch counterpart and was divided into three subproblems:

(1) Selecting a set of programs that were "typical" of user

jobs,

(2) developing terminal scripts to call the programs, and

(3) assigning scripts (type and number) to each terminal in

order to apply realistic benchmarking loads to the system.

The benchmark development was further hampered by the fact that

reliable statistics on program utilization was not available for these time

sharing systems - as is usually the case.

The programs selected for the benchmark were of three types: compila-

tion, execution and edit programs. The compilation programs included a

Fortran compilation, because that represented the major poartion of terminal

jobs at this installation, and a small and a large PL/I compilation. PL/I

programs were chosen because they represent large complex compilations which

have large working sets (30 to 40 pages) and use large amounts of CPU time,

thus degrading the performance of any time sharing system.* The execution

programs were represented by a computer-bound (Fortran) execution program

and a page-bound (Fortran) execution program. The edit program was a

simple program that performed some typical editing functions and then

waited for a "simulated think time" period. The actual programs used in

the benchmark were as follows:

*It is believed that the large PL/I jobs are representative of other heavy

demand jobs such as assembler programs, large programs with many subroutines,

etc.

14

FORTRAN - A routine to compile an average size (75 card)
Fortran program.

PLILG - A routine to compile a large (434 card) PL/I program.

PLISM - A routine to compile a small (47 card) PL/I program.

FORTEX - A routine to simulate a compute-bound job. It

executed 1,000,000 additions in a loop and then printed
a line at the terminal.

PAGE - A routine that uses a large array and accesses a

different page for each operation.

EDIT - A routine that performs several edit type functions,
such as locating a string in the program, moving the
pointer up and down and typing some output to a terminal.

The major difficulty in selecting the programs was for the EDIT program,

since each time sharing system handled editing differently. TSS stored the

results after every edit command onto backup storage (disk or drum) , while

CP and MTS stored the editing results only when told to "SAVE". Since the

TSS operation could not be changed, it was decided to make CP and MTS more

consistent with TSS by having their edit programs retrieve and store the

file after executing a few edit commands. The other problem with edit

programs was in simulating a time delay to represent "think time". The

basic idea was to execute edit commands for about 5 seconds and then to

wait for 55 seconds for "think time". For TSS, a built-in real time clock

was used to represent the 55 second delay by causing an interrupt. For

CP the delay was produced manually by a terminal operator who restarted

the editor every 55 seconds and allowed it to run for 5 seconds. For MTS,

the delay was simulated by having the editor print an extra ten lines at

the terminal. In actual fact, the MTS edit program printed 19 lines

(9 extra) compared to two for CP , again, because of differences in the editors

15

After the programs were selected for the terminal benchmarks, the

next subproblem was to develop the proper terminal scripts for calling

the programs. The major concern was whether to run fixed scripts -

where each terminal script ran one and only one program -, or mixed scripts

where each script called several programs in some predetermined order. The

fixed script approach was selected because it allowed better load control

and data analysis. (It was later verified that the mixed scripts produced

approximately the same response for the same load as the fixed scripts.)

The scripts were each written so that they would print the starting

time at the terminal, call the program, print the completion time and

then repeat by calling itself. This minimized the test operator inter-

vention - limiting it to changing the scripts of certain terminals at the

beginning of each run. Complete listings of the program and the terminal

scripts are shown in Appendix A.

The third subproblem in defining terminal benchmarks is to assign

the scripts (number and type) to each terminal. Early in the testing, it

was decided to hold the number of terminals relatively constant at about

24 and to vary the load by adjusting the ratios of each type of script.

Thus a test with many edits and only a few large PL/I or paging jobs would

be a light load. In fact, a wide range of loads from light to very heavy

loads was obtained by changing the ratio of edit scripts to compilation-

plus-execution scripts from 5:1 to 1:5. The ratio 2:1 probably best

represents the normal user load but the heavier loads were used to test

16

the system tolerance to overload. The actual number of each script for

each test run is given in the next section (Section 3)

.

The major difficulty in selecting the number of each scripts to

represent a desired load is that the different schedulers (the resource

allocators in the operating systems) handle the same type of job differently.

For example, MTS has a very effective strategy for handling compute-bound

jobs - by assigning them a large time slice on the second processor -,

and for handling "trouble-makers" who want a large number of pages and

a lot of CPU time - by assigning them to the back of a low priority queue

(possibly after giving them one long time slice). This seriously changes

the effective load on the system, even when the terminals are running

identical scripts. This is discussed further in the results section.

2.2.2 Batch Benchmarks

The batch benchmarks, that were used for comparing the batch operation

of TSS, OS and MTS, consisted of fifteen programs arranged to make 3

separate benchmarks. The 15 programs were all three-step or four-step

Fortran jobs with 12 of the jobs requiring less than 25 seconds of CPU

time and less than 100K bytes of core memory, while the other three

required less than 6 minutes and 300K bytes of memory. The characteristics

of the programs are given in Appendix B. A complete listing of the programs

can be obtained from the author.

The batch programs were organized in three benchmarks as follows:

(1) Benchmark A - compilations with source listings,

(2) Benchmark B - compilations without source listings, and

17

(3) Benchmark C - No compilation or listings, i.e., programs run

from load modules on disk. Data (and Job Control Language) was still

read from card reader.

The test method for using the batch benchmarks was to put all the

card decks in the card reader with the computer idle waiting for input,

start the card reader and then record the time from the first card read

until all the jobs were processed and the last line printed.

2 . 3 Possible Methods of Measuring Performance

Two basic methods for measuring computer performance are:

(a) Primary Performance - performance as seen by the user, i.e.,

turnaround time, terminal response time and sometimes throughput. Primary

performance is sometimes referred to as external performance.

(b) Secondary Performance - performance as observed within the

computer itself, i.e., CPU utilization, channel utilization, memory

utilization, paging rates, overhead, number of I/O operations, and sometimes

throughput. Secondary performance is also referred to an internal per-

formance.

There are several methods of measuring both primary and secondary

performance. Primary performance can be measured by a stopwatch, by an

elapsed-time clock in the computer or by users' dissatisfaction (or screams)

Secondary performance can be measured by a software monitor or a hardware

monitor.

The major advantages of primary performance over secondary performance

is the relative ease of making the measurements and the fact that primary

performance is one of the major criteria in selecting a computer operating

system. Another advantage, of somewhat lesser significance, is that the

measurements are easy to make and require relatively little data analysis.

For these reasons, primary performance measurements were used almost

exclusively in this project.

This is not to suggest that hardware and software monitors are not

important - in fact several have been used at NPS* - but for the main

objective of the project, which was to assist management in selecting

the best operating system, the primary performance measurements were more

significant than hardware and software monitor measurements. Furthermore,

considering the large number of configurations and loading methods to be

evaluated, the smaller amount of data analysis was significant.

2.4 Actual Measurements Performed

As stated above, most of the measurements presented in this report

were primary performance measurements. The primary performance measurements

used were the terminal response times and the throughputs (or job completion

rates) for terminal loads, and total completion times for batch benchmark

tests. For terminal tests, a built-in elapsed-time clock was used to print

the starting times and the finishing times on the terminals. The initiate-

to-completion times for the batch jobs were measured with a stopwatch.

*For example, a hardware monitor by Boole and Babbage called the Measurement

Engine has been used to measure OS [8,9], while the following software

monitor have also been used: SIPE for TSS [10,11], MEASURE (New York State

University, Stonybrook [12], and CPSNOOP (University of Alberta, Canada)

for CP [13], SUPERMON, PR0GL00K and SMF (accounting data) for OS, and the

Data Collection Facility for MTS.

19

In some cases the secondary performance such as percentage of time

in problem state and paging rates were also recorded and are reported

later. In some other cases software monitor measurements were made but

not analyzed or included in the report.

20

Section 3

BENCHMARK TESTS PERFORMED

3.1 Terminal Benchmark Tests

All together about 60 terminal benchmarking test runs were made

involving more than 38 hours of dedicated computer time. Of these, 38

produced useful results and are reported here. These reported runs

include 22 runs for CP, 9 for TSS and 7 runs for MTS. Since each run

had definite script assignments which represented a definite load (or

benchmark) , whenever the same script assignments were run on two different

operating systems the runs were useful benchmarks for comparing the

computer performance of the different operating systems. The terminal

benchmarking runs involved calling the terminal scripts described

previously in subsection 2.2.1.

Most of the test runs were performed on CP - primarily because of

its extensive use and easy availability at NPS. The 22 CP test runs

(plus 3 preliminary runs) are shown in Table 2 - which shows the script

assignment for all runs. Runs Rll, R12 and R13 were preliminary runs

used to develop the scripts and the benchmarking procedures. Since they

did not produce any useful results, they were usually excluded from the

analysis in the later sections.

The runs in Test 2 (those beginning with the digit 2) were conducted

with approximately a 2:1 ratio of edit to compilation-plus-execution

scripts and with a variable number of terminals. These runs were intended

as a realistic representation of the actual terminal user loads experienced

21

9
3

-a
in
tH

o in
i :

—
-—

1
.—< |

rH T CO

2 CN vO vr

m
2

o rH m i—l in H r^i
oc
vCH CN tH t—

CM

2
o CM in ,_, <r tH r<\

© c
-| CN rH t—

t-i
in
rH

o in tH iH tH cn 00 rH
in
OS

1

CN - .

r-~
CO
tH

o vO rH iH tH

1

CN

'
'

OO

1

m
<r CN vO NO
05

vO o o ~J CN -a CN CN 3 CN
in

o5 iH CN •H •H

o o in tH
~a
rH

CN CN
NO CNm

o5 CN tH tH

-a-

-a
r- o vO tH r^ tH CN

StO o
05 CN tH tH

cn o o vO rH -a tH CN VO vO

s CN 00 00

CN r-i o vO iH rH tH CN 00 m
05 CN vO vO

rH
•a-

05
rH

o in rH rH tH CN
CN

vO
VO

oo

m
VO -a- 00 CN

cn vO CN cn CN in CN tH CN
o5 CN t—

(

«* oo <t CN r-i CN in -a <r -a-
CI CN r^ o
05 tH tH

CO
cn
05

O
r-H

CN CN pi CN in -a
CN

O
cn
tH

vO
CO

(SI CN C CN cn CN m ~a vO CO

05
CN 00 vO

cn
05

-a O vO cn -a r^ -a O -3
CN tH

tH
o
r-»

in

2
m
i-i

O -3 iH rH tH CN
CN vO

m
in

-a <t O en O iH cn tH

2 r-H CN o
vO

vO
-a

m
2

CM
rH

O rn O tH tH r«
tH

00
vt

CN

2
o
rH

O CN O o tH cn
tH

CN
cn

^a
CN

tH

2
00 O cn o o tH CN CN 00

tH cn CN

cn
r-l r^ o -3 o CN tH St o Ov
05 tH m <

cn r-~ o -a o cn o -a- -a- in
ina

rH m

rH
tH
05

CM o •H o tH o -a
vO
tH

Z*r
to *e
J Q O

55 < Q t W <X <r- •z. < 05 ES t*.

w s: O c2 -J M ° 2H w H CO .J H
H 2

•J H Q<M o 05 PH tH 05 C_>

o < O J J O o w PL, <
c_> t^t 8Su Pi [n PL, Pw £ H H

CO

O

22

under normal operations. The runs in Test 3 were conducted with much

lower ratio of edit to compilation-plus-execution jobs than Test 2 - as

low as 1:4 - with a constant 24 terminals. These runs represented much

heavier loads than those in Test 2 and were designed for comparing the

computer performance under heavy overload conditions. Test 4 was designed

for testing the performance in the range between Tests 2 and 3, and for

determining the overload recovery time. Test 5 represents another rather

heavy load similar to Test 4. It also included some mixed script tests

to be reported later.

The 9 TSS runs were designed to be the same as the runs in Tests 2

and 3 for CP . Since the runs are almost identical the same run identifi-

cation numbers were used as shown in Table 3. Table 3 also shows the

terminal script assignments for all the TSS runs. More tests were planned

for TSS but after analyzing the results from these tests it was decided to

discontinue the TSS evaluation.

The 7 MTS runs were designed to cover the complete range of the CP

runs, providing the response time remained below the predetermined maximum

limit of 20 minutes for a PLILG. Table 4 shows the terminal script

assignment for the MTS runs. The MTS runs actually covered the complete

spectrum of CP tests but unfortunately, due to an error in the terminal

assignments during the test, the MTS runs did not match the CP runs exactly

Therefore the closest CP run and the degree of closeness are also shown in

Table 4.

23

TABLE 3: SUMMARY OF TSS BENCHMARK RUNS

\Run
^\ ID

Scripts
R21 R23 R24 R25 R31 R32 R33 R34 R35

EDIT 8 12 14 16 4 12 10 8 6

PAGE 2 4 6

FORTEX 2 3 3 4 6 2 2 2 2

PLISM 1 1 3 3 3 3 3

PLILG 1 1 1 4 2 2 2 2

FORTRAN 1 1 3 3 7 5 5 5 5

Total 12 18 21 24 24 24 24 24 24

TABLE 4: SUMMARY OF MTS BENCHMARK RUNS

Run
^\ID
ScripV^^

R61 R62 R63 R64 R65 R66 R67

EDIT 11 13 10 8 8 5 12

PAGE 2 .

FORTEX 3 4 4 4 3 6

PLISM 1 1 1 3 3 1

PLILG 1 4 7 4 4 4 7

FORTRAN 1 1 1 1 3 5 3

TOTAL 16 23 23 18 23 23 23

MTS LOAD
FACTOR* 44 84 142 84 97 132 113

CLOSEST
CP TEST

R23 R43 R44 R42 R33 R31 R44

DEGREE OF
CLOSENESS
TO CP TEST

Good
O
o

CO

O
iH
O

to

o
o
Ph

u
o
o
p-l

O
o

CD

CO

o

O

*See Section 4 for calculation of Load Factor

24

Unfortunately there were a limited number of runs on which direct

performance comparisons can be made. Thei e were 9 runs from Tests 2 and

3 for comparing CP and TSS. There were 5 reasonably good comparison runs

for CP and MTS, although there were some minor differences in the script

assignments. These differences were insignif: ant compared to the differ-

ence in effective load and resulting difference in performance. There

were only 3 runs for comparing all three systems, but that need not hamper

the comparisons of pairs of syst us and the inferred comparison of all

three systems.

Table 5 shows all the terminal benchmark runs with similar runs grouped

together for easy comparison of minor differences in the benchmarks.

3.2 Batch Benchmark Tests

The batch benchmarking tests consisted of running the three batch

benchmarks described in Section 2.2.2 on the three operating systems with

batch handling capabilities - TSS, OS, and MTS. The TSS evaluation tests

were conducted with the full duplex (2 processors) and the half duplex

(single processor) configurations, both with three core boxes, and then

with the half duplex configuration with two core boxes. OS/MVT was evalu-

ated with a single processor configuration with two and three core boxes.

(Duplex operation is impossible under OS.) MTS was tested under all three

batch benchmarks with duplex, three-core box configuration, but only under

Benchmark C with the single processor, two-core box system.

3.3 Other Tests

The indirect synthetic job, called CPTEST, has been used at NPS for

some evaluation of CP under normal operating conditions but has not been

used for terminal benchmarking. However the same program has been used

25

Run i

Number I

Operating
System

TABLE 5: COMPARISON OF TERMINAL BENCHMARK LN'C RUNS

TERMINAL SCRIPTS

R21*

R22*

R23

R61

R24*

R25*

R31

R66

R32*

R33

R65

R34

R35

R36

TSS
CP

TSS
CP

TSS
CP

MTS l

TSS
CP

TSS
CP

TSS
CP

MTS

TSS
CP

TSS
CP

MTS

TSS
CP

TSS
CP

CP***

EDIT FORTE

X

U_—__ FORTRAN

10

12

12

11

14

14

16

15

4

4

5

12

12

10

10

8

3

3

3

3

3

4

4

6

6

6

2

2

2

2

3

2

2

2

2

1

1

1

3

3

3

1

7

7

5

5

5

5

5

3

5

5

5

5

PLISS ! PLILG PAGE

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

4

4

4

2

2

2

2

4

2

2

2

2

2

2

2

4

4

6

6

Total
Terminals

12

12

13

18

17

16

21

21

24

22

24

24

23

24

24

24

24

23

24
24

24

24

24

Load
Factor**

28

32

32

40

48
44

46

60

55

64

104

110

132

68

86

36

130

97

104

174

122

218

110

*No equivalent MTS run

**See Section 4 for calculation of Load Factors. CP Load Factor for CP, Combined

Load Factor for TSS and MTS Load Factor for MTS.

***CP with 2 core boxes. Same benchmark as Run R31. (All other CP runs with 1

core box .

)

26

TABLE 5: COMPARISON OF TERMINAL BENCHMARKING RUNS (Continued)

Run
i

Uncrating 1

System |

rERMINAL SCRIPTS
j

Total
Terminals

Load
Number EDIT FORTEX

|
FORTRAN PLISM

j

PLILG PAGE Factor**

R41 CP 14 5
>

!

1 1 22 66

R42 CP 13 6 i 1 1 22 68
R64 MTS 8 4 l 1 4 18 84

R43 CP 10 6 l 1 4 22 86
R62 MTS 13 4 l 1 4 23 84

R44 CP 7 6 l 1 7 22 104
R63 MTS 10 4 l 1 7 23 142
R67 MTS 12 3 1 7 23 113

R45 CP 5 2 1 14 22 146

R46 CP 4 2 2 14 22 148

R47 CP 13 6 1 1 1 22 68

R51 CP 15 5 1 1 1 23 68

R52 CP 5 1 1 14 2 23 190

R53 CP 5 J. 1 15 1 23 174

R54 CP 15 5 1 1 1 23 68

T.oac' CP t 4 4 6 o 24

Factor MTS 1 8+ 1 6 8+ 6

Weights*"1 Combined 1 6 2 6 8 10

+Weights for £4 jobs; weight = 20 for the number of jobs above 4,

27

extensively at the University of Alberta for benchmarking the performance

of CP and MTS [6].

Two other types of tests were conducted involving the use of a

terminal probe for measuring the normal terminal response under actual

operating conditions, and involving the running of mixed scripts to verify

that they produced approximately the same terminal responses as the fixed

scripts used for benchmarking. These tests, along with the results, are

described in Section 5.

28

Section 4

DATA COLLECTION AND ANALYSIS

4.1 General Philosophy

Most of the data collected and analyzed in this project was the

primary performance measurements as discussed previously in Sections

2.3 and 2.4. For the terminal benchmarking runs, the primary performance

measurements included the terminal response times and the throughputs

or job completion rates. For the batch benchmarking runs, the primary

performance measurements were the total elapsed job completion times.

The terminal response times were collected by having the terminal

scripts print the real time (wall clock time) at the commencement and

completion of the programs called by the scripts. The terminal response

times were extracted manually from the terminal printouts. From these

figures the mean response time for each terminal was determined. These

mean terminal response times, organized by script, are shown in Appendix

C. The mean response time per script was determined by averaging the

mean terminal response times for each script. These results were used to

prepare many of the TSS and MTS graphs presented in Section 6. For CP

mean terminal response times were used instead of mean response times per

script.

The job completion rates, or throughputs were determined by counting

the number of program completions and dividing by the length of the run.

The actual throughput calculations are discussed further in the next section.

For the batch benchmarking runs, the primary performance was measured

by recording the starting time for reading of the first card and the

completion time for printing the last line on the line printer. In some

29

cases other times were also determined, such as, the elapsed time for

completion of individual jobs or the elapsed time while the system was

fully loaded. These times were determined from the operator's console

log or from the accounting information appearing on the printout.

4.2 Throughput Analysis

Two types of throughput are defined in this section: measured through-

put and calculated throughput. The measured throughput was determined by

observing the number of job (or program) completions during the run and

dividing that figure by the run duration. The calculated throughput is

determined by the reciprocal of the mean terminal response time for that

script.

4.2.1 Measured Throughput

The measured throughput was determined by counting the number of

job completions of a given type within a test run and dividing by the total

elapsed time of the test. This measured throughput was recorded in jobs

per minute per terminal for each job type (script) for each run.

The formula for determining the measured throughput on a terminal was

TP
m

. = SS. ,/RD (1)
13 iJ

where TP. . = measured throughput of script i
J on terminal j

SS.. = Number of script i
ij

that completed on terminal j

,

i.e., the sample size

RD = Run duration

30

The total throughput for all terminals running script i was:

NT.

TP =i I SS., , (2)
i RD >, ij

' v '

J = l
J

where NT. = number of terminals running script i.

The mean throughput of all terminals running script i was simply:

NT.

=i
= WTm. Xss

a < 3)

l J=l J

On the other hand, by counting all the jobs that completed for script

i regardless of the terminal (called SS.), the mean measured throughput

formula for script i was reduced to

TP
m

= SS./(RD x NT.) . (4)

Note that jobs that were completed before the test started or jobs

that had not completed by the end of the run were generally not included

in the sample size.

The total measured throughput was calculated by:

TP
m

=
I TP

m
(5)

1=1 *

4.2.2 Calculated Throughput

On the other hand, the calculated terminal throughput per minute

was defined as the reciprocal of the mean response time for each script:

In a few cases where the sample size was small (i.e., very heavy loads

most of the job completion time was between the run start and stop times,

the job was included in the sample size.

31

TP^ = 1/RT , (6)

where RT was the mean response time for script i on terminal j.

The calculated throughput for each script (regardless of terminal) was:

NT
±

TP
i

=
I W~ ' (7)

j-1 ij

where NT = the number of terminal running script i. When the response time

for each script on each terminal, RT
±

. , was replaced with the mean response

time of all terminals running script i, RT., given by:

NT

RV W
± £ RTu •

(8)

then the mean calculated throughput for each script was calculated by:

TP^ = l/RT
i

. (9)

This was actually the formula used in determining the calculated terminal

throughput.

The total calculated throughput was determined by

6

TP° = 7 NT. x TP^ (10)

i=l

An alternate method for determining the total calculated throughput

per script and the total calculate throughput would be:

NT
i , NT.

TP
C = y 1— = —i.

i .
L

. RT. RT.
J = l i i

32

NT

.

(NT .

)

2

c 1
or TP. =

i , NT. NT.

The total calculated throughput, TP
C

, would be calculated by:

6
C r _C

TP = } TP. .

1=1
x

This equation is similar to Equation 5 for the total measured throughput,

but it was not used in the actual calculations.

4.2.3 Measured verses Calculated Throughput

When the two throughputs were compared, the calculated throughput

was always higher than the measured throughput because :

1) it neglected the partially completed scripts at the

beginning and the end of the run, and

2) it neglected the overhead in initiating and terminating the

scripts.

The first factor improved the accuracy of the calculated throughput over the

measured throughput but the second factor had the opposite effect. Especially

at heavy loads, the time to initiate and terminate a script seriously reduced

the total number of completions per minute. Thus the actual throughput was

between the measured and the calculated throughputs.

*
In a few cases minor recording errors reversed this theoretical

results

33

4. 3 Definition of Load Factors

In order to present the data in organized fashion, it was necessary to

calibrate the loads presented by the terminal benchmarks. Since the number

of terminals was not a good indication of the load, it was necessary to

develop a new method of calibrating the loads. In fact, even with a constant

number of terminals, the load obviously changed significantly since the

terminal response times changed over a range of four to one. These require-

ments provide the motivation for defining a load factor.

Therefore the load factor was defined as:

LF=WN +WN +WNW
l EDIT 2 FORTRAN 3 FORTEX (11)

+ WN +WN +WN
4 PLISM 5 PLILG 6 PAGE

or more simply as:

6

LF = V W. N. , (12).-,11
1=1

where N. is the number of script i being run (i.e., same at number of

terminal running script i, i.e., NT. in the previous section) and W.

is the weight assigned to script i. The value of the weight depends on

the loading effect of the script; if W. is low, that script applies a

small load to the system but if W. is high, that script applies a heavy

load. The major problem with the load factor concept is in the determination

of appropriate weights.

Since the purpose of the load factor was to present the data in an

organized fashion, the load factor weights were initially determined by

subjective analysis of the terminal response times and probably loading

effects of each type of script used in the benchmarks. A set of weights

34

were arbitrarily chosen and the terminal response times were plotted for

each script. Then the weights were adjusted to make all the response time

graphs approximate linear functions of the load factor. This was repeated

as necessary until the following load factor equations were obtained. The

CP load factor (as determined from Figure 2) was:

LF =2N + 4 N + 4 N
CP EDIT FORTRAN FORTEX (13)

+ 6 N
PLISM

+ 8 N
PLILG

+ M N
PAGE

The MTS load factor (as determined from Figure 23) was:

LT
MTS " N

EDIT
+ N

FORTRAN
+ 6 N

PLISM
+ N

PAGE

+ 8 ((N < 4) + 2.5 (N > 4))^FORTEX ; U FORTEX ''

+ 8 ((N
PLILG

S 4) + 2 ' 5 (N
PLILG > 4) >

(14)

The extra complexity of the MTS load factor was the result of the sharp

increase in the response time with more than 4 jobs of either FORTEX or

PLILG scripts.

Although these load factors work very well in presenting the through-

put data as well as the terminal response data for the individual systems,

they do not work well for comparing the systems. In fact it is obvious that

identical terminal loads produce different load factors. Therefore it was

necessary to define a third load factor somewhere between the two load

factors above. The chosen combined load factor was given by:

LF
COMB " N

EDIT
+ 2 N

FORTRAN
+ 6 N

FORTEX

+ 6 N
PLISM

+ 8 N
PLILG

+ 10 N
PAGE

(15)

35

Some interesting results were obtained when the terminal response of

-. vas plotted against the load factor of another system, which

provided sere useful insight into the nature of the load factors. When

Iff cemir.al res; ::.se vas plotted against the CP load factor the result

-as a ccr.cave-dcvr.vard curve as the load factor increased instead of the

e:::e::e: lir.eer relationship. This meant the CP load factor weights were

too high for 155, vhich meant the CP response was degraded more rapidly

the I:: response as che load vas increased. On the other hand, when TSS

resrcr.se rime vas plotted against the combined load factor it produced a

linear response relationship. Furthermore when the CP response tine was

plotted against the combined load factor, the resultant response tine

curve vas a ccr.cave-upward function of the load. Thus the load factor

actually indicates the load experienced by the computer system as ere

result cf that benchmark. More details of the response times, throughputs

and load factors wall be presented in Section 6.

-.- Attempted ?.e^:ressi:r Ar.alvsis—

5ir.ee the lead factcrs vere determined on a rather arbitrary empirica]

basis, ar. attempt was made to put the load factor determination on a mere

firm mathematical basis by using multiple linear regression analysis.

Unfortunately this attempt was not successful due to the indirect relation-

ships between the dependent and the independent variables, as explained

below. This problem is presented here as an interesting challenge to the

reader.

Tr.e load factor as given in Equation 12 was:

z

_

i=l

LF = V w\ :.*. (12 rereated)L l l

36

where N. is the number of terminal running script i and W. is the load

factor weight assigned to script i. It is assumed that the theoretical

terminal response time for each script is some function of the terminal

load, say

rt
i

- f(v (is)

or RT\ = f(N
EDIT , N

FQRTRAN , N
F0RTEX >

N
PLISM >

N
PL ILG'

N
PAGE } '

The function f could be determined by regression analysis but this was not

done. (Actually a linear regression was tried but the required curvi-linear

regression was not attempted.) In any case this is not the problem that

is of interest.

The main problem is to mathematically relate the terminal response

times to the load factors. Assuming for the time being that a linear

relationship exists - which is a reasonable assumption considering the

definition of the load factor -, then the theoretical response time for

script i is:

RT^ = a. + b. LF, (16)111
where a. is the intercept of the response time curve for script i and b.

is the corresponding slope; and LF is the load factor, or independent

variable. Combining Equations 12 and 16 and changing the indices in

Equation 12 from i to j produces:

t s
RT = a. + b.) W. N.. for i = 1 to 6 (17)

1 x 1
fa i J

o
The error between the theoretical and observed response time, RT. ,

is given by:

37

e. = RT.
11

- RT.° (18)111 v y

Actually, there is an error for every observed response time (i.e., every

benchmark), RT., , which is given by:
XK.

e.. = RT.
fc

- RT°
ik 1 ik

6

- a
±

+ b. I N.
k
W. - RT

ik
°

, (19)

j-l

where N., is the number of terminals running script j on run k.

The total error E is given by:

NR 6 6

E = I I a, + b. I N..W. - RT °
, (20)

k=l i=l j=l J

where NR is the number of runs.

From the CP data there are 22 runs, or sample points, for the

observed response time, i.e., k~l to 22, for each of the 6 scripts

making a total of 132 sample points. (Actually there are only about half

this number because of the holes in the observed data.) The problem has

now been reduced to finding the best values of a., b. and W. (which
i' l j

is the same as W.) which minimizes the total error E. Since N.. is

the number of scripts j on run k and is known, there are 18 unknowns

and about 65 observations. The major complication in minimizing the

error is that the b's and the W's appear as the product in the equation.

38

One method that appears feasible is to replace the b. W. product

terms by another variable c where m = 1 to 36. Now the problem isJ m r

a linear one with 6 unknown variables, a., and 36 unknown variables,
l

c , and 65 known observations. The follow-on problem would be to
m

separate the c variable in product components b. W. in order to

get the slope of the response time graph and the load factor weights.

This is a linear programming problem with 36 equations and 12 unknowns and

therefore is relatively simple.

If the reader has any suggestions on how to solve this problem,

the author would appreciate hearing about them. In the meantime, the

report will proceed using the rather arbitrary load factors described

earlier.

39

Section 5

OTHER TESTS AND INTERMEDIATE RESULTS

5.1 Terminal Mixed Script Tests .

For part of the Test 5 described earlier, mixed scripts were run to

confirm the hypothesis that the fixed scripts used in the benchmark

tests were a realistic method of loading the computer under evaluation.

This test was designed to confirm that mixed scripts produced essentially

the same performance as fixed scripts and that the fixed scripts were

easier to control and conduct data analysis on. An intermediate load

was chosen (Run R44) and three mixed scripts were designed to compare

the performance with Test 4 results.

Three scripts were chosen to avoid the cycling problem whereby the

same type of programs had a tendency to become synchronized in their

request for resources. For example a program that required a lot of

processor time while other programs were requiring channel and drum

resources for paging would run very quickly (no one else wanted the CPU)

and soon get to a part of its script that required a lot of pages; and

then it would have to compete with all the other jobs for channel and

drum resources. It would then be synchronized with the other jobs.

The same number and type of programs were included in all three scripts,

but the order of execution was different. The precise scripts are shown

in Appendix A as ALL1, ALL2 and ALL3

.

40

5. 2 Terminal Mixed Script Results

Since fixed scripts were easier to control, produced results that were

easier to analyze, and made computer performances easier to compare, it was

conjectured that fixed scripts could be used in place of the more

general mixed scripts. Table 6 shows a comparison of the response

to four programs during fixed scripts runs and mixed script runs.

Although the mean values of the responses are very close to those of the

run from which the mixed scripts were derived (Run 44) , there was a lot

of variation in the mixed script responses. Sometimes the minimum

response was about one-third of the mean value while the maximum was

3 times the mean response. In fact the minimum response for mixed scripts

is quite close to run R42, while the maximum responses indicate the load

was higher than any used in the benchmarking runs (see Table 6) . The

fixed script responses are taken from Table C2 in Appendix C.

The load factor that corresponds to the mixed script responses is

also shown in Table 6. The minimum and mean responses correspond to

load factors of 68 and 106 respectively while the maximum responses

represent a load factor of over 200. These correspond very well to the

load factors for R42, R44 and R34. The load factors were determined from

the terminal response curves to be shown in Figure 2 in Section 6.

The above evidence justified the use of fixed scripts for benchmarking.

The evidence showed that the load variance within a run using fixed

scripts was much less than for mixed scripts, and that both types of

scripts, produced approximately the same mean response times.

41

Table 6 Results of Mixed Script Tests
and a Comparison with Fixed
Script Results

Script
Mixed
Respoi

Script
ise (minu pes)

Fixed
Mean R
(minut

Script
esponses
es)

*
Load Factor
Mixed Script
Responses**

for

Min. Mean Max, R42 R44 R34 Min, Mean Max,

FORTRAN 1.4 3.5 7.2 1.27 2.40 5.17 65 105 >200

FORTEX 4.0 9.7 23.0 5.09 10.5 — 60 100 >200

PLISM 4.3 10.2 27.6 3.63 5.85 14.4 65 105 >200

PLILG 12.2 20.8 45.6 11.4 19.9 40.6 80 115 190

Average CP
Load Factor

68 104 174 68 106 >200

Percentage
Problem time

35 42 29 7.6

Page reading
rate (per min.)

20.7 23.5 20 32

* Fixed Script responses are obtained from Table C2 in Appendix C.

**The load factors are taken from the terminal response curves to be shown in

Figure 2 in Section 6.

42

5.3 Terminal Probe Tests

The purpose of the terminal probe tests was to confirm that the

benchmark loads were a realistic representation of the actual terminal

loads under normal operating conditions. The terminal probe tests were

designed to sample the actual response under normal operating conditions.

Since the terminal probe was only one of many (7 to 21) normal terminal

users and since its effective load was roughly known from the mixed

script runs, the effect of the terminal probe on measured performance

was to add another "rather typical" user.

A total of 25 terminal probe runs were made on CP on a daily basis

over the period April 28, 1971 to June 4, 1971. The terminal probe

script is a combination of the same six programs used in the terminal

benchmark (See section 2.2.1). The exact script is shown in Appendix A

under the name MIX.

5.4 Terminal Probe Results

The terminal probe tests confirmed that the terminal benchmarks

represented realistic terminal loads. As conjectured, the actual computer

load, as measured under normal operating conditions by the terminal

probe tests, was approximately equivalent to runs R21 to R25. At times the

measured load was almost as high as the medium heavy loads like R32, R41,

R42, R43, etc, but it was never as high as that applied by the heavy

overloads on some of benchmark runs.

The results of the 25 daily samples of the normal load are summarized

in Table 7. The mean response times were: for FORTRAN. 0.42 minutes; for

PLISM, 3.4 minutes; and for PLILG, 4.5 minutes. The corresponding maximum

43

Table 7 Results from Terminal Probing Tests

Rejjponse T]

Mean

.mes (minutt

Maximum

*s)

Standard
Deviation

Corresponding Load Factors
from Figure 2 Section 6

Script
Minimum Minimum Mean Maximum

EDIT

FORTRAN

FORTEX

PLISM

PLILG

PAGE

2nd EDIT

.033

.12

.38

.5

1.15

1.57

.033

.19

.42

1.28

3.4

4.5

4.4

.26

1.0

1.37

4.1

11.1

15.0

11.1

.97

.27

0.39

1.04

2.7

2.9

2.4

.25

<30

<40

20

25

20

<30

40

52

45

55

50

50

>70

65

62

110

90

>70

TOTAL 6.8 16.2 36.2 7.2

<25 50

PAGE
(scaled)*

6.5 18.1 45.8 9.6

TOTAL
(scaled)*

11.9 29.9 71.7 —

Mean Load
Factor

80

*Scaling because main loop in PAGE was decreased by a factor of 4.1 from 1030 to

250 in order to reduce the total response time. (Size of matrices stayed the same.)

44

response times were: for FORTRAN, 1.4 minutes; for PLISM, 11.1 minutes;

and for PLILG, 15.0 minutes. The load factors corresponding to the average

actual computer load and to the maximum sampled actual load are 50 and

80 respectively. (These load factors were determined from Figure 2 in

Section 6.) Since the benchmarking tests had load factors of 30 to 200,

the benchmarking runs do, in fact, represent normal, heavy and very

heavily overloaded conditions.

In order to determine values for the combined load factor and the

MTS load factor that were representative of the normal user loads and

the heaviest sampled user loads, a plot was made of combined load factor

and MTS load factor versus CP load factors for all the benchmarking runs.

From this graph, the corresponding values of 45 and 46 for the normal user

load and 70 and 74 for the heaviest sampled load were obtained for the

combined load factors and the MTS load factors, respectively. These

values are summarized in Table 8.

Table 8 MTS and Combined Load Factors
Corresponding to the Normal
User Loads

Average Sampled
User Load

Heaviest Sampled
User Load

CP Load Factor 50 80

Corresponding
Combined Range 38 to 52 57 to 84

Load Factor Mean 45 70

Corresponding
MTS Load
Factor 46 74

45

Section 6

RESULTS AND COMPARISONS

6. 1 General Philosophy

This section presents the results of more than 38 terminal bench-

marking runs and 22 batch benchmarking runs, together with the performance

comparisons of four computer operating systems over a wide variety of

loading conditions. The terminal response times, terminal throughput

rates, total effective progress rates and batch processing turnaround times

are compared under several different conditions. The subjects discussed

in this section include the presentation of the CP test results, the TSS

test results, the CP and TSS comparisons, the MTS test results, the CP

and MTS comparisons, the CP , TSS and MTS comparisons - all under terminal

loads -, followed by the batch test results and, finally, the TSS, MTS and

OS comparisons under batch loading.

The terminal benchmarking results and comparisons include the terminal

response times for each script and the measured and the calculated throughputs

and the effective progress rates over a wide range of loading conditions.

Sometimes the results are presented as average per terminal, per script or

as a total over all scripts. For CP the percentage of problem time and

paging rates are presented as secondary performance results.

The batch benchmarking results and comparison include the elapsed time

to complete the three benchmarks under various configurations of TSS, MTS

and OS.

46

On the other hand, the preliminary results of the mixed script tests

and the terminal probe tests are presented previously in Section 5. The

results include a performance comparison with mixed script loading and

with fixed script loading as used in the benchmarking tests, and the

comparison of the benchmarking loads with the normal terminal loads that

exist under actual operating conditions.

6.2 CP Test Results

This section presents the results of 22 CP terminal benchmarking runs

representing a wide variety of loads from fairly typical normal loads to

very heavy overloads. The assignment of scripts to terminals for each

run are presented previously in Section 3.1, while the description of the

scripts and the programs are in Sections 2.2.1 with the listing in Appendix

A. The results presented in this section include terminal response times,

measured and calculated throughputs, effective progress rates, problem

time percentages and paging rates. The results are almost always presented

in graphical form; the numerical equivalents are shown in Sppendix C.

6.2.1 CP Terminal Response Times

The CP terminal response times for various CP load factors for all

scripts (except PAGE) are shown in Figure 2. The data plotted is the mean

response time for each terminal and as shown in Table CI of Appendix C for

each run, the PLILG response increases the most rapidly and is almost a

linear function of the CP load factor. Of course the linearity is partially

due to the method of defining the load factor but, since the consistency

of points is not a function of the chosen load factor, the PLILG response

curve serves to support the load factor concept.

47

Figure 2: CP TERMINAL RESPONSE TIME FOR EACH SCRIPT
UNDER VARIOUS LOADS

40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200~210

CP Load Factor

48

The FORTEX and PLISM response times are approximately the same

and they are the second and third highest curves. The FORTRAN response

times curve are next and are quite flat, especially for load factors

above 140. The EDIT response time is the lowest and is the only one

that peaks at an intermediate load, i.e., at load factor equal to 100.

6.2.2 CP Measured Throughputs

The CP measured terminal throughput for each script for various loads

is shown in Figure 3. The FORTRAN mean throughput drops the most rapidly

from 0.6 jobs per minute at a load factor of 70 to 0.1 jobs per minute

at a load factor of 200. FORTEX, PLISM and PLILG all have a gradually

decreasing throughput with increasing load. The EDIT throughput remains

approximately constant over all loads with a small dip near 100.

The total measured throughput for all terminal running a particular

script is shown in Figures 4 and 5. The data presented in these graphs

was obtained by multiplying the average throughput for each terminal

(as shown in Figure 3) by the number of terminals running that script.

The wide variation in throughput per script for any particular load is

the result of a shifting of the load percentage in favor of a particular

script (and therefore the resources allocated to the script) as the number

of terminals running that script is changed. For example, if a large

number of terminals are assigned PLILG scripts (i.e., 14 on Run R45 with

a load factor of 146) , then a large percentage of the total computer

resources are assigned to PLILG scripts and the resulting total PLILG

49

f—

1

u
o
u
u
TO

[n

T3
TO

O
i-Joo CM

.—

1

U

<f ro cn

(atjnuxui Jt9d -[euTuuai aad) suoT^a^duioo qof

oo vo <r

(a^nuiw aad suoT^a^dvuoo qop ut) ^ndqSnoaqx "[etjoi

<;i

LTl

(arjnuTH aad suo"t:)3"[diuo3 qof ut) :jndq8nojqx I^3°I

52

throughput is large. Since there is such a wide variation in throughput,

the "envelop-type" graphs have been used in several cases on Figures A

and 5.

The total measured throughput for CP is shown in Figure 6. The total

measured throughput was calculated by adding the five total measured

throughput per script (as shown in Figures A and 5)

.

The total throughputs for two weighting factors are also shown in

Figure 6. For example, the curve for the CP load factor weighted throughput

is determined by:

6

TP = E a). TP.

1=1
X X

where w. is the CP load factor weight for script i and TP . is the
l ° r i

total throughput for script i from Figures A and 5. Thus a script such

as PLILG which has a large load factor weight and low throughput rate has

its total throughput multiplied by a large factor. As can be seen from

Figure 6 the extra weighting for the heavy loading jobs has little affect

on the shape of the total throughput curves.

6.2.3 CP Calculated Throughputs

The CP mean calculated throughputs were determined using Equations 8

and 9 in Section A. The CP mean calculated terminal throughputs are plotted

in Figures 7 and 8 using the dashed lines. The throughputs for EDIT and

FORTRAN scripts are shown in Figure 8 on a larger scale. The PLISM and

EDIT throughputs varies significantly and are shown using envelop graphs.

Also shown on Figures 7 and 8 are the measured terminal throughput curves

(not individual points) in solid lines, so that they may be compared to the

53

(arjrtu-tw aad sucariaxdiuoo qof) rjndqSnoaqi "[8:501

54

I

H

O
o

J

I—

I

U
H
J
Oh

M
J
fa

fa

o
o

H
Q
fa
H
<C

IS
<:

faU

0)
1-1

3
00

£
< p

p au &
fa CO

3 <
1

fa i

z wH z
fa

fa
X Q
w g o g QH co hJ H
Pi H M CO faO tJ fa < O
fa

i

fa
1

fa
1

Q
1

CO

Q X
1

C
1

1

CD

00
cu

hJ

1* Tt +T

.o
CN
CM

o u
<1- o
f—

1

4-1

CJ

CO

fa

TD
CO

O
fa

o fa
CM CJ

o
o

4-o

O <t

(Niw/SNOixaidwoo aor ni) in<monotfHi

55

i \

1 \

1

I

p.,
j

O
&O

2

H

in
<

>

H
&
PU

O
&O
K
H

<2

H
Pio

T3
e
ca

Q
w

H

2
<

Pmu

1

w
1

2Q WHW 2JH MQ
2 < JW
< QJ OS
Pd w5 Q aH H KU hoiH 03 C/}_3 hJ <

W En QU w g
1 1 1

:.® i

T3 |

c 1

CD 1

60 '

CU 1

hJ

^ CM
CM

4-S
CM

O
00

f

o

° M
h-* or

.-l 4-1

u
CO

\n

T3
CO

o
J

o Ph
.CM U

oo

o
CO

*-
-ai-

o

^ o <c

(NIH/SNOIiaiJWOD 90f NI) XfldHOnOHHI

56

calculated throughput. As expected the calculated throughput is generally

higher than the measured throughput. This is particularly true for short-

execution programs, such as EDIT and FORTEX, where a large part of the

total elapsed time is involved in the overhead of running the scripts and

calling the clock rather than executing the actual programs. The reasons

for the calculated throughput sometimes being lower than the measured

throughput is due to some errors in measurement and the fact that mean values

are being plotted whereas there is often large variance in the actual data

points. The actual data points from which these graphs were made are in

Appendix C in Table C3

.

The total measured throughput and the total calculated throughput are

shown in Figure 9. The points represent the sum of the throughputs for all

the scripts. As expected the calculated throughput is larger than the

measured values. Both curves have the same general shape - dropping quickly

as the load factor increases from 68 to about 110, then rising slightly and

finally falling off again as the load increases into the heavy overload

region.

6.2.4 Effective Progress Rates

The effective progress rate is on another indicator of the performance

of a computer system. The effective progress rate was originally defined

by Lasser [15] as the time required for a program to run stand alone divided

by the time required to run under the given load condition.* If the sum

of effective progress rates for all programs of a particular type currently

being executed is one, then the computer is operating as well as a serial

processing computer. The amount over one indicates the degree to which the

*The reciprocal of the effective progress rate is sometimes referred to as

the dialation factor.

57

o
~ CM
' CM

CJ\

CD

J-i

3
oo

•I-l

Q
W

in
<

T3
C

00
0)

o
wH

o
J

i

4J

3
a
oo
3
O
u

H

0)

CO

3
a
.£
oo
3
O

T3
CD

U
3
co

CO

CD

oo
CM

o
00

O

1

1
o

1
- CM

i—l

1

*
1

/

o
. o

/
i-H

/ CO

/ Etl O
' 3 a) kJ

/ e .-i

X // X -
, x e oj

'/ CO CO CO

/ S M 3
/ 4

, o
/ 00

/

r

/ T3

X jfr^X x

/

^-

—

Average
Sampled

User

Loa

o

1 1 1 1 i o

o
<t- u
r-l O

o
CO

T3
CO

o

P-Iu

m
CM

o
CM

LH

(aintiiH/ SNOixaidNOD aor hi) xnaHonoHHi ivioi

58

performance is improved by overlapping the use of various resources

under multiprogramming. Effective progress rates less than one indicate

the system is operating more poorly than a serial processing computer

due to heavy overloading.

The effective progress rate for each script is presented in Figure

10. The most obvious observation from Figure 10 is that all the points

for all scripts are grouped together. The effective progress rates for

the scripts drop rapidly as the load factor increases from 40 to 90 but

then remain relatively constant at between 0.02 and 0.05 as the load

increases above 90.

The total effective progress rate, as presented in Figure 11, is

almost constant at 0.8 for load factor from 85 to 150. This means the

computer is operating at 80 percent of the throughput of a serial, one-

job-at-a-time, processor. For load factors less than 85, the total

effective progress rate rises rapidly to about 1.2 at 65. Unfortunately,

there is not sufficient data to determine the total effective progress

rate at lower load factors where the multiprogramming advantages are more

noticeable.

In an attempt to predict the effective performance at lower loading

conditions, some speculation was done on the probable terminal response

time at the low loads. Using Figure 2, it is possible to speculate on

the terminal response times for light loads such as runs R21 to R25 . Assuming

(1) that the response times are linear from the lower end of the curve to

the zero load factor point, (2) that the response times are at their minimum

(or stand-alone) values as given in Table C6 in Appendix C at zero load

59

00

0)
4-1

s
p4

CO

00

0]

od
o
u
Pn

0)

>
•H 4-1

4-J ft
O •H
<U V4m O

"4-1 CD
W

J-l

P-4 <1Ju cx|

n
D

•H

X 2 ^H H H enM od etf h-l

Q O O JW M^ Fn Ph

• 0) ® V

T3
C
CD

00
(1)

•J

o
h-l

Ph

13

oo
CM

o
00

o

o

1-4

o
4-1

o
CO

TO

o
hJ

Pi
u

oo

o
00

o

r
QJ T3 O
00 <D _]
CO i—l

>-i a t-i

aj e <u

> CO CD

< en :z>

CM
O
CM

-*-

O

in

O

saue^ ssaooaj aAT^oejjg

60

K
CD
4J

TO

CC

CO

on

0)

o
M
Cm

>
•--I

*J

u
CD

U-l

M-l

W

u
3
bo

o
00

o

o
r̂-i

U)

u

u
o
n
u-

T3
to

O
CM h-l

i—l
CM
u

oo

o
00

o

o
-d-

00 ^o

(srjxun on) 93e^ ssaaSoa^ 3ATqoagga

61

factor point, and (3) that the EDIT curve stays below the FORTRAN curve

in Figure 2, then it is possible to predict (approximately) the terminal

response times fro EDIT, FORTEX and PLISM scripts at low load factors.

The conjectured response times for runs R21 to R25 are shown in Table 9.

The effective progress rates were then calculated from the conjectured

response times and are also shown in Table 9. The conjectured effective

progress rates range from 1.5 at a load factor of 64 to 3.8 at a load

factor of 32. Unfortunately, these values are very dependent on the EDIT

response times - since there are 8 to 15 EDIT scripts running. Therefore

the EDIT response times may change the effective progress rates significantly

especially for low load factor where it is difficult to predict the edit

response times accurately.

Since the normal operating load factor was determined to average

about 50 with peak to 80 (Section 5.4), Table 9 suggests that the CP system

normally operates with a total effective progress rate of 3, but Figure 11

shows that rate may drop to as low as 0.8. In other words, during normal

operation it is conjectured that the CP time sharing system processes

jobs about three times as fast as it would if it operated sequentially

(no multiprogramming and no overlapping of input/output and processing)

.

However, during peak loads the CP system processes jobs at only 0.8 times

as fast as it would if it processed jobs sequentially.

It seems from the above evidence that it behouves the designer of

CP system to ensure that system does not accept new jobs when it is

approaching, or already over, the critical load factor. This subject

will be discussed further in a later section.

62

Table 9; Total Conjectured Effective Progress Rates - CP

•^Run
1 1

Item ""^-^ R21 R22 R23 R24 R25

CP Load Factor 32 32 48 60 64

EDIT response .1 .1 .2 .5 .7

FORTEX response 1.5 1.5 2.5 3.8 4.2

PLISM response 1.5 1.5 2.5 3.8 4.2

EDIT Progress .3* .3* .17 .07 .05

Rate

FORTEX Progress .25 .25 .15 .1 .09

Rate

PLISM Progress .3 .3 .2 .12 .11

Rate

EDIT Progress rate 2.4* 3.0* 2.0 .98 .75

times Number of EDITs

Total Conjectured
Progress Rates 3.5* 3.8* 3.0 1.8 1.5

(Also uses Table C7)
i

.

*These EDIT effective progress rate may be in error and may be as low as
0.2 or as high as 0.7. For the 0.2 value, the total conjectured effective
progress rate would then be 2.7 and 2.8 for runs R21 and R22, respectively;
for the 0.7 value, the total progress rate would be 6.7 and 7.8 for runs
R21 and R22 respectively.

63

6.2.5 CP Software Monitor Results

The secondary performance measurements for determining system

efficiency and performance were obtained from a CP software monitor called

"MEASURE". MEASURE was obtained from Mr. Stuart Wecker of the State

University of New York, Stony Brook, New York. MEASURE provided information

such as: CPU problem time, supervisor time, overhead time, pages reading

rate, pages swapped rate (written on back-up storage), and pages stolen

rate (removed from core while the user was in one of the active queues)

.

In addition to the system totals, each user was also monitored for the

same information. MEASURE provided information at different intervals

and was run continuously while the benchmark programs were under testing.

From these observations the percentage of CPU time spent in problem state

and the paging rates were used as indications of the load on the system.

The results of a CP software monitor are presented in Figure 12,

which shows the percentage of CPU time spent in the problem state and the

rate at which memory pages are read from disk storage into fast memory.

There is a wide variation in both the CPU problem time and the page reading

rate as a function of load factor as shown by the large envelops in Figure

12. However there is a definite trend as shown by the heavier center curves.

The CPU problem percentage starts near 80 percent for a load factor of 20,

drops below 50 percent for a load factor of 55 (the average user load)

,

drops to 30 percent for a load factor of 80 (the normal maximum load) and

then drops continually to 7 percent. On the other hand the pages-read rate

starts at zero and increases to 35 pages per minute. The reason for the

64

(0

u
o
i-l

o
CO

Cn

T3
CD

O
-J

(ainuTiu J3d) pea'H S98E?a saiuii £ jo 'auiTX fldD saSerjusoaaj

rapidly decreasing CPU problem time is the heavy demand for new pages

and the limited input/output channel capacity.

The relationship between the problem time and the paging rate is

shown more gramatically in Figure 13 which shows that over all the CP

tests conducted, there is a consistent relationship that:

percentage
= 100 - 3 x Paging Rate,

problem time

This formula shows that to get high CPU utilization (and therefore

high throughput) , it is necessary to limit the paging rate rather severely.

The percentage of time that the processor spends running the operating

system, commonly called overhead, is also of interest. Figure 14 shows

the percentage of time that the processor spent in problem state, in

problem state plus supervisor state, and in supervisor state for Test 4.

Since the load increases from R42 to R46 and then abruptly decreases,

the problem time percentage decreases from about 40 percent in Run R42 to

about 20 percent in Run R46 due to overloading. However the percentage

of supervisor time stayed approximately constant at 13 to 18 percent.

The points plotted in Figure 14 are actually successive reading from the

software monitor, MEASURE, rather than averages for the runs.

Figure 15 demonstrates the shift of resource allocation as the number

of PLILG is increased to effectively increase the total load. The percentage

of processor time allocated to FORTEX decreases as the load increases,

although the number of FORTEX script was almost constant.

66

o

o

o
CM

o
<_>

a:
LU
o.

O
<t
LU

LU
to

_ o

3WU W312C v

dd IlldD^d

67

llOOHSd

68

- CO

OJ

CO
en

o
re

I—

DdO IVni^IA il'BO^Gd

69

6.3 TSS Test Results

This section presents the results of 9 TSS terminal benchmarking

runs under normal to heavy loading conditions. The description of the

programs and scripts and the assignment of scripts to terminals during

the benchmark runs were presented previously in Sections 2.2.1 and 3.1,

respectively. The results in this section include the terminal response

times, the measured terminal throughputs and the calculated terminal

throughputs. The results are shown in graphical form with the tabular the

equivalent shown in Appendix D.

6.3.1 TSS Terminal Response Times

The TSS terminal response times for various CP load factors are

shown in Figure 16. The response time curves are fairly smooth functions

of the CP load factor but with a definite concave-downward appearance.

The PLILG curve shows the greatest degree of curvature. Since the CP

load factor appears to have weights that are too large for the TSS

response times, these response times were replotted against the combined

load factor as shown in Figure 17. In this case, the concave-downward

curves are replaced with linear curves again. This demonstrates that

the combined load factor is more realistic for TSS than the CP load factor.

The PLILG response as shown is 6 minutes for the average user load,

14 minutes for the heaviest sampled user load and 25 minutes for the

heaviest benchmarking load. The corresponding figures for FORTRAN are

1 minute, 2 minutes and 4-1/2 minutes, respectively. The response times

for PLISM are only slightly less than for PLILG. Unfortunately the results

70

u
o
•U

o
CD

o
ij

o
O CO

(sa^nutw) su'TX asuodsan

71

(2 2 OH w ,J
aJ m mO hJ _4
Pm P-i Ph

(S/ x rg

o
u
o
TO
fn

TD
CO

o

T)

c
'r*

"I
o
u

(sarjnuxw) 9U1TX asuodsa^

72

from the EDIT and FORTEX scripts were not available from the TSS runs.

6.3.2 TSS Throughputs

The TSS measured and calculated terminal throughputs for the FORTRAN

and PLILG scripts are shown in Figure 18. For very light loads (load

factor = 30), the TSS throughputs for FORTRAN scripts was 3 per minute,

but this quickly dropped to less than 0.5 per minute as the load

approached 60. The PLILG response times started at 0.5 per minute and

dropped to 0.1 per minute at the load factor of 60. There is very little

difference between the measured and the calculated throughputs.

The total measured and calculated throughputs per script are shown

in Figure 19. The plotted points were obtained by adding the throughputs

for all terminals running the particular script. The points show the

same general trend as in Figure 18, except the total is higher and the

dropping is less rapid. The FORTRAN points are deceptively close to the

curves, because most of the runs were made with the same number of FORTRAN

scripts.

The total measured and calculated throughput is not shown because

no data is available for the EDIT and FORTEX scripts. A portion of the

total throughput will be presented later in Figure 24 as a comparison with

CP . Also the effective progress rates are not shown because the data on

the TSS stand-alone response time was not available.

6.4 CP and TSS Performance Comparisons

6.4.1 Terminal Response Time Comparisons

The performance comparison of CP and TSS over a wide range of terminal

73

CO
^J XI
3 0)

a 4-1

jc CO

w I—

1

p 3
o O
M i—(

JC CO

H O
r-(XI
W C
C COH
6 XI
u 0)

0) h
H 3

w
en CO

Cfl <D

H ss

00

u
3
00
•H
En

W
U
3

XI (X

U 00
3 3
CO O
CO >-J

£ H

XI 4-1

OJ D
4-i p.
CO x
.-I 00
3 3
t_> O^ U
CO XU H

S O S
H
o

p-l fa

o
M
PM *£

<g> 13

<}§

XI
c
<D

00
QJ

i-J

oo

o
00

o

J.

c
4-

c
CC

CO

o
-J

13
Ol

3
•H
XI
S
o
o

o

M
Pi

O
CM

o
en

Q
CM

(a3nuTui/suoT^a"[duioo qop) s^ndqSnoaqx

74

3
o

1—1

TO

CJ

13
C
TO

0)

S-i

3
00

TO

I

cu

3
60

•r-l

fa

o

co
4-J

U TD 4-1 a
3 <u 3 •1-1

x) a. 4J (X i-J

<u x: TO X CJ

Vj 60 i—

1

60 en
3 3 3 3
CO o O O Z
TO >-i i—

<

u
3aj x: TO X.S H CJ H H
faO
fa

S3 z
2 e> g o r-«.

H J H t-J

OS M fa h-

1

i—

i

O hJ C hJ en
fa fa fa fa fa

©

o

Er

•Q S o

CO

>-l

O
j-i

CJ

TO
fa

•3
TO

O

T3
0)

e
i-i

x
E

u

.+ o
CN

CN

o
CN

m
o

(a^nuTR jad suoT^a^dujoo qop) :jndq8noaqx

75

loading conditions was of primary importance in this project. Since it

was necessary to use a common load indicator in order to compare CP and

TSS, the CP terminal response times were replotted against the combined

load factor as shown in Figure 20. When Figure 20 is compared to Figure

2, which is the same data except plotted against the CP load factor, it

is obvious that there is a much wider spread in the response times in

Figure 20, especially for PLILG at high loads.

A comparison of the CP and TSS response times is shown in Figure 21,

which is a combination of the CP response curves from Figure 20 and the

TSS response curves from Figure 17. The PLILG and FORTRAN response times

are about the same for CP and TSS, except that the CP PLILG responses have

a lot more variation than the TSS equivalents at high loads. For example,

at a combined load of 120 the CP response times may vary anywhere from

18 minutes to over 40 minutes, compared to a relatively predictable 26

minutes for TSS. On the other hand, the PLISM responses for CP are all

much less than those for TSS.

HOWEVER, the comparison above is for two very different configurations

as shown in Table 10.

Table 10: CP versus TSS Comparison Configurations

TSS CP

Dual processor Single processor

768K bytes memory 256K bytes memory

3 core boxes 1 core box

1 Drum 1 Drum

2314 Disk (fast) 2311 Disk (slow)

76

45 ^
Figure 20 CP Terminal Response

Times versus Combined
Load Factors

40 ..

35

30

15 ..

1° J.

5 ••

Legend:

* -EDIT
© -FORTEX
<£> -FORTRAN
X -PLISM
CD -PLILG

60 80 100 120

Combined Load Factor

77

160 170

Figure 21 CP versus TSS Terminal
Response Times

Note: Configurations differ -

see Table 9.

160 170

Thus CP has only one third as much memory as TSS; and also it has only

a single processor and slower disk units. In time sharing operations,

where memory is usually the critical resource, the differences in the

configurations is very significant and places CP at a serious disadvantage.

Yet CP's performance is competitive.

In order to determine the amount of performance improvement with

extra memory, run R31 was repeated as run R36 with the same benchmark

but with the two core boxes (512K bytes) configuration. The results

showed that CP response times were reduced in half with the extra memory

as shown in Figure 22. Thus CP with two core boxes provided twice the

performance as TSS with three core boxes*.

6.4.2 Terminal Throughput Comparisons

The calculated terminal throughputs for CP and TSS are shown in

Figure 23. The CP throughput data is a replot of that in Figures 7 and

8 but against the combined load factor rather than the CP load factor.

The TSS data is simply the curves from Figure 18. The curves show that

the CP FORTRAN throughput is better than the TSS equivalent for all load

factors less than 70 and about the same for higher load factors. The

PLILG throughput is about the same for CP and TSS for all load factors.

The measured terminal throughput is essentially the same as the calculated

throughput and thus is not presented.

*Acutally a test with CP and 3 core boxes was attempted but it had to

be terminated prematurely and the results are not considered reliable
enough to be included here. However, intermediate results are reported
in Table CIO in Appendix C.

79

Figure 22 CP versus TSS Terminal
Response Times for Three
Configurations

25

20 -•

PLUG

a is

.:

C

00

0)

2i

10 --

PLISM

3 .-

FORTRAN

4- 4- 4-

R31

T55-768K

R31

CP-256K

R36

CP-512K

Configurations - Bytes of Memory

80

*3

z O
3

-3

H hJ
Qj PL.O
Pn Crt

c/3

w H
r/j

H

/
-JH
Pm

Pm
u

o

o o m
o

(a^nuxui aad suoT:j9-[diuo3 qof) rjndqSnoaqi,

81

Again this shows CP performance is comparable to TSS despite the

large discrepancy in resourses available (as shown in Table 9).

The total throughput for CP and TSS are compared in Figure 24.

Since there was only limited throughput data available for TSS, only

FORTRAN plus PLILG throughput is shown for Runs R21 to R25 (load factors

of 28 to 55), while PLISM throughput is also included in Runs R31 to R35

(load factors above 60) . Both calculated and measured throughputs are

shown in Figure 24.

Again CP does very well in the comparison of total throughput.

Comparing the calculated total throughput, CP has higher throughputs at

low load factors and only slightly lower throughputs at the higher load

factors.

This completes the comparison of CP and TSS, except for some

comparison of all three terminal systems later in Section 6.7. Unfortunately,

the effective progress rates for TSS could not be obtained because the

stand-alone response times were not available, and therefore no comparisons

were possible. Also there were no software monitor measurements for TSS

for comparison with the CP data.

82

CO

4-1

cO SJ
T3 CO

1—

1

CO -J
CO Ph
H

TJ
>> c •~\

43 to •

M co
4J -d |Z
3 O) 2 T3
ex w PQ c
43 •H H CO

oc 6 Pi
3 •H O CM
o -H P-!

1-1 CO

43 CO *• 4-1

H •H o CO

»J CD

iH U H H
cO 3 k4
J-) CX PL) O
o 43 4-1

H toC O
3 4-1 -a

CO O c
W (-i 01 CO

H 43 rH
•u 43 co

T3 CO 4-1

C H H a
cO CO •H •H

4-1 03)-i

Pu O > O
U CO CO

14-1

o

e
o
CO

•H
u
cO

D.

s
o
u

<*
CM

QJ

U
3
Wj
•H
P^

CO CO
4J T3 4-1

3 Q) 3
*3 a u ex,

0) 43 CO X.
M 60 r-i toC

3 3 3 3
co O O O
CO U tH »-i

<D XI CO 43
s 4-1 CJ 4-1

XI CD CO
C co Ph en rxi

0) H o H u
W)

•J
• v®

o

o
r j

OO

o
cx>

o
>43

CO

U
o
4-1

O
CO

Ph

CO

O
hJ

QJ

c
•H
43
e
o
u

o
St

o
CN

m ro

(a^nuxui aad suox^axduioo qof) qndnSnojqx

83

6.5 MTS Test Results

This section presents the results of 7 MTS runs, which span

the range of load used for the CP benchmarking runs. The scripts

and programs were the same as described previously. (The listings

are also in Appendix A.) The MTS runs were made with the full 3 core-

box, dual processor configuration described in Section 1.3.

6.5.1 MTS Terminal Response Times

The MTS terminal response times, as shown in Figure 25, indicate

the same general response as experienced in the previous tests. The

PLILG responses are the highest, with FORTEX, PLISM and EDIT are next

and all about the same, and FORTRAN response times are the lowest.

All the response times rise rather slowly as the load increases.

For example, the PLILG response times rise from 3 minutes at a MTS

load factor of 60 to 7 minutes at a load factor of 130. Suddenly,

at a load factor of 130, the response time jumps to 38 minutes. An

attempt to explain this peculiarity will be made later in this section,

The only other peculiarity in the above graph is that the EDIT

response times seem to be much too high. Actually this is the result

of the design of the MTS EDIT script and the operation of the MTS

editor. The MTS EDIT script was designed to print an extra ten lines

as a means of simulating the one minute delay between editor calls.

Also the MTS editor prints every line that it references and thus

MTS printed 9 lines (not counting the 10 above) compared to 1-1/2

lines for CP . Therefore, the MTS EDIT response times are almost 2

minutes longer than those experienced in the previous tests.

84

In an attempt to explain the large jump in PLILG and PLISM

response times at a load factor of 130, the following analysis was

made. First it should be noted that this jump in PLILG response

times from 7 to 38 minutes occurred during a single benchmark test,

Run R63. Since it was observed during the test that a terminal

executed one PLILG or PLISM script quite rapidly and then took "forever"

to complete the second execution, it was decided to plot all the response

times for Run R63 as a function of the time of day, as shown in Figure

El of Appendix E. From this plot, it was confirmed that the response

times for the first few minutes of Run R63 were much lower than for the

remainder of the run. Thus it was decided to break Run R63 into two runs

R63a and R63b, with R63a representing the first few minutes and R63b

representing the rest of Run R63.

The response times for Runs R63a and R63b are summarized in Table

11. It can be seen that there is amazing consistency between the response

times within the newly defined Runs R63a and R63b, but a lot of difference

between the response times.

It is almost as if MTS had labelled some jobs as trouble makers

and put them on the back of a long queue, which it never got around to

serving. Even an explanation of the priveleged and unpriveleged tasks

will not account for this large disparity.

In order to compare MTS results with those from other systems, the

MTS terminal response times were also plotted against the combined load

factors as shown in Figure 26. The response time curves in Figure 26 are

quite similar to those in Figure 25.

85

Table 11 Breakdown of Terminal Response
Times for Run R63

Run
PLILG PLISM

R63a R63b R63a R63b

8.0 37 3.5 11.7

8.0 34.5 2.94 10.0
Terminal 7.3 28.3 11.5

Response 12.0
Times 8.6

6.7

8.0
9.8

37.22
37.1
36.9
34.0

Mean 8.55 35.0 3.22 11.1

Variance 19.36 63.09 .156 1.73

Standard 4.4 7.94 .396 1.31
Deviation

86

45 t

40

Figure 25 MTS Response Time for Various Loads

Legend: # EDIT

X PLISM

FORTEX

® FORTRAN

Q2 PLILG

35

30

CO

u
3
C
•H
s

0)

co

C
o
a
co

a>

25

20

t

15 a

10 .

PLILG

.Average Sampled

User Load

~

Maximum Sampled

User Load

PLILG

.PLISM

i t

160 170 180 190 200

t

MTS Load Factor

87

CO;

<D;
•Ul

si

en'

SI

0)

en

I

OS

TO

c ;

•H
e
n
CD,

HI

14

12

10

2-

Figure 26: MTS Terminal Response

Times versus Combined Load Factor,

Legend: • EDIT

FORTEX

<g) FORTRAN

X PLISM

a PLILG

FORTEX

3#
f

35.

PLISM

PLISM

Average Sampled User Load v Heaviest .Sampled User Load

Combined Load Factor

88

6.5.2 MTS Throughputs

The MTS measured terminal throughputs for various MTS load factors

are shown in Figure 27. The FORTRAN measured throughput curve has quite

a strange shape - almost a saw-toothed shape. It starts at 0.6 job

completions per minute at a load factor of 40, increases to 1.8 jobs per

minute at 100 and then drops to 0.4 job completions per minute at a load

factor of 140. The other measured throughputs are all much less than the

FORTRAN throughputs and therefore are replotted on an expanded scale on

Figure 27b.

The PLILG measured throughputs drop the most rapidly from 0.3 job

completions per minute at a load factor of 40 to 0.03 job completions

per minute at a load factor of 140. The PLISM throughputs have a corres-

ponding drop, but the EDIT and FORTEX scripts have a relatively small

decrease in throughput as the load increases.

The total measured throughput for all terminal running a particular

script is shown in Figure 28. Throughputs for PLISM, PLILG and FORTEX

scripts are shown in Figure 28a while those for FORTRAN and EDIT scripts

are shown on a larger scale in Figure 28b. As seen previously during the

CP test results, the total throughputs per script varies radically as

the resource allocation is shifted by the various benchmarks. For

specific values or range of values for the throughput see Figures 28a

and 28b.

The calculated throughputs for MTS are not presented here because

of their similarity with the measured throughputs. This observation is

89

do

f

oo
CM

o
00

m

o

o
o-

o
CM

o
4-1

o
CO

CO

o

CO

oo

o
00

o

o
CM <T\ vO CO

(-[euTuuax J3d aqnuTW aad suoi:ja"[diuo3 qof;) nndqSnojqx

90

u
o
u
CJ

to

Pn

CO

o

C/3

/-[BUTUJJ9X aad a^nufh ^a d suo-paiduioo qof) induiSnoaqi

91

•o
eg
cn

>£>

u s
o C/3

IW 1—

1

hJu P-.

3 ~

ex X
JZ w
00 H
3 Pd
o O
S-i fa
X.H r%

o
X) hJ
<u t-i

s-l hJ
3 Pm
UJ

CO i

d)

s 4J

ex
1—1 •l-l

CD Mu o
o CO
H £
CO o

S
CD

0)

u
ex
•H
V-i

t—

I

O
i—l w
CD

V-i

>-i CD

O i—l

U-l 3
o

u •H
3 •l-l

(X Vj

,3 CO

00 CX
3
O CD

J-<

-C 00
u c

•H
T3 3
<D 3
*-i 3
3 }-i

CO

CO w
<u I—l

£ CD

3
,—

i

•H
CO eu u
o <uH 4J

CO

a)

J-i

3
00
•H

r-3

ex

o
CO

o
.o
CM

Xw
ao
Pn

s
en
M
CX

O
hJ

J
Ph

O
-CO

x a
"3
3
01

00
<u o

O
u
o
u
CJ

co

En

-3
CO

o
-J

oo

o
00

o

O
<1"

CO v£>

(a^nufui aed suoT^axduioo qof ut) ^ndqSnoaqi

92

4J

3
cx
j=
M T3
3 C
o TO

M
JC H
H M

Q
T3 W
01

M 1

3 4J
CO a.
RJ •r-i

<U }-i

S O
W

i—

1

TO JZ
4J u
O TO

H W
W M
H O
:: m

00

o;

3
00

J-l

o
u
CJ

TO

o

H

/a^THKtft ^9d suo^^sidiuoQ qof ui-) ^ndqSnojqi

93

also consistent with those of previous tests on the other systems.

The MTS total measured throughput ranges from 14 job completions

per minute at a load factor of 45 to 6 job completions per minute at

a load factor of 140, as shown in Figure 29. The total throughput was

subdivided into total EDIT throughputs and total non-EDIT throughputs

which are also shown in Figure 29.

6.5.3 MTS Effective Progress Rates

The effective progress rates for MTS were obtained by dividing the

mean terminal response times shown in Tables El and E2 by the stand-alone

response times shown in Table E5. The MTS effective progress rates for

each script is shown in Figure 30. The effective progress rates for

EDIT and FORTEX scripts is almost constant at 0.75 and 0.1 respectively.

The FORTRAN, PLISM and PLILG effective progress rates all decrease

rapidly as the load increases and all are approximately the same. They

start at about 0.7 for loads from 40 to 80, drop to 0.3 at 100 and then

to 0.2 to 0.1 at load factors of 145.

The total effective progress rates and the subtotals for EDIT and

non-EDIT scripts are shown in Figure 31. The total effective progress

rate appears to have a hump at a load factor of 80 reaching a maximum

value of over 12. In all cases the total effective progress rate was

over 7 - meaning that the MTS system was operating at least 7 times as

effective as a serial processor system.

Of course a large portion of the total effective progress rates

was due to the EDIT scripts - anywhere from 3 to 9.5. However the

94

tp

w
4-1

3
a.
x.
too

3
O
U
,C
H

01

u
3
to

£

o
H
cn

s

CN

<U

J-i

3
60

O
—

i

a
CO

co

O
hJ

O
<N

O
CN

m m

(a^nuTiu aad suoT:j3"[dui03 qop) rjndqSnoam,

95

Figure 30: MTS Effective Progress Rates
per .Script

Legend: * EDIT

© FORTEX

X PLISM

FORTRAN

H PLILG

1.0

w
<u

u
to

06

w
CO

01

!-i

00
o

p*

>

cj

0)

<4-l

w

0.8

.0.6

10.4

.0.2 ..

PLILG

EDIT

lo to 100 120 do

MTS Load Factors

96

Figure 31: MTS Total Effective Progress
Rates versus MTS Load Factor

12

10 „.
i

w
0)

u
CO

f*

co

CD

u
00
o
U
Pm

CD

>

O
CD
M-l

M-l

w

Total Effective
Progress Rates

Total EDIT "

Effective Progress
Rates \

Nx
a.

?

\

/

Total Non-EDIT
Effective Progress

Rates

*^ •d

20 40 60 80 100 120 140

MTS Load Factors

97

effective progress rate for non-EDIT scripts was also impressive, ranging

from 1.5 at a light load to 3.9 at a heavy load. Except for the last

part of Run R63 when the effective progress rate for non-EDIT scripts

dropped to 0.94, the MTS system always operated better than a sequential

processor for all loads, even when the EDIT scripts are not included in

the total throughput.

Figure 32 shows the same total effective progress rates as Figure

30, except they are plotted against the combined load factors. This

figure will be used in the next section for comparison with CP performance.

6.6 CP and MTS Comparisons

This section compares the performance of the CP and MTS systems as

measured in this project. Since one of the objectives of the project

was to compare CP and TSS in the configurations at NPS, the CP tests

used a different configuration than the MTS tests. To try and compensate

for this disparity, the CP and MTS performances are sometimes compared

directly, and sometimes compared with CP's performance improved by a factor

of three. Since it was shown in subsection 6.4.1 that CP performance

doubles when the amount of core memory is doubled, it is assumed that

three would be a reasonable CP improvement factor when the amount of core

memory is tripled. (The intermediate results in Table CIO of Appendix C

also support this improvement factor, although it may be a little optomistic

towards CP.)

The performance of CP and MTS was compared on three criteria:

terminal response times, total throughputs and effective progress rates.

98

14

Figure 32 : MTS Total Effective Progress Rates
versus Combined Load Factors

12..

10.,

co

4-1

CD

oj 8
M
o
u

>
rl
•U
O
(U
W-l

w

4,.

2--

Total Effective Progress
Rates

Total EDIT Effective
Progress Rates

Total Non-EDIT Effective
Progress Rates-

120*20 40 60 80 100

Combined Load Factors

99

6.6.1 CP and MTS Terminal Response Time Comparisons

A comparison of the terminal response times for each script for CP

and MTC is shown in Figure 33. Figure 33 is a composite of the CP response

curves from Figure 2 and the MTS response curves from Figure 25. The MTS

response times were much lower than the CP ones with two exceptions - one

was for Run R63b when MTS had very poor response times*, and the other

was for all EDIT scripts because of the extra 2 minutes of printing time

used by MTS editor.*

Because CP had a serious configuration disadvantage, having only one

core box and one processor compared to three core boxes and dual processors

for MTS, the comparison shown in Figure 33 are repeated in Figure 34 with

the CP response times reduced by a factor of 1/3. (This is equivalent in

assuming the CP performance triples when the amount of memory is tripled.)

Since the above comparison tends to indicate that CP was loaded more heavily

than MTS - which was not the case -, a better comparison is made when the

response times are plotted against the combined load factor, as shown in

Figure 35, instead of against individual load factors shown above. Figure

35 is equivalent to combining Figures 20 for CP and 26 for MTS.

In both these figures, the MTS response is generally better than that

for CP despite the tripling of the CP performance. The MTS responses for

PLILG is better than CP's for all except the lightest load and the heaviest

overload in Run R63b. The MTS responses for FORTEX and PLISM are almost

always less than the lowest CP ones. The MTS FORTRAN responses

'''Discussed previously in Section 6.5.1.

100

45 -r
Figure 33 ; CP vs MTS Terminal Response Times

For MTS Various Loads

40

35 -

30 I

25

15

10

Legend: » EDIT

X PL ISM

lU PLILG

FORTEX

(2) FORTRAN

SOLID LINE--CP

DASHED LINE- -MTS

MTS -FORTEX
P-EDIT

go To~~~$5 "90 " roo i'io i2o i3o i4o 150 i'6o rftj rfu rh ztro ztirzio
-

CP or MTS Load Factors

101

15 ^
Figure 34: CP (scaled) vs MTS Terminal Response
Times for Various Loads. (CP times are
scaled by a factor of 1/3.)

10

CO

c
o
a.
CO

<u
PC

t
35.4

Legend: • EDIT

X PLISM

l'\ PLILG

CD FORTEX

$0 FORTRAN

SOLID LINE-CP

BROKEN LINE-MTS

: IF

50 60 70 80 90 DO 110 120 130 140 150 160 170 180 190 200 210 22b

CP or MTS Load Factors

102

15 .- Figure 35: CP (Scaled) versus MTS Terminal Response

Times against Combined Load Factors. (CP times are

scaled by a factor of 1/3).

Legend

are always much less than the CP equivalents. The only occasion when

MTS response times are higher than the CP ones are the MTS EDIT responses,

which have the extra 2 minutes of terminal printing times as discussed

previously in Subsection 6.5.1.

Another comparison of the CP and MTS performance is shown in Figure

36 in which the terminal response times are plotted against equivalent

run numbers. The MTS PLILG response times are lower than the CP scaled

response times for all runs except the lightest and the heaviest load.

The MTS PLISM responses are somewhat higher than the CP equivalent and

the FORTRAN responses are about the same. Therefore, MTS and CP performances

are approximately equivalent when the CP response times are reduced by a

factor of one-third.

6.6.2 CP and MTS Throughput Comparisons

The total throughputs for CP and MTS are shown in Figure 37, which is

a combination of the CP total measured throughput as shown in Figure 9 and

the MTS total measured throughput as shown in Figure 29, both replotted

against the combined load factor. The MTS total throughput is about

double that of CP, ranging from 7 to 14 job completions per minute compared

to 3 to 8 job completions per minute for CP. When the CP throughput are

multiplied by three, the scaled total CP throughput is larger than the

MTS equivalent for all except very heavy overloads (i.e., combined load

factor over 100).

6.6.3 CP and MTS Effective Progress Rates

The CP and MTS total effective progress rates are shown in Figure 38 ,

104

4 35.4

Figure 36: CP (Scaled) versus MTS
Terminal Response Times for Equivalent
Runs. (CP times are scaled by a factor
of 1/3).

15 Legend: . CP FORTRAN

CP PLILG

Y CP PLISM

@ MTS FORTRAN

& MTS PLILG

X MTS PLISM

MTS PLILG

CO

CD

u
3
C

•r-l

T.

0)

CO

C
o
a
CO

CD

OH

10-.

R66 R63b

MTS Run Numbers

i

R23 R42 R43 R44 R31

CP Run Numbers

R44 R44

105

en

£
O
CO

•H
U

1—

(

CO

CO a
4-1 e
o o
H o
c/i 4-1

H D
s a

J3
id 60
c D
CO O

J-i

Pm XU Hi

r-^

ro

<D

^
3
00

ClH

a-

:

>1 •

X en

T3 H-l

CD o
i—

1

CO U
CJ o
en 4-1

o
eu COu IW

CN
LO

'U
oj
1—1

&e t3
CO CO

CO o
hJ - o

CM
CO u
CO OJ
j-j co

cu 3
>
<

(a^nuiiu JLBd suOT:}3"[duioo qop ut) }ndq8nojqx

u
o
4-1

o
CO

Pn

xi
co

o
-4

13
a)

c
l-l

XI
e
o
o

106

14 --

12 --

10 --

w
CD
•u

<0

CO

co

0)
J-l

00
o
J-l

CM

>

o

w

o
H

8 -

6 --

4 -

2 "

Figure 38 : CP and MTS Total Effective

Progress Rates.

CP - conjectured and
scaled by 3

MTS Non-EDIT Scripts

N&

CP Conjee tured*

Average Sampled
User Load Maximum Sampled user Loads

1—
60 I 80

Combined Load Factor

20 100 120

*as conjectured in Table 9 in Subsection 6.2.4

107

which is a composite of the CP data in Figure 11 replotted against the

combined load factor (actually using Table C7) and the MTS data in

Figure 32. The CP data has been augmented at low loads by the conjectured

effective progress rates as shown previously in Table 9.

MTS out-performed CP by a wide margin in total effective progress

rates. In fact, MTS was substantially better than CP even after the

latter 's performance was multiplied by three, especially at medium to

heavy loads. The MTS total effective progress rates for loads of 60

and above was 10 times better than that of unsealed CP results. (A

combined load factor of 60 is below the maximum sampled user load.)

Also, the MTS total effective progress rate is 5 times the value for

CP at the normal user load. The MTS total effective progress rates

for non-EDIT scripts are also shown in Figure 38 and exceed the scaled

CP curve on 4 of the 7 runs. A fifth run is very close to the scaled

CP curve and the sixth is at a low factor. Therefore, the total effective

progress rates for the MTS compilation and execution scripts only is the

same or better than that of the scaled CP with all scripts (including

EDIT) on almost all the benchmarking runs.

Effective progress rates for some typical scripts for MTS and CP

are shown in Figure 39. Again MTS out-performs CP by a wide margin on

almost all conditions.

108

1.0

Figure 39: Some Typical Effective Progress

Rates per c cript for CP and MTS

w
<u
JJ

«! 0.8-

J
CO

0>!
U
00
o
(-1

0)

>

•J
CJ

<u

w

0.6-

0.4-

0.2-

MTS EDIT

MTS FORTRAN, PLISM
and PLILG

CP FORTRAN

CP PLILG
or other scripts

MTS FORTEX

MTS or CP Load Factors

109

6.7 CP, TSS and MTS Comparisons

Rather than repeat many of the figures already presented or variations

of them, this section will provide references to simular graphs so that it

is easy to make three system comparisons by making pair-wise comparisons.

6.7.1 Pair-Wise Comparisons

The terminal response times for the three systems can be compared

by examining the CP and TSS response times in Figure 21 and examining

the CP and MTS response times in Figures 34, 35 or 36. Since CP and TSS

response times are approximately the same when CP has restricted resources

(only 256k bytes of memory), and the CP times scaled by a factor of three are

approximately equal to MTS response times, it is easy to conclude that MTS

response times are three times better than those for TSS.

The total throughput for the three systems is a little more difficult

to compare because of the limited TSS throughput data collected. However

the throughput data for the FORTRAN and PLILG scripts can be compared by

examinimg the CP and TSS calculated results in Figure 23 and the MTS

measured results in Figure 27. Therefore a comparison of the total

throughput of the three systems has to be limited to the comparison of CP

and MTS systems as shown in Figure 37.

The effective progress rates of the three systems can not be compared

because stand-alone response times are not available for TSS and therefore

the effective progress rates for TSS can not be determined.

110

6.7.2 Performance at Typical Loading Conditions

As a summary, the three time sharing systems are compared at typical

loading conditions with respect to the terminal response times and the

total throughputs. (The total effective progress rates are not compared

because there is no data for TSS) . The three typical loading conditions are:

the average sampled user load and the heaviest sampled user load and a

heavy overload which is hereby defined as twice the average sampled

user load. These three loads are determined by the terminal probing

tests in Sections 5.3 and 5.4, and correspond to CP load factors of 50,

80 and 100, respectively, or the equivalents.

Therefore, Figure 40 is a summary of the terminal response times

from the curves in Figures 2, 16 and 25 for CP , TSS and MTS, respectively.

At a glance, Figure 40 indicates that TSS and CP provide approximately

the same response times at the three selected loading points. Also CP

and MTS provide approximately the same response times when the CP times

are all divided by 3. On the other hand, the load has some effect on

this last comparison. At the average user load, the scaled CP response

times are generally better than MTS, but at the overload conditions the

MTS times are generally better.

The normal user response times for FORTRAN are 1.0, 0.4 and 0.2 minutes

for TSS, CP and MTS respectively. The PLILG response times under similar

conditions are 5.8, 5.5 and 3.0 minutes, respectively.

Ill

20.
Figure 40: Terminal Response Times for

Selected Load Conditions
for CP, TSS and MTS

0- —-^ Legend

CO

CD

u
3
c

CD

CO

a
o
a
CO

CD

Pi

CO

C
•H

t-i

CD

H

- EDIT

© FORTEX

© FORTRAN
x PLISM
3 PLILG
— Average Sampled

User Load— Maximum Sample
User Load— 2 Times Average
Sampled User Load

(MTS EDIT Response
corrected by subtract-
ing 2.)

TSS CP CP - Scaled
by 1/3

r
MTS

Operating Systems

112

The three time sharing systems are also compared with respect to the

total throughput. The data for the total measured throughputs for the

TSS and CP comparison was obtained from Figure 24, while the throughput

data for the CP and MTS comparison was obtained from Figure 37. The

summary, as shown in Figure 41, indicates TSS and CP have the same through-

put at the heavy load and the overlaod conditions, but CP has better

performance at light loads. The total measured throughputs for CP and

MTS are approximately the same when CP's throughputs are multiplied by

two instead of three.

This concludes the results and comparisons of the three time sharing

systems. The next section compares the three systems with batch handling

capabilities under batch benchmark loads.

6.8 Batch Benchmarking Results and Comparisons

This section presents the results of the batch benchmarking tests

conducted on the TSS, OS/MVT and MTS operating systems and compares their

performances. The batch benchmarking programs or jobstreams were described

previously in Subsection 2.2.2 and Appendix B, and the tests performed

were described in Section 3.2.

6.8.1 Batch Benchmarking Results

The results of the OS batch benchmarking tests are summarized in

Figure 42. The results show that the three jobstreams take about the same

total turnaround times on OS, varying from 22 to 27 minutes. Also there

is relatively little difference between the results with two and three

core boxes - which is very surprising considering the useable core is

doubled in the second case.

113

4-1

3

60

O
5-i

Si
H 4^

Figure 41: Total Measured Throughput for
Selected Loads for CP, TSS and MTS

14

3
C
•H
6

U
0)

a,

w
c
o
•H

s
ou

o
»->

c
•H

12

10-

8-

Average sampled
user load

Maximum sampled
user load

Overload of
2 times average
sampled user
load

Total
through-
puts

2.
Total FORTRAN, PLISM and PLILG
throughput only

—*

CP Scaled
by two

TSS CP MTS

Operating Systems

U4

30,

•

Figure 42: OS Benchmarking Results

Legend:

3 core boxes
2 core boxes

25,

Total turnaround
time

20,

•H
H

10,

multiprogramming
imes

third-in to

third-out times

5.
i

01

Jobstreams

115

The multiprogramming times - the times during which at least two

jobs are in execution - vary from 17 to 20 minutes on Jobstream A and B

but vary from 7 to 16 minutes on Jobstream C. The very low multiprogramming

time with two core boxes indicated a very inefficient use of OS, since OS

is operating as a serial processor for 20 minutes out of the 27 minutes.

This benchmark must be somewhat atypical when the multiprogramming time

can drop from 16 minutes to 7 minutes and the total turnaround time only

increases from 26 to 27 minutes.

The third-in to third-out times - which represent the times in which

at least three jobs are in the system - are also shown in Figure 42.

These times also represent the time in which the system is loaded and vary

from 10 to 16 minutes for the three jobstreams and the two configurations.

As an aside, some results from a hardware monitor are shown in Table

12, which indicate that the CPU wait time decreases from 65 percent to 47

percent during normal operation when the memory was increased from 512K

bytes to 768K bytes [9]. This means an improvement in CPU utilization of

50 percent (i.e., (65-47)/ (100-65)) when the extra core box is added.

This means a much larger difference in performance with the extra core

box would be expected under normal batch operation than that experienced

in the batch benchmarking test results above. This suggests that the batch

benchmarks do not take advantage of the extra memory available with 3 core

boxes.

6.8.2 Batch Performance Comparisons

The comparison of TSS, OS and MTS under batch loading is shown in

116

Table 12: Hardware Monitor Results for Comparing OS/MVT Performance
with 768K bytes vs. 512K bytes of Core under Normal
Operating Load

5L2K bytes 768K bytes
EVENT no drum and, drum Ratios

CPU wait 65.18 47.13 1.38

CPU wait and channel
not busy

CPU wait and channel busy

CPU wait, and channel not
busy and MVTREX seek

CPU wait and channel not
busy and MVTLNX seek

CPU wait and channel not
busy and LINDA seek

CPU wait and channel not
busy and SPOOL 1 seek

CPU wait and channel not
busy and SPOOL 2 seek

CPU wait and channel not
busy and SPOOL 3 seek

29.73 26.07 1.14

34.61 21.06 1.65

3.51 2.22 1.58

12.34 7.62 1.62

2.87 0.12 23.9

2.26 1.14 1.98

6.03 2.15 2.8

2.64 2.52 1.05

117

Figure 43. TSS with two core box simplex configuration had the poorest

performance, especially on Jobstream A where it required 41 minutes for

completion. On Jobstream C, OS with either 2 or 3 core boxes was almost

as bad as TSS at 27 minutes. The OS performance on Jobstreams A and B

was about the same as the TSS 3 core box simplex system on all three

jobstreams with turnaround times of 21 to 26 minutes. The TSS 3 core

box dual processor system performance was significantly better than the

OS or other TSS performances, ranging from 20 minutes on Jobstream A to

14 minutes on Jobstream C.

The MTS performances were already superior to all others. The MTS

performance with 2 core boxes and a single processor was better than TSS

with three core boxes and a single processor on Jobstream C (but was not

as good as the TSS duplex 3 core box performance) . The MTS dual processor

three core box performance was the best of all with turnaround times of

12.5 minutes and 10 minutes for Jobstreams A and C respectively. Compared

to OS with compatible configurations*, the MTS performance was 45 percent

better than that of OS on Jobstream A and 61 percent better than that of

OS on Jobstream C.

Before continuing, one comment on the batch benchmarks is in order.

Since Jobstreams A and B contain 2 300K byte jobs and Jobstream C contains

3 of these large jobs, OS must serially process these jobs with either

2 or 3 core boxes. However if the largest jobs had been 250K bytes, then

OS would have been able to multiprogram the large jobs when it had 3 core

*0S can not run with two processors

118

40.,

35 -

\

Batch Benchmarks

\ Figure 43: Comparison of the Total
s Turnaround Times for
\
\
\
\
\
\
\
\
\
\
\

\
\

30 TSS 2 core boxes
single processor

H

C

o
u
CO

C
u

H

25^

20.

15

OS 2 core boxes
OS 3 core boxes

TSS 3 core boxes
single processor

-- MTS 2 core boxes
single processor

TSS 3 core boxes
dual processor

10 -- MTS 3 core boxes
dual processor

5 +

B

Jobstreams

119

boxes, resulting in a considerable improvement in performance.

If the improvement had been the same as that experienced in normal

operating conditions as presented in Subsection 6.8.1, i.e., 50 percent,

then the OS total throughput times would have been 16, 14 and 18 minutes for

Jobstreams A, B and C respectively! This would have meant that with nearly

equivalent configurations*, OS would have out-performed TSS on 2 of the 3

benchmarks. TSS and MTS performances would not change appreciably, since

they use paging instead of fixed memory allocation. Of course, this

comparison is only a conjecture based on the observed improvement in

CPU utilization during normal OS operation and not on an analysis of the

jobstreams.

*0f course OS would have only a single processor while TSS had 2 processors,

120

6.8.3 Comparison of MTS with CP Plus OS

Since one of the objectives of this research was to compare the per-

formance of MTS with that of the split CP-OS system, this section presents

a tentative comparison of MTS supplying both batch and terminal services

to that of the split system with CP supplying the terminal services and OS

supplying the batch services. Although the testing of MTS with both batch

and terminal services has not yet been accomplished, some analysis based

on the results in this report are now presented.

Consider the situation in which the batch benchmarking loads are

applied to MTS and, as soon as they are completed, the terminal bench-

marking loads are applied to MTS. The question is how many jobs will be

completed by MTS compared to the total number completed by both CP and OS

during the same time period. Consider the following:

(1) The time for OS with 2 core boxes to complete all three job-

streams, as shown in Figure 43, is 73 minutes (24 + 22 + 27).

(2) The time for MTS with the full system to complete all three job-

streams is 34 minutes (12.5 + 11.3 + 10).

(3) The difference between MTS time and OS times is 39 minutes, which

is available for processing terminal jobs.

(4) Since the total throughput for CP with one core box at the

average sampled user load is 6.7 jobs per minute according to Figure 41,

the total throughput in 73 minutes is 490 jobs (6.7 x 73).

121

(5) Since the total throughput of MTS with the full system at the

average sampled load is 13.6 job completions per minute according to

Figure 41, the total throughput in 39 minutes is 530 jobs (13.6 x 39) or

40 jobs higher than the CP throughput in 73 minutes.

Furthermore, if the average sampled loading condition used above is

replaced with the heaviest sampled user loading condition, the CP through-

put changes to 360 job completions (4.95 x 73), compared to 390 (10 x 39)

for MTS which is a savings of 30 jobs or 8 percent for MTS.

Therefore, at both the average and the maximum sampled user loads, the

MTS processes the batch and terminal benchmarks faster than CP plus OS,

even when MTS processes the batch and terminal jobs as two sequented groups.

The Non-EDIT throughput comparisons are also of interest. For example,

at the maximum sampled user load, the total Non-EDIT throughput for CP is

110 jobs in 73 minutes (73 x 1.5 from Figure 9) compared to 117 jobs in

39 minutes for MTS (39 x 3 from Figure 32) or a difference of 6 percent

in the terminal throughputs. However if the load is increased to more than

double the average sampled user load (load factors of 95 to 130) , the dif-

ference becomes much more significant. The total CP Non-EDIT throughput

stays relatively constant at 110 to 150 jobs in 73 minutes (Figure 9) , but

the MTS equivalent increases significantly to 200 to 300 jobs in 39 minutes,

which is approximately double that of CP . Therefore, the total batch and

terminal Non-EDIT throughputs for the 73 minute period would be about 25

122

percent higher for MTS than for the split CP and OS system, assuming the

improved terminal performance is average over the batch performance.

In all probability, the actual MTS throughputs would probably be

somewhere between the 5 percent and 25 percent figures presented above be-

cause MTS, with its multiprogramming feature, would probably obtain some

overlap of the batch and terminal job processing, and it is really unfair

to CP to exclude the EDIT throughputs from the comparisons. In any case,

the MTS performance is better than the split CP and OS system.

123

Section 7

CONCLUSIONS

The following conclusions are made from the results presented in this

report. In each case, the reference to the appropriate section or figure

is also given.

(1) A basic set of six terminal scripts were developed for loading

and benchmarking the performance of different time sharing operating

systems (Subsection 2.2.1).

(2) The load factor concept was introduced as a method of calibrating

loads. Although the method of selecting the load factor weights was

rather arbitrary, the results were good. In most cases the response times,

throughputs and effective progress rates were all plotted against the

load factors (Section 4.3).

(3) It was verified that the fixed script approach — whereby each

terminal was assigned one and only one script — is a realistic and ac-

curate technique for terminal benchmarks. The fixed scripts were easier

to control, produced results that were easier to analyze and made computer

performance easier to compare than mixed scripts, and yet they both pro-

duced approximately the same loading effects (Section 5.2 and Table 6).

(4) From the terminal probing tests it was found that the minimum,

average, and the maximum sampled user loads corresponded to CP load factor

of 25, 50 and 80 respectively. The corresponding MTS load factor were 25,

46 and 74, respectively, and the corresponding combined load factors were

124

25, 45 and 70 (Tables 7 and 8). Since the benchmarking tests had load

factors from 30 to 200, the benchmarking runs represented, light, normal

heavy and very heavily overloaded conditions.

(5) CP under average sampled user load provided terminal response

times of 0.4, 1.3, 3.4 and 4.5 minutes for FORTRAN, F0RTEX, PLISM and PLILG

scripts, respectively. These values increased to 1.4, 4.1, 11.1 and 15,

respectively, at the maximum sampled user loads (Section 5.4 and Table 7).

(6) Although the CP total effective progress rate was about 3 with the

average sampled user load, it was reduced to 0.8 when the load was increased

up to the maximum sampled user load. This meant that CP normally operated

with a multiprogramming improvement factor of 3, but during overloads CP

operated at only 80 percent of the capacity or a serial processing system

(Subsection 6.2.4 and Figure 11).

(7) From the above conclusion, it is further concluded that it be-

hooves all designers of time sharing systems to incorporate the load factor

concept into their systems and to inhibit initiation of new jobs when the

load factor reaches a critical load factor value. (MIS uses this concept

in its latest version but CP does not.)

(8) The CP operating system, with 256K bytes of core memory, a single

processor and slower disks, out-performed TSS with 768K bytes of memory,

two processors and faster disks over almost all tested conditions (Figures

40 and 41 or Section 6.4).

125

(9) Operating the IBM 360/67 as a split system with OS providing

batch services and CP providing terminal services provided better performance

than running the full system under TSS , because the batch throughput was

obtained for essentially free. (See Conclusion 8 above.)

(10) CP operating with 512K bytes of core memory reduced the response

times to about one half and produced twice the throughput as CP with 256K

bytes of memory (Figure 22)

.

(11) MTS out-performed CP under the configurations tested (Section 1.4)

by a factor of about three. The MTS terminal response times were approxi-

mately 1/3 those of CP (Figure 34 to 36 and 40). The MTS total throughputs

were 2 times those of CP (Figures 37 and 41) , while the MTS total effective

rates were about 10 times those of CP (Figures 38 and 39).

(12) The MTS total effective rates were very impressive ranging from

7.3 to 12.6. The total Non-EDIT effective progress rates were equally im-

pressive ranging from 2 to 3.8 at all loads except the lightest benchmark

and the heaviest overload. This meant the MTS operated much better than a

series processor (Subsection 6.5.3 and Figure 32).

(13) TSS out-performed OS on batch-only benchmarks by a small margin.

This is a conditional conclusion because there is a possibility that the

conclusion is the results of the batch benchmark design which was biased

against the 768 K byte OS system instead of differences in actual performance,

(See discussion in Subsection 6.8.2.)

126

(14) MTS out-performed TSS and OS on batch-only benchmarks by a wide

margin. The MTS total turnaround time was less than half that for OS.

(15) When MTS processed all the jobs in the batch benchmarks and

then processed terminal benchmarking jobs, the total throughput for MTS

was about five percent better than that processed by CP and OS running

separately for the same time periods

.

(16) When the total Non-EDIT throughputs were compared, under con-

ditions as specified in Conclusion (15), the MTS total throughputs were

seven percent higher CP plus OS totals (Figure 23 for MTS). However, when

the Non-EDIT throughputs were compared at higher load factors of 95 to 130,

MTS processed nearly twice as many terminal jobs for a total savings of

about 25 percent (Subsection 6.8.3).

Based on the above conclusion, it is suggested that MTS provides a

superior performance to the split CP-OS system. It is probably that MIS

would overlap the execution of terminal and batch job executions to achieve

even better performance than described above.

In his thesis, E. F. Hinson has concluded that there are several

other advantages besides performance improvements for switching to MIS.

In particular the MTS system is a much easier system to learn and to use

than the two systems that are currently being used. The ease of learning

is an important consideration in any university environment.

Therefore it is strongly recommended that the administration of IBM

360/67 computer centers give serious consideration to the adoption of the

Michigan Terminal System for providing both batch and terminal services.

127

The next major step in evaluating and implementing the MTS system is

to confirm that the actual MTS performance is, in fact, as good or better

than that suggested above for suitable combinations of batch and terminal

loadings. An introduction to the Michigan Terminal System and its features

can be obtained from [3] or [16].

128

REFERENCES

1. "Scheduling TSS/360 for Responsiveness," W. J. Doherty, Proc of the
Fall Joint Computer Conference, 1970, pp 97-111.

2. "An Empirical Comparison of the CP/67 and TSS/360 Time Sharing
Systems," William R. Haines and James H. Porterfield, NPS, June 19 71,

MS thesis.

3. "Comparing the Performance of the Michigan Terminal System with CP/67
and TSS/360 on the IBM 360/67 Computer," Elbert F. Hinson, December
1971, MS thesis.

4. "AJOB: A Job Simulator," Pimporn Zeleny, Technical Memorandum,
Naval Postgraduate School Computer Center, Monterey, California.

5. "A Remote Terminal Emulator for Loading and Performance Measurement
of On-line Systems," D. L. James, Mitre Report M72-83, Summer 72.

Also presented at SHARE XXXVIII meeting in San Francisco on March 9,

1972.

6. "Performance Comparison of Two Time-Sharing Systems," M. Fredrich,
T. A. Marsland and G. Neufeld, University of Alberta, Edmonton,
Alberta, Canada, unpublished report.

7. "Benchmarking Analysis of Time Sharing Systems," A. D. Karush,
Systems Development Corporation, Santa Monica, California, April 1969.

8. "Preliminary Steps in Optimizing University Computer Performance
Using Hardware and Software Monitors," Robert R. Hanke, NPS, December
1971, MS thesis.

9. "Improving Performance of an IBM 360/67 Computer by Using a Hardware
Monitor on the Disk Facility, Jay W. Sprague, NPS, June 1972, MS
thesis

.

10. "SIPE: A TSS/360 Software Measurement Technique," W. R. Deniston ,

Proceedings of the 24th National ACM Conference, 1969, p 69.

11. "Improving TSS/360 Performance by Tuning the Table-driven Scheduler,"

Jerry K. Baird, NPS, June 1971, MS thesis.

12. "MEASURE — A CP/67 Software Monitor," — a program obtained from

Stuart Wecker, State University of New York, Stony Brook, New York,

1970.

13. "A Simulation Study of the CP/67 Time Sharing System," Brian J.

Stanger, University of Alberta, August 19 70, MS thesis.

129

14. "Progress Report on Measurement of Time-Sharing System, E. E.

Gregeris and R. F. Belanger, CS 3800 Final Report, Available from
G. H. Syms, NPS, June 1971.

15. "Productivity of Multiprogrammed Computers — Progress in Developing
an Analytic Prediction Method," D. J. Lasser, Communications of the

ACM, v. 12, No. 12, December 1969, p 679.

16. "MTS — the Michigan Terminal System, Volume 1: MTS and the Computing
Center," Third Edition, University of Michigan Computer Center, Ann
Arbor, Michigan, January 1973.

17. "An Emperical Comparison of the CP/67 and TSS/360 Time Sharing Systems,"
G. H. Syms, W. R. Haines and J. H. Porterfield, Proceedings of the

Fifth Hawaii International Conference on System Sciences, January

1972, pp 206-208.

130

Appendix A

TERMINAL SCRIPTS USED FOR BENCHMARKED COMPARISONS

CP/67, TSS/360 AND MTS TIME SHARING SYSTEMS

G. H. SYMS, W. R. HAINES, and J. H. PORTERFIELD, Jr

Naval Postgraduate School

Monterey, California 93940

The purpose of this appendix is to describe in detail and to supply

the listing for the scripts used in comparing three time sharing systems

for the IBM 360/67. This appendix is to be used in conjunction with a paper

entitled "An Empirical Comparison of CP/67 and TSS/360 Time Sharing Systems,"

published in the Proceeding of the Fifth International Conference on Systems

Sciences, 1972, pp 206-208
f 17] . Further details on the results of the

tests can be obtained from an MS Thesis with the same title by W. R. Haines

and J. H. Porterfield, Jr., June 1972, US Naval Postgraduate School [2].

The basic types of programs included in benchmarks are:

- Compilations

- Executions

- Editing

The compilations are represented by 3 programs; a 74 card Fortran compilation

called FORTRAN, a small 47 card PL/I compilations called PLISM and a large

434 card PL/I compilation called PLILG. The execution programs are represented

by a compute-bound Fortran execution program called FORTEX and a page-bound

Fortran execution program called PAGE. PL/I programs were chosen to represent

large complex compilers which have a large working sets (30 to 40 pages) and

use large amounts of CPU time, thus degrading the performance of any time

sharing system. It is believe that these jobs can also represent the load

from assembler jobs. The Fortran programs were chosen because they represent

the major jobs at the installation under investigation. Each program

131

was activated by a script. In simple cases the script simply printed the

time, called the program and then repeated itself. For most of the tests a

terminal executed a single script allowing more rigid control on the test

and more accurate analysis. In some cases mixed scripts were used in which

a single script on a given terminal was a combination of several simple

scripts. As stated in the paper, this provided a means for checking the

bias in the fixed-script technique of comparing performance. Before dis-

cussing the scripts in detail some of the major evolutionary steps in their

development will be presented.

Basically four changes were made to the scripts after the first CP test

run:

1. The EDIT script was changed to reflect the think time of the

user by activating the EDIT script for 5 seconds out of every

60 seconds of connect time. This was accomplished by hitting

the terminal ATTN button after 5 seconds and then restarting

the terminal after 55 seconds. If several terminals were

editing the starting time were staggered. (For CP only.)

2. The ratio of edit to run (meaning compilation + execution)

programs was changed from 5:1 to 2:1, increasing the load

by about 2 1/2 times. Also it was felt that 2:1 ratio repre-

sented a beter estimation of the actual load.

3. The EXEC routines in CP were rewritten to print the desired

times at the terminals.

4. An organized plan was formed for combining the scripts on various

terminals to represent various loads from medium to heavily

overload. The plan was to start with medium load and change the

job mix (i.e. benchmark or set of scripts) every 15 minutes with

the number of terminals varying from 12 to 22. (Note the load

is much more dependent on the run to edit ratio than the number

of terminals.)

After run two, it was concluded that the scripts in the present form

could be used for a valid comparison of CP and TSS but that further changes

in the scripts would make the comparison more realistic; these were:

132

1. Although the ratio of two edits to one running program seems

realistic, it didnot place a heavy enough load on the system.

Thus it was decided to vary the ratio of edit to run programs

from 1:1 to 1:5 which means that almost all the 24 terminals

were compiling or executing programs in the worst case.

2. Since the CP editor had an advantage over the TSS editor by

not filing the results after every edit command, it was decided

to make the EDIT program function more than the TSS editor

(Normally, CP uses an in-core editor and only changes the file on

disk when told to do so by the user, but TSS files the results

of every edit command on disk. This makes a significant difference

in the paging load.) The rational for this change was that most

users would probably only make a few changes to their program

before filing it and recompiling. This change was accomplished

by shortening the EDIT script so that it took about 5 seconds

(of real time) to complete and by making it non-looping. Every

60 seconds the EDIT script was initiated again. (This change

increased the CP paging load from the EDIT script significantly.)

3. The number of loops in the FORTEX program before an output was
7 6

produced was decreased from 10 to 10 in order to increase the

amount of output and the accuracy of measuring the load from this

script.

4. A program PAGE was added to the benchmark to represent page-

bound execution job. The program is a matrix multiplication

program that has its matrix elements spread over several pages.

After run three there was one change made to the way the FORTEX script

called the program, in order to make it more consistant with the other

programs and to print the time at fairly regular intervals. Instead of the

program looping, the EXEC program was made to loop and call a non-looping

version of FTN. (The self-looping version can be obtained from the one

shown later by moving the WHITE statement labelled 1000 to the first statement.)

The final scripts were as follows. (CP examples will be used unless

otherwise noted.)

133

1. EDIT - A CP EXEC routine that performs several edit functions

such as locating a string, moving the pointer up and down

and typing some output. In CP the routine was non-looping,

took about 5 seconds of real time to complete, and was activated

every 60 seconds to represent user think time. In TSS a

simulated timer was used to wait for 55 seconds before repeating.

In MTS the printing of 10 lines was used as an effective delay.

2. FORTEX - A routine to simulate compute-bound jobs. It executes

a loop of 2 additions, a test and a branch 10 times and then

prints a short line and gives the time.

3. FORTRAN - A routine that compiles an average size (75 card)

Fortran program.

4. PLISM - A routine that compiles a small (47 card) PL/I program.

5. PLILG - A routine that compiles a reasonable sized (434 card)

PL/I program.

6. PAGE - A routine to represent page-bound jobs. It sequentially

accesses a single element from a page of a 30-page matrix.

Table 1 shows the equivalent names for the CP , TSS and MTS scripts and

program names. The listing attached include the following actual scripts

and programs as run in comparing the time sharing systems:

1. CP EXEC routines for fixed script tests,

2. All the programs used by CP,

3. The CP mixed scripts,

4. The CP mixed script for probing the load under normal operating

conditions,

5. The CP EXEC routines used by the mixed scripts,

6. The TSS PROCDEF routines, including the fixed scripts and the

mixed scripts. (Note ALL 4 include the PAGE program but there is

no equivalent in CP.)

7. MTS files for the fixed scripts (equivalent to CP EXEC routines).

134

Table 1 EQUIVALENT NAMES FOR SCRIPTS

CP and TSS MTS

ALIAS EXEC and PROCDEF Program Script file Program

(name in Looping non-
paper) version looping Name (looping)

EDIT - P LOOP EDITS EDITOR

FORTEX CRUN CRUNN FTN * FORTX FORTEX

FORTRAN

PLISM

COMPI

COMP2

COMPI I LOOP

COMP22 HAI3

PLILG COMP COMP'

PAGE

PAGE PG PG

Mixed ALL1,ALL2, MIX
Scripts ALL3**

FINK

PAGE

all
above

FORTRAN

PLILIT

PLIBG

PAGER

FORCOMP

PLISM

PLILG

PAGE

* In actual TSS tests FTN was called FEXEC . Also in latest version of CP

tests FTN compiled LOOP instead of the proper program. This version was

only used in MIX and not in any of the comparison runs.

** TSS also contained ALL 4 which included PAGE

*** except PAGE, but ALL 4 in TSS did contain PAGE.

135

CP EXEC ROUTINES AND PROGRAMS , SECOND COPY, HAINES AND PORTERFIELD
CP67USERID 0563 04/22/71 14.49.22 *************************,;

ALIAS EDIT
OFFLINE KEAD P P X Ff
&TYPEUUT ALL TIME
6BEGSTACK
L /50/
N 10
TOP
FILE
CEND STACK
EDIT LOCP FORTRAN
£TIME

A L I AS FORTEX
OFFLINE READ CRUN EXECGTYPEOUT OFF TIME
BL IP $
LOAD FTN (XEO)
&TIME
&GOTO TOP

OFFLINE RFAD FTN FORTRAN

10 1=1+1 FTNOO
A=2. +Z. FTNOOi.
IF { I.EQ. 10C0000) GOTO 1000 FTNOO 1

GOTO 10 FTNOO'
1000 WRITE (6,2000) FTNOOi
2000 FORMAT {•***********•) FTNOOi

END FTNOOi
FTNOOi

ALIAS F R T R A N

OFFLINE READ COMPI EXEC
&TYPEOUT ALL TIME
BLIP $
FORTRAN LOOP
&T IME
&PRINT **C0MPILATI0N COMPLETE**
&GOTO TOP

ALIAS PLISM
OFFLINE READ C0MP2 EXEC&TYPE0UT ALL TIME
BLIP $
PLI HAI3
6T IME
&PRINT **COMPILAT ION COMPLETE**
&GOTO TOP

ALIAS PLILG
OFFLINE READ COMP EXEC
GTYPEOUT ALL TIME
BL IP $
PLI FINK
&TIME
&PRINT **C0MPILATION COMPLETE**
&GOTO TOP

136

620 COMMUNICATIONS MANAGEMENT • ,/ ,
• 817 NAVAL MAN AGEMEP AUOO 540

999 P.O. SCHOOL STAFFM PAU006L0
WRITE (6,2) PAU00560

2 FORMAT (• 1' ,26X, » YEAR CURR PHONE • , 40X ,
• NO. OF LAST DUTY') PAU00570

WRITE (6,3) PAU00580
3 FORMAT (• NAME' ,17X,« RANK GRP NO. NUMBER WIFE ADDRESS •, 14XPAU00590

1,'CITY CHILD STATION* , 17X, •SMC',/)
WRITE (6,4) PAU00610

4 FORMAT ('+',' ',17X,« «,PAU00620
114X,' ',17X,' »,//) PAU00630

30 READ (2,8 ,END=50)XNA, RANK , NYR ,NCRS , NT EL

,

WIFE, ADDR, CITY, NDPN, DUTY PAU00630
2, SMC PAU00650
WRITE (6,9)XNA,RANK,NYR,NCRS,NTEL,WIFE, ADDR,C I TY, NDPN , OUT Y

,

PAU0065
1SMC PAU00670

9 FORMAT (IX, 19A1,2X,4A1, 2X,I2, 3X,I 3, IX, 17, IX ,9 Al , 1 X , 5A4 , 2X , Ai ,6X , I PAU00670
11 ,4X ,5A2,14X, 14) PAU00680
GO TO 30 PAU00700

50 WRITE (6,7) DATE PAU00710
7 FORMAT (/// ,40X,5A4) PAU00720

91 CONTINUE PAU00730
STOP PAU00740
END PAU00750

ALIAS PLISM
-FLINE READ HA 1 3 PLI
YEWRAP: PROC OPTIONS (MAIN); HAI00010
TRY: BEGIN; HAI00020

DCL I FIXED DEC (3) INITIAL (1); HAI00030
DCL (RC0T,X,X1,XJ,XI) FLOAT DEC (16) INITIAL (0); HAI00040
DCL E FIXED DEC (3) INITIAL (O.JOOl); HAI00050
DCL BUFFER CHAR (80); HAI00060
DISPLAY ('INPUT') REPLY (BUFFER); HAI00070
DISPLAY (BUFFER); HAI00080
GET STRING (BUFFER) LIST (XJ)

;

HAI00090
DCL (D,DJ,DI) FLOAT DEC (8) INITIAL (30); HAI00100

4GAIN: XI = XJ; HAIOOUO
IF DF((XI))=0 THEN GOTO TRY; HAI00120
XJ = XI-F((XI))/DF((XI))

;

HA 100130
DI=DJJ HAI00140
DJ = ABS(XJ-XI); HAI00150
IF DJ>E THEN HAI00160

5TUP: IF CJ>DI THEN HAI00170
GOTO TRY; HAI 00180

ELSE DO; HAI00190
IF I>20 THEN HAI00200

GOTO TRY; HAI00210
ELSE DO; HAI00220

DISPLAY CAT ITERATION MUll' X ' | I I I I
' ='

I I
X J) ; HAI00230

1=1+1; HAI00240
GOTO AGAIN; HAI00250

END; HAI00260
END; HAI00270

ELSE HAI00280
IF ABS (F((XJ)))>E THEN HAI00290

GOTO STUP; HAI00300
ELSE 00; HAI00310

DISPLAY ('ROOT = «||XJ); HAI00320
STOP;tND; HAI00330

DCL F ENTRY (FLOAT DEC (16)

)

RETURNS (FLOAT DEC (16)); HAI00340
F: PROC (X) FLOAT DEC (16); H^1221?2

DCL X FLOAT DEC (16); ttMRRf™
X=X**2-EXP(X)-3; M?!nn^SRETURN (X); HA 00380
FNL) F; HAI00390
DCL DF ENTRY (FLOAT DEC (16)) RETURNS (FLOAT DEC (16)); HA !°2??2

OF: PROC (X) FLOAT DEC (16); 11^128?™
DCL (X,Y) FLOAT DEC (16); EM™?™
Y=X-1* HAI00430
X=2*X-X*EXP(Y) ; L1a}™?cS
RETURN (X); M

A {nn^n
END NEWRAP; HAI00470

137

ALIAS PAGE
OFFLINE RtAO PG EXEC
&TYPEOUT OFF
CP Q U
&TIME
£ PAGE
6TIME
6GUTO TOP

OFFLINE READ PAGE FORTRAN
DIMENSION A(1030,30) PAGOOt

5 WRITE (6,100) PAGOOCi
DO 10 1=1, 1030 PAGOOC
DO 10 J=l , 30 PAGOO(

10 A{ I , J) = 100. + 50. PAGOO(
100 FORMAT! • START OVER') PAGOOC

STOP PAGOOC
END PAGOOC;

ALIAS FORTRAN
OFFLINE READ LOOP FORTRAN
C PROGRAM TO COMPILE THE ROSTER OF SUBMARINE OFFICERS ATTACHED TO PAU0QG1
C THE NAVAL POST GRADUATE SCHOOL PAUOOO)

DIMENSION XNA(19),RANK(4),WIFE(9) , ADDR15) , DUTY! 5) ,DATE(5) PAUOOCJ
C READ THE NUMBER OF DATA CARDS NOT INCLUDING THE YELLOW ONE, THE PAUOOOJ
C NUMbER OF COPIES OF THF DIRECTORY DESIRED, AND THE DATE PAUOOO)

RE AD (5,1)NCAR,N COP, DATE PAUOOO)
I FORMAT(21 4, 5A4) PAUOOO!)

C THIS LOOP READS ALL THE DATA CARDS AND PUTS THE DATA ON DISK PAUOOOJ
DO 90 I =1 ,NCAR PAU001J
READ(5, 8) XNA,RANK,NYR,NCRS,NTEL ,WIFE,ADDR,C IT Y , NDPN ,DUTY , SMC PAUOOII

8 FORMAT (19A1,4A1, 12, 13, I 7 , 9A 1 , 5A4, A 1, I 1,5A2,I4) PAUOOIE
90 WRITE (2, 8) XNA , RANK ,NYR , NCRS , NT EL ,WIFE, ADDR,C ITY,NDPN, DUTY, SMC PAUOOII

END FILE 2 PAU001E
C THIS LOOP PRINTS OUT THE ROSTER, REWINDS THE DISK AND CONTINUES PAUOOII
C DOING THIS UNTIL NCCP COPIES ARE PRINTED. PAUOOII

DO 91 I=1,NC0P PAUOOII
REWIND 2 PAUOOII
WRITE (6,10) PAUOOII

10 FORMAT (• I' ,24X, 'DIRECTORY OF SUBMARINE OFFICERS ATTACHED TO THE NPAU002i
1AVAL POSTGRADUATE SCHOOL' ,///, • 1. THIS DIRECTORY IS UNOFFICIAL ANPAU002I
2D IS INTENDED PRIMARILY FOR SOCIAL REFERENCE.',//) PAU002I
WRITE (6,11) PAU002I

II FORMAT (• 2. THE SUBMARINE LIASON OFFICER IS LCDR PHIL OCONNELL. PAU002I
1HIS OFFICE IS LOCATED IN ROOT',/,' HALL, ROOM 214, FNGINEERING PAU002 *

2SCIENCE CURRICULUM OFFICE. PHONE NUMBER 646 2426.'//) PAU0021
WRITE (6,12) PAU002

12 FORMAT {• 3. THE SUBMARINE OFFICERS SOCIAL CHAIRMAN IS LCDR RAY PAU002.
1 ANDERSON, PHONE 373 5150.',//) PAU002

I

WRITE (6,13) PAU003i*
13 FORMAT (• 4. THE CHAIRMAN OF THE SUBMARINE WIVES GROUP IS JANE PAU003

1 WHITE, PHONE 372 7053.',//)
WRITE(6,14) PAU003:

14 FORMAT (• 5. DOLPHIN PLAYING CARDS, NAPKINS, CALENDARS, COOKBOOKS , PAU003'
1ETC, CAN BE OBTAINED OR ORDERED THROUGH',/, • MRS JOAN EGAN, PH0NEPAU003!
2 375 1710.',//) PAU003<i
WRITE (6,15) PAU003"

15 FORMAT (' 6. CHANGES OR ADDITIONS TO THIS DIRECTORY SHOULD BE BR0PAU003I
1UGHT TO THE ATTENTION OF THE SUBMARINE LIASON OFFICER', /,' OR THEPAU003<
2 SOCIAL CHAIRMAN.') PAU004C
WRITE(6.5) PAU0041

5 FORMAT (//////////, IX, 'CITY L EGEND :',//, • C CA RMEL • ,1 1 X
,

' H C ARMEL PAU004I
1 HEIGHTS V CARMEL VALLEY D DEL REY OAKS M MARINA',/, • PAU004:
2P MONTEREY PLEN CC T MONTEREY B PEBBLE BEACH G PACIFI PAU0042
3C GROVE S SEASIDE',/,' A SALINAS Q BOQ',///) PAU004*
WRITE (6,6) PAU004*

6 FORMAT (• CURRICULUM CODE:',/,' 360 OPERATIONS ANALYSIS',/,' 367 MPAU0041
1ANAGEMENT (COMPUTER SYSTEMS)•#/ t

• 368 COMPUTER SCIENCE', /,' 3 72 MEPAU004S,
2TE0R0L0GY' ,/, • 380 ADVANCED SCIENCE',/,' 440 OCEANOGR APHY • , / , • 460PAU004<j
3 ENGINEERING SCIENCE',/, ' 461 BACHELOR OF ARTS/ SC I ENCE ' , / ,

' 521 NUPAU005C
4CLEAR ENGINEERING',/,' 530 WEAPONS ENG IME ER IN G • , / , • 535 UNDFR WATEPAU005)!
5H PHYSICS',/,' 570 NAVAL E NG I NEER I NG' , / , « 590 ENGINEERING EL ECTRONPAU0052i
6ICS',/,' 600 COMMUNICATIONS ENGI NEE R I NG ' , / ,

' 610 AERONAUTICAL ENGIPAU0053

138

ALIAS P L I L G

FLINE REAO
ROJECT: PRQC OPT

FINK PLI
IONS (MAIN) ;

/*

/*

THIS PROGRAM
J. BAIRD, B.

WAS DONE BY THE COOPERATIVE cFFORTS OF
HAINESt R. SPENCER, AND R. WOOLS */

THIS PROGRAM CONSTRUCTS A RING STRUCTURE USING THE
26 LETTERS OF THE ALPHABET AND USES THESE LETTERS
, WHICH CORRESPOND TO THE FIRST LETTER OF A PERSON'S
LAST NAME, AS ENTRY POINTS TO BUILD A SUBRING
STRUCTURE OF RECORDS CONTAINING DATA ITEMS: LAST
NAME, FIRST NAME, OCCUPATION, CITY, AGE.
THE PROGRAM ALLOWS ONE TO INSERT NEW RECORDS,
DELETE RECORDS, CHANGE RECORDS, LOCATE RECORDS
ACCORDING TO LAbT NAME AND FIRST NAME, AND PRINT
A LISTING OF ALL RECORDS IN THE SYSPRINT FILE */

DCL
DCL
DCL
DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

,OLJ F IRST)

INITIO)

;

CHAR (iQ)

ALPHABET CHAR(26) I N I T {
• A6CDEFGH IJKL MNOPQRST UVW XYZ •

ANSWER CHAR (lO)VAR ;

BUFFER CHARUO) ;

SYSIN FILE STREAM EN V I RONMENT (F (l
; D)) ;

OPEN FILEISYS IN)

;

(FI RST_LTR, FRONT, BACK) PTR;
(NLAST,MF IRST,NOCC,NC ITY,OLD_LAST
(POS IT ION, L 1ST ING) FIXED BIN(l)
NAGF CHAR (3);
BU ILD ENTRY (CHAR{ 10)) ;

6UILC_REC ENTRY (PTR, PTR) ;

LOCK.UP ENTRY (CHAR (10), CHAP (10

)

BUILD_ALPHA ENTRY (PTR) RETURNS
FIND ENTRY (CHAR(IO), CHAR(IO))
SYSPRINT FILE STREAM PRINT FNV

* e r u
(PTR) ;

<NS IPTR)

DCL

DCL

ALPHA_ARRAY (26) PTR
LABEL LABEL;
ERROR ENTRYl LABEL) ;

1 ALPHA BASED (ALPHA
2 LTR CHAR.(1) ,

2 NEXT_LTR PTR,
2 LIST.PTR PTR;

(F (1 1))

PTR)

1 RECORD BASEO(NEW_RECORD) ,

2 NAME,
3 LASf CHAR(IO),
3 FIRbT CHAR (10)

,

2 OCCUPAT ION CHAR (10)

,

2 CITY CHAR(10) ,

2 ACE CHAR{ 3),
2 NEXT_RECORD PTR;

/* THIS BLCCK STRUCTURE
PROGRAM */

HANDLES THE TERMINAL I/O FOR THE

ON ENDFILEt SYSIN) BEGIN;
DISPLAY (• •)

;

DISPLAY { • •)

;

DISPLAYS DO YOU WANT TO PROCESS ANY RECORDS?')
DISPLAY (• ')

;

DIS1:DI SPLAY(• TYPE IN YES OR NO IN QUOTES');
DISPLAY(' ') ;

DISPLAYS •) REPLY (BUFFER) ;

ON ERROR CALL ERROR(DISl);
GET STR ING(BUFFER) L I ST

(

ANS wE R) ;

IF ANSkER=»NO' THEN EXIT;

-
1 000010

V ! N J 3 02
F] NO 3030
'-

I NO J04D
F ! N) J 5 J
1 .0 0060
1 1 070
t I N 0008
F JO 090
1 I NO HOO
F [N 3 0110
F NO)120
F 1 MOO 130
F

r :O0 140
NO)150

F 1 NOOK
F [N001 70
F N 30 18
1 I M001)0
F [N00 2DO
'- N002L)

f: N J 32?)

^ IN 00 2 30
c N0024
F N)0250
F [N0D?O)

F i NO 3270
[\i 3 0230

F [

r .O02 30
^ N0O30O
F [N) 3 1

F [N00 32
F N J 3 3
F [N 303<tO
F [N 3 5
F N J 33 6)

F I N 3 7

F N003J0
F N)03 >0
F IN 00400
F 10 00410
F IN 0042
F IN00430
F [N00440
F IN 00450
F IN004oO
F [\I00470
F [N0u4d0
F [\J00490
F N 00 500
F I N J 5 1

J 5 2
F] N00530
F IN0054 3

F NO 3550
- N 056
F [N0O57O
i •i 5 8
F [N C 5 J

F [N00600
F 1 N00610
F [N 00620
f [m 006 30
F 1 N0064
F [N0Co50
F] NO 06 6
F

] N 0067
t N00680
F 1 N00 690
F I N 3j7O0

139

IF ANSWER-.= "YES • THEN D JJ
DISPLAY! 'YOU DIONT SAY Yb'b Ok NG, WHAT THL HFLl DO '

I

' YUU WANT????') ;

GU TO 01 S 1

;

END ;

ISPLAY I
• INDICATE .nHAT YOU WANT BY TYPING IN ONE GF THL'I

• FOLLOW I NG: ')

;

/* THE FOLLOWING GROUPS ARE USED TO INSERT NEW RECORDS,
DELETE' HECORUS, AND CHANGE RECORDS WITHIN A SUBRING -

/

DI
DI

DI
DI
ON
GL
IF

TH
1 F

WHIL E
SPLAY (

S2:DI

S

I I

'

SPLAY (

SPLAY I

FRROR
T STRI
ANSWE

| AN
FN DO;
A N S fi F

LIS

OR QUIT

(BUFFER-^ ") ;

' •)

;

PLAY{» INSERT, DELETE, CHANGE, LOCATE, L 1ST ING 1

IN QUOTES') ;

• •)

;

') RE PLY {BUFFER);
CALL ERROR (DI S2J ;

NC(BUFFER) LIST (ANSWER) ;

R =• INSERT* IANSWER =» DELE TE ' | ANSWFR =' CHANGE'
S WER= ' L UC ATE * | ANS WE R = • L I ST 1 NG ' I A NS WE R = • QU I T «

R=' INSERT' THEN DO;
3: DISPLAY (' INDICATE WHAT YOU ..ANT CHANGED *Y'||

• TY? ING IN CnE OF THE
DISPLAY I

• LAS I , FIRST, OC
DI SPLAY(' '

) ;

•) R E P L Y (B UF
ALL ERROR (DI
(EUFFER) LI

L

END
IF

DISPLAY!
ON ERROR
GE T STRING

NAuE)

;

CALL bUlLJtNLAST)

ANSWER^' DELETE ' THEN DO;
DIb4 .'DISPLAY (• I NO I CAT F
•DELETED b Y TYPING IN
I

| 'NAME IN yUOTFS'JRLP
ON ERROR CALL ERKOKtOI
GET STRING (BUFFER) LIS
CALL FIND(NL AST.NP IRST
IF PUSITION=0 THEN

IF FRONT->NEXT_RE
THEN DO;

LI SI_PTR=NUL
FREE RECORD;

FOLLOWING: ' I

;

CUPAT ION f CITY, AGE IN QUOTES')

f e R) ;

S3);
ST(Nt AST ,NE IrsST ,NOCC,NCITY ,

WHICH RECORD IS TH BE '
| |

THE LAST NAME AND THE FIRST'
LY(BUFFER) ;

S4);
T(NLAST.NF I RST)

;

);

cord=null £ back= alpha_ptp

l;

cNJ;
ELSh

L N J

IX) ;

BACK-
FREE

>NEXT RECORD=FRUN r->NFXT_RECORD

;

RECORD;

END;
IF ANSwtR = ' LIST ING' THEN D<~

ENi
If

END
IF

ON

L ISTING=l;
CALL PRINT
LISTINGO;

ANSWER=' LOCATE • THlN DM;
01 S 10: 01 SPLAY(' INDICAT
•WANT LOCATED BY TYPIN
•FIRST NAME IN QUOTES'
ON ERROR CALL ERROR(DI
GET ST RING(BUFFER) LIS
CALL F IND(NL AST,NF IRSF
IF PtiSlT ION=0 THEN DI S

CITY I 1 AGE J J

E wHOSE RECORD YOU'
G IN THE LAST AND •

)R EPLY (BUFFER) ;

sio);
T(NLAST,NF I RST) ;

)

;

PLAY (L AS r I I FIRST | | OCCUPAT IOM| I

ANSWER- ' CHANGE • THEN DO;
1 Si>: DISPLAY (•CHANul M

DI SPLAY(• INDICATE EITH
•OCCUPATION,!^ AGE IN

ERROR CALL ERR0RIDIS5);
Ut T bTPING (BUFFER) L I S T { ANSWER)

;

HAT?') ;

ER NAME, CITY, • |

|

QUOTES •) RF PL Y(BUFFER) ;

F LN0071Q
IF IN 00 11 i

F [ND0 73
F M J074
F [NOOJSO

\r
i N))1(,)

F [N)0 J 7 J
F F N J J 7 S J
F [N) >79)

F IN)0B0

3

F ! N WtilO
1 1 J .) >B2)

r [NO J 33
F [NOG 84)

h N00P5
• F [NO)iib)

F LNOOL n
F NDGB !0
F [NO)8V0
F [NO 090 3

F] N 3 J 9 1

F [N0092
F N 00930
F [N0G940
F IN)O rt>0
F 1 NO 0.96)

p
[N) 7

F I MO OOP

3

; f N0uQ9
F IN)1000
E [NOI 010
p NO 102
F I N J 1 30
F [N31G4 3

F I N 1 b
r

[N 1
A 5

r [NOI 07
F [NO 1080
F INC 1090
F t N 1100
F [NO 11 10
c [NOi 12
F [NOI 130
F [NO 1140
F [NO 11 50
F 1 N 116
F [NO 11 70
FI[NOiiao
F [NOI 190
p [NO I 20
F .J01210
F [N 1 2 2
F [JO1230
C ' NOI 240
F [N J 1230
F NO 126
F_ NO 1270
F [NO 123
F] MO 1290
F] N 1 3
F [001310
F 1 N01320
F 1 N 31330
F][N013hO
n N 1 3 5 J

F [001363
F [NO 13 70
F] NOI *B0
F N 01 3'^G
F

. N01400
FI NO 14 10
F] NO 142

3

l- 1 N01430
F I N 3144
F : N 3 1 4 3

140

IF
01

ON

IP

ANSWER=* N
S6:DISPLAY

•QUOTED
•R

FRRUk CAL
GET STR

NL
CALL FI

POSITION

IN
fm F W

FIR

_FI '

ST,

EN
IF
01
• I

EN
IF

IF

d;
ANSwE
b7:DIS
N QUOT

GET

CAL
IF

0;
ANSwE

DIS
• oc
ON
GUT

CAL
IF
ENO

ANSrtb
Jib
' IN
ON
GET

END

AME' THEN DO;
(•TYPE IN THE FOLLOWING ITEMS
:OLD_LAST,OLO_FIRST,NEW_LAST,

STMRfcPLY (BUFFER);
L ERRUKIDI S6)

J

I NG(BUFFER) L I ST (QLD_L AST , ULD_
AST.NF IRST);
ND(OLDJ_AST,OLD_FIRST) ;

THEN DO;
BACK->NEXT RECU RD= Fb?ONT-> NEXT _RECOP D
NOCC=0CCUPftT ion;
NCITY=CITY;
NAGE=AGE;
FREE RECORD;
CALL BUILDINLAST)

;

R ='

PLAY
Fi> ')

ON
STR

)

;

L FI
POSI

R=»U
8: DI
CUPA
ERRG
STR
NOC

L FI
POSI

R = «A
9: DI
QUO
FRRO
STR

CITY* THEN DO:
(•TYPE IN LAST, FIRST AND TH L" NEW
REPLY (BUFFER) ;

ERRUR CALL ERR0R(DIS7);
ING(BUFFER) LI ST (OLD_L AS T , CLD_F I

R

ND(OLD_LAST,OLD_FIRST);
TION*0 THEN CITY=NCITY;

CCUPATION' THEN DO;
5PLAY('TYPE IN LAST, FIRST AND NEW
TION IN QUOTES') REPLY (BUFFER);
R CALL ERRCP (DIS8) ;

I NG(BUFFER) L I ST (CLU.LA S T , OL D_F I

R

O;
nd (old last.clo first);
tion=o Then occuPation=n«., cc;

GE' then do;
SPLAYCTYPE IN LAST, FIRST AND NEW
TES' JREPLY(BUFFER) J

R CALL ERR0R(DIS9) ;

ING(BUFFER) LIST (OLD_L AS T , OL 0_F I

P

CI FY

ST,NC

ST,

AGE •

ST, NA

EN
IF

EN
EL

D;
AN

o;
SE

END
IF

END;

CALL FIND(ULO_LAST,OLD_FIRST) ;

IF POSITIONS THEN AGE = NAGE;

SWER= 'NAME' |ANSWER= 'CITY' |ANSWER= 'AGE '
I

ANSWER^' OCCUPATION* THEN DO;
DISPLAY! 'THE INDICATED RECORD HAS BEEN CHANGE!

I j 'TO READ: •)

;

DISPLAY (LAST | | F I RST | | EC CU PAT I ON | 1 CITY | | AGE) ;

do;
UISPLAYCI CANT FIGURF OUT WHAT YOU WANT «||
•CHANGED; I CAN ONLY ASSUME THAT:');
CALL EPP0R(DIS5);

F

F
F

F

F
F

F
F
F

F
F

F
F
F
F
F
F
F

1

I IF
F
F

ITYF
F
F
F
F
F
F

F
F
F
F
F
F
F
F

I I
F
F
F

F
F

F
F
F
F
F

F
f7

GE)

END
END
ELSI

END

ANSrtER=' QUIT' THEN DO;
DISPLAY! «YUU HAVE INDICATED THAT NO MORE WORK IS T

•BE uONE; THEREFURE I WILL PUT A CURRENT LI
•ING IN SYSPRINT BEFORE EXITING:');

CALL PRINT;
EXIT;

ST

00
DI

I

CA

SPLAYt • I CANT FIGURE
I

•
; ICAN ONLY ASSUME

LL ERR0RIDIS2)

;

OUT WHAT
THAT: •)

;

IT IS YOU WANT DUNE'

S GROUP OF 8 STATEMENTS IS THE MAIN PROGRAM WHICH
AINS THE DATA FPOM THE SYSIN FILE AND CALLS THE

IN 01460
ING 1470
IN01430
IN J 149
I NO 1500
I N 1 5 1

IN01520
I NO 153
IN01540
I NO 15 50
I NO 156
I N 3 1 r> 7

I NO 158
I N 1 5 9
IN 01 600
INOU 10
I NO 162
IN01530
I NO 1640
I NO 165 'J

IN J 1660
IN016 70
I N 1

I NO 169 J
IN01 fOO
IN 01 710
I NO 1720
IN01 7 V)
IN 01 74 J
IN 01 75
I NO 1760
1N01770
IN01 780
I N 1 79
IN01800
IN01810
I NO 182
10 18 30
I NO I 840
I N 1 8 5
IN01860
IN01870
IN01880
IN01890
IN01900
IN01910
IN01920
I NO 19 50
IN 01940
I NO 195
1001960
I N 1 9 7

IN 01980
IN 0199
IN 02 000
IN02010
IMO2020
I n o 2 :: 3

I NO 2 04
IN02G50
IN02C6
IN02070
IN02030
IN0209
IN 02 100
I N 2 1 1

IN02120
IN02130
IN02 140
IN02150
IN021uO
IN0217O
IN 02 13
1N02190
IN02200

141

BUILD PPOCFOURE
RECORDS) */

BUILD A SUBRING STRUCTURE (DATA

DO 1=1 TO 26;
AIPHA_ARRAY (I

)

=NULL;
END;
F IRST_LTR=NULL ;

DO WHI LE (' L' B) ;

GET LIST(NLAS1 , NF IRST,NOCC, NCI TY,NAGE)
CALL BU ILD (NLAST) ;

END ;

/* THE FOLLOWING PROCEDURE
INPUT tRRGRS */

ALLOWS FUR CORRECTION OF TER-UNAL

ERROR:PROC (LABEL);
DCL LABEL LABEL;
DISPLAY(• •) ;

DISPLAYfTHERE IS
DISPLAYMTHE LAST
DISPLAY{ « ') ;

DISPLAY (BUFFER) ;

DISPLAY! •)

;

DISPLAY! 'CHECK IT
GO TO LABEL;

END ERROR ;

AM ERROR IN THE INPUT M 5

INPUT FROM THE TERMINAL WAS: 1
)

THEN RE- INPUT THE CORRECT DATA AS FOLLOWS:')

BUILD:

: THIS FUNCTION LALLS PROCEDURES WHICH C [INSTRUCT (L) A
RING WHICH HAS THE FIRST LtTTER OF A PERSON'S LAST NAME
AND (2) A SUBPING WHICH HAS DATA ITEMS: LAST NAME, FIRST
NAME, OCCUPATION, CITY f AGE */

PROC (NLAST) ;

DCL NLAST CHAR! 10) ;

IF FIRST_LTR=NULL THEN DO;
ALPHA_PTK=BUILU_ALPHA(F IRST_LTR j

;

CALL BUILD_REC (AL PHA_ PT P , FRONT)

;

RETURN;
END;
ELSE DO;

ALPHA PTR=FIRST_LTR;
DO WHILE! • i'B) ;

IF SUBSTRINLaST ,1,1)-.= ALPHA_PTR->LTR THEN DO;
ALPHA ptr=alpha_ptr->next_ltr;
IF ALPHA PTR=F IRST_LTR THEN DO;

AL PRA_PTR=BUll*D_ALPHA{ FIRST

END;
ELSE

END;

END

^LTR) ;

CALL BUI LD_R6C (ALPHA_PTR f FRONT)

;

RETURN ;

DO;
FKJNT=LCCK_UP (NLAST, NFIRST)

;

IF POSITION -.= THFN
CALL BUILD_REC (AL PHA_P T P, F RUN T)

;

RETURN;

END
RETURN ;

END BUILD;

/* THE FCLLOWING PROCEDURE BUILDS A SUBRING, UNDER \HE
LETTER OF A PERSJN' S LAST NAME, WHICH CONTAINS DATA
LAST NAME, FIRST NAME, OCCOPATION, CITY, AGE */

FIRST
ITE'^S

BUILD_REC: PROC (ALPHA
DCL (ALPHA PTR,FROi
ALLOCATE RECORD;
LAST=NLAST ;

FIRST=NFIPST;

ptr , front)
:jt) ptr;

F

F
E
F
F
F
F
F
r
F-

I-

c

F
F

F

F
F
F
F
F
F
F
F
F

F
F

F
F

F
r
F
F
F

F

f

F

F

F
F
c

F

f

F
r
F

F
F
F

F
F

F
F
F
F
F
F

F
F
F
c

F
F
F
F
F
F
F
F
F
F
F

F

142

OCCUPAT ICN=NOCC;
CI TY=NCI TY;
a c: p = m a r. p ?AGE=NACE

;

IF ALPHA PTR=FRONT THEN
IF II ST_PTR=NULL THEN DO;

NEXT_RECORD=NULL J

LI ST_PTR=NEW_RECQRD;
RFTURN;

ELSE

END;
ELSE

END
DU

DO

;

NF xt_record=list_ptr;
L I ST_PTR=NEu_RECORD;
RETURN;

NEXT RECORD=FRONT->NEXT RECORD;
" RECUR D=NEW_'R"ECORD;

t-ND;
END BUILD_REC ;

fpun7->next_
return;

/*

LOOK UP:

THE FOLLOWING PROCEDURE LOOKS TO SEP WHERE DATA ITEMS, LAST
LAST AND FIRST MAiMt OF A RECORD, API TO BE INSERTED IN FHc
SUBRING */

PR CC (NLAST, NF IRSD PTR;
DCL (NLAST, NF IRST) CHAK(IO);
frunt=alpha_ptk->l ist_ptr;
back=alpha_ptr;
POSITION =l;
DO WHILE (FPONT-. = i\iOLL) ;

IF NLAST | |NFI KST>FRONT->LAST I
|FRONT->F IRST THEN DP;

back= front ;

front=front->next_recopd;
end;
ELSE IF NLAST! | NF IRST = FRONT->LA ST

| | FRONT->F IRST
THEN DO;

POSITION=Oj
RETURN (FRONT)

;

FND;
ELSE RLTURN(BACK) ;

END;
RETURN(EACK) ;

END LOOK_UP;

/* THE FOLLOWING PROCEDURE BUILDS THE PING WHICH CONTAINS THE
LETTERS OF THE ALPHABET. THE LETTERS UF THIS RING ARE ThE\
USED AS ENTRY POINTS FOR THE INSERTION OF RECORDS CONTAINING
THE FIRST LETTER OF A PERSON'S LAST NAME CORRESPONDING
TO THE LETTER OF THE ALPHABET IN THL RING V

F

F

F
F

F

F
p

F

F

F

F
F

F

F

F

F
F

f

f-

F

F
F

F

f

r

F

F

F

F

F

F
P

F
F
c

f

F
F
F

F
F

f

F

F
F

F

F
F

F

F

F

F
F

F
F

F

F

F
F

F
f

F
F

F
F

F

F

F

F

143

nlxt_lt^=firbt_ltk->next ltr;
f irst_l rr->n6xt_ltr=alph's_ptr;

end;
return (alpha_ptp) ;

end bu1ld_alpha;

/* the following procedure prints uut a listing
strug tjre or a listing uf thf sysprint pile

of- \\\t EKTIRE

PRINT: PROC;
DCL (TEMP) PTRJ

IE LISTING=Q THEN OPEN FILE (SYSPRINT);
DO 1=1 TO Zb;

IF ALPHA_ARRAY(I) ->=NULL THEN 00;
Tt MP=ALPHA_ARP.AY { I) ;

NEW_RECURD=TEMP->LISr PTRJ
DO W H I L E (M EW _R EC OR D-»= NUL L) ;

IF LISTINGS THEN PUT FO IT (L ^ST

,

CITY, AGE) (SKIP, A (10) ,A(10) ,A(10)
ELSE DISPLAY (LASTI I

FIRST [| OCCUPAT ION
NEW_RECCRD=NEW_RECORD->NEXT_REC

END;

FIRST
A (1 C

CCJPAT I

A (3))

;

I ICITYI | AGF
)RD;

END
END;
RETURN ;

END PRINT;

/* the following procedure lucateo t he letter of the alphabet
currespl nding tu the first letter of a person's last
name amd sfarchls through the su3ping for ttm last
NaME and first name jf the record desired */

IND: PROC (NLA ST ,NF IRST) ;

DCL(NLAST,NF IRST) CHAR(IO)
ALPHA PTP=FIRST_LTR;
IF F IRST_LTR=NEXT LTR

TFEN OISPLAYT'REC
ELSE

ELSE

END

END
IF

DO;
NtW_RECORD
IF FOSITIO
•YOU BLEW
RETURN;

SUBSTR (NLAST
NEW_RECORD
IF POSIT 10
•YOU BLEW
RE TURN;

THEN IF SJBSTRINLAST ,1 ,1)-. =LTR
ORD NOT IN FILE, YUU BLEW IT

ELSF DO ;

ALPHA_PTR=
DO rtHlLE(A

I F SU

= L

IT

» 1

= L
N-i
IT

AL
LP
OS
NE
IF
• I

RE

COK UPtNLAST ,MFI«ST)

;

=0 Then di splay (• record not in
')

;

, 1) = ltp then dc;
ock uptnlast ,nfirst)

;

=0 Then di splay (• record not in
•)

;

•
) ;

FILE, •
| |

FILE, '
I I

PHA PTR->NEXT_LTR;
HA_PTR-*=F IRST_LTR) ;

I R (NLAST , 1,1) = LTR THEN DO J

W RECGRD=LOOK UP(NLAST ,NFI RS T) ;

positioned Then di splay('record mgt •
I j

n file, you blew it')

;

turn;

END F
END

IND;
PROJECT

END

END;
ELSE ALPHA_PTR=ALPHA_PTR->NLXT_LT4 ;

END;
IF ALPHA PTR

DISPLAY
=FIRST_LTR THEN
(•RECORD NOT IN FILE, YUU BLEW I T

r
F
F

F
F

F
F
F

F

p

) ; f
F
F

F

144

CP M I X E J SCRIPT
OFFLINE READ
CPRINT ALL1
&TPYEOUT ALL TIME
CP Q U
LXEC P
EXEC COMPP
EXEC P
EXEC P
EXEC P
EXEC P
EXEC LRUNN
CP Q U
EXEC CCWI I

EXEC P
EXEC P
EXEC CRUNN
CP Q U
EXEC P
EXEC P
EXEC COMP22
CP Q U
EXEC P
EXEC P
EXEC P
EXEC CRUNN
CP Q U
EXEC P
EXEC CRUNN
EXEC CRUNN
CP Q N
&TIME
SPRINT ENC CYCLE
CGOTU TCP

ALL1 EXEC

CP •A I X b D SCRIPT
OFFLINE READ
& PR I NT ALL 2
&TPYEOUT ALL
CP Q U

CRUNN
CRUNN
P
CUMP22
U
P
P
P
CPUNN
U
P
COMPI

I

P
P
CRUNN
U
P
P
COMPP
U
P
P
P
P
CRUNN
CRUNN
N

ALL2 EXEC

TIME

EXEC
EXEC
EXEC
EXEC
CP Q
EXEC
EXEC
EXEC
EXEC
CP Q
EXEC
EXEC
EXEC
EXEC
EXEC
CP Q
EXEC
EXEC
EXEC
CP (J

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
CP
ETIME
EPRINT END
&GQTO TOP

CYCLE

145

CP MIXED SCRIPT 3_

CFFLINE READ ALL3 EXEC
GPRINT ALL3
&TPYEOUT ALL TIME
CP Q U
EXEC P
EXEC P
EXEC CRUNN
CP Q U
EXEC COMPI

I

EXEC P
EXEC P
EXEC CRUNN
EXEC CRUNN
CP Q U
EXEC P
EXEC COMPP
CP Q U
EXEC P
EXEC P
EXEC P
EXEC P
EXEC CRUNN
EXEC P
CP Q U
EXEC CRUNN
EXEC C0MP22
EXEC P
EXEC P
EXEC P
EXEC CRUNN
CP Q N
&TIME
&PRINT END CYCLE
&GOTO TOP

146

CP MIXED SCRIPT FOR MEASURING LOAD UNDER NORMAL OPERATING CONDITIONS

CP67USERID 0770 06/08/71 14.20.27 ********************************

OFFLINE READ MIX EXEC
STYPEOUT OFF
SPRINT >>>>>>>> <<<<<<<< >>»>>>> <<<«<<< »»>>>> <<<<<«< >>>>>>>> <<<<<<<< *
SPRINT »>»>» <<«<<« »»»» ««<<<<>»»»> <<««« >»»>>> «<<<<<<***
SPRINT START MIX BENCHMARK FOR PROBING SYSTEM LOAD
BLIP
STIME
SPRINT ======== ======== ======== ======== ========
CP Q U
CP Q N
SPRINT ======== ======== ======== ======== ========
EXEC P
SPRINT ======== ======== ======== ======== ========
EXEC COMPP
SPRINT ======== ======== ======== ======== ========
EXEC CRUNN
SPRINT ======== ======== ======== ======== ========
CP Q U
CP Q N

EXFC COMPII
SPRINT ======== ======== ======== ======== ========
EXEC PG
SPRINT ======== ======== ======== ======== ========
EXEC C0MP22
SPRINT ======== ======== ======== ======== ========
EXEC P
SPRINT ======== ======== ======== ======== ========
CP Q U
CP Q N
SPRINT ======== ======== ======== ======== ========
STIME
SPRINT END MIX BENCHMARK
SPRINT >>>>>>>> <<<<<<<< >>»>>>> <<<«<<<>>»>>>> <<«<<« >>>»»> <<<<<<<<***
SPRINT »>»>>> <««<<< >>>>>>>> <«<<<<<>>>>>>>> <<«<<« >>>>>>>> <««<<<***
SPRINT
SPRINT
SPRINT
SPRINT THIS TERMINAL IS NOW AVAILABLE FOR YOUP USE...
SPRINT
SPRINT PLEASE TEAR OFF COPY AND LEAVE IT NEXT TO TERMINAL...
SPRINT TERMINAL WILL LOG ITSELF OFF THANK YOU.
SPRINT
SPRINT
SPRINT
CP LOG

147

EXEC. ROUTINES FOP MIXED SCKIPTS

LAST LETTER DUPLICATED INDICATES NO LOOPING, OTHERWISF
ROUTINE IS THE SAME, EXCEPT FOR PRINT OUT AND TIME DISPLAY

ALIAS EDIT
OFFLINE READ P EXEC
STYPEOUT ALL TIME
SBEGSTACK
L /50/
N 10
TOP
FILE
SEND STACK
EDIT LOCP FORTRAN
STIME

ALIAS FORTEX
OFFLINE READ CRUNN EXEC
STYPEOUT OFF TI^E
SPRINT START CRUNN *********
ST IME
LOAD FTN (XEQ)
ST IME
SPRINT CRUNN COMPLETE ****************

ALIAS FORT
OFFLINE RfcAD COMPII EXEC
STYPEOUT OFF
SPRINT START COMPII*************
S T I M F
FORTRAN LOOP
STIME
SPRINT **COMPI COMPLETE**

ALIAS PLISM
OFFLINE READ C0MP22 EXEC
STYPECUT OFF
SPRINT START CO MP2* ********
ST IME
PLI HAI3
STIME
SPRINT **CGMP2 COMPLETE**

ALIAS P L I L

OFFLINE READ CUMPP tX tC
STYPEOUT OFF
SPRINT START CGMP*********
STIME
PL I F INK
STIME
SPRINT **COMP COMPLETE**

ALIAS PAGE
OFFLINE READ PG EXEC
STYPEOUT OFF
SPRINT START PAGING***********
STIME
LOAD PAGE (XEQ)
STIME
SPRINT PAGING COMPLETE****-***

148

TSS PRUCDEF BELANGER'S COPY MASTER COPY

P67USFRID 0770
FFLINE READ TSS PLI
LOGON GREGERIS

,PLAY 'START TSS EDIT'
CLOCK
DEFAULT SYS4NX=E
EDIT SOURCE. LCOP

LOCATE 0,LAST,STR I -M G= • 5 •

LTST 310
LIST 100
END
DEFAULT SYSINX=G
CLOCK
01 SPLAY « END EDIT 1

LEND

.pRnr.HFr cm inn
DI SPLAY ' START CPUNN'
CLUCK
CALL FTN
CLUCK
DISPLAY • khU CRUf-.N*
END

Y • START COMP I I
'

pRor.nFF r.PMPii
DIS PL A
CLOCK
ERASE USERLI8 (LOOP)
FTN LOOP,Y
CLOCK
DISPLAY •END COMPI I

'

_END

PROCDEh COMP22
OTSPLAY 'START CCM°22'
CLOCK
PL I HAI3,

Y

CLOCK
DI SPLAY • END CCMP22 1

_END

DISPLAY 'START CCMPP*
CLOCK
PLI FINK,Y
CLOCK
DISPLAY • END CGMPP'
_END

PROCDEF PG
Dl SPLAY • START PAGING'
CLOCK
CALL PAGE
CLUCK
DISPLAY • END PAGING'
_END

PROO
PRO.}
PROO
PROO
P Q <j iJ

prho

PR 00
P P. J
PROO
PROO

1660
167
163
1690
1700
1710
172
1730
17*0
17=30
1 76
17 70
17o0

PR 0001 10
PRO JO 120
PR 000130
PR000143

iO 015
PRH00160
PR 00 01 70

PRO00620
PRH0O<
PRO 64
PR000650
PR 10066
PR00067C
PRO0061
PR000690

PR00JU40
P^'" 050
PROOOOoO
PR0000 70
' 100030
pp.no-)o<n

PRG00540
PRO00550
PR00056U
P R n Q j 5 7
PKOOO540
PR 000590
PRO006OO

PR 00 1*30
PR00144Q
P R J 1 4 5 3

0^001460
PROO 147
PRP0143
^001490

149

.PKiir.nrF Al I 1

• S T AR T ALl i»UI SPLAY
CLOCK
AID 5
P
COMPP
P
P
P
P
CRUNN
AID b
COMPII
P
P
CRUNN
AID b
P
P
COMP22
AID b
P
P
P
CRUNN
AID b
P
CRUNN
CRUNN
AID 1

C LUC K
DISPLAY 'END C YCLF •

ALL1
_£ND

££J1CDEF
TIsPLAY
CL'JCK
AID b
CRUNN
CRUNN
P
COMP22
AID 5
P
P
P
CRUNN
AID b
P
COMP I I

P
P
CRUNN
AID b
P
P
COMPP
AID b
P
P
P
P
CRUNN
CRUNN
AID 1

CLOCK
DISPLAY
ALL2
_END

^HRT ALL2'

•END CYCLE •

o a n

150

iROXPtE
ilSPLAY
LOCK
ID 5

RUNN
ID 5
OMPI I

JRUNM
|RUNN
ID b

:UMPP
ID 5

RUNN

ilD 5
RUNN
<OMP 22

IRUNN
ID 1

lLOCK
IlSPLAY
LL3
iEND

4yhbu AL-4-3J

• FND CYCLF'

ART STAND ALUNE MIX'

IQMPP
[RUNN
lOMPII
OMP22
G
LOCK
I SPLAY
END

•END MIX

PMJ0108D

PRUDllUO
PKOOU10
PP/VJ1123
ppnjii30
PP001140
PRO01150
PP001160
PPG0U70
PPOOlldO
PPQ01193
PRn-jH95
P4'.)01200
PkC-01213
PRT'01220
PROG 1230
P^'i0124-3
P r)) I 2 5 J

PPO012O0
PP 101 27
P R n l 2 P

J12 (
: J

) 1 3
P K 1 3 1

DKO01320
01330

P« 1*4
PR101350
PRODI 360
OKO0L370
PPH013oO
PROG 1390
ppnoi^oo
pphoi^ig

PRH01510
PR 00 lb> 2

PPQ01530
PKf 01540
pe;i01550
PK»J015<»0
PP.D0157G
PP.001530
PR001590
PP001600
PROJlOlO
PR) J 162
PRO 01630
PP PO 1640

151

rUH.DFF ALI <t

I SPLAY • START ALLV
LOCK
ID 5

OMPP

RUNN
ID 5
OMPI I

RUNN
ID 5

ID

RUNN
ID 5

RUNN
RUNN
ID 1

LJCK
I SPLAY
LL4
END
LUGLTF

• FNO C YCLF 1

PRUOOl
DpdJOil
PRfi 3u-|
PR f lj(j

[

ptfl.l)Qi|
PROOJll
PRi" JCV
°P(J0J 1

Pr"10'.);l

p^m j J

PKi20vj;|
PPnooj
pruoo;
pR.ooai
PKOO 3]i|

PkPGO]
PRP001
PKC0J2
P- '1002
PRHQ02
pp.nojii
PRO 002
PR l"

1 02

152

MTS SCRIPTS

EDIT SCRIPT

SSRUN *TIME
SSRUN *ED;SCARDS=EAS:EDITS
SSRUN *TIME
SCONTINUE WITH EAS:EDITOR

FILE EAS:EDITS CONTAINS
XEC $EDT
EDIT EAS:LOOP
TCP: SCAN3A *F 26 '50 1

L *F
3

L *l
L *F
P 10 20 >
STOP
$EDT

FORTRAN SCRIPT

SSRUN *TIME
SSPUN *FORTRAN;SCARDS=EAS:FORTRAN PAR=NOSOURCE , NOMAP, NOLOAD
$$RUN *TIME
SSCONTINUE WITH EAS:FORCCMP

FORTEX SCRIPT

SSRUN *TIME
$$RUN EAS: FORTEX *

SSRUN *TIME *

SSCONTINUE WITH EAS:FORTX

PAGE SCRIPT

SSRUN *TIME
SSRUN EASrPAGE
SSRUN *TIME
SSCONTINUE WITH EAS: PAGER

PLISM SCRIPT

SSRUN *TIME
SSRUN *PLl;SCARDS=EAS:PLISM PAR=NS , NLD, NS2 ,NOL
SSRUN *TIME
SSCONTINUE WITH EAS:PLILIT

PLILG SCRIPT

SSRUN *TIME
SSRUN *PLl;SCARDS=EAS:PLILG PAR=NS ,NLD, NS2 ,NOL
SSRUN +TIME
SSCONTINUE WITH EAS:PLIBG

153

Appendix B

BATCH BENCHMARKING PROGRAMS

Seventeen FORTRAN and assembler jobs were collected as a batch

benchmarking jobstream. The jobs contained one to seven subroutines,

required region sizes of 58K bytes to 300K bytes, produced one to fourteen

pages of output and required 5 seconds to 360 seconds of CPU time. A

summary of the jobs in the batchmark is shown in Tables Bl and B2 . A

summary of the CPU times required is given in Table B3.

The benchmark programs were arranged in three benchmarks called

Jobstreams A, B and C. Jobstreams A and B contained 15 programs SYS001

through SYS015, whereas Jobstream C contained two extra programs, SYS13A

and SYS14A. Jobstream A and B included compile, link and go steps with

program listings and no listings, respectively. In both cases, the

writer was started, then the reader and initiator were started together.

For Jobstream C, the programs were precompiled on a disk so that only

execution steps were performed. All the JCL (Job Control Language) and

data decks were read before the initiation was started.

The most significant data collected was the time from the start

of the card reader (or the initiator in the case of Jobstream C) until

the last line was printed. In some cases, the time from the start of the

third job being initiated until the time for the third-last job finishing

was also recorded. Also, the time in which at least two jobs were multi-

programming was also recorded.

154

A complete listing of the batch benchmarking programs can be

obtained by writing to the author or a copy of the jobstreams can be

obtained by sending a blank magnetic tape.

155

Table Bl: Batch Benchmarking Jobstream Characteristics

No. of subroutines Execution
pages of Input Total CPU

Job Name FORTRAN ASSEMBLER Region-k output data ~ sec

.

SYS001 7 _ 58 1 No 10

SYS002 6 - 100 14 Yes 12

SYS003 2 - 58 5 No 2

SYS004 8 - 82 5 Yes 34

SYS005 5 - 58 2 Yes 6

SYS006 1 1 58 12 No 7

SYS007 4 - 110 4 Yes 9

SYS008 3 1 58 2 No 6

SYS009 7 - 58 9 Yes 13

SYS010 2 - 58 8 No 5

SYS011 2 - 58 1 No 6

SYS012 1 1 58 12 No 7

SYS013 3 - 140 3 Yes 359

SYS014 1 - 300 1 No 266

SYS015 1 - 300 1 No 266

SYS13A 3 - 140 3 Yes 359

SYS14A 1 - 300 1 No 266

156

*
vD
co rH H CN
VI

OO
co CN1 CN co

O VI

0)
co

o
vO H rH 1

0) VI

5
4->

o
C3 co 1 1 rH
PM VI

u
rH
TO m

CD 4-> rH CM CN 1

B O VI

•H
H

4-1

rfi

13 4-1 o
PM •H rH l*>. r^ rH
o s VI

T3 CO

J3c
TO O

•I
- m rH T~\ v£>

(3 VI

•H
<4-l

o
M
CD •

p£i o
S3

CM
VI

rH rH sf

>,
rO

>, Ui
S-i o
TO o

en
CN CN CO

CO u,
cu o

E N <r rH rH CM
TO •H H
CD w<
Si

u ti «
Cfi O o
-Q •H H rH H rH

M H
>-j CU

J-i

M
• • K O
CN O O r-l rH rH
pq

en

rH

OJ

rH J3
Xi O w
TO T"! en H rH rH
H

o

00

. ^
o 0O CX> ON ON
S3 m

6
TO
CU

J-i

4-1

CO

J3
o
>-) <3 PQ c_>

157

Table B3: Jobstream C: Execution and Region Used

Region OS/MVT CPU

Job Name k Time (sec.)

SYS001 58 6.63

SYS002 100 4.29

SYS003 58 0.42

SYS004 82 19.51

SYS005 58 0.75

SYS006 58 2.56

SYS007 110 2.07

SYS008 58 0.30

SYS009 58 4.13

SYS010 58 2.20

SYS011 58 0.11

SYS012 58 2.53

SYS013 140 342.94

SYS13A 140 345.00

SYS014 300 261.46

SYS14A 300 257.82

SYS015 300 255.44

158

Appendix C

CP INTERMEDIATE TERMINAL RESULTS

This appendix presents the intermediate results from the CP terminal

tests that were used to prepare the graphs in Section 6, especially

Subsection 6.2. These intermediate results are presented here for easy

reference or further analysis that might be desirable.

Table CI presents the average response time at each terminal for

the CP tests. This table was prepared by averaging all response times

that were obtained from the terminal printout for each individual terminal

For example, for a benchmark test running four EDIT scripts, there should

be four mean terminal response times. Runs R21 to R25 are an exception

since they present only the mean response time for a script (averaged

overall terminals running that script).

Table C2 presents the CP mean response times for each script which

were obtained by averaging the response times at all terminals running

the same script. The mean response time was used in determining the

calculated throughput as shown in Table C3

.

Tables C4 and C5 show the terminal and script measured throughputs,

respectively. The measured throughput was determined by counting the

number of job completions and dividing the run duration.

Table C6 presents the minimum, or stand-alone, CP response times for

each script as determined by one of several methods. The minimum response

159

times were used in calculating the effective progress rate as shown in

Table C7. The total effective progress rate is particularily interesting

since it provides a direct comparison with a serial processing computer,

as discussed in Subsection 6.2.4.

Table C8 presents two of the software monitor results for all CP

runs, namely, the percentage of CPU time in the problem state and the

page reading rates. Table C9 presents a more detailed version of the

results from the software monitor for Test 3 (Runs R31 to R37).

Table CIO presents the individual terminal response times that were

used to compare the CP performances when operating with one, two and

three core boxes. Unfortunately the run with three core boxes was so

short that it is considered unreliable and was not included in the

analysis and results presented in Section 6. The results for the runs

with one and two core boxes are used to compare the CP performance with

TSS which had three core boxes.

160

en

C
o
o
cu

CO

CO

CU
Ul

3
C
•H
s

c
•1-1

CO

e
•H
s
u
cu

H
rC
CJ

ctj

w
+J

ctl

QJ

E
•H
H
CU

en

C
o
a
cn

cu

ets

cu

M
cu

i

u
cu

rH

CO

H

E-
• OS

1

"

rH rH i- c r- r^. m m

—

o c
S5 M-

u
—

hJ
• M C C r- i- i- >* CN CMo -
2 Pi

S
—— . —

,

IT.

• M o o O o iH CO COo ^Z Pi

XW
.a

CO CN) ro ro <r \o CN CM

o o
!3 Pi

W
• O o o O O o o o CNO <2 Pi

H
• h-l 00 o CN sr m -3- CN O

rHO Q rH H rH rH r-\2 W

3 m oo 00 co vo m -* r-^ o on in cm vo oo co m O CM 00 CO O
H
Pi
O
Pi

i—

i

H ^r m sj- -d- -<r <r <f co si- m ^ o <f m ro <r ^d- o <r

CM CM CN CM CN CN CM CM CN CO CM CM <r <t <r m <f

O oo <r vo rH »d- 0> CO 00 VO
vO vO
O CO

h-lM <r CM CO co m m -<r O CO
• • • •

m rH
rH in
CO CM-d- vO m CM CN CN .—1

Pi CN CM CM CN CN CO

n a On rH <t cm < m 00 vj NH
H

l/J

M
e-J

CM CM M-

00 0O 00

CM CM CO

O O 00

<T rH o
cn <r <r

CD
Mi rH rH rH rH rH

o
Pi X
CO w
w H
Pi Pi
o
Pi

WO
<
Pi

H 00 O r^ vO oiinvOincNinco-d-o-d- <t<j' ONCNomco«crvocovocN
1—

1

QW
CO O CO CN

rH rH

>*OmrHin<d-CMCOSl-rHOCO •JOmHO-JN-JON

t

rH i—1 ,-1,-hcMCMCN.—1 rH rH rH rH rH CN CM

< Pi
o o
rJ H CN CN oo o <r O vO O

C_> CO m <r O vO rH CO co
Pi <3 rH r-i
c_> pn

pei

M
OP rH CM n <r LO r-1 CM -o

^ ^ CM CM ^j N CN ro r> -o

C4 § od Pi pi

161

u

o
H
Pi
O

UO m rH rH

o
S3

o
JM
(J
PL,

CM CN rH rH

g
CO

• M
O hJ
S3 PL,

co ro rH rH

X
w

o o
S3 PL,

CM CM in ^D

• o
o <c
S3 pu

<3" vD o O

• M 00 ^£> sT
rH

CO
rH

o
Pm

rH O 00 O iHONOHH N H VO H VO
rH on o m m CJ\

CM

rH

vD
rH

rHin in ifl in in co oo r^ co -j-

1—

1

Pm

00 rH
LO rH

rH CT\

<f CO

rH
CO

CM
rH

r^
H

H
H
W
to
2

g
CO
H
J
Ph

O O O
^ m sfH rH rH

o cn m
H Csl (N

m <f voHrlH

CN
rH

CO

00
CO

CO

O
PM
CO
W
Pi

w

o
Ph

CO rH V© rH CT\

CO <f U~> O rH
IN >J CO N VD vO
rH o o o m o

min<d, voio m m m in-* n

P-,

HH
Q
PJ

LO CTN i—It— oo-^-i— ^O o> n cm o m n CMCMvO-J-<rO^0CMCT\00O00rHin
ooo<fmo<ru-ioin<ro-in~3-

OrHr^OLnOcN^OCTsr^r^ooiHommoinmmooom<i-<r
rH H rH H rH rH rH rH rH H iH rH H

«] Pi
o o
u

p.. <:
U Pn

H
00
rH
CN

00

1

Pi
W

St"
co
Pi

in
CO
Pd

rH CM

pd

162

.a
o o
55 Ph

o
55

M
d4

o
2

s
COM

Xw
H
P5
o
fa

w
o

9 ^
55 Cm

O Q
55 W

O

O
M
J
Cm

v£>

Om

cr> co mm m n
<r <r m

v£

(N

co o co m co co
m o o o i-h o
CT\ o o o o> oH (N (M OJ H (N

uO

CM CT>

co co

<i-^>-<rcor^incTi^o<i-LnrooovomHHHOHHvJin<fN<tO
OOOOCOCMOOCOMOOOOOOOOvOrs
.—ICNOMCMCMOMCMCMCMCMCMCMCNI

eg

eg o
co <f

co co

CO
I—

I

-J

wo
Cm

QW

9 c^
o
HU

Cm <!U pM

O
J

55

O
c^

-d
-

CT\ m iH \J0 vjo

r^ r-*- r^ co r-^ r^

co co co m r^ cmHN-jinno
rH O O Cft O O

r- O vO r^ o
cm o co <r o
in vt ^ m m

on r^ m hm co in o
m co co ro

vCNvOHin<tH<fCi\in
co-<f.-lCNico-d-«d--ct-c-4vJ-

o cm o o\ cm <r r-^

o- m cm o o m o
iH rH rH iH i-H

00

H HN NCM H(N

o st
00

co

163

T3

C
•H

e
O
o

c_>

rH

CO

H

o
(23

• i—

i

O hJ
!Z P-i

W
• u
o <;
a CM

2 Q

v£>

O
CN

LO m

CM

m

LO

o
CM

CM CTi \£> <f LOHHOHN
LT) IT) LO LO LO

CO

sr i—I O LO r-»

CM rH iH <T rH

vf in n in m

5
o
HU

P-. <

O
J

00
o r^r—iLOCMCMCOr^COOOOrHCMO<f<fOCOCOOCM

00

Pi!

O rH O rH

lo o -a- -cr

CM

oo m oi h oO O LO O rH

O O vo r^ rH

OOCOCMOr-~»£>COi—ICMvOOCMC^vOo<tiHoo<r<fincMrHtHo-d-<r

00

164

T3

3
•H

C
o
o

u
0)

CO

H

o
J

• M
O hJ
Z Pm

s
• H
O hJ
!3 Pu

B
F-j

• csi

c O
sz; [n

w
• o
o <J
a CM

o o

o
H

Ph <

o

Pi &

m

m

in
CN

m

<r oo cn <Tv co
m cm iH co m
m m m m <r

(nNin<^covD*OM^o\OMin^)N
ococomomcNincoosrinco<j-v3-

00

m
P4

165

O O O CN 00
On N CN lO vjH • . « • • v£>

<r 1 m MM rl VO
PC H

m o <r
oo ro inm • • • 00 CO

co I i m i m rH CM
Od rH CM rH

H cni oo rs
co <f m h

»* • ... S3" «tCO i I «* o m rs. o
P4 rH <T rH H

CO rH LO ^3-
co rs co rs

ro • ... O vO
co r-1 1 1 CO 00 <r •o 00
Pi i-H CM H

CO 00 is. O
4J st rs oo on

o
•H

_

CN
co

• • • . \

rH I 1 Oi COM (

£> CO
» v£>

u s3"
D^ CM

o
cCO
o

(J

•H CM CM CO CO
cd CJ

cj\ in in rs

w CU
H . . . <3 si-

CO
CO 1 1 00 CM CM rH O

u a CM rH H
o ft

•4-1 00

O)

E o oo
•H •H

v£> CO

H 4J
in t m

0)

cd

3
CN
Pi

I I I I m ^ 3 m
CO cr
W

o
a A
CO CO o
a) CU st 00

ctf 4J ^r • • c3 vO

a
3 CM

Pi
1 1 1 1 VO v^3 s*

cd •H
CU CJ

C3

IX,

CH o
CJ|s^ 00 CO

CO • • a) O
• •

CN
Pi

i I i i <r <r <r

CM
CJ

QJ

rH

CO
CN
CN

CN
1 1 1 1 1 1 o-

fc—f
Prf

m
CM

rH • CM 00
CN

1 1 1 1 1 CO CM
Pi

U
o
u
a U
cd o
Pn •u

5 / T3 a
D/ z -a cu cd
c/ H X 2 co C (n
/ e* w x o o2 o •H
/ M H W H CO _3 H -) J3 T3
' Pi H O flj H H ft) S cd

C_> Q <d O hJ hJ O Ph o o
CO W Cn h ft, ft, hu U _1

sj-

m
PC

o
00

on cm in co
CM vd-

CT\ CM
. . . .

I m m o i-i

co
m
Pi

CMm

00 COO vO
m

oo

I I ON cm I ro

oo o m
VO rH rH

l co r^ i en

m
Pi

rs.

sd-

Pi

CM
cr>

m mm rH

l m rs. i ,_|

rH m co co coo CM cm co co
*

rH I m <T rH rH

sT
Ph

in
sf
Pi

mo CO oo vO

I I S3- I rH CO

rs rs o on
rH v£> o m

I s3- CTi rs co
rH CM

O
CM

rs lo o> o
si- oo co <r

I o m on cm

o cti o in co
^O O rH 00

• •

I r^ r^. in r^

sj
ON

<y\ co co rsO vO sj- CM

I LO CO rH rH

H X
Cm w aM H w H en
Pi H o s HU Q <3 o hJw W p^ fe Ph

166

c
o
•H
4-1

o
cu

01

c
o
•H
4J

CO

3
cr

4-1 /»-n

& C
•H •H
J-j B
U
CO iH

CO

J3 3
CJ •H
cO 6W V4

CU

rl 4-1

O *«^

4-1 4-1

3
4-1 &
3 XZ
& bC
X 3
&B O
3 Vj

O Xi
U 4J

rC
H T3

(U

T3 S-J

CU 3
4-1 CO

to co

H CD

3 S
CJ

H o
td 4-J

o
u

c CO

CO ^H
CD •H
a B

PM CO
o v"-'

_
J

rO

u
CU
rH
XI
to

H

H 00 iH 00 CO vO rH
rH iH cn O ^D cn m

H • •

<t H 1 CN r~-

pi rH

00 v£> CO CN nO 00
H O iH <t rH o

U~| • • • • • .

n rH 1 1 1 rH 00 rH
Pi

m
ro r~- CN ON rH -* o
CN o O ^H U~| O CN

<t • • • • • • •

en ^H 1 1 rH rH rH
Pi rH

u-| r^ <f -H r-~ <r «>r

r^ O O CN O 00 cn
cn • • • • • • .

cn 1 1 rH 00 iH
Pi

o O <r -o- 00 00 00
r^ .H O ro rH -d- O

CN • • • • • • .

cn 1 1 rH o CN
pi rH

on CN <r r- CN r» rH
o rH o m <£> <r rH

rH • • • • • •

cn T-\ 1 1 rH r^ cn
Pi

'

*
00 <f CN CN CN
t-H rH cn cn cn

U~l • • • • •

CN 1 1 1 1 rH rH rH rH
Pi

vjO *m <r rH rH rH
rH CN <r ON ON

<t • • • • •

CN 1 1 1 1 H rH CN CN
Pi

*
rH rH rH rH
cn cn m m m

CO • • • • .

CN 1 1 1 1 cn cn <n cn
Pi

CN
CN 1 1 1 1 I i 1 l

Pi

*
o o o O

H • • • •

CN 1 1 1 1 i <r <r »d- <r
Pi

ale.
put

*
4-1

3h a
5 / £5 O Xi co x:
Pi/ H X <£ M u GC

/ p-< w S O « rH 3 O 3
/ rH H W H CO •-J E"! cO O 4-) O
/ f^ H O Pi m m pi B 4-> U Xi u
/ u Q <OJ hJ o 3 o xi 3 xi

/ CO W Pm fa Ph Pm fa CO H H cn H

m
pd

cn
m
Pi

CNm
Pi

m

pi

Pi

Pi

Pi

cn

pi

CN

m
CN

ON 00 ON
rH rH O oc

rH 00
rH O

I I

O rH

ONo
oo <r

ON
ON

on <r on m
iH cn o r^-

o
in ooo CN

l I

r~- o -<rO rH O
I I

cm
r-. m cn
rH o <r

CN cn <f

O
O 00 ON ON
cn cn O r-

W
W HO Pi

Q < O hJ
W p^ [n p..

CN

cn

(N ^D

3

X?

o
u
XI
H

3
a
x:
6C
3
O

O
4-1

X C/N

V W
e H
•H
4J -3

4-1

CiJ •H
X s
C

c
ta O
CO CO

3J •rH

H Sh
CO

TJ a
cu B
IH o
3 CJ

Ul

to u
0J o
E U-t

T3 X
CO 4-1

-= H
•H

X K
4-J CJ

p. X
•H
IH O
CJ rJ
X M

-J
3 Pm
CU

HH -n
3
CO

X
a

0) -JO

X —
r J
to Cm
CJ

cu *
X 2j

5 c2
HH Pi
O

>. ft
rH
H V4

to o
CJ <4H

•rl

4J H
X CO

•H 4-1

H o
to 4-1

aj J3
|H 3
a CO
p -K

-K *

167

CO

C
•H
B

CD

0)

C
o
•H
U
<u

H
(X
e
o
o

43
o

3
a
M
O
5-i

H

CO

(3

•H

5-i

cu

H
T3
cu

U
3
W
CO

ai

PL,

O

43
CO

H

in
erf

cn m
vo ct\ <r oo
<r m rH iH I l

co
in
erf

iH 00
I CN O I I I

CNm
erf

m
erf

erf

mo ro r-~

cti r^ rH
I CN o rH I

o vo co
\DvO CO
-sf vO rH I I

<p~ iH co r~- mo iH co vo m<t*HHO I

vO
st
erf

i i I

m
st
erf

m <x>

r>. oo CN

m cn
cn -d-

rH O I

St

erf

HinOvOH
oo r^- <y> vo stnwoHO l

CO
-3"

erf

m o m r*. cn
r^. vo cn oo vorOiAHHO I

CN
st
erf

st
erf

m
CO
erf

cn m vo oo mm CN v£> o CN
CO vO rH CN rH I

oo co cn o m
vo oo r*. in m
st m f-H cn o I

CN vO
rH CN
<t rH

CNm
I O I

st
co
erf

in ^o vo oN N vO st
ST r-l i o o I

co
CO
erf

vO st CO Oo o\ in vo
st .h i o o I

CN
CO
erf

CN m ON rH
kD N ON St
CO CN I O O I

co
erf

m oo
CO CN

CN CNQ CO
iH O

S3

H
CmM
erf

c_>

co
Q O OW flH U^

13
CO 5-i

o o
hJ 4J

O
Cm CO

U Pn

ON

co

vD

O^

CI M
3 3
erf o

o
•H
u
0)

H
e
o
o

43
O
>-)

c
•H

a
•t-r

5-i

O
00

5^

0)

<^

u
3
CM
4=
M|
3
o
H
-3
H
T3
OJ

5-i

3
CO

CO

m

43
co

H

ON CT\ CO 00 C7\
St omNH mm • • • • i i

•

erf m vO

co «\
co St •*lm II -ill .

f

erf In

«
CT\ C^ CN o

CN CN CN rH 1^m 1 • • • 1 1 •

erf

st r* r- i-i CTih st vO vO H 1 I 00m • • • i •

erf vO r^-

rs. m
i—i r»- vo in o

r-^ in vo vo rH o o
St •

erf st vO

vO
St l l l l l l o
erf

VO
m iH co st stm r-N st h m 00

St . .
i

. . | •

erf co st

r-. oo st r— m rH
St vo co in rH cn o
St •

erf CN st

in vo m c> cj\ st
CO Mn NH H st
st •

erf CO m

m
00 CN O rH CO m

CN in VO O CN rH m
St •

erf St rH vO

co rH o m
cn oo vo m m p-

rH m m oo cn o CN
St •

erf vO 00

r-«

p^ co m vO (Tim <f O rH CN r-- c-.

CO • • 1 • 1 1
• •

erf CN co

O 00 O 00 vO VO
St st 00 CM O m rH
co • • 1 • • 1

• •

erf CO st rH

CT\ CN O
vO vO H vO O St

CO O CX< CN O co CN
CO • • 1 • • 1

• •

erf st m rH

r~ cnmm a\ oo 00 co
CN CO vO CM o CO cn

2
• • I • • I

st rH

r^ oo

vO rH

00 CN O CN st vO
T~\ CO O CO rH 00 St
co . . 1 . . 1 • •

erf rH CN co CN

B /
i

43
rH 1

CO 43
ff}/n < X 60 U 00
/Cm erf w g o rH 3 O 3
/ M H H H CO hJ W CO O 4-> O *
/ erf m erf erf M m o U 5-1 +J 43 5-i -U

/ u Q O O hJ hJ < OJ 3 3 43 3
f CO td pm pn eu p-i p-i H H 0- CO 4J O-

168

Table C6 : CP Minimum Response Times (Minutes)

(Used in Place of Stand-Alone Response Times in

calculation of Effective Progress Rates.)

Source^-^S c rip t EDIT FORTRAN FORTEX PLISM PLILG PAGE

Haines &

Porteif ield 's

Thesis [2]

0.10 - 0.457 1.016 -

Terminal
Probe Tests

[14]

0.033
(2 sec)

0.116 0.38 0.483 1.15 6.27

Minimum
during
benchmark
runs

0.5 0.88 3.6 2.1 8.76 -

Best
Minimum
Response Times

0.033 0.10 0.38 0.457 1.016 6.27

MTS
(for comparison)

[3]

2.84 0.18 0.28* 1.06 1.64

*Scale by 100 from Hinson's thesis [3] because different multipliers were used.

169

en

OJ

u
cfl

Pi

CO

03

QJ

o
r4

CX

OJ

U
CJ

OJ

HH
14H

w
enu

U
QJ

rH
42
cd

H

st
Pi

r~~ r- en ^h oom vo <r co vDO O O rH O O m
rH

rH

N.

m
PS)

CTi 00
CO O") i-fO 1 1 O c~ O

00
O

st
rH
st X

St
cn
Pi

rH cn m ON
<f m CN rHO 1 1 o o o rH

vom X

m
Pi

in en v£> i—

i

cn en m cnO 1 1 o o o CNm X

CNm
Pi

cn r~~ <o <t
cn •<) co mo O 1 o o o rH

C*m
vO X

H
cn
Pi

^o <r in nm m st cn
o O 1 o o o

CN
<-^

rH

m
st

X

CN
Pi

rH st
00 rH

1 O 1 1 rH rH

in
CTN

CN
o
cn X

XCN
Pi

CT> mm cn
1 O 1 1 rH rH

<t
00
CN

cnm

CO
CN
Pi

CN
rH cn

I o I i cn cn

CM
stm m X

CM
CM
Pi

1 O 1 1 1 1 I i

rH
CN
Pi

o
1 O 1 1 i st

o
st

o
st X

/
& 1

/ P-"

/ I
-1

/ f*
/ O
/ C/3

* -x w s o p3
H W H 00 rJ HM O Pi rH M Pi
Q <J O r4 rJ OW Cn fn CX Ph En

|3
oo

co

CO

<u +H M 01

cd oo a)

•u o -u

O U cd

H Ph Pi

CJ

•H
4J
CO

> rH
o co

42 QJ

<C u

stm
Pi

cn
in
Pi

CNm
Pi

m
Pi

st
Pi

vO
<t
Pi

m
st
Pi

st
<t
Pi

cn
st
pi

CN
<*
Pi

<-t cn <r m rH
st r-~ oo cjs ooo o o o o o

cn cn cn* vo cnO O O O I o

00 st CN
cn vo cnO O O O I o

vo oo sj- m
on tO vO vO
O O O O I o

cn cn oo in
cn r~» o ct\ r-~O O O rH O O

r-- oo oo
cn st cnO O O I o o

N rs 00 CO
cn st cn cno o o o o o

vO vO CO H CN
^-i m r^- m sto o o o o o

<-{ as m r>. cn
CN St VO VO r-\o o o o o o

m m vo as <y>

cn r~- cn oo r»
O O O rH O O

H W
Q <
Ed CX En

cn

co

QJ +
U CO

00 QJ

o u
u cd

Ph Pi

rJ •H
o m rJ

i4-i cn CJ

Pi CO

co

QJ O H
• R w M

•H Q
e~s 4J rH td
CN cn
<^<- QJ Pi O
QJ CO C
r-{ C co

42 o c QJ

Cd ex 3 CO

H CO u 3
w QJ cd

W U u
•H o QJ

QJ CM 42
4-1 CO

CX 3 & Ai
•H cd o O
r4 CJ rH
CJ QJ QJ

CO 42 QJ U
VJ cd

u m cd

o CN cn
MH Pi CO m

QJ Pd
0) O 4-1

r 4J Cd T3
•H u C
44 rH

CN Cfl

cd

0) Pi co CN
CO 0) m
C Cfl J-i Pi
o C 00
ex 3 O «

CO u u VO
oj CX st
u u

O rH
Pi

c 14H Cd •>

cd 4-1 m
QJ • CO o st
R 0) 3 4J

o o
Pi

i^ C QJ TJ CO

42 O C C 3
o cd 3

T3 C U Pi
QJ QJ J-i Cfl

T3 > QJ R
>H QJ 3 •

> • QJ Cfl QJ

H >i QJ 4-J rH
X) u 4-1 -H QJ 42

0! QJ 3 43 cd

>r*s

J H C4J r-\

v£> CX •H

of
CJ R QJ O cd

C O U Cfl >
rH cu CJ Cd rH cd

43 42 <
cd 4-1 CO 4-1

H c O QJ o
N^ •H C 4J •

cd QJ

3

0) cn TJ U rH CO

R 4J •H 42 •H
•H tx T3 co cd

u •H Cfl rH X!
IH O QJ -rH Ed

QJ CJ hJ r4 Cd H
CO 01 M 00 > Pi
c JOB O
O w Ph r4 En
O, O CX 4J

co < a) o r4

QJ Cm CO rH C o
rJ 3 cd 4H

U cd 4-> QJ
•1 o CJ O VJ QJ

QJ QJ 4-> Cd R
PJ H 42 •H
O H QJ X 4-1

^ o S X CO
cd w O 4-1 M QJ

I rH hJ Cfl

T3 -o CX 3
fi c >% 3 O
cd rH Cd t3 CX
4-1 CO rH C CO

CO <D cd co cd QJ

4-1 CJ R U
u cd •rl 3 X!

u 4-J CO UJ QJ

•H CO H 4=
n Tl •H QJ Pi 4-1

g c rH 4= O 3
3 •H cd 4J En QJ 3
R QJ Cfl u
•H o H (U * 3
C M C 4J h cd Q)

•H aj POM a u
R IN * z o 0) QJ
*>w/ * * + Ed 42 S

170

u
cO

a
1
in

co

u
H
3
en

QJ

Pi

S-i

o
u
•H
e
o
s
QJ

M
CO

u
o
CD

u

00
a

co

H

CM

Pi

Pi

m
CM
Pi

CN
pi

co
CM
Pi

CM
CM
Pi

in

o

vD

CM
Pi

CO

Pi

CM

Pi

Pi

00

CM
00

CM
CO

CM
CO

CM

00

00

m

v£>

CO
CM

T3 4J

CO 3
a) C

a) B Pi •H
00 QJ B«S I ti

CO .H CO

>-i 43 QJ a) u
QJ o 6 oo QJ

> ^ •H CO a
<d P-. H Pm ^^

oi CO
o
CM

•o-

Pi

-3"

CM CM

m
Pi

m
CM

CM
CM

Pi
o
co

O
CM

co

Pi
00
CO 7-\

CM

Pi
CM

m
co
CM

Pi
cr.

co r-4

co
Pi

r- CM
CO

CO
Pi

00 CM
CO

CO
CO
Pi co

c /

Pi/ QJ B
60 CD &»«

CO rH

qj o 6
> >-i -H<PhH

<u

T3 •-•

CO 3
QJ C
Pi -H

1 B
CO

QJ H
00 QJ

CO Q.

P* s-'

171

Table C9r CP Software Monitor Results - Test 3

Memory 256k Bytes o f Memory 512k 768k
Run R31 R32 R33 R34 R35 R36 R37

a. CPU UTILIZATION 15.8

1.6
10. A

1.12

7.3

0.11

7.5

1.82

6.8

1.0

30.7
0.82

19.8
2.34

b. WAIT TIME 64.0
1.2

68.0
.9

72.4

0.36
72.8

1.76

73.4

1.60

49.4
2.46

63.1
3.21

c. CP TIME 15.2

0.14
16.6

.32

15.2

.36

14.5

.12

14.4

.50

15.7

1.47

13.5

1.01

d. OVERHEAD TIME
1.16

5.1

0.20
5.2

.04

5.1
.17

5.4
.10

4.1
.29

3.6

.12

e. PAGES READ/SEC 25.5
2.0

31.8
1.8

33.3

• 51

31.5

2.0

31.8

1.05

10.9

2.33
10.2

53

f. PAGES SWAPPED/SEC 21.3
1.65

26.2

1.44
29.0

.52

28.6
2.19

28.5
.10

10.0
2.13

9.5
.53

g. PAGES STOLEN /SEC 20.8
1.70

26.3

2.00

29.1

.60

27.7
2.36

28.4
.65

2.83
1.23

3.6

.61

h. " FORTRAN COMPILE

RESPONSE TIME

2:44
:I8

2:56
:48

5:00
:24

5:46
:29

7:27
2:59

. PLISM COMPILE
RESPONSE TIME

8:40
:28 9:47

•71
15:19

:06
16:07 15:10

n

PLILG COMPILE
J ' RESPONSE TIME

22:51
:12

30:25

:71

AVERAGE THROUGHPUT
PLILG (COMPILES /MIN)

.043 .033 .027 .023 .011 .072 .048

. AVERAGE THROUGHPUT
' PLISM (COMPILES /MIN)

.111 .098 .067 .062 .226 .147

AVERAGE THROUGHPUT
m

* FORTRAN (COMPILES /MIN)
.338 .319 .192 .174 .139 .584 .564

AVERAGE THROUGHPUT
n# FORTEX (Blips per min)

.781 .743 .424 .360 .437 1.15 1.01
...

i dfcM.

Notes:

1) With 1 core box (256k bytes) 38 pages are usable.

2) In rows a through d. the first number is a percent and the second number is the
standard deviation.

3) In rows e through g. the first number is the number of pages per second, and the

second number is the standard deviation.

4) In rows h through j the first number is the response time in minutes and seconds,
and the second number is the standard deviation in seconds.

5
s

* In rows k through m average throughput is given in number of compiles per minute
for each program type. In row n , one blip is equal to 2.4 seconds of CPU time.

172

Table CIO Individual Ternlrtal Response Times
For Determining Effect of Memory Size

Part a: FORTRAN (in minutes)

[
--*un_ R31 R36 R37

Compile // One Two Three
Core Box Core Boxes Core Boxes

1 2.37 1.41 2.03
2 2.52 1.55 2.00
3 2.24 1.25 1.09
4 2.25 1.35 1.45
5 2.41 1.28 2.08
6 2.56 1.36 1.34
7 2.30 1.43 2.08
8 2.28 1.23 1.50
9 2.48 1.43 1.12

10 2.34 1.50 1.51
11 2.27 1.43 2.08
12 3.15 1.28 1.42
13 1.21 1.45
14 2.28 1.32

15 2.59 1.29
16 2.40 1.48
17 2.46 1.27
18 2.26 1.39
19 2.37 1.43
20 2.36 1.25

Average
(Minutes) 2.35 1.36 1.48

1 .. _

Part b: PLISM (in minutes)

1 9.18 3.55
l

5.56
2 8.55 4.03 7.43

3 8.38 3.51
4 7.52 4.26

5 9.10 4.22

6 8.20 3.50

7 8.13 4.18

8 9.25 4.07

9 8.49

Average
(Minutes) 8.45 4.06 6.34

Part c: PLILC (in minutes)

—
1

2

3

4

22.31
22.54
22.59
23.01

13.52

13.48

3.08

Average
(Minutes) 22.51 13.50 3.08*

*Very suspicious because the test run was so short,

173

Appendix D

TSS INTERMEDIATE RESULTS

This appendix presents the intermediate results from the TSS

terminal tests that were used to prepare the graphs in Section 6.3.

The intermediate results were obtained in the same way that the CP

results were obtained.

Table Dl presents the TSS mean response times for all terminals

running each of the scripts. Table D2 presents mean measured throughputs

for each terminal in job completions per minute as determined by Equation 1

in Section 4.2. These results are the same as the mean measured throughputs

per script but are not the same as the total throughputs per script as

shown in Table D4. Table D3 is the equivalent of Table D2 except it

contains the calculated throughputs as determined by Equation 9 in Section

4.2. The total calculated throughputs per script are shown in Table D5.

The last lines of Tables D4 and D5 represent the total measured and calculated

throughputs as determined by Equations 5 and 10, respectively.

174

*

m
ON CO CO

«* o m rH o om • • • • • •

CO <r rH LO, oo CM
erf OJ CM rH

CM
CM
rH rH

a
in mo CM

•H CM co co
CTi O lO 4-> CM o o

<t • • • rd • • •

co co ON u*l <r <t 3
erf r—

|

oo p%, o CJ*

r-t rH

rH <r r^ r~-

Cfl <r co co
LO m UO 3 CM O O

CO • • • •H • •

co co r> I
s* o MTJ

Pi rH H CO 00
rH

4->

3 ^o MD vD
•H ON <r <r

r-» rH 6 CM o o
CM • • • • •

2
Csl CO 1 ^D CO 3H 00 vO O

•H
4-1

qj

rH m r-» r^
d. rH r- m

CO oo 00 S CO o o
rH • • • o • • •

CO CO m rH o <r a
Pi rH CM rH

rH
o
rH

o
•-3

On CMo 4J

m m ro 3 m \ rH
eg • • a •

erf rH
1

00 mm bti

3
O
u
X.m H co . r«-

<r CM o m 1 rH
CM • • rH • •

erf rH
1

oc O cd

3
•H
8
M
QJ

CM H m on
co r- ro CM

\ 1CM • • TJ •

Prf I «* oo o QJ

>-4

3
CO

crj

rH

o QJ m 00
H CO C^ s on

k
*

CM «
1

• • 1

Prf 1 rH CM
CO

00
CM

00
00
H

CM

CM
/ Q
/ U QJ
/ o TJ rH
I 4-1 Rj X
1 CJ O cd
1 ro J H
J Pn

6/ TJ
3/ JT -a QJ Z
03/ 4J <q 03 3 u <?

/ & pj ss O O •H o P5 S CJ

/ -H H co hJ J -Q 4-1 H OO hJ
/ ** erf H H s O prf M M
/ o o H-) J P-. o CO O rJ rJ
1 OO rH Pm CM CJ o P* PM P-, 0-J

On

a
o
•H
4-J

cd

3
cr
W

3
•H

e
u
QJ

4-1

3
O
•H
4-1

QJ

rH
a.
e
o
o

.a
o

3

bC
3
O
M

H

co
Q

rd

H

00 ON
co -<r co
cm o o

co o\
vo m co
cm o o

CMAm
CM O O

co O

CO vO
o vo <r
co o o

oo

ON
O0

o
co

CO

erf S O
H oo j
erf m m
O rJ rJ
rH pL, Pm

PL,

H

3
•H

B

CO

3
O
•H
4-)

QJ

a
B
o
a
^
o

W
•H
M
U
Cfl

H
a)

4J

3
a
&q
3
o

H
T3
CU

M
3
CO

ro

QJ

s

cd

H

CM 00
r- o vo
ON rH O

mO MJ^
rH O CM

r~ rH r^
CM rH O

CM
oo ~d- on
•<r rH o

ooO CO CM
CM CM CM

CM

o-
CM

vO
lO

m
CM

LO
a-.

CM I oo

O hi J, o
Pn Pm CLij H

LO

3
O
•H
4J

ro

3
cr
W

H

H
S3

143 C-J

QJ

C

o
4J

CU

—

I

o
H
*

175

00mm M»
LO H i—1 O oo
00 • • • •

CJ

•H
a*

•H rH

H
00K mo r- >*

<!• OO rH O UO
*rl 00 * • • •

u •H rH

~
/«"»

-4

<3-
•n m r^ rH OO•CTHHN
> oo • • • •

^§ * rH rH

•H
4J

0) '

H
E CM

"0 OO 00
00 CM OO OO • 1 •U pi rH CM

rQ
o

•-3,

o <y< vc uo
4- rH rH rH CM LT)
CL 00 • • • •
•H
J.

Prf CM CM

a
in

r4

0) r^
a O lHm O rH rH
4-1 CM • 1 • •

3 pe! CM CMa
xi
M

..

3
O
U oo oo
rC -d- <1" rH mH CM • 1 • .

T3
pej CM CM

QJ
4-1

cc

tH
3 cy> CO CMo oo OO CM M0H CM • 1 • •

04 •H rH

H
cO

<3 oo 00
4-1 .H <*o m ooO CM •

I . .H C* (O CO

enm
H

m
Q
CU

H
rO
CO .

H C /
3 /

/4-I <
/D- PiS £ O rH
/ *H E-4 m hJ ctj

/ M p:i M H 4J
/ a c)hl J o

en Ci< P-(CL, h

176

Appendix E

MTS INTERMEDIATE RESULTS

This appendix presents the intermediate results from the MTS

terminal tests that were used to prepare the figures in Section 6.5.

The intermediate results were obtained in the same way that the CP

results were obtained. Since Hinson made a good presentation of the

intermediate results of the MTS tests in his thesis [3] these results, as

shown in Table El, were the basis for the results in this appendix.

Table E2 presents the same results as Table El but with several

corrections to make them compatible with this project. The EDIT response

times have all been reduced by 2 minutes which represents the time required

to print the extra 17-1/2 lines that MTS editor produced. (See discussion

in Subsection 2.2.1.) In most cases the original EDIT response times were

plotted but the corrected response times were used in determining the

total calculated and measured throughputs. The effective progress rates

were calculated using the original EDIT response time because the corrected

results would have produced unrealistically high progress rates.

The FORTEX results are corrected by multiplying the response times

by 100 because the MTS tests were performed with an old version of FORTEX

script that used 10,000 loops before printing 11 characters instead of the

1,000,000 used in the other tests. This is probably a little unfair to MTS

since the printing time was 0.75 seconds (11 characters at 14.7 characters

per second) of the 1.32 seconds minimum response time, and this does not

consider the overhead of initiate the program execution, calling the clock

177

and printing the time an extra 99 times every 2.2 minutes.

The PLILG and the PLISM response times are also corrected for Run

R63 in Table E2. Run R63 was subdivided into two runs, one representing

the first few minutes of R63 when the response times were good and the

other representing the rest of R63 when the response times were very

poor, i.e., 4 times longer than previously measured. The sub-runs are

referred to as R63a and R63b.

The analysis that lead to the separation of Run R63 is shown in

Figure Dl. It shows an amazing consistency of the response times within

the newly defined runs R63a and R63b as well as a large difference between

the response times.

Table E3 shows the times that were extracted from Tables El and E2

for plotting the MTS terminal response graphs. Also shown are the load

factors and the number of terminals assigned to each script.

Table E4 shows the MTS measured throughput per script which was

determined from the last column of Table E2 by NT. times TP
. , where NT.J i l i

is the number of terminals running script i and TP . is the mean throughput

per terminal per minute from Table E2. The total measured throughput, with

the corrected throughput for EDIT, is also shown in Table E4 . (Also the

total throughput with the actual EDIT throughput is shown but it was not

used in the analysis.

Table E5 shows the stand-alone and light load terminal response times

for each script. The light load was 5 EDIT, 1 FORTRAN, 3 FORTEX and 3 PLILG

for a MTS Load factor of 54. These times were used to determine the

178

the effective progress rates.

The effective progress rates are shown in Table E6 which were determined

by dividing the minimum response times from Table E5 by the mean response

times from Tables El and E2 - which are also shown in Table E6. The

minimum response time for EDIT was taken from the tests rather than Table

E5. The total effective progress rates, as well as the EDIT subtotals

and the non-EDIT subtotals, are also shown in Table E6.

179

Table El: MTS Original Response Times and Throughputs *

!—— ——— —

RESPONSE IN MIN.

' THROUGHPUT
IN

COMPLETIONS/
SCRIPT TEST NO

;

MEAN STD DEV HIGH VALUE LOW VALUE MIN/TERMINAL

EDIT 1 2.68 0.26 2.95 2.18 0.29
2 2.97 0.20 3.60 2.51 0.24

3 3.43 0.33 4.54 2.97 0.22
4 2.96 0.25 3.59 2.50 0.27
5 3.21 0.58 4.74 2.48 0.25
6 3.26 0.48 4.45 2.51 0.22
7 3.36 0.46 4.62 2.91 0.23

FORTEX 1 0.0220 0.022 0.022 15.15
2 0.0239 0.0001 0.0240 0.0238 10.05
3 0.0300 0.0002 0.0302 0.0275 8.37

4 0.0233 0.0003 0.0236 0.0230 13.80
5 0.0234 0.0001 0.0235 0.0233 14.35
6 0.0250 0.0007 0.0254 0.0241 6.65
7 - - - - - - - - - -

PAGE 1

2

3

4

5

6

- - - - - - - -

- -

0.97 0.40 1.49 0.22 0.31

7 - - - - - - - - - -

PLILG 1 2.86 2.86 2.86 0.31

2 3.97 0.41 4.47 3.26 0.17

3 21.00 14.54 37.22 6.71 0.025
4 2.94 0.40 3.54 2.32 0.32

5 6.13 1.08 8.01 4.83 0.18
6 6.85 1.48 9.43 5.73 0.063

7 6.70 1.12 9.08 4.77 0.13

PLISM 1
_ _ _ _ _ _ _ _ _ _

2 2.36 0.23 2.63 2.16 0.29

3 7.24 4.40 11.67 2.94 0.11

4 1.71 0.20 1.85 1.57 0.22

5 3.55 0.94 4.75 2.52 0.17

6 3.61 0.52 4.39 2.99 0.19

7 3.53 1.26 4.45 2.10 0.24

FORTRAN 1 0.37 0.21 0.59 0.18 0.57

2 0.41 0.21 0.82 0.20 1.49

3 1.16 1.03 3.81 0.25 0.31

4 0.36 0.26 0.89 0.20 1.67

5 0.60 0.28 1.19 0.22 1.86

6 0.67 0.39 2.70 0.20 1.06

7 ,0.58 0.34 1.74 0.20
I

1.14

*Obtained from Hinson's thesis [3].

180

Table E2: MTS Corrected Response and Throughput

MEASURED

RESPONSE IN MIN. THROUGHPUT INJ

SCRIPT TEST NO
COMPLETIONS/

MEAN STD DEV HIGH VALUE LOW VALUE MIN/TERMINAL

EDIT R61 0.68* 0.95 0.18 1.14*
R62 0.97 - 1.60 0.51 .73

R63 1.43 - 2.54 0.97 .53

R64 0.96 - 1.59 0.50 .83

R65 1.21 - 2.74 0.48 .66

R66 1.26 - 2.45 0.51 .57

R67 1.36 - 2.62 0.91 .57

FORTEX R61 2.20 2.2 2.2 .151

R62 2.39 0.01 2.40 2.38 .100

R63 3.00 0.02 3.02 2.75 .083
x 100 R64 2.33 0.03 2.36 2.30 .138

R65 2.34 0.01 2.35 2.33 .143

R66 2.50 0.07 2.54 2.41 .066

R67 - - - -

PAGE R61 - - - - -

R62 - - - -

R63 - - - ~

R64 - - _ -

R65 0.97 0.40 1.49 0.22 0.31
R66 - - - - -

R67 - - - - -

PLILG R61 2.86 2.86 2.86 0.31

R62 3.97 0.41 4.47 3.26 0.17

R63a 8.5 4.4 12.0 6.71
} 0.025

R63b 35.4 7.94 37.22 28.3

R64 2.94 0.40 3.54 2.32 0.32

R65 6.13 1.08 8.01 4.83 0.18

R66 6.85 1.48 9.43 5.73 0.063

R67 6.70 1.12 9.08 4.77 0.13

PLISM R61 - - - - -

R62 2.36 0.23 2.63 2.16 0.29

R63a 3.2 .39 3.5 2.94
} 0.11

R63b 11.0 1.31 11.67 10.0

R64 1.71 0.20 1.85 1.57 0.22

R65 3.55 0.94 4.75 2.52 0.17

R66 3.61 0.52 4.39 2.99 0.19

R67 3.53 1.26 4.45 2.10 0.24

FORTRAN R61 0.37 0.21 0.59 0.18 0.57

R62 0.41 0.21 0.82 0.20 1.49

R63 1.16 1.03 3.81 0.25 0.31

R64 0.36 0.26 0.89 0.20 1.67

R65 0.60 0.28 1.19 0.22 1.86

R66 0.67 0.39 2.70 0.20 1.06

R67 0.58 0.34 1.74 0.20 1.14

* 2 minutes subtracted from results in Table El,

i.e., .29 x 2.68/0.68 = 1.14

181

•H
CO

psi

.H WW H
S

CU

M '-w

3 O

•H

CU

•* CO

g T3
•H Cu <u

en

cu a) co
& <Du u e4

en

,-cu m-i 14-1

"*" COjjM O O

cu
4-1 4J

•H 4-1 VDy to p!
CO

cu cu e

u -u Prf

CO

CU m 14-|

1
-J"

^PQ O O
I

vO m CO

oo

o
en

o

O
co

O
CM

00

OO

o
JM
Cm

C/DM
i-J

CM

O
.JM
Cm

O
•JM
.-J

CM

O
M
Cm

X!
WH
PiO
Pm

Q

O
M
CM

Q

o
JM
•-J

Cm

X! X!
W wH H
CtS «o o
U-> Pm

182

U-l

o

to

H
to m
* vOH Pd
03

-3 §
cd

1 CO
•H
H £

w

too

•H
fa

CO

oot

CTi

«-L

A

co

A

CM

Oo
l-l

o i-H

4-1

Tj
0)
U

o
a

O
u o
toH
«
CI

1
QJ

4-1

o

o

o
CM

o
i-2

o

o

—

f

4.

CTi

CM
00
CM

1 | 4.

CM CM
m
CM CM

00
O o
3 3

o

-+— J

mo
3

o
3

oo

oo

o
JM
fa

QW
l-l rt M H i-i

o o Q Q a
fa- fa W fa" w

183

w

fa

w

U
3
C
•H
a
c
•H

03

P.
cd

J-i

O
c
•H

T3
(U

W
5TJ

W

S
•H
H
(U

en

C
o

03

ctJ

H
C

S

H

CO
W

cd

H

3
H
Pi HO •

F* Pi

M H
iJ •

P-i Pi

CO
M H
P-. Pi

X
W
H
PS
O
Fn Pi

H •

M H
Q •

W Pi

53

t—ir-Hr-Hr-1 h m in m

OrHiHiHt-HrorOrH

H<JNN^^<-|^

OOOOOCMOO

ro^>j-<f<-fnvoo

iHCOOOOOCOmcM

r^-rHvDvOvOOr^OOfOvJHHn^DvOin

oo o\ m a\ iH oo r^

CMCOOOmcNvOvOvO
CO

I CO CM
rH IH rH CO
i— irno m

CM CO rH rH CO CO CO

owoon^o
cm co o o co co m
CM CM CO CO CM CM CM

COONCOCOvOrHvOv©
voco»3-<ra\c\icMco

CMCMCOCOCMCOCOCO

O\NCO00(N(NHOrOMTi^NOOCO

<t<fCMM<f00Nrn
M-OOM-^OOO'imH

^COOOOOHHW

CO ,n
i—icsicoco-vj-invor^

pipipipipipipipi:

184

Table E4 : MTS Measured Throughput per Script*

-^Run
Script

R61 R62 R63 R64 R65 R66 R67

EDIT
(actualj
Table El)

3.19 3.12 2.20 2.16 2.00 1.10 2.76

FORTRAN .57 1.49 .31 1.67 5.58 5.30 3.42

FORTRAN
(Corrected)

.45 .40 .34 .55 .43 .40 —

PLISM - .29 .11 .22 .51 .57 .24

PLILG .31 .68 .18 1.28 .72 .25 .91

TOTAL 4.42 5.98 3.14 5.88 9.24 7.62 7.33

EDIT
(corrected:
Table E2)

12.5 9.5 5.3 6.6 5.3 2.9 6.8

Subtotal
without EDIT

1.33 2.86 .94 3.92 7.24 6.52 4.57

Total with
corrected
EDIT

13.8 12.4 6.2 10.5 12.5 9.4 11.4

Combined
Load Factor

39 77 98 72 102 101 80

MTS Load
Factor

44 84 142 84 97 132 113

Table E5: MTS Minimum Terminal Response Time

SCRIPT SINGLE JOB IN SYSTEM 12 JOBS IN SYSTEM

EDIT 2.84** 2.85

FORTEX - 0.28

FORTRAN 0.18 0.18

PAGE 0.18 -

PLILG 1.64 1.93

PLISM 1.06 -

*Determined from last column of Table E2 by NT . x TP . where NT is the number

of terminal running script i and TP . is the mean throughput per terminal per

minute.
**Too high; the lowest value in the tests was 2.18 minutes.

185

CO

CD

4-J

rt

Pi

CO

CO

CD

u
60
o
u
Hi

CD

>
•H
4-1

a
CD

w
C/l

H
a

£1
CO

H

CD

c
oH
CCJ oo oo oo vd <r
1

4-)

rH -H CM O vO

CN O O iH rH i-{ iH rH iH ^1

C/}

LO
\£> oo co O LO rH O O- LO O LO

r^ co lo Lo r^ vO CO CO CM »» 00 ON
\o • •

i
• • . . | . . • • •

Pi co o co vo o o o o o
tH

r^ CN

cm <r
vo r~- o rH lo NNH 0> <J CO LO 00

vO
Pi

CM \£> LO vO 00 vO CM rH CM CM CM co CO

co o cm co vo o o o o o r^ co co

00h o<non MOM OvO r-- •<t co

Pi

(N vO CO LO H vO CO rH CO CM r-^ •<* co

CO O CM CO vO o o o o o 00 LO CO

r^
vO vD fOHvt CO O CM CM VO <a- o <r

vO
pi

<^ CO PI N ON r^ lo <—i vo lo r-~ ON 00

CM O CM rH CM o o o o o on LO co

VO LO
43 O <t ON -J" ON LO <f
co • • O O CN co ON
vO iH LO • • • • •

Pi
CO vO O
<t r-{ O

rH CO LO LO CO
CO LO ONvDHO

o o r- vO o

CO rH CO o o o
CO CO On vO LO rH
co CN LO CO i-\ LO CO CN
vO • • • • • • •

Pi CO 00 o o 00 VD CM

lo r^ co
r-- .H on vo r-. CO «tf rH LO rH vO LO rH

CM
vO
Pi

ON >tf CO CO ON nm- h <r <• LO LO o
CM O CM CM CO o o o o o CN ON CO

H

CO r- o-
00 N O vO r-i ON CN r~- ON LO <rH vO CO CM 00 00 >3" rH LO CO On <f

vO . . . | . . . 1 . • • •

Pi CM O CM CM o o o o O 00 i-H

«
3 y CO co

Pi/6 (1) CD

/ CO H 4-1 M U/ C ^3 CO O O
o CO Pi L|H LW
ftHN ' OJ CO

CO W > CO rH rH H
CD 1 £2 •H CO £5 CO CO M
Pi

co C 2 &3 g O
4-1

CJ

CD

u
< X
Pi w g o

*
iH

4-J

O CO

4-> Q
O W

C CD CO H H H c/n ,J C CD Of H H H C/3 ,_1 CO U H 4-J 1

CO 6 M Pi Pi M M CO L4_| o h-t Pi Pi M M 4-1 .Q M X> G
CD •H .H Q O O hJ hJ CD <4-l M Q O O hJ hJ o 3 Q 3 O
g H W W fe Pm O) Ph g W p- W Pn Pm eu pm H CO Pd c/3. 2

CD
4-1

M
CD

43
E
3
C

CD

JA
4J

CD

*4 •

CO >^
rH

•H CD

Pi >
Pi •H
w 4J

O
T3 CD

C a.
CO CO

OJ

•H u
H
21

»

CD OJ

M 4-J

0) CO

42 M
&

CO
1 CO

CD

•H u
Pi 60
P-i O
W U

CU
X
•H OJ

H >
S5 •H

4-1

o
iH OJ

W II <4H

•H LtH

II CD

CO c
CD CO

4-1 CD

CO B
M

CO

CO CO

CD 4-J

U •H
0C
O T3
U ca CO

CD •H
>
•H 4-1

4-J a
CJ •H
CD V-i

LW o
LW CO

w
60

rH c
CO •H
4-1 c
o d
H -j

* u

186

Appendix F

BATCH INTERMEDIATE RESULTS

The intermediate data from a late version of the MTS batch benchmarking

runs is shown in Figure Fl. The data includes the starting, stopping,

elapsed and CPU times and the lines of printed output for each job. Also

shown are the order of job initiation and the total elapsed time. These

tests on jobstream A and B were performed in September 1971.

The intermediate data for OS benchmarking tests performed in November

of 1969 under OS/MVT version 15/16 are shown in Table F2. The data includes

the total turnaround times, the times in which at least 3 jobs were in

the system and the multiprogramming times.

A summary of above MTS and OS results as well as some other tests

on MTS and TSS is shown in Table F3 which summarizes the total turnaround

time for each jobstream and configuration.

187

Table Fl: MTS Batch Benchmarking Results - Sept/ 71

Part 1 Jobstream A

Times
Jobs

Start time (ON) Stop Time (OFF) Elapsed Time
(hours :min: sec) (hours :min: sec) (seconds)

CPU Lines
Time Printed
(seconds)

15.0 189
5.16* 476

19.1 1243
10.9 300

10.6 278
21.7 602
14.4 409

9.39 658
19.3 1213
17.7 1227
93.0 74

93.4 74

18.4 1232
21.3 1178

364.1 604

SYS001
SYS003
SYS002
SYS005
SYS011
SYS004
SYS008
SYS010
SYS007
SYS006
SYS015
SYS014
SYS012
SYS009
SYS013

5:42:07
5:42:34
5:42:31
5:43:17
5:45:12
5:43:05
5:44:12
5:44:49
5:43:57
5:43:32
5:46:12
5:46:00
5:45:21
5:44:41
5:45:38

5:42:27
5:42:48
5:43:10
5:43:53
5:46:08
5:44:18
5:45:16
5:45:52
5:45:09
5:45:18
5:51:23
5:51:37
5:46:33
5:46:45
5:56:05

20.8
14.0

38.7
35.9

55.9
72.4

64.1
63.0
71.3

106.0
311.0
366.4
71.5

123.8
626.7

Order of job starts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Total Turnaround Time = 5:56:05 - 5:42:07 = 13:58 = 13.97 Minutes

Part 2: Jobstream B

^v Times Start Time (ON) Start Time (OFF) El asped Time CPU Lines
JobsNv (hours :min: sec) (hours :min: sec) (seconds) Time Printed

\^ (seconds)

SYS001 - - =21. - -

SYS002 13:03:33 13:06:26 173.0 19.4 1029

SYS004 13:04:06 13:07:08 182.2 21.0 69

SYS008 13:06:13 13:07:25 71.7 12.2 183

SYS007 13:06:06 13:06:43 42.5 18.8 1029

SYS011 13:06:58 13:08:11 72.5 10.2 57

SYS006 13:04:33 13:06:47 135.0 15.6 973
SYS009 13:06:35 13:07:44 68.8 20.5 716

SYS015 13:07:51 13:10:43 171.6 91.5 59

SYS014 13:07:29 13:10:46 196.9 91.6 59

SYS010 13:06:48 13:07:44 55.6 8.95 550

SYS012 13:07:12 13:08:13 60.6 15.3 973
SYS013 13:08:01 13:15:24 443.2 363.3 251

SYS003 13:03:35 13:05:52 136.7 5.11** 459

SYS005 13:04:18 13.06:10 112.0 10.6 118

Order by St:art t ime : 2

,

3, 4, 5 , 6, 7, 8, 9, 10, 11, 12, 14 , 15, 13

Total Turnciround Time = 15 24 - 03:33 = 11:51 Pi us 21 sec =12.2 minutes

**
CPU time limit exceeded on SYS003

c

Normal termination

188

Table F2: OS/MVT Batch Benchmarking Results

Configuration Job-
stream

Total
Turnaround
Time (minutes

Third-in to

Third-out Time*
(minutes)

Multi-
programming
Time** (minutes)

3 core
boxes

A 22 10 18

B 22 12 17

C 26 15 16

2 core
boxes

A 24 13 20

B 22+ 11
!

17

C 27+ 16 7

Table F3: Summary Batch Total Turnaround Times (minutes)

System Configurations

Job st ream

A B C

OS/MVT 3 core boxes 22 22 26

2 core boxes 24 22
+ 27+

TSS 3 core boxes
Dual processor

20 16 14

3 core boxes
Single processor

26 21 21+

2 core boxes
Single processor
One channel
Control Unit

41+ 31+ 27+

MTS

Summer
1970

3 core boxes
Dual processor

12.5 11.3 10.0

2 core boxes
Single processor
One channel
Control Unit

19.5

MTS
Sept/71

3 core boxes
Dual processor

13.97 12.2

**

Third-in until third-out time means the time in which at least 3 jobs

were in the system.

Multiprogramming time means the time in which at least 2 jobs were executing.

189

INITIAL DISTRIBUTION LIST

No. Copies

Fleet Material Support Office 1

Code 964
Mechanicsburg, Pennsylvania 17055

Defense Documentation Center (DDC) 12
Cameron Station
Alexandria, Virginia 22314

Library 2

Naval Postgraduate School
Monterey, California 93940

Dean of Research 2

Naval Postgraduate School
Monterey, California 93940

Library 1

Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

W. R. Church Computer Center 2

Naval Postgraduate School
Monterey, California 93940

Office of Naval Research, Code 437 2

Information Systems Program
Department of the Navy
Arlington, Virginia 22217

Director, Naval Research Laboratory 1

ATTN: Library, Code 2029 (ONRL)

Washington, D. C. 20390

Dr. G. H. Syms, Code 53Zz 5

Computer Science Group
Naval Postgraduate School
Monterey, California 9 3940

LT F. Douglas Meyer, USN 1

Naval Destroyer School
Newport, Rhode Island 02840

190

CDR Robert E. Graham, USNR
Naval Reserve Training Headquarters
New Orleans, Louisiana 70140

Mr. Mike A. Lamendola, Code 5200
Naval Electronic Laboratory Center
San Diego, California 92152

Mr. Mike T. Alexander
Computer Center Building
1075 Beal Avenue
University of Michigan
Ann Arbor, Michigan 48105

Mr. Gerald N. Cederquist
Assistant Research Engineer
Cooley Electronic Laboratory of the

Department of Electrical and
Computing Engineering

University of Michigan
Ann Arbor, Michigan 48105

Chairman, Department of Computer Science
University of British Columbia
Vancouver, B. C, CANADA

Dr. T. A. Marsland
Department of Computer Science
University of Alberta
Edmonton 7, Alberta, CANADA

LCDR Elbert F. Hinson, USN

9 Legare Street
Charleston, South Carolina 29401

LT William R. Haines, USN
38657 Rhons Wood Court
Northville, Michigan 48167

191

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D
iSecunty classification of title, body of abstract and indexing annotation n.u.sf be entered when the overall report Is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Naval Postgraduate School
Monterey, California 93940

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

B . REPORT TITLE

Benchmarked Comparison of the TSS/360, CP/67, MTS and OS/MVT Computer Operating
Systems

4. DESCRIPTIVE NOTES f7>pe of report and,inctusive dates)

Technical Report, 19 73
5. AUTHORI5I fFifs! name, middle initial, last name)

Gordon H. Syms

6 REPOR T DATE

June 1973

7a. TOTAL NO. OF PAGES 7b. NO OF REFS

16
ia. CONTRACT OR GRANT NO.

Foundation Grant
b. PROJEC T NO.

9a. ORIGINATOR'S REPORT NUMBERIS)

NPS-53ZZ73061A

9b. OTHER REPOR T NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School

13. ABSTRACT

A set of terminal scripts and benchmarks have been derived for comparing the per-

formance of time sharing and batch computer operating systems. Some of the problems

encountered in designing valid benchmarks for comparing computer operating systems

under both terminal and batch loads are discussed.

The results of comparing TSS/360, CP/67 and MTS time sharing systems for the IBM

360/67 over a wide range of load conditions are presented. The results of comparing

TSS, MTS and OS/MVT under batch loads are also presented.

Serious performance degradation of the time sharing computer systems from over-

loading was experienced and a simple solution is suggested to prevent such degradation.

The degradation was so sever as to render the performance less than that of a sequen-

tial job processor system.

DD F0«" 1473
i nov es I "W I w

S/N 0101 -807-681 1

(PAGE 1

)

192 UNCLASSIFIED
Security Classification

A-31408

UNCLASSIFIED
Security Classification

key wo RDS

Benchmarking

Performance

Evaluation

Time Sharing System

Time Sharing

Computer Performance Evaluation

Measurement

Terminal Scripts

Operating System

Computer

CP/67

CP/CMS

TSS/360

MTS

OS/MVT

IBM 360/67

Michigan Terminal System

Load Factor

Effective Progress Rate

Computer Perforamnce

Batch System

RO LE WT ROLE (IT RO LE WT

DD FORM ,1473 < back)

S/N 0101-807-6821
193 UNCLASSIFIED

Security Classification

U155293

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

Hll IIIU Mil Hill ill

5 6853 01060478 8

U

