


部到

MG G63464 34



Ħ

| 第一章 角之計法        | 1   |
|-----------------|-----|
| 三角法之定義          | 33  |
| 常度              | ,,  |
| 兩種單位之變換         | .2  |
| 設題一             | 4   |
| 第二章 銳角之三角函數     | 6   |
| 定義              | -51 |
| 記法之注意           | 9   |
| 設題二             | 10  |
| 一 在 元 班 上 HB 17 | 11  |
| 恒等式之證明          | 12  |
|                 | 13  |
| 知三角函數之一種而求其他種之法 | 15  |
| 設題四             | 17  |
| 馀角之三角函数         | 18  |



| ·               |
|-----------------|
| 特別角之三角函數 15     |
| 設題五 20          |
| 三角函數表 21        |
| 設題六 23          |
| 第三章 直角三角形25     |
| 定義              |
| 直角三角形之性質        |
| 直角三角形之解法26      |
| 設題七             |
| 實用問題上重要之術語      |
| 實用問題            |
| 設題入             |
| 第四章 任意角之三角函數 35 |
|                 |
| 角之定義            |
| 直線之方向           |
| 三角函數之方向         |
| n×360°+A 之三角函數  |
| 三角函數互相之關係       |
| 無               |

| 平面三角法目錄                | 3          |
|------------------------|------------|
| 三角函數之變化                | . 40       |
| 90°整倍數與他角和較之關係         |            |
| 設題九                    |            |
| 第五章 關於兩角之公式            |            |
| 求任意兩角和所成之角之正弦及餘弦       | . 55       |
| 求任意兩角差所成之角之正弦及餘弦       |            |
| 求任意兩角和或差所成之角之正切及餘切.    |            |
| 求任意兩角和或差所成之角之正弦及餘弦     |            |
| 之乘積                    | 59         |
| 化 a cosA+b sinA 為一項式之法 |            |
| 設題十                    | <br>•• '55 |
| 正弦餘弦之乘積與和或差之轉換         |            |
| 設題十一                   |            |
| 倍角及华角之三角函数             |            |
| 設題十二                   |            |
| 三倍角之三角函數               |            |
| 設題十三                   |            |
| 第六章 對數                 |            |
| 對數之定義及記法               |            |

| 73                  |
|---------------------|
| 設題十四                |
| 對數之重要性質74           |
| 設題十五                |
| 常用對數                |
| 對數四則                |
| 數之對數表 81            |
| 三角函數之對數表85          |
| 諮計算中對數之應用89         |
| 設題十六91              |
| 第七章 任意三角形93         |
| 角之關係 "              |
| . 設題十七 "            |
| 外接圓之直徑及正弦比例之式 95    |
| 兩角之半差及半和之三角函數之關係 97 |
| 以邊顯一角之餘弦及正弦之式98     |
| 三角形之面積式100          |
| 内接圆之半徑及半角之正切之式,     |
| 設題十八102             |
| 三角形之解法105           |
|                     |

| 計算例题107                   |
|---------------------------|
| 設題十九111                   |
| 距離及高之測法,                  |
| 設題二十116                   |
| 第八章 逆三角函數120              |
| 定義                        |
| Sin-1a 之值121              |
| Cos <sup>-1</sup> a 之值122 |
| Tan-1a 之值123              |
| 設題二十一124                  |
| 第九章 三角方程式127              |
| 定義, "                     |
| 三角方程式之解法129               |
| 設題二十二                     |
| 第十章 眞弧度法133               |
| 定義                        |
| 真弧度與常度之關係134              |
| 設題二十三,                    |
| 附錄1                       |
|                           |

| 数  | 之 | 對 | 數 | 表 |    |   | • • • • |   |         | ••••    | <br>•••• |      | <br>. (* ) |     | ••••  |   | 1  |
|----|---|---|---|---|----|---|---------|---|---------|---------|----------|------|------------|-----|-------|---|----|
| Ξ  | 角 | 涵 | 數 | 之 | 眞  | 數 | 表       |   |         |         | <br>•••• | •••• | <br>,,,,   |     |       |   | 5  |
| Ξ, | 角 | 函 | 數 | 之 | 對  | 数 | 表       |   | • • • • |         |          |      | <br>       | ••• | ••••• | 1 | 5  |
| 對  | 數 | 用 | 法 | Ż | 例. |   |         |   | •••     | • • • • | <br>     | •••  | <br>,      |     | ••••  | 2 | 35 |
| 部  | 彙 |   |   |   |    |   |         | • |         |         |          |      |            |     |       |   |    |
| 備  | 用 | 公 | 武 |   |    |   |         |   |         |         |          |      |            |     |       |   |    |

#### 中 等 教 科

# 平 面 三 角 法(命称人线法)

# 第 一 章 角 之 計 法

#### 1. 三角法之定義

三角法者。講三角函數之性質及應用 之學科也。而依其應用之區域。分為平面 球面二部。

#### 2。 常度 (或名六十分法)

實地計算上所通用之計角法如次。

直角之九十等分之一。(即正三角形上一角之六十等分之一)謂之一度。度之六十等分之一。謂之一分。分之六十等分之一。

謂之一秒。以度,分,秒,爲單位所計得之角 度。謂之常度。而 d 度 m 分 s 秒。恒記爲 d²m's"

[注意] 秒之單位過於細微。故實際上用時甚少。凡 小於分之角。均以用分之小數顯之為常。且甚便宜。(通 例用小數一位) 教科書所以用秒者。盖從其習慣。

又以一直角為單位之角度謂之百分 **度。**(又為直角度)

#### 3. 兩種單位之變換。

凡任意之一角。於百分度及常度二者中。任知其一種.則他種易求得。其方法如次。

(第一) 欲將百分度變爲常數。則先以 90 乘之,得常度之度數。又以60 乘度之分 數。得分之數。再以60 乘分之分數。得秒數。 以所得之度分秒連記之。即答。

例.

1. 變百分度 45 寫常度.

運算.

$$\frac{45}{64}$$
 面 角 =  $\left(\frac{45}{64} \times 90\right)$  度 =  $63\frac{4}{32}$  度  $\frac{9}{32}$  度 =  $\left(\frac{9}{32} \times 60\right)$  分 =  $16\frac{7}{8}$  分  $\frac{7}{8}$  分 =  $\left(\frac{7}{8} \times 60\right)$  秒 =  $52.5$  秒

答.

63° 16′ 52″.5

2. 緣百分度 1:07875 為常度.

運算.

答.

97° 5′ 15″.

[第二] 欲化常度為百分度宜用次式

$$d' m' s'' = \left(\frac{d}{90} + \frac{m}{90 \times 60} + \frac{s}{90 \times 60 \times 60}\right)$$
 if  $\beta$ 

何.

問名 15' 27" 為幾直角

8° 15′ 27″ = 
$$\left(\frac{8}{90} + \frac{15}{90 \times 60} + \frac{27}{90 \times 60 \times 60}\right)$$
 直角  
=  $\left(\frac{8}{90} + \frac{1}{90 \times 4} + \frac{3}{90 \times 20 \times 20}\right)$  直角  
=  $\frac{3200 + 100 + 3}{90 \times 400}$  直角  
=  $\frac{3803}{36000}$  直角 の 4 名 ラ 之  $\frac{367}{4000}$  直角 の 99175 直角・

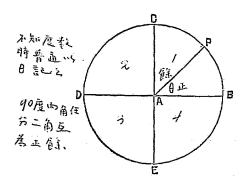
#### 設 顋

1. 化次之諸角為常度

.11 直角, 0.678 直角, 0.0241 直角.

答. 61° 52′ 30″, 61° 1′ 12″, 2° 10′ 15″,

2. 以直角為單位。問次之諸角之值幾何 32".4, 11°15', 8°0°36", 45'5".4, 61°52'30" 3 7 5 6 7


答 0.54, 0.007, 0.0001, 0.125, 0.089, 0.00835, 0.6875

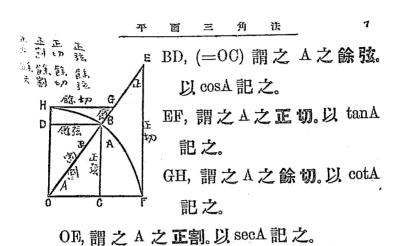
- 3. 以某所為單位。其計常度 15° 及百分度 0.2 所得 兩值之和為 0.75° 間某角為幾度 答 45°
- 4. 三角形之第二角之分數,及第三角之秒數。各 為第一角之度數之 10 倍及 120 倍。問三個角各幾度 答 150°, 25°, 5°
- 5. 二點鐘三十四分五十六秒時。求鐘之長針與短 針所夾之角度 答 132°8′

#### 第二章

## 銳角之三角函數

#### 坐。 定義



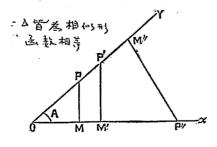

CAE及BAD二直線相交所生之直角。 各名爲一象限。

BAC,稱為第一象限。CAD,稱為第二象限。DAE,稱為第

三象限。EAB, 稱為第四象限。

令以 AB 為本線。由 廻線廻轉作任意之角、若 AP 在第一象限內。則 BAP, 謂之第一象限之角。若 AP 在第二象限內。則其角謂之第二象限之角。他做此。

在一象限內。有任意之角A。則 BC, 謂之A之正弦。以sinA記之。 正能、失欲北三市甚易因半径减能弦即為正失半径减正弦即名餘是不少名立法门




OG, 謂之A之餘割。以 cosecA 記之。 (又 OF, 謂之A之正矢, DH 謂之A之餘矢,然幾無

用故從略) 故以下弟高正庭弦切割云旗\_

以上六項。統稱為 A 之圓函數。 又謂之 A 之三角函數.

又 OB=OF=OH, 謂之半徑。以 r 字顯之。



有任意之銳角A。於其任意之邊 OY 上。除角頂外.任取一點P。由此點作埀線於他邊 OX上。其足為 M。如是則

第二章 銳角之三角函數

關於A角OP寫斜邊、MP為垂線。OM底邊、 依同式形,可得次之六個比,

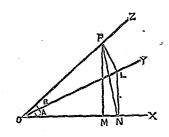
[第一] 
$$\frac{48}{48} = \frac{\sin A}{25}$$
, 即  $\frac{MP}{OP} = \frac{\sin A}{r}$ , 而  $r$  通

[注意一] 正弦與餘弦,正切與餘切,正割與餘割 互謂之餘函數。任完一角為正他即為儲

[注意二] 由 OY 上他之任一點 P'及 OX 上之任 意二點 P", 作垂線於 OX 及 OY。 其足為 M', M", 则 OPM,及OP"M" 兩三角形俱與 OPM 相似 故A為定 角.则其各三角函數皆爲定數。

[注意三] sin, (正弦) cos, (餘弦) tan, (正切) cot, (餘切) sec, (正割) cosec, (餘割) 為三角法中所通用之記號。學生宜熟記。

又欲記憶此六個記號。有一便法。即單記識 sin, (正 弦) tan, (正 切) sec, (正 割) 各加 co 於字首。更略去其字末之兩個字母。即得 cos, (餘 弦) cot (餘 切) cosec (餘割) 惟 cosec 因略去字末之兩字母。則與 cos (餘弦) 同。故存之。


sin, cos, tan, cot, sec, cosec, 原本於臘丁語 sinus, (正 弦) cosinus, (餘弦) tangens, (正切) cotangens, (餘切) secans, (正割) cosecans, (餘割) 為各國所通用。惟或以 tg 代tan, 以 csc 代 cosec, 不無少異。

#### 5。關於記法之注意

[第一] sinA 等。原為A角中之比之記號。故sin與A。不能分離。如sinA+sinB,乃顯A之正效與B之正弦之和。原非A與B之和之正弦sin(A+B)

今令XÔY爲A, YÔZ爲Bo由OZ上之一點Po作垂

線於OY, OX, 其足為L,M, 由L作垂線於OX。其足為N, 聯P,N 為其線,則



$$\sin A = \frac{NL}{OL} > \frac{NL}{OP},$$

$$\sin B = \frac{LP}{OP},$$

$$\sin A + \sin B > \frac{NL + LP}{OP} > \frac{PN}{OP} > \frac{MP}{OP},$$

卽  $\sin A + \sin B > \sin (A + B)$ .

[第二] n 非負數。則欲示三角函數之n 乘方。常因便宜。以指數n 附於函數記號之右肩上。

如 (sinA)³, (cosA)² 記為 sin³A, cos²A, 是也。

#### 設題二

- 1. **直**角三角形之三邊為三寸,四寸,五寸,求其最 小角之正弦,餘弦,正切 答 3 4 3
- 2,有一直角三角形其灰直角之二邊為 28,45,求
   其大銀角之正弦

| 3. 有三角形其三邊之比為 33,56,65. 求其最小                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 角之餘切,正割,餘割 答 $\frac{56}{33}$ , $\frac{65}{56}$ , $\frac{65}{33}$                                                                                                                                                                    |
| 4. 有於 $C$ 為直角之 $ABC$ 。其 $tan A = \frac{11}{3}$ , $AC = \frac{27}{11}$ ,                                                                                                                                                             |
| 录 AB <sub>o</sub> 答 9√130<br>11                                                                                                                                                                                                     |
| 6. 三角函數之關係                                                                                                                                                                                                                          |
| 今將同角度之三角函數。揭其重要之                                                                                                                                                                                                                    |
| 關係如次。                                                                                                                                                                                                                               |
| [第一] 二重關係.                                                                                                                                                                                                                          |
| sinA cosecA= <u>華</u> . <u>斜</u> = I(()                                                                                                                                                                                             |
| $\cos A \sec A = \frac{\underline{\underline{\kappa}}}{\underline{\underline{M}}} = I(2)$                                                                                                                                           |
| tanA cotA = 垂. <u>底</u> =I(3)                                                                                                                                                                                                       |
| 〔第二〕三重關係.                                                                                                                                                                                                                           |
| $\tan A = \frac{\underline{\mathfrak{X}}}{\underline{\mathfrak{K}}} = \frac{\underline{\mathfrak{X}}}{\underline{\mathfrak{A}}} + \frac{\underline{\underline{K}}}{\underline{\mathrm{cos}}A} - \dots \qquad (4)$                   |
| $\cot A = \frac{\underline{\underline{K}}}{\underline{\underline{\underline{M}}}} = \frac{\underline{\underline{K}} \cdot \underline{\underline{\underline{\underline{M}}}}}{\underline{\underline{M}}} = \frac{\cos A}{\sin A}(5)$ |

[第三] 平方關係·

$$\sin^2 A + \cos^2 A = \left(\frac{\cancel{\text{m}}}{\cancel{\text{A}}}\right) + \left(\frac{\cancel{\text{K}}}{\cancel{\text{A}}}\right)^2 = \frac{\cancel{\text{A}}^2}{\cancel{\text{A}}^2} = I.....(6)$$

$$I + tan^2A = I + \left(\frac{\underline{x}}{\underline{\kappa}}\right)^2 = \left(\frac{\underline{A}}{\underline{\kappa}}\right) = sec^2A....(7)$$

$$I + \cot^2 A = I + \left(\frac{\underline{K}}{\underline{\varpi}}\right)^2 = \left(\frac{\underline{A}}{\underline{\varpi}}\right) = \csc^2 A \dots (8)$$

#### 7。恒等式之證明法

依前條之關係。能證明含三角含數之 種種恒等式。

[第一] 由左邊導出右邊之法

例

器 tan2Acos2A+cot2Asin2A=1

器

左邊=
$$\frac{\sin^2 A}{\cos^2 A}$$
.  $\cos^2 A + \frac{\cos^2 A}{\sin^2 A}$ .  $\sin^2 A$ 
$$= \sin^2 A + \cos^2 A$$

=1

#### [第二] 由已知之關係導出之法

例

$$\frac{\cos \operatorname{cosecA} - \operatorname{secA}}{\cot A + \tan A} = \frac{\cot A - \tan A}{\operatorname{cosecA} + \operatorname{secA}}$$

證.

$$\cos^2 A = 1 + \cot^2 A$$

$$= 2 \pi \int \mathbb{R} \sqrt{3} F \cdot \sqrt{3}$$

$$\sec^2 A = 1 + \tan^2 A$$

 $\cos e^2 A - \sec^2 A = \cot^2 A - \tan^2 A$ 

$$(\cos \sec A - \sec A)(\csc A + \sec A) = (\cot A - \tan A)(\cot A + \tan A)$$

$$\frac{\cancel{\xi_{1}} \cancel{\xi_{2}}}{\cot A + \cot A} = \frac{\cot A - \tan A}{\cot A + \sec A}.$$

#### 設 題 三

證以下諸式

٠.

- 1. tan²A-sin²A=tan²Asin²A. 正切る城正法另一 ある納景
- 2. cot'A-cos'A=cot'Acos'A. 身物和城區方一两方相景。
- 3. sec<sup>2</sup>A+cosec<sup>2</sup>A=sec<sup>2</sup>Acosec<sup>2</sup>A. 西乳剂的二两割剂 此三個亦為平方關係
- 4. cosecA-sinA=cotAcosA,稱割減正茲一質切X實施

- 5. secA-cosA=tanAsinA. 正别城辖第二正切X正:
- 6. cotA+tanA=secAcosecA. 西印柏加二西京和 此三個謂之四重關係
- 7.  $\sin^4 A + \cos^4 A = 1 2\sin^2 A \cos^2 A$ .
- 8.  $\sin^6 A + \cos^6 A = 1 3\sin^2 A \cos^2 A$ .
- 9.  $\frac{1}{1+\tan^2 A} + \frac{1}{1+\cot^2 A} = 1$ .
- 10.  $\sin^2 A \tan A + \cos^2 A \cot A + 2 \sin A \cos A = \tan A + \cot A$ .
- 1.  $1 + \tan A^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2$ .
- 12.  $1 + \cos e^{t}A \cot^{4}A = 2\csc^{2}A$ .
- 13. secA+tan3AcosecA=sec3A.
- 14. cotA-secAcosecA(1-2sin<sup>3</sup>A)=tanA.
- 15.  $\frac{(\sec A + \csc A)^2}{\sec^2 A + \csc^2 A} = 1 + 2\sin A \cos A.$
- 16.  $(1-\tan^4 A)\cos^2 A + \tan^2 A = 1$ .
- 17.  $\frac{1-\cos A}{1+\cos A} = (\cos A \cot A)^2$ .
- 18.  $(\tan A + \sec A)^2 = \frac{1 + \sin A}{1 \sin A}$ .
- 19. sin3AcosA+cos3AsinA=sinAcosA.
- 20.  $(\cos^2 A + \cot^2 A)\tan^2 A = \sec^2 A + (\cos^2 A 1)\tan^2 A$ .

sinA(1+tanA)+cosA(1+cotA)=cosecA+secA.
 由以下豁式消去 θ.

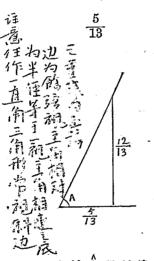
22.  $\sin \theta = a$ ,  $\cos \theta = b$ . 答.  $a^2 + b^2 = 1$ .

23.  $\sec \theta = a$ ,  $\tan \theta = b$ . 答.  $a^2 - b^2 = 1$ .

24.  $\csc \theta = a$ ,  $\cot \theta = b$ . 答.  $a^2 - b^2 = 1$ .

25.  $\cos \theta + \sin \theta = a$ ,  $\cos \theta - \sin \theta = b$ . 答.  $a^2 + b^2 = 2$ .

#### 8. 知三角函數之一種求他種之法


無論何角。任知其三角函數之一種。則於關於此角之科邊,垂線,底邊三者中。設其用為分母之邊為1(即作此函數用者)則用為分子之邊,必等於此函數之值。而其餘之一邊。可由彼達哥拉士之定理 (Pythagoras' theorem 即句方股方等於弦方之定理然此法實出於我國。見周髀算經)知之。從而其他之一切函數。皆能求之。

或設用為分母之邊。等於值之分母。則當分子之邊。 (深)為也) 等於值之分子。而其餘之一邊。由前之定理求之。由是亦能計算他之函數。 例

設  $\sin A = \frac{12}{13}$ , 求 A 之他函數·

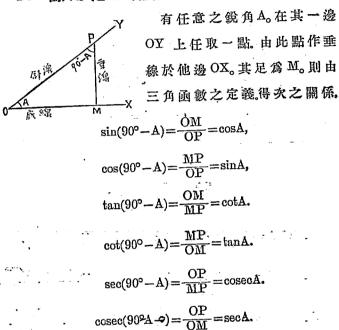
.解

於 Å 設 斜 邊=1。則 垂 線= $\frac{12}{13}$ ,底 線= $\sqrt{1-\left(\frac{12}{13}\right)^2}$ =



或於 Å 設科邊=13 則垂線=12,

$$\therefore \cos A = \frac{5}{13},$$


 $tan A = \frac{12}{5},$   $cot A = \frac{5}{12},$   $sec A = \frac{13}{5},$   $2 tan A = \frac{5}{12},$   $sec A = \frac{13}{5},$   $cosec A = \frac{13}{12},$   $cosec A = \frac{13}{12},$   $cosec A = \frac{13}{12},$   $cosec A = \frac{13}{12},$ 

設 題 四.

- 1.  $\sin A = \frac{99}{101}$ 求  $\cos A$  及  $\cot A$ . 答  $\frac{20}{101}, \frac{20}{99}$ .
- 2.  $\sec A = 1.03$  求  $\sin A$  及  $\tan A$ . 答  $\frac{\sqrt{61}}{31}, \frac{\sqrt{61}}{30}, \frac{\sqrt{61}}{30}$
- 3.  $\cot A = \frac{q_f}{p_f}$ 求  $\frac{p\cos A q\sin A}{p\cos A + q\sin A}$ 之值. 答。  $\frac{p^2 q^2}{p^2 + q^2}$ .
- 4.  $p\cot A = \sqrt{q^2 p^2} \Re \sin A$ .
- 5.  $\tan A = \frac{2mn}{m^2 n^2}$  录 cosA 及 cosecA.

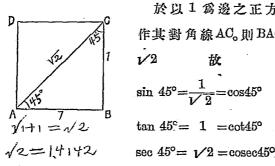
答.  $\frac{m^2-n^2}{m^2+n^2}$ ,  $\frac{m^2+n^2}{2mn}$ .

#### 9. 餘角之三角函數



(90°-A) 謂之 A 之餘角。

據上式 90°-A 之各三角函數。與 A 之各三角函數。 共同數之項。 互為餘函數。


此六個關係中、後之四個.可由前二個導出、以下準此。

注意 4加先知两切等于1 30先知正持等于古 168名说皆可推起证

19

# 10。特別角之三角函數印度,367,457,667,96等调

#### [第一] 45°之三角函數



於以1為邊之正方形 ABCD。 作其對角線AC。則BAC=45°AC=

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \cos 45^{\circ}$$

$$\tan 45^{\rm c} = 1 = \cot 45^{\rm o}$$

## [第二] 30°及60°之三角函數

於以2為邊之正三角形ABC。由A作垂線於對邊

#### 則其足D為BC之中點而

$$\sec 30^\circ = \frac{2}{\sqrt{3}} = \csc 60^\circ$$
,

cosec30° = 2 = sec60°.

#### 今啊表於下



#### 設 題 五.

#### 證以下諸恒等式.

1. 
$$sec(90^{\circ}-A)-cotAcos(90^{\circ}-A)tan(90^{\circ}-A)=sinA$$
.

2. 
$$\frac{\cot(60^{\circ} - A)}{\csc^{2}A} \cdot \frac{\csc(90^{\circ} - A)\cot^{2}A}{\sin^{2}(90^{\circ} - A)} = \sec A.$$

3. 
$$\frac{\cot^2 A \sin^2(90^\circ - A)}{\cot A + \cos A} = \tan(60^\circ - A) - \cos A.$$

#### 求以下諸式之值

4.  $\sin^3 60^\circ \cot 30^\circ - 2\sec^2 45^\circ + 3\cos 60^\circ \tan 45^\circ - \tan^2 60^\circ$ .

5. 
$$3\tan^2 30^\circ + \frac{1}{4}\sec 60^\circ + 5\cot^2 45^\circ - \frac{2}{3}\sin^2 60^\circ$$
. 答. 6.

6. 
$$\frac{1}{3}\sin^2 60^{\circ} - \frac{1}{2}\sec 60^{\circ}\tan^2 30^{\circ} + \frac{4}{3}\sin^2 45^{\circ}\tan^2 60^{\circ}$$

答.  $\frac{23}{12}$ 

求合於以下各方程式之角

7. 
$$4\sin^2\theta - 2(\sqrt{3} + 1)\sin\theta + \sqrt{3} = 0$$
. 答. 30°, 60°

8. 
$$\tan^2\theta - (\sqrt{3} + 1)\tan\theta + \sqrt{3} = 0$$
. 答. 45°, 60°

9. 
$$\sin^2\theta + \sqrt{3}\cos\theta - \frac{7}{4} = 0$$
 答. 30°.

此三式謂之三角方程式。其通例詳於後編。

#### 11. 三角函數表

求任何角之三角函數。爲三角法之高等部分。其理論高尚。運算繁雜。本書不具論。然其數值。前人已詳細計算。編列爲表。據本書所載。則由0°至90°。其間每10′之諮角。俱能撿其三角函數之四位數。

凡非表中之角。若欲求其三角函數。或求對於三角函數之角。須依次之定理。

角之小變化與其各三角函數應此之變 化。殆成比例。

論此定理之由來及界限。不適於本書之程度。故略 之。今惟依例示其應用法而己

. 例.

1. 求 sin32° 16'·4

解.

 $\sin 32^{\circ}20' - \sin 32^{\circ}10' = 0.5348 - 0.5324 = 0.0024$ 

10:6:4::0.0024:x

x = 0.0015

 $\sin 32^{\circ}16' \cdot 4 = 0.5324 + 0.0015 = 0.5339$ .

2. tanA=1.568 求 A.

解.

 $\tan 57^{\circ}30' - \tan 57^{\circ}20' = 1.570 - 1.560 = 0.010$ 

 $\tan A - \tan 57^{\circ}25' = 1.568 - 1.560 = 0.08$ 

0.010:0.008::10:x

x=3

 $A = 57^{\circ}20' + 8' = 57^{\circ}28'$ .

3. 求 cot29°43′.6

解.

 $\cot 29^{\circ}40' - \cot 29^{\circ}50' = 1.756 - 1.744 = 0.012$ 

10:3.6:0.012:x

x = 0.004

 $\cot 29^{\circ}43'.6 = 1.756 - 0.004 = 1.752$ 

4. cosA=0.4452 求 A.

解.

 $\cos 63^{\rm o}30' - \cos 63^{\rm o}40' = 0.4462 - 0.4436 = 0.0026$ 

 $\cos 63^{\circ}30' - \cos A = 0.4462 - 0.4452 = 0.0010$ 

0.0026:0.0010::10:x

x = 3.8

 $A = 63^{\circ}30' + 3' \cdot 8 = 63^{\circ}33' \cdot 8.$ 

#### 設 題 六

1. 求 tan25°26′·7

答. 0·47\$8.

2. 求 sec3S°27'.7

答. 1·277.

3. 求 cos63°37′·3

答. 0.4443.

4. 求 cosec41°18′·2

答. 1.515.

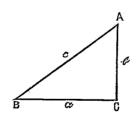
5. sinA=0.9479 求 A

答· 71°25′·6.

6. tanA=0·1723 求 A

答. 9°49.7.

#### 第三章


#### 直角三角形

#### 12. 定義

凡平面三角形。皆有六事。其三者爲邊。 三者爲角。知其六事中之三。則其餘三事。 自能求得。惟所知之三事中。必須有一爲 邊。

從三角形內已知之事。求其未知之事。 謂之三角算法

#### 13。 直角三角形之性質



三角形之三個角為A,B,C,其各 對邊為a,b,c,(以下準此港C為直 角則有次之關係

$$A + B = 90^{\circ}$$
.

$$\sin A = \frac{a}{c} = \cos B$$
.

$$\cos A = \frac{b}{c} = \sin B.$$

$$\tan A = \frac{a}{b} = \cot B.$$

$$\cot A = \frac{b}{a} = \tan B.$$

$$\sec A = \frac{c}{b} = \csc B.$$

$$\csc A = \frac{c}{a} = \sec B.$$

$$\cos A = \cos A = \cos B.$$

$$\cos A = \cos B = \cot B.$$

$$\begin{cases} a = c \sin A = c \cos B = b \tan A = b \cot B. \\ b = c \cos A = c \sin B = a \cot A = a \tan B. \\ c = b \sec A = b \csc B = a \csc A = a \sec B. \end{cases}$$

#### 14。 直角三角形之算法

凡直角三角形。於直角外。知其五事中之兩事則其餘三事。自能求得。惟所知之兩事中。必須有一爲邊。其算法有四種。

# 〔第二〕知直角之一邊及一銳角(如 a.

#### A)則

曲 
$$B=90^{\circ}-A_{\circ}$$
 录 B  $b=a \cot A_{\circ}$  )  $b=a \cot A_{\circ}$ 

叉 的  $\left. \begin{array}{c} b=a \text{ cot A.} \\ c=a \text{ cosec A.} \end{array} \right\}$  或  $\left. \begin{array}{c} b=a \text{ tan B.} \\ c=a \text{ sec B.} \end{array} \right\}$  录 b, c

# [第三] 知 斜邊 c 及 他 之 一邊(如 a)則

$$\sin A = \frac{a}{c}$$
  
 $b = c \cos A$ 
  
 $B = 90^{\circ} - A$ 
  
 $\cos B = \frac{a}{c}$ 
  
 $b = c \sin B$ 
  
 $A = 90^{\circ} - B$ 
  
 $A = 90^{\circ} - B$ 

## 〔第四〕 知直角之二邊則

$$an A = rac{a}{b}$$
.

 $an B = b \sec A$  或  $a \csc A$ .

 $an B = rac{b}{a}$ .

 $an B = rac{b}{a}$ .

 $an B = b \sec B$  或  $a \sec B$ .

 $an B = b \sec B$  亦 可
 $an B = b \sec B$ .

[注意] 既知兩邊。則依何後達哥拉士之定理可計算

其餘之一邊。又川以上諧方法。均以川代數計算為便.

#### 設 題 七

依次之條件計算直角三角形 ABC; 但 √2=1414, √3=1732.

- 1. c=12,  $A=30^\circ$  答  $B=60^\circ$ , a=6,  $b=10^\circ4$ .
- 2.  $a=5\sqrt{3}$ ,  $A=60^{\circ}$ . 答  $B=30^{\circ}$ , b=5, c=10.
- 3. c=12, a=3.

答  $A=14^{\circ}28^{\prime}\cdot2$ ,  $B=75^{\circ}31^{\prime}\cdot8$ ,  $b=11^{\circ}6$ .

4. a=5, b=6.

答 A=39°48′·2, B=40°11′·8, c=7·8.

# 15. 實用問題上重要之術語

(第一) 過一點及地球中心之直線或平面。謂之此點之直立線或直立面

[第二] 過一點而在此點與直立線成直角之直線或平面。韶之此點之水平線或水平面。

仰角或稱為高慶(其重者為天體之例)

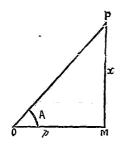
[第四] 二點 與 窺測器 之中心 聯 爲 直線。 其 夾 角 謂 之 此 二 點 之 角 罩

[第五] 航海用之羅盤。於東南西北之



間。各分為八等分。得 三十二方向。其命名 如次。

陸地测量用之凝盤於其 周闡刻度分秒。其角以距南 或距北計之記為北幾度取


(或西)又南幾度東(或西)等以示其方向。

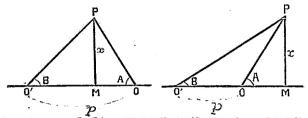
#### 16. 實用問題

不能直接测得之距離或高。可用三角形之解法計算之。今舉其例於次.

例

## [第一] 有一直立物體。人 能行至其基




礎下。欲求其高。設MP直立物體之高為來。若距m基礎。 取適當距離p處之O點。測 其頂點P。 設頂點之仰角 為A則

MP=OM tan MOP

III  $x=p \tan A$ 

[注意] 欲求其精密則加物體之厚即基礎處之厚] 之华於p計算。又加窺測器中心之高於其結果。以下準 此。

[第二] 有物在人所不能到之處。但能自遠處望之。欲求遠處一點與物之距離。



於直線上。取O,O'二點。測其距離。(設為P,由不能到 之點P,作此線之垂線 PM。設PM之數值為 c。又MO P 向, M O'P 角為A, B, 則

$$MO' \pm MO = OO'$$

 $MP \cot MO'P \pm MP \cot MOP = OO'$ 

gp 
$$x \cot B \pm x \cot A = p$$
,

$$x = \frac{p}{\cot B + \cot A}$$

[第三] 有一直立物體。人不能至其基礎下。惟能在與此物體同在一平面上之二點。測其頂之仰角。欲求此物體之高及距離。

於前例之右圖。設MP為物體。OO/為兩窺測點。OM 為y.則

$$x = \frac{p}{\cot B - \cot A}$$

 $y = x \cot A = \frac{p \cot A}{\cot B \cdot R \cot A}$ 

#### 設 題 八.

- 1. 於距烟第300尺之地。測其頂之仰角為30°,問烟 第之高幾何。 答 173.2尺
- 2. 於高160尺之牆頂.測得一小艇之俯角為30°,問 船與艇之距離幾何。 答 277,12尺
  - 3. 高6尺之华影為21/3尺,求太陽之高度為3=6
- 4. 於距塔影86.6尺之地测得塔頂之仰角為30°,間 塔頂與窺測之距離幾何 答 100尺
- 5. 有梯長45尺。其一端倚壁頂。他端置於地上。而 壁與梯成60度之角。求壁之高。及距梯脚若干。

答 22.5尺 28.937尺

- 6. 有二檔。高60尺及40尺。而聯其兩頂之直線。與水平面成33°41′之角。問二檔之距離幾何。答 30尺
  - 7. 由某處望高66丈之絕壁.得頂之仰角4118′. 問

絕壁之頂與觀測者之距離幾何。但 sin 41°18′=0.66

答 100 丈:

8. 有烟箱兩個。其一個較他一個高15丈。而聯兩頂 之直線.與水平面成27°2′之角。且此直線、在距小烟笛 50丈之處與地面相交。問大烟笛之高幾何。

伯 tan 27°2′=0.51.

答 40.5 丈

- 9. 有在塔東相間隔 200 尺之兩地。各望其頂得仰 角45° 及30°, 問塔之高幾何。 答 273.2尺
- 10. 由地上之一點。望塔上長2米突之避電針。其上 端及下端之仰角為44°20′,42°10′間塔高幾何

答 25.4 米突

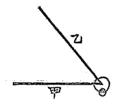
- 11. 由水平面高 80 步之燈臺望在其西之二艇。得 俯角 62°30′, 28°50′ 問二艇之距離幾何。
- 12. 於成直線狀之海岸。由相距165.2米突之二點A, B. 望海上之船C。知 CAB=62°30′, CBA=76°15′, 問船與海岸之距離幾何。 答 215.9 米突
- 13. 由燈臺L於南西及南15 東之方向。有二船A.B. AB之方向為南東。AL之長為4 哩間二船之距離幾何。 答 6.928 哩

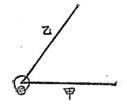
14. 於東西相距一哩之二地A.B.望輕氣球之方位。 為北西及北東。其仰角為45°間球之高幾何。

答 3733 呎

- 15. 於地上之一點。知半徑r 之輕氣球之張角為a, 仰角為 $\beta$ , 問球之高幾何, 答  $r\sin\beta$  cosec  $\frac{a}{2}$
- 17. 有高 h 之塔。於距塔 a 之 l e 。見塔頂與山頂在一 面線上。於塔脚得山頂之仰角 a。間山高幾何

答 $\frac{ah}{a-h\cot a}$ 


18. 於塔南之一地。得其頂之仰角為α。又由是向西行1.测其仰角得β. 問塔之高幾何 答 l


#### 第四章

#### 任意角之三角函數

#### 17。 角之定義

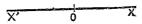
就 角 所 研 究 之 事 項。欲 通 於 一 切。須 擴 張 角 之 意 義。 故 得 普 通 之 定 義 如 次。





由同點引甲乙二直線。則其一線。如乙。由甲之方位起。繞同點廻轉至本方位。此廻轉之量。謂之乙與甲所成之角。又乙稱爲廻線。甲稱爲本線。而廻線之運動。或與時針之運動反對。或與時針之運動同樣。從而其所作之角或爲正,或爲晉。

负之本線及廻線謂之邊。二線之公點謂之頃.


欲示其角。則在本線及廻線上取一點。各附以名稱。 而於名稱之間。夾以角頂之名稱、即為角之名稱、如乙 〇甲之類

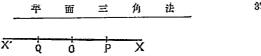
[注意一] 角之值無制限

[注意二] 又對於本線成 A 角之廻線, 與對於本線成 n×360°+A角之廻線和台,但n顯零或任意之數以下 準此

#### 18。 直線之方向

本編不獨考直線之大。更須考其方向。設定點O為 原點XX/為通過原點O之直線。




由是。在直線 XX 中。求距O點α距離之點P之位置。 非知P在O之何侧。不能決定。 故欲除此不確之弊。宜 設一方向之距離爲正。他方向之距離爲負。

得符號之約規如次。.

厚點右方之距離爲正。

原點左方之距離爲負。





如上圖P,Q各為在XX'直線內距O點a距離之點。 然位置則如次。

$$OP = +a$$
,  $OQ = -a$ 

於平面之例亦然。

於平面中任取一點O為 原點 通 O 作互成直角之 XX' 及 YY' 雨 直線, YY'名 為縱線 XX'名 為横線。

由是此兩直線分平面為

四分面。各為一直角即第4欵所謂象限。是也。

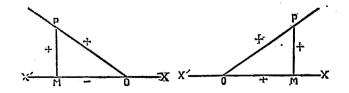
通例有次之規約。

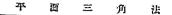
凡沿横線(即XX')之距離。其在縱線(即 YY') 右者為正。在縱線左者為負。

凡沿縱線(卽YY)之距離。其在橫線(即 XX') 上者為正。在橫線下者為頁。

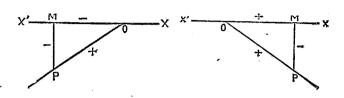
如前圖之 OM, OM<sub>4</sub>, 為正。OM<sub>2</sub>, OM<sub>3</sub>, 為負。又, M<sub>1</sub>P<sub>1</sub>, M<sub>2</sub>P<sub>2</sub>, 為正。M<sub>3</sub>P<sub>3</sub>, M<sub>4</sub>P<sub>4</sub>, 為負。是也。

又OX可名爲本線。OX'可名爲延長線。


#### 19. 三角函數之方向


由是將第四款所述之定義。附以次之規則.乃為三 角函數之普通定義。

(第一) 斜邊常取於廻線上。其符號恒 爲正。


[第二] 底邊在本線上者爲正。在本線 之延長線上者爲頁。

[第三] 垂線在本線之上方者爲正。在 本線之下方者爲頁。





39



#### 20。 n×360°+A 之三角函數

n×860°+A 所之二邊與 A 角 之二 邊 相 合 故 有 永 之 關係 .

$$\begin{aligned} &\sin(n\times360^\circ+\mathrm{A},)=\sin\mathrm{A}, &\cos(n\times360^\circ+\mathrm{A})=\cos\mathrm{A}, \\ &\tan(n\times360^\circ+\mathrm{A})=\tan\mathrm{A}, &\cot(n\times360^\circ+\mathrm{A})=\cot\mathrm{A}, \\ &\sec(n\times360^\circ+\mathrm{A})=\sec\mathrm{A}, &\csc(n\times360^\circ\mathrm{A})=\csc\mathrm{A}. \end{aligned}$$

#### 21。三角函數互相之關係

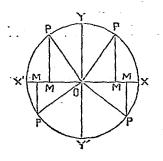
第六款所得 (1)(2 (3)(4)(5)之關係由定義推之,任何 角皆合理。

被達哥拉士之定理。無論遊之正負皆合理。故由是誘導之(6)(7)(8)三關係。亦任何角皆合理。故通例 sinAcosecA=1, cosAsecA=1, tanAcotA=1,

$$\tan A = \frac{\sin A}{\cos A}$$
  $\cot A = \frac{\cos A}{\sin A}$ .

 $\sin^2 A + \cos^2 A = 1$ ,  $1 + \tan^2 A = \sec^2 A$ ,  $1 + \cot^2 A = \csc^2 A$  從此

證公式所生之關係。亦皆合理。


#### 22。 無 寬 大

a為非零之常數。則於 $\frac{\alpha}{x}$ 分數、若x之數值漸交減少。 則此分數之數值交第增大。故x 愈小。而分數之數值 愈大、由是x之極限為無窮小(即〇)則 $\frac{\alpha}{x}$ 之值為無窮大 無窮大之記號為x

o 無正負之差別。故 a 即 ∞ 亦無正負之差別。

#### 23. 三角函數之變化

· 有在O相交成直角之二直線XX/及YY,共間有7數



值 廻線 OP 以 OX 為本線,作由 O 度至 360 度之角。於其各位置上。自 P作 XX'之垂線。其足為 M。從 XOP 角(名為)之變化。研究其三角函數之變化。如次。

[第一] sinA及cosecA之變化 於第一象限MF為正其數值可由O增至各 版  $\sin A = \frac{MP}{OP}$ 為正。其數值由 O 增至 1。又  $\cos ecA = \frac{OP}{MP}$  為正。其數值可由 $\infty$  減至1。 $(\sin o^\circ = o, \cos eco^\circ = \infty.$   $\sin 90^\circ = 1, \cos ec 90^\circ = 1,)$ 

於第二象限.MP為正,其數值由r城至O,故 $\sin A = \frac{MP}{OP}$ 為正。其數值由1城至O,又 $\csc A = \frac{OP}{MP}$ 為正。其數值由1增至 $\infty$ 。 $(\sin 180°=0, \csc 180°=\infty$ ,)

於第三象限。MP為負。其數值由O增至7。 故 sinA=MP 為,負。其數值由O增至1。cosec 1=OP MP為 負.其數值由∞ 減至1。(sin 270°=-1, cosec 270°=-1) 於第四象限MP為負。其數值由7碳至0,

故  $\sin A = \frac{MP}{OP}$  為負。其數值由 1 减至 O, 又  $\csc A = \frac{OP}{MP}$  為負。其數值由 1 增至  $\infty$ ,  $(\sin 360^\circ = 0, \csc 360^\circ = \infty)$ 

# [第二] cosA及secA之變化。

於第一象限。OM為正。其數值由r滅至O。 故  $\cos A = \frac{OM}{OP}$ 為正。其數值由1滅至O.又  $\sec A = \frac{OP}{OM}$ 為正。 其數值由1增至 $\infty$ 。  $(\cos O' = 1, \sec O' = 1; \cos 90' = 0,$   $\sec 90' = \infty$ ) 於第二象限。OM 為負。其數值由 O 增至  $\gamma$ 。 故  $\cos A = \frac{OM}{OP}$  為負。其數值由 O 增至 1。又  $\sec A = \frac{OP}{OM}$  為負。其數值由 O 增至 1。又  $\sec A = \frac{OP}{OM}$  為負。其數值由  $\gamma$  减至 0。 以數值由 0 减至 0。 以數值由 0 减至 0。 以數值由 0 减至 0。 以数值由 0 减至 0。 故 00。 以数值由 01。 以数值的 01。 以图的 01。 以图的 01。 以图的 01。 以图的 01。 以图的

### [第三] tanA及cotA之變化。

於第一象限、MP為正。其數值由 O 增至7。OM 為正。 其數值由7減至0。故 $\tan A = \frac{MP}{OM}$ 為正。其數值由O增至 $\infty$ 。 $\cot A = \frac{OM}{MP}$ 為正。其數值由 $\infty$  減至0。 $(\tan \Omega) = 0$ , $\cot \Omega = \infty$ , $\tan 90^\circ = \infty$ , $\cot 90^\circ = 0$ )

於第二象限。MP為正。其數值由r 城至 $O_o$  OM 為負。 其數值由O 增至r。故  $tanA = \frac{MP}{OM}$  為負。其數值由 $\infty$  城至 $O_o$  又  $cotA = \frac{OM}{MP}$  為負。其數值由O 增至 $\infty$ 。tan 180°=0, cot  $180°=\infty$ ) 於第三象限。MP 為負。其數值由 O 增至  $\gamma$ 。OM 為負。 其數值由  $\gamma$  滅至 O。故  $\tan A = \frac{MP}{OM}$  為正。其數值由 O 增至  $\infty$ 。 $\cot A = \frac{OM}{MP}$  為 正。其數值由  $\infty$  减至 O。 $\cot 270^\circ = \infty$ , $\cot 270^\circ = 0$ )

於第四象限。MP 為負。其數值由  $\gamma$  減至 O。OM 為正其數值由 O 增至  $\gamma$ 。故  $\tan A = \frac{MP}{OM}$  為負。其數 值由  $\infty$  減至 O。  $\cot A = \frac{OM}{MP}$  為 負。其數 值由 O 增至  $\infty$ 。  $(\tan 360^\circ = 0, \cot 360^\circ = \infty)$ 

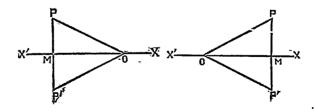
各三角函數之變化。用表示之如次。

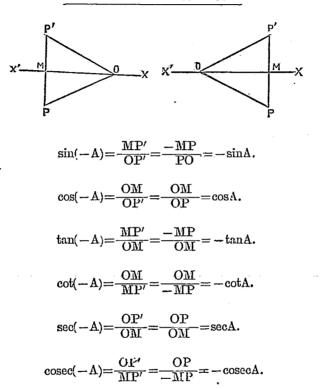
|       | 0°   |   | 30°   |   | 180'            |    | 270°  |    | 350° |
|-------|------|---|-------|---|-----------------|----|-------|----|------|
| sin   | 0    | + | 1     | + | 0               | _  | -1    | _  | 0    |
| cos   | 1    | + | 0     | _ | <u>-1.</u>      | _  | 0     | +  | 1    |
| tan   | 0    | + | 8     |   | 0               | +  | တ     | _  | 0    |
| cot   | တ    | + | 0     | _ | တ               | +, | 0     | _  | တ    |
| sec   | 1    | + | 8     | _ | $\overline{-1}$ | _  | လ     | +_ | 1    |
| cosec | 8    | + | 1     | + | တ               | _  | -1    |    | တ    |
|       | _360 | + | -270° |   | -180°           |    | - 90° |    | 0°   |

[注意一] 角由 360° 漸次增大。其三角函數。當依上表之變化。終而復始。廻終由本線起而作負角。其三角函

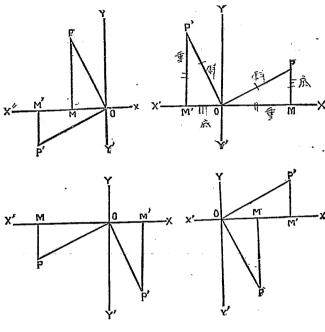
数。當依上表之變化 並次變之。終而復始。

[注意二] 正弦及餘弦之數值不能大於1。正割及餘割之數值不能小於1。正切及餘切之數值無制限,


[注意三]以一數為一個三角函數之值。则其角上廻線之方位。恒有一定。


[注意四]0°,30°,45°,60°,90°,之正弦。等於0,1,2,3,4,之平方根之华。(即 $\frac{V0}{2}$ , $\frac{V1}{2}$ , $\frac{V2}{2}$ , $\frac{V3}{2}$ , $\frac{V4}{2}$ ,)其餘弦等於4,3,2,1,0,之平方根之华。(即 $\frac{V4}{2}$ , $\frac{V3}{2}$ , $\frac{V2}{2}$ , $\frac{V1}{2}$ , $\frac{V0}{2}$ )

# 24. 90°整倍數與他角和較之關係


[第一]-A,與A,兩三角函數之關係,

· 設 XOP 负為 A, XOP' 為一A。於二角之廻線上。取等長之 OP, OP', 則聯 PP'之直線。與 OX(或其延長線)直交。設交點為 M。則 OP'=OP。 MP'=-MP, 故有次之關係。





(第二) 90°+A,與A,兩三角函數之關係。 設XOP角為A, XOP′為90°+A,於二角之廻線上。取 等長之OP, OP′由PP′作重線於OX。設其足為M,M′、則 OP′=OP, M′P′=OM, OM′=-MP, 故有次之關係。



$$\sin(90^{\circ} + A) = \frac{M'P'}{OP'} = \frac{OM}{OP} = \cos A.$$

$$\cos(90^{\circ} + A) = \frac{OM'}{OP'} = \frac{-MP}{OP} = -\sin A.$$

$$\tan(90^{\circ} + A) = \frac{M'P'}{OM'} = \frac{OM}{-MP} = -\cot A.$$

$$\cot(90^{\circ} + A) = \frac{OM'}{M'P'} = \frac{-MP}{OM} = -\tan A,$$

$$\sec(90^{\circ} + A) = \frac{OP'}{OM'} = \frac{OP}{-MP} = -\csc A.$$

$$\csc(90^{\circ} + A) = \frac{OP'}{M'P'} = \frac{OP}{OM} = \sec A.$$

### [第三.] 90°-A與A兩三角函數之關係

$$\sin(90^{\circ} - A) = \sin(90^{\circ} + (-A)) = \cos(-A) = \cos A.$$

$$\cos(90^{\circ} - A) = \cos\{90^{\circ} + (-A)\} = -\sin(-A) = \sin A.$$

$$\tan(90^{\circ} - A) = \tan(90^{\circ} + (-A)) = -\cot(-A) = \cot A.$$

$$\cot(90^{\circ} - A) = \cot(90^{\circ} + (-A)) = -\tan(-A) = \tan A.$$

$$\sec(90^{\circ} - A) = \sec(90^{\circ} + (-A) = -\csc(-A) = \csc A.$$

$$\operatorname{cosec}(90^{\circ} - A) = \operatorname{cosec}(90^{\circ} + (-A)) = \operatorname{sec}(-A) = \operatorname{sec}A.$$

定義 90°-A謂之A之餘角

第四.] 180°+A 與 A 兩三角函數之關係.

$$\sin(180^{\circ} + A) = \sin\{90^{\circ} + (90^{\circ} + A)\} = \cos(90^{\circ} + A)$$

$$= -\sin A.$$

$$\cos(180^{\circ} + A) = \cos\{90^{\circ} + (90^{\circ} + A)\} = -\sin(90^{\circ} + A)$$

$$= -\cos A.$$

$$\tan 180^{\circ} + A = \tan \{90^{\circ} + (90^{\circ} + A)\} = -\cot (90^{\circ} + A)$$
  
= tanA.

$$\cot(180^{\circ} + A) = \cot(90^{\circ} + (90^{\circ} + A)) = -\tan(90^{\circ} + A)$$

 $=\cot A.$ 

$$sec(180^{\circ} + A) = sec(90^{\circ} + (90^{\circ} + A)) = -csec(90^{\circ} + A)$$
  
= -secA.

$$cosec(180^{\circ} + A) = cosec\{90^{\circ} + (90^{\circ} + A)\} = sec(90^{\circ} + A)$$
  
=  $- cosecA$ .

# [第五.] 180°-A與A兩三角函數之關

係・  $\sin(180^{\circ}-A)=\sin\{180^{\circ}+(-A)\}=-\sin(-A)$ 

$$= \sin A.$$

$$\cos(180^{\circ} - A) = \cos\{180^{\circ} + (-A)\} = -\cos(-A)$$

=
$$-\cos A$$
.  
 $\tan(180^{\circ}-A)=\tan\{180^{\circ}+(-A)\}=\tan(-A)$ 

$$=-\tan A.$$

$$\cot(180^{\circ}-A) = \cot\{180^{\circ}+(-A)\} = \cot(-A)$$
  
=  $-\cot A$ .

$$sec(180^{\circ}-A) = sec\{180^{\circ}+(-A)\} = -sec(-A)$$

$$= -secA.$$
 $cosec(180^{\circ}-A) = cosec\{180^{\circ}+(-A)\} = -cosec(-A)$ 

$$= cosecA.$$

#### 定義 180°-A謂之A之補角

系 180°±A(即2×90°±A)之三角函數。與A之各同名函數。其數值相等。又 90°±A 之三角函數。與 A之各餘函數,其數值亦相等。因得次之通則(證明從略)

[第一] n×90°±A之三角函數。恒依下二例。(1)n為偶數。(0,屬於此例)則其數位等於A之各同名函數之數值。(11)加為奇數。則其數值等於A之各餘函數之數值。

[第二] n×90°±A 之三角函數。 荷 A 為 銳 角。則其符號依象限定之。

例

[1] 以A之函數,顯270°+A之三角函數

解

A 爲銳角。則 270°+A 在第四象限。故其餘弦及正割 爲正。其他爲負。又 270°爲 9,3°之奇倍

> $\sin(270^{\circ} + A) = -\cos A$ .  $\cos(270^{\circ} + A) = \sin A$ .  $\tan(270^{\circ} + A) = -\cot A$ .  $\cot(270^{\circ} + A) = -\tan A$  $\sec(270^{\circ} + A) = \csc A$ .  $\csc(270^{\circ} + A) = -\sec A$

(2) 以A之函數顯270°-A之三角函數。

解

A 為銀角。則 270°-A 在第三象限。故唯正切及餘切為正。其他為負。又 270° 為 90°之奇倍。

- $\sin(270^{\circ} A) = -\cos A$ .  $\cos(270 A) = -\sin A$   $\tan(270^{\circ} - A) = \cot A$ .  $\cot(270^{\circ} - A) = \tan A$  $\sec(270^{\circ} - A) = -\csc A$ .  $\csc(270^{\circ} - A) = -\sec A$
- (3) 以A之函數顯tan(54)°-A)

解

- : tan'540°-A)=tanA .
- (4) 求 cos 675°之值

解

 $675^{\circ} = 7 \times 90^{\circ} + 45^{\circ}$ 

$$\therefore \cos 675^{\circ} = \sin 45^{\circ} = \frac{1}{\sqrt{2}}$$

(5) 求 sin (-1950°)之值

解

$$-1050^{\circ} = -12 \times 90^{\circ} + 30^{\circ}$$
  $\therefore$   $\sin(-1050^{\circ}) = \sin 30^{\circ} = \frac{1}{2}$ 

## 設 題 九

- (1) 求次之二角之象限
- (i) 2000°.

(ii)  $-4000^{\circ}$ .

答. 第四.

- (2.) 求次之二式之值
  - (i)  $\cos 0^{\circ} \sin 270^{\circ} + 2 \cos 180^{\circ} \tan 45^{\circ}$ .

(ii) 3sin0°sec 180°+2cosec90°-cos360°. 套. 1.

(3.) 求次之三個 角之各三角函數

(i) 120°. 
$$\frac{\sqrt{3}}{2}$$
,  $-\frac{1}{2}$ ,  $-\sqrt{3}$ ,  $-\frac{1}{\sqrt{3}}$ ,  $-2$ ,  $\frac{2}{\sqrt{3}}$ 

(ii) 135°. És. 
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, -1, -1, -\sqrt{2}, \sqrt{2}$$
.

(iii) 150°. 答. 
$$\frac{1}{2}$$
,  $-\frac{\sqrt{3}}{2}$ ,  $-\frac{1}{\sqrt{3}}$ ,  $-\sqrt{3}$ ,  $-\frac{2}{\sqrt{3}}$ , 2.

(4.) 求次之諸函數之值

(i) sin 210°.

答.  $-\frac{1}{2}$ 

(ii) cos 240°.

答· - 1

(iii) tan 225°.

答. 1

(5) 將次之諸函數, 用最小正角之函數顯之.

(i) sin 1005°.

答. - cos 15°.

(ii) tan(-2232°).

答. -cot 18°.

(6.) 求適于次之方程式之正角(不得過360°)

- (i)  $2\sin^2\theta + 3\cos\theta 3 = 0$ . \(\frac{\text{\text{\$\general}}}{2}\). \(\text{\text{\$\general}}\) \(\text{\text{\$\general}}\), \(\text{
- (iii)  $\sec^2\theta 2\tan^2\theta = 2$ . Since  $60^\circ$ ,  $300^\circ$ .

# 第五章

#### 關於二角之公式。

# 25。 求任意兩角和所成之角之正弦 及餘弦

用任意二角 A, B 之正弦及餘弦、顯此二角和 A+B, 之正弦與餘弦。其式如次

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
....(9)

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$
....(10)

證.

## [第一」A,B皆為零之例.

$$\sin'(A+B) = \sin(0+0) = \sin(0=0)$$

$$\chi$$
  $\sin A\cos B + \cos A\sin B = \sin 0\cos 0 + \cos 0\sin 0$   
=  $0 \times 1 + 1 \times 0 = 0$ .

$$\therefore$$
  $\sin(A+B) = \sin A \cos B + \cos A \sin B$ .

$$\dot{\chi}$$
  $\cos(a+B) = \cos(0+0) = \cos 0 = 1$ ,

$$=1\times1-0\times0=1$$
.

٠.

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ 

[第二.] A, B中有一個(如 A) 為零,其他 一個非零,之例

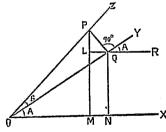
$$\sin(A+B) = \sin(0+B) = \sin B$$
,

又 sinAcosB+cosAsinB=sin0cosB+cos0sinB

 $=0 \times \cos B + 1 \times \sin B = \sin B$ .

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$ .

次  $\cos(A+B) = \cos(0+B) = \cos B$ ,


 $\chi$  cosAcosB-sinAsinB=cos0cosB-sin0sinB

 $=1 \times \cos B - 0 \times \sin B = \cos B$ .

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ .

同樣於A=0,B=0之例易知上之關係之合理

[第三.] A, B, A+B共為正銳角之例



XÔY, YÔZ, XÔZ, 各為A, B, A+B, 由 OZ 上之一點 P作埀線于OY, OX, 其足 為Q,M,由Q作垂線于MP, OX其足為L, N,設LQ之 延長為QR則RQP為90°+A故有次之關係

$$\begin{split} \sin(A+B) = & \frac{MP}{OP} = \frac{NQ + LP}{PO} = \frac{NQ}{OQ} \cdot \frac{OQ}{OP} + \frac{LP}{QP} \cdot \frac{QP}{OP} \\ = & \sin A \cos B + \sin(90^{\circ} + A) \sin B \end{split}$$

 $=\sin A\cos B + \cos A\sin B$ .

$$\begin{aligned} \cos(A+B) &= \frac{OM}{OP} = \frac{ON + QL}{OP} = \frac{ON}{OQ} \cdot \frac{OQ}{OP} + \frac{QL}{QP} \cdot \frac{QP}{OP} \\ &= \cos A \cos B + \cos (90^{\circ} + A) \sin B \\ &= \cos A \cos B - \sin A \sin B. \end{aligned}$$

(第四.) A, B 俱為正銳角,而 A+B 為直角,之例

$$\sin(A+B)=\sin 90^{\circ}=1,$$

 $\chi \sin A \cos B + \cos A \sin B = \sin A \cos (90^{\circ} - A) + \cos A \sin (90^{\circ} - A)$ 

$$=\sin^2A + \cos^2A = 1.$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
.

 $\mathcal{Z}$  cosAcosB-sinAsinB=cosAcos(90°- $\Lambda$ )-sinAsin 90°- $\Lambda$ )

$$=\cos A\sin A-\sin A\cos A=0$$
.

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

[第五.] A, B 俱為正銳角而 A+B 為鈍 角之例

$$90^{\circ}-A$$
,  $90^{\circ}-B$ ,  $(90^{\circ}-A)+(90^{\circ}-B)$  俱 為正 銳 角 故  $\sin(A+B)=\sin\{180^{\circ}-(A+B)\}=\sin\{(90^{\circ}-A)+(90^{\circ}-B)\}\}$   $=\sin(90^{\circ}-A)\cos(90^{\circ}-B)+\cos(90^{\circ}-A)\sin(90^{\circ}-B)$   $=\cos A \sin B + \sin A \cos B$   $=\sin A \cos B + \cos A \sin B$ .  $\cos(A+B)=-\cos\{180^{\circ}-(A+B)\}=-\cos\{(90^{\circ}-A)+(90^{\circ}-B)\}\}$   $=-\{\cos(90^{\circ}-A)\cos(90^{\circ}-B)-\sin(90^{\circ}-A)\sin(90^{\circ}-B)\}\}$   $=-\{\sin A \sin B - \cos A \cos B\}$   $=\cos A \cos B - \sin A \sin B$ .

#### [第六.] A,B為任何正角之例

(9)(10)兩公式無論 A,B 為或值皆合理。則A,B之中有一個(如A)增至90°亦合理如次

$$\sin\{(90^{\circ}+A)+B\} = \sin\{90^{\circ}+(A+B)\} = \cos(A+B)$$

$$= \cos A \cos B - \sin A \sin B$$

$$= \sin(90^{\circ}+A)\cos B + \cos(90^{\circ}+A)\sin B.$$

 $\cos\{(90^{\circ}+A)+B\} = \cos\{90^{\circ}+(A+B) = -\sin(A+B)$ 

#### 平 面 三 角 法

 $=-\sin A\cos B-\cos A\sin B$ 

 $=\cos(90^{\circ}+A)\cos B-\sin(90^{\circ}+A)\sin B.$ 

然 (9)(10)兩公式。其A,B為任意之正銳角皆合理。已 證於前。故此A,B之一個,或二者加至 90° 整數倍之任 何正角。亦能推定其合理

[第七.] A, B之一個,或俱爲頁角之例 A, B之中。有一個(如 A) 為負角.則加 360° 適當之倍 量于是。其和 n×360°+A 為正角則

 $\sin(A+B) = \sin(n \times 360^{\circ} + A + B)$ 

 $=\sin(n \times 360^{\circ} + \text{A}\cos\text{B} + \cos(n \times 360^{\circ} + \text{A})\sin\text{B}$  $=\sin\text{A}\cos\text{B} + \cos\text{A}\sin\text{B}.$ 

 $\cos(A+B) = \cos(n \times 360^{\circ} + A + B)$ 

 $=\cos(n\times360^{\circ}+\Lambda)\cos B-\sin(n\times360^{\circ}+\Lambda)\sin B$ 

 $=\cos A\cos B - \sin A\sin B$ 

同樣B為負角。或A,B俱為負角。可知公式合理故(9)(10)兩公式。一切合理。此二式為三角函數論之大本。和為加法定理或基礎公式

# 26. 求任 意 兩 角 差 所 成 之 角 之 正 弦 及 餘 弦

用任意二角 A, B之正 弦及餘弦。顯此二角差 A-B 之正弦與餘弦。其式如次

$$sin(A-B)=sin\{A+(-B)\}$$

$$=sinAcos(-B)+cosAsin(-B)$$

$$=sinAcosB-cosAsinB.....(11)$$

$$cos(A-B)=cos\{A+(-B)\}$$

$$=cosAcos(-B)-sinAsin(-B)$$

$$=cosAcosB+sinAsinB.....(2)$$

此二式原合於(9)(10)兩式中。今特揭於是。唯便於參照

# 27。 求任意二角和差所成之角之正 切及餘切。

用任意二角A,B之正切顯此二角和A+B及差A-B之正切。其式如次。

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{(\sin A \cos B + \cos A \sin B) \div \cos A \cos B}{(\sin A \cos B - \sin A \sin B) \div \cos A \cos B}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{13}$$
同樣  $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \tag{14}$ 

$$\cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}.$$

系

# 求任意二角之和差所成之角之 正弦或餘弦之乘積

將(9)(11) 兩式相乘。則  $\sin(A+B)\sin(A-B) = \sin^2 A\cos^2 B - \cos^2 A\sin^2 B$  $=\sin^2 A(1-\sin^2 B)-(1-\sin^2 A)\sin^2 B$  $=\sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$ ....(15) 將(10)(12)兩式相乘.則  $\cos(A+B)\cos(A-B) = \cos^2 A \cos^2 B - \sin^2 A \sin^2 B$  $=\cos^{2}A(1-\sin^{2}B)-(1-\cos^{2}A)\sin^{2}B$  $=\cos^2 A \sin^2 B = \cos^2 B - \sin^2 A$ ....(16)

#### 29. 化 acosA+bsinA 為一項式之法.

求以 $\frac{b}{a}$ 為正切之角設之為a

$$\text{fil} \cos a = \frac{a}{\sqrt{a^2 + b^2}} \text{th}$$

$$a\cos A + b\sin A = a\cos A + \frac{b}{a}\sin A$$

$$=a(\cos A + \tan a \sin A)$$

$$= a \left( \frac{\cos A \cos \alpha + \sin A \sin \alpha}{\cos \alpha} \right)$$

$$= \frac{a \cos A - a}{\cos a}$$

#### 設 題 十

1. 
$$\sin A = \frac{3}{5}, \cos B = \frac{5}{13} \Re \sin(A + B)$$

2. 
$$\sin A = \frac{15}{17}$$
,  $\tan B = \frac{4}{3}$ , 求  $\cos(A - B)$  答.  $\frac{84}{95}$ .

於上之二問題A,B為銳角

3. 
$$tan A = \frac{\sqrt{3}}{4 - \sqrt{3}}$$
,  $tan B = \frac{\sqrt{3}}{4 + \sqrt{3}}$ 求  $tan (A - B)$  答  $\frac{3}{8}$ .

4. 求15°ノ三角函數

答· 
$$\frac{\sqrt{3}-1}{2\sqrt{2}}, \frac{\sqrt{3}+1}{2\sqrt{2}}, 2-\sqrt{3}, 2+\sqrt{3}, \sqrt{6}+\sqrt{2}, \sqrt{6}-\sqrt{2}$$

- 化 cos²A + cos²(A + B) 2cosAcosBcos(A+B) 為 備式
   答. sin²B.
- 6. 證次之二恒等式
- (i)  $\sin A \sin B = \sin^2 \frac{A+B}{2} \sin^2 \frac{A-B}{2}$ .
- (ii)  $\cos A \cos B = \cos^2 \frac{A+B}{2} + \cos \frac{A-B}{2} 1$ .
- 7. 化1/3 cosA+sinA 為一項式 答. 2cos(A-30°)

證次之諸恒等式。(此諸式俱重要)

- 8.  $\cos A + \sin A = \sqrt{2} \sin(45^{\circ} + A) = \sqrt{2} \cos(45^{\circ} A)$ .
- 9.  $\cos A \sin A = \sqrt{2} \cos(45^{\circ} + A) = \sqrt{2} \sin(45^{\circ} A)$ .
- IO.  $\tan(45^{\circ}\pm A) = \frac{1\pm\tan A}{1\mp\tan A}$ .
- 11.  $\tan(p+q)A \tan pA \tan qA$ =  $\tan(p+q)A\tan pA\tan pA \tan qA$ .
- 12.  $\tan A \pm \tan B = \frac{\sin(A \pm B)}{\cos A \cos B}$
- 13.  $\cot B \pm \cot A = \frac{\sin(A \pm B)}{\sin A \sin B}$

- 14.  $\cot A \pm \tan B = \frac{\cos(A \mp B)}{\sin A \cos B}$
- 15. sin(A+B+C)=sinAcosBcosC+cosAsinBcosC +cosAcosBsinC-sinAsinBsinC.
- [6. cos(A+B+C)=cosAcosBcosC-cosAsinBsinC -sinAcosBsinC-sinAsinBcosC.
- 17.  $\tan(A + B + C) = \frac{\tan A + \tan B + \tan C \tan A + \tan C}{1 \tan B \tan C \tan C + \tan A \tan A + \tan B}$

求適於次之方程式,360°以內之正角

18. 
$$\sin\theta + \cos\theta = \frac{1}{\sqrt{2}}$$
.

答. 105°,345°.

19. 
$$\cos\theta + \sqrt{3}\sin\theta = 1$$
.

答。 0°.60°.360°.

20. 由 
$$\begin{cases} \sin \alpha + \sin \beta = a \\ \cos \alpha + \cos \beta = b \end{cases}$$
 消去  $\alpha$ ,  $\beta$ 

答.  $a^2+b^2=2(c+1)$ .

SO. 正弦餘弦之乘積與和或差之轉換。

作(9)·11)之和及差。幷(12)(10)之和及差。將各式之 左右邊轉換得次式

$$2 \sin A \cos B = \sin(A + B) + \sin A - B)$$
....(18.)

$$2 \cos A \sin B = \sin(A + B) - \sin(A - B)$$
....(19.)

 $2\cos A\cos B = \cos(A - B) + \cos(A + B)$ ....(20)

 $2 \sin A \sin B = \cos(A - B) - \cos(A + B) \dots (21)$ 

此四式稱為(A,B)式。用和或差。變二角之正弦餘弦之乘積。

#### 次為

$$sinC - sinD = sin \left(\frac{C+D}{2} + \frac{C-D}{2}\right) - sin \left(\frac{C+D}{2} - \frac{C-D}{2}\right)$$

$$=2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$
....(23)

$$\cos\!D\!+\!\cos\!C\!=\!\cos\!\left(\!\frac{C\!+\!D}{2}\!-\!\frac{C\!-\!D}{2}\!\right)\!+\!\cos\!\left(\!\frac{C\!+\!D}{2}\!+\!\frac{C\!-\!D}{2}\!\right)$$

$$=2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$
....(24)

$$\begin{aligned} \cos D - \cos C &= \cos \left( \frac{C + D}{2} - \frac{C - D}{2} \right) + \cos \left( \frac{C + D}{2} + \frac{C - D}{2} \right) \\ &= 2 \sin \frac{C + D}{2} \sin \frac{C - D}{2} .....(25) \end{aligned}$$

此四式稱(C, D式。用乘積變正弦餘弦之和或差

系一。 $\cos C + \sin D = \sin(90^{\circ} + C) + \sin D$ 

$$=2\sin\left(45^{\circ}+\frac{C+D}{2}\right)\cos\left(45^{\circ}+\frac{C-D}{2}\right)$$

 $\cos C - \sin D = \sin 90^{\circ} + C) - \sin D$ 

$$=2\cos\left(45^{\circ}+\frac{C+D}{2}\right)\sin\left(45^{\circ}+\frac{C-D}{2}\right)$$

此二式亦與前四式為同樣之目的

系二  $\sin(p+1)A=2\sin pA\cos A-\sin(p-1)A$ .

 $\cos(p+1)A=2\cos pA\cos A-\cos(p-1)A$ .

由此二式。可遂次求得倍角之正弦及餘弦

#### 設題 十一

| (I.) | 化次 | 之 | 諸 | 式 | 窩 | 一次 | 式 |
|------|----|---|---|---|---|----|---|
|------|----|---|---|---|---|----|---|

- (ii) 2 cos6v°sin10°. 答. sin70°-sin50°.
  - (iii) 2 cos77°cos4°. 答. cos73°÷cos81°.
  - (iv)  $2 \sin 6^{\circ} \sin 5^{\circ}$ . 答.  $\cos 1^{\circ} \cos 11^{\circ}$ .
  - (2.) 化次之諸式為一項式
  - (i) sin70°+sin30°. 答. 2 sin50°cos20°.
  - (ii) sin30°-sin16°. 答. 2 cos23°sin7°.

| (iv) $\cos 27^{\circ} - \cos 77^{\circ}$ .                        | 答. 2 sin 52°sin52°.          |  |  |  |
|-------------------------------------------------------------------|------------------------------|--|--|--|
| (3.) 化次之諸式為最簡式                                                    |                              |  |  |  |
| (i) $\sin 40^{\circ} + \sin 20^{\circ}$ .                         | 答. cos10°.                   |  |  |  |
| (ii) sin80°-sin40°. 答. sin20°.                                    |                              |  |  |  |
| (iii) cos55°+cos65°. 答. cos5°.                                    |                              |  |  |  |
| (iv) cos17°-cos77°.                                               | 答. sin47°                    |  |  |  |
| (4.) 化次之二式爲最簡式                                                    |                              |  |  |  |
| (i) $\cos 10^{\circ} + \sin 40^{\circ}$ .                         | 答、√3cos20°                   |  |  |  |
| (ii) $\cos 80^{\circ} - \sin 70.^{\circ}$                         | 答. —sin50°.                  |  |  |  |
| 證次之諸式                                                             |                              |  |  |  |
| (5.) (i) $\cos(60^{\circ} + A) + \cos(60^{\circ} + A)$            | -A)=cosA.                    |  |  |  |
| (ii) $\sin(60^{\circ} + A) - \sin(60^{\circ} - A)$                | $-A$ )= $\sin A$ .           |  |  |  |
| (6.) (i) $\cos A + \cos(120^{\circ} + A) + \cos(120^{\circ} + A)$ | $-\cos(120^{\circ} - A = 0.$ |  |  |  |
| (ii) $\sin A + \sin(120^{\circ} + A) - \cos(120^{\circ} + A)$     | $\sin(120^{\circ} - A) = 0.$ |  |  |  |
| (7.) (i) 4sinAsinBsinC=sin(                                       | $(B+C-A)+\sin(C+A-B)$        |  |  |  |
| +sin(                                                             | $A+B-C$ ) $-\sin(A+B+C)$     |  |  |  |
| (ii) $4\cos A\cos B\cos C = \cos(B+C-A)+\cos(C+A-B)$              |                              |  |  |  |
| +cos                                                              | $(A+B-C)+\cos(A+B+C).$       |  |  |  |
|                                                                   |                              |  |  |  |

(8.) 
$$\sin 2A + \sin 4A + \sin 6A = \frac{c + sA - \cos 7A}{2 \sin A}$$

(9.) 
$$\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A.$$

#### (IO.) 求次之諸式之值

(iv) 
$$\cos 108^{\circ} \cos 132^{\circ} + \cos 132^{\circ} \cos 12^{\circ} + \cos 12^{\circ} \cos 108^{\circ}$$
.

答· 
$$-\frac{3}{4}$$

### (IL) 求適於次之方程式在180°以內之正角

- (ii)  $\cos\theta \cos3\theta = \sin2\theta$ . 答. 0°, 90°, 180°.
- (iii)  $\cos 3\theta + \cos 2\theta + \cos \theta = 0$ . \(\frac{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tini}}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texicl{\text{\text{\texitilent{\text{\text{\text{\text{\text{\text{\texicl{\text{\texicl{\text{\text{\text{\texicl{\texicl{\text{\ti}\text{\texicl{\texitilent{\texicl{\texitilent{\texicl{\texicl{\texicl{\texitilent{\texicl{\texicl{\texicl{\texicl{\texicl{\texicl{\texitilent{\texicl{\texicl{\tiii}\tiint{\texicl{\texicl{\texicl{\texicl{\texicl{\til\texitilent{\texicl{\tilit{\tilit{\tilin

(12.) III 
$$\begin{cases} x\cos\theta + y\sin\theta = 2a \\ i\cos\varphi + y\sin\varphi = 2a \end{cases}$$
 消 步  $\theta$ ,  $\varphi$ . 
$$2\cos\frac{\theta}{2}\cos\frac{\varphi}{2} = 1$$
 答.  $y^2 = 4a(x+a)$ .

# 31. 二倍角及半角之三角函數

山此式可化任意角之正弦及除弦之平方為一次 武,

又於此式以<u>A</u>代A.可得次之結果

$$\sin^{2}\frac{A}{2} = \frac{1 - \cos A}{2}$$
 (29)
$$\cos^{2}\frac{A}{2} = \frac{1 + \cos A}{2}$$
 (30)
$$\tan^{2}\frac{A}{2} = \frac{1 - \cos A}{1 + \cos A}$$
 (31)

次式亦甚緊要"

$$an rac{A}{2} = rac{\sin rac{A}{2}}{\cos rac{A}{2}} = rac{2\sin rac{A}{2}\cos rac{A}{2}}{2\cos^2 rac{A}{2}} = rac{\sin A}{1 + \cos A}.$$

$$\tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{2\sin^2 \frac{A}{2}}{2\sin \frac{A}{2}\cos \frac{A}{2}} = \frac{1-\cos \Lambda}{\sin A}.$$

$$\therefore \tan \frac{A}{\sqrt{2}} = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A} \qquad (32)$$

設題十二.

證次之諸恒等式

$$\int_{-\infty}^{\infty} \cos 2A = \frac{\cot^2 A + 1}{2 \cot A}.$$

2. 
$$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$
.

3. 
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

- 4 cotA+tanA=2cosec2A.
- 5: cotA-tanA=2cot2A.
- 6.  $\cos A + \cot A = \cot \frac{A}{2}$ .
- 7.  $\cos -\cot A = \tan \frac{A}{2}$ .
- 8.  $1\pm\sin A = \left(\cos\frac{A}{2}\pm\sin\frac{A}{2}\right)^2$ .
- 9.  $\frac{1 \pm \sin A}{1 + \sin A} = \tan^2 \left(45^{\circ} \pm \frac{A}{2}\right)$
- 10.  $\sec A \pm \tan = \tan \left(45^{\circ} \pm \frac{A}{2}\right)$ .

上之諸式俱甚重要

- 11.  $\cos A = \frac{1}{1 + \tan A \tan \frac{A}{2}}$
- 12.  $\tan \frac{A}{2} = \frac{1 + \sin A \cos A}{1 + \sin A + \cos A}$
- 13.  $2\sin^2 A \sin^2 B + 2\cos^2 A \cos^2 B = 1 + \cos^2 A \cos^2 B$ .
- $4. \quad \cos 2A + \cot 4A = \cot A \csc 4A.$
- 15.  $\cos^2 A + \cos^2 (120^\circ + A) + \cos^2 (120^\circ A) = \frac{3}{2}$ .
- 16.  $\cos A = \frac{\cos \alpha \cos \beta}{1 + \cos \alpha \cos \beta}$  III  $\tan^2 \frac{A}{2} = \tan^2 \frac{\alpha}{2} = \cot^2 \frac{\beta}{2}$
- 17. 求適於次之方程式在360°以內之正角

(i)  $\cos 2\theta + 2\sin^2 2\theta = 1$ .

答. 60°, 120°, 180°, 240°, 300°, 360°.

(ii) 
$$8 \cot \theta = \sec^2 \frac{\theta}{2} + \csc^2 \frac{\theta}{2}$$
. 答. 45°, 225°,

(iii) 
$$\tan\theta + \cot\theta = \frac{4}{\sqrt{3}}$$
.

答. 30°, 60°, 210°, 240°.

#### 23. 三倍角之三角函數.

 $\sin 3A = \sin 2A + A = \sin 2A \cos A + \cos 2A \sin A$ 

=2sinAcosAcosA+(1-2sin<sup>2</sup>A)sinA

 $=2\sin A(1-\sin^2 A)+\sin A-2\sin^3 A$ 

 $=3\sin A - 4\sin^3 A$ ....(33)

 $\cos 3A = \cos(2A + A) = \cos 2A \cos A - \sin 2A \sin A$ 

 $=(2\cos^2 A - 1)\cos A - 2\sin A\cos A\sin A$ 

 $=2\cos^3A-\cos A-2\cos A(1-\cos^2A)$ 

 $=4\cos^3 A - 3\cos A$ ....(34)

 $\tan 3A = \tan 2A + A = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A}$ 

$$= \frac{\frac{2\tan A}{1-\tan^2 A} + \tan A}{1-\frac{2\tan A}{1-\tan^2 A} \tan A}$$

$$= \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$
 (35)

 $\Re \sin^3 A = \frac{3\sin A - \sin 3A}{4}.$ 

$$\cos^3 A = \frac{3\cos A + \cos 3A}{4}$$

由此式。可化任意角之正弦或餘弦之立方為一次

#### 設題十三.

證次之諮恒等式

- (i)  $4\sin A \sin (60^{\circ} A) \sin (60^{\circ} + A) = \sin 3A$ .
  - (ii)  $4\cos A\cos 60^{\circ} A\cos (60^{\circ} + A) = \cos 3A$ .
  - (iii)  $tanAtan(60^{\circ}+A)tan(120^{\circ}+A) = -tan3A$ .
- 2.  $\frac{\cos 3A}{\cos A} \frac{\cos 6A}{\cos 2A} + \frac{\cos 9A}{\cos 3A} \frac{\cos 18A}{\cos 6A}$ = 2(\cos2A - \cos4A + \cos6A - \cos12A)
- 3. (i)  $\sec A + \sec(120^{\circ} + A) + \sec(240^{\circ} + A) = -3\sec 3A$ .
  - (ii)  $\csc A + \csc(120^{\circ} + A) + \csc 240^{\circ} + A$ =3 $\csc A$ .
- 4. (i)  $\cos^3 A \frac{\sin 3A}{3} + \sin^3 A \frac{\cos 3A}{3} = \frac{\sin 4A}{4}$ .
  - (ii)  $\sin 3A \sin^3 A + \cos 3A \cos^3 A = \cos^3 2A$ .

- 5. (i)  $\tan A + \tan(60^{\circ} + A) + \tan(120^{\circ} + A) = 3\tan 3A$ .
  - (ii)  $\cot A + \cot(60^{\circ} + A) + \cot(120^{\circ} + A) = 3\cot 3A$ .
- 9.  $\frac{\sin 3A + \cos 3A}{\sin 3A \cos 3A} = \tan(A 45^{\circ}) \left(\frac{1 + 2\sin 2A}{1 2\sin 2A}\right)$ .
- 7. (i)  $\sin^3 A + \sin^3 (120^\circ + A) \sin^3 (120^\circ A) = -\frac{3}{4} \sin^3 A$ .
  - (ii)  $\cos^3 A + \cos^3 (120^\circ + A) + \cos^3 (120^\circ A) = -\frac{3}{4} \cos^3 A$ .
- 8. (i)  $\sin 5A = 16\sin^5A 20\sin^3A + 5\sin A$ .
  - (ii)  $\cos 5A = 16\cos^5 A 20\cos^3 A + 5\cos A$ .
- 9. (i)  $\sin 18^{\circ} = \frac{\sqrt{5} 1}{4}$ .
  - (ii)  $\cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}$ .
- 10. 求適於次之方程式在 360°以內之正角.
  - (i)  $\csc\theta 4\sin\theta = 2$ . 答. 18°, 162°, 234°, 306°.
  - (ii)  $\sin 5\theta = 16\sin^5\theta$ .
    - 答. 0°, 30°, 150°, 180°, 210°, 330°, 360°.

# 第六章。

對 數.

# 對數之定義及記法.

任意一數 a 之x 乘方爲y。(a x 爲任意之數)則 x 爲 y 之 a 底對數。此關係以  $x=\log_a y$  記之。

[注意一] 此關係或記為 y=loga-1x.

[注意二] 據定義可推定次之關係.

 $\log_a 1 = 0$ .

 $\therefore \log_{a} a = 1.$ 

第三. 
$$a^m = a^m$$

 $\cdot \cdot \log_a a^m = m.$ 

## 設 題 十 四.

#### 求次之對數之值

l. log<sub>2</sub>1024.

答. 10.

2.  $\log_{3}\sqrt{27}$ .

答:  $\frac{3}{2}$ 

| 3. | $\log_{i}0.125$ .                         | 答. | $-\frac{3}{2}$ .  |
|----|-------------------------------------------|----|-------------------|
| 4. | $\log_5 \frac{\sqrt[3]{5}}{\sqrt{125}}$ . | 答. | $-\frac{7}{6}$ .  |
| 5. | $\log_{\sqrt{3}}81$ .                     | 答、 | 8.                |
| 6. | los. <sub>01</sub> 10.                    | 答. | $-\frac{1}{2}$ .  |
| 7. | $\log_{19}343\sqrt{7}$ .                  | 答. | $\frac{7}{4}$ .   |
| 8. | $\log_{4}\sqrt[3]{rac{1}{2}}$            | 答. | $-\frac{1}{10}$ . |
| 9. | $\log_2 \sin 45^\circ$                    | 答. | $-\frac{1}{2}$ .  |

IO.  $\log_a x = \log_b y = \log_a z$  則此對數為以 $a^n b^n \sigma$ 為底之 $x^n y^n z^n$ 之對數求證

# 34. 對數之重要性質.

(第一) 乘積之對數等於其各因數之 對數之和·

證.

設  $\log_a m = x$ ,  $\log_a n = y$  則  $m = a^x$ ,  $n = a^y$ 

$$mn = a^x a^y = a^{x+y}$$

 $\cdot \cdot \cdot \log_a mn = x + y = \log_a m + \log_a n,$ 

同樣  $\log_a mnp....=\log_a m + \log_a n + \log_a p + ...$ 

[第二] 商之對數等於由被除數之對 數,減除數之對數之差.

器

 $\log_a m = x$ ,  $\log_a n = y$  [!]  $m = a^x$ ,  $n = a^y$ 

$$\therefore \quad \frac{m}{n} = \frac{\alpha^x}{\alpha^y} = \alpha^{x-y}$$

 $\therefore \log_a \frac{m}{n} = x - y = \log_a m - \log_a n.$ 

[第三] 一數之乘方之對數。等於以指數(任意數)乘原數之對數。

證.

設  $\log_a m = x$  則  $m = a^x$ , 今 r 為任意之數 則  $m^r = (a^x)^r = a^{rx}$ 

$$\therefore \log_a(m^r) = rx = r\log_a m.$$

〔第四〕以一數之對數除他數之對數。 其商等於以第二數爲底之第一數之對數。

證.

設  $\log_c a = x$ ,  $\log_c b = y$  則  $a = c^x$ ,  $b = c^y$ 

$$a^{\frac{1}{2}} = b^{\frac{1}{y}}$$

$$a = b^{\frac{\pi}{y}}$$

$$\therefore \quad a = b^{\frac{x}{y}}$$

$$\therefore \quad \log_b a = \frac{x}{y} = \frac{\log_c a}{\log_c b}.$$

# 設 題 十 五。

- (1)  $\frac{3}{12} 7\log_a \frac{15}{16} 6\log_a \frac{3}{8} + 5\log_a \frac{2}{5} \log_a \frac{25}{32} = \log_a 3$
- (2) 知 8, 14, 21 之 10 底對數求由 1 至 10 諸整數 之對數。
- (3) log<sub>8</sub>9=a, log<sub>2</sub>5=b, log<sub>5</sub>7=c 問由 1 至 7 諸整數之 10 底對數各幾何

答. 
$$0, \frac{1}{b+1}, \frac{3a}{2b+2}, \frac{2}{b+1}, \frac{b}{b+1}, \frac{3a+2}{2b+2}, \frac{bc}{b+1}$$
.

- (4) 證  $2\log_a x + 2\log_a x^2 + 2\log_a x^3 + \dots + 2\log_a x^n$  $=n(n+1)\log_{1}x$ 
  - (5) 證  $\log_a b \times \log_b c = \log_a c$  及  $\log_a b \times \log_b a = 1$ .

### 35. 對數之種類.

最有用之對數為自然對數及常用對數二種(自然 對數。又名為納伯爾對數。

第一. 自然對數者。以  $e=1+\frac{1}{1}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{3!}+\frac{1}{3!}+\frac{1}{r!}+\dots$  ... 写底之對數也。理論數學多用之。

本書不用此種對數.

第二· 常用對數者。以 10 為底之對數也。實地計算多用之·

注意. 據前條第四

$$\frac{\log_{10}m}{\log_{10}e} = \log_e m$$

$$\therefore \log_{10} m = \log_{10} e \times \log_e m$$

iii 
$$\log_{10}e = .43429...$$
  $\frac{1}{\log_{10}e} = 2.30258...$ 

設此為 μ 及 1 μ

$$\log_{10} m = \mu \log_e m$$
.

$$\log_e m = \frac{1}{\mu} \log_{10} m.$$

由此式。知其一種對數白能求出他種對數

### 36. 常用對數·

[規約一.] 常用對數之記法不須記其 底。

[規約二] 常用對數其小數部分常為 正,若整數部分爲頁。則以預號記於其數 字上。

[定義一.] 對數之小數部分。謂之假數 其整數之部分。謂之指標.。

[定義二] 變數之對數之符號。謂之餘對數。

[注意一.] 一數之餘對數。以 colog 之記法顯之。

[注意二] 互為反數之二數之對數。互為餘對數.

[定理一] 惟單位相異之二數。其對數 之假數無異。

證.

 $\log(a \times 10^n) = \log a + \log 10^n = n + \log a.$   $\log(a \div 10^n) = \log a - \log 10^n = -n + \log a.$ 

放 (a×10"), a,(a÷10") 其對數之假數無異.

〔定理二〕有整數 n 位之數。其對數之指標為 (n-1)。小數點以下至有意數字間有 n 個零 (即 0) 之小數。其指標為-(n+1).

證.

有整數 n 位之數原在  $10^{n-1}$  與  $10^n$  之間。因而其對數在 (n-1) 與 n 之間。故其指標為 (n-1).

小數點以下至有意數字有n個零之數。原在 $10^{-(n+1)}$ 與  $10^{-n}$ 之間。因而其數數在 -(n+1)與 -n之間。故其指標為 -(n+1)

〔定理三〕以由 1 减對數之假數爲假數,並以變其指標之符號加於 -1 爲指標,則其對數爲原對數之餘對數.

證.

設任意對數之指標為a, 假數為b, 則-(a+b)=-a-b=(-1-a)+(1-b).

#### 37. 對數四則

[第一] 對數之加法

因對數之假數常為正,故求和時。宜注意指標之符 號而求其代數和.

| 例一.    | 例二.                        | 例三.    |
|--------|----------------------------|--------|
| 3.6428 | $\bar{2}$ ·9326            | 3.5637 |
| 2.5364 | <b>1</b> ·6785             | 5.7456 |
| 6.1792 | $-\overline{2} \cdot 6111$ | 7.3093 |

#### 〔第二〕 對數之滅法.

對數相減惟加其餘對數可也.

[例] 由 2·6389, 3·5463 之和减 2·5713, 2·2105 之和。

# 〔第三〕 以整數乘對數之法.

對數為正則如普通數行乘法。若為負 則分指標與假數各別用乘法,並加其結果。

## [第四] 以整數除對數之法

對數為正。則如普通數行除法。若為負。則由指標減適當之數。而加此適當之數于假數。使指標能整除。然後行除法。

### 88. 數之對數表·

數之對數表。原 敢至若干數止諸整數對數之假數。 本書卷尾之表惟列舉假數四位之整數對數至999止。 其用法如次。

# [第一.] 求數之對數法.

例.

(1) 录 log83·2

83.2 之對數之假數,檢表知為 9201 又指標據 36條 知為 1.

- $\log 83.2 = 1.9201$
- (2) 求 log0·000357

解.

10·000357 之對數之假數。檢表知為 5527 又指標據 36 條知為 -4.

- $\cdot \cdot \cdot \log 0.00357 = 4.5527.$
- (3) 求 log5·118

解.

 $\log 5.12 - \log 5.11 = 0.7093 - 0.7084 = 0.0009$ 

0.01:0.008::0.0009:x

x = 0.0007.

- $\cdot \cdot \cdot \log_{5.118} = 0.7084 + 0.0007 = 0.7091.$
- (4) 求 log0 7332.

解.

 $\log 0.734 - \log 0.733 = \overline{1}.8657 - \overline{1}.8651 = 0.0006$ , 0.001:0.0002:0.0006:x

#### 平 口 三 角 法

x = 0.0001.

- $\log 0.7332 = \overline{1.8651} + 0.0001 = \overline{1.8652}$ .
- (5) 求 log456·78.

解.

 $\log 457 - \log 156 = 2.6599 - 2.6590 = 0.0009$ .

1:0.78::0.0009:x

x = 0.0007.

 $\therefore \log_{10}456.78 = 2.6590 + 0.0007 = 2.6597.$ 

# [第二] 知對數求相當之眞數法。

例.

(1) loga=0·4579 求 a (即 log-10·4579)

解.

以 0·4579 為對數之與數。其數字之排列。檢表知為 287 此數據指標知為整數一位之數。

a=2.87.

(2) loga=1·3766 求 a.

以 I·8766 為對數之數。其數字之排列檢表得 238 此數據指標知為小數點以下至有意數字間無0之小數。 α=0·288. .

(3) loga=2·7516 求 a.

解.

 $\log 565 - \log 564 = 2.7520 - 2.7513 = 0.0007$ 

 $\log a - \log 564 = 2.7516 - 2.7513 = 0.0003$ .

0.0007:0.0003::1:x

x = 0.4

 $\alpha = 564 + 0.4 = 564.4$ 

(4) loga=3·8314 求 a.

解.

 $\log 0.000679 - \log 0.00678 = \overline{3}.8319 - \overline{3}.8312 = 0.0007.$ 

 $\log \alpha - \log 0.00678 = \overline{3}.8314 - \overline{3}.8312 = 0.0002$ 

0.0007:0.0002:0.00001:x

x=0.000003.

 $\alpha = 0.00678 + 0.000003 = 0.006783$ .

[注意一.] 求表中所未載諸數之對數法。及求與對數相當之數法。須依衣之定理。

數之小變化。與其相當對數之變化。殆成比例。

但此定理之由來及限界,本當不具論,

[注意二] 用比例部分 (P. P.) 可省比例之運算。 (如上諸例)

### 39. 三角函數之對數表.

三角函數之對數表者。載由 0° 至 90° 諸角之三角函數之對數或加 10 於是者也。(謂之表對數以 L 為其記號)

[注意] 表對數唯便於排字

本書卷尾之表。列舉由 0°至 90°間每 10′ 諮 戶之三 角函數之劉數、其用法如次

[第一] 求角之三角函數之對數法.

例.

(I) 求 log sin23° 34'·6

解.

 $\log \sin 23^{\circ}40' - \log \sin 23^{\circ}30' = 1.6036 - 1.6007 = 0.0029.$ 

 $10:4\cdot6::0.0029:x$ 

x=0.0013.

- $\therefore \log \sin 23^{\circ} 34' \cdot 6 = \overline{1} \cdot 6007 + 0.0013 = \overline{1} \cdot 6020$
- (2) 求 log tan72°53'·3

 $\log \tan 73^{\circ} - \log \tan 72^{\circ}50' = 0.5147 - 0.5102 = 0.0045$ 

10:3:3::0.0045:x

x = 0.0015.

- $\therefore$  log tan72°53′·3=0·5102+0·0015=0·5117.
- (3) 求 log cos35°42′·7.

解.

 $\log \cos 35^{\circ} 40' - \log \cos 35^{\circ} 50' = \overline{1} \cdot 9098 - \overline{1} \cdot 9089 = 0 \cdot 0009.$ 

10:2.7::0.0009:x

x = 0.0002.

- $\cdot$  log cos35°42′·7= $\bar{1}$ ·9098-0·0002= $\bar{1}$ ·9096.
- (4) 求 log cot64°18′·6.

解.

 $\log \cot 64^{\circ}10' - \log \cot 64^{\circ}20' = \overline{1} \cdot 6850 - \overline{1} \cdot 6817 = 0.0033.$ 

10:8.6::0.0033:x

x = 0.0028

- $\cdot$  log cot64°18′·6= $\bar{1}$ ·6850 0·0028= $\bar{1}$ ·6822.
- (5) 求 log sec21°37′·4.

 $\log \cos 21^{\circ}37^{\circ}4 = \overline{1}.9683.$ 

- $\cdot \cdot \cdot \log \sec 21^{\circ}37' \cdot 4 = 0.0317.$
- (6) 求 log cosec16°42′·3.

解.

 $\log \sin 16^{\circ}42' \cdot 3 = \bar{1} \cdot 4586$ .

 $\log \csc 16^{\circ}42' \cdot 3 = 0.5414$ .

(第二) 知三角函數之對數。求和當之 角法。

例.

1. log sinA=T·3035 求 A.

解.

 $\log \sin 1^{\circ}40' - \log \sin 11^{\circ}30' = \overline{1} \cdot 3058 - \overline{1} \cdot 2997 = 0.01'$ 

 $\log \sin A$   $-\log \sin 11^{\circ}30' = \overline{1} \cdot 3035 - \overline{1} \cdot 2997 = 0.0033.$ 

0.0061:0.0038::10:x

x = 6.2.

 $A=11^{\circ}30'+6'\cdot 2=11^{\circ}.6'\cdot 2.$ 

2 log tanA=0.4782 求 A.

 $\log \tan 71^{\circ}40' - \log \tan 71^{\circ}30' = 0.4797 - 0.4755 = 0.0042.$ 

 $\log \tan A - \log \tan 71^{\circ}30' = 0.4783 - 0.4755 = 0.0027$ .

0.0042:0.0027::10:x

x = 6.4.

- $A = 71^{\circ}30' + 6' \cdot 4 = 71^{\circ}36' \cdot 4$
- 3. log cos4=1.9349 求 A

解.

 $\log \cos 30^{\circ}30' - \log \cos 30^{\circ}40' = \overline{1.9353} - 1.9346 = 0.0007.$ 

 $\log \cos 30^{\circ} 30' - \log \cos A = \overline{1} \cdot 9353 - \overline{1} \cdot 9349 = 0 \cdot 0004$ 

0.0007:0.0004::10:x

x = 5.7.

- $A = 30^{\circ}30' + 5'.7 = 30^{\circ}35'.7$
- 4.  $\log \cot A = \overline{1}.8253 \Re x$ .

解.

 $\log \cot 56^{\circ}10' - \log \cot 56^{\circ}20' = \overline{1} \cdot 8263 - \overline{1} \cdot 8235 = 0.0028$ 

 $\log \cot 56^{\circ}10' - \log \cot A = \overline{1} \cdot 8263 - \overline{1} \cdot 8253 = 0.0010.$ 

0.0028:0.0010::10:x

x = 3.6.

- $A = 56^{\circ}10' + 3' \cdot 6 = 56^{\circ}13' \cdot 6.$
- 5. log secA=0.0560 求 A.

 $\log \cos A = \overline{1} \cdot 9434$ .

∴ A=28°37′·1

6. log cosecA=0.2668 求 A.

解.

 $\log \sin A = \overline{1} \cdot 7332$ .

A=32°45'

[注意一.] 求表中所未載諸銳角之三角函數之對數及知三角函數之對數成其角須依次之定理.

不近於 0° 或 90° 諸角之小變化與其 三角函數之相當對數之變化。殆成比例。 此定理之山來及限界。本書不具論。

[注意二] 用比例部分表。可省略比例之運算

40. 諸計算中對數之應用.

例.

(I) 計算 x=2·582×345·7.

(2) 計算  $x = \frac{0.07438}{129.5}$ 

解.

(3) 計算 x=(3·072)3

解.

$$\log 3.072 = 0.4874$$

$$\log x = 1.4622$$

$$x = 28.93.$$

(4) 計算 x=少v·00765±

艀.

$$\log 0.007654 = 3.8839 (1000 = 1.4710)$$

x = 0.2958.

解.

$$x \log 1.2 = \log 1.1$$

$$x = \frac{\log 1.1}{\log 1.2} = \frac{0.0414}{0.0792}$$

 $\log 0.0414 = \overline{2}.6170$ 

$$-\log 0.0792 = 1.1013$$
$$\log x = \overline{1.7183}$$

x = 0.5229.

#### 注意. 如本题者謂之指數方程式.

### 設題 十六

(1) 
$$\Re\left(\frac{203}{200}\right)^{2x} = 2$$

答. 23·16.

(2) 解 
$$8^{5-3x}=12^{1-2x}$$

(3) 
$$mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref{mathref$$

答. 
$$\begin{cases} x = -0.699. \\ y = 0.301. \end{cases}$$

(4) 計算
$$\frac{(2.013)^2 \times (0.0593)^{\frac{3}{2}}}{(0.9123)^4}$$

答. 0.08447.

(5) 計算<del>(34·73)<sup>\$</sup> × \$/2·539</del> <del>\$\sqrt{2}\delta 2397</del> × (3·456)<sup>\$</sup>

答。0.3338.

# 第七章。

### 任意三角形

**纽**。三角形之性質·

〔第一〕 角之關係

 $A+B+C=180^{\circ}$  因而  $A+B=180^{\circ}-C$ ,  $\frac{A+B}{2}=90^{\circ}-\frac{C}{2}$  故有次之關係·

$$\begin{array}{c}
\sin(A+B) = \sin C \\
\cos(A+B) = -\cos C
\end{array}$$

$$\begin{array}{c}
\sin\frac{A+B}{2} = \cos\frac{C}{2} \\
\cos\frac{A+B}{2} = \sin\frac{C}{2}
\end{array}$$

$$\tan(A+B) = -\tan C$$

$$\tan\frac{A+B}{2} = \cot\frac{C}{2}$$

設題十七.

A, B, C 為一個三角形上之角。證次之諧式。

- (1) (i)  $\sin A + \sin B + \sin C = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$ .
  - (ii)  $\sin A + \sin B \sin C = 4\sin \frac{A}{2}\sin \frac{B}{2}\cos \frac{C}{2}$ .

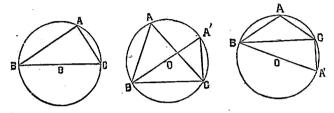
(2) (i) 
$$\cos A + \cos B + \cos C = 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} + 1$$
.

(ii) 
$$\cos A + \cos B - \cos C = 4\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2} - 1$$
.

(3) (i) 
$$\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = -2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} + 1$$
.

(ii) 
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} + 2$$

(4) (i) 
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$
  
=  $4\cos \left(45^{\circ} - \frac{A}{4}\right) \cos \left(45^{\circ} - \frac{B}{4}\right) \cos \left(45^{\circ} - \frac{C}{4}\right)$ .


(ii) 
$$\cos \frac{A}{2} + \cos \frac{B}{2} - \cos \frac{C}{2}$$
  
=  $4\sin(45^{\circ} - \frac{A}{4})\sin(45^{\circ} - \frac{B}{4})\cos(45^{\circ} - \frac{C}{4})$ .

(5) (i) 
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$
  
=  $4\sin \left(45^{\circ} - \frac{A}{4}\right) \sin \left(45^{\circ} - \frac{B}{4}\right) \sin \left(45^{\circ} - \frac{C}{4}\right) + 1.$ 

(ii) 
$$sin\frac{A}{2} + sin\frac{B}{2} - sin\frac{C}{2}$$
  
=  $4cos(45^{\circ} - \frac{A}{4})cos(45^{\circ} - \frac{B}{4})sin(45^{\circ} - \frac{C}{4}) - 2.$ 

- (6) (i)  $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$ .
  - (ii)  $\cos 2A + \cos 2B + \cos 2C = -4\cos A\cos B\cos C 1$ .
- (7) (i)  $\sin^2 A + \sin^2 B + \sin^2 C = 2\cos A\cos B\cos C + 2$ .
  - (ii)  $\cos^2 A + \cos^2 B + \cos^2 C = -2\cos A\cos B\cos C + 1$ .
- (8) (i) tanA+tanB+tanC=tanAtanBtanC.
  - (ii)  $\cot B \cot C + \cot C \cot A + \cot A \cot B = 1$ .
- (9) cotA+cotB+cotC=cotAcotBcotC+cosceAcosecB
  cosecC.
- (IO) (i)  $\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$ .
  - $(ii) \quad \cot\frac{\underline{A}}{2} + \cot\frac{\underline{B}}{2} + \cot\frac{\underline{C}}{2} = \cot\frac{\underline{A}}{2}\cot\frac{\underline{B}}{2}\cot\frac{\underline{C}}{2}.$
- (II) (i)  $\sin 3A + \sin 3B + \sin 3C = -4\cos \frac{3A}{2}\cos \frac{3B}{2}\cos \frac{3C}{2}$ .
  - (ii)  $\cos 3A + \cos 3B + \cos 3C = -4\sin \frac{3}{3}\sin \frac{3}{2}\sin \frac{3}{2}\sin \frac{3}{2}\cos \frac{3}{2}$ +1.
- (12)  $\cot \frac{A}{2}$ ,  $\cot \frac{B}{2}$ ,  $\cot \frac{C}{2}$  成等差級數。求證  $\cot \frac{A}{2} \cot \frac{C}{2}$
- 第二. 外接圓之直徑及正弦比例之式.

設 ABC 上 A, B, C 角之對邊為 a, b, c, 外接 圓之中 心為 O, 直徑為 K.



- (i)  $A=90^{\circ}$  Hij  $\sin A=1$ , a=K
  - $\therefore \sin A = \frac{a}{K}$
  - $K = \frac{a}{\sin A}$ .
- (ii) A≠90° 則延長 BO 與圓周相交於 A' 點連 此於 C。則 BÔA'=90° 而 A, A' 相等或互為補角.故

$$\sin A = \sin A' = \frac{CB}{A'B} = \frac{a}{K}$$

$$K = \frac{a}{\sin A}$$

故不拘 A 之如何  $K = \frac{a}{\sin A}$ .

同樣  $K = \frac{b}{\sin B}$ ,  $K = \frac{c}{\sin C}$ .

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} (=K) \dots (36)$$

是謂正弦比例式

[第三] 兩角之半差及半和之三角函數之關係·

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \mathbb{K}$$

 $a = K \sin A$ ,  $b = K \sin B$ ,  $c = K \sin C$ .

故有次之關係..

(i) 
$$\frac{a-b}{a+b} = \frac{\text{K}\sin A - \text{K}\sin B}{\text{K}\sin A + \text{K}\sin B} = \frac{\sin A - \sin B}{\sin A + \sin B}.$$

$$=\frac{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}}{2\sin\frac{A+B}{2}\cos\frac{A-B}{2}} = \frac{\tan\frac{A-B}{2}}{\tan\frac{A+B}{2}} = \frac{\tan\frac{A-B}{2}}{\cot\frac{C}{2}}$$

$$\therefore \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2} \qquad (37)$$

(ii) 
$$\frac{a+b}{b} = \frac{\text{KsinA} + \text{KsinB}}{\text{KsinC}} = \frac{\sin A + \sin B}{\sin C}$$

$$= \frac{2 \text{sin} \frac{A+B}{2} \text{cos} \frac{A-B}{2}}{2 \text{sin} \frac{C}{2} \text{cos} \frac{C}{2}} = \frac{\text{cos} \frac{A-B}{2}}{\text{sin} \frac{C}{2}} = \frac{\text{cos} \frac{A-B}{2}}{\text{cos} \frac{A+B}{2}}$$

(iii) 
$$\frac{a-b}{c} = \frac{\text{KsinA} - \text{KsinB}}{\text{KsinC}} = \frac{\sin A - \sin B}{\sin C}$$

$$=\frac{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}}{2\sin\frac{C}{2}\cos\frac{C}{2}} = \frac{\sin\frac{A-B}{2}}{\cos\frac{C}{2}} = \frac{\sin\frac{A-B}{2}}{\sin\frac{A+B}{2}}.$$

$$c = \frac{(a+b)\sin\frac{C}{2}}{\cos\frac{A-B}{2}} = \frac{(a-b)\cos\frac{C}{2}}{\sin\frac{A-B}{2}}$$
 (38)

[第四] 以邊顯一角之餘弦及正弦之

式.

$$\frac{l^{2}+c^{2}-\alpha^{2}}{2bc} = \frac{K^{2}\sin^{2}B + K^{2}\sin^{2}C - K^{2}\sin^{2}A}{2K\sin B. K\sin C}$$

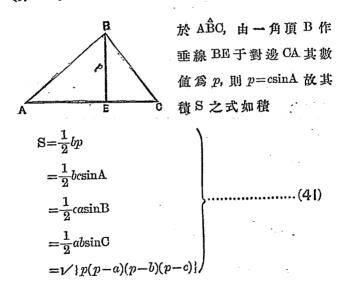
$$= \frac{\sin^{2}B + \sin^{2}C - \sin^{2}A}{2\sin B\sin C}$$

$$=\frac{\sin^2(C+A)+\sin(C+A)\sin(C-A)}{2\sin(C+A)\sin C}.$$

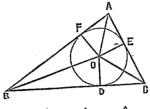
$$= \frac{\sin(C+A) + \sin(C-A)}{2\sin C}$$

$$= \frac{2\sin C\cos A}{2\sin C} = \cos A.$$

此公式又可書為次之形


$$a^2 = b^2 + c^2 - 2bc\cos A$$
  
 $b^2 = c^2 + a^2 - 2ca\cos B$ 

此關係亦可依三角形邊上諸正方形之幾何學定


理作之

$$\begin{split} \sin &\mathbb{A} = \sqrt{(1-\cos^2 \mathbf{A})} = \sqrt{\{(1+\cos \mathbf{A})(1-\cos \mathbf{A})\}} \\ &= \sqrt{\left\{\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\left(1-\frac{b^2+c^2-a^2}{2bc}\right)\right\}} \\ &= \sqrt{\left\{\frac{(b+c)^2-a^2}{2bc} \cdot \frac{a^2-(b-c)^2}{2bc}\right\}} \\ &= \frac{1}{2bc}\sqrt{\{(b+c+a)(b+c-a)(a-b+c)(a+b-c)\}} \\ &\triangleq \frac{a+b+c}{2} = p \text{ [II]} \\ b+c-a=2(p-a),c+a-b=2(p-b),a+b-c=2(p-c). \end{split}$$

# [第五.] 三角形面積之式.



[第六] 內接圓之半徑及半角之正切之式.



設 ABC 之面積為 S, 內接 圓之中心為 O, 半徑為 r, 與各邊之切點為 D, E, F

$$S = O \stackrel{\triangle}{D}C + O \stackrel{\triangle}{C}A + O \stackrel{\triangle}{A}B = \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr$$
$$= \frac{a+b+c}{2} \times r = pr$$

$$\therefore r = \frac{S}{p} = V \left\{ \frac{(p-a)(p-b)(p-c)}{p} \right\} \dots (42)$$

$$_{\Lambda}$$
 tanFAO= $_{\Lambda}$ FO= $_{r}$ , 而 FO= $_{r}$ , AF= $_{p}$ - $_{a}$ 

[注意:] 此式可以  $\cos A$  之值代入  $\tan^2 \frac{A}{2} = \frac{1-\cos A}{1+\cos A}$  求得

[系.] 設在 Â, B, Ĉ, 內之傍接圓之华徑寫 r', r'', r''', p'''

$$r' = \frac{S}{p-a}, \ r'' = \frac{S}{p-b}, \ r''' = \frac{S}{p-c}.$$

### 設題十八.

A, B, C 為三角形之角, a, b, c 為其對邊,證次之證式

(1) 
$$\begin{cases} a = l\cos C + c\cos B \\ b = c\cos A + a\cos C \\ c = a\cos B + l\cos A \end{cases}$$

(2) (i) 
$$\begin{cases} \sin\frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}} \text{ (ii)} \\ \sin\frac{B}{2} = \sqrt{\frac{(p-c)(p-a)}{ca}} \end{cases} \begin{cases} \cos\frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}} \\ \cos\frac{B}{2} = \sqrt{\frac{p(p-b)}{ca}} \\ \sin\frac{C}{2} = \sqrt{\frac{(p-a)(p-b)}{ba}} \end{cases}$$

- (3) (i)  $b\sin B c\sin C = a\sin(B-C)$ .
  - (ii)  $b\cos B + c\cos C = a\cos(B C)$ .

(4) (i) 
$$a\cos\frac{B-C}{2} = (b+c)\sin\frac{A}{2}$$
.  
(ii)  $a\sin\frac{B-C}{2} = (b+c)\cos\frac{A}{2}$ .

- (5)  $a\cos A + b\cos B + c\cos C = 2a\sin B\sin C$ .
- (6)  $c(a\cos B b\cos A) = a^2 b^2$ .

103

(7) 
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(8) 
$$(b^2-c^2)\cot A + (c^2-a^2)\cot B + (a^2-b^2)\cot C = 0.$$

(9) (i) 
$$\cot A + \cot B = \frac{c}{b \sin A}$$
.

(ii) 
$$\cot A - \cot B = -\frac{a^2 - b^2}{ab \sin C}$$
.

(10) (i) 
$$S = \frac{a^2 \sin B \sin C}{2 \sin (B+C)}$$

(ii) 
$$S = \frac{a^2 - b^2}{2} \cdot \frac{\sin A \sin B}{\sin (A - B)}$$

(iii) 
$$S = \frac{abc}{n} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$
.

(ii) 對於 a, b, c 之 垂線為 p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub> 則

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{p}{S}$$
.

(12) (i) 
$$\frac{1}{x'} + \frac{1}{x''} + \frac{1}{x'''} = \frac{1}{x}$$
.

(ii) 
$$r'+r''+r'''-r=2S$$

(13) (i) 
$$1 - \tan \frac{A}{2} \tan \frac{B}{2} = \frac{2c}{a+b+c}$$
.

(ii) 
$$(b+c)^2 \sin^2 \frac{A}{2} + (b-c)^2 \cos^2 \frac{A}{2} = a^2$$

- (14)  $C=2B \Re c^2-b^2=ab$ .
- (15) A, B, C 為等差級數則

$$2\cos\frac{A-C}{2} = \frac{a+c}{\sqrt{a^2 - ac + c^2}}.$$

- (16) 對於  $\alpha$  邊之中線之長為 $\frac{1}{2}V(b^2+c^2+2bc\cos A)$
- (17) 於 A, 其內角及外角之二等分線之長為

$$\frac{2bc\cos\frac{A}{2}}{b+c} \not \succeq \frac{2bc\sin\frac{A}{2}}{b\sim c}$$

- (18) 四邊形之對角線為m, n, 而 $\theta$  為其夾角則其面積 S 等於  $\frac{1}{2}mn\sin\theta$ .
- (19) 設內接圓之四邊形之各邊為 a, b, c, d 又 a+b+c+d=2p 則而精 S 等於

$$i \vee \{(p-a)(p-b)(p-c)(p-d)\}$$

若此四邊形又外接于他圓則 S 等於√alcd (20) n 邊之正多角形之一邊為a,外接圓之半徑為B,內接圓之半徑為r則其面積 S 之式如次

(i) 
$$\frac{1}{4}na^2\cot\frac{180^\circ}{n}$$
, (ii)  $\frac{1}{2}nR^2\sin\frac{360^\circ}{n}$ , (iii)  $nr^2\tan\frac{180^\circ}{n}$ 

### 42. 三角形之解法

一般三角形之解法有例四種

則由 A=180°-(B+C) 求 A.

又由 
$$b = \frac{a \sin B}{\sin A}$$
 求 b, c. 
$$c = \frac{a \sin C}{\sin A}$$

[第二] 知二邊及其夾角。如b,c,A)則

$$\pm \frac{B+C}{2} = 9\% - \frac{A}{2} \times \frac{B+C}{2},$$

由 
$$B = \frac{B+C}{2} + \frac{B-C}{2}$$
,  $C = \frac{B+C}{2} - \frac{B-C}{2}$  求 B, C

曲 
$$a = \frac{(b+c)\sin\frac{A}{2}}{\cos\frac{B-C}{2}}$$
 或  $\frac{(b-c)\cos\frac{A}{2}}{\sin\frac{B-C}{2}}$ . 求  $a$ .

[注意] 求B, C後,由正弦比例式求a亦可

[第三] 知二邊及對其一邊之角(如 a, b,

## A) 則

此  $\sin B = \frac{b \sin A}{a}$  求 B,

由 C=180°-(A+B) 求 C,

曲  $c = \frac{b \sin C}{\sin B}$  求 c

然由正弦之值定B有下例

- (i) sinB>1 即logsinB>0 則不能解
- (ii) sinB=1 即 logsinB=0 則 B=90° 故祇有一個解 法 (見14款第一).
- (iii) sinB<1 即 logsinB<0 而 a<b 則 A<B, 故 B<90° 從而有一種解法。
- (iv) sinB<1 即 logsinB<0 而 a<b 則 A<B, 故 B 為 銀角或鈍角故 B 有互為補角之二值從而有二種解 法。是謂有兩意之例

[第四] 知三邊 a, b, c 則

由 
$$\tan \frac{A}{2} = \frac{1}{p-a} \sqrt{\left\{ \frac{(p-a)(p-b)(p-c)}{p} \right\}},$$

$$\tan \frac{B}{2} = \frac{1}{p-b} \sqrt{\left\{ \frac{(p-a)(p-b)(p-c)}{p} \right\}}$$

求 A, B 由 C=180°-(A+B) 求 C

### 計算例題:

(1)  $\not R$  ABC, A=50°58′7, B=32°50′·8,  $c=169·4 \Re a, b$ .

算

$$\begin{cases} A=180^{\circ}-(B+C) \\ b=\frac{a\sin B}{\sin A} \\ c=\frac{a\sin C}{\sin A} \\ & = \frac{a\sin C}{\sin A} \end{cases}$$

$$= \frac{3}{\sin A}$$

$$= \frac{3}{\sin$$

$$\begin{array}{lll} \log c = 2 \cdot 2289 & \log c = 2 \cdot 2289 \\ \log \sin A = \overline{1} \cdot 8904 & \log \sin B = \overline{1} \cdot 7344 \\ -\log \sin C = 0 \cdot 0025 & -\log \sin C = 0 \cdot 0025 \\ \log a = 2 \cdot 1218 & \log b = 1 \cdot 9658 \\ a = 132 \cdot 4. & b = \overline{9}2 \cdot 43. \end{array}$$

(2) 於 ABC, b=4·567, c=3·456, A=56°7·8 求 B, C, a

 $C = 96^{\circ}10.5$ 

算 式
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

$$a = \frac{(b-c)\cos \frac{A}{2}}{\sin \frac{B-C}{2}}.$$

$$B = \frac{B+C}{2} + \frac{B-C}{2}, C = \frac{B+C}{2} - \frac{B-C}{2}.$$

$$b = 4.567 \qquad A = 56^{\circ}7'8$$

$$c = 3.456 \qquad \frac{A}{2} = 28^{\circ}3'\cdot6$$

$$b-c = 1.111 \qquad 90^{\circ} = 89^{\circ}60'$$

$$b+c = 8.023 \qquad \frac{B+C}{2} = 61^{\circ}56'\cdot1$$

$$\log(b-c) = 0.0457 \qquad \log(b-c) = 0.0457$$

$$\log\cot \frac{A}{2} = 0.2731 \qquad \log\cos \frac{A}{2} = 1.9457$$

$$-\log(b+c) = 1.0956 \qquad -\log\sin \frac{B-C}{2} = 0.5998$$

$$\log\tan \frac{B-C}{2} = 14^{\circ}33'\cdot3 \qquad a = 3.901$$

$$\frac{B+C}{2} = 61^{\circ}56'\cdot1$$

 $C = 47^{\circ}22' \cdot 8$ .

(3)  $\hbar$  ABC, a=182.5, b=236.8, A=32°29'.6  $\hbar$  B, C, c.

第一式·
$$\begin{cases}
\sin B = \frac{b \sin A}{a} \\
C = 180^{\circ} - (A + B) \\
c = \frac{b \sin C}{\sin B}
\end{cases}$$

運 算.

 $\log b = 2.3743$ logsinB < 0, a < b $logsinA = \overline{1} \cdot 7301$ 故為有兩意之例.  $-\log a = \overline{3} \cdot 7397$  $logsinB = \overline{1.8441}$ 135°42'.3  $B = 44^{\circ}17'.7$ 或 32°29'.6  $A = 32^{\circ}29' \cdot 6$ 168°11′-9  $\overline{A+B=76^{\circ}47'\cdot3}$ 或 179°60'  $180^{\circ} = 179^{\circ}60'$ 11°48′·1 C=103°12′-7 或 Ī·3107  $logsinC = \bar{1}.9883$ 或 2.3743  $\log b = 2.3743$ 

(4)  $\not R \stackrel{\triangle}{ABC}$ , a = 273.9, b = 198.6, c = 236.8 # A, B, C.

算 式 
$$\begin{cases} \tan \frac{A}{2} = \frac{1}{p-a} \sqrt{\left\{ \frac{(p-a)(p-b)(p-c)}{p} \right\}} \\ \tan \frac{B}{2} = \frac{1}{p-b} \sqrt{\left\{ \frac{(p-a)(p-b)(p-c)}{p} \right\}} \\ C = 180^{\circ} - (A+B) \end{cases}$$

**渾** 算.

$$a = 273.9$$
 $-\log p = 3.4502$ 
 $b = 198.6$ 
 $\log(p - a) = 1.9074$ 
 $c = 236.8$ 
 $\log(p - b) = 2.1934$ 
 $2p = 709.3$ 
 $\log(p - c) = 2.0715$ 
 $p = 354.7$ 
 $\log p = 2.0715$ 
 $p = -a = 80.8$ 
 $p = 1.8113$ 
 $p - b = 156.1$ 
 $\log \tan \frac{A}{2} = 1.9039$ 
 $p - c = 117.9$ 
 $\frac{A}{2} = 38°42'.69$ 
 $A = 77°25'.4$ 

 $\log \tan \frac{B}{2} = \overline{1}.6179$ 

 $\frac{B}{2}$ =22°31′·94

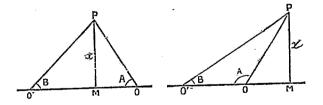
B=45°3′.9.

A+B=122°29'.3

 $\frac{180^{\circ} = 179^{\circ}60'}{C = 57^{\circ}30' \cdot 7.}$ 

# 設題 十九

- (1) A=78°23′·2, B=52°16′.3, a=796·3 求 b, c. タ. 643,616·9.
- (2) b=295·6, c=999·2, A=108°29′·6 录 C, a. 察. 57°7′·4, 1131.
- (3) a=23.46, b=35.79,  $A=28^{\circ}35'.4$   $\Re$  C, c.


- (4) a=375·9. b=298·7, c=400·8 求 A, B. 绘. 63°2′·2, 45°5′·4.
- (5) 知 a, b, A-B 問解 ABS 之方法.
- (6) 知 a+b, A, B 問解 ABC 之方法.

- (7) 知 a, b+c, A 問解 ABC 之方法.
- (8) 知 α+b+c, A, B 問解 ABC 之方法·
- (9) 知四邊形之三邊及二對角線求其餘之一邊 之方法若何

# 43. 距離及高之測法。

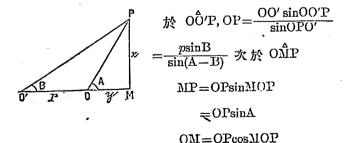
用直角三角形之算法以測距離及高。 旣舉其數例 矣。而用一般三角形之算法,其所得之方法,較前尤便. 更舉其數例於次。

[第一] 有物在人所不能到之處。但能由遠處望之。欲求遠處一點與物之距離



於直線上。取 O, O' 二點。測其距離,(設為 p) 由不能到之點 P. 作垂線 PM 於此線。設 PM 之數值為 a, 又設 O'OP 角及 OO'P 角為 A, B, 則.

$$p$$
 OO'P, OP= $\frac{OO'\sin OO'P}{\sin OPO'} = \frac{p\sin B}{\sin (A+B)}$ .


又於 OMP, MP=OPsinMOP=OPsinA

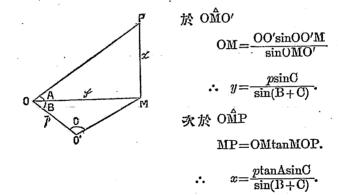
$$\therefore x = \frac{p \sin A \sin B}{\sin (A+B)}$$

[第二] 有一直立物體。人不能至其基礎下。惟能在地上之二點觀測之。求其高及距離。

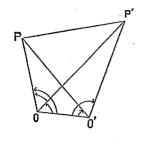
如圖。MP 為物體。O,O' 為觀測點。設 OO', MP, OM 之數值為 p, x, y, 從 O,O' 與 MP 同在一平而上與否. 而用次之方法。

(i) O,O' 與 MP 同在一平面上。則測 MOP 角,及 MO'P 角。設之為 A, B, 則




=OPcosA

$$x = \frac{p \sin A \sin B}{\sin (A - B)}$$

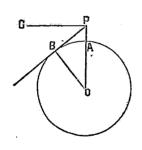

$$y = \frac{p \cos A \sin B}{\sin (A - B)}$$

 次 O,O' 與 MP 不同在一平面上。則測 MOP 角

 MOO' 角, OO'M 角, 設之為 A, B, C, 則



[第三] 有二物在遠處。皆爲人所不能 到。欲求其距離。




如圖。有人不能到之二點 P,P', 惟能於相宜之二點 O,O' 望之。 則測 O'ÔP', O'ÔP, P'ÔP, O'ÔP。 OÔ'P' 及 OO'

於 OÔ'P 求 OP, 於 OÔ'P 求 OP', 於 PÔP' 求 PP',

[注意] P, P', O, O', 同在一平面上。則可少测一O角。

### [第四] 視水平之距離及俯向。



於左圖。O為地球之中心。P 為若干高之觀測點。PB 為切線。則B之軌跡圖周。謂之視水平。PB及BPC (PC 為水平線) 謂之距離及俯向。 今設地球之半經為7. 視測點之高為

视水平之距離及俯向為 l 及 d, 则有次之關係

(i) 
$$\cos \delta = \cos BOP = \frac{OB}{OP} = \frac{r}{r + \hbar}$$

$$h = \frac{r(1 - \cos\delta)}{\cos\delta}.$$

(iii) 
$$r = \frac{h\cos\delta}{1-\cos\delta}$$
.

(iv) 
$$l = r \tan \delta = \frac{h \sin \delta}{1 - \cos \delta} = h \cot \frac{\delta}{2}$$
.

### 設題二十.

(I) 於河之一岸。由和距 100 丈之二點 A, B。望對岸之一點 P。知 PÂB=60°, PBA=45° 問河寬幾何

答. 634 丈

- (3) 有人望北及北 30° 西丽方向之二物體。A,B。由是向北西之方向進 10 里。則A,B,之方向為北東及東。問 A,B 之距離幾何. 答 8·16 里
- (4) 有立於 h 高石臺上之紀念碑, 於距石臺  $\alpha$  之一地望之。紀念碑上端之仰角, 為下端仰角之二倍。問臺上碑高幾何. 答.  $\left(\frac{\alpha^2+k^2}{\alpha^2-k^2}\right)h$

- (5) 設地球之半經為r。則於h高之一點。其視水平之距離等於 $\sqrt{2nh}$ ,試證之。
- (6) 由高 h 尺之塔項。於其一面。 望與塔脚同在一水平面上之二物體。得俯角 45°-A, 及 45°+A, 問二物之距離幾何 答. 2h tan 2A 尺
- (7) 於塔南之一地。測其項之仰角得 30°, 次由此 地向西行 a 距離, 再測塔項之仰角。得 18°。 求證塔高 等於 <u>a</u> <u>V(2+2V5)</u>
- (8) 由湖水面上高h 尺之處。望停雲之一點。得仰角a,同時望其在湖水中之影。得俯角 $\beta$ ,問雲之高幾何 答.  $\frac{h\sin(\beta+a)}{\sin(\beta-a)}$  尺

(IO) 在塔之基礎望樹頂。得仰角 a 欢登塔 h 尺。再 望其仰角。得仰角 B 問樹高幾何

答. 
$$\frac{h\cos\beta\sin\alpha}{\sin(\alpha-\beta)}$$
 尺

(11) 有人测立於丘上之塔頂及塔根得仰角A及B,

次退後 1 距離。再測塔頂之仰角得 C, 問在丘上之塔 高及丘高幾何。

答:  $\frac{l\sin C\sin(A-B)}{\cos B\sin(A-C)}$ ,  $\frac{l\cos A\tan B\sin C}{\sin(A-C)}$ 

- (12) 在山麓。測在山頂之巖之上端。得仰角 47°, 由 是向成 32° 傾斜角之直線坂路登 1000 尺。再測巖之仰 角得 77°, 問巖較初之測點高幾何. 答. 1034 尺
- (14) 距 ALB 塔 48 尺之地,有一高 14 尺之臺 C. 在此臺上望塔。知 AĈL=LĈB, 而 AL=30 尺。問塔高幾何。
- (15) 由向西南走之二船。望碇泊之二船為北北西及西北西。由是走5哩。再望二船。其方向為北及北西。 問二船之距離幾何。 答. 9.239 哩
- (16) 有二點 P,Q,於 P 南之一地 L 望之。知 PÂQ=A, 次由 L 向西走 a 距離。到 M。知 PÂQ=A, 更循同方向 進 b, 達 Q 之地 N, 證 P,Q 之距離為

 $V\{(a+b)^2+b^2\tan^2A\}$ 

(17) 有立於 ED 塔上之旗竿 DC,於與塔脚E同在 一水平面上之一點 P。知 EPD=B, DPC=A, 次由 P向 E進c距離到 Q。再望之。知 DQC=A, 問塔高幾何。

(18) 有立於 BC 塔上之旗竿 CD, 於由 B 距 C 里之 地。測得最大角為 A, 则 CD=2ctanA, BC=ctan  $\left(45^{\circ}-\frac{A}{2}\right)$ 試證之。

# 第八章

### 逆三角函數 (或及函數)

### 金金。定義

正弦爲a之角。謂之a之逆正弦。以Sin-'a 表之。(即 sin=a)

逆餘弦, 逆正切, 逆餘切, 逆正割, 逆餘割準此。

統此六種。稱為逆三角函數。或謂之逆圓函數。

一數之逆三角函數。有無數之值。其中最小數值。謂之 主值。(有正負相同之數值。則以正為主)以sin-'a.等顯 之。

[注意一] 或以 sin-la 等顯逆三角函數之一切值。以 Sin-la 顯其主值,然逆三角函數之性質。多關於主值。故 用小 s 字顯之, 較為便利。本書用 sin-la 等顯其主值。

[注意二] 逆三角函數之主值。難不能山視察求得。'

然可由表求之。

#### **冬5**。Sin⁻¹a ノ値.

正 弦 相 等 之 角。 其 迴 線 之 位 置。 祇 有 兩 種。因 sin(180° -A)=sinA, sin(n×360°+A)=sinA

故 n×360°+sin-1o 或 n×360°+(180°-sin-1a) 悉有 a 正 弦。其 他 諸 角 不 然

 $\therefore \quad \sin^{-1}a = n \times 360^{\circ} + \sin^{-1}a$ 

或 
$$n \times 360^{\circ} + (180^{\circ} - \sin^{-1}a)$$
  
=  $2n \times 180^{\circ} + \sin^{-1}a$ 

或 
$$(2n+1)180^{\circ} - \sin^{-1}a$$
  
= $n \times 180^{\circ} + (-1)^{n} \sin^{-1}a$  ......(44)

但n顯零或任意之整數(以下準此)

例.

- 1.  $\sin^{-1}0 = n \times 180^{\circ} + (-1)^{n} \sin^{-1}0 = n \times 180^{\circ} + 0^{\circ} = n \times 180^{\circ}$
- 2.  $\sin^{-1}1 = n \times 150^{\circ} + (-1)^{n} \sin^{-1}1 = n \times 180^{\circ} + (-1)^{n}90^{\circ}$ .

而 n×180°+(-1)°90° 其 n 為任意之偶數(2m)則為 2m ×180°+90° 即 (4m+1)90° n 為任意之奇數(2m+1)則亦 為(2m+1)180°-90° 即 (4m+1)90° 故可記為

$$Sin^{-1}1 = (4n+1)90^{\circ}$$

3. 
$$\sin^{-1}(-1) = n \times 180^{\circ} + (-1)^{n} \sin^{-1}(-1)$$
  
=  $n \times 180^{\circ} + (-1)^{n}(-90^{\circ})$ .

而  $n \times 180^{\circ} + (-1)^{n}(-90^{\circ})$ , 其 n 為任意之偶數(2m)則為  $2m \times 180^{\circ} - 90^{\circ}$  即  $(4m-1)90^{\circ}$ , n 為任意之奇數(2m-1)則亦為 $(2m-1)180^{\circ} + 90^{\circ}$  即  $(4m-1)90^{\circ}$ .

故可記為 Sin⁻¹(-1)=(4n-1)90°

系.  $Cosec^{-1}a = n \times 180^{\circ} + (-1)^{n}cosec^{-1}a$ .

46. Cos a 之 值.

餘弦相等之角其迴線之位置祗有兩種,

而因  $\cos(A) = \cos A$ ,  $\cos(n \times 360^{\circ} + A) = \cos A$ 

故  $n \times 360^{\circ} + \cos^{-1}a$  或  $n \times 360^{\circ} + (-\cos^{-1}a)$  悉有 a 餘 茲其他之角不然

...  $\cos^{-1}a = n \times 360^{\circ} + \cos^{-1}a$ 

或 
$$n \times 360^{\circ} + (-\cos^{-1}a)$$

 $=2n\times180^{\circ}+\cos^{-1}a$ 

或  $2n \times 180^{\circ} - \cos^{-1}\alpha$ 

 $=2n \times 180^{\circ} \pm \cos^{-1}\alpha$  ......(45)

例.

1.  $\cos^{-1}0 = 2n \times 180^{\circ} \pm \cos^{-1}0 = 2n \times 180^{\circ} \pm 90^{\circ} = (4n \pm 1)90^{\circ}$ 

而以 4n+1 及 4n-1 所表之諸數俱為一切奇數 故可記為 Cos<sup>-1</sup>0=(2n+1)90°

- 2.  $\cos^{-1}1 = 2n \times 180^{\circ} \pm \cos^{-1}1 = 2n \times 180^{\circ} \pm 0^{\circ} = 2n \times 180^{\circ}$ .
- 3.  $\cos^{-1}(-1) = 2n \times 180^{\circ} \pm \cos^{-1}(-1) = 2n \times 180^{\circ} \pm 180^{\circ}$ =  $(2n \pm 1)180^{\circ}$ .

而 2n+1,2n-1 俱顯 - 切奇數

... 可記為  $Cos^{-1}(-1)=(2n+1)180^\circ$ 

系. Sec $^{-1}a = 2n \times 180$ ' ± sec $^{-1}a$ .

47. Tan-a 之值

正切相等之角其廻線之位置。祇有兩種。

in  $\mathbb{H}$  tan(180°+A)=tanA, tan( $n \times 360$ °+A)=tanA

数 n×360°+tan<sup>-1</sup>a或n×360°+(180°+tan<sup>-1</sup>a) 悉有 a 正切其他之角不然

••  $Tan^{-1}a = n \times 360^{\circ} + tan^{-1}a$ 

- Lan- $^{1}0$  =  $n \times 180^{\circ} + tan^{-1}0 = n \times 180^{\circ} + 0^{\circ} = n \times 180^{\circ}$ .
- 2.  $Tan^{-1}1 = n \times 180^{\circ} + tan^{-1}1 = n \times 180^{\circ} + 45^{\circ} = (4n+1)45^{\circ}$ .

逝 三 角 函 數

- 3.  $\operatorname{Tan}^{-1}(-1) = n \times 180^{\circ} + \tan^{-1}(-1) = n \times 180^{\circ} + (-45^{\circ})$ =  $(4n-1)45^{\circ}$ .
- 4.  $\tan^{-1} \infty = n \times 180^{\circ} + \tan^{-1} (\infty) = n \times 180^{\circ} + 90^{\circ}$ =  $(2n+1)90^{\circ}$ .
- $\approx$  Cot<sup>-1</sup> $a = n \times 180^{\circ} + \cot^{-1}a$ .

設題二十一.

證次之諧式

- 1. (i)  $\sin^{-1}a = \cos^{-1}\sqrt{1-a^2} = \tan^{-1}\frac{a}{\sqrt{1-a^2}} = \cot^{-1}\frac{\sqrt{1-a^2}}{a}$ =  $\sec^{-1}\frac{1}{\sqrt{1-a^2}} = \csc^{-1}\frac{1}{a}$ .
  - (ii)  $\cos^{-1}a = \sin^{-1}\sqrt{1-a^2} = \tan^{-1}\frac{\sqrt{1-a^2}}{a} = \cot^{-1}\frac{a}{\sqrt{1-a^2}}$ =  $\sec^{-1}\frac{1}{a} = \csc^{-1}\frac{1}{\sqrt{1-a^2}}$
  - (iii)  $\tan^{-1}a = \sin^{-1}\frac{a}{\sqrt{1+a^2}} = \cos^{-1}\frac{1}{\sqrt{1+a^2}} = \cot^{-1}\frac{1}{a}$ =  $\sec^{-1}\sqrt{1+a^2} = \csc^{-1}\frac{\sqrt{1+a^2}}{a}$ .
  - (iv)  $\cot^{-1}a = \sin^{-1}\frac{1}{\sqrt{1+a^2}} = \cos^{-1}\frac{a}{\sqrt{1+a^2}} = \tan^{-1}\frac{1}{a}$

$$=\sec^{-1}\sqrt{1+a^2}=\csc^{-1}\sqrt{1+a^2}$$
.

(v) 
$$\sec^{-1} \alpha = \sin^{-1} \sqrt{\frac{a^2 - 1}{a}} = \cos^{-1} \frac{1}{a} = \tan^{-1} \sqrt{a^2 - 1}$$
  
=  $\cot^{-1} \frac{1}{\sqrt{a^2 - 1}} = \csc^{-1} \frac{a}{\sqrt{a^2 - 1}}$ .

(vi) 
$$\csc^{-1}a = \sin^{-1}\frac{1}{a} = \cos^{-1}\frac{\sqrt{a^2 - 1}}{a} = \tan^{-1}\frac{1}{\sqrt{a^2 - 1}}$$

$$= \cot^{-1}\sqrt{a^2 - 1} = \sec^{-1}\frac{a}{\sqrt{a^2 - 1}}.$$

- **2.** (i)  $\sin^{-1}a \pm \sin^{-1}b = \sin^{-1}\{a\sqrt{1-b^2} \pm b\sqrt{1-a^2}\}$ 
  - (ii)  $\cos^{-1}a \pm \cos^{-1}b = \cos^{-1}\{ab \mp \sqrt{(1-a^2/1-b^2)}\}$
  - (iii)  $\tan^{-1}a \pm \tan^{-1}b = \tan^{-1}\frac{a \pm b}{1 = ab}$
  - (iv)  $\cot^{-1}a \pm \cot^{-1}b = \cot^{-1}\frac{ab \pm 1}{b + a}$ .
- 3. (i)  $2\sin^{-1}a = \sin^{-1}2a\sqrt{1-a^2}$ .
  - (ii)  $2\cos^{-1}a = \cos^{-1}(2a^2 1)$ .
  - (iii)  $2\tan^{-1}\alpha = \tan^{-1}\frac{2\alpha}{1-\alpha^2}$ .
  - (iv)  $2\cot^{-1}a = \cot^{-1}\frac{a^2-1}{2a}$ .
- 上之諧式俱為重要之式
- 4.  $\sin^{-1}\frac{1}{2} + \sin^{-1}\frac{\sqrt{3}}{2} = 90$ ,

- 5.  $\cos^{-1}\frac{9}{1/99} + \cos^{-1}\frac{5}{1/41} = 45$ .
- 6.  $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$ ,  $2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7}$ ,
- $4\tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}$ ,  $\tan^{-1}\frac{1}{2}+\tan^{-1}\frac{1}{5}+\tan^{-1}\frac{1}{8}$ ,
- $4\tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{70}+\tan^{-1}\frac{1}{99}$  俱為 45°
  - 7.  $\cot^{-1}\frac{3}{4} + \cot^{-1}\frac{1}{7} = 135^{\circ}$ .
  - 8.  $\sin^{-1}\frac{1}{1\sqrt{5}} + \cot^{-1}3 = 45^{\circ}$ .
  - 9. 求適於次之方程式之 α 值
    - (i)  $\sin^{-1}x + \tan^{-1}\frac{2x}{\sqrt{1-4x^2}} = 60^{\circ}$ .  $\stackrel{\text{(i)}}{\approx} \cdot \frac{\pm \sqrt{21}}{14}$ .
    - (ii)  $\tan^{-1}x + \frac{1}{2}\sec^{-1}5x = 45^{\circ}$ .  $\stackrel{\text{e.}}{=} \pm \frac{1}{3}$ .
    - (iii)  $\cot^{-1}x + \cot^{-1}(n^2 x + 1) = \cot^{-1}(n 1)$ .

答.  $n, n^2-n+1$ .

# 第九章

### 三 角 方程 式

### 48. 定義

顯未知角之三角函數與己知數之關係之方程式。謂之三角方程式。求其適於此式之角。謂之解所得之角謂之所求之解。

49。 三角方程式之解法

三角方程式可依次之方法解之

- [第一] 用普通方程式之解法。以求其 未知角之三角函數之值。
- [第二] 應所得之三角函數之值。求其 逆三角函數之一切值。 此值即為 所求之解

例. 1

(1.) 解  $\sin\theta = a$ 

解.

$$\theta = \sin^{-1}a = n \times 180^{\circ} + (-1)^{n}\sin^{-1}a$$
.

或 依次法解之

$$\cos(\theta-90^\circ)=a$$

$$\theta - 90^{\circ} = 2n \times 180^{\circ} \pm \cos^{-1}a$$

$$\theta = 2n \times 180^{\circ} + 90^{\circ} \pm \cos^{-1}a$$

$$=(4n+1)90^{\circ}\pm\cos^{-1}a$$

(2.) 解  $\cos\theta = a$ 

解.

$$\theta = \cos^{-1}a = 2n \times 180^{\circ} \pm \cos^{-1}a$$

(3.) 解  $tan\theta = a$ 

解.

$$\theta = \text{Tan}^{-1}a = n \times 180^{\circ} + \tan^{-1}a.$$

(4.) 解  $\sin^2\theta = a$ 

解

$$\frac{1-\cos 2\theta}{2} = a$$

$$\cos 2\theta = 1 - 2a$$

$$2\theta = 2n \times 180^{\circ} \pm \cos^{-1}(1 - 2a)$$

$$\theta = n \times 180^{\circ} \pm \frac{1}{2} \cos^{-1}(1 - 2a)$$

. (5.) 解  $\cos^2\theta = a$ 

解・  

$$\frac{1+\cos^2\theta}{2} = a$$

$$\cos^2\theta = 2a - 1$$

$$2\theta = 2n \times 180 ' \pm \cos^{-1}(2a - 1)$$

$$\theta = n \times 180 ' \pm \frac{1}{3}\cos^{-1}(2a - 1).$$

解.

(6.) 解  $\cos\theta + \sin\theta = a$ 

$$\sqrt{2}\cos(\theta - 45^\circ) = a$$

$$\cos(\theta - 45^\circ) = \frac{a}{\sqrt{2}}$$

$$\theta - 45^\circ = 2n \times 180^\circ \pm \cos^{-1}\frac{a}{\sqrt{2}}$$

$$\theta = 2n \times 180^\circ + 45^\circ \pm \cos^{-1}\frac{a}{\sqrt{2}}$$

$$= (8n+1)45^\circ \pm \cos^{-1}\frac{a}{\sqrt{2}}.$$

同樣解  $\cos\theta - \sin\theta = a$ 

$$x = (8n - 1)45^{\circ} \pm \cos^{-1} \frac{a}{\sqrt{2}}$$

(7.) 解  $a\cos\theta + b\sin\theta = c$ 

解.

$$\cos\theta + \frac{b}{a}\sin\theta = \frac{c}{a}$$
.

今設 
$$\tan^{3} \frac{a}{a} = a$$
 則  $\tan a = \frac{b}{a}$ ,  $\cos a = \frac{a}{\sqrt{a^{2} + b^{2}}}$  而

$$\cos\theta + \tan\alpha \sin\theta = \frac{c}{a}$$

$$\frac{\cos(\theta-a)}{\cos a} = \frac{c}{a} . . .$$

$$\cos(\theta - a) = \frac{c}{a}\cos a = \frac{c}{\sqrt{a^2 + b^2}}$$

$$\theta - \alpha = 2n \times 180^{\circ} \pm \cos^{-1} \frac{c}{\sqrt{a^2 + b^2}}$$

$$\theta = 2n \times 180^{\circ} + \alpha \pm \cos^{-} \frac{c}{\sqrt{a^2 + b^2}}$$

$$=2n \times 180^{\circ} + \tan^{-}\frac{b}{a} \pm \cos^{-1}\frac{c}{\sqrt{a^{1} + b^{2}}}.$$

$$=2n \times 180^{\circ} + \tan^{-1}\frac{b}{a} \pm \tan^{-1}\sqrt{a^{2} + b^{2} - c^{2}}$$

$$=2n \times 180^{\circ} + \tan^{-1}\frac{bc \pm a\sqrt{a^2 + b^2 - c^2}}{ca \mp b\sqrt{a^2 + b^2 - c^2}}$$

同樣解  $a\cos\theta - b\sin\theta = c^{i}$  '则

$$\theta = 2n \times 180^{\circ} - \tan^{-1} \frac{bc \pm a\sqrt{a^2 + b^2 - c^2}}{ca \mp b\sqrt{a^2 + b^2 - c^2}}$$

設題二十二.

解次之三角方程式

(1.) 
$$\cot\theta - \tan\theta = \cot\alpha - \tan\alpha$$
. 答: %×90°+a.

(2.)  $\cos 2\theta - \cos 120^{\circ} = \cos \theta - \cos 60^{\circ}$ .

(3.) 
$$\sec^2\theta + 3\csc^2\theta = 8$$
. 答  $(2n+1)45^\circ$ ,  $(3n\pm 1)60^\circ$ .

$$(4.) \tan\theta + \tan 3\theta = 2\tan 2\theta.$$
 答.  $n \times 180$ .

(5.) 
$$2\cot 2\theta - \tan 2\theta = 3\cot 3\theta$$
. 答.  $n \times 180^\circ$ .

(6.) 
$$\tan\theta + \tan(\theta - 45^\circ) = 2$$
. 45.  $(3n \pm 1)60^\circ$ .

(7.) 
$$6\cot^2\theta = 1 + 4\cos^2\theta$$
 答.  $(3n\pm 1)60^\circ$ .

(8.) 
$$3(\sin^4\theta - \cos^4\theta) + 4\cos^6\theta = \cos^32\theta$$
 答.  $n \times 180$ .

(9.) 
$$\csc 3\theta + \csc 2\theta = \sin 2\theta \csc \theta \csc 3\theta$$
.

答. (6n±1)60°.

((O.)  $\sin\theta - \cos\theta = 4\cos^2\theta\sin\theta$ .

答. (4n-1)45°, (4n-1)22°·5.

(12.) 
$$\tan 2\theta = 8\cos^2\theta - \cot\theta$$
. 答.  $(2n+1)90^\circ$ ,  $(6n+(-1)^n)7^\circ 5$ .

(13.) 
$$\tan(45 + \theta) = 1 + \sin 2\theta$$
. 
**Example 1.**  $(4n-1)45$ .

(14.) 
$$\cot 15^{\circ}\cos \theta + \sin \theta = 1$$
. 答.  $(4n+1)90^{\circ}$ ,  $(6n-1)60^{\circ}$ .

(15.) 
$$\sec 4\theta - \sec 2\theta = 2$$
.  $(16) \cos 2\theta \cos 1\theta \Rightarrow 0$ .

答. (2n+1)18°.

- (16.)  $ton\theta + sec2\theta = 1$ .
- 答。 n×180', (4n-1)22'·5.
- (17.)  $(1-\tan\theta)(1+\sin2\theta)=1+\tan\theta$ .

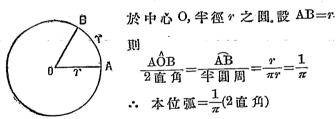
答. n×180°, (4n-1)45°.

(18.)  $2\sin 2\theta - 4\sin(\theta + 30^{\circ}) + \sqrt{3} = 0$ .

答。(6n-1)30°, (12n+1)30°.

- (19.)  $\cos\theta \sin\theta = \sin\theta \cos\theta$  答.  $(8n-1)45^{\circ} \pm \cos^{-1}\sqrt{2}-2$
- (20.)  $\sin 5\theta + \sin 3\theta + \sqrt{2}(\sin \theta + \cos \theta)\cos \theta = 0$ .

答. (2n+1)90°, (8n-1)9°, (8n+5)15°


# 第一十章。

## **眞** 弧 度 法·

#### 50。 定義

於任意之圓。其等於半徑之弧上之中心角。恒有一定之大。此角謂之家位弧。

證.



以本位弧為單位。其計角所得 θ 值。則 此角謂之 θ 本位弧或謂其其弧度為 θ, 此計法謂之眞弧度法。

弧度法於理倫上之講究通用之。

[注意一] 於半徑 r 之圓 其 l 弧上之中心角之弧

度為 $\frac{l}{r}$ ,從而對於  $\theta$  本位弧之中心角弧為r0.

[注意二] 二直角之弧度為元。從而五及 2元 為直角及四直角之弧度

[注意三] 1本位弧凡 53°13′44″.8

### 51. 眞弧度與常度之關係·

設某所之真弧度及度數為 $\theta$ 及D,則據前條得次之關係。

$$\frac{\theta}{\pi} = \frac{D}{180}$$

山此式。任意负之真弧度及度数。俱可轉換。

#### 設 題 二 十 三

(1) 求 35/30" 之具弧度。

答. 0.01033

(2) 求 $\frac{\pi}{13}$ 之度數

答. 13°.846153

(3) 問 n 邊正多角形之一內角之弧度幾何。

答: 
$$\frac{(n-2)\pi}{n}$$

(4) 於年徑 4尺 之圆。問其 10 尺弧上之中心角之常度幾何。 答 143°14′20″8

(5) 地球之直徑為 3900 哩。此直徑於太陽之張角為 17".8 太陽之光以 8<sup>m</sup>13<sup>s</sup>·3 達地球。問光速度幾何(小文字<sup>m</sup> 及<sup>s</sup> 為時候之分及秒) 答每秒凡185600 哩

遲

1

# 第一。

# 數之對數表

用此表時宜先看 第 六 章 3<sup>8</sup> 款

|          |                |     | ¥   | Ż    | 對     | 数   | 裘   |     |            |       | 43 41                                 |
|----------|----------------|-----|-----|------|-------|-----|-----|-----|------------|-------|---------------------------------------|
| N.       | 0              | I   | 2   | 3    | 4     | 5   | 6   | 7   | 8          | 9     | 1 4·3 4·1<br>2 8·6 8·2<br>3 12·9 12·3 |
| 10       | ccoo           | 043 | 086 | 128  | 170   | 212 | 253 | 294 | 334        | 374   | 4 17·2 16·4<br>5 21·5 20·5            |
| II       | <b>414</b>     | 453 | 493 | 53I  | 569   | 607 | б45 | 682 | 719        | 755   | 625.824.6                             |
| 12       | 792            | 828 | 864 | 859  | 934   | 969 | 004 |     |            | 106*  | 834.432.8                             |
| 13       | 1139           | 173 | 200 | 239  | 271   | 303 | 335 | 367 | 399        | 430   | 9 38-7 36-9                           |
| 14       | 461            | 492 | 523 | 553  | 584   | 614 | 644 | 673 | 703        | 732   | <b>35</b> 33                          |
| 15       | 761            | 750 | 818 | 847  | 875   | 903 | 931 | 959 | 987        | 014*  | 1 3 5 3 3                             |
| 16       | 2041           | об8 | 095 | 122  | 148   | 175 | 201 | 227 | 253        | 279   | 310.2 0.6                             |
| 17       | 304            | 330 | 355 | 380  |       | 430 | 455 | 480 | 504        | 529   | 4114.0113.5                           |
| 18       | 553            | 577 | 601 | •    |       | 672 | 695 | 718 | 742        | 765   | 517·516·5<br>621·019·8                |
| 19       | 788            | 810 | 833 | 856  |       |     | 923 | 945 | 967        | 989   | 724.23.1                              |
| 20       | 3010           | 032 | 054 |      | 096   | 118 | 139 | 160 | 181        | 201   | 8 28 0 26 4                           |
| 21       | 2 <i>2</i> 2   | 243 |     |      | 301   | 324 | 345 | 365 | 385        | 404   | 9]31-5 29-7                           |
| 22       |                |     | 464 |      | 502   | 522 | 541 | 560 | 579        | 598   | 27 25                                 |
| 23       |                |     | 655 |      |       | 711 | 729 | 747 | 766        | 784   | 1 2.7 2.5                             |
| 24       | 802            |     |     | 856  |       | 892 | 509 | 927 | 945        | 962   | 3 8.1 7.5                             |
| 25       | 979            |     |     | *031 | *048* | 065 |     |     |            | 133*  | 410.810.0                             |
| 26       | 4150           |     | 183 | 200  |       | 232 | 249 | 265 | 281        | 298   | 5 13.5 12.5                           |
| 27       | 314            |     | 346 |      | 378   | 393 | 409 | 425 | 440        | 456   | 7 18·9 17·5<br>8 21·6 20·0            |
| 28       | 472            | 487 | 502 | 518  | 533   | 548 | 564 | 579 | 594        | 609   | 924.3 22.5                            |
| 29       | 624            |     | 654 | 669  | 683   | 698 | 713 | 728 | 742        | 757   | 1                                     |
| 30       | 771            | 786 | 800 | 814  | 829   | 843 | 857 | 871 | 886        | 900   | В                                     |
| 31       | 914            |     |     | 955  | 969   | 983 | 997 | 011 | -          | ÷038# | 1 1 9 17                              |
| 32       | 5051           | 055 |     | 092  | 105   | 119 | 132 | 145 | 159        | 172   | 3 57 51                               |
| 33       | 185            | 198 |     | 224  | 237   | 250 | 263 | 276 | 289        | 302   |                                       |
| 34_      | 315            | 328 |     | 353  | 366   | 378 | 391 | 403 | 416        | 428   | 611.4 10.2                            |
| 35       | 441            | 453 | 465 | 478  | 490   | 502 | 514 | 527 | <u>539</u> | 55I   | 7 13.3 11.9                           |
| 36       | 563            | 575 | 587 | 599  | 611   | 623 | 635 | 647 | 658        | 670   | 815.213.6<br>917.115.3                |
| 37       | 682            | 694 | • • | 717  | 729   | 740 | 752 | 763 | 775        | 786   | 11 9                                  |
| 38       | 798            | 809 | 128 | 832  | 843   | 855 | 866 | 877 | 888        | 899   | 11 -1 -1-1                            |
| 39       | 911            | 922 | 933 | 944  |       | 966 | 977 | 988 | 999        | 010   | 2 2.2 1.8                             |
| 40       | 6021           | 031 | 042 | 053  | об4   | 075 | 085 | 096 | 107        | 117   | 3 3 3 2 7<br>4 4 4 3 6                |
| N.       | 0              | 1   | 2   | 3    | 4     | 5   | б   | 7   | 8          | 9     | 5 5.5 4.5<br>6 6.6 5.4                |
| <i>y</i> | مستناد فاستنار |     |     |      |       |     |     |     |            |       | 7 7·7 6·3<br>8 8·8 7·2<br>9 9·9 8·1   |

N.

O 

P. P.

| _          |     |             |     | 數    | Z   | 鑆   | 数   | 表.  |     |     |            | . 6              |
|------------|-----|-------------|-----|------|-----|-----|-----|-----|-----|-----|------------|------------------|
| Carrie and | N.  | 0           | I   | 2    | 3   | 4   | 5   | 6   | 7   | 8   | 9          | 1 0 6<br>2 1 2   |
|            | 70  | 8451        | 457 | 463  | 470 | 476 | 482 | 488 | 494 | 500 | 506        | 3 1·8<br>4 2·4   |
|            | 71  | 513         | 519 | 525  | 531 | 537 | 543 | 549 | 555 | 561 | 567        | 53.0<br>63.6     |
|            | 72  | 573         | 579 | 585  | 591 | 597 | 603 | 609 | 615 | 621 | 627        |                  |
|            | 73  | 633         | 639 | 645  | •   | 657 | 663 | 669 | 675 | 681 | 686        | 74.2<br>84.8     |
|            | _74 | 692         | 698 | 704  |     | 716 | 722 | 727 | 733 | 739 | 745        | 954              |
|            | 75  | 75 <u>1</u> | 756 | 763  | 768 | 774 | 779 | 785 | 791 | 797 | 802        |                  |
| 1          | 76  | 808         |     | 820  |     | 831 | 837 | 842 | 848 | 854 | 859        |                  |
| 200        | 77  | 865         | 871 | 876  | 882 | 887 | 893 |     | 904 |     | 915        | 5                |
| -          | 78  |             | 927 |      |     |     | 949 | 954 | 960 | 965 | 971        | 1 0.2            |
| I          | .79 | 976         | 982 | 987  | 993 | 998 | ·   |     |     | 020 | 025*       | 31.2             |
| 1          | 80  | 9031        |     |      |     |     | 058 |     | 069 | 074 | 079        | 420              |
| Į          | 81  | 085         | 090 | 096  | 101 | 106 | 112 | 117 | 122 | 128 | 133        | 5 <sup>2.5</sup> |
|            | 82  | 138         | 143 | 149  |     | 159 | 165 | 170 | 175 | 180 | 186        | 73.5             |
| Ì          | 83  | 191         |     | 20 I |     | 212 | 217 | 222 | 227 | 232 | 238        | 84.0             |
|            | 84_ | 243         | 248 | 253  | 258 | 263 | 269 | 274 | 279 | 284 | 289        | 94.5             |
|            | 85  | 294         | 299 | 301  |     | 315 | 320 | 325 | 330 | 335 | 340        | đ                |
| }          | 86  | 345         | 350 | 355  | 360 | 365 | 370 | 375 | 380 | 385 | 390        | 1                |
|            | 87  | 395         |     | 405  |     |     | 420 | 425 | 430 | 435 | 440        | 4                |
|            | 88  | 445         | 450 | 455  |     |     | 469 |     | 479 | 484 | 489        | 104<br>208       |
|            | 89  | 494         | 499 |      |     |     | 518 | 523 | 528 | 533 | 538        | 312              |
|            | 90  | 542         | 547 | 552  |     | 562 | 566 | 571 | 576 | 581 | 586        | 416<br>520       |
|            | 91  | 590         | 595 |      |     | 609 | 614 |     | 624 | 628 | 633        | 624              |
|            | 92  | 638         |     |      |     | 657 | 661 | 666 | б71 | 675 | 68о        | 72.8             |
|            | 93  | 685         | 689 | -    |     |     | 708 | 713 | 717 | 722 | 727        | 83·2<br>93·6     |
|            | 94  | _731        | 736 | 741  | 745 | 750 | 754 | 759 | 763 | 768 | <u>773</u> | 9154             |
|            | 95  | _777        | 782 |      | 791 | 795 | 800 | 805 | 809 | 814 | 818        |                  |
|            | 96  | 823         | 827 | 832  | 836 | 841 | 845 | 850 | 854 | 859 | 863        |                  |
|            | 97  | 868         |     |      |     | 886 | 890 | 894 | 899 | 903 | 908        | 1                |
|            | 98  |             |     |      |     | 930 | 934 | 939 | 943 | 948 | 952        |                  |
|            | .99 |             |     |      |     | 974 | 978 | 983 | 987 | 991 | 996        |                  |
|            | 100 | 0000        | 004 | 009  | 013 | 017 | 022 | 026 | 030 | 035 | 039        | _                |
|            |     |             |     |      |     |     | l   | _   |     | _   |            | _                |

### 第二。

# 三角函數之對數表

用此表時宜先看第 六章 39 款

#### 三角函数之對數表

| Ŋ     | logsin | logtan         | logcot  | logcos |                |
|-------|--------|----------------|---------|--------|----------------|
| 0° 0′ | -8     | _ ×            | 8       | 0.0000 | o' 90°         |
| 10'   | 3.4637 | 3.4637         | 2.2363  | 0.0000 | 50'            |
| 20'   | 3 7648 | 3.7648         | 2 2352  | 0.0000 | 40'            |
| 30'   | 3.9408 | 3.9409         | 2.0591  | 0.0000 | 30'            |
| 40'   | 2.0658 | 2.0658         | 1.9342  | 0.0000 | 20'            |
| 50'   | ž·1627 | <u>2</u> ·1627 | 1.8373  | 0.0000 | 10,            |
| 1° 0′ | 2 2419 | 2.2419         | 1.7581  | ī•9999 | o' <b>89</b> ° |
| 10'   | ž·3088 | 2·3089         | 1.6911  | ī.9999 | 50′            |
| 20'   | 2·3668 | 2·3669         | 1.6331  | ī.9999 | 40'            |
| 30′   | 2.4179 | 2·4181         | 1.2819  | ī.9999 | 30'            |
| 40'   | 2.4637 | 2·4638         | 1.2362  | ī:9998 | 20'            |
| 50'   | 2.5050 | 2.2023         | 1.4947  | ī•9998 | 10'            |
| 2° 0′ | 2.5428 | 2·5431         | 1.4269  | ī•9997 | o' 88°         |
| 10'   | 2.5776 | 2.5779         | I 422 I | ī·9997 | 50′            |
| 20′   | ž 6097 | ž·6101         | 1.3899  | ī.9996 | 40'            |
| 30'   | 2·63¢7 | <u>2</u> .6401 | 1.3599  | ī.9996 | 30'            |
| 40'   | 2.6677 | ₹·5682         | 1.3318  | ī•9995 | 20′            |
| 50'   | ž 6940 | 2.6945         | 1.3022  | ī•9995 | 10'            |
| 3° 0' | 2.7188 | 27194          | 1.3800  | Ĩ*9994 | o' 87°         |
| 10'   | 2.7423 | 2.7429         | 1.5271  | Ε9993  | 50'            |
| ° 20′ | 2 7645 | 2.7652         | 1.2348  | ī.9993 | 40′            |
| 30'   | 2.7857 | 2.7865         | 1.2135  | ī•9992 | 30'            |
| 40'   | 2·8059 | 2.8067         | 1,1933  | 1,6991 | 20′            |
| 50'   | 2.8251 | 2.8261         | 1,1430  | I.9990 | 10'            |
| 4º 0' | 2.8436 | 2.8446         | 1.1554  | ī·9989 | o′ 86°         |
| 10'   | 2.8613 | 2.8624         | 1.1326  | ĩ•9989 | 50′            |
| 20'   | 2.8783 | 2.8795         | 1.1502  | ī 9988 | 40′            |
| 30'   | 2.8946 | <b>2</b> .8960 | 1.1040  | ī 9987 | 30'            |
| 40'   | ž·9104 | 2.0118         | 1.0883  | ī·9986 | 20′            |
| 50'   | 2.0256 | 2.9272         | 1.0728  | ī·9985 | 10'            |
| 5° 0' | 2.9403 | 2.9420         | 1.0280  | ī.9983 | 0'85°          |
|       | logcos | logcot         | logtan  | logsin | 角              |

 $\begin{array}{l} logsina' = loga + \overline{4}\cdot 4637 + \frac{1}{3}logcosa'\\ loglana' = loga + \overline{4}\cdot 4637 - \frac{2}{3}logcosa'\\ logcoia' = -loga + 3\cdot 5363 + \frac{2}{3}logcosa' \end{array}$ 

(7)

#### 三角函數之對數表

|        |                | 1              | 人到数3   | e annulus assessment a lect of the con- |        |
|--------|----------------|----------------|--------|-----------------------------------------|--------|
| 角      | logsin         | logtan         | logcot | logcos                                  |        |
| 5° 0′  | 2·9403         | 2·9420         | 1.0280 | ī·9983                                  | o' 85° |
| 10'    | 2·9545         | 2.9563         | 1.0437 | 1.9982                                  | 50′    |
| 20'    | <u>2</u> ⋅9682 | 2.9701         | 1.0299 | ī 9981                                  | 40′    |
| 30'    | 2.9816         | 2·9836         | 1.0164 | ī•998o                                  | 30'    |
| 40′    | 2·9945         | 2·9966         | 1.0034 | ī·9979                                  | 20'    |
| 50'    | ī:0070         | ī.0093         | 0.9602 | Ī 9977                                  | 10'    |
| 6° 0′  | ī 0192         | 1.0316         | 0.9784 | ī·9976                                  | o' 84° |
| 10'    | Ĩ 0311         | ī·0336         | 0.9664 | ī·9975                                  | 50′,   |
| 20′    | ī·0426         | Ε0453          | 0.9547 | <u>1</u> .9973                          | 40′    |
| 30'    | ī·0539         | ī·0567         | 0.9433 | ī 9972                                  | 30'    |
| 40'    | ī 0648         | ī.0678         | 0.0325 | ī 9971                                  | 20′    |
| 50'    | Ī·0755         | ī·0786         | 0.0214 | ī•9969                                  | 10'    |
| 7º 0'  | ī:0859         | <u>1</u> .0891 | 0.0100 | ī.9968                                  | o' 83° |
| 10'    | Ī 0961         | ī•0995         | 0.2002 | <u>1</u> .9966                          | 50'    |
| 20′    | ī·1060         | ī·1096         | 0.8904 | 1.0004                                  | 40′    |
| 30'    | Ī·1157         | ī·1194         | o 88o6 | ī 9963                                  | 30'    |
| 40'    | Ī 1252         | ī·1291         | 0.8709 | <u>1</u> .9961                          | 20'    |
| 50'    | Ī·1345         | ī·1385         | 0.8612 | ī 9959                                  | 10'    |
| 8° 0'  | Ī·1436         | Ī·1478         | 0.8522 | ī·9958                                  | o' 82° |
| 10'    | Ī·1525         | Ī·1569         | 0.8431 | ī 9956                                  | 50′    |
| 20′    | Ī·1612         | ī·1658         | 0.8342 | Ī·9954                                  | 40'    |
| 30'    | ī·1697         | ī·1745         | 0 8255 | Ī·9952                                  | 30'    |
| 40'    | 1.1781         | ī·1831         | 0.8160 | 1.9950                                  | 20′    |
| 50′    | ī·1863         | <u>1</u> .1912 | 0.8085 | 7.9948                                  | 10'    |
| 9° 0'  | 1.1943         | Ī·1997         | 0.8003 | ī·9946                                  | 0'81"  |
|        | Ĩ:2022         | Ī·2078         | 0.7922 | Ī:9944                                  | 50′    |
| 20′    | 1.3100         | 1.2128         | 0.7842 | Ī·9942                                  | 40'    |
| 30′    | Ï·2176         | Ī·2236         | 0.7764 | I 9940                                  | 30'    |
| 40′    | Ï·225I         | 1.5313         | 0.7687 | 1.9938                                  | 20'    |
| 50'    | Ī·2324         | ī:2389         | 0.7611 | 1.9936                                  | 10'    |
| 10° 0′ | Ī·2397         | Ī·2463         | 0.7537 | Ī·9934                                  | o' 80° |
|        | logcos         | loycot         | logtan | logsin                                  | 夘      |

 $\begin{array}{l} logsina' = loga + 4\cdot4637 + \frac{1}{3}logcosa'\\ logtana' = loga + 4\cdot4637 - \frac{1}{3}logcosa'\\ logcola' = -loga + 35363 + \frac{1}{3}logcosa \end{array}$ 

| 三角函数之對數表    |                  |                |                  |          |                  |              |                  |                 |                                     |  |  |
|-------------|------------------|----------------|------------------|----------|------------------|--------------|------------------|-----------------|-------------------------------------|--|--|
|             | -                |                | 79 🖭 🕏           |          |                  | 1            |                  |                 | 73 71<br>1 73 74<br>2 14 6 14 2     |  |  |
| 角           | logsin           | 差              | logtan           | 通差       | logcot           | 差            | logcos           |                 | 321.921.3                           |  |  |
| 10° 0′      | ī·2397           | [              | ī•2463           | m2       | 0.7537           | 3            | ī 9934           | o'80°           | 536.535.5<br>643.842.6<br>751.140.7 |  |  |
| 10'         | ī·2468           | 7 <sup>I</sup> | Ī·2536           | 73<br>73 | 0.7464           | 2            | <u>1</u> .9931   | 50',            | 751.149.7                           |  |  |
| 20'         | Ī·2538           | 68             | Ī:2609           | 71       | 0.4391           | 2            | 1.9929           | 40′             | 8584568                             |  |  |
| 30′         | 1.5000           | 68             | ī•2680           | 70       | 0.7320           | 3            | 1.9927           | 30'<br>20'      | 9657639<br>65 63                    |  |  |
| 40'         | 1.2674           | 66             | ī·2750<br>ī·2819 | 69       | 0.7250           | 2            | ī 9924<br>ī 9922 | 10'             | 1 6.5 6.3                           |  |  |
| <u>50',</u> | Ī·2740           | 66             | ī 2887           | 68       | 0,1113           | 3            | 1.9919           | 0'79°           | 213.012.6                           |  |  |
| 11° 0′      | 1.2806           | 64             | Ī 2953           | 66       | 0 7047           | 2            | <u>1.9912</u>    | 50'             | 319·518·9<br>426·025·2              |  |  |
| 20'         | ī·2870<br>ī·2934 | 64             | I 2953           | 67       | 0.6980           | 3            | Ī·9914           | 40'             | 532.531.5                           |  |  |
| 30'         | ī.5997           | 63             | ī·3085           | 65       | 0.6912           | 2            | Ī·9912           | 30 <sup>1</sup> | 6 39.0 37.8                         |  |  |
| 40'         | 1.3028           | 61<br>61       | Ī·3149           | 64<br>63 | 0.6821           | 3 2          | ī.9909           | 20′             | 745·544·1<br>852·050·4              |  |  |
| 50'         | 1.3119           | 60             | 1.3212           | 63       | 0 6788           | 3            | ī.9902           | 10′             | 9 58-5 56-7                         |  |  |
| 12° 0′      | ī-3179           | 59             | Ī·3275           | 61       | 0.6725           | 3            | ī·9904           | 0'78°           | 57 55                               |  |  |
| 10'         | 1.3238           | 58             | Ī:3335           | 61       | 0 6664           | 2            | 1.9901           | 50'             | 1 5.7 5.5                           |  |  |
| 20′         | ī 3296           | 57             | Ī:3397           | 61       | 0.6603           | 3            | ī.9899           | 40′             | 3 17 1 16 5                         |  |  |
| 30′         | ī.3353           | 57             | 1.3458           | 59       | 0.6542           | 3            | 1.0896           | 30′<br>20′      | 422·822·0<br>528·527·5              |  |  |
| 40'         | 1.3410           | 56             | 1.3517           | 59       | 0.6483<br>0.6424 | 3            | ī 9893<br>ī 9890 | 10'             | 634.233.0                           |  |  |
| 50'         | ī•3466           | 55             | Ī:3576           | 58       | 0.6366           | 3            | Ī·9887           | 0'77°           | 739.938.5                           |  |  |
| 13° 0′      | Ī·3521           | 54             | ī•3634<br>ī•3691 | 57       | 0.0300           | 3            | ī·9884           | 50'             | 951.349.5                           |  |  |
| 10'<br>20'  | ī·3575<br>ī·3629 | 54             | ī·3748           | 57       | 0 6252           | 3            | I.9881           | 40'             | 49 47                               |  |  |
| 30'         | 1.3682           | 53             | ī·3804           | 56       | 0.6196           | 3            | ī·9878           | 30'             | 1 4.9 4.7                           |  |  |
| 40'         | Ī:3734           | 52<br>52       | ī·3859           | 55       | 0.6141           | 3            | ī 9875           | 20'             | 2 9.8 9.4<br>3 14.7 14.1            |  |  |
| 50'         | 1·3786           | 51             | 1.3914           | 55<br>54 | 0.6086           | 3            | 1.9872           | 10'             | 4196188                             |  |  |
| 14° 0′      | ī.3837           | 50             | ī·3968           |          | 0.6032           | 3            | ī.9869           | 0'76°           | 5 24·5 23·5<br>6 29·4 28·2          |  |  |
| 10'         | ī-3887           | 50             | Ī·4021           | 53<br>53 | 0.2979           | 3            | ī.9866           | 50′             | 734'332'9                           |  |  |
| 20′         | Ī·3937           | 49             | Ī·4074           | 53       | 0.5926           | 4            | Ī·9863           | 40′             | 839·237·6<br>944·142·3              |  |  |
| 30'         | 1.3986           | 49             | 1.4127           | 51       | 0.5873           |              | 1.0859           | 30'             | 41 39                               |  |  |
| 40′         | 1.4035           | 48             | 1.4178           |          | 0.2822           |              | 1.9856           | 20'<br>10'      |                                     |  |  |
| 50'         | 1.4083           | 47             | 1.4230           | 51       | 0.5770           |              | 1.0823           | -1              | 2 8.2 78                            |  |  |
| 15° 0′      | 1.4130           | -              | ī·4281           | _        | 0.5719           | <del> </del> | ī 9849           | 10.0            | 416.415.6                           |  |  |
|             | logcos           | 差              | logcot           | 通差       | logian           | 差            | logsin           | 角               | 5 20·5 19·5<br>6 24·6 23·4          |  |  |
| e           | <u> </u>         |                |                  |          |                  |              |                  |                 | =4 7 28·7 27:3<br>                  |  |  |
|             |                  |                |                  |          |                  |              |                  |                 | 210 2100                            |  |  |

| 69 | 67 |  |
|----|----|--|
|    |    |  |

#### 三角函數之對數表

| 09 07                                  |        |               | _        | 71 50 2 |          |           |   |         | e-e-range is |
|----------------------------------------|--------|---------------|----------|---------|----------|-----------|---|---------|--------------|
| 1 69 67 5<br>213 5 13 4<br>3 20 7 20 1 | 角      | logsin        | 差        | logtan  | 通差       | logcot    | 差 | logcos  |              |
| 427·626·8                              | 15° 0′ | ī·4130        |          | î 4281  |          | 0.2210    | _ | 9849    | o' 75°       |
| 641.440.2                              | 10'    | Ī·4177        | 47       | Ī 4331  | 50       | 0.2669    | 3 | ī ·9846 | 50'          |
| 748.346.9                              | 20'    | Ī'4223        | 46       | ī·4381  | 50       | 0.5619    | 3 | 'ī 9843 | 40'          |
| 855.253.6<br>962.160.3                 | 30'    | ī·4269        | 46       | Ī·4430  | 49       | 0 5 5 7 0 | 4 | ī.9839  | 30'          |
|                                        | 40'    | Ī.4314        | 45       | ī·4479  | 49       | 0.5521    | 3 | ī 9836  | 20'          |
| 61 59                                  | 50'    |               | 45       | 1.4527  | 48       | 0.5473    | 4 | 1.9832  | ·10'         |
| 1 6·1 5·9 5                            |        | 1.4359        | 44       | 1.4575  | 48       | 0.2432    | 4 | Ī·9828  | 0'74°        |
| 318-317-7                              |        | 1.4403        | 44       |         | 47       |           | 3 | Ī·9825  | 50'          |
| 4 24 4 23 6                            | 10′    | I 4447        | 44       | ī·4622  | 47       | 0.2378    | 4 | 1.6851  | 40'          |
| 530.529.5                              | 20′    | Ī·4491        | 42       | 1.4669  | 47       | 0.2331    | 4 | i.9812  | 30'          |
| 636·635·4<br>742·741·3                 | 30'    | Ī·4533        | 43       | Ī·4716  | 46       | 0.284     | 3 | ī·9814  | 30           |
| 848-847-2                              | 40'    | Ī·4576        | 42       | ī·4762  | 46       | 0.238     | 4 | ī 9810  | 20'<br>10'   |
| 9 54-9 53-1                            | 50'    | ī·4618        | 41       | ī-4808  | 45       | 0.2192    | 4 |         |              |
| 53 51                                  | 17° 0' | ī·4659        | 41       | ī:4853  | 45       | 0.2147    | 4 | ī.0806  | 0′73°        |
| 1 5.3 5.1                              | 10′    | Ī 4700        | 41       | ī·4898  | 45       | 0.2103    | 4 | Ī·9802  | 50′          |
|                                        | 20'    | ī·4741        | 40       | ·Ĩ·4943 | 44       | 0.2022    | 4 | 1.9798  | 40'          |
| 315.915.3<br>421.220.4                 | 30'    | ī·4781        | 40       | ī•4987  | 44       | 0.2013    | 4 | 1'9794  | 30'          |
| 5 26.5 25.5                            | 40'    | ī•4821        | 40       | ī'5031  | 41       | 0.4969    | 4 | Ī.9790  | 20'          |
| 631.830.6                              | 50'    | ī·4861        | 39       | ī 5075  | 43       | 0.4925    | 4 | ī·9786  | 10'          |
| 737·135·7<br>842·440·8                 | 18° 0′ | ΰ4900         |          | 1.2118  | 43       | 0.4882    | 4 | 1.9783  | 0'72°        |
| 947.745.9                              | 10'    | Ī·4939        | 39<br>38 | 1.2161  | 42       | 0.4839    | 4 | ī·9778  | 50'          |
| 45 43                                  | 20'    | Ī:4977        | 38       | ī·5203  | 42       | 0.4797    | 4 | Ī 9774  | 40'          |
|                                        | 30'    | Ī·5015        |          | ī 5245  | 42       | 0.4755    | 5 | 1.9770  | 30'          |
| 2 90 86                                | 40'    | 1.2022        | 37<br>38 | ī·5287  | 42       | 0.4713    | 4 | ī.9765  | 20'          |
| 3 13.5 12.9                            | 50'    | ī·5090        |          | 1.5329  | l '      | 0.4671    | 4 | Ī 9761  | 10'          |
| 5,22.5,21.5                            | 19° 0′ | 1.2120        | 36       | Ī·5370  | 41       | 0.4630    | 1 | 1.9757  | 0'710        |
| 627.025.                               | 10'    |               | 37       | 1.2411  | 41       | 0.4589    | 5 | Ī.0752  | 50'          |
| 731.230.1<br>836.034.4                 |        | 1.2163        | 36       | Î 5451  | 40       | 0.4549    | 4 | 1.9748  | 40'          |
| 940.538.7                              | 20'    | Ī.2199        | 36       | 1       | 40       | 0.4509    | 5 | Ī·9743  | 30'          |
| 37 35                                  | 30'    | Ī·5235        | 35       | 1.2491  | 40       | 0.4469    | 4 | Ī.9739  | 20'          |
| 3/ 35<br>1 3'7 3'5                     | 40'    | Ī·5270        | 36       | 1.2231  | 40       | 0.4429    | 5 | 1.9734  | 10,          |
| 2 7.4 7.0                              | 50'    | <u>1.2300</u> | 35       | 1.2221  | 40       | 0:4380    | 4 | 1.0230  | 0'70°        |
| 3 11-1 10-5                            | 20° 0′ | Ī·5341        |          | 1.2011  | <u> </u> | 0.4389    |   | 1 3/30  |              |
| 414.814.0                              |        | logcos        | 差        | logcot  | 通差       | logtan    | 差 | logsin  | 角            |
| 622.5 51.0                             | 1      | togcos        | 45       | 1.09500 | 差        | 1         | 1 |         |              |
| 725.024.5                              |        |               |          |         |          |           |   |         |              |

|               |                  |          |                | <u> </u> | 1,               |        | ·                        |            | 7 15.4 5.6<br>8 17.6 6.4<br>9 19.8 7.2 |
|---------------|------------------|----------|----------------|----------|------------------|--------|--------------------------|------------|----------------------------------------|
| -             | logcos           | 差        | logcot         | <b>新</b> | logtan           | 差      | logsin                   | 角          | 4 8·8 3·2<br>5 11·0 4·0<br>6 13·2 4.8  |
| 25° 0′        | Ī·6259           |          | ī·6687         | 23       | 0.3313           |        | Ī·9573                   | o′ 65°     | 3 6.6 2.4                              |
| 50'           | ī·6232           | 27       | ī∙6554         | 33       | 0.3346           | 6      | ī-9579                   | 10'        | 1 2·2 0·8<br>2 4·4 1·6                 |
| 40'           | ī·6205           | 27       | ī.6620         | 34       | 0.3380           | 5      | ĩ·9584                   | 20'        | 22 8                                   |
| 30'           | 1.6177           | 28       | ī.6587         | 33       | 0.3413           | 6      | ī.9590                   | 30'        | 9 23.4 22.5                            |
| 20'           | Ī·6149           | 28       | ī·6553         | 34       | 0.3447           | 6      | Ī·9596                   | 40'        | 8 20 8 20 0                            |
| IO'           | 1.6121           | 28       | Ī·6520         | 31<br>33 | 0.3480           | 5<br>6 | Ī·9602                   | 50'        | 6 15.6 15.0<br>7 18.2 17               |
| 24° 0′        | ī.6093           | 28       | 1.6486         | 34       | 0.3214           | -      | 1.0002                   | 0'66°      | 5 13.0 12.5                            |
| 50'           | ī·6065           | 28       | ī 6452         | 1 1      | 0.3548           | 5<br>6 | 1.9613                   | 10'        | 3 7.8 7.5                              |
| 40'           | ī·6036           | 29       | ī 6417         | 34<br>35 | 0.3583           |        | ī.9618                   | 20'        | 2 5·2 5·0<br>3 7·8 7·9                 |
| 30'           | I.6007           | 29<br>29 | 1.6383         | 35       | 0.3612           | 5<br>6 | ī 9624                   | 30'        | 1 2.6 2                                |
| 20'           | I-5978           | 30       | ī 6348         | 34       | 0.302            | 6      | I-9629                   | 40'        | 26 25                                  |
| 10'           | ī·5948           | 29       | Ī 6314         | 35       | 0.3686           | 5      | 1.9635                   | 50'        | 927.926                                |
| 23° 0′        | 1,2010           | 30       | Ī·6279         | 36       | 0.3721           | 6      | Ī 9640                   | 0'67°      | 721.720<br>824.823                     |
| 50'           | 1.2889           | 30       | ī·6243         | 35       | 0.3757           | 5      | i 9646                   | 10'        | 5 15.5 14.<br>6 18.6 17.               |
| 40'           | ī·5859           | 31       | ī·6208         | 36       | 0.3792           | 5      | 1.9621                   | 30<br>20'  | 4124111                                |
| 30'           | 1.2828           | 30       | Ī·6172         | 36       | 0°3864<br>0°3828 | 5      | ī.9661<br><u>1</u> .9656 | 40'<br>30' | 3 9.3 8.                               |
| 20'           | ī·5767<br>ī·5798 | 31       | ī·6136         | 36       | 0.3864           | 6      | Ī:9667                   | 50′        | 2 6.2 2.                               |
| 22° 0′<br>10′ | Ī·5736           | 31       | Ī:6064         | 36       | 0.3936           | 5      | Ī·9672                   | 0'68°      | 31 20                                  |
| 50'<br>22° 0' | Ī·5704           | 32       | Ī:6028         | 36       | 0.3972           | 5      | Ī:9677                   | 10'        | 9 31-5 30                              |
| 40'           | Ī.2673           | 31       | 1.2091         | 37       | 0.4009           | 5      | Ī 9682                   | 20'        | 828.027.                               |
| 30'           | 1.2641           | 32       | Ī·5954         | 37       | 0.4046           | 5      | 1.9687                   | 30         | 621'020'<br>724'523'                   |
| 20′           | Ī·5609           | 22       | <u>1</u> .2912 | 37       | 0.4083           | 5      | Ī·9692                   | 40'        | 517.517                                |
| 10′           | Ī·5576           | 33       | ī·5879         | 37<br>38 | 0.4121           | 5      | ī.9697                   | 50'        | 3105102<br>414013(                     |
| 21° 0'        | Ī·5543           | 33       | Ī·5842         |          | 0.4158           | 4      | Ī·9702                   | 0'69°      | 2 70 6                                 |
| 50!           | ī.2210           |          | Ĩ·5804         | 38       | 0.4196           | ł      | ī·9706                   | 10'        | 1 3 5 3                                |
| 40′           | ī·5477           | 34       | ī·5766         | 39<br>38 | 0.4234           | 5<br>5 | 1.9711                   | 20'        | 35 34                                  |
| 30'           | ī·5443           | 34       | Ī·5727         | 38       | 0.4273           | 5      | Ī 9716                   | 30'        | 831.530.                               |
| 20'           | I 5409           | 34       | ī 5689         | 39       | 0'4311           | 4      | I-9/23                   | 40'        | 727:326                                |
| 10'           | Ī·5375           | 54       | Ī-565C         | 39       | 0.4389           | 5      | 1.9730<br>1.9725         | 50'        | 5 19·5 19·<br>6 23·4 22                |
| 20° 0′        | Ī*5341           | ╁╴       | <u>1</u> .2011 | 25       | 0:4380           | ╢      | Fromo                    | 0'70°      | 4 4 5 6 15                             |
| 角             | logsin           | 差        | logtan         | 通差       | logcot           | 差      | logcos                   |            | 2 78 76<br>3 11 7 11 7                 |

# 三角函數之對數數

| 3/ 39                                 |          |                | _            | /1 123 30   | `~  |             |    |     |               |              |
|---------------------------------------|----------|----------------|--------------|-------------|-----|-------------|----|-----|---------------|--------------|
| 1 3.7 3.6<br>2 7.4 7.2<br>3 11.1 10.8 | 角        | logsin         | 差            | logtan      | 通差  | logco       | t  | 差   | logcos        |              |
| 414·814·4<br>518·518·0                | 25° 0′   | ï·6259         |              | ī·6687      | 22  | 0.33        | 13 | 6   | ī·9573        | o′ 65°       |
| 622.221.6                             | 10'      | 1.6286         | 27           | 1.6720      | 33  | 0.35        | 30 | 6   | ī·9567        | 50'          |
| 725.925.2                             | 20'      | ī·6313         | 27           | ī 6752      | 32  | 0.32        | 48 | 6   | Ī 9561        | 40'          |
| 829·628·8<br>933·332·4                | 30'      | ī·6340         | 27           | ī·6785      | 33  | 0.32        |    | 6   | Ī.9555        | 30'          |
|                                       | 40'      | ī 6366         | 26           | ī·6817      | 32  | 0.31        | 83 | 6   | ī 9549        | 20'.         |
| - ru                                  | 50'      | Ī·6392         | 26           | ī 6850      | 33  | 0.31        |    | 6   | Ī 9543        | IC'          |
| 1 3.3 3.2<br>2 6.6 6.4                | 26° 0'   | ī·6418         | 26           | ī·6882      | 32  | 0.31        |    | · I | Ī:9537        | 0'64°        |
| 3 9.9 9.6                             | 10       | ī·6444         | 26           | ī·6914      | 32  | 0.30        | 86 | 7   | ΰ0530         | 50'          |
| 413.212.8                             | 20'      | 1.6470         | 26           | ī·6946      | 32  | 0.30        |    | 6   | Ī·9524        | 40'          |
| 6198192                               | 30'      | ī·6495         | 25           | ī 6977      | 31  | 0.30        |    | 6   | 1.9518        | 30'          |
| 723.122.4                             | 40'      | ī·6521         | 26           | ī·7009      | 32  | 0.29        |    |     | Ī'9512        | 20'          |
| 8 26 4 25 6<br>9 29 7 28 8            | 50'      | ī 6546         | 25           | Ī·7040      | 31  | 0.29        |    | 7   | ī 9505        | 10'          |
| 28 27                                 | 27° 0'   | ī·6570         | 24           | 1.7072      | 32  | 0.20        |    |     | ī·9499        | o′ 63°       |
| 1 2.8 2.7                             | 10'      | Ī·6595         | 25           | 1.7103      | 31  | 0.28        |    | 7   | Ī·9492        | 50'          |
| 2 5 6 5 4                             | 20'      | 1.6620         | 25           | Ĩ·7134      | 31  | 0.28        | 66 | -   | ī 9486        | 40'          |
| 3 8.4 8.1                             | 30'      | ī·6644         | 24           | 7165        | 31  | 0.28        | 35 | 7   | Ī 9479        | 30'          |
| 4 11 2 10 8<br>5 14 0 13 5            | 40'      | ī·6668         | 24           | ī·7195      | 31  | 0.28        |    | 7   | ī 9473        | 20'          |
| 6,16.8,16.2                           | 50'      | ī 6692         | 24           | 1 7226      | 30  | 0.27        | 74 | - 1 | ī:9466        | 10'          |
| 7 19·6 18·9<br>8 22·4 21·6            | 28° 0′   | 1.6716         | 24           | Ī·7257      | 31  | 0.52        |    | 7   | Ī·9459        | 0'62°        |
| 925.524.3                             | 10'      | Ī·6740         | 24           | 1.7287      | 30  | 0.52        |    | 7   | ī 9453        | 50′          |
| 24 23                                 | 20'      | ī·6763         | 23           | 1.7317      | 30  | 0.26        |    | 7   | ī 9446        | 40'          |
|                                       | 30'      | ī·6787         | 24           | ī·7348      | 31  | 0.26        | _  | 7   | Ī·9439        | 30'          |
| 2 4.8 4.6                             | 40       | <u>1.</u> 6810 | 23           | ī·7378      | 30  | 0.26        |    | 7   | ī 9432        | 20'          |
| 3 7.2 6.9                             | 50'      | 1.6833         | 23           | ī·7408      | 30  | 0.25        |    | 7   | ī 9425        | 10'          |
| 4 9.6 9.2<br>5 12.0 11.5              | 29° 0′   | Ī·6856         | 23           | Ī·7438      | 30  | 0.25        |    | 1   | 1.9418        | 0'61°        |
| 014.413.8                             | 10       | 1.6878         | 22           | 1.7467      | 29  | 0.5         |    | 7   | 1.9411        | 50'          |
| 716.816.1                             | • 20'    | 1.6901         | 23           | Ī-7497      | 30  | 0.22        |    | 7 7 | ī 9404        | 40'          |
| 8 19·2 18·4<br>9 21·6 20·7            | 30'      | 1.6923         | 22           | 1.7526      | 29  | 0.54        | •  | 7   | ī·9397        | 30'          |
| 64                                    | 40'      | ī.6946         | 23           | ī·7556      |     | 0.54        | -  | 7   | ī.9390        | 20'          |
| 1 0.6 0.4                             | 50'      | ī 6968         | 22           | 1.7585      | 1 1 | 0.24        |    | 8   | ī.9383        | 10'          |
| 2 1.2 0.8                             | 30° 0'   |                | 22           | 1.7614      | 29  | 0.5         | 86 | ľ   | Ī'9375        | 0'60°        |
| 3 1.8 1.2                             | 30 0     | 1 0990         | <del> </del> | <del></del> | 275 | -,          |    | -   | 1             | <del> </del> |
| 5 3.0 2.0                             |          | logcos         | 差            | logcot      | 通差  | logt        | an | 垄   | logsin        | 角            |
| 7 4.2 2.8                             | <u> </u> | <u> </u>       | 1            | <u>'</u>    | -   | <del></del> |    | -   | <del></del> - | ·            |
| 8 48 32                               | -        |                |              |             |     |             |    |     |               |              |
| 9 5:4 3:6                             | -        |                |              |             |     |             |    |     |               |              |
|                                       |          |                |              |             |     |             |    |     |               |              |

|             |        |          |                  | •     | •                                      |       |                  |                            |                                                       |
|-------------|--------|----------|------------------|-------|----------------------------------------|-------|------------------|----------------------------|-------------------------------------------------------|
|             |        | Ξ        | 角函               | 数:    | と對数                                    | 瑟     |                  |                            | 30 20                                                 |
| 角           | logsin | 差        | logian           | 通差    | logcot                                 | Ž     | logcos           |                            | 2 60 55<br>3 90 87                                    |
| 30° 0'      | ī.6990 |          | ī·7614           |       | 0.5386                                 | 5     | Ī:9375           | 0'60                       | ع ـ امروداد ال                                        |
| 10'         | Ī'7012 | 22       | Ī·7644           | - 30  | 0.2356                                 | 7     | Ī·9368           |                            | 618017.1                                              |
| , 20'       | 1.7033 | 21       | ī·7673           | 129   | 0.2327                                 |       | 1.9361           | 40'                        | 721-020-3                                             |
| 30′         | Ī·7055 | 122      | Ī.7701           | 120   | 0.550                                  | ď     | Ī 9353           | 30'                        | 8 24 0 23 2<br>9 27 0 26 1                            |
| 40'         | ī.7076 | 21       | Ī:7730           | 129   | 0.2270                                 |       | I.9346           |                            | 9                                                     |
| 500         | Ī:7097 | 21       | Ī:7759           | 29    | 0.2241                                 | 1 0   | 1.9338           | 1 .                        |                                                       |
| 31° 0′      | 1.4118 | 21       | Ī:7788           | 7 29  | 0.2212                                 | 7     | <u>1.8331</u>    | 0'590                      | 2 5 2 5 0                                             |
| IO'         | Ĩ.7139 | 21       | Ī·7816           | 20    | 0.5184                                 | - 18  | I'9323           | 50'                        | 3 78 75                                               |
| 20'         | 1.7160 | 121      | 1.7845           | 129   | 0.2155                                 | 1.0   | 1.9312           | 40'                        | 410.4100<br>513.012.5                                 |
| 30'         | 1.7181 | 1-1      | 1.7873           | 28    | 0.2127                                 | 7     | ī 9308           | 30'                        | 615.615.0                                             |
| 40'         | Ī 720I | 20       | Ī 7902           | 29    | 0.2008                                 | 8     | Ĩ 9300           | 20'                        | 7 18.2 17.5                                           |
| 50'         | Ī·7222 | 21       | ī.7930           | 28    | 0.5020                                 | , I ° | J.9292           | 10'                        | 8208200<br>9234225                                    |
| 32° 0'      | Ī·7242 | 20       | 1.7958           | 28    | 0.3043                                 | 10    | 1.0284           | 0'58°                      | 20 19                                                 |
| 10'         | Ĭ·7262 | 20       | Ī·7986           | 28    | 0.2014                                 | . 8   | 1.9276           | 50'                        | 1 20 19                                               |
| 20'         | 1.7282 | 20       | 1.8014           | 28    | 0.1086                                 | 8     | Î 9268           | 40'                        | 2 40 38                                               |
| 30'         | 1.7302 | 20       | ī.8042           | 28    | 0.1928                                 | 8     | 1.9260           | 30                         | 3 60 57                                               |
| 40 <b>'</b> | Ĩ 7322 | 20       | 1.8070           | 28    | 0.1030                                 | 8     | 1.9252           | 20'                        | 4 8·0 7·6<br>510·0 9·5                                |
| 50'         | ī·7342 | 20       | 1.8097           | 27    | 0.1303                                 | 8     | I 9232           | 10'                        | 6120114                                               |
| 33° 0′      | ī·7361 | 19       | Ī·8125           | 28    | 0.1875                                 | 8     | 1.0236           | 0'57°                      | 7 14 0 13 3<br>S 16 0 15 2                            |
| 10'         | Ī·7380 | 19       | Ī·8153           | 28    | 0.1842                                 | 8     |                  |                            | 9180171                                               |
| 20'         | Ĩ 7400 | 20       | 1.8180           | 27    | 0.1850                                 | 9     | Ī:9228           | 50'                        | 16 15                                                 |
| 30'         | Ĩ·7419 | 19       | ī·8208           | 28    | 0.1792                                 | 8     | 1.0311<br>1.0310 | 40 <b>′</b><br>30 <b>′</b> | 1 1.6 1.5                                             |
| 40'         | ī·7438 | 1 -5 1   | ī.8235           | 27    | 0 1765                                 | 8     | Ï 9203           | 20'                        | 2 3 2 3 0                                             |
| 50'         | Ī·7457 | , -,     | ī·8263           | 28    |                                        | 9     | I.0104           | 10'                        | 3 4.8 4.5                                             |
| 34° 0′      | 1.7476 | ון כייון | I.8290           | 27    | 0.1210                                 | 8     | ī·9194           | 1                          | 4 6.4 6.0<br>5 8.0 7.5                                |
| 10'         | Ī·7494 |          |                  | 27    | 0.1083                                 | 9     |                  | 0′56°                      | 6 9.6 9.0                                             |
| 20'         | I.7513 | 19       | ī·8317<br>ī·8344 | 27    | 0.1656                                 | 8     | 1.0124           | 50'                        | 711.210.5<br>812.812.0                                |
| 30'         | 1.7531 | 18       | ī·8371           | 27    | 0.1620                                 | 9     | 1.0160           | 40′                        | 914.413.5                                             |
| 40'         | I*7550 | 19       | ī·8398           | 27    | 0.1603                                 | 9     | 1.0140           | 30'<br>20'                 | 9 8                                                   |
| 50'         | 1.7568 | 18       | ī·8425           | ' 1   | 0.1222                                 | 9     | Ī:9151           | 10'                        | 30 00 1                                               |
| 35° 0'      | Ī·7586 | 18       | Ĭ·8452           |       | 0.1548                                 | 8     | Ī·9142           | 0'55°                      | 2 1.8 1.6                                             |
|             | logcos | 差        | logcot           | 孤差    | logtan                                 | 差     | logsin           | 角                          | 2.7 2.4<br>3.6 3.2<br>5 4.5 4.0<br>6 3 5.6<br>7.2 6.4 |
|             |        | en e     |                  | - · · | ************************************** | ===   |                  |                            | 7 6·3 5·6<br>8 7·2 6·4<br>9 8·1 7·2                   |

(13) 三角函數之對數表

| 1                          |                 |                  |          |                  | (30)     | ,                 |    |        |                 |
|----------------------------|-----------------|------------------|----------|------------------|----------|-------------------|----|--------|-----------------|
| 28 27                      |                 |                  | Ξ        | 9 函              | 生之       | : 對數:             | 走. |        |                 |
| 1 2.8 2.7                  |                 |                  |          | <del></del>      | 1 505    |                   |    |        |                 |
| 2 5.6 5.4<br>3 8.4 8.1     | 角               | logsin           | 差        | logtan           | 通差       | logcot            | 差  | logcos | ì               |
| 411.510.5                  | 35° 0′          | ī·7586           | -        | ī·8542           | -        | 0.1548            | _  | ī·9134 | o′ <b>5</b> 5°  |
| 514°0 13°5<br>616°8 16°2   |                 | 1,7604           | 18       |                  | 27       |                   | 9  | Î.0125 | 50'             |
| 710.618.9                  | 10'<br>20'      | i 7622           | 18       | ī·8479<br>ī·8506 | 27       | 0.121             | 9  | 19125  | 40'             |
| \$22.4.21.6<br>9.25.2.24.3 | 30'             | ī·7640           | 18       | ī·8533           | 27       | 0.1494<br>0.1462  | 9  | 19107  | 30'             |
|                            | 40'             | ī 7657           | 17       | I-8559           | 26       | 0.1441            | 9  | 19107  | 20'             |
| 22 21                      | 50'             | î 7675           | 18       | ī·8586           | 27       | 0.1414            | 9  | ī 9090 | 10'             |
| 1 2·2 2·1<br>2 4·4 4·2     | 36° 0′          | 1.7692           | 17       | Ī·8613           | 27       | 0.1382            | 9  | 1.9080 | 0'54°           |
| 3 66 63                    | 10'             |                  | 18       | Ī·8639           | 26       |                   | 10 | 1.0020 | 50'             |
| 4 8.8 8.4                  | 20'             | 1.7710           | 17       | ī 8666           | 27       | 0.1361            | 9  | 1.0001 | 40'             |
| 613.515.6                  | 30'             | ī 7727<br>ī 7744 | 17       | ī.8692           | 26       | 0°1334<br>9°1308  | 9  | 1 9052 | 30 <sup>1</sup> |
| 7154147                    | 40 <sup>4</sup> | 1.7761           | 17       | ī·8718           | 26       | 0.1282            | 10 | 1 9032 | 20'             |
| 817·616·8<br>919·818·9     | 50'             | 1.7778           | 17       | ī 8745           | 27       | 0.1222            | 9  | 1.0033 | 10'             |
| 18 17                      | 37° 0'          | 1.7795           | 17       | Ī·8771           | 26       | 0.1533            | 10 | 1.0023 | 0′53°           |
| 1 1.8 1.7                  | 10'             | 1.7811           | 16       |                  | 26       |                   | 9  | Ī·9014 | 50'             |
| 2 3.6 3.4                  | 20'             | 1.7828           | 17       | ī·8797<br>ī·8824 | 27       | 0.1303<br>0.11203 | 10 | Ī·9014 | 40'             |
| 3 54 51                    | 30'             | ī·7844           | 16       | ī·8850           | 26       | 0,1120            | 9  | 1.8995 | 30'             |
| 4 7 2 6·8<br>5 9·0 8·5     | 40              | 1.4861           | 17       | ī·8876           | 26       | 0'1124            | 10 | ī·8985 | 20'             |
| 610 8,10-2                 | 50'             | 1.7877           | 16       | 1.8902           | 26       | 0.1008            | 10 | Ī·8975 | 10'             |
| 712611.9<br>814.413.6      | 38° 0'          | 1.7893           | 16       | 1.8928           | 26       | 0.1023            | 10 | ī·8965 | 0′52°           |
| 9,16.2,15.3                | 10'             | 1.7910           | 17       | 1.8954           | 26<br>26 | 0.1040            | 10 | ī·8955 | 50'             |
| 01 11                      | 20'             | 1.7926           | 16       | 1.8980           | 26       | 0.1050            | 10 | ī·8945 | 40'             |
| 1 1.1 1.0                  | 30'             | 1.7941           | 15<br>16 | Ī.300Q           | 26       | 0.0994            | 10 | ī·8935 | 30'             |
| 3 3.3 3.0                  | 40'             | ī 7957           | 16       | Ī·9032           | 26       | 0.0968            | 10 | ī·8925 | 20'             |
| 3 3 3 3 0                  | 50'             | ī·7973           | 16       | ī 9058           | 26       | 0.0942            | 10 | ī·8915 | 10'             |
| 5 5.5 5.0<br>6 6.6 6.0     | 39° 0'          | 1.7089           |          | 1.0084           | 26       | 0.0016            | 10 | 1.8905 | 0'51°           |
|                            | 10'             | 1.8004           | 15<br>16 | 1.0110           | 25       | 0.0800            | II | ī·8895 | 50′             |
|                            | 20′             | ī·8020           | 15       | ī.9135           | 26       | 0.0865            | 10 | ī·8884 | 40'             |
| 9 9 9 9 0                  | 30'             | 1.8035           | 15       | 19161            | 26       | 0.0830            | 10 | ī·8874 | 30'             |
| 7                          | 40'             | ī·8050           | 16       | 1.9187           | 25       | 0.0813            | 11 | ī·8864 | 20'             |
| 1 07                       | 50'             | 1.8006           | 15       | Ī:9212           | 26       | 0.0788            | 10 | ī·8853 | 10              |
| 3 2 1                      | 40° 0'          | 1.8081           | د ۲      | 1.9238           | -        | 0.0762            | 10 | ī·8843 | 0'50°           |
| 4 2·8<br>5 3·5<br>6 4·2    |                 | logcos           | 差        | logcot           | 通差       | loytan            | 差  | logsin | βj              |
| 7 4.9<br>5.6<br>9 6.3      |                 |                  |          |                  |          |                   |    | ,      |                 |
|                            |                 |                  |          |                  |          |                   |    |        |                 |

| ,      |                | *6 * 25* | and the second section is | TOTAL SEA | and the same of the same of the | 2206         | mesterio i de la companio de la comp | 4 eu -7    | 1 2.6 2.5                             |
|--------|----------------|----------|---------------------------|-----------|---------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|
| ſŊ     | logsin         | 差        | logtan                    | 通差        | logcot                          | 差            | logcos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 2 5·2 5·0<br>3 7·8 7 5<br>4 10·4 10·0 |
| 40° 0' | 1.8081         |          | ī·9238                    | 26        | 0.0762                          |              | ī·8843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o'50°      | 5 13.0 12.5                           |
| 10'    | ī·8096         | 15       | Ī·9264                    | 25        | 0.0736                          | II<br>II     | ī·8832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50'        | 615.615.0<br>718.217.5                |
| 20'    | 1.8111         | 15<br>14 | ī 9289                    | 26        | 0 0711                          | 11           | Ī 8821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40'        | 8 20 8 20 0                           |
| 30'    | 1.8125         | 15       | 1.2312                    | 26        | 0.0682                          | IO           | 1.8810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30'        | 9 23 4 22 5                           |
| 40′    | 1.8140         | 15       | 1.9341                    | 25        | 0.0629                          | 11           | 1.8800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20′        | 15                                    |
| 50′    | I.8122         | 14       | 1.9369                    | 26        | 0.0634                          | 11           | ī·8789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10'        | 1 1.2                                 |
| 41° 0′ | ī·8169         | 15       | Ĩ:9392                    | 25        | 0.0008                          | 11           | ī 8778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0'49°      | 2 3.0<br>3 4.5                        |
| 10'    | ī·8184         | 14       | Ī 9417                    | 26        | 0.0283                          | 11           | ī·8767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50′        | 3 4·5<br>4 6·0                        |
| 20′    | <u>1</u> .8198 | 15       | Ī·9443                    | 25        | 0.0222                          | 11           | ī·8756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40′        | 5 7.5                                 |
| 30′    | 1.8213         | 14       | ī ·9468                   | 26        | 0.0232                          | 12           | ī·8745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30'        | 6 9.0<br>7 IO.2                       |
| 40′    | ī·8227         | 14       | ī 9494                    | 25        | 0.0206                          | 11           | ī·8733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20'        | 8120                                  |
| 50'    | 1.8241         | 14       | ī.0210                    | 25        | 0.0481                          | 11           | Ī·8722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10'        | 913.2                                 |
| 42° 0' | 1.8255         | 14       | Ī·9544                    | 26        | 0.0456                          | 12           | 1.8711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0'48°      | 14 13                                 |
| 10′    | 1.8269         | 14       | 1.9570                    | 25        | 0.0430                          | 11           | i·8699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50′        | 1 1.4 1.<br>2 2.8 2.0                 |
| 20′    | 1.8283         | 14       | 1.9595                    | 26        | 0.0402                          | 12           | 1.8688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40'        | 3 4 2 3                               |
| 30′,   | 1.8297         | 14       | Ī·9621                    | 25        | 0.0379                          | 11           | ī·8676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30'        | 4 5 6 5                               |
| 40′    | Ī 8311         | 13       | ī•9646                    | 25        | 0.0354                          | 12           | ī 8665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20'        | 5 7°0 6<br>6 8°4 7                    |
| 50′    | ī·8324         | 74       | 1.9671                    | 26        | 0.0329                          | 12           | ī·8653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10'        | 7 9.8 9.                              |
| 43° 0′ | 1.8338         | 13       | ī.9697                    | 25        | 0.0303                          | 12           | ī·8641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0'47°      | 8 11.5 10.                            |
| 10′,   | 1.8351         | 14       | Ī.9722                    | 25        | 0.0228                          | 11           | 1.8629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50′        | 12 1                                  |
| 20′    | 1.8365         | 13       | <u>1</u> 9747             | 25        | 0.0223                          | 12           | 1.8618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40'        |                                       |
| 30′    | 1.8378         | 13       | 1.9772                    | 26        | 0.0228                          | 12           | 1.8605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30'        | 2 2.4 2                               |
| 40′    | 1.8391         | 14       | 1.9798                    | 25        | 0.0202                          | 12           | ī·8594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20'<br>10' | 3 3.6 3.                              |
| 50'    | Ī·8405         | 13       | Ī·9823                    | 25        | 0.0172                          | 13           | <u>1.8582</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 4 4.8 4<br>5 6.0 5<br>6 7.2 6         |
| 44° 0′ | 1.8418         | 13       | 1.0848                    | 26        | 0.012                           | 12           | ī·8569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0'46°      |                                       |
| 10′    | Ī·8431         | 13       | 1.9874                    | 25        | 0.0150                          | 12           | ī·8557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50'        | 7 84 7<br>8 96 8                      |
| 20'    | Ī·8444         | 13       | ī.9899                    | 25        | 0.0101                          | 13           | ī 8545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40'        | 9108 9                                |
| 30'    | Ī·8457         | 12       | 1.9924                    | 25        | 0.0010                          | 12           | 1.8532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30'        |                                       |
| 40'    | 1.8469         | 13       | Ī:9949                    | 26        | 0.0021                          | 13           | ī·8520<br>ī·8507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10'        | I                                     |
| 50'    | 1.8482         | 13       | Ī:9975                    | 25        | 0.0025                          | 12           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0'45°      | 1                                     |
| 45° 0′ | 1.8495         | <u> </u> | 0 0000                    | <u> </u>  | 0 0000                          | <del>.</del> | i-8495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 45       |                                       |
|        | logcos         | 差        | logcot                    | 通差        | logtan                          | 鋚            | logsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 角          |                                       |

# 第三。

三角函數之眞數表.

(16) 三角函數之眞數幾

| 1         | 角    | sin   | tan   | sec    | cosec | cot   | cos           |       |
|-----------|------|-------|-------|--------|-------|-------|---------------|-------|
| 0°        |      | .0000 | .0000 | 1.000  | 8     | ∞     | 1.000         | 0,300 |
|           | IO'  | .0029 | .0029 | 1,000  | 343.8 | 343.8 | 1.000         | 50'   |
| 9         | 20'  | .0028 | 0058  | 1.000  | 171'9 | 171.9 | 1.000         | 40'   |
| H         | 30'  | .0082 | .0082 | 1.000  | 1146  | 114.6 | 1.000         | 30'   |
|           | 40'  | .0110 | .0119 | 1,000  | 85.95 | 85.94 | 9999          | 20'   |
| H         | 50'  | 0145  | 0145  | 1.000  | 68.76 | 68.75 | <b>.</b> 9999 | 10'   |
| 10        | o′   | 0175  | ·0175 | 1.000  | 57:30 | 57.29 | .9998         | 0'89  |
|           | 10'  | .0204 | .0204 | 1.000  | 49.11 | 49.10 | 19998         | 50'   |
|           | 20'  | 0233  | .0233 | 1.000  | 42.98 | 42.96 | 9997          | 46'   |
| Ī         | 30'  | .0262 | •02б2 | 1.000  | 38.20 | 38.19 | 9997          | 30'   |
| 1         | 40'  | .0291 | '0291 | 1.000  | 34.38 | 34.37 | 19996         | 20'   |
| ļ         | _50' | 0320  | .0320 | 1.001  | 31.26 | 31.54 | 9995          | 10'   |
| 2°        | o'   | .0349 | .0349 | 1.001  | 28.65 | 28.64 | <i>-</i> 9994 | 0'88° |
|           | 10'  | .0378 | 0378  | 1.00.1 | 26.45 | 26.43 | 9993          | 50'   |
|           | 20'  | 0407  | *0407 | 1.001  | 24.36 | 24.54 | 9992          | 40'   |
| l         | 30'  | .0436 | .0437 | 1.001  | 22.93 | 22.00 | .0990         | 30'   |
|           | 40'  | .0462 | .0466 | 1.001  | 21.49 | 21.47 | .9989         | 20'   |
| I         | 50'  | .0494 | .0495 | 1.001  | 20.53 | 20.31 | •9988         | 10'   |
| 3°        | 0'   | 0523  | .0224 | 1.001  | 19.11 | 19.08 | .9986         | 0'879 |
|           | 10'  | .0552 | :0553 | 1.003  | 18.10 | 18.07 | 19985         | 50'   |
|           | 20′  | .0281 | .0283 | 1.003  | 17.20 | 17.17 | .9983         | 40'   |
|           | 30'  | .0010 | .0013 | 1.005  | 16.38 | 16.32 | .9981         | 30'   |
|           | 40′  | .0640 | .0641 | 1.003  | 15.64 | 15.60 | .9980         | 20'   |
| <u> </u>  | 50'  | .0660 | .0670 | 1.003  | 14.06 | 14.03 | 9978          | 10'   |
| <b>4º</b> | o'   | .0693 | ·0599 | 1.003  | 14.34 | 14.30 | .9976         | 0'86° |
|           | 10'  | .0727 | .0729 | 1.003  | 13.26 | 13.73 | 9974          | 50'   |
| l         | 20′  | .0756 | .0758 | 1.003  | 13.53 | 13.50 | ·9971         | 40'   |
|           | 30'  | .0282 | .0282 | 1.003  | 12.75 | 12.71 | 19969         | 30′   |
| {         | 40'  | 0814  | .0819 | 1.003  | 12.30 | 12.25 | .0967         | 20′   |
|           | 50′  | 0843  | ·084б | 1.004  | 11.87 | 11.83 | <i>•</i> 9964 | ro'   |
| 5°        | 0'   | .0872 | ·0875 | 1.004. | 11.47 | 11.43 | .0962         | ୦′୫5୍ |
|           |      | cos   | cot   | cosec  | sec   | tan   | sin           | 角     |

(17) 三角函數之屆數表

| 角     | sin   | tan   | sec   | cosec | cot    | cos   |                |
|-------|-------|-------|-------|-------|--------|-------|----------------|
| 5°0′  | ·0872 | .0875 | 1.004 | 11.47 | 11.43  | 9962  | 0'85           |
| 10'   | 1000  | 0904  | 1.004 | 11,10 | 11.06  | 9959  | 50'            |
| 20'   | 0929  | 0934  | 1.004 | 10.76 | 10.71  | 9957  | 40'            |
| 30'   | 0958  | .0963 | 1.002 | 10.43 | 10.30  | '9954 | 30'            |
| 40'   | .0987 | .0992 | 1.002 | 10.13 | 10.08  | ·9951 | 20'            |
| 50'   | 1016  | 1022  | 1.002 | 9.839 | 9.788  | 9048  | 10'            |
| 6° 0' | 1045  | 1051  | 1.000 | 9*567 | 9.514  | 9945  | 0'84           |
| 10'   | 1074  | .1080 | 1.00Q | 9.309 | 9.255  | 9942  | 50'            |
| 20'   | .1103 | .1110 | 1.000 | 9.062 | 9.010  | '9939 | 40'            |
| 30'   | 1132  | 1139  | 1.009 | 8.834 | 8.777  | 19936 | 30'            |
| 40'   | .1191 | 1169  | 1.002 | 8.614 | 8.556  | 9932  | 20'            |
| 50'   | .1160 | .1108 | 1.002 | 8.402 | 8.345  | .9929 | 10'            |
| 7°0'  | .1219 | 1228  | 1.008 | 8.300 | 8.144  | 9925  | o' <b>83</b> ° |
| 10,   | 1248  | 1257  | 1.008 | 8.016 | 7'953  | .9922 | 50'            |
| 20'   | 1276  | 1287  | 1.008 | 7.834 | 7.770  | 9918  | 40'            |
| 30'   | 1305  | 1317  | 1.000 | 7.661 | 7.596  | .9914 | 30'            |
| 40'   | 1334  | 1346  | 1.000 | 7.496 | 7.429  | .0911 | 20'            |
| 50'   | •1363 | 1376  | 1.000 | 7:337 | 7.269  | .9907 | 10'            |
| 8°0'  | .1393 | 1405  | 1.010 | 7.182 | 7.112  | .9903 | 0'82"          |
| 10'   | 1421  | 1435  | 1.010 | 7.040 | 6.968  | .9899 | 50'            |
| 20'   | 1449  | 1465  | 1.011 | 6.900 | 6.827  | -9894 | 40'            |
| 30'   | 1478  | 1495  | 1.011 | 6.765 | 6.69 t | •9890 | 30'            |
| 40'   | 1507  | 1524  | 1.012 | 6.636 | 6.261  | .9886 | 20′            |
| 50'   | •1536 | 1554  | 1.013 | 6.215 | 6.435  | '9881 | 10'            |
| 9°0′  | ·1564 | 1584  | 1.013 | 6.305 | 6.314  | .9877 | 0'81°          |
| 10'   | 1593  | .1614 | 1.013 | 6.277 | 6.192  | .9872 | 50'            |
| - 20' | .1655 | 1644  | 1.013 | 6.166 | 6.084  | 9868  | 40'            |
| 30'   | •1650 | .1673 | 1.014 | 6.020 | 5.976  | -9863 | 30'            |
| 40'   | .1679 | 1703  | 1.014 | 5.955 | 5.871  | 9858  | 100/           |
| 50'   | .1208 | 1733  | 1.012 | 5.855 | 5.769  | 9853  | 10'            |
| 10°0' | 1736  | •1763 | 1.012 | 5.759 | 5.67 I | .9848 | o'so           |
|       | cos   | cot   | cosec | sec   | tan    | sin   | 角              |

'(18) 三角函数之鼠敷患

|        | AND THE PERSON AND ADDRESS OF THE PERSON AND | CHAIN TO AND AND AND AND AND | STARP. AL CARACA | -       | Committee of the commit | and the state of the state of the state of | A CONTRACTOR OF THE PERSON OF |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 角      | sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tan                          | sec              | cosec   | cot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cos                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10°0′  | 1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •1763                        | 1.012            | 5.759   | 5 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •9848                                      | o'80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10'    | 1765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1793                         | 1.019            | 5.662   | 5.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·9843                                      | 50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20'    | 1794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1823                         | 1.012            | 5.575   | 5'485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9838                                       | 40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30'    | 1822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •1853                        | 1.012            | 5.487   | 5.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9833                                      | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40'    | 1851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .1883                        | 1.018            | 5.403   | 5.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9827                                      | 20′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50'    | .1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1914                         | 1.018            | 5.320   | 5.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9822                                       | 10′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11°0′  | .1908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1944                         | 1.010            | 5.241   | 5.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9816                                      | 0'79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10'    | 1937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1974                         | 1.010            | 5.164   | 5.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1186.                                      | 50′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20'    | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2004                         | 1.020            | 5.080   | 4.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9802                                      | 40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30'    | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2035                         | 1.050            | 5.016   | 4'915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9799                                       | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40'    | .2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2065                         | 1.031            | 4.945   | 4.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9793                                      | 20′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50'    | ·2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2095                         | 1.023            | 4.876   | 4.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9787                                       | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12°0'  | 2079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2126                        | 1.023            | 4.810   | 4.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9781                                       | 0'78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 10'  | 2108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2156                         | 1.033            | 4.745   | 4638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9775                                       | 50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20'    | .2136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2186                         | 1.024            | 4.683   | 4.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9769                                      | 40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30'    | 2164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2217                        | 1.024            | 4.020   | 4511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .9763                                      | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40'    | 2193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2247                        | 1.022            | 4 560   | 4.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9757                                       | 20′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50'    | 2221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2278                        | 1.036            | 4.202   | 4.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9750                                       | 10′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13° 0′ | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2309                         | 1.026            | 4.445   | 4.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9744                                       | 0'77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10'    | .2278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2339                         | 1.032            | 4.390   | 4.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9737                                       | 50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20'    | 2306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2370                         | 1.058            | 4.336   | 4.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9730                                      | 40′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30'    | 2334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2401                         | 1.058            | 4.584   | 4.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9724                                       | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40'    | 2363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2432                         | 1.059            | 4 2 3 2 | 4113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9717                                       | 20′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50'    | 2391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2462                         | 1.030            | 4.185   | 4.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9710                                      | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14°0′  | 2419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2493                         | 1.031            | 4.134   | 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9703                                       | 0'76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10'    | 2447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2524                         | 1.031            | 4.086   | 3 962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9696                                      | 50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20'    | 2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2555                         | 1.032            | 4.039   | 37914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9689                                      | 40′.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30'    | 2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2586                         | 1.033            | 3.994   | 3.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0681                                      | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40'    | 2532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2617                        | 1.034            | 3.020   | 3.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9674                                       | 20′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50'    | 2560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2648                         | 1.034            | 3.006   | 3.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6662                                      | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15°0'  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2679                         | 1.032            | 3.864   | 3.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •9659                                      | 0'75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cot                          | cosec            | sec     | lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sin                                        | 角                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

(19) 三角函數之異數表

|       |       |       |       |       |       | and the second second second |       |
|-------|-------|-------|-------|-------|-------|------------------------------|-------|
| 角     | sin   | tan   | sec   | cosec | cot   | cos                          |       |
| 15°0′ | ·2588 | 2679  | 1.032 | 3.864 | 3.732 | .9659                        | 0'75  |
| 10'   | .2616 | ·27II | 1 036 | 3.822 | 3.689 | 9652                         | 50'   |
| 20'   | .2644 | 2742  | 1.037 | 3.782 | 3.647 | .9644                        | 40'   |
| 30′   | 2672  | 2773  | 1.038 | 3.742 | 3.606 | 9636                         | 30'   |
| 40'   | 2700  | 2805  | 1.039 | 3.703 | 3.566 | •9628                        | 20′   |
| 50'   | 2728  | 2836  | 1.039 | 3.665 | 3.226 | 9621                         | 10'   |
| 16°0′ | 2756  | 2867  | 1.040 | 3.628 | 3.487 | 9613                         | 0'74' |
| 10'   | .2784 | 2899  | 1.041 | 3.205 | 3.450 | •9605                        | 50′   |
| 20'   | 2812  | 2931  | 1.042 | 3.556 | 3.412 | .9596                        | 40'   |
| 30'   | ·2840 | 2962  | 1.043 | 3.251 | 3.376 | •9588                        | 30'   |
| 40'   | 2868  | 2994  | 1.044 | 3.487 | 3.340 | .9580                        | 20′   |
| 50'   | 2896  | 3026  | 1.042 | 3.453 | 3.302 | 9572                         | 10'   |
| 17.0  | 2924  | .3057 | 1.046 | 3.420 | 3.571 | .9563                        | 0'73" |
| 10'   | 2952  | .3089 | 1.042 | 3.388 | 3.237 | 9555                         | 50′   |
| 20′   | 2979  | 3121  | 1.048 | 3.356 | 3.504 | .9546                        | 40',  |
| 30'   | .3007 | *3153 | 1.049 | 3.326 | 3.125 | 9537                         | 30'   |
| 40'   | 3035  | 3185  | 1.049 | 3.295 | 3.140 | .9528                        | 20'   |
| 50'   | 3062  | .3217 | 1.020 | 3.262 | 3.108 | 9520                         | 10'   |
| 18°0′ | 3090  | *3249 | 1.021 | 3.536 | 3.078 | .0211                        | 0'72  |
| 10'   |       | .3281 | 1.022 | 3.502 | 3.047 | 9502                         | 50'   |
| 20'   | 3145  | 3314  | 1.023 | 3.179 | 3.018 | 9492                         | 40'   |
| 30'   | 3173  | .3346 | 1.024 | 3.125 | 2.089 | .9483                        | 30′   |
| 40'   | 3201  | *3378 | 1.056 | 3.154 | 2.000 | 9474                         | 201   |
| 50'   | .3228 | ·3411 | 1.022 | 3.008 | 2.932 | .9465                        | 10'   |
| 1900  |       | 3443  | 1.028 | 3:072 | 2.004 | 9455                         | 0'71' |
| 10    |       | 3476  | 1.020 | 3.046 | 2.877 | 9446                         | 50′   |
| 20    |       | 3508  | 1.000 | 3.051 | 2.850 | .9436                        | 40'   |
| 30    |       | .3541 | 1.001 | 2.996 | 2.824 |                              | 30'   |
| 40    |       | 3574  | 1.003 | 2.971 | 2.798 | 9417                         | 20'   |
| 50    | 3393  | .3602 |       | 2:947 | 2.773 | .9402                        | 10'   |
| 2000  |       |       |       | 2.924 | 2.747 | '9397                        | 0'70' |
|       | cos   | cot   | cosec | sec   | tan   | sin                          | 角     |

(20) 三角函數之員數表

| 角     | sin   | tan           | sec   | cosec | cot   | cos           |       |
|-------|-------|---------------|-------|-------|-------|---------------|-------|
| 20°0′ | ·3420 | 3640          | 1.064 | 2.024 | 2.747 | <b>.</b> 9397 | 0'70° |
| 10'   | ·3448 | 3673          | 1.062 | 2.001 | 2.723 | 9387          | 50'   |
| 20'   | 3475  | .3706         | 1.066 | 2.878 | 2 699 | 9377          | 40'   |
| 30'   | 3502  | 3739          | 1.068 | 2.855 | 2.675 | 9367          | 30'   |
| 40'   | 3529  | 3772          | 1.069 | 2.833 | 2.651 | 9356          | 20′   |
| 50'   | ·3557 | 3805          | 1.020 | 2.812 | 2.628 | 9346          | 10'   |
| 21.0  | ·3584 | •3839         | 1.071 | 2.790 | 2.605 | ·9336         | 0'69  |
| 10'   | .3611 | 3872          | 1.022 | 2.769 | 2.283 | 9325          | 50′   |
| 20'   | 3638  | 3906          | 1.071 | 2.749 | 2.260 | .9312         | 40'   |
| 30'   | .3665 | 3939          | 1.072 | 2.729 | 2.239 | .9304         | 30'   |
| 40'   | •3692 | '3973         | 1.076 | 2.709 | 2.217 | .9293         | 20′   |
| 50'   | 3719  | ·4006         | 1.077 | 2.689 | 2.496 | .9283         | 10′   |
| 22°0′ | 3746  | <b>.</b> 4040 | 1.079 | 2.669 | 2.475 | 9272          | 0'68  |
| 10'   | 3773  | 4074          | 1.080 | 2.650 | 2.455 | .0261         | 50′   |
| 20'   | 3800  | .5108         | 1.081 | 2.632 | 2.434 | 9250          | 40'   |
| 30'   | 3827  | 4142          | 1.085 | 2.613 | 2.414 | 9239          | 30'   |
| 40'   | *3854 | 4176          | 1'084 | 3.292 | 2.394 | 9228          | 20′   |
| 50'   | 3881  | 4210          | 1.082 | 2.22  | 2.372 | 9216          | 10'   |
| 23°0′ | .3602 | 4245          | 1.080 | 2.225 | 2.356 | .0202         | 0'67' |
| 10'   | 3934  | 4279          | 1.088 | 2.242 | 2.337 | '9194         | 50'   |
| 20'   | 3961  | 4314          | 1 ~   | 2.252 | 2.318 | 9182          | 40'   |
| 30'   |       | 4348          | 1.000 | 2.208 | 2.300 | 9171          | 30'   |
| 40'   | 4014  | 4383          | 1.003 | 2.491 | 2.585 | 9159          | 20′   |
| 50    | 4041  | 4417          | 1.003 | 2.475 | 2.264 | '9147         | 10'   |
| 24.0  | 4067  | 4452          | 1.002 | 2.459 | 2.246 | 9135          | 0'66  |
| 10    |       | 4487          | 1.000 | 2.443 | 2.229 | 9124          | 50′   |
| 20    | 4120  | 1             |       | 2.427 | 2.311 | 9112          | 40′   |
| 30    | 4147  |               | 1.000 | 2.411 | 2.194 | .0100         | 30′   |
| 40    | 4173  | 4592          |       | 2.396 |       | 9088          | 20'   |
| 50    | 4200  |               |       | 2,381 | 2.191 | 9075          | 10'   |
| 2500  | 4226  | •4663         | 1.103 | 2.366 | 2.142 | •9063         | o'65° |
|       | cos   | cot           | cosec | 800   | tan   | sin           | 角     |

(21)三角函数之鼠戲表

| 角             | sin   | tan   | sec   | cosec  | cot   | cos   |              |  |  |  |  |  |
|---------------|-------|-------|-------|--------|-------|-------|--------------|--|--|--|--|--|
| 25° 0′        | 4226  | ·4663 | 1.103 | 2.366  | 2.145 | .0063 | o' <b>65</b> |  |  |  |  |  |
| 10'           | 4253  | 4699  | 1.102 | 2.325  | 3.138 | 9051  | 50'          |  |  |  |  |  |
| 20'           | 4279  | 4734  | 1.100 | 2.337  | 2.113 | .9038 | 40′          |  |  |  |  |  |
| 30'           | '4305 | 4770  | 1.108 | 2.353  | 2.097 | 9026  | 30'          |  |  |  |  |  |
| 40'           | 4331  | 4806  | 1.100 | 2.309  | 2.081 | .0013 | 20′          |  |  |  |  |  |
| 50'           | 4358  | 4841  | LIII  | 2.295  | 2.066 | .0001 | 10,          |  |  |  |  |  |
| 2600          | 4384  | 4877  | 1.113 | 2.581  | 2.020 | -8988 | 0'64         |  |  |  |  |  |
| 10'           | 4410  | 4913  | 1.114 | 2.568  | 2.032 | 8975  | 50′          |  |  |  |  |  |
| 20'           | 4436  | 4950  | 1.119 | 2.254  | 2.030 | .8962 | 40'          |  |  |  |  |  |
| 30'           | 4462  | ·4986 | 1.112 | 2.241  | 2.000 | .8949 | 30'          |  |  |  |  |  |
| 40'           | 4488  | .2022 | 1.110 | 2.558  | 1.991 | .8936 | 20'          |  |  |  |  |  |
| 50'           | 4514  | .2059 | 1.151 | 2.312  | 1.977 | 8923  | IO'          |  |  |  |  |  |
| 2700          | 4540  | 5095  | 1.133 | 2.303  | 1.963 | .8910 | 0,03         |  |  |  |  |  |
| 10'           | .4566 | 5132  | 1.124 | 2.100  | 1.049 | ·8897 | 50'          |  |  |  |  |  |
| 20'           | 4592  | .2169 | 1.150 | 2.178  | 1.932 | .8884 | 40'          |  |  |  |  |  |
| 30'           | 4617  | .206  | 1.152 | 5.100  | 1.031 | 8870  | 30'          |  |  |  |  |  |
| - 40'         | •4643 | .5243 | 1.129 | 2 154  | 1.002 | 8857  | 20'          |  |  |  |  |  |
| 50'           | .4669 | 5280  | 1.131 | 2.143  | 1.894 | 8843  | 10'          |  |  |  |  |  |
| 2800          | 4695  | 5317  | 1.133 | 2.130  | 1.881 | 8829  | 0'62         |  |  |  |  |  |
| 10'           | 4720  | 5354  | 1.134 | 3,118  | 1.868 | .8816 | 50'          |  |  |  |  |  |
| 20'           | 4746  | .5392 | 1.136 | 2.102  | 1.855 | .8802 | 40           |  |  |  |  |  |
| 30'           | 4772  | .5430 | 1.138 | 2.096  | 1.843 | 8788  | 30'          |  |  |  |  |  |
| 40'           | 4797  | .2462 | 1.140 | 2.082  | 1.829 | 8774  | 20′          |  |  |  |  |  |
| 50'           | 4823  | *5505 | 1.143 | .2.074 | 1.816 | 8760  | 10′          |  |  |  |  |  |
| 29° 0′        | 4848  | 5543  | 1.143 | 2.063  | 1.804 | .8746 | 0'61         |  |  |  |  |  |
| 10'           | 4874  | ·5581 | 1*145 | 2.02   | 1.792 | .8732 | 50'          |  |  |  |  |  |
| 20'           | 4899  | .2619 | 1.142 | 2.041  | 1.780 | .8718 | 40'          |  |  |  |  |  |
| 30'           | 4924  | .2628 | 1.149 | 2.031  | 1.767 | 8704  | 30           |  |  |  |  |  |
| 40'           | 4950  | •5696 | 1,121 | 2.020  | 1.720 | .8689 | 2.7          |  |  |  |  |  |
| 50'           | 4975  | 5735  | 1.123 | 2.010  | 1.744 | 8675  | 10'          |  |  |  |  |  |
| <b>30°</b> 0′ | .5000 | 5774  | 1.122 | 2.000  | 1.732 | ·8660 | ୦′୫୯         |  |  |  |  |  |
|               | cos   | cot   | cosec | sec    | tan   | sin   | 角            |  |  |  |  |  |

#### 三角函數之鼠數數

| Щ      | sin               | tan   | sec   | cosec | cot    | cos   |       |
|--------|-------------------|-------|-------|-------|--------|-------|-------|
| 30°0′  | .2000             | *5774 | 1.122 | 2.000 | 1.732  | .8660 | 0'60° |
| 10'    | .2025             | .2813 | 1.122 | 1.990 | 1.720  | .8646 | 50'   |
| 20'    | .2020             | .5851 | 1.120 | 1.080 | 1.709  | .8631 | 40'   |
| 30'    | 5075              | .2890 | 1.121 | 1'970 | 1.698  | 8616  | 30'   |
| 40'    | ·5100·            | .2930 | 1.163 | 1.961 | 1.686  | .8601 | 20'   |
| 50'    | .2122             | •5969 | 1.162 | 1.921 | 1.675  | 8587  | 10'   |
| 31°0′  | .2120             | .6009 | 1.162 | 1.942 | 1.664  | .8572 | 0'59  |
| 10'    | 5175              | .6048 | 1.160 | 1.932 | 1.653  | ·8557 | 50'   |
| 20'    | .5200             | .6088 | 1.121 | 1.923 | 1.643  | .8542 | 40'   |
| 30'    | 5225              | .6128 | 1.123 | 1.914 | 1.632  | 8526  | 30'   |
| 40'    | .5250             | 6168  | 1.172 | 1.002 | 1.621  | 8511  | 20′   |
| 50'    | *5275             | •6208 | 1.122 | 1.896 | 1.911  | ·8496 | 10'   |
| 32.0   | .299              | .6249 | 1.120 | 1.887 | 1.000  | ·8480 | 0'58  |
| 10'    | 5324              | .6289 | 1.181 | 1.878 | 1.200  | .8465 | 50'   |
| 20'    | ·534 <sup>×</sup> | •6330 | 1.184 | 1.870 | 1.280  | .8450 | 40'   |
| 30'    | 5373              | 6371  | 1.189 | 1.861 | 1.240  | .8434 | 30'   |
| 40'    | .5398             | 6412  | 1.188 | 1.823 | 1.260  | 8418  | 20'   |
| 50'    | 5422              | 6453  | 1.100 | 1.844 | 1.220  | .8403 | 10'   |
| 33° 0′ | .5446             | .6494 | 1.105 | 1.836 | 1.240  | .8387 | 0'57° |
| 10'    | ·5471             | 6536  | 1.192 | 1.828 | 1.230  | .8371 | 50′   |
| 20'    | 5495              | 6577  | 1.197 | 1.820 | 1.220  | 8355  | 40    |
| 30'    | .2219             | .6619 | 1.199 | 1.812 | 1.211  | .8339 | 30'   |
| 40'    | *5544             | .6661 | 1.202 | 1.804 | 1.201, | 8323  | 20'   |
| 50'    | .5568             | ·6703 | 1.204 | 1.496 | 1.492  | .8307 | 10'   |
| 34°0'  | .2592             | .6745 | 1.306 | 1.488 | 1.483  | 8290  | 0'56  |
| 10'    | .2616             | .6787 | 1.500 | 1.781 | 1.473  | .8274 | 50'   |
| .20′   | .2640             | 6830  | 1.511 | 1.773 | 1.464  | .8258 | 40'   |
| 30'    | .2664             | .6873 | 1.213 | 1.766 | 1.455  | .8241 | 30′-  |
| 40'    | •5688             | .6916 | 1.312 | 1758  | 1.446  | ·S225 | 202   |
| 50'    | .5712             | .6959 | 1.318 | 1.421 | 1.437  | ·8208 | 10    |
| 35°0′  | 5736              | .7002 | 1.551 | 1.743 | 1.428  | .8192 | 0'55  |
|        | cos               | coŧ   | cosec | sec   | tan    | sin   | Ŋ     |

(23)

#### 三角函數之鼠數表

| 三角图数之真数数 |       |        |       |         |       |        |         |                 |  |  |  |  |
|----------|-------|--------|-------|---------|-------|--------|---------|-----------------|--|--|--|--|
| 1        | 角     | sin    | tan   | sec     | cosec | cot    | cos     |                 |  |  |  |  |
| 35       | ;• o′ | 5736   | .7002 | 1.221   | 1.743 | 1 428  | 8192    | 0'55            |  |  |  |  |
|          | 10'   | •5760  | .7046 | 1.223   | 1.736 | 1.419  | 8175    | 50'             |  |  |  |  |
|          |       | .5783  | 7089  | 1.226   | 1.729 | 1411   | 8158    | 40 <sup>r</sup> |  |  |  |  |
|          | 30'   | .5807  | 7133  | 1.228   | 1.722 | 1.402  | 8141    | 30'-            |  |  |  |  |
|          | 40'   | 5831   | 7177  | 1.531   | 1.715 | 1.393  | .8124   | 20'             |  |  |  |  |
|          | 50'   | 5854   | .7221 | 1.533   | 1.708 | 1.382  | -8107   | 50'             |  |  |  |  |
| 36       | 3° 0′ | ·5878  | .7265 | 1.536   | 1.401 | 1.376  | •8090   | 0'54°           |  |  |  |  |
| -        | 10'   | 5901   | 7310  | 1.239   | 1.695 | 1.368  | 8073    | 50'             |  |  |  |  |
|          | 20'   | 5925   | 7355  | 1.241   | 1.688 | 1.360  | .8056   | 40'             |  |  |  |  |
|          | 30'   | 15948  | 7400  | 1.244   | 1.681 | 1.321  | 8039    | 30'             |  |  |  |  |
|          | 40'   | 5972   | 7445  | 1.542   | 1.675 | 1.343  | ·8021   | 20'             |  |  |  |  |
|          | 50'   | 5995   | .7490 | 1.549   | 1.668 | 1 335  | 8004    | 10'             |  |  |  |  |
| 3        | 7° 0′ | .6018  | 7536  |         | 1.663 | 1.352  | 7986    | 0'53            |  |  |  |  |
| ľ        | 10'   | ·6041  | .7581 |         | 1.655 | 1.319  | .7969   | 50'             |  |  |  |  |
| I        | 20'   | 6065   | .7627 |         | 1.649 | 1.311  |         | 40,             |  |  |  |  |
|          | 30'   | 6088   | 7673  |         | 1.643 | 1.303  |         | 30′             |  |  |  |  |
|          | 40'   | .6111  | .7720 | 1.563   | 1.636 | 1.292  | 7916    | 20              |  |  |  |  |
| H        | 50′   | 6134   | 7766  | 1.566   | 1.630 | 1.588  |         | 10'             |  |  |  |  |
| 3        | 8° 0′ | 6157   | 7813  | 1.269   | 1.624 | 1.580  |         |                 |  |  |  |  |
| ľ        | 10'   | 6180   | .7860 | 1.272   | 1.618 | 1.272  |         |                 |  |  |  |  |
|          | 20'   | 6202   | 7907  | 1.275   | 1.612 | 1.265  |         | 40′             |  |  |  |  |
|          | 30′   | 6225   | 7954  |         |       |        | 7826    | 30'<br>20'      |  |  |  |  |
| ij       | 40′   | 6248   | ·8002 | 1.581   |       | 1.520  |         | 3 2 11          |  |  |  |  |
|          | 50'   | 6271   | ·8050 |         |       |        |         | -ll             |  |  |  |  |
| 9        | 39° O | 6293   | .809  | 3 1.287 |       |        |         |                 |  |  |  |  |
|          | 10    | 6316   |       | 5 1.290 | 1.283 |        |         | 50′             |  |  |  |  |
|          | 20    |        |       |         | 1.228 |        |         | 40′             |  |  |  |  |
| H        | 0 30  | ′ 63Ğı |       |         | 1.22  |        |         | 30'<br>3 20'    |  |  |  |  |
| -        | 40    | 6383   | 829   | 2 1.299 | 1.262 | 1.20   | 5 7698  |                 |  |  |  |  |
|          | 50    | 6406   | 834   | 2 1.302 |       |        | -1      |                 |  |  |  |  |
| 1        | 40° 0 |        |       | 1 1.30  | 1.226 | 2 1.10 | 2 .7660 | 0'50            |  |  |  |  |
|          |       | cos    | cot   | cose    | e sec | tan    | sin     | 角               |  |  |  |  |

| 三角函数之具数数 |        |        |       |       |       |       |       |         |  |  |  |  |
|----------|--------|--------|-------|-------|-------|-------|-------|---------|--|--|--|--|
| 角        | sin    | tan    | sec   | cosec | cot   | cos   |       |         |  |  |  |  |
| 40°0'    | 6428   | ·8391  | 1.302 | 1.226 | 1.193 | .7660 | o'50° |         |  |  |  |  |
| 10'      | 6450   | 8441   | 1.300 | 1.220 | 1.182 | 7642  | 50'   |         |  |  |  |  |
| 20′      | 6472   | ·8491  | 1.312 | 1.545 | 1.128 | 7623  | 40'   |         |  |  |  |  |
| -30'     | 6494   | .8541  | 1.312 | 1.240 | 1.121 | 7604  | 30'   |         |  |  |  |  |
| 40'      | 6517.  | ·8591  | 1.318 | 1.232 | 1.164 | 7585  | 20'   |         |  |  |  |  |
| 50'      | .6539  | 8642   | 1.355 | 1.229 | 1.122 | .7566 | 10'   | į       |  |  |  |  |
| 41°0'    | 6561   | ·8693  | 1.325 | 1.524 | 1.120 | 7547_ | 0'49  |         |  |  |  |  |
| 10'      | .6583  | ·8744  | 1.328 | 1.210 | 1.144 | .7528 | 50′   |         |  |  |  |  |
| 20'      | •6604  | .8796  | 1.332 | 1.214 | 1.132 | 7509  | 40'   |         |  |  |  |  |
| 30'      | .6626  | 8847   | 1.332 | 1.200 | 1.130 | .7490 | 30′   |         |  |  |  |  |
| 40'      | 6548   | 8899   | 1.339 | 1.204 | 1.154 | 7470  | 20'   |         |  |  |  |  |
| 50'      | .6670  | .8952  | 1.345 | 1.460 | 1.112 | 7451  | IO'   |         |  |  |  |  |
| 42°0'    | ·6691  | 19004  | 1.346 | 1'494 | I.III | 7431  | 0'48  |         |  |  |  |  |
| 10'      | 6713   | .9057  | I:349 | 1.490 | 1.104 | 7412  | 50′   |         |  |  |  |  |
| 20'      | 6734   | .9110  | 1 353 | 1.485 | 1.008 | 7392  | 40'   | ì       |  |  |  |  |
| 30'      | 6756   | 9163   | 1.326 | 1.480 | 1.001 | 7373  | 30'   |         |  |  |  |  |
| 40'      | .6777  | 9217   | 1.360 | 1.476 | 1.082 | 7353  | 20′   | 1       |  |  |  |  |
| 50'      | .6799  | ·927 I | 1.364 | 1.471 | 1.029 | 7333  | 10'   |         |  |  |  |  |
| 43° 0'   | 6820   | 9325   | 1.367 | 1.466 | 1.072 | 7314  | 0'47  | l<br>Fl |  |  |  |  |
| 10'      | .6841  | 9380   | 1.371 | 1.462 | 1.000 | 7294  | 50′   |         |  |  |  |  |
| 20'      | .6862  | 9435   | 1.372 | 1.457 | 1.000 | 7274  | 40′   | H       |  |  |  |  |
| 30'      | 6884   | 9490   | 1.379 | 1.453 | 1.024 | 7254  | 30'   |         |  |  |  |  |
| 40'      | 6905   | 9545   | 1.383 | 1.448 | 1.048 | 7234  | 20'   | H       |  |  |  |  |
| 50'      | .6926  | 9601   | 1.386 | 1.444 | 1.045 | 7214  | 10'   | ı       |  |  |  |  |
| 4400     | .6947  | 9657   | 1.300 | 1.440 | 1.036 | 7193  | 0'46  | I       |  |  |  |  |
| 10'      | 6967   | 9713   | 1.394 | 1.435 | 1.030 | 7173  | 50'   | 1       |  |  |  |  |
| 20′      | 1.6988 | 9770   | 1.308 | 1.431 | 1.034 |       | 40′.  |         |  |  |  |  |
| 30'      | .7009  | 9827   | 1.403 | 1.427 | 1.018 | 7133  | 30' * | 1       |  |  |  |  |
| 40       | .7030  | 9884   |       | 1.423 | 1.013 | 7112  | 20'   |         |  |  |  |  |
| 50'      | .7050  | 9942   | 1.410 |       | 1.000 |       | 10'   | 1       |  |  |  |  |
| 45° 0    | ·707 I | 1.000  | 1.414 | 1.414 | 1,000 | 7071  | 0'45  |         |  |  |  |  |
| H        | cos    | cot    | cosec | sec   | tan   | sin   | 角     |         |  |  |  |  |

第 四。

朋 法 之 例。

(26)求數之對數法. 例. 录 log238·4 log238·0=2·3766 (於 2 頁) ·4....... 7·2 (於 P.P. 18) log238·4=2·3773 [注意] 因 18 為 P.P. 欄中所無。故用 19, 17 欄之對 於4之比例部分之平均數。 第二. 知數之對數求其數之法. 例. 求 log-12·7054 log-12.7050 =0.0507 (於 3 頁) 3.6.....0.4 (於 P.P. 9)  $\begin{array}{ccc} 0.36.....0.04 \\ \log^{-1} 2.7054 & = 0.05074 \end{array}$ 第三. 求角之三角函數之對數法. 例. 1. 求 logtan28°43'.7

```
(27)
                                              例
                               法
                 Ш
              logtan 28^{\circ}40' = \overline{1}.7378
                                             (於 11 頁)
                              3′.....9
                                             (於 P.P. 30)
            \log \tan 28^{\circ}43' \cdot 7 = \bar{1} \cdot 7389
     求 logsec76°18′7
             logcos76°10′=Ī·3786 (於8頁)
                         8'....-41.6
                                              (於 P.P. 52)
                         0' \cdot 7 \cdot \dots - 3 \cdot 64
             logcos76°18′-7=1-3741
             logsec76° 18'-7=0-6259
     求 logsin2° 34′·6
3.
                   2034'-6=154'-6
        \log\sin a' = \log a + 44637 + \frac{1}{3}\log\cos a' (於 6 頁)
             logcos154'·6=1·9996(3
                               1.9999
                               4.4637
                   \log 154.6 = 2.1892) +
               \log \sin 154' \cdot 6 = \bar{2} \cdot 6528
```

刑

第四. 知角之三角函數之對數求其

. 角之法

例.

1. 求 (logcot)-1T·4995 (logcot)-1T·5031 = 72° 20' (於 9 頁) -35·2.........8' -0·88......0'·2

 $\frac{-0.88......02}{(\log \cot)^{-1} \overline{1.4955}} = 72^{\circ} 28'.2$ 

2. 求 (logcosec)-10·2811

(logcosec)<sup>-1</sup>0.2811=(logsin)<sup>-1</sup>Ī·7189

(logsin)<sup>-1</sup>17181=31°30′ (於 12 頁) 8......4′ (於 P.P. 20)

logsin)<sup>-1</sup>Ī·7189=31° 34′

3. 求 (logtan)-12·8882

 $\log a = \log \tan a' - 4.4637 + \frac{2}{3} \log \cos a'$  (抗 6 頁)

 $\log\cos a' = \overline{1} \cdot 9987$ 

1·9974(3 1·9991)

 $=\overline{1}\cdot 4637 = 35363$ 

 $\log \tan \alpha' = \overline{2} \cdot 8882$ 

 $\log a = 2.4236$  $a' = 265' \cdot 2 = 4^{\circ}25' \cdot 2$ 

例

第五 求角之三角函數之法

例.

录 sin36° 32′·6

第一法.

logsin36° 30′ = 1.7744 (元 13 页)

2′..... 3 4

(於 P.P. 17) 0′·6. .....1·02

 $\log \sin 36^{\circ} 32' 6 = \bar{1}.7748$ 

sin36° 32′·6 =0.5954 (於 3 頁)

第二法.

sin36° 30′ =0.5948 (於 23 頁)

 $\sin 36^{\circ} \quad 32.6 = 0.5954$ 

第六. 知角之三角函數。求其角之法

例.

求 cot-10.7463

第一法

(30) 用 法 例 log0·7463=I·8729 (於 4 頁) ∴ cot<sup>-1</sup>0·7463=(logcot)<sup>-1</sup>I·8729 (logcot)<sup>-1</sup>I·8745 =53°10′ (於 13 頁) —16·2........6′ (於 P.P. 27) (logcot)<sup>-1</sup>I·8729 =53°16′ 第二法・ cot<sup>-1</sup>0·7490=53°10′ (於 23 頁) —27.....6′ (27/45) =53°16′ (27/45) × 10=6

## VOCABULARY. 語彙

Angle of elevation, 仰角,高度·
Base, 底。
Base line, 基線. (底線)
Characteristic, 指標.
Circular measure, 弧度.
Common logarithms,
常用對數.
Compass, 羅針盤.
Complement (of angle), 餘角.

Ambiguous case, 兩意之例.

Angle of depression, 俯角.

Compass, 維針整.
Complement (of angle), 餘
Cosecant, 餘割.
Cosine, 餘弦.
Cotangent, 餘切.
Degree, 度.
Horizontal angle, 水平角.
Horizontal line, 水平線.
Horizontal plane, 水平面.
Logarithms, 對數.
Mantissa, 假數.

Plane Trigonometry, 平而三角法. Plumb-line, 鉛垂線. Quadrant, 分面 Radian, 本位弧. Secant, 下割. Sexagesimal method, 常度, 六十分法。 Sine, 正弦. Supplement (of angle), 補角. Surveyors' chain, 測鎖. Tangent, 正切. Theodolite, 經緯儀• Transit, 紀限儀. Triangle, 三角形. Trigonometrical functions, 三角函數.

Vertical angle, 垂直角。

Vertical plane, 垂直面。

Vertical line, 垂直線.

# 紫平面三角波備用公式

|                                                                                                  |                                                                       |                                                                                                        |                                                                                                   | $\sin 3A = 3 \sin A - 4 \sin^3 A$                                                          | 三角形上邊與角之關係                                                                                                  | $\frac{b-c}{b+c}\cot\frac{A}{2} = \tan\frac{B-C}{2}$                     |                 |                                              | 以任意                                          | 之三角     | 函數表其                          | <b>此他諸式</b>                               |                                                  |                                                  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|----------------------------------------------|----------------------------------------------|---------|-------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| <b>角之测法</b>                                                                                      | 餘角之三角函数<br>sin (90°-A)=cos A<br>cos (90°-A)=sin A                     |                                                                                                        | 二角之三角函数 $sin(A+B)=sin A cos B+cos A sin B$ $sin(A-B)=sin A cos B-cos A sin B$                     | $\cos 3\Lambda = 4\cos^3\Lambda - 3\cos \Lambda$                                           | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                                                    | $\frac{c-\alpha}{c+\alpha}\cot\frac{B}{2} = \tan\frac{C-A}{2}$           |                 | sin,                                         | cos.                                         | tan.    |                               | ecsec.                                    | sec.                                             | cot.                                             |
| 常 废 法<br>直角 废 分 秒                                                                                | $tan (90^{\circ}-A) = \cot A$ $\cot (90^{\circ}-A) = \tan A$          | $\sin(180^\circ + A) = -\sin A$                                                                        | cos (A+B) = cos A cos B - sin A sin B<br>cos (A-B) = cos A cos B + sin A sin B                    |                                                                                            | $a=b\cos C+c\cos B$ $b=c\cos A+a\cos C$                                                                     | $\frac{a-b}{a+b}\cot\frac{C}{2} = \tan\frac{A-B}{2}$                     | $\sin \theta =$ | sin θ                                        | √(1-cos²6                                    | tan 6   |                               | cosec θ                                   | $\frac{\sqrt{(\sec^2\theta - 1)}}{\sec\theta}$   | $\frac{1}{\sqrt{\cot^2\theta+1}}$                |
| 1=90=5130=321000 $1=60=3600$                                                                     | $sec (90^{\circ}-A) = cosec A$<br>$cosec (90^{\circ}-A) = sec A$      | $cosec (180^{\circ} + \Lambda) = -cosec \Lambda$ $sec (180^{\circ} + \Lambda) = -sec \Lambda$          | $\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$                                          |                                                                                            | $c=a\cos B+b\cos A$                                                                                         | 三角形之面積<br>S= <sup>1</sup> / <sub>2</sub> ab sin C                        | $\cos \theta =$ | √(1-sin²θ                                    | $\cos \theta$                                | √(1+ta. | n <sup>2</sup> θ)             | $\frac{(\csc^2\theta - 1)}{\csc\theta}$   | sec 0                                            | $\frac{\cot \theta}{\sqrt{(\cot^2 \theta + 1)}}$ |
| 常                                                                                                | <b>初</b> 角之三角函數 "                                                     | cot (180°+A;=cot A                                                                                     | $\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$                                          | 分 角 之 三 角 函 數 $\cos \frac{\Lambda}{2} = \pm \sqrt{\frac{1 + \cos \Lambda}{2}}$             | $a^{2}=b^{2}+c^{2}-2bc\cos A$ $b^{2}=c^{2}+a^{2}-2ca\cos B$ $c^{2}=a^{2}+b^{2}-2ab\cos C$                   | $= \sqrt{s(s-a)(s-b)(s-c)}$                                              | $\tan \theta =$ | $\sin \theta$ $\sqrt{(1-\sin^2 \theta)}$     | $\frac{\sqrt{(1-\cos^2\theta)}}{\cos\theta}$ | tan     | 0 -                           | 1<br>(cosec <sup>2</sup> θ-1)             | √(sec²0-1)                                       | 1<br>cot θ                                       |
| 60:10::α:π                                                                                       | $\sin (180^{\circ} - A) = \sin A$ $\cos (180^{\circ} - A) = -\cos A$  | 共和或差為 270° 之<br>二角之三角函数                                                                                | $\cot(A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}$ $\cot A \cot B + 1$                       | $\sin\frac{\Delta}{2} = \pm\sqrt{\frac{1-\cos\Lambda}{2}}$                                 | $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$                                                                      | 任 $s = \frac{1}{2}(a+b+c)$ .                                             | cosec θ=        | in 0                                         | √(1-cos²6                                    | √(1+ta  |                               | cosec θ                                   | $\frac{\sec \theta}{\sqrt{(\sec^2 \theta - 1)}}$ | √(cot2θ+                                         |
| 三角函数之定義<br>sin A=亚線÷斜邊                                                                           | $tan (180^{\circ}-A)=-tan A$<br>$cosec (180^{\circ}-A)=cosec A$       | $\sin (270^{\circ} - A) = -\cos A$                                                                     | $\cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$ $\sin(A+B) + \sin(A-B) = 2 \sin A \cos B$ | $2\cos\frac{\Lambda}{2} = \pm\sqrt{1+\sin\Lambda} \pm\sqrt{1-\sin\Lambda}$                 | $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$                                                                      | 18° 及 72° 之三角函数<br>sin 18°=cos 72°=√5-1<br>4                             | sec $\theta =$  | 1<br>\(\lambda (1-\sin^2\textit{6})          | $\frac{1}{\cos \theta}$                      | √1+tn   | in²θ                          | $\cos e c \theta$ $(\cos e c \theta - 1)$ | sec 0                                            | $\frac{\sqrt{(\cot^2\theta + 1)}}{\cot\theta}$   |
| cos A=底邊÷斜邊<br>tan A=垂線÷底邊                                                                       | $\sec (180^{\circ} - A) = -\sec A$ $\cot (180^{\circ} - A) = -\cot A$ | $\tan (270^{\circ} - A) = \cot A$ $\operatorname{cosec} (270^{\circ} - A) = -\sec A$                   | $\sin (A+B)-\sin (A-B)=2\cos 1\sin B$ $\cos (A+B)+\cos (A-B)=2\cos 1\cos B$                       | 2 Sin 2 -IVI+Sin A-VI-Sin A                                                                | $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\Delta = \frac{a^2 + b^2 - c^2}{2ab}$                               | $\cos 18^{\circ} = \sin 72^{\circ} = \frac{\sqrt{(10 + 2\sqrt{5})}}{.4}$ | cot θ=          | $\frac{\sqrt{(1-\sin^2\theta)}}{\sin\theta}$ | $\cos \theta$ $\sqrt{(1-\cos^2 \theta)}$     | tan     |                               | (cosec <sup>2</sup> 0 -1)                 | $\frac{1}{\sqrt{(\sec^2\theta - 1)}}$            | cot 0                                            |
| cosec A=斜边÷重線<br>sec A=斜边÷底边                                                                     |                                                                       | $\sec (270^{\circ} - \Lambda) = -\csc \Lambda$ $\cot (270^{\circ} - \Lambda) = \tan \Lambda$           | $\cos (A-B)-\cos (A+B)=2\sin A\sin B$                                                             | X 2                                                                                        | $\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$                                                            | 三角函数之正页                                                                  |                 |                                              | = 1                                          | ·<br>·  | 驶                             | 2 1                                       |                                                  |                                                  |
| cot A=底验÷垂線                                                                                      | <b>到</b>                                                              |                                                                                                        | $\sin S + \sin T = 2\sin \frac{S + T}{2}\cos \frac{S - T}{2}$                                     | $\sqrt{2} \cos \left(\frac{\Lambda}{2} + 45^{\circ}\right) = \pm \sqrt{1 + \sin \Lambda}$  | $\sin \frac{\mathbf{B}}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$                                                  | 画 I. III. VI.                                                            | 100             |                                              |                                              | 1- 1    |                               |                                           |                                                  | ne ,                                             |
| 由定義推知之                                                                                           | $\sin(-A) = -\sin A$ $\cos(-A) = \cos A$ $\tan(-A) = -\tan A$         | $\sin (270^{\circ} + A) = -\cos A$ $\cos 270^{\circ} + A) = \sin A$ $\tan (270^{\circ} + A) = -\cot A$ | $\sin S - \sin T = 2\cos \frac{S+T}{2}\sin \frac{S-T}{2}$                                         | $\tan \frac{A}{2} = \frac{-1 \pm \sqrt{1 + \tan^2 A}}{\tan A}$ $= (-1 \pm \sec A) \cot A$  | $\sin\frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$                                                            | 数<br>sin.<br>及 +                                                         | 西               | Co 30°                                       | 45° 6                                        | 90°     | 12.0                          | 135°                                      | 150° 1                                           | 80°<br>数                                         |
| 三角函数之關係                                                                                          | $cosec(-\Lambda) = -cosec\Lambda$<br>$sec(-\Lambda) = sec\Lambda$     | $cosec (270^{\circ} + \Lambda) = -sec \Lambda$<br>$sec (270^{\circ} + \Lambda) = cosec \Lambda$        | $\cos S + \cos T = 2\cos \frac{S+T}{2}\cos \frac{S-T}{2}$                                         | ENGLISHED AND A FELLA JOHN STORE                                                           | $-\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$                                                               | cosec.                                                                   | sin.            | $0$ $\frac{1}{2}$                            | $\frac{1}{\sqrt{2}}$                         | 3 1     | $\frac{\sqrt{3}}{2}$          | $\frac{1}{\sqrt{2}}$                      | 1 2                                              | 0                                                |
| $\sin A \times \operatorname{coscc} A = 1$ $\cos A \times \sec A = 1$ $\tan A \times \cot A = 1$ | $\cot (-\Lambda) = -\cot \Lambda$                                     | $\cot(27v^{\circ}+\Lambda)=-\tan A$                                                                    | $\cos T - \cos S = 2\sin \frac{S + T}{2} \sin \frac{S - T}{2}$                                    | <b>興所設之角 A 同之一切三角函数</b> $\cos (n.360° \pm A) = \cos A$ $\sin [m.180° + (-1)^m A] = \sin A$ | $\cos\frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$                                                                | tan.                                                                     | cos.            | 1 2                                          | $\frac{1}{\sqrt{2}}$                         | О,      | 1                             | $-\frac{1}{\sqrt{2}}$                     | $-\frac{\sqrt{3}}{2}$                            | -1 除                                             |
| $sin^{2}A + cos^{2}A = 1$ $1 + tan^{2}A = sec^{2}A$ $1 + cot^{2}A = cosec^{2}A$                  | 和差 90° 之二角之<br>三角函数                                                   | 共和為 360° 之二角之<br>三角函数                                                                                  | 倍列之三角函数                                                                                           | $\tan (m \cdot 180^{\circ} + \Lambda) = \tan \Lambda$                                      | $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$ $+ \cos A = \sqrt{(s-b)(s-c)}$                                | 及 + - +                                                                  | tan.            | 0 1 /3                                       | 1                                            | 3 00    | /3                            | -1                                        | -1/3                                             | 0 证                                              |
| $\tan A = \frac{\sin A}{\cos A} \cot A = \frac{\cos A}{\sin A}$                                  | $\sin (90^{\circ} + A) = \cos A$ $\cos (90^{\circ} + A) = -\sin A$    | sin (360°-A)=-sin A<br>cos (360°-A)=cos A                                                              | $\sin 2A = 2 \sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $= 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$   | 75°及 15°之三角函数<br>sin 75°=cos 15°= <del>1/3+1</del>                                         | $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ | 三角函数之大之變化<br>sin.及cos.於絕對值常在0及                                           | conec.          | <b>2</b>                                     | √2 -                                         | 3 1     | <del>2</del><br><del>√3</del> | √2                                        | 2                                                | <b>金</b>                                         |
| 二角之和寫 90°或 180° 由是                                                                               | $tnn (^{0}0^{\circ} + A) = -\cot A$ $cosec (90^{\circ} + A) = \sec A$ | tnn (360°-A) = -tnn A $cosec (360°-A) = -cosec A$                                                      | $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$                                                          | $\cos 75^{\circ} = \sin 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$                       | $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$                                                       | 1 之間<br>tan. 及 cot. 於經對值常在 0 及                                           | sec.            | 1 2/3                                        | 1/2                                          | 80      | -2                            | -~2                                       | $-\frac{2}{\sqrt{3}}$                            | -1 割                                             |
| 兩兩互為餘角或為前所                                                                                       | $sec(90^{\circ}+A) = -cosec A$<br>$cot(90^{\circ}+A) = -tnn A$        | $\sec (360^{\circ}-A) = \sec A$ $\cot (360^{\circ}-A) = -\cot A$                                       | $\cot 2A = \frac{\cot^2 A - A}{2 \cot A}$                                                         | $\tan 75^{\circ} = \cot 15^{\circ} = 2 + \sqrt{3}$ .                                       | $(b+c)\sin \frac{1}{2}A = a\cos \frac{1}{2}(B-C)$                                                           | sec. 及 cosec. 於絕對值常在 1<br>及 ® 之間                                         | cot.            | ∞ √3                                         | 1 -                                          | 3 0     | <u>-1</u><br>√3               | -1                                        | /3                                               | 69 切                                             |

離婚 ◎修身書 身教科 書金五册

輯

<sup>適用</sup>算

術

敎

科

書

連定

江價

一\_ 陳<sub>元</sub>

文<sub>二</sub> 紹角

衚

敎

法

陳文 阿崇亞

合四 容角

陳文 中

學算術

解

法

印

刷

史

名 敎 科 術 例

連定

江價 陳

細元

連定

江價

睞 文

編元

査理 小

數

學

迎定

霹角

循

敎

科

書

合二 羽角

代

數

學卷上

陳定 文

合 譯元

教科初

等自修代數

學

歸定

顺位 合元

彦\_

紹角

**查斯理小** 

數

學

解

式

岛定

阿饵

Ø 彦八

露角

編 1

版

蛮市 大 查斯 理密 **查理大** 溫渥 特斯 大 代 面 數 幾 幾 學 數 數 何學 何 解 學 學 を中 卷下 尤 學 陳定 文 連定 歸 桂定 江饵 林價 廎 河質崇禮一 一一 陳元 馬壹 曾 君元

長定

王何

醉八

六

诚角

沙

演

述

歸定

m C

台

透光

踩角

桂定

何價

. 錫九

魪

細角

林

餘定

姚饵

背 背

譯角

史

迎定

ir<sub>A</sub>

文六

編角

陳

長定

沙假

雌三

演角

敱

義定

島價

业\_

文元

凱五

霹角

術品

河

周

垩 學也

永逃

學等幾 温特丁 温服斯工 温湿 特斯 中教等官 V 幾 體 面 何 何 體 幾 幾 學. 壆 何 敎 何 幾 敎 科 學 學 科 何 解 書 書 解 平之 面部 立之 學 法 法 武定 武定 桂定 南定 南定 康價 海 海 林 康假 何價 馬價 何價 魏 魏 崇<sub>五</sub> 崇... 君 蛇 鉈 鏡 文二 彦 武二 武 禮 醠 合 譯尤 譯角 譯角 譯元 編元 編角 酃 譯角 認角 何農工 何證 中教等科 類 類 球 球 **較平面** 高與等學工 温湿 特斯 幾 **圖教** 學科 何 平 平 禮幾 面幾 學 面 面 面 面 面 一角設 初 四 幾 何 何 等 問 何 問 敎 題 角法 題 題 角 角 角 角 畫 解 科 解 解 法部 法 法 書 法 法 法 法 法

温特解 美國斯密解析幾 点微 点情 球 温强特斯 縣積 縣微 解 面 析  $\equiv$ 析 分 Â. 云 角 何 幾 學 分 微分積分學 解 學 何學原 法 解 解 析幾 何 解 講 法福服 法 何 義 學 理 學 法 石印 學 李定 德 晋 虎面 否定 義命 再定 香定 孤定 定 航價 鶋 南 山贸 Щ 航價 郊價 鉔 鄭一 綤 價 一 宛 五 角 温 文刷 Œ 家元 赤六 家 - 四 麥 靈 斌五 斌 凱 野也 課 譚角 演角 譯元 演角 角 德國季微 學新 德國勞恩軍 數 數 倫氏 孫 新铜 高等 物 H 初 @理 等 理 分 學 壆 式 等 化 學 花書 用 物 學 方 敎 辭 游 教 重 力 程 理 科 科 式

書

詂

海

何

裴

醠

夓

植命

林

Щ

武

W.

君腳

戲

橣

河

凋

泳

37.

瓷

學

連定

证假

陳

文二

細元

學

崑定

朱绍

Щ

文

M

譯元

學

桂定

馬饵

林

君

武

謬元

書

霹

述

中

桂定

林價

馬一 君元

武二

譯角

德國初沙金寅 馬韓福德 最 優博 新 物書 實 物 驗 化 壆 餘定 桂定 林

嵏

堂中

中

中

中物 中物 等教 等数 孵植 娜動 物 物 學 壆 桂定 鑑定 林價 Щ 姚價 馬價 泰假 李--

普敦 通育 中物 中物 等数 等教 動 植 娜 博科 生 物 物 理 學 學 敎 教 衞 物 科 科 生 學 書 學 書 桂定 桂定 歸定 歸定 林 林 阿價 陳何 陳價 晉 用九 曾 用六 君 天元 嗣 彦 光 武 光 佐五 宗 譯元 編角 細元 編角 編角 編角 編角 普教 通青 普教 通育 聯與國 中發科 | 國 植 說 天 地 物

衞 生 學 歸定 順價 順個 曾 彦大 文 質 ⑩外國 文 文 學 學 學 敎 語書 敎 讀 講 科 科 文 本 書 書 釋 派 本 譯 霧 編 編 編

史

FF

中

譯角 **※國呂特上** 理 衞 生 壆 山印 東

金華爾錫維合譯 述 述 輯 輯 羅刷

彦 茂 編角 漢 典 南定 海似 何一 輯

景元

設五

課的

普敦 通青 生 理

中教科書 中教 中學 漢 英 歴史本 文 東 ◎歴史書 文 文 典 法 西 典 世 國 敎 規 洋 Œ 之 詳 之 科 字 部 部 書 解 解 語 南定 缩品 古印 栝 古品 滑窟 臨定 臨定 徳 抵 德 海 桂 紶 林低 何假 趙價 趙價 林 樊 樊 振刷 基刷 根刷 , 懿<sub>八</sub> -振去 懿<sub>八</sub> 年 祟\_ 脸 韓 駿 駿 翰 年 部也 器印 評角 細元 編角 編角

中敦 學科

外

國

赸

理

編

輯

中教 學科

H

國

地

理

顺定

德價

梁登

成元

二年

編角

中學

H

國

史

仁

和 IJ,

釵

佡

沯

普教 通育

地

文

學

敎

科

書

歸定

順價

曾

彦\_\_

細元

以用心 心 心 響記

货援

司五

紹分

編 譯 憶 部 總 吳定 

所

海

四捕

馬房

路東

巡首

科

學

發

行

湝

科

學

會

絧

譯

部

編 FII FII 鏬 刷 刷 君 渚 所

平面三角法與付 大洋六角

連

冮

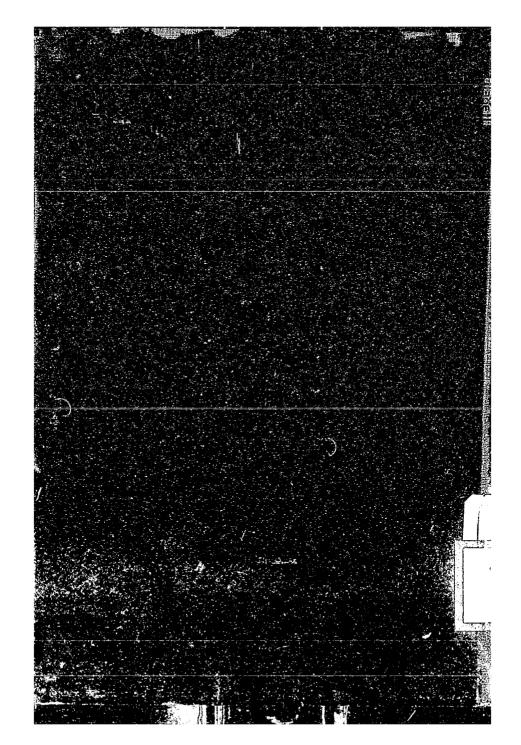
陳

文

藤

水

氽


吉

**株會** 式社

秀英舍第一工

埸

華民國二年八月十五日十一版

