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Life-history traits are among the most important factors affecting
population abundance and genetic diversity of species. Here, we
analysed the genetic patterns of two Galaxias species with
different life-history traits to investigate how these biological
differences impacted their evolution in the Valdivia River basin,
Southern Chile. We analysed mitochondrial DNA (mtDNA)
sequences from 225 individuals of Galaxias maculatus and 136 of
G. platei to compare patterns of genetic diversity, structure and
demographic growth across the basin. Galaxias maculatus
presented higher genetic diversity and higher genetic structure
than G. platei. Demographic analyses showed G. maculatus kept
a higher population size over time, with a signal of
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demographic expansion in the last 250 kyr. Whereas Galaxias platei, exhibited lower, but constant

population size over time. Furthermore, haplotype networks revealed higher lineage diversity in G.
maculatus with a tendency to occupy different areas of the basin. Coalescent simulations ruled out
that genetic differences between species could be explained by stochastic processes (genetic drift),
suggesting species-specific biological differences as responsible for the observed genetic differences.
We discuss how differences in life-history traits and past glaciations interact to shape the
evolutionary history of the two Galaxias species.
.org/journal/rsos
R.Soc.Open

Sci.7:200632
1. Introduction
Phylogeographic studies in freshwater fish have recently increased our understanding on the relevant
processes shaping biodiversity in southern South America [1,2]. Most studies have acknowledged the
importance of the Andean orogeny and the Last Glacial Maximum (LGM) as drivers of general and
conspicuous phylogeographic patterns such as strong trans-Andean divergence [3–6] and a trend of
lower levels of genetic diversity toward more climatically unstable areas at higher latitudes [4,7].
However, some studies have also revealed striking phylogeographic patterns that have suggested less
straightforward scenarios [8–10]. For instance, Zemlak et al. [9] found close relationships between
some geographically close (i.e. similar latitude) trans-Andean populations of Galaxias platei, suggesting
a complex Patagonian history of drainage translocations across the Andes, triggered by transitions
between glacial and interglacial periods. It is not yet clear though how strong or consistent these
patterns are across taxa, as freshwater phylogeography in Patagonian systems is still in an early stage.
Moreover, comparative studies of co-distributed species are still rare. Some of these studies, such as
Ruzzante et al. [8], have emphasized the relevance of comparing patterns across species to understand
how biological differences may influence species’ demographic responses to shared historical events.

Although few, comparative phylogeographic studies on Patagonian freshwater fish have suggested that
species can be differently impacted by similar historical events at both large [8] and small [11] geographical
scales. Ruzzante et al. [8] found that the cold-water speciesGalaxias platei, which currently inhabits areas [4,5]
that were directly impacted by the Quaternary glaciations, experienced strong bottlenecks in recent
glaciations, whereas the (partially) co-distributed, but more warm-adapted Percichthys trucha was able to
maintain more stable populations across the last two glacial periods, possibly due to their ability to
survive in refugia away from areas of high glacial impact. At a much smaller geographical scale (i.e.
within a single river basin), but studying a larger number of species, Victoriano et al. [11] found a wide
range of genetic patterns suggesting these should represent different demographic responses to shared
historical events due to species-specific biological traits. Thus, species with certain characteristics (e.g. low
habitat specificity or high salinity tolerance) were able to maintain stable populations and high genetic
diversity throughout glacial cycles, while others struggled with bottlenecks and low genetic diversity.
However, these studies are scarce. Furthermore, most species in these studies are phylogenetically distant,
which complicates interpretations about the relation between biological traits and genetic patterns as the
number of traits exhibiting variation generally increases with phylogenetic distance [12]. Indeed, in the
study of Victoriano et al. [11], only a few species shared a close relative within the same genus (Galaxias
maculatus with G. platei and Aplochiton taeniatus with A. zebra). Nevertheless, G. maculatus and G. platei,
both being widespread and abundant within the Valdivia River basin, could represent an excellent
opportunity to study the effects of biology and history on demographic species’ responses in greater detail.

The genus Galaxias encompasses several cool-temperate adapted species distributed across the former
regions of Gondwana [13]. Galaxias maculatus (Jenyns 1842) and G. platei (Steindachner 1898) are
freshwater fish that coexist across the Valdivia River basin [14–16]. Despite being congeneric species, they
display interesting biological differences making them good candidates for a comparative analysis.
Galaxias maculatus is a facultative amphidromous species [13] which can be found in marine coastal waters,
estuaries, rivers and lakes [17–19]. This species is widely distributed in Chile and Argentina [17,20], and is
one of the freshwater species with the widest distribution range worldwide, in accordance to the pan-
austral Gondwanian distribution proposed for the Galaxiidae family [13]. The distribution of this species
in South America starts at about 34°S and extends south all over Patagonia. Galaxias platei, on the other
hand, is restricted to South America and Falkland Islands, where it shows a distribution pattern similar to
G. maculatus, although more southernward, starting at about 38°S in Chile and 41°S in Argentina down to
Tierra del Fuego. In contrast to G. maculatus, G. platei is a strictly freshwater species and reaches much
larger body sizes (350 versus 150 mm in G. maculatus) [21]. It can be found in lakes and rivers and presents
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Figure 1. Distribution map, showing sampling localities and river zones in the Valdivia River basin, South Chile. Dotted line
represents the west margin of the ice sheet during the Last Glacial Maximum.
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physiological adaptations such as tolerance to the abrasion of the branchial epithelium and high
mitochondrial complexity in the retinal cones [22,23], which have been suggested as adaptations to the
stressful conditions of turbid glacial lakes. Due to these differences, G. platei appears to have persisted
throughout glacial maxima in local refugia at high elevation [5,6,24,25]. By contrast, G. maculatus retains
numerouspopulations living inpotamal, estuarineandcoastal areas thatwere less affectedbyglaciations [26].

In the last few years, a number of phylogeographic studies have contributed to the knowledge of the
evolutionary history of southern South American Galaxias [5–10,25]. Genetic studies in G. maculatus have
provided regional-level genetic information to understand broad-scale evolutionary processes. For
instance, Zemlak et al. [26] analysed the genetic patterns of mtDNA across of G. maculatus finding that
the current distribution of this species most likely reflects a west–east colonization process, followed
by localized dispersal events across the Andes via drainage reversal during glacial–interglacial shifts.
González-Wevar et al. [7] conducted a deeper study across the southern Chilean coast, finding
surprisingly high levels of genetic structure in G. maculatus. Furthermore, this study also showed the
Valdivia basin harbouring an endemic lineage, suggesting the strong isolation of its populations.
Unfortunately, the study only included estuarine samples. Recently, Delgado et al. [16] have revealed
genomic differentiation between estuarine and resident populations of G. maculatus, including
populations of the Valdivia River basin. Regarding G. platei, much lower genetic structure and
diversity have been reported in the Valdivia basin [11] when using mtDNA, although higher genetic
diversity has been found when analysing microsatellite markers [6].

However, differences in observed patterns of genetic diversity between co-distributed species can be
due not only to differences in their biological traits but also to random processes like coalescent
stochasticity. Thus, a strong statement about the role of biological differences in the generation of
disparate genetic patterns should minimally account for random genetic processes like genetic drift
[27]. Whether the differences in genetic patterns between Galaxias species are due to their biological
differences or random variations due to coalescent stochasticity is a question that remains untested,
yet approachable with appropriate, model-based methods. In this study, we analyse a large number of
populations and individuals using mtDNA sequences of both G. maculatus and G. platei with the aim
to understand in greater detail their patterns of genetic diversity across the Valdivia River basin. Our
specific goals are (i) to thoroughly document the genetic diversity and structure across the Valdivia
River basin for G. maculatus and G. platei, (ii) to infer their demographic histories in relation to past
glacial events, and (iii) to evaluate whether differences in the genetic patterns observed between
species (if any) are greater than expected under a null model of random variation due to genetic drift.
2. Material and methods
2.1. Study area and sampling localities
The Valdivia River basin (40° S) is a complex Andean basin with two headwaters, located in east (Lake
Lácar, Argentina) and west (Lake Pellaifa, Chile) Andes (figure 1). Both headwaters converge at Lake
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Panguipulli and later in Lake Riñihue where San Pedro River begins, finishing in the Valdivia River

where it finally reaches the Pacific Ocean.
A total of 225 G. maculatus individuals and 136 G. platei individuals were collected from 39 locations

in four zones across the Valdivia River basin (electronic supplementary material, table S1). These four
adjacent zones encompassing roughly similar areas differ in particular characteristics such as the type
of environment (lacustrine or fluvial), the orientation of the subwatersheds, and the type of river
stretch (hypo-rhithron/potamon). These zones correspond to: Zone 1 (Z1), lentic bodies and
watercourses draining north–south and west–east, from Lake Calafqén to Lake Panguipulli; Zone 2
(Z2), watercourses and lakes draining west–east, from the eastern edge of Lake Riñihue onwards,
including its tributaries and outlet (39°460 S, 72°020 W); Zone 3 (Z3), hyporitral type watercourses,
spanning from the mouth of Lake Riñihue to the confluence of the Rivers San Pedro and Quinchilca
(39°510 S, 72°450 W); and Zone 4 (Z4), composed mostly of potamal stretches of river, from Quinchilca
to the Cutipay bridge on the Calle Calle River (39°510 S, 73°190 W) (figure 1). All individuals were
fixed in ethanol (96%) and stored at −20°C for further molecular laboratory procedures.

2.2. Laboratory procedures
Total DNA was extracted from muscle tissue, using the QIAGEN DNeasy Tissue DNA extraction kit
following the manufacturer’s instructions. The control region fragment was amplified using the kit
GoTaq Green Mastermix Promega® where each reaction was conducted in a total volume of 30 µl,
containing 1X PCR buffer, 2.5 mM MgCl2, 0.5 mM of primer L19 [28], 0.5 mM of primer 12SarH [29],
0.02 mM dNTPs, 0.025 U μl−1 GoTaq DNA Polymerase® (Promega®). PCR amplification was performed
according to the following programme: a cycle of 95°C for 5 min, 60°C for 30 s and 72°C for 2 min,
followed by 40 cycles of 95°C for 30 s, 54°C for 45 s and 72°C for 2 min, and a final elongation cycle of
72°C for 5 min. Each PCR product was purified using Millipore filter plates and sequenced in the DNA
Sequencing Center of the Department of Integrative Biology at Brigham Young University (EEUU), and
Macrogen® sequencing service. All sequences were visually inspected, reviewed, edited and aligned
using the program CodonCode Aligner (CodonCode Corporation, Dedham, MA). Sequences were
deposited in GenBank database under the accession numbers MT339714–MT340074.

2.3. Genetic diversity and population structure
For each species, we estimated the haplotype number (K), haplotypic diversity (Hd), number of
segregating sites (S) and nucleotide diversity (π) as indexes of genetic diversity. These indexes were
estimated with DNASP v. 5.0 software [30]. Levels of among-population genetic differentiation were
estimated by pairwise FST and hierarchical analyses of molecular variance (AMOVA) in ARLEQUIN
v. 3.5 [31] for each species. We conducted an AMOVA in order to quantify genetic variation among
individuals within sites (FST), among sites within groups (FSC) and among groups (FCT). Significance
of F-statistics was achieved using 10 000 permutations. We tested with AMOVA different combination
of zones as hypotheses (i.e. (Z1)(Z2)(Z3)(Z4); (Z1)(Z2 + Z3 + Z4); (Z1 + Z2)(Z3 + Z4); (Z1 + Z2 + Z3)(Z4)).

2.4. Phylogeographic and historical demographic analyses
Demographic analyses were carried out using three approaches: (i) the neutrality tests Tajima’s D [32] and
Fu’s Fs [33], where we estimated deviations from equilibrium based on 1000 coalescent simulations in
DNASP, and we expected to yield negative values when a population faces a process of sudden
population expansion; (ii) a genealogical relationship among haplotypes by a network, where we
represented the haplotype frequencies by zone, the number of mutational steps among haplotypes, and
the relationships among these haplotypes for each species. The network analyses were constructed using
the media-joining algorithm [34] implemented in NETWORK v. 4.610 software (Fluxus Engineering);
and (iii) a Bayesian skyline plot (BSP) based on coalescent theory, where we inferred the historical
changes in effective population size (Ne) through time [35] for each species. We conducted these analyses
in BEAST v. 1.7 software [36]. Each analysis was carried on to generate a posteriori distribution of
effective population size employing the Markov chain Monte Carlo sampling method (MCMC). The
distributions obtained were used to generate credible intervals that represent phylogenetic and
coalescent uncertainty [35]. Before running BEAST, we estimated the best evolutionary model fitted to
each database by species using the Akaike criteria implemented in JMODELTEST v. 2.0 software [37].
The best model for each species was HKY+G, which was incorporated for further analyses in BEAST.
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Before carrying out the BSP run, we identified which clock model implemented in BEAST best fitted to our

dataset (i.e. strict clockmodel, lognormal relaxed clockmodel, exponential relaxed clockmodel and random
local clock model) [35,36,38]. We conducted preliminaries running in BEAST using default parameters and
comparing likelihoods of each clock model using Bayes factor (BF) implemented in TRACER v. 1.6, which
measures the weight of the evidence in the proposed model against another candidate model [39]. The best
clockmodel that fitted our datasetwas the uncorrelated lognormal relaxed clockmodel [35] for both species,
G. platei andG. maculatus (BF > 2). Finally, we ran 10 independent analyses of MCMCwith a length chain of
10 000 000, sampled each 500th iteration, and we discarded 10% of initial samples given its low estimated
likelihood in the first iterations. Frequencies of each base were estimated empirically, we set the HKY+G
model, and a substitution rate (µ) of 0.01876 substitutions/site/Myr [26,40]. The same parameters were
used for the dataset of both species, G. platei and G. maculatus.

2.5. Testing whether genetic differences are beyond coalescent stochasticity
We conducted genetic simulations to test whether any dissimilarity found between the genetic patterns of
the two studied species are likely under a purely coalescent stochastic process, rather than other
biological or demographic explanations. For this, we used the empirical data from one species to
parametrize a model of a single population, and then we used that model to see whether the genetic
patterns of the other species can be reproduced at some degree. If patterns are reproducible in at least
5% of the simulations, we then would infer that the genetic patterns between species are not
statistically different. All genetic simulations were conducted with SIMCOAL 2.0 [41]. We first
performed 1000 simulations of a single population of G. platei, sampling 72 mtDNA sequences of
786 bp, and assuming a population size of 10 000 individuals. We varied the mutation rate randomly,
selecting values between 0.00000001 and 0.000001 from a uniform distribution. For each of the
simulations, we calculated the number of segregating sites (S) with a command line version of the
software ARLEQUIN. We then used this simulated data to select a mutation rate that was able to
produce the empirical S value of G. platei (S = 34). Instead of using the value suggested by the linear
regression between mutation rate and S, we used a more conservative approach by using the 5%
lower quantile regression to select the highest possible mutation rate value that would still produce at
least 5% of simulated S values equal or higher than 34 (electronic supplementary material, figure S2).
We then used this mutation rate to simulate 10 000 replicates of a population of G. maculatus, using
the same population size as for G. platei, but sampling 217 sequences of 505 bp (i.e. same number of
sequences and sequence length as in the empirical dataset of G. maculatus). We calculated for every
simulated replicate the number of segregating sites (S), the number of haplotypes (K), and the average
number of nucleotide differences (π) using ARLEQUIN. Finally, we compared the distribution of these
simulated summary statistics with the empirical values obtained for G. maculatus to estimate the
proportion of simulations that are equal to or higher than the empirical values. Failing to reproduce
the observed patterns of G. maculatus in at least 5% of the simulations would be strong evidence that
differences between these two species are not due to coalescent stochasticity.
3. Results
3.1. Genetic diversity and population structure
Overall, genetic diversity and structure were lower in the freshwater strict G. platei than in the
diadromous G. maculatus. The genetic diversity indexes for G. platei showed a total of 44 haplotypes
(K), 56 segregating sites, a haplotypic diversity (Hd) of 0.96 and a value of nucleotide diversity (π) of
0.0033 (table 1). Segregated by river zones, the number of haplotypes (K) ranged from 6 to 22,
segregating sites (S) ranged from 9 to 29, the haplotypic diversity (Hd) ranged from 0.837 to 0.908,
and π ranged from 0.0026 to 0.0032 (table 1). For G. maculatus, there were a total of 160 haplotypes,
110 segregating sites, a haplotype diversity of 0.946 and a value of π of 0.0274 (table 1). Specifically,
the number of haplotypes ranged from 33 to 71, the segregating sites ranged from 66 to 89, the
haplotypic diversity 0.872 to 0.993, and the nucleotide diversity ranged from 0.0255 to 0.0363 (table 1).

Pairwise FST values between zones for G. platei ranged from 0.0466 to 0.1748 (table 2) with Zone 1
and Zone 2 being the only zones differentiated significantly, although with a very low value (FST=
0.0466; p < 0.05). Conversely, for G. maculatus, all pairwise FST values showed significant differences,
with FST values ranging from 0.031 to 0.567 (table 2). The hierarchical analyses of molecular variance



Table 1. Summary statistics for genetic diversity in G. maculatus and G. platei. n, sample size; S, number of segregating sites, K,
Number of haplotypes, Hd, haplotype diversity, π, nucleotide diversity.

zones n S K Hd π

G. maculatus Zone 1 77 87 71 0.993 0.0255

Zone 2 42 66 35 0.973 0.0349

Zone 3 56 77 33 0.872 0.0277

Zone 4 50 89 40 0.940 0.0363

basin 225 110 160 0.946 0.0274

G. platei Zone 1 46 21 22 0.908 0.0027

Zone 2 49 29 20 0.851 0.0026

Zone 3 31 28 11 0.837 0.0028

Zone 4 10 9 6 0.889 0.0032

basin 136 56 44 0.960 0.0033

Table 2. Gene flow (above diagonal) and Fst values (below diagonal) for Galaxias maculatus and G. platei.

Zone 1 Zone 2 Zone 3 Zone 4

G. maculatus

Zone 1 — 15.4600 1.0000 0.3800

Zone 2 0.0313a — 2.3300 0.5600

Zone 3 0.3318a 0.1468a — 1.2300

Zone 4 0.5678a 0.4700a 0.2880a —

G. platei

Zone1 — 10.2200 2.3600 3.4700

Zone 2 0.0466a — 539.9000 ∞
Zone 3 0.1748 0.0009 — ∞
Zone 4 0.1261 −0.0384 −0.0040 —

aSignificant values.

Table 3. Hierarchical analysis of molecular variance (d.f.) for Galaxias maculatus (G. m.) and G. platei (G. p.) from the Valdivia
River.

among group
among populations
within groups within groups

groups G. m. G. p. G. m. G. p. G. m. G. p.

1 (Z1)(Z2)(Z3)(Z4) 24.62a 3.24 22.81a 6.49a 52.56a 90.27a

2 (Z1)(Z2 + Z3 + Z4) 12.83 7.21 35.20a 5.18 51.98a 87.61a

3 (Z1 + Z2)(Z3 + Z4) 30.13a 7.42a 22.84a 5.22 47.02a 87.36a

4 (Z1 + Z2 + Z3)(Z4) 33.97a −1.15 23.91a 8.87a 42.12a 92.27a

aSignificant values.
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(AMOVA) for G. platei showed significant differences among groups only for the comparison (Z1 + Z2)
(Z3 + Z4), with 7.42% of variance explained (table 3). Regardless of how zones were compared, nearly
all variance was explained by differences within populations, ranging from 87.4% to 92.3% of the
variance observed (table 3). Conversely, for G. maculatus, all zone arrangements tested produced
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relatively high and significant values (table 3). The arrangement (Z1 + Z2 + Z3)(Z4) produced the highest

value of variance explained with a 33.97% (table 3).
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3.2. Phylogeography and historical demographic analyses
Demographic analyses based on the neutrality test Tajima’s D showed a negative value for G. platei
(D =−1.570) and a positive value for G. maculatus (D = 0.886), with both estimations being non-
significant ( p > 0.05). Conversely, for Fu’s Fs, estimations for both species were negative and
significant (G. maculatus Fs =−23.65, p = 0.01; G. platei Fs =−21.66, p < 0.001). Mismatch analyses
showed a unimodal pattern for G. platei, consistent with scenarios of demographic instability and
recent bottlenecks, whereas G. maculatus showed a strongly multimodal pattern, frequently associated
with a more stable demographic history (electronic supplementary material, figure S1).

Regarding haplotype networks, species produced highly contrasting patterns. Genealogical
relationships for G. platei showed some relatively abundant and geographically widespread
haplotypes connected with several singletons separated by few mutational steps (figure 2a). For G.
maculatus, on the contrary, three highly divergent haplogroups were identified (figure 2b). The
haplogroup I shows a star-like network, mainly represented by individuals from zone 3 and zone 4
and a few individuals from zone 1, and it is separated by 25 mutational steps from the haplogroup II
(figure 2b). The haplogroup II shows one main haplotype shared mainly by zones 2 and 3, with a few
individuals from zone 1. This haplogroup is separated by 23 mutational steps from the haplogroup III
(figure 2a). The haplogroup III shows many low-frequency haplotypes from all zones, although zones
1 and 2 were represented with the highest frequency. Only a few haplotypes were shared between
two or more zones probably because of the low frequency of haplotypes (figure 2b).

The demographic reconstruction via the skyline plot analysis for G. maculatus showed an increase in
Ne that took place about 300 000 years ago (figure 3a). Conversely, for G. platei, Ne showed a constant
population size over time and much lower Ne values compared with G. maculatus (figure 3b).
3.3. Genetic differences are too large to be due to coalescent stochasticity
We conducted genetic simulations to test whether the genetic patterns found for both G. platei and
G. maculatus were likely to arise due to coalescent stochasticity as the sole explanation. Failure to reject
the null hypothesis would preclude the need for invoking deterministic explanations such as differences
in life-history traits (e.g. dispersal capabilities). Our results show that the difference in genetic diversity
patterns observed in G. platei and G. maculatus are greater than those expected under coalescent
stochasticity only (figure 4a–c). The number of segregating sites simulated for the hypothetical species
with G. platei characteristics ranged from 17 to 102 with a mean of 44.76, while the empirical value for
G. maculatus was 116 (figure 4a). In the case of the number of haplotypes, the simulated values ranged
from 13 to 46 with a mean of 26.8, whereas the observed value for G. maculatus was 152, a value three
times larger than the mean of the simulated values (figure 4b). Finally, for the average number of
nucleotide differences, the simulated values ranged from 0.6 to 39.9, whereas the empirical value for
G. maculatus was 25.1 (figure 4c). Here, only 20 out of 10 000 values were larger than the empirical value
for G. maculatus (25.1), indicating a very low probability of obtaining values equal to or larger than the
empirical value for G. maculatus ( p-value = 0.002). These results indicate that the strong genetic
differences observed between species are not due to coalescent stochasticity.
4. Discussion
We found strong differences in the patterns of genetic diversity and structure between Galaxias maculatus
and Galaxias platei in the Valdivia River basin. G. maculatus was characterized by populations displaying
generally high genetic diversity (i.e. K and Hd), higher genetic structure, and increase in Ne throughout
time. On the other hand, G. platei appears to have not being seriously affected by environmental changes
of the past, presenting lower but constant population size. Variation in genetic patterns across
co-distributed species could be due to differences in biological traits (i.e. that differentially impact
demographic responses) or to stochastic processes such as mutational or coalescent stochasticity [42].
Although differences in genetic patterns between species can be expected at some degree due to
random processes, our simulation analyses and results rule out this explanation for the species
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analysed here, strongly suggesting the role of biological differences as drivers of differential demographic
and genetic responses in G. maculatus and G. platei.

4.1. Disparate genetic patterns in relation to biological differences
Idiosyncratic responses in terms of genetic diversity have been observed in several other studies,
highlighting the relevance of biological attributes of each taxon in predicting microevolutionary
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responses [8,43,44]. The migratory ability ofG. maculatus and its tolerance to the marine environment could

have provided the species with a good chance to survive glacial periods in lower freshwater reaches of the
river. By contrast, G. plateimay have had to face a harsher environment, with more difficulties to maintain
stable populations during colder periods due to, perhaps, its lack of active migratory behaviour [45]. These
biological differences could have played a key role in shaping distinct patterns of genetic diversity. On the
one hand, the migratory ability of G. maculatus might allow dispersal across larger distributional areas,
connecting more distant populations, escaping local extinctions and maintaining larger population sizes
(as in a metapopulation [46]). Consequently, larger populations will maintain high levels of genetic
diversity by reducing the impact of genetic drift. On the other hand, the lack of a migratory behaviour in
G. platei, would impact on its ability to maintain large populations and re-colonize local environments
after glaciations. This should impact on the levels of intra-basin genetic diversity and increase the risk of
local extinctions. Nevertheless, the adaptations of G. platei to colder environments [22,23] may have
allowed the survival of some populations in situ (within the basin), reducing the risk of local extinction,
albeit with lower genetic diversity. Alternatively, differences in genetic diversity could also be influenced,
at least in part, by the different placement of the Valdivia basin within the overall distribution of both
species. For G. maculatus, the Valdivia basin is placed in a more intermediate position of its distribution,
giving the chance for a greater genetic interchange with neighbouring basins from north and south. By
contrast, the G. platei population from the Valdivia basin is at the north margin of the species
distribution, allowing genetic interchange only with southern populations or, via river reversals, from
Atlantic basins [9].

The pattern of little change in Ne and its low value found for G. platei, based on the Bayesian skyline
plot results, is consistent with the idea of a persistent and strong drift effect driven by survival in less
suitable environments. It is not clear if the current populations of G. platei from the glaciated range
have an origin in downstream refuge areas either in the Pacific or Atlantic basins, or could represent
remnants from populations that persisted within the glacier range. Although evidence of the latter
have been found for some taxa like crustaceans [47], amphibians [48], fish [49], beetles and plants [50]
(see also [51], for a review), Vera-Escalona et al. [6] found that survival in refugia near the coast and
East-Andes areas was the most supported hypothesis for Pacific populations of G. platei. For
G. maculatus, the finding of significant genetic structure and the presence of more than one lineage
may violate the panmixia assumption of the Bayesian skyline plot analysis. Hence, Bayesian skyline
plot results for G. maculatus should be interpreted with caution.

In addition to genetic diversity, G. maculatus also exhibited higher genetic structure, which could
suggest that gene flow between some populations is currently restricted. Physical barriers to gene
flow are not evident in the Valdivia River basin, so gene flow should more likely be restricted by non-
physical (e.g. ecological) barriers. One possibility could be that genetic structure is being driven by
population differences in life-history traits (e.g. diadromous versus resident populations). Campos [52]
highlighted the occurrence of migratory diadromous populations in G. maculatus from the lower
Valdivia River basin, but little had been discussed of populations with other strategies in the basin.
However, Górski et al. [19], who analysed isotopic data for G. maculatus across several basins
including the Valdivia River basin, showed evidence of the existence of upstream populations
completing their life cycle entirely in the freshwater environment [10] and supported later with more
genetic evidence [16]. Similar patterns have also been documented for Argentinean populations [53].
Differing life-cycle strategies between upstream and downstream populations could result in
reproductive isolation, and therefore limited gene flow, if these differences imply that reproduction
takes place in different zones of the basin (i.e. upstream versus downstream) and/or at different times
of the year (different months), reducing encounters between individuals of these different populations.
Our data are consistent with this scenario as one haplogroup was mostly frequent upstream, while
the other two were more frequent downstream (figure 2a). This spatial variation in life-cycle strategy
has been observed in G. maculatus from other areas (like in some Argentinean basins), where the
species can exhibit landlocked populations in interior lakes [18,53,54].

Molecular structure driven by variation in migratory strategies have been documented in other fish
species, suggesting this process can play a key role in driving genetic structure and ecological speciation
[55–58]. In addition, the maintenance of these lineages represented by different ecophysiological variants
(distinct phenotypes) within a single population has been suggested as a potential strategy to face
selective pressures within heterogeneous and unpredictable environments. This regulation mechanism
of conditional migratory plasticity, evolutionary stable strategy (ESS), would be sustained by genetic
variation that allows for the evolution of migratory behaviour, as it has been proposed for eels [59].
On the other hand, differences in migratory strategies have been shown to be important for between-
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basin genetic structure. Evidence of greater genetic differences for non-diadromous versus diadromous

Galaxias species have been documented in New Zealand [60] as well as for several other fish species,
where comparisons of genetic structure among freshwater, marine and anadromous species have
shown greater structure between freshwater species [62].

Alternatively, deep divergences between currently sympatric haplogroups could also be explained by
long-term isolation in the past followed by a relatively recent secondary contact. Given the glacial history
of Southern Chile, this could be possible if different populations were isolated in different refugia during
glaciations, which would later join the Valdivia River basin from these different origins. However, this
explanation would require some level of current reproductive isolation between populations in order
to preserve the integrity of different haplogroups within a single basin; otherwise, as a panmictic
population, its lineages would be progressively sorted by genetic drift over long periods of time.
Furthermore, the relatively high genetic structure observed between high and low areas of the basin
supports the idea that these populations possess ecological differences that limit gene flow.
Nevertheless, the historical isolation and secondary contact counts with evidence in previous studies.
Geomorphological work [62] have evidenced drainage reversals, causing that some Andean lakes
discharging to the Atlantic in the past (during glaciations), shifted to the Pacific after glaciations.
These reversals would have facilitated dispersal of freshwater species across the Andes, from Atlantic
to Pacific basins, as supported by genetic studies on fish [4,9,26,63]. This hypothesis has been
supported for G. platei [9] and G. maculatus [26] and suggests that it might well be the case for some
(but not all) the haplogroups found in our study.

The potential confluence of individuals from distinct lineages and geographical origins to reproduce
in a single basin (philopatry of multiple lineages) could also explain the presence of multiple lineages in
the Valdivia River basin, as it has been shown for G. platei from other basins [6]. Delgado et al. [16] have
recently found that estuarine populations maintain high levels of gene flow between neighbour basins,
while resident populations present more limited inter-basin movements. However, this explanation
seems unlikely for some groups of G. maculatus like the one studied by González-Wevar et al. [7] from
offshore the Valdivia River mouth as this population was genetically distinct from all other
populations from neighbouring basins, suggesting this lineage was unique and endemic. Adding the
samples from [7] to our samples to build a neighbour joining tree revealed this offshore population is
indeed unique, being also absent from all other localities upstream of the Valdivia Basin (see
electronic supplementary material, figure S3), suggesting diversity in G. maculatus is far higher and
warranting a more comprehensive study.

In summary, the microevolutionary responses that can be displayed by fish when faced with
environmental and historical factors are species specific, given the biological singularity of each taxon
[64]. We show how different genetic patterns found between G. maculatus and G. platei are consistent
with their biological differences. The ability of G. maculatus to evolve different migratory strategies
(e.g. amphidromy, residency) may have provided the ability to escape glacial impacts in refugia near
the coast, allowing the species to maintain larger effective population size, which in turn, preserved
high levels of genetic diversity avoiding the eroding effect of strong genetic drift. However, whether
these migratory strategies have the potential for promoting and maintaining multiple lineages within
the Valdivia River basin is an aspect that remains to be further investigated and is beyond the scope
of the present study. The absence of an active migratory behaviour in G. platei, could explain its lower
population size and thus, lower genetic diversity, and its adaptations to cold environments could
additionally explain the persistence of the species in a highly impacted basin during glaciations. Our
work shows how biological differences between species cannot only impact on their current patterns
of genetic diversity but also influence different evolutionary responses to historical events.
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