Asynchronous Serial Interface for

Ronald C. Crane

July 1976

Technical Report No. 116

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Researc' Projects

Agency or the United States Government.

This research was supported by the Defense Advanced Research Projects Agency under ARPA Order No. 2494, Coniract No. MDA903-76C-0093.

DIEITAL SYSTEm5 LABORATORY

sthnford elettronits laboratories

DISCLAMER NOTICR

THIS DOCUMENT IS BEST QUALITY AVALLABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED

BEN 1822 INTERFACE, HOST-1MP INTERFACE, LSI-11, PDP-1i, DRV-11, DR11-C, PACKET-RADIO-HOST INTERFACE, ASYNCHRONOUS SERIAL INTFRFACE, ARPANET

This report describes an interface to permit the connection of any PDP-11 to either the Packet radio network or the ARPAnet. The interface connects to an IMP on one side, meeting the specifications published in BBN report number 1822, and to a 16 bit parallel interface (DRV-11 or DRIl-C) as described in the DEC peripherals and interfacing handbook. The interface card itself is a double height board ($5.2^{\prime \prime} \times 8.5^{\prime \prime}$) which can be plugged into any peripheral slot in a PDP-11 backplane. The interface card is connected to the parallel interface card via two cables with Berg 40 pin connectors (DEC H-856) and to the IMP via

I DITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

20 ABSTAACT Continued
an Amphenol bayonet connector (48-10R-18-31S). All 3 cables and connectors are supplied with the $1 / 0$ interface card. The parallel interface card (DEC DRII-C or DRV-11) together with the special I/O interface card described in this report comprise the 1822 interface. The report includes description of the operation of circuits, programming, and diagnostics for the 1822 interface.

Asynchronous Serial Interface for Connecting a
PDP-11 to the ARPANET (BBN 1822)

Technical Report No. 116
July 1976
Ronald C. Crane
Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, Califorria

ABSTRACT
This report describes an interface to permit the connection of any PDP-11 to either the Packet radio network or the ARPAnet. The interface connects to an IMP on one side, meeting the specifications published in BBN report number 1822, and to a 16 bit parallel interface (DRV-11 or DR11-C) as described in the DEC peripherals and interfacing handbook. The interface card itself is a double height board ($5.2^{\prime \prime} \times 8.5^{\prime \prime}$) which can be plugged into any peripheral slot in a PDP-11 backplane. The interface card is connected to the parallel interface card via two cables with Berg 40 pin connectors (DEC H-856) and to the IMP via an Amphenol bayonet connector (48-1@R-18-31S). All 3 cables and connectors are supplied with the I/0 interface card. The parallel interface card (DEC DRII-C or DRV-1?) together with the special I/0 interface card described in this report comprise the 1822 interface. The report includes descriptions of the operation of circuits, programming, and diagnostics for the 1822 interface. γ

KEY WORDS

BBN 1822 INTERFACE, HOST-IMP INTERFACE, LSI-11, PDP-11, DRV-11, DRI1-C PACKET-RADIO-HOST INTERFACE, ASYNCHRONOUS SERIAL INTERFACE, ARPANET

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Research Projects Agency or the United States Government.

This research was supported by the Defense Advanced Research Projects Agency under ARPA Order No. 2494, Contract No. MDA903-76C-0093

Table of Contents

Section	Contents	Page
1.0	Introduction	3
	1.1 Block Diagram	3
2.0	Transmit Section	5
	2.1 Host Power Relay	5
	2.2 Data Section	5
	2.2.1 Data Path	
	2.2.2 Handshaking Procedure	
	2.2.3 Last Host Data Bit Signal	
	2.2.4 Transmit Enable	
	2.2.5 Initialize Pulse	
	2.2.6 Load Pulse	
	2.2.7 Interrupt Request	
3.0	Receive section	10
	3.1 IMP Power Sensing	10
	3.2 Data Section	10
	3.2.1 Interrupt Request	
	3.2.2 Initialize \& Read Pulses	
	3.2.3 Bit 15 Output	
	3.2.4 Data	
	3.2.5 Bit Count	
	3.2.6 Receiver Timing	
4.0	Electrical Specifications	16
	4.1 Line Drivers and Receivers	
	4.2 Power Distribution on Board	
5.0	Changing Time Delays	19
6.0	Connectors	20
	6.1 Loopback Test Connector	21
7.8	Programming	23
	7.1 Status Register	23
	7.2 Input and Output Buffers	23

7.3 Transmit Register
7.3.1 Data Section 7.3.2 Control Section
7.4 Receive Register
7.4.1 Data
7.4.2 Control
7.5 Reference Tables 26
3.0 Diagnostics 29
3.1 Packet Source/Sink Program8.1.1 Description of proyram8.1.2 Running Source/Sink Program8.1.3 Source/Sink Program Listing
8.2 Sccpe Loop 323.2.1 Running Scope Program8.2.2 Using Scope Loop
Appendix 34
A DRII-C Specifications 35
B Parts list for Interface 40

This report describes an interface to permit the connection of any PDP-ll to either the packet radio network or the ARPAnet. The interface connects to an IMP on one side, meeting the specifications published in BBN report number 1822, and to a 16 bit parallel interface (DRV-11 or DRII-C) as described in the DEC peripherals and interfacing handbook. The interface card itself is a double neight board (5.2"x8.5") which can be plugged into any peripheral slot in a PDF-ll backplane. The interface card is connected to the parallel interface card via two cables with Berg 40 pin connectors (DEC $H-856$) and to the IMP via an Amphenol bayonet connector (48-10R-18-31S). All 3 cables and connectors are supplied with the I / O interface card. The parallel interface card (DEC DR11-C or DRV-1I) together with the speciai I / O interface card described in this report comprise the 1822 interface.

Except for differences in randling the iMp power relay status, this interface reflects tne current prototype as constructed by SRl. In the SRI unit, an interrupt is continuously generated when the Inip goes down. The interrupt generation can be stopped by disabling the receiver, after wnich it is nccessary to poll the interiace to see if the IMP comes back up. The interface described here generates one inter rupt on each charge of state of the IMP.

The following sections describe the ope.ation of circuits, programming, and diagnostics for the 1822 interface.

1.1
 Block Diayram

The block diagram shows the basic parts of the special I/O interface card and its connections t's the parallel interface card and the IMP.

The parallel interface card performs irterrupt control on the PDP-ll unibus. It has 3 addresses on the Unibus; the control and status register, the output register, and the input Jate. The status register incluodes both the inter rupt enable bits as well as the transmit and receive enable bits. The output register is a buffer whose contercs change only when tho irterface is loaded (written into). The input yate does not contain a buffer. Its function is only to gate its input siynal to the Unibus. Thus the data sections of the I/O card need only store data for the receiver, but not the transmitter. A block diagram and description of the parailel interface unit supplied by DEC are in the appendix.

In the following section, the reader is referred to the block diagram as well as the circuit and timing diagrams that follow.

Figure 1
FUNCTIONAL BLOCK DiAgrait

The transmitter has two independent sections. une is the power relay and the other is the data section.
2.1 Host Power Relay

Bits 12 and 13 in the output register control the host power relay contacts. They are the R and S inputs to an R-S $f l i p$ flop. Setting bit 12 closes the contacts, and setting bit 13 opens the contacts. If both bits are on, the contacts will be closed. If bnth bits are simultaneously cleared after both being set, the resulting contact position is indeterminate.

Last State	New State		Contact status
Bit Bit	Bit	Bit	
1312	13	12	
(any)	0	0	No change
(any)	0	1	Contacts closed
(any)	1	0	Contacts open
(any)	1	1	Contacts closed
11	0	0	Indeterminate
In i	Puise		Contacts open

Bits 12 and 13 need to be set only once, as can be seen f:om the table, since the state of the relay remains at its previous setting when bits 12 and 13 are both zero.

Since the transmit register cannot be used to read out the state of the relay, bit 13 of the receive register is used for that purpose. Bit 13 is a 1 if the contacts are open, and 0 if they are closed.

Bit 13 of INBUF	Contact position	
0	CLOSED	(HCSi power on)
1		OREN

The relay used is a Magnecraft wlu7-Drpir reed relay. Hagnecraft claims the contact bounce is lass than 500 microseconds. Therefore to be safe, no data should be transmitted until 1 millisecond after the relay is closed. This means that bit 12 of the transmit register (OUTBUF) must be set before transmit enable is set to prefent the interface from transmitting a byte when the pow'er ioit is set.

2,2 Data Se ion
The data section of the transmitter is an 8 bit parallel to serial converter implemented with a multaplexer. The 8 bit data byte and control information are supplied by the DRII-C whose output buffer holds these values until trey are replaced by new data and control information.

The actual parallel to serial conversion is done by an $\}$ line multiplexer (74152), which selects bits 7 to of the output buffer and directly feeds the output driver. The bit selection is done by the low order 3 bits of a 4 bit binary counter (74193). The counter starts at zero and is advanced one count each time the RFNHB (Ready for Next Host Bit) line makes a high to low transition. On the 8 th count the high order bit becomes $a \operatorname{land}$ is used to inhibit further counting and also to generate a transmit interrupt request.

2.2.2 Handshakiny Procedure

when the RFNHB line goes high, and transmit enable is a l (enabled), the TYHB (There's Your Host Bit) line goes nigh indicating availability of a data bit. RFNHB cventually goes low indicating acceptance of data. This triggers the 74123 pulse generator generating a pulse $T 4$ seconds lony (nominally 1 microsecond). The leading edye of the pulse advances the counter. The TYHB line is held low for at least the rimation of the pulse, and possibly longer if the PFNHB line renains low for longer than the pulse duration. Using the ralse generator provides a straightforward method of meeting the minimum pulse width requirements for the 2-Way handsake. This is useful when operating over long cables. For sistems using only a 4-way handshake, a simple time delay would suffice as long as it is long enough to allow the counter and multiplexer to settle after being advanced (See transmi: iming diagram for details).

2.2.3 Last Host Dàa Bi+ (LHDB) Signal

The LHDB signal is asserted if the Last Byte signal is present (bit ll in OLTBUF is a l) and the counter is selecting the last bit of the byte to be transmitted. The timing for this signal coincides with the timing for the data signal.

2.2.4 Transmit Enable

The transmit enable signal is used to gate out the interrupt request signal as well as to hold off data transmission while it is low. When the transmit enable signal is returned to the "l" (enabled) state, the transmitter waits for new data to be loaded into the output register (OUTBUF) before starting transmission. This means that the transmit enable line cannot be used to turn the transmitter on and off in the middle of a byte since the remainder of the byte would never be transmitted.

2.2.5 Initialize Pulse

The initialize pulse resets the counter to zero and opens the host power relay contacts. It also clears the registers in the DRV-11, thus clearing the transmit eıable signal.
2.2.6 Load Pulse

The load pulse resets the counter and holds t. \because TYHB line low for the duration of the load pulse (non. nally 300 nano-seconds). If it is the first load pulsi after the transmit enable line has been raised ($=1$), it also clears the hold-off flip-flop. The hold-off flip flop prevents handshaking from occurring until the first load puise after the transmit enable line goes high.

2.2.7 Interrupt Request

A transmit interrupt can occur only after the last data bit has been received by the IMP and both of the following conditions have been met.

XMT enable is set $\quad(=1)$ Bit in DRCSR XMT interrupt enable is set $(=1)$ Bit 6 in DPCSR

If one wishes cnly to poll the interface, only the XMT enable needs to be set. Bit 7 of the status register (DRCSR) indicates the state of the INT A line. If an interrupt has been requested, bit 7 will be a one. If bit 6 is also set, an interrupt will actually occur.

One receive section supplies one by'ce of data along with contrcl information. The receiver is divided into two parts. Une part senses the status of the lilp power relay contacts and tio other part performs the handshakirny and serial to parallel conversion.
3.1 imp power jensiny

The IMP power relay contacts ground the filtered input to the invertor. The 39 ohm resistor, 5 microfarad capacitor and the lok resistor provide some debouncing of the relay contacts. This supplies a signal through the inverters directly to the DRV-11 (bit 12). The high to low and low to high transitons senerate a julse via the EXCLUSIVE-UR gate and time delay which sets the powor interrupt flip flop. See fiyure 4 illustrating the EXCLUSIVE-OR pulse generator. An interrupt request is yenerated if the receive enable bit is set in the i!CSR (bit l). An interrupt will actually occur if nit 5 is also set. These actions will occur indevencent $O[$ actions in the data section of the receiver. Bit $14(=1)$ indicates that the interrupt was initiated by the IMp power relay (IMP recently down) and !it 12 indicoter the currerit status of the Ifip relay.

?. 2 Data Section

The data path in thiz section is from the line receiver directly to the serial-in, parallel-out shitt register (74164). The data is strobed into the shitt reyister Il sec. after the ixIB signal is asserted $(=1)$. The time felay Tl allows deskewing of the signals on the IYIs line and the data and LDB lines. Tnis tine delay can be varied by chanying the timing capacitor. After the data is strobed into the register, the RFilu line is dropped $(=0)$. It is held down for a minimum period of $T 2$ sec. and possibly longer if the Trib line has not dropped when Th nas elansed. The RFill line will not go hign ayain until the iryb line is dropped. ihis meets the reguirement of the 4-way handshaking procedure. The period $T 2$ occuring after tile data is strobed into the register is to meet the minimum pulse width requiremeats when using the $2-w a y$ handsnakin; procedure on long cables. The pulse widtn requirement at the Iilp end of the cable can also be met by changing the appropriate timing capacitor on the interface card.

3. .1 lntertupt Requests

An lnterrupt $\begin{aligned} & \text { equest can be yenerated only ir the Receive }\end{aligned}$ enable line is high (DRCSR bit 1 is l) and one of the following is true:
a) δ bits have been received since the last intrreupt as counted by the 74193 counter.
b) The Last Data Bit (LDB) flip flop has been set by receipt of an $L D B$ signal.
c) The power status flip flop has been set due to a change in the status of the IMP power relay contacts. (Connecting and disconnecting the cable will nave the sane eflect.)
3.2.2 Initialize and Read pulses

Botn the read and the initialize pulses produce a pulse on the clear line in the interface. The initialize pulse is inverted and fed directly to the clear line. The trailiny edge of the read pulse indicates that the data has been read from the reyister. The pulse generator $T 3$ jenerates a 1 nicrosecond pulse AFTER the trailing edye ol the read pulse. when the clear line is lowered $(=0)$, the reyister, flip-ilops, and counter are cleared. T2 pulee jeneration is innibited and the TYIB input signal is helu low for the duration of a clear pulse.

3.2.3 Bit 15 output

Eit 15 is the OR value of bit 14 (IMP recently duwn) and bit ll, the LIDB Dit in the receive register. It is "I" only if the last bit of a packet has been received (the only time the Lije line is asserted) or the the IMP has lost and/or regained power (its relay contacts cnanged position).

3.2.4 Data

The data bits appear in the low order byte ut the receive reyister (bits $0-7$). The most siynificant vit (MSB) or bit 7 is the first bit received from the line and the least significant bit (LSB) or bit 0 is most recently received bit.

3.2.5 Bit Count

The three bits $(8,9,10)$ indicate how many bits have been received since the last interrupt. If a number other than 0 appears in these three bits, a full byte has not been received. The bits are a binary number incicating now many bits have been shifted into the register. The data bits are shifted into the low order byte starting at bit 0 and moving toward bit 7. Ihus, the MSB starts at bit 0 and moves toward bit 7, its final destination. Jf the bit positions
were numbered 1 to δ (Lisi to $16 B$) instead of 0 to 7 , hen the bit count $(10,9,8)$ is the position of the MSb. Dof means the MSis nas foached its final destination.

3.2.6 Recciver Timin;

see the timing aianrans for the receiver in fiyure 6 .
Exclusive $O R$ Pulse Generator (on level transitions)

Truth Table
Truth Table

Inputs		A	0	0	1
	B	0	1	0	1
Output		0	1	1	0

Figure 5 - Receive Logic

Figure 6
RECEIVE UNIT TIMING

[^0]This section provides details on the power wiring for thr board and data on the line drivers and receivers.
4.1 Line Drivers and Receivers (DM 8820 and DM 8830)

The line drivers are National DM 7830/8830 differential balanced drivers. The receivers are National DM 7829/3829 differential balanced receivers. Connection details are shown in the figure showing drivers and receivers. Tne receivers provide a high impedence (2.5 K or 5 K) termination of the line, with protective clamping at + ans - 4 volts with respect to ground. when an input is out of the + or 4 voli rarge, the input impedence from the out of ranjo input to ground is 180 ohms. The maximuri input vnltage for any input lead should be held to + or - 10 volts with respect to ground. This is the dissipation limit of the protection circuit.

The cutputs are balanced differentiai and provide a 1.2 volt differential voltage swiag with a +.6 volt common mode voltage (both measured open circuit).

$$
\begin{array}{cc}
\text { Logic State } & \text { Uutput } \\
0 & 0 \mathrm{~V}+1.2 \mathrm{~V} \\
1 & +1.2 \mathrm{~V}
\end{array}
$$

The ourput impedence is 130 ohms differential balanced with respect to grounc (or 65 ohms co yround from each side).
4.2

Power Distribution
The power distribution is shown in figure 8.

Figure 7
Line Drivers \& Receivers
Electrical Specifications

1. Drivers: Differential Balanced Drivers (130 onms balanced, 05 ohms each side to ground)

Input
Logic

0

1
,
3 V

Outputs (volts)
A B
$0 \quad 1.2$
1.2

0
II. Receivers Balanced Differential, NO termination

Balanced In put

Diodes are 1 N4148 or equiv.
Typical threshold voltage is 100 mV .
Non-inverting input resistance is 2.5 K ohms to ground.
(pins $3 \& 11$)
Inverting input resistance is 5 K ohms to ground (pins $1 \& 13$). Protection clamps input to receiver at ± 4 volts. 180 ohm $\frac{1}{4}$ watt input resistor will fail with sustained inputs above 10 volts.
The 7820 and 7830 operate over the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$. The 8820 and 8830 operate over the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$.

* If $-12 V$ is not available, leave resistor unterminated.
ill protect against negative transients.
Figure 8 - POWER DISTRIBUTION

The value of the time delays is linearly proportional to the value of the timing capacitor over reasonable values of time delay. Thus to change the time delays, the timing capacitors should be changed accordingly. All time delays shown are set to one microsecond.

The I / U interface card nakes 4 connections to the outside world.
a) Edge connector on the card. DEC double height board. +5 volts and ground are used. Current consumption is about 600 mA .
b) Berg 40 pin connectors (2), one for input and ons for output to parallel interface. They are labeled Jl and J2 corresponding to DEC nomenclature. (Pin numbers at the top of the schematics indicate the connector number and pin number. Connector 2 , pin VV is 2-VV.) The connector number is DEC H-856
c) Amphenol 31 pin female bayonet connector. This is specified by the BBN 1822 report. The pin numbers for this connector are on the bottom of the schematics along with the signal name. The connector is Amphenol number 48-10R-18-31S.

6.1	Loopback Test Connector	
Originate	Destination	Signal
Pin No.	Pin No.	Name
1	21	+ LDB
2	22	- LDB
3	23	+ Data
4	24	Data
5	19	+ TYB
6	20	- TYB
7	17	+ RFNB
8	18	- RFNB
11	13	Power Relay
12	14	Power Relay

Figure " - Berg Connector Pin Locations

The programmer has 3 registers to deal with in programming the interface: the status register, the input buffer, and output buffer.

7.1 Status Register

This register has 4 read/write enable bits, and 2 read only status bits. There are two enable bits, one each to allow operation of the transmitter and receiver. The two status bits indicate whether a receive interrupt request has occurred. An interrupt request can occur only if the respective transmitier or receiver has been enabled. An interrupt will actually occur if the appropriate interrupt enable bit (one for receive \& one for transmit) has also been set.

7.2 Input and Output Buffers

Both the input and output buffers are divided into a data section (bits 0:7) and a control section (bits 8:15). The user should not write into the transmit register or read from the receive register if they are in the process of transmitting or receiving a byte of data. Reading or writing into a register while it is in the process of transferring a byte may cause some bits to become lost and/or out of synchronization. This can be avoided by waiting until either an interrupt or interrupt request (as seen in the status register) is present before accessiny the register.

7.3 Transmit (Output) Rejister

One byte of data will be transifitted each time this re istor is loaded if the transmit enable tit is set. Any ola data wi!! be cleared upon loading, indepeadent of the state of transinit enable.

```
7.3.1 Data Section (Bits 0:7)
    Bit 0 is least significant. bit. Bit 7 is the most
    significant bit and is the first bit to bo transmitter.
```


7.3.2 Control Section

Bit 11 (LHDB)- If this bit is set, the last host data bit line will go high ausiny the transmission of the last data bit in the byte (bit 0).

Bit 12 - Host Power kclay set- If this bit is set, the host power relay contacts will be closed indicating host is up. This bit need be set only once since the interface will latch the value. Either an initialize pulse or setting bit 13 will cie: the latch. The latch will remain in the last stat? to which it was set. Bit 13 of the rective register contains the status of the latch.

Although the power latch can be set any time, it is recommended that the relay be turned on before the transmit enable bit is set in the status reyister. This prevents a data byte from being transmitted when the relay is turned on. It is important lecause the host must wait until the contacts have solidly closed before transmitting data which is approximately 1 mS for the relay used.

Bit 13 - Host power relay clear - Setting this bit clears the inST power relay.

7.4.0 Receive keyister

Reading the receive register clears the receive buifer making it ready for another byte. Thus progran testing of control bits should be done after the contents of the receive register have been moved elsewhere. If the receiver wishes to suspend receipt of more data he can:
a) Not read the receive register.
b) Clear recieve enable after a receive interrupt and then read the receive buffer. In this case he has access to all data accepted by the interface and blocked data at the entry point to the interface.
c) Clear receive enable without waiting for an interrupt. In this case some bits may be lost. Setting receive enable will start the recciver again, but not necessarily where it left off.

7.4.1 Data (Bits 0:7)

Bit 0 is LSB and the last one received from the lime. Bit 7 is $M S B$ and the first one received Erom the linn.

7.4.2 Control

Bits $3,9,10$ - Point to last bit received in byte.
Bit 11 - (=1) Indicates last data bit line was assertnd concurrently with receipt of the last data bit.

Bit 12 - IMP Power status. Indicates current status of the IMP power relay.

Bit 13 - Host power relay status. Ø - ON 1 - OFF
Bit 14 - Indicates the IMP has been down since the last interrupt was serviced. (i.e. the interrupt was generated by IMP changing status.) (see bit 12 tor current status)

Bit 15 - Either bit ll or 14 is a l. This bit being set indicaies the current interrupt requires special handing either because it is the last byte of packet, or the IMP has been down.

```
.5 Programming the lu22 Interfacn
    (with the DRV-1l or DRll-C)
```

The bus address and intercupt vector locations shown ar for the first DRll-C (DRV-ll) in a system. If there is mori than one DRll-C, or other devices competing for the samo address area, the proper numbers may not be the ones shown. Check the appropriate system decumentation and/or tio hardware address jumpers on the DRll-C to be sure.

Control and Status Register - DRCSR 167770

Transmit Register - OUTBUF 167772

Receive Register - INBUP 167774

Bit 15 - This bit indicates that the DRV-11 has received a request from the interface to generate an interrupt. If uit 5 of this register is set, an interrupt will occur. This bit is read only.

Bit 14-8 NOT USED
Bit 7 This bit indicates that the DRV-1L has received a request from the interface to generate a transmit interrupt. If bit of the interface is set, an interrupt will occur. This bit is read only.

Bit 6 Transmit interrupt ENABLE- Setting this bit allows intetrupts to be generated upon completion of transmission of each byte of data. This bit is read/write.

Bit 5 Receive interrupt FiNABLE- Setting this bit allows interrupts to be generated upon receipt of each byte of data and/or a change in the status of the IMP power bit in the interface. This bit is read/write.

Bits 4-2 NOT USED

Bit 1 Receive enable- Setting this bit enables the receiver fby allowing the RFNB line to go high). The interface will ther receive bits untll either it is fuli, or it receives the last data bit (L.DU) signal. At this point the interface stops and requests an interrupt. It will not accept any new bits until the prospnt load of bits is read from INBUF. This bit is read/write.

Bit Transmit enable-Setting this bit enables the transmirter (by allowing the TyB iine to go high). The intertac! will transmit all bits which are loaded into OUTBUF after this bit is enabled. This bit is read/write.

Transuit Register OUTBUF 167772
hll bits are read/write. Transmission of a byte is initiated each time OUTBUF is loaded, the transmitter ic enabled (bit of DRCSR is set).

Bit Function
15-14 Not used
13 Setting this bit releases the Host relay contactio This hit need be set only once, as the interface holds the information in a letch. Either bit i3 OR bit 12 should be set. NOT BUTH.

12 Hogt Power get- This bit sets the Host relay contacts. As with bit 13, this bit need be set only once, since the intertace holds the information in a latch. Either bit 13 or bit 12 suouly he set. NOT BOTH. No data should be sent until at least millisecord after this bit is set to tllow for relay contact bounce.

11 Last Data Byte- This bit causes the last data bit (LDB) line to go hign conzutrently with the trunsinasion of the last bit of the byte. This is typically set with the last byte of a packet.

19,9,8 NOT USED (On the early unit, these bits indicated the last bit position to be transmisted within the byte.)

7- bata (Bit 7 is the high order byte, and bit is the low order byte.)

The interface will receive bits untileither it is full, or it receives the last IMP data bit (LIUP) flinal. At this linint the inturite stops and requests an interrupt. It will not accept any new bits until the present load of bits 1 s read from liflur.

BIT FUNCTION
15 Special conditon - If set, the byte of dala just received requires special handilng. (i.f. it is either the last byte of a packer, or there has been a chanqu in the status of the IMP relay contacts (IMP recently down).

IMP just went down or IMP has benn down and just camn up

- No change in IMP status

1 - IMP has been down recently
(see bit 12 for current status).
13 HOST POWER- Indicates the current status of the Host power relay as set or cleared by either tit 12 or 13 respectively in the transmit register outbur. This bit should be interpreted as follows:

0 - HOST power relay contacts closed (ON)
1 - HOST power relay contacts open (OFF)
12 IMP POWER-Indicates the current status of the IMP power relay. The bit should be interpteted as follows:

0 - IMP power ON
1 - IMP power OFF
See bit 14 to determine if the inter rupt was generated by the power circuit.)

11 LAST BYTE - If this bit is set, the data byte is the last one in a packet. Bits $8,9,10$ should be checked to determine the position within the byte of the last bit transmitted.
10.9.8 Bit Count - The three bits $(10,9,8)$ indicate how many bits have been received since the last intertupt. If a numbnr other than \mathfrak{b} appears in these three bits, a full byte has not been recelved. The bits ase a binary number indicating how many bit: have been shifted into the register. 'rhe duta bits are shittedinto the low order byte starting at bit 0 and moviny toward bit 7 , its final destination. If the bit positions were numbered 1 to 8 (LSB to MSB) instead of to 7 , then the bit count $(10,9,8)$ is the position of the MSB. 000 means the MSB has reached its final destination (position 6).

7-1 DATA - Bit 7 is the MSB of the data byte and is the first bit of the byte to be received from the IMP.

INTERRUPT VECTORS FOR THE INTERFACE

Transmit Interrupt Vector
Loc.
Contents

300	$X M T$	$=(P C)$
302	200	$\approx(P S)$

Receive Interrupt vector
Loc. Contents
301 RCV $=(P C)$

XMT- Address of transmit intertupt routine RCV- Address of receive interrupt routine

It is assumed that the DR1l-C or DRV-11 is functional before these tests are attempted. If the aDove is not tue, the programmer/user has no means of accessing the special I/O card. If in doubt, the DRIl-C tests should be run first.
8.1 Packet Source/Sink
8.2 Scope Loop

B.1 Packet Source Sink Program

8.1.1 General

The packet source and sink program can be used to inake tre interface do handshaking for hardware and sot ware checkout purposes.

The transmit part continuously loads the contents of 30 sequential memory locations into the transmit bufler. The low order byte is transmitted as data. Bit 11 of the nigh order byte may be set both as an end of packet indicator and also to test the LDB lines in the interface.

The receive or sink program circularly fills a 16 word area in memory with the contents of the receive reyister. The user may stop the program at any time to see tlie contents of the last 16 bytes received.
h) Location 602 determines what the program does. It is loaded into the control and status register of the interface. It should be loaded with one of the following.

101 Transmit Only
42 Receive Only
143 Transmit \& Receive
B) Locations 440 to 476 (octal) contain the transmit buffer. They should be filled with the data and control as the user wishes. Words from the buffer are successively loaded into the output buffer of the interface.
C) Load the program into memory using ODT or switch register. Alternately assemble the listing and load it from some storage device.
D) The program starts at location 600 (octal) after it is loaded.

8.2.1 Running Scope Loop Program
A) Load Source/Sink program in 8.1.3.
B) Location 602 should be 143 (iransmit \& receive)
C) Locations 440 to 446 should be:

440000000
442000002
444000200
446004001
D) Change contents of location 1006 from 500 to 450 so transmitter loops after 4 bytes.
E) Start program at location 600 (octal).

The loop program transmits two word parkets. lney are transmitted continuously. They are:

Word 1000002 octal
word 2100001 octal
The most significant bit (MSB) of each word is transmitted first. Thus, the bytes are sent as follows:

ilemory	Byte	Octal		Binary	
Location	No.	MSB	LSB	MSB	

440	1	000	00000000	
442	2	002	00090010	
444	3	200	10000000	
446	4	001	00000001	(LHDB asserted with
			LSB ot byte 4)	

The last host data bit (LHDB) line is assertea with the last bit (LSB) of the second word.

Scope Pattern for Test proyrain
(with loopback connector)

AppendixA DRIl-C Specifications3)(from DEC Peripherals and Interfacing Handbook)
B Parts list for Interface 40
DR11-C

GENERAL DEVICE INTERFACE, DR11-C

DESCRIPTIUN

The DR11.C is a generat.purpose interface bet seen the PDP. 11 UNIBUS and a use-'s peripheral. The DR11 C provides the logic and butfer register necessary or program controled paralie: transfers of 16 bit data
between a PDP. 11 System and an external dewice. The interface also ineludes status and cortrol bits that may be controlied by either the program or the external device for command. monitoring, and interrupt
functions.

The DR11-C interface consists of three functional sections: address selection logic, interrupt contiol lagic, and device interface logic.

The address selection logic determines if the interface has been selected
for use, which register is to be used, if a word or byte operation is to be for use, which register is to be used, if a word or byte operation is to be
performed. and what type of transfer (input or output) is to be per. forined.

The interrupt control logic permits the interface to gain bus control and perform program interrupts to specific vector addresses. The interrupt enable bits are under program control; the interrupt bits are under con-
troi of the user's device.

The DR11-C interface logic consists of three reg:sters: control and status, input buffer, and cutput buffer. Operation is initialized under program contro! ty addressing the DR11.C to specify the register and the type of
operation to be performed.
:f an output operation is specified, information from the UNIBUS is stcred in a i5-bit register. Once this, register has been loaded under prodevice until the register is loaded with new data from the bus. The register can also be read onto the bus. Upon transier of data to the buffer user's device that data has been loaded by means of a DATO or DATOB tus cycie and is read by rreans ci a DATI cr DATIP bus cycie.

Wran an input operation is specified, the DR11-C provides 16 lines of FFit to UNIELS transmiters. This perm ts data from the user's device to te read onto the bus. A control sigral. CATA TRANSMITTED, informs are not tuffered, can be read by a DATI bus cycle (e.g., NOV INBUF, RO).

The control and status rezister provides six tits that can be used to control and monitor user functions. Two of these bits are interrupt enabie (INT ENB) bits under control of the program. Two bits (REQ A and B)
are under direct control of the user's device and can only be read by the are under direct control of the user s de.ice and can only be read by o rovide flajs that car. be monitored by the program. The rema nina To bits (CSRO and CSRI) are read wite bits that can be cont-citc b .
the crogem to provide command or monitoring functions. In the man. 4.200

Control and Status Register (DRCSR) 767770

The control and status register is used to erabe interrupt logic and to pre de user defined command and status funstions for tre externa.
Two REQUEST bits, which are under device control, may be used to provide device status indications, or may be used to initiate interrupts when program centrol. Two other bits (CSRO and CSR1) are controlled from the UNIBUS and serve as command bits.

 these bits can generate interrupt requests. In adcition, bit 0 is normaliy used for start or go commands.
BIT NAME FUNCTION
15 REQUEST 8 This bit is inder control of the user's device and 10 azuanbas donnajul ue areldul ò posn aq Kem gram.
When used as an interrupt request, if is set'by the external device and initiates an interrupt provided
the INT ENB 8 bit (bit 05) is also set.
When used as a flag, this bit can be read by the program to monitor external device status.
When the maintenance cable is used, the state of this bit is dependent on the state of CSRI (bit 01). This permits checking interface operation by REQUEST B is the same value.
Read only bit. Cleared by INIT wher in Mainte-
Performs the same function as REQUEST B (bit 15) except that an interrupt is generated only if INT ENB A (bit 06) is also set.
When the maintenance cable is usec, the state of
REQUEST A is identical to that uf CSRO (Dit OO). Read-only bit cleared by INIT when in Mairte Read-only bit. Cleared by INIT whien in Marn'e
nance Mode $\stackrel{3}{\sim}$

DR11-C

tenance mode, they are also used to check operation of the interface. A maintenance cable, which is supplied with the interface, permits hecking of the DRII-C logic by loading the input tuffer from the outpul buffer rather than
loaded into the output register and the same word appears when reading the input buffer, provided the interface is functioning properly.

The DR11.C can also be used as an interprocessor buffer (IPB) to aliow two PDP.11 processors to transfer data between each other. In this case,
one DR11.C is connected to each processor bus and the two R11-Cs are cabled together, thereby permitting the two prosessors to communicate.

Physical Description
The DR11-C interface is paskaged on a single quad module that can be plugged into a small peripheral siot (SPC).

The module has two Berg connectors for all user input/;output signals. Two M971 connector boards, which are not supplied with each interface, can be used to bring all input/output thes to individual pins on a back
panel via two H856 cables. Note ifiat this cabie is a "mirror image" rather than a straight one-to-one cable.

> The following accessories are available for interfacing:

BCOBR (Berg-to-Berg) flat cable. Available in lengths of $1,6,8,10$,
desired cabie length; e.g., BCOBR-1 or BCO8R-25. .
M971 connector board. A single-height by $8-1 / 2$ in. board that brings
EC1ik-25 cable. Consists of a 20 twisted-pair cable with a Berg con-
d. 4856 Berg connector. Includes an H $H 856$ Berg connector and 40 pins. Crimping tools are available from: Berg Electronics, Inc., New Cum-
beriand, Pa. 170%. REGISTERS

The register addresses can be changed by altering the jumpers on the
address selection logic. However, any arograms or nther software re-
nput Buffer Register (DRINBUF) 767774 tor that recn ves data from the
The inplit buffer is a 16 h' icad only ees ter tha: rece.ves data from the
user's device for transmissicn io the UNIBUS information to be read is provided by the user's device on the data IN signal lines. Because the

 reac curvz a DATi sequense, a puised signal (DATA TRANSMITTED) is sent to the user's device to inform it that the transfer has been comceted. The tra ing edge of the positive going pulse indicates that tris
irarsfer is compicted.
Wherever the matritenance cable is used, the irput zuffer register re ccives data from the output buffer register rather than from the user's device. This permits checking of the interface ogic by lcading a word
from the bus into the output register and verifying that the sams word from the bus into the output register and verifying that the samt word
appears in the input buffer.

Input and Output Signals

Inputs			Outputs		
S znal	Connector	Pin	Signal	Connector	Pin
INOO	2	TT	OUTC:	1	C
iNO1	2	LL	OUTO1	,	K
1N02	2	H	OUTC2	1	NN
1NO3	2	38	CUTOZ	1	U
1r:34	2	KK	OUTO4	1	L
inos	2	HH	OUT05	1	N
NCE	2	EE	OUT05	,	R
1 NOT	2	CC	OUTO7	1	T
1N08	2	Z	OUT08	1	W
iN09	2	Y	OUTO9	1	\times
NiN0	2	W	OUT1G	1	2
iN11	2	\checkmark	OUT11	1	AA
N122	2	U	CUT12	i	EB
IN13	2	P	OUT13	1	FF
IN: 4	2	N	OUTI:	1	HH
liv15	2	: 1	OUT15	:	J.
PEQ A	1	LL	fiEin data rcy	1	VV
FEQ B	2	S	DATA TRANS.*	2	C
			CSRO	2	K
			CSR1	:	00
			INIT	1	
			INIT	2	RR, idN

UR11-C

Interrupt enable bit. When sft, aliows an intcrrupt
scquence to be intiated. provided REQULST A (L it 07) hecor es set.

Can be loaded or read by the program (read write
bit). Cieared by INIT.
Interrupt enable dit. When set, allows an interr t
($b: 15$) tecorres set.
Can be loaded or read by the program (readiwnite
bit). Cleared by INIT.
This bit cari be :oaded or read (under program sjoad pasn aq uej pi: Singinn aut wosj (io:,ues sjeaddc) aэtィวز aц: of pueviluor pau!jap-jasn oniv on Connector No. 1).

When the maintenance cable is used, setting or
clearing this bit causes an identical state in bit 15
 bit 15 which canrct te loaded b; the program. Read write bit (can be loaded or resd by the pro-
gram). Cleared by INIT. Performs the same functions as CSR1 (bit Oi) but appears only on Connector No. 2. When the maintenance cable is used, the star: of
this bit controls the state of bit 07 (REQUEST A). this bit controls the state of bit 07 (REQUEST A).
Read' write bit. Cleared by INIT.

Output Ruffer Register (DROUTBUF) 767772
Tile output buffer is a 15 hit read write register that may be read or loarsd from the UNIBUS. Information from the bus is loaded into this $r \in$ eister under profram control. At the time of icading, a pulsed signai
(NEW DATA. READY) is generated to intorm ine user's device that the register has been loaded. The trailing edge of the positive pulse should be used to allow the data to be loajed and settle on the user's input
lires. Eata from the buffer is tiansmitied to the iser's device on the lires. Eata from the buffer is tiansmitied to the iser's device on the
data OUT Ines ay means of a DATO or DATOS bus cicle. data OUT lines ay means of a DATO or DATOS bus ci'cle.
iiNT EN:BA

0

iNiENB B

0
NiENB B

4
0
0
0

9

CSRO

8

Tre conterts of the output buffer register may be read at any time by
means of a DATt or DuTIP Lus cyc!e. During the read oparation, the output of : e buffer is fed directly to the bus data lines.

Wrenever the riantenarce cable is used, the data from the output buffer s aiso apolied to the infut buffer res:ster. This permis checkine eperation of the interface lotic.

The DROLTRUF is cleared by INIT.
$4-204$
DR11．C

	$\begin{aligned} & z_{u} z \\ & z_{0} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \sim \\ & \sim_{u}^{2} \\ & \underline{Z} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { Z } \\ & Z O U \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{y y}{\alpha} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & n m \\ & z \underline{z} \end{aligned}$	$\begin{aligned} & \pm 0 \\ & \underset{i}{ \pm} \underset{0}{2} \end{aligned}$	∞ 00 W己	$\begin{aligned} & N \underset{Z}{z} \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & 00 \\ & \underline{Z} Z_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	은	$\begin{aligned} & 0 \quad z \\ & 0_{u}^{n} \\ & \underline{Z} 0 \end{aligned}$	$\begin{aligned} & \sim 0 \\ & \underline{i} \\ & \underline{i} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { Z } \\ & \underline{Z} \end{aligned}$	$\underset{\sim}{\underset{\sigma}{z}}$
	$\begin{aligned} & z \underset{u}{z} \\ & \text { wi } \\ & 00 \end{aligned}$		$\begin{aligned} & 2 z \\ & z_{1} \\ & u_{0} \\ & 0 \\ & 0 \end{aligned}$	20 40 0 0	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 00 \end{aligned}$	근ㄴ	$\begin{aligned} & \text { n. } 0 \\ & 5 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 9 \\ & \stackrel{y}{5} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { og } \\ & \text { 0. } \\ & 50 \\ & 0 \end{aligned}$	응	$\begin{aligned} & \approx N \\ & 5 F \\ & 00 \end{aligned}$	2 ${ }_{0}$	$\overbrace{2}^{2} \stackrel{9}{5}$	$\begin{aligned} & \pm \backsim \\ & \stackrel{N}{5} \\ & 0 \end{aligned}$		${ }_{3}^{\circ} \stackrel{\stackrel{N}{5}}{5}$
등	＜ 0	UO	wu	エ ᄀ	\boldsymbol{x}	£ 0	$z \propto$	いト	コ $>$	$3 \times$	$\succ N$	＜	40	耑兄	エワ	$\stackrel{y}{x}-$	$\underset{j}{\dot{z}} \mathrm{z}$
$\frac{\square}{\circ}$	$\begin{aligned} & \times \stackrel{\infty}{4} \\ & \frac{0}{0} \\ & \frac{1}{3} \end{aligned}$		$\begin{aligned} & \times \begin{array}{l} x \\ \vdots \\ \frac{0}{0} \\ \frac{1}{3} \end{array} \end{aligned}$				気	$\begin{aligned} & x \\ & \underset{y}{3} \\ & \frac{0}{5} \\ & \hline \frac{1}{3} \end{aligned}$		$\begin{aligned} & \times \frac{0}{4} \\ & \frac{0}{3} \frac{1}{3} \end{aligned}$	$\begin{aligned} & \frac{7}{\Delta} \\ & \frac{0}{0} \\ & \hline 0.0 \end{aligned}$		$$	$\begin{aligned} & c_{3}^{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \end{aligned}$	$\begin{aligned} & \text { 동 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
	black／white－orange	black white－yellow	black＇white－grey						$\begin{aligned} & 0 \\ & 00 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \stackrel{x}{u} \\ & \stackrel{\pi}{0} \end{aligned}$		$\begin{aligned} & \dot{\#} \\ & \frac{\Psi}{x} \\ & \frac{0}{4} \\ & \frac{\pi}{0} \end{aligned}$	$$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \frac{3}{a} \\ & \frac{5}{5} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \frac{ \pm}{\omega} \\ & \frac{0}{2} \\ & \hline \mathbf{N} \\ & \hline 0 . \\ & 0.0 \end{aligned}$

Pin Connections Disll－C							
M971		DR11．C					
Board	Berg Header	Connector No． 2		Connector No． 1		Berg Header	Board
		PIn	Name	Name	Pin		
U2	A	VV	OPEN	OPEN	A		
U1	B	UU	GND	OPEN	B	UU	A2
V2	C	TT	INOO	OUTOO	C	TT	Al
V1	0	SS	GND	OPEN	D	SS	A2
T2	E	RR	INIT H	OPEN	E	RR	B1
T1	F	PP	GND	OPEN	F	PP	B2
T2	K	NN	INIT H	OPEN	H	NN	C：
T1	J	MM	GND	GND	J	MM	C2
S2	k	LL	INO＇	OUTO1	K	LL	D1
S1	L	KK	INO4	OUTC4	\mathbf{L}	KK	D2
R2．	M	J	GND	GND	M	31	E1
R1	N	HH	INOS	OUTOS	N	HH	E2
P2	P	FF	OPEN	livit H	P	FF	F1
P1	R	EE	INOS	OUTO6	R	EE	F2
N2	S	DD	GND	GND	S	DD	H1
N 1	T	CC	INO7	OUTO7	T	CC	H2
M2	U	BB	INO3	OUTC3	U	BB	$J 1$
M1	v	AA	GND	GND	v	${ }^{\text {AA }}$	12
$L 2$	W	\boldsymbol{Z}	IN08	OUT08	w	z	K1
L1	$\underset{y}{x}$	Y	IN09	OUT09	X	Y	K2
K2	Y	X	GND	GND	Y	X	11
K1	Z	w	IN1O	OUT10	Z	w	12
J2	AA	V	｜N11	OUTII	AA	v	M1
J1	BB	U	IN12	OUT12	BB	U	M2
H 2	CC	T	GND	GND	CC	$\begin{gathered} T \\ \mathbf{c} \end{gathered}$	N1
H1	DD	S	REQ B	CSR1	DD	$\begin{aligned} & S \\ & 0 \end{aligned}$	N2
F2	EE	R	GND	GND	EE	$\begin{aligned} & R \\ & p \end{aligned}$	P1
F1	FF	P	IN13	OUT13	FF	P	P2
E2	HH	N	iN1S	OUTI4	HH	N M	R1
E1	JJ	M	IN15	OUT15	JJ	M	R2
D2	KK	L	GND	GND	KK	$\frac{1}{K}$	S1
D1	LL	K	CSRO	REQ A	LL	K	S2
C2	MM	J	GND	GND	MM	J	T1
C1	NN	H	INO2	OUTO2	NN	$\underset{r}{H}$	T2
B2	PP	F	OPEN	GND	PP	F	T1
B1	RR	E	INO2	OUTO2	RR	E	T2
A2	SS	D	OPEN	GND	SS	D	V1
A1	TT	C	DATA TRANS．	OPEN	TT	C	V2
A2	UU	2	OPEN	GND	UU	B	Ul
$A 1$	VV	A	OPEN	$\begin{aligned} & \text { NEW DATA } \\ & \text { RDY } \end{aligned}$	W	A	U2

 pacitor 30 unt leads pos e
 DATA TRANS:MITED-drives 30 unt loads. pos tive pulse, 400 ris wide unless widt changed by an externa capacitor
 INIT (initialize)-cominon sicnal on beth connectors 6.bit word from the externai device 16 bit word from the UNIBUS. Either a full word cr an
 sjadun! (waisks a/seq ulım paydons) a;पej \perp NI甘W \forall
害
Data Inputs: Data Outputs: Maintenance
Mode:

:sjeus's

blackivillet	black	CP	GND	GND
	vicict	RR	OUTO2	INIT
blackigreen	b!ack	SS	GND	GND
	Ercen	TT	OOEN	INOC
pinkiwhitered	pink whired	UU	GND	GND
		NEWDATA RDY	OPEN	

Prionity interrupt interface control
logic $1=+3 \mathrm{~V}$
$\operatorname{logic} 0=0 \mathrm{~V}$

One standard TLL unit load; diode protection clamps to
TTL levels capable of driving 8 unit loads except for the

NEW DATA READY $=30$ unit luads
DATA TRANSMITTED $=30$ unit loads
INiT (iritalize) = common sicnal on beth connectors driven by one 30 -unit load driver
blackivi let

SPECIFICATIONS

nput/output levels:
Register Addresses
Coritrol and Status (DRCSR) Output Buffer (DROUI BUF)
iniput Buffer (DRINBUF)
2nd DR11-C
3 rd DR11-C
UNIBUS Interface
UNIBUS Interface
Interrupt vector addresses:
Priority ievel: Bus load'ng:
Mechanical
Mounting:
Inpur Current:
Misce:laneous:
Inpu:s: 4.208

Reference Number in Circuit	I. C. Number	Price*
1	SN7404	
2	SN7400	55
3	$\operatorname{Siv} 7402$. 55
4	$\operatorname{Siv} 7402$	-
5	SN7474	. 06
6	SN74123	. 411
7	SiN74123	-4.
8	SN74193	3.30
9	Sin74164	3.50 3.5
10	DM8820	3. 69
11	DM8820	3.69
12	DM883C	3.09
13	Di4883C	3.09
14	SN74193	3.30
15	SN74152	7.80
16	SIJ7402	. 55
17 18	SN7400	. 5°
18	Magnecraft wlot-DIP-1 Reloy	4.00

Connectors

J1	DEC $\mathrm{H}-856$	\%.0\%
J2	DCC H-356	, kio
IMP	48-10R-18-315	

Resistors $111 / 4$ watt 5\%, \$.06 ea.)

1	39 ohm	. .0
8	100 ohm	.46
1	120 ohin	.36
16	180 ohm	.90
3	1 K ohm	$.1 \%$
1	3.3 K ohm	.96
1	10 K ohım	.96
4	22 K ohm	.24

Capacitors

Diodes

2	$3.6 V$				
19	$l i v 4148$	watt zeners	1,152273	.00 ea.	1.60
		.25 ea.	4.75		

Circuit Board
Douglass Electronics 1]-DE-11
Total
$\$ 162.26^{-}$
(excludes labor, connecting wire, solder, etc.)

* 1976 Catalog prices

ARPA
Director (2 copies)
ATTN: Program Management
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209
Defense Documentation Center (DDC)
(12 copies)
Cameron Station
Alexandria, VA 22314
ARPA/IPT
1400 Wilson Boulevard
Arlington, VA 22209
Dr. Robert Kahn
Mr. Steven Walker
Boit Beranek and Newman Inc.
50 Moulton Street
Cambridge, MA 02138
Mr. Jerry D. Burchfiel
Mr. R. Clements
Mr. A. McKenzie
Mr. J. McQuillan
Mr. R. Tomlinson
Mr. D. Walden
Cabledata Associates
Mr. Paul Baran
Cabledata Ascociates, Inc.
701 Welch Road
Palo Alto, CA 94304
California, University - Irvine
Prof. David J. Farber
Department of Information and Computer Science
University of California
Irvine, CA 92717

California, University - Los Angeles
Professor Gerald Estrin
Computer Sciences Department.
School of Engineering and Applied Science
University of California
Los Angeles, CA 90024
Professor Leonard Kleinrock
Computer Sciences Department
3732 Boelter Hall
University of California
Los Angeles, CA 90024
Mr. William Naylor
3804-D Boelter Hall
University of California
Los Angeles, CA 90024
Collins Radio Group
1200 N. Alma Road
Richardson, Texas 75080
Mr. Don Heaton
Mr. Frederic Weigl
Defense Communications Engineering Center
Dr. Harry Helm
DCEC, R-520
1860 Wiehle Avenue
Reston, VA 22090
Hawaii, University of
Professor Norman Abramson
The ALOHA System
2540 Dole Street, Holmes 486
University of Hawaii
Honolulu, Hawaii 96822
Illinois, University of
Mr. John D. Day
University of Illinois
Center for Advanced Computation
114 Advanced Computation Building
Urbana, Illinois 61801

Institut de Recherches d'Informatique et d'Automatique (IRIA)	National Bureau of Standards
Reseau Cyclades	Mr. Robert P. Elanc
78150 Rocquencourt	National Bureau of Standards
France	Institute for Computer Sciences
Mr. Louis Pouzin	and Technology 20234
Mr. Hubert Zimmerrian	washington, 0 .
	Mr. Ira W. Cotton
Information Sciences Institute	National Bureall of Standards
University of Southern California	Building 225, Koum B215
4676 Admiralty Way	Washington, D. C. 20234
Marina del Rey, CA 90291.	
	National Physical Laboratory
Mr. Steven D. Crocker	Computer Science Division
Mr. Keith Uncapher	Teddington, Middlesex, England TWII OLW
	Mr. Derek Barber
London, University College	Dr. Donald Davies
	Mr. Roger Scantiebury
Prof. Peter kirstein	Mr. P. Wilkinson
University College London	
Department of Statistics \&	National Security Agency
Computer Science	9800 Savage Road
43 Gordon Square	Ft. Meade, MO 20755
London WCIH OPD, England	
	Mr. Dan Edwards
Massachusetts Institute of Technology	Mr. Ray McFarland
Dr. J. C. R. Licklider	Norwegian Defense Research Establishment
	P. 0. Bux 25
Project MAC - PTD	2007 Kjeller, Norway
545 Technology Square	
Cambridge, MA 02139	Mr. Yngvar G. Lundh
	Mr. P. Spilling
Mitre Corporation	
	Oslo, University of
Mr. Michael A. Padiipsky	
MITRE Corporation	Prof. Dag Belsnes
P. 0. Box 208	EDB-Sentret
Bedford, MA 01730	University of 0slo
	Postbox 1059
Network Analysis Corporation	Blindern, 0slo 3, Norway
Beechwood, 01d Tappan Road	
Glen Cove, New York 11542	Rand Corporation
	1700 Main Street
Mr. Wushow Chou	Santa Monica, CA 90406
Mr. Howard Frank	
	Mr. S. Gaines
	Dr. Carl Sunshine

Rennes, University of
M. Gerard LeLann

Reseau CYCLADES
U.E.R. d'informatique
B. P. 25A

35031-Rennes-Cedex, France
Stanford Research Institute 333 Ravenswood Avenue Menlo Park, CA 94025

Ms. E. J. Feinler
Augmentation Research Center
Dr. Jon Postel (4 copies)
Augmentation Research Center
Mr. D. Nielson, Director
Telecommunication Scienres Center
Dr. David Retz
Telecommunication Sciences Center
System Development Corporation
Dr. G. D. Cole
System Development Corporation 2500 Colorado Avenue
Santa Monica, CA 90406
Telenet Communications, Inc. 1666 K Street. N. W. Washington, D. C. 20006

Dr. Holger Opderbeck
Dr. Lawrence G . Roberts
Dr. Barry Wessler
Defense Communication Agency
Dr. Franklin Kuo
4819 Reservoir Drive Washington, D. C. 20007

Ẍerux falu Alto Research Center 3333 Coyoto Hill Road
Palo Alto, CA 94304
Mr. David Boggs
Dr. R. Metcalie
Mr. John Shoch
Dr. William R. Sutherland
Stanford University
Mr. Ronald Crane, Digital Systems Laboratory
Mr. Yogen Dalal
Ms. Judith Estrin " " " Prof. Michael Flynn " "
Mr. Richard Karp " " "
Dr. John Linvill, Electrical Engineering
Mr. James Mathis, Digital Systems Laboratory
Mr. Uarryl Rubin
Mr. Wayne Warren " "

BELL LABORATORIES
Dr. Eliot N. Pinson, Head
Computer Systems Research Department
Bell Latoratories
600 Mountain Avenue
Murray Hill, New Jersey 07974
Dr. Mark Rochkind
Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974
Mr. Kenneth L. Thompson
1103 High Court
Berkeley, California 94708

B NR, Inc.
Mr. Alex Curran, President
B N R, Inc.
3174 Porter Drive
Palo Alto, California 94304
Mr. Barry Gordon
$B N R$, Inc.
3174 Porter Drive
Palo Alto, California 94304
Mr. Alan Chapman
B N R, Inc.
3174 Porter Drive
Palo Alto, California 94304

BURROUGHS CORPORATION
Dr. Wayne T. Wilner
Burroughs Corporation
3978 Sorrento Valley Boulevard
San Diego, California 92121
Mr. John Mazola
Burroughs Corporation
25725 Jeronimo Road
Mission Viejo, California 92675
Mr. Louis de Bartelo
Burroughs Corporation
1671 Reynolds
Irvine, California 92714

GENERAL ELECTRIC COMPANY
Dr. Richard L. Shuey
General Lectric Research and Development Center
P.0. Box 8

Schenectady, New York 12301
Mr. J. T. Duane, Manager
Special Purpose Computing Center
General Electric Company
1285 Boston Avenue
Bridgeport, Connecticut 06602
Mr. Ronald S. Taylor
General Electric Company
175 Curtner Avenue
San Jose, California 95125

GENERAL MOTORS CORPORATION
Dr. George C. Dodd, Assistant Head
Computer Science Department
General Motors Research Laboratories
General Motors Technical Center
Warren, Michigan 48090
Dr. Joseph T. Olsztyn
Computer Science Department
General Motors Research Laboratories
General Motors Technical Center
Warren, Michiggan 48090
Dr. James Thomas
Computer Science Department
General Motors Research Laboratories
General Motors Technical Center
Warren, Michigan 48090

HEWLETT-PACKARD
Mr. Don Senzig
Hewlett-Packard Laboratories
Building 18
1501 Page Mill Road
Palo Alto, California 94304
Dr. J. R. Duley
HPL/ERL
3500 Deer Creek Road
Palo Alto, California 94304

HILWLETT-PACNMRO (coniinued)
Mr. Stephen Walther
HPL/ERL
3500 Deer Creek Road
Palo Alto, California 94304

HUGHES AIRCRAFT COMPANY
Mr. R. Eugene Allen
Hughes Aircraft Company
Bldg. 604, M.S. D-222
P.O. Box 3310

Fullerton, California 92634
Mr. Thomas J. Burns
Hughes Aircraft Company
Bldg. 390, M.S. 2007
P.0. Box 92919

Los Angeles, California 90009
Hughes Aircraft Company
Attn: B. W. Campbell 6/Ello
Company Technical Documents Center
Centinela and Teale Streets
Culver City, California 90230

IBM

Dr. Leonard Y. Liu, Manager
Computer Science
International Business Machines Corporation
K51-282, 5600 Cottle Road
San Jose, California 95193
Mr. Harry Reinstein
International Business Machines Corporation
1501 California Avenue
Palo Alto, California 94303
Dr. Donald Frazer
IBM Watson Research Center
P.0. Box 218

Yorktown Heights, New York 10598

MICROTEC: NOLOGY CORPORATION
Mr. Fred Buelow
Microtechnology Corporation
224 N. Wolfe Road
Sunnyvale, California 94086
Mr. Naoya Ukai
Microtechnology Corporation
224 N. Wolfe Road
Sunnyvale, California 94086
Mr. John J. Zasio
Microtechnology Corporation
224 N. Wolfe Road
Sunnyvale, California 94086

SIEMENS AG

Mr. Dr. Jan Witt
Siemens AG
Zentrale Forschung und Entwicklung
FL SAR
Hofmannstr. 51
8000 München 70, Germany
Mr. Harold Fritzsche
Siemens AG
Zentrale Fertigungsaufgaben FTE 3 Aut 2
Schertlinstr. 8
8000 München 70, Germany
Mr. Volker Haberland
Siemens AG
Zentrale Fertigungsaufgaben
FTE 3 Aut 23
Schertlinstr. 8
8000 München 70, Germany

XEROX CORPORATION
Dr. Jerome Elkind, Manager
Computer Science Laboratory
Xerox Corporation
Palo Alto Research Center
3180 Porter Drive
Palo Alto, California 94303
(continued)

XERGX CORPORATION (continued)
Mr. Robert Taylor, Principal Scientist
Computer Science Laboratory
Xerox Corporation
Palo Alto Research Center
3180 Porter Drive
Palo Alto, California 94303
Dr. Butler Lampson
Xerox Corporation
Palo Alto Research Center
3180 Porter Drive
Palo Alto, Caiifornia 94303
STANFORD UNIVERSITY
Professor Edward J. McCluskey (2)
Director, Digital Systems Laboratory
Computer Science Department
Computer Science Library
Digital Systems Laboratory Library (5)
Engineering Library (2)
IEEE Computer Society Repository (2)

[^0]: zonenclature

 $\bigcup^{\text {puldequay }}$ nege pulse appears on thas lead. The width of the

 \rightarrow Discontinuous in time: timing sequences sepasated by areak

