THE NEWS LETTER OF THE BUREAU OF PUBLIC ROADS

VOL. 2, NO. 8

JUNE, 1927
A. C. ROSE, EDITOR

CONTENTS

Composite Concrete And Hooden Plling A Unique Feature Of Oregon
 Federal-Aid Bridge - - - 1

Existing Mileage Of State Ronds At End Of $1926 \ldots \ldots$

Existing Mleage Of State Ronds At End Of 1925——..................... 10

Bureau Exhigit On Display At Remo, Nevada - 11
11. H. Lynch Minde District Engineer Of District 5 - 11

Status Of Current Federal-Aid Road Hork, as Of May 31, 1927 _ . . - - 12

Present Status Of United States Routes $40,41,51,61$, And $66 \ldots \ldots$

Estimated 1927 State And Local Highway Expenditures - 26

Antivemin Advocated As North American Snake-Bite Serum - - 27

New Research Project Approved _ - - 29

John Mitton Goodell n . 30

COMPOSITE CONCRETE AND WOODEN PILING A UNIQUE FEATURE OF OREGON FEDERAL-AID BRIDGE

Compiled from reports submitted by R. E. Merrick of District and C. B. MoCullough, bridge engineer of the Oregon State Highway Department

Composite concrete and wooden piling was a unique feature in the construction of the trestle section of the federal-aid brioge on United States route 101, across the Siletz River, near taft, oregon. the structure (f.A. Project No. $\mid 10-\mathrm{D}$) consists of a 240 -foot steel swing-span over the main channel, a short approach on the north end, and 414 feet of trestle, which connects the south extremit.y with a IO-foot fill extending for a distance of half a mile across an open tide-flat. (Figure 1 - Top)

The plans and specifications for the approach trestle called for three composite piles to each eent. These composite piles were to be constructed by first driving a timber pile, and following it with a section of concrete piling, driven to such a depth that the entire timber section was submergeo eeneath the low-water line. the object of the concrete-follower section was: (1) to resist the attack of the teredo, which gores into wooden piling in the zone aetween the ground or fresh-water line and the high-tide level; and (2) to overcome the effect of alternate wetting and drying, caused by the rise and fall of the tioe. Salt water is the natural habitat FOR THIS WOODGBORING MUSSEL, WHICM CAN NOT EXIST IN FRESH WATER. Above the height subject to the ravages of the teredo and the oxidation of the alr, the cheaper wooden type of construction was used. the plans at this level called for a deck of wooden stringers and a plank floor, all laid upon concrete caps cast upon the tops of the COMPOSITE PILING.

The pre-cast concrete piles were designed with a tapered shank. (Figure 1 - Bottom) the lower end of the pile was enlarged to form a bell-shapeo section, in which was constructed a socket 42 inches deep ey 14 inches in dameter, which was fitted over the top of the previously-driven timeer pile. Into the outer end of the socket was fixed a cast-steel die with a cutting edge. (figure 2) preparatory to driving the concrete pile, the top of the wodoen pile was trimmed so as to be about I inch larger in diameter than the die. As the driving progressed, the die cut away the surplus wood, and a tight fit was oetained eetween the wojd and concrete sections of the composite pile.

Fig. I (TOp). - Genezal view of composite-diliva trestle on Oregun federal-alo bridge droject lio D

DETAIL OF PILE JOINT

FIGURE 2-dETAILS OF REINFORCED CONCRETE SECTION OF COMPOSITE PILING.

The Concrete piles varied in length from 22 to 56 feet. On account of the proposed exposure to sea water, they were cured for MORE THAN THE 60 days REQUIRED BY THE SPECIFICATIONS. THE CONCRETE in the piles developed a high strength - 1.839 pounds at the end of 7 DAYS.

Method of Construction

Abstract

The first step in the construction of the trestle was the DRIVING OF A SERIES OF TEST PILES, TO DETERMINE THE CHARACTER OF the foundation. These were driven to a depth of 100 feet without REACHING A SOLIC FOOTING THROUGH THE SILT, AND SAND ANO GRAVEL DEPOSIT AT THE SITE OF THE BIRDGE. AFTER ONE OR TWO DAYS HAD ELAPSED, IT WAS DISCOVERED THAT THE TEST PILES COULD BE DRIVEN FURTHER WITH ONLY A FEW ELOWS OF THE HAMMER. THIS CONDITION INFLUENCED THE CONtractor to drive the timber piles, for the entire approach, several Weeks in advance of the time when the concrete sections had become finally cured. TMIS was intended to give the wooden stubs ample TIME TO REACH A CONDITION OF EQUILIBRIUM WITH THE SURROUNDING SOIL. THESE WODCEN UNITS, FROM 45 TO 50 FEET IN LENGTH, WERE DRIVEN SO THAT 6 or 8 feet projected above the surface of the grouno. More than 60 days later, when the concrete sections were spliceo to the wooden piles, it was discovered that the latter were held so tightly ey the SURROUNDING SOIL, THAT IT WAS Impracticaele to drive tmem without reSORT TO AUXILIARY EQUIPMENT. IT WAS EVEN DIFFICULT, in SOME INSTANCES, to start the woocen stuss after jetting four holes around each one. It is believec that the difficulties and cost of construction could have been reduced consideraely, if the timaer stubs and concrete folLOWERS HAD EEEN DRIVEN IN ONE CONTINUOUS OPERATION.

The driver was constructed with a pendulum lead so that, when ONCE SET IN POSITION ON A BENT ALONG THE CENTER LINE OF THE ROADWAY, all the piles in the eent coulo ee driven without changing its locatION. THIS METHOC MADE IT NEGESSARY TO ALTER THE EATtER OF THE PILES AS SHOWN ON THE PLANS, SO THAT THEIR PROJECTEO CENTER LINES WOULD INTERSECT AT A COMMON PDINT - COINCIDING WITH THE HEAD-ELOCK OF the driver. the contractor used a 7×10 american hoist donkeyengine, which was slightly overloaded ey the concrete piles, the maximum length of which was 56 feet. He recommende an $8-1 / 4 \times 10$ DONKEY-ENGINE WITH A SEPARATE HEAVY HEAD-BLOCK, AND WITH THE RUNNING LINE fOR HANCLING THE PILE SET NOT LESS than ONE FOOT in fRONT OF the MAIN HEAD-ELOCK FOR THE HAMMER.

Developments During the Driving Operations

The first attempts at criving the concrete-pile sections were NOT VERY SUCCESSFUL. A No. I UNION STEAM HAMMER WAS TRIED firet WITH UNSATISFACTORY RESULTS. A 4, GOO-POUND DROP HAMMER WAS THEN RESORTED TO WITH CONSIDERAELE INCREASE IN DRIVING EFFICIENCY. FOR short piles, it is progable that the steam hammer would have proved superior, but the mass of the long com>osite piles was so large in PRO~ORTION TO THE ENERGY DEVELOPED BY THE STEAM HAMMER, THAT SATISFACTORY PENETRATION COULD NOT EE ATTAINED. A CAST STEEL MUSHROOMSHAPED FOLLOWER WAS INTERPOSED EETWEEN THE HAMMER AND THE pIle head. THE FOLLOWER WAS RECESSED beneath to allow for the insertion of a CUSHION, CONSISTING OF TWO LAYERS OF Z-INCH SPRUCE SEPARATED EY DNE inch of ruzger. Holes were drilled in the flange of the follower TO PERMIT THE PASSAGE OF THE REINFORCING BARS, WHICH PROJECTED FROM the top of the pile.

The driving of the concrete sections was begun at the south END ON A VERTICAL PILE. ABOUT TWENTY FEET OF PENETRATION WAS OBTAINED, AND IT WAS NECESSARY TO TRIM THE gADLY-SHATTERED TOP OF THE concrete pile. the next trial was made on one of the eattereo units WHICH, AFTER EEING DRIVEN ABOUT 15 FEET, GROKE IN THE CENTER, AND phe ubper pontion had to ge withdrawn. The break. was causec by lack OF SUPPORT AT THE MID-SECTION. FOLLOWING THIS EXPERJENCE, LATERAL tIMEER ERACES WERE PLACED NEAR THE CENTER OF THE PILE, AND NO FURTHER DIfFIGULTY OF THIS KIND WAS ENCOUNTERED. THESE bRACES PREVENTED ANY undue kicking of the plle, especially of those on a batter.

In one instance a concrete pile was eroken, during the driving, A SHJRT DISTANCE selow the ground line. This was caused ey excessive oriving, after the point of the pile had penetrated a deep layer of INTERMINGLED LOGS AND STUMPS. THE GREAK, WHICH OCCURRED AGOUT FOUR FEET AZOVE THE EELL-SHAPED SOCKET, WAS OF THE TYDICAL CONICAL, COM-PRESSION-FAILURE TYPE. THE REINFORCING STEEL WAS BENT INWARD ON ALL sides. Repalrs were made gy sinking a crib, and excavating the earth AROUND THE PILE TO PERMIT THE CONSTRUCTION OF AN $18-1$ NCH REINFORGED CONGRETE COLLAR, FROM THE BELL TO A POINT FOUR FEET AOVE THE TOP OF the sreak. THIS experience ingicates that, when hard driving is antICIPATED, IT WOULD be desirable to reduce the dIameter of the sellghaped pile-end. This Could ee accomplished ey reducing the diameter OF THE TOP OF THE WOODEN PILE, Ey CUTTING A SHOULDER AROUNO THE COMplete circumference: and also by reducing the thickness of the walls of the socket, and adding more reinforcement. It would also be well TO PLACE A STEEL DRIVING-RING FOUR OR FIVE inches wide, AROUND THE top of the concrete pile.
the contractor stateg that the steel castinge, used for the sockets in the eell-shaped ends, were excessive in cross section and welaht. In his opinion a one-inch thickness woulo have been sufficient, and would have reduced the cobt materially. as it was, the castings, which cost \$is apiece, were effective as a die for cutting the head of the wooden alle to the proper size. Whether this would be the case if the dimensions of the bell-shaped socket were reduced must be determined ey further experiment. The 45-degree bevel on the cutting edee also resisted any sidewise movement and consequent splitting of oblique-grained piles, which might have occurred had the anale been flatter.

After the piles in the first bent were placed, the balance of the driving was less difficult. The greater difficulty, experienced in driving the initial piling, was probagly caused ey the weight of ten feet of new sand-fill under the bent, which may have compressed the subsoll. An effort to start the stue pile by direct driving was unsuccessful. Thereafter, four holes were jetted around each stub pile before driving was begun, and two jets were operated continuously While the concrete followers were geing driven, except for the last few feet of penetration, when the jets were withdrawn. A crew of elght men drove an average of $2-1 / 2$ and a maximum of 5 pileg in one DAY.
the concrete plles were driven so that the bells, in the bents on the bank, were at least 6 feet below the low-water level. In the stream, where the water was more than 6 feet deep, the bells were driven in all cases below the ground line, thus giving adeed strenath to the bents. the tops of the completely-driven concrete piles were considerably out of line, on account of the deflection caused ey the heterogeneous nature of the foundation material. All variations in alignment were compensated by altering the dimensions of the concrete cap.

The erection of the steel span presented no unusual difficulties. It was fagricateg on the rest pier in a olrection parallel to the center line of the stream. A small framed bascule gridge, operated by a winch, permitteg the construction crew to cross the ohannel on the north end. This temporary bascule bridge was raised, as occasion required, to provide a clear pagsageway for boats. Except for some painting and miscellaneous work, the structure was finished by December, 1926.

Advantages of Composite Piling

The principal advantage of the composite piling is the relative ease in handling. Where monolithic concrete piling is used, especially where the piles are of great length, there is consideraele difficulty in handling them in the leads. in the siletz River work, the use of monolithic piling woulo have NECESSITATED A RECONSTRUCTION OF THE EQUIPMENT TO OBTAIN THE PROPER EATTER: BY UTILIZING A COMPOSITE TYPE, THE RELATIVELY SHORT tIMEER STUES COULC EE DRIVEN FIRST AND THEN FOLLOWED OY THE CON crete units. This made it unnecessary to handle the entire length of the pile at one operation.

Another afvantage of the composite dile is the reduction in FIRST COST. CONCRETE PILING COSTS FROM \& TO 6 TIMES AS MUCH PER LINEAL FOOT AS TIMEER PILING. WHERE THE LENGTH INVOLVEC IS GREAT ENOUGH TO OFFSET THE ADOITIQNAL COST OF THE SOCKET JOINT, A CONsideraele saving is made possible ey the timeer section.

THE TYPE OF pILING USED ON THIS PROJECT APPEARS TO EE ENTIRELY PRACTICAOLE, ANE MAY BE USEO WHEREVER ORDINARY CONCRETE OR TIMGER piling can ee criven.

Disadvantages of Composite Piling

The principal disadvantages of the composite siling may be attributed to the jetting difficulties, the acoitional cost of the SOCKET JOINT, AND THE AMOUNT OF DRIVING ENERGY ABSOREEO EY THE SOCKET JOINT.

It is more difficult to jet a composite pile than either a concrete or timeer pile alone, eecause of the presence of the eellshaped joint. The widened section holds the jet at a digtance from the bide of the pile at the normal section, and makes it difficult to oIrect the stream of water under the toe, where it is most effective. ONe of the most efficient types of concrete pile contains, in the CENTER, A PRE-CAST JETTING PIPE. IT IS OEVIOUS THAT THIS CONSTRUCTION COULD NOT bE USED IN A COMPOSITE PILE.

Apparently, the presence of so many joints, between the hammer and the tip of the pile, causes a loss of driving energy, which the steam hammer does not overcome.

General Oeservations

In general, it may ge said that there is no difficulty inHERENT IN THE CURING OF THE COMPOSITE PILE WHICH DOES NOT APPLY TO all Concrete piling. With regard to handling, the concrete stubs WERE AS EASY TO MANIPULATE AS CONCRETE PILING OF THE SAME LENGTH and welght: THE SEATING OF THE CONCRETE SECTIONS ON THE WOODEN STUBS WAS, COMPARATIVELY, A SIMPLE OPERATION. IN FACT, TOWARD THE END OF THE JOB, IT WAS FOUND TO EE UNNECESSARY TO SHAPE THE TOP OF THE WOODEN STUB; because the Cutting edge of the socket shaped the TIMEER TO SIZE WITHOUT SPLITTING OR DAMAGE OF ANY KIND.

ON THIS PROJECT, THE REINFORCING STEEL WAS CARRIED AROVE THE TOP OF THE CONCRETE PILE TO PROVIDE A SUITAELE CONNECTION WITH THE CONCRETE CAPS. THIS MADE NEGESSARY A RATHER COMPLICATED FOLLOWERELOCK TO FIT AROUND THE STEEL. THE EXPERIENCE GAINEO ON THIS PROJECT INDICATES THAT IT WOULD EE EETTER PRACTICE TO CAST THE CONCRETE AEOVE THE ENDS OF THE STEEL, WITH THE INTENT OF CHIPPING THE CONCRETE AFTER THE DRIVING 18 COMPLETED TO EXPOSE SUFFICIENT STEEL FOR A PROPER JOINT. THE JAR OF THE FOLLOWER-ELOCK CAUSES THE CONCRETE TO SPALL, IN ANY EVENT, AND MAKES NECESSARY CONSIDERAELE CUTTING AND TRIMMING. FOR THIS REASON, IT. IS EELIEVED THAT THE AODITIONAL EXPENSE, CAUSED BY THE ELIMINATION OF THE FOLLOWER-QLOCK, WOULD IE MORE THAN COMPENSATED EY THE SAVINGS IN DRIVING TIME.

All in all, the results oetained ey the use of the composite PILING WERE ENTIRELY SATISFACTORY. THE CONTRACTOR PROBAELY LOST MONEY ON THE PILE DRIVING, AND IF SO, A CONSIDERAELE PORTION OF THIS LOSS MAY IE ATTRIEUTED TO THE NOVELTY OF THE METHOD, AND TO THE LOST MOTION IN GETTING PROPERLY EQUIPPED FOR THE WORK. IN THE LIGHT OF THE FINAL PENETRATIUNS, IT IS POSSIELE THAT THE IILES WERE DRIVEN 4 OR 5 FEET DEEPER THAN WAS NECESSARY. ALTHOUGH THE RESULTS WERE SATISFACTORY, THE COSTS OF DRIVING THE LAST FEW FEET WERE EXCESSIVE. ANOTHER FACTOR, WHICH PREVENTEO LOW CRIVING COSTS, WAS THE PRACTICE OF DRIVING THE STUES SOME WEEKS PRIOR TO THE CONGRETE FOLLOWERS. THIS CAUSED THE STUBS TO SET SOLIDLY, AND RESIST FURTHER PENETRATION. THE PRIMARY REASON FOR THIS PROCEDURE, HOWEVER, WAS TO AVOID DELAYING THE DRIVER-CREW WHILE THE TIMEER PILES WERE JEING CUT OFF, AND SHAPED TO RECEIVE THE EELL-SHAPED SOCKET. A FURTHER LOSS OF TIME WAS EXPERIENCED, EECAUSE OF THE FAILURE TO CAST THE CONCRETE FOLLOWERS IN TIME TO ALLOW FOR THEIR CURING GFORE THE WOODEN STUBS WERE DRIVEN. ALL OF THESE DELAYS, WHICH ingreased the driving costs, CoUld be ELIMINATED IN FUTURE WORK.

													－
管	＇1＇＇	1 1	1＇1＇	＇＇1＇	$\stackrel{\infty}{-}$		，$\stackrel{\bullet}{0}$	\bigcirc	，$\stackrel{\infty}{\sim}$			1 1 1 ${ }^{\text {d }}$	$\stackrel{\ddots}{\underline{9}}$
曾	ヘ⁄．	1 1 1＇	$\stackrel{\circ}{-}$	$?\|n \cdot c c\|$	，．$\overline{0}$.	\mid	, .	$\stackrel{\bullet}{\circ}$.				1	$\overline{\text { i }}$
	1 1 1		．．．．	＇＇＇＇	＇＇＇＇	＇	．．，ヘ̃	走．	1．．	1．1＇		1＇＇＇	$\stackrel{\sim}{\square}$
			$\dot{\circ}, \dot{\infty} \dot{\infty}$		$0, ~ m \infty$			$\stackrel{\oplus}{\dot{\sim}}_{\infty}^{\infty} \dot{\sim}$			N.		¢
				Sin on	0				\mid				¢
							－Nomo	-		家			－
	个oo		\mathfrak{c}		$\stackrel{\circ}{\text { 号 }} \cdot$	，¢¢，	$\left\|\begin{array}{llll} \bullet & & \sim \\ \sim & 1 & \sim \end{array}\right\|$	-	\dot{x}	0	$\begin{array}{ll} \infty & \infty \\ \hdashline= & \infty \\ 0 \end{array}$	or	－
					守:	$\infty \text { ょ }$,						m $\stackrel{0}{0}$
			$\mathfrak{l l l l}$	，，㑒		$\dot{0} \dot{0}$		家					
													$\stackrel{\infty}{\circ}$
	$\stackrel{\infty}{\operatorname{\sigma i}}, 1$, 䠉		$\stackrel{\circ}{\overline{\text { ® }}} 1$.	$\stackrel{?}{?}$		立:		．．1 4			1 $\stackrel{\circ}{\sim}_{\underline{\sim}}^{\sim}$	m $\stackrel{0}{0}$ $=$ $=$
					$\stackrel{\rightharpoonup}{\grave{N}}$								$\stackrel{\oplus}{\dot{\circ}}$
					?					Mi em ei ix			
			$\begin{array}{ll} 0 \\ 0 & 0 \\ 0 \end{array}$									芝	
$\underset{\sim}{\sim}$	○ゥゥ のヘヘヘ		$\mathfrak{N M}$		$\underset{\sim}{n}$	$\mathfrak{N M c}$	$\underset{\sim N}{2}$	$\sqrt{N-N}$	$\mathfrak{m a n}$	\mathfrak{m}	Mnjo	$\sqrt{n} \frac{m}{n}$	
$\begin{gathered} \text { M } \\ \stackrel{y}{6} \\ \mathbf{\omega} \end{gathered}$													－

BUREAU EXHIBIT ON DISPLAY AT RENO, NEVADA

As a unit in the general exhibit of the department, at the Transcontinental highways Exposition, which is being held at reno, Nevada, from June 25 to July 31; the Bureau has on display the material shown at the Sesquicentennial Exposition at Philadelohia, together with some booths from the convention of the american road Buillders' Association at Chicago.

The Transcontinental Highways Exposition is intended to celebrate the completion of United States Route 40 across nevada. although a considerable portion of the road is still unimproveo, it is expected that the entire route will be completed at an early date, and it is now in condition for travel without serious difficulty.

In adoition to the bureau exhibit, the general departmental DISPLAY INCLUDES MATERIAL FURNISHED BY OTHER EUREAUS, WHOSE WORK 18 confined largely to the western States; such as, the forest Service, Biological Survey, Extension Service, Bureau of animal Industry, and the Bureau of Plant Industry.

Mr: P: A. Kersey of this Bureau has been appointeo by the Office of Exhibits as representative in general charge of the DepartMENT EXHIEIT. ADOITIONAL PERSONNEL, INCLUDING SEVERAL MEN FROM the western districts of this bureau, will be assigned by the various gureaus tó demonstrate the subject matter of the display.

W: H. LYNCH MADE DISTRICT ENGINEER OF DISTRICT 5
To fill the vacancy caused by the death of Mr. Wonders, Mr. W. H. LYNCH, Who has occupied the position of acting district engineer for some time, was appointed olstrict engineer of District 5, effective June 7, 1927. Future correspondence to the Omaha district office should ee addressed to Mr. Lynch, under his new title.

$-13-$
(NOT FOR RELEASE)

PRESENT STATUS OF UNITED STATES RQUTES 40, 41, 51, 61, AND 66
Contrieuted by F. W. Mills of the division of design

United States route 40 -north is 65 per cent improved with gravel, and the higher types of surfacing. Another 21 per cent CONSISTS OF GRADED AND DRAINED ROAD, AND THE BALANCE IS UNIMPROVED. The route is surfaced continuously from atlantic City, across new Jersey, delaware, Maryland, pennsylvania, West Virginia, Ohio, Indiana, Illinois, Missouri, practically to St. Marys, Kans., - a distance of 1,300 miles - with the exception of 4.23 miles of earth road in Pennsylvania. West of St. Marys, in Kansas, and through the western States of Colorado, Utah, Nevada, and California, the route is surfaced for 42 per cent of the 1,906-mile distance with gravel, or eetter. Of the remainder, 35 per cent is unsurfaceo earth road, and 23 per cent is unimproved. the total length of the route, from Atlantic City to San francisco, is 3,205 miles.

A detailed statement of the condition of the road, as determined ey a bureau survey, follows:

UNITED STATES ROUTE 40-NORTH

State	:	city or town	: TYPE :	MILES :	Total
NEW JERSEY	: FROM	Atlantic City	:	:	
	: VIA	Mays Landing	:	:	
	:	Woodstown	: Concrete, and:	:	
	:	Penns Grove	: it , Concrete:	37.82:	
	: TO	Wilmington, del.	:Macadam	6.05 :	
	: By	FERRY	- Gravel	21.90:	65.77
Delaware	: FROM	Wilmington	:	:	
	: VIA	Marshallton	: Concrete, AND:	:	
	: TO	Mo. State line	:EIT.CONCRETE:	:	18.80
Maryland	: FROM	Del. State line	:	:	
	: VIA	Elkton	:	:	
	:	Aberdeen	:	:	
	:	Baltimore	:	:	
	:	Frederick	:	:	
	:	Hagerstown	:	:	
	:	Cumeerland	: CONCRETE, AND:	:	
	:	Frosteurg	:MACADAM FOR	: \quad	
	:	Keysers Bridge	:ENTIRE OIS-	$: \quad$:	
	: то	Penna. State line	: Tance	:	225.70

UNITED STATES ROIJTE 40-NORTH (CONTINUED)

STATE	: CITY OR TOWN:	: TYPE :	MILES :	TOTAL
PENNSYLVANIA	: FRom Mo. State line	:	:	
	: via farmington	:	:	
	: UnIONTOWN	: BRICK,	:	
	: Washington	: CONCRETE, OR:	-	
	: to W.Va. State line	: EIt.macadam	76.77:	
	- at West alexander	$: E_{\text {ARTH }}$	4.23:	81.00
West Virginia	: From penna. State line	:	:	
	: via Roneys point	:	:	
	Elm Grove	: Concrete, or:	:	
	: to Ohio State line	: Eit. MACADAM:	:	15.30
OHIO	: From W. Va. State line:	:	:	
	: via Cameridge	:	:	
	: Columeus	:	:	
	Springfield	:	* :	
	Brandt	: BRICK, CON- :	:	
	Englewood	; CRETE, OR :	;	
	: to ind. State line	:EIT. MACADAM:	:	225.00
INDIANA	: From Ohio State line	:	:	
	: VIA RIChmond	:	:	
	Indianapolis	:	:	
	: Brazil	:BRICK :	7.4 :	
	: Terre Haute	:Concrete :	$138.88:$	
	: to Illl. State line	:BIT. MACADAM:	4.52:	150.80
Illinais	: From ind. State line	:	:	
	: via Marshall	:	-	
	: Effingham	:	:	
	: Vandalia	:PAVED FOR	:	
	: to Mo. State line	: ENTIRE DIS- :	-	
	: at East St. Louls	:TANCE :	:	161.3
MISSOURI	:from Ill. State line	:	:	
	: ar St. Louls	:	:	
	: via St. Charles	:	:	
	: Columeia	:	:	
	: Boonville	:PAVED FOR	:	
	: to Kans. State line	:ENTIRE DIS- :TANCE	:	256.00

UNITED STATES ROUTE 4O-NORTH (CONTINUED)

UNITED STATES ROUTE 40-NORTH (CONTINUED)

State	: CITY OR TOWN	: TYPE : MILES:	TOTAL
Califorinia	: From Nev. State line	: $:$:	
	: via Truckee	: \quad :	
	Aururn	:	
	Sacramento	:	
	: Davis	:CONCRETE, ANO: :	
	Martinez	:B1T.CONCRETE: 141.66:	
	: Oaklano	:BIT.MACADAM: 16.50:	
	: Ferry over bay to	:GRADED AND : :	
	: San Francisco	:DRAINEO : 74.84:	233.00
		total miles	3,205.34

Summary of Types
United States Route 40 -North
Miles per cent
Hard surface pavement, including erick, CONCRETE, MACADAM, AND EITUMINOUS MACADAM, .. 1,550.05 48.4
Gravel . 539.2016 .8
Earth, and gradeo and drained roads $671.92 \quad 20.9$
UNIMPROVED $\frac{444.17}{3,205.34} \frac{13.9}{100.0}$

United States route 41 is 85 per cent improved with gravel, and the higher types of surfacing. The remaining 15 per cent inCLUDES UNSURFACED EARTH ROADS, UNIMPROVED SECTIONS, AND BRIDGES. WITH THE EXCEPTION OF 3.4 MILES OF UNIMPROVED ROAD IN INDIANA, BEtween Boston and Hammond, along Lake George, there is a continuously SURFACED ROAD FOR A DISTANCE OF 805 MILES; EEGINNING A SHORT DIStance north of Powers, Mich., and extending through Wisconsin, Illinois, indiana, and Kentucky, to Murfreeseoro, Tenn.

In Michigan, Tennessee, Geozgia, and Alaeama, the surfaced SECTIONS TOTAL 77 per cent; the unsurfaced earth roads, 10 per cent; and the unimproved units aggregate 13 per cent. the total length of United States route 41 is 1,925 miles.

UNITED STATES ROUTE 41

StATE	:	CITY OR TOWN	$:$ TYPE	: MILES :	TOTAL
MICHIGAN	: From	Eagle Harbor	:	:	
	: VIA	houghton	:	:	
	:	L'ANSE	:	:	
	:	Marquette	:	:	
	:	princeton	: Concrete	: 20.00:	
	:	Powers	: Macadam	: 42.00:	
	:	Menominee	: Gravel	: 91.00:	
	: TO	Wis. State line	: Un improved	$: 70.00:$	223.00
WISCONSIN	: From	Mich. State line	:	:	
	: VIA	Oronto	:	:	
	:	Green Bay	:	:	
	:	Appleton	:	:	
	:	OSHKOSH	:	:	
	:	Fond du lac	:	\cdot	
	:	Milwaukee	:	:	
	:	Thompsonville	:	:	
	.	Sylvania	: Concrete	: 182.00:	
	: ro	Ill.: State line	: Gravel	: 56.00 :	238.00
Illinois	: FROM	Wis. State line	:	:	
	: VIA	Chicago	:	\bullet -	
	: TO	Ind. State line	: Conctete	:	
	: AT	South Chicago	: Concrete	:	67.00

UNITEO STATES ROUTE 41 (CONTINUED)

StATE	: CITY OR TOWN:	: TYPE :	MILES :	TOTAL
Indiana	: FRom Ill. State line	:	:	
	: via hammono	:	:	
	Kentland	:	:	
	: Boswell	:	:	
	Attica	:	:	
	Terre Haute	:	:	
	Sullivan	:	:	
	: Vincennes	:	:	
	: Princeton	: Concrete	217.06:	
	: Evansville	: Gravel	49.50:	
	: to Ky. State line	:UNIMPROVED	3.40:	269.96
Kentucky	: From ind. State line	:	:	
	: via Henderson	:	:	
	: DIXON	:	:	
	: Madisonville	:	:	
	: Hopkinsville	:	:	
	: to Tenn. State line	:	:	
	: northwest of Clarks-:	:	:	
	: ville, tenn.	: Gravel	:	103.92
Tennessee	: From Ky. State line	: \quad :	:	
	: via Clarksville	:	:	
	: ASHLAND	:	:	
	: Nashlille	:	:	
	: Murfreeseoro	:	:	
	: Manchester	:	:	
	: Jasper	: Concrete, or:	:	
	: St. Elmo	: MACADAM	85.3 :	
	: Chattanooga	: Gravel	104.7 :	
	: . to Ga. State line	: Earth	27.0:	217.0
Georgia	: From Tenn. State line	:	:	
	: via Ringgold	:	:	
	Dalton	:	:	
	: Cartersville	: BRICK, CON-	:	
	: Atlanta	:CRETE, OR	:	
	: Griffin	:BIT.CONCRETE	153.32:	
	: MACON	: Macadam	58.17:	
	: Perry	: Chert and	:	
	: TIFTON	: gravel	- 49.68:	
	: Valdosta	: EARTH	$56.12:$	
	: to Fla. State line	:UNimproved	66.81:	384.10

LNITED STATES ROUTE $4 i$ (CONTINUED)

$\frac{\text { STATE }}{\text { FLORIDA }}$	City or toun	TYPE	:Miles :	Total
	: From $\mathrm{G}_{\text {a }}$. State line	:	:	
	: via jasper	: Brick, or	:	
	Lake city	:CONCRETE	: 42.34:	
	gainesville	:Macfadm	: 296.96:	
	Ocala	:Shell	: 13.8 :	
	tampa	: Graded and	:	
	Bradenton	: drained	: 36.01:	
	Fort Myers	:UNIMPROVED	: 30.5 :	
	to Naples	: Brideges	: 2.22 :	421.83
		Total mil		,924.81

> Summary of Types United States Route 41

> Miles Per cent

hard surface pavement, including brick, CONCRETE, AND MACADAM,	1,164.15	60.5
Gravel, and shell	468.60	24.3
Earth, and graded and drained roads	119.13	6.2
Unimproved	170.71	8.9
Brioges	2.22	0.1
total	1,924.81	100.0

United States route 51 is 84 per cent surfaced with sand-clay, gravel, and the higher types of surface. Another 9 per cent consists of unsurfaced earth road, and the balance is unimproved. There is no CONSIDERAELE cistance of continuously surfaced road on this route, and there are unimproved sections in every State excepting Wisconsin, and Kentwoky. In the former, there is an unsurfaced section 76 miles in length. The short crossing of Kentucky, 40 miles long, is completely surfaced.

UNITED BYATES ROUTE 51

State	CITY OR TOWIN	TYPE	: MILES :	Total
Wisconsin	:Route 2 - From Superior	Gravel	: 86.5	
	: VIA Ashland	: Concrete	: 17.7	
	: to hurley	: Sand-clay	: 8.6	112.8
	:fioute 51 - From hurley	:	:	
	: VIA Minocqua	:	:	
	tomahawk	:	:	
	Merrill	:	:	
	Wausau	:	:	
	Stevens Point	:	:	
	portage	:	:	
	Madison	: Concrete	: 77.0	
	Janesville	: Bit.macadam	: 24.6	
	: to ill. State line	: Gravel	: 172.3 :	
	: at Beloit	: Earth	: 75.7 :	349.6

UNITED STATES ROUTE 51 (CONTINUED)

State	: CITY OR TOWN	: TYPE	: MiLES :	TOTAL
Illinois	: From Wis. State line	:	:	
	: Via Rockford	!	:	
	Rochelle	:	:	
	Mendota	:	:	
	Lasalle	:	:	
	Bloomington	:	:	
	decatur	:	:	
	Vandalia	:	:	
	Duquoin	: Concrete	: 331.95:	
	Carbondale	: City pave-	:	
	AnNa	:MENT	36.65:	
	: to Ky. State line		$: \quad 3.40:$	
	: at cairo	:UN Improveo	43.00	415.00
Kentucky	: From ill. State line	:	:	
	: at Wickliffe	:	:	
	: VIA Bardwell	:	:	
	Arlington	:	:	
	: Clinton	: Oitr pave-	:	
	: to tenn. State line	:MENT	$: \quad 1.00:$	
	: SOUTH OF Fulton	: Gravel	: 38.92:	39.92
Tennessee	: From Ky. State line	:	: \quad	
	: via Union City	: CONCRETE,AND:	:	
	: Dyersburg	:BIT.CONCRETE:	: 49.53:	
	: Ripley	: City pavement	т 10.95:	
	: MEMPHIS	:BIT. MACADAM:	: 28.93:	
	: to Miss. State line	: Gravel	: 38.04:	
	: north of horn lake	:UNIMPROVED	19.55:	147.00
Mississippl	: From tenn. State line	:	:	
	: via Batesville	-	:	
	: Grenada	: Brick, CON-	: \quad :	
	: Canton	:CRETE, Clty	:	
	: Jackson	:PAVEMENT,AND:	:	
	: Hazlehunstit	:BIT.CONCRETE:	: 19.39:	
	: Brookhaven	: Gravel	: 219.29:	
		:EARTH	$: 55.76:$	
	: SOUTH OF OSYKA	:UNIMPROVED	$21.00:$	315.44
LOUISIANA				
	: via Amite	: S.T.MACADAM	: 46.76:	
	: Hammono	: SHELL	24.46:	
	: to New Orleans	:UNIMPROVED	: 21.13:	92.35

Total miles 1,472.11

Summary of Types United States Route 51

	Miles	Per cent
Hard surface pavements, including mrick, CONCRETE, CITY PAVEMENT, EITUMINOUS CONCRETE AND MACADAM, AND SURFACE TREATED		
macadam	644.46	43.8
Gravel, shell, and sand-clay	591.51	40.2
Earth	131.48	8.9
UNIMPROVED	104.68	7.1
Total	472.11	100.0

United States route 61 is 91 per cent surfaced with gravel, and the higher types of surface. the other 9 per cent consists of unsurFACED EARTH ROADS. THERE ARE NO UNIMPROVED SECTIONS ON THIS ROUTE. There is no extensive length of continuously surfaced road, since the earth sections are scattered through all the States, with the exception of Arkansas, and Tennessee; and in these States the oistances are relatively short - 82 miles. The total length of the route is 1,850 miles.

UNITED STATES ROUTE 61

State	:	CITY OR TOWN	$:$ TYPE	: MILES	Total
Minnesota	: FROM	U.S.-CANADIAN BOR		:	
	: OSR	near Grand portag		:	
	: VIA	Grand Marals	:	:	
	:	two Harbors	:	:	
	:	Duluth	:	:	
	:	pine City	:	:	
	:	St. Pavl	:	:	
	:	Hastings	:	:	
	:	Red Wing	:	:	
	:	Warasha	: BRICK, OR	:	
	:	Winona	; Concrete	: 2e5.8	
	: TO	Wis. State line	: Gravel	: 1111.7	
	: AT	La Creerent	: Graded	: 8.5	466.0
Wisconsin	: From	Minn. State line	:	:	
	: VIA	La Crosse	: Concrete, And		
	:	Viroqua	: CITY PAVE-	:	
	:	Pratrie du Chien	:MENT	$: 18.3$	
	:	Lancaster	: BIT.MACADAM	12.7	
	: T0	East Duzuque	: Gravel, and	: 1	
	: ACR	ross Mississippl	:CR. STONE	: 81.1	
	: RIV	ver into lowa	: EARth	: 16.9	129.0

UNITED STATES ROUTE 61 (CONTINUED)

State	: CITY OR TOWN	: TYPE :	: MILES :	TOTAL
Iowa	: From dubuque	:	:	
	: via Maquoketa	:	:	
	Davenport	:BRICK, CON-	:	
	Muscatine	:CRETE, AND	:	
	Burlington	: City pave-	:	
	Fort Madison	:MENT	: 119.7 :	
	KEOKUK	: Gravel	: 36.0 :	
	: to Mo. State line	: Earth	46.3 :	202.0
Missouri	: From lowa state line	:	:	
	: via Wayland	:	:	
	Hannibal	:	:	
	Bowling Green	: :	:	
	St. Charles	:	:	
	St. Louls	:	: \quad	
	Fredericktown	:	:	
	Cape Girardeau	:	:	
	Sikeston	:	: \quad	
	New Madrio	,	,	
	: Hayti	: Concrete	: 210.5 :	
	: to Ark. State line	: Gravel	: 154.4 :	
	: NORTH OF BLytheville	: EARTH	79.2 :	444.1
Arkansas	: From Mo. State line	:	:	
	: via Blytheville	:	: \quad :	
	Osceola	:	: \quad :	
	Gilmore	:	:	
	Marion	: CONCRETE, AND:	:	
	: to Tenn. State line	: Asphalt	63.4	
	: at Memphis	: Gravel	4.8:	68.2
Tennessee	: From Ark. State line	:	: \quad :	
	: at Memphis	-	:	
	: to Miss. State line	: Concrete	$: \quad 2.0:$	
	: near Walls	: Gravel	$12.0:$	14.0
Mississippl	: From tenn. State line	:	:	
	: via tunica	:	:	
	: Clarksdale	:	:	
	: Greenville	:	:	
	Vickseurg	:	: ${ }^{\text {: }}$	
	: Fayette	: Concrete	: 37.1 :	
	: Natchez	:Bit.macadam	- 9.7 :	
	: to La. State line : south of Woodville	: Gravel : EARTH	$\begin{array}{r} 303.1: \\ : \quad 12.2 \\ \hline \end{array}$	362.1


```
                                    .2 1:

UNITED STATES ROUTE 61 (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|}
\hline STATE & : & CITY OR TOWN & \(:\) TYPE & : MILES & : TOTAL \\
\hline \multirow[t]{6}{*}{Louisiana} & : FROM & Miss. State line & : & : & : \\
\hline & : VIA & St. Francisville & : & ; & : \\
\hline & : & baton rouge & : Citr paver & : & : \\
\hline & : & Convent & ;MENT & ! 1 14.3 & : \\
\hline & : то & New Orleans & : Gravel & \(!150.7\) & \(\therefore \quad 165.0\) \\
\hline & & & Total & illes .... & \(\ldots 1,850.4\) \\
\hline
\end{tabular}

Summary of Types United States Route 61

Miles Per cent


United States route 66 is 50 per cent surfaced with gravel, and the higher types of surface. Another 24 per cent consists of unsurFACED EARTH ROAD, AND THE balance is unimproved. There is a continuous pavement from Chicago to Cuba, Mo., and much of the balance of the route in Missouri is similarly improved. the total length of the route is 2,448 Miles.

UNITED STATES ROUTE 66
\begin{tabular}{|c|c|c|c|c|c|}
\hline State & : & City or town & : TYPE & Miles & Total \\
\hline \multirow[t]{9}{*}{Illinois} & : FROM & Chicago & : & & : \\
\hline & : VIA & Joliet & : & & : \\
\hline & : & DWI GHT & : & & : \\
\hline & : & Blodmington & : \({ }^{\text {d }}\) & & : \\
\hline & : & Springiele & : BRICK, OR & & : \\
\hline & : & Carlinville & : concrete & & : \\
\hline & : & Litchfield & : PAVEMENT FOR: & & : \\
\hline & : TO & Mo. State line & : ENTIRE DIS- & & : 303.0 \\
\hline & : AT & \(E_{\text {Ast }}\) St. Louis & : tance & & 303.0 \\
\hline
\end{tabular}

UNITED STATES ROUTE 66 (CONTINUED)


UNITED STATES ROUTE 66 (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|}
\hline STATE & \(\therefore \quad 0\) & CITY OR TCWN & : TYPE : & : MILES: & TOTAL \\
\hline \multirow[t]{11}{*}{ARIzONA} & : FROM & N. Mex. State line & & : & \\
\hline & : VIA & Navajo & : & : & \\
\hline & H & Holbrook & : : : & : & \\
\hline & H & Hardy & : & : & \\
\hline & F & Flagstaff & : & : & \\
\hline & W & Williams & : & : & \\
\hline & A & Ashfork & : Bit. Concrete : & : 5.1 : & \\
\hline & S & Seligman & : Gravel : & \(: 131.3\) : & \\
\hline & P & Peach Springs & :Graded and : & : & \\
\hline & K & Kingman & : DRAINED : & : 36.5 : & \\
\hline & : TO O & Cal. State line & : UNIMPROVED & 234.1 : & 407.0 \\
\hline \multirow[t]{7}{*}{California} & : FROM & Ariz. State line & : & : & \\
\hline & : WEST & OF TOPOCK & : & : & \\
\hline & : VIA & Needles & : & : & \\
\hline & : \(\quad\) O & Daggett & : Concrete, AND: & : & \\
\hline & : B & Barstow & : Bit. MACADAM: & : 82.0 : & \\
\hline & : S & San bernaroino & : Gravel - & : 44.7 : & \\
\hline & : TO L & Los angeles & : UnIMPROVEO : & : 170.6: & 297.3 \\
\hline
\end{tabular}

\section*{Summary of Types United States Route 66}
```

Hard surface pavements, including brick,
REINFORCED CONCRETE, CONCRETE, BITUMINOUS
CONCRETE, EITUMINOUG MACADAM, AND SURFACE
treated gravel
Gravel,and macadam
EARTH, AND GRADED AND DRAINED ROADS
UNIMPROVED
804.4

```
                    Miles Per cent


\section*{antivenin advocated as a north american snake-bite serum}

According to a circular recently receiveo from the H. K. Mulford Company of philadelphia, that company is prepared to furNISH A SERUM, KNOWN AS ANTIVENIN, WHICH IS EFFICACIOUS IN TREATING the bites of North american venomous snakes.

The serum is distributed in lo-cubic-centimeter syringes, WHICH ARE STERLLIZED AND READY FOR IMMEDIATE USE. WHERE MEDICAL alo is not avallable, it may be self-administereo by injection made UNDER THE SKIN OF THE THIGH OR, PREFERAELY, OF THE GIDE OF THE ABDOMEN.

The syringe contains enough Antivenin to protect agalnst the average amount of venom secreted at one time by North american serpents. Where there is reason to eelieve that the poison injected. by the serrent was of unusually large quantity, or when the symptoms DEVELOP QUICKLY AND IN SEVERE FORM AS, FOR INSTANCE, IN CHILUREN, IT IS ADVISABLE TO GIVE A SECOND DOSE WITHIN A FEW HOURS IF THE FIRST has not given the desireo relief. in any sase, the entire contents OF THE SYRINGE SHOULD BE INJECTED AT ONE DUSE, WHETHER THE PATIENT IS AN ADULT OR A CHILD.

The Mulford Company's circular advocates the application of a ligature or tourniquet immediately above the wound, if the bite has been inflicted on a lime. It stated that there is no particuLaR adVantage in making an incision, or in applying permanganate of POTASH SOLUTION OR CRYSTALS, OR ANY OTHER CHEMICAL AGENTS COMMONLY RECOMMENDED FOR THE PURPOSE; THAT, IN ORCER TO HAVE AN EFFECT ON VENOM, POTASSIUM PERMANGANATE SOLUTION MUST BE USED IN CONCENTRATIONS that are injurious to the tissues.

Agove everything else, the company advocates that the use of ALCOHOL, OR ANY STIMULANT, EE AVOIDED. THESE, EY STRENGTHENING THE circulation, tend to help the distribution of the venom throughout the eody. Strychnine or caffeine, however, may be used if symptoms OF WEAKNESS AND GIDOINESS DEVELOP.

After the preliminary ligature has been applied, the patient Should proceed to the nearest place where antivenin may be administered. There is often sufficient time to have the injection made by a doctor, since North american snake venoms are usually slow in acting. If the Antivenin can ee obtained within 12 to 24 hours after the bite, the chances of Its eeing effective are good. In the meantime, the tourniquet should ee kept in place, but care shoulo
be taken to release the pressure at intervals to prevent the setting IN OF GANGRENE. AS SOON, HOWEVER, AS THE GERUM IS INJECTED THE TOURNI QUET SHOULD EE RELEASED.

THE LIST PRICE OF ANTIVENIN IS \(\$ 7.50\) a PACKAGE, CONTAINING ONE SYRINGE, AND IT IS AVAILAELE THROUGH THE BRANCHES AND DEPOTS OF THE H. K. MULFORD COMPANY, AND THEIR PRINCIPAL OISTRIBUTORS THROUGHOUT THE United States.
the bureau has eeen advised ey the puelic health service that SERUM FOR THE RELIEF OF SNAKE GITES IS NOT DISTRIBUTED EY THAT SERVICE, AND THERE IS APPARENTLY NO OTHER BRANCH OF THE GOVERNMENT FROM WHICH SUCH a SERUM MAY eE OBTAINED. THE HEAD OF THE HYGIENIC LAEORATORY, DF: MCCOY, STATES THAT EXPERIMENTAL TREATMENTS OF RAEBITS AND MICE WITH ANTIVENIN HAVE INDICATED THAT THIS SERUM IS EFFICACIOUS IN THE TREATMENT OF ANJMALS. NO EXPERIMENTS HAVE BEEN MADE UPON HUMAN EEINGS, EUT THE HEAD OF THE LAEORATORY UNDERSTANDS THAT PHYSICIANS IN texas have used the Mulford serum with gooo effect. While dr. McCoy DOES NOT WISH TO COMMIT HIMSELF AS TO THE EFFJCACY OF -THE SERUM FOR THE TREATMENT OF HUMAN BEINGS, HE STATES THAT HE WOULD NOT HESITATE TO PRESCRIBE ITS USE AS IT WOULD PROEABLY DO SOME GOOD, AND CERTAINLY COULD DO NO HARM.

Before ordering the serum, it is suggested that district engineers consult local representatives of the fublic Health Service, or LOCAL PHYSICIANS dESIGNATED FOR the treatment of injured GOVERNMENT employees: In case the serum is used, an immeolate and complete report shoulo ee made to the headquarters offlce as to the effect of the treatment.

Title: A Statistical Analysis of Highway-Railroad Grade Crossing Accidents, in 1926, as reported by the Steam Railloads to the Interstate Commerce Commission.

Approved: May 28, 1927.
Leaders: A. B. Fletcher and W. G. Eljot, 3d.
Object: 1. To eetermine the relative frequency of gradecrossing accidents in rural and urban areas. the data may be used later in an attempt to establish the correct RATIOS WHICH GRADE CROSSING ACCIDENTS IN THE RURAL AREAS bear to the total of all the hlghway accidents in those AREAS.
2. To discover any other significant evidence as to causes and conditions of accidents which may be reVEALED IN A MASS ANALYSIS OF THE 5, 990 accidents reported in 1926.

Procedure: The Bureau of Statistics of the Interstate Commerce Commission has on file a complete set of individual ACCIDENT REPORTS FROM ALL RAILROADS UNDER ITS JURISDICTION. FOR those involving highway-rallioiad grade crossings the pertinent data will be transcribed and analyzed ey means of tabulating machines.

\section*{Cooperation: None}

Location: Washington, D. C.
legal Authority: Bureau of public Roads Appropriation Acts, 1927 and 1928.

Proposed Expenditure: Abouti \(\$ 1,000\) (Salaries only of Mr. Eliot and two assistants. No travel required. This estiMATE INCLUDES NO STATIONERY OR TYPEWRITING EXPENSE, NOR tabulating machine cards, nor operating costs).

History: While the Interstate Commerce Commission has for SOME YEARS PUBLISHED AN ANALYSIS OF GRADE-CROSSING ACCIDENTS WITH RESPECT TO CASUALTIES ANO TO DETAILS OF RAILROAD operation, there has been no complete analysis of these rePORTS FROM THE POINT OF VIEW OF HIGHWAY CONSTRUCTION AND traffic regulation.

(NOT FOR RELEASE)

\section*{JOHN MI LTON GOODELL}

John Milton Goodell, consulting engineer to the Bureau during the years 1918-1920, died, on June 21 , at the french Hospital in New York City.

Mr: Goodell, who had been editor of the Engineering recoro, FROM 1903 to 1912, RETJRED fROM ACTIVE bUSINESS IN THE LATTER YEAR. SUESEQUENTLY, HE SPENT MUCH OF HIS TIME IN WRITING BOOKS AND TECHnICAL ARTICLES ON SEWAGE, WATER SUPPLY, AND ROADS. HE WAS the author of "location Construction and Maintenance of Roadsi"

At the outbreak of the World War ihe served for a time with the Committee on Puslic Information, later being employed as acting CHAIRMAN OF the U. S. HIGHWA COUNGIL, A BODY CREATED TO CONTROL the distrieution of materials, transportation, ano labor for road WORK.

As a consulting engineer for the Burefu, Mr. Goodell was closely associated with Mr, Logan Waller page, then director of the Office of public Roads and Rural Engineering. He was also a warm, personal friend of Mr. Macdonalo.

One of Mr. Goodell's outstanding accomplishments, as consultant to the bureau, was his work in connection with the organization of the american Association of State Highway Officials.

Mr: Goodell was born at Worcester, Mass., on August 3, 1867. He was graduated from the Worcester polytechnic Institute, with the degree of bis. in C.E., in 1888, and Later spent the winter of 1888-89, in post-graduate studies, at the Zurich polytechnic institute in Switzerland.

He was affiliated with the American Society of Civil Engineers, and a member of the American Society of Mechanical Engineers, the American Water Works Association, the Boston Society of Civil Engineers, and the New England Wajer Works Agsociation.
\[
\begin{aligned}
& \text { 为 }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\because \because \\
\because \because \\
\because
\end{array} \\
& \therefore \cdots \cdots \div \\
& \therefore \therefore \therefore \\
& \because \because \\
& \text { - E }
\end{aligned}
\]
\[
\begin{aligned}
& \therefore \therefore 5=
\end{aligned}
\]
\[
\begin{aligned}
& \ldots \because \because \because \\
& \because \because= \\
& \because \because: \\
& \because \vdots \div
\end{aligned}
\]```

