THE NEWS LETTER

OF THE

BUREAU OF PUBLIC ROADS

VOL. 3, NO. 9
JULY, 1928
A. C. ROSE, EDITOR

CONTENTS
Comptroller General Rules On Deductions Made To Forest Road Contractors For Surplus War Stock - 1
Status Of Current Federal-Aid Road Work, As Of June 30, 1928 2
1927 State Highway Disbursements 3
1927 State Highway Income 4
Comprehenive Concrete Pavement Curing Tests Now In Progress In Tennessee 5
Mileage Of Existing Local Roads At End Of 1926 9
Mileage Of Local Roads Bult During 1926 10
Reddish-Brown Prints On White Background Used B Maryland State Roads Commission - - -11
A. A. S. H. O. Committee On Materlals Hold Meeting On June 25-26, 1928 13
Model Analysis Of Yadrin River Bridge Completed- 14
1928 Facilities 0f State Highway Testing Laboratories - 15
Mount Vernon Memorial Boulevard Survey Begun On June 15 16
John Wesley Ba 20

$$
\therefore 2:
$$

COMPTROLLER GENERAL BULES ON DEDUCTIONS MADE
TO FOREST ROAD CONTRACTORS FOR SURPLUS WAR STOCK

Contrieuted ey the Legal Section

(Not for release)
Under the date of March 26, 1928, the General Accounting Office, in issuing the certificate of settlement (no. 7312-A) on the contract of Dayley and Adams for constructing the Warm River - Yellowstone forest road project, State of ldaho, transferred to the credit of Miscellaneous receipts \$14,272.89, being the sums deducted for Government equipment and explosives used under the contract. This was the first instance in which the General accounting Office actually transferred deductions of this character to Miscellaneous receipts, although the question had been up several times and we had successfully avoided any such transfer up to the above date.

A review of this settlement by the Comptroller General was requested in a letter prepared in the bureau and signed by the Acting Secretary on May 31 , 1928. In this letter the argument was advanced that equipment and explosives obtained by transfer from the war Department as surplus war stocks were apPROPRIATED BY CONGRESS THE SAME AS THE MONEY APPROPRIATIONS FOR road work, and that, therefore, deduct ions for the value of that USED BY CONTRACTORS DO NOT REPRESENT MONEY RECEIPTS ON BEHALF OF the United States, as contemplated by Sections 3617 and 3618 of the revised statutes, which require that all money received on behalf of the United States shall be covered into the Treasury to the credit of Miscellaneous receipts. In an opinion dated June 29, 1928, the Comptroller General agreed with the contention made in the Department's request for review and advised that the sum of \$14.,272.89 transferred in the settlement of March 26, 1928, would ee restored to the appropriation "Forest roads and trails."

This decision of the Comptroller General should dispose OF THIS qUESTION AND WE SHOULD ENCOUNTER NO FURTHER DIFFICULTY with the General Accounting Office concerning it. However it RELATES ONLY TO DEDUCTIONS FOR SURPLUS WAR EQUIPMENT AND EXPLOsives transferred to this Department ey the war department, and WOULD NOT APPLY TO EQUIPMENT OR EXPLOSIVES PURCHASED OR OTHERWISE acquired ey the Department and furnished to contractors.
UNITED STATES DEPARTMENT OF AGRICULTURR
STATUS OF CURRENT FEDERAL-AID ROAD WORK

FOR THE FISCAL YEAR ENDING JUNE 30, 1928

AS OF JUNE 30,1928

STATES	BALANCE OF FEDERALAID FUND avallable FOR NEW PROJECTS	* UNDER CONSTRUCTION			APPROVED FOR CON-STRUCTION			$\begin{aligned} & \text { AMOUNT } \\ & \text { PAID STATES } \\ & \text { DISRING } \\ & \text { FISCAL. YEAR } \end{aligned}$	COMPLETED AND PAID DURING FISCAL YEAR			AGREEMENTS NOW INFORCE			P. S. \& E RECOMMERDED FOR APPROFAL BY DSTRICT ENGINERR			STATES
		FEDERAL AID	milieage		federal atd	mileage			FEDERAL AfD	mileage		FBDERAL Ald	mileage		FEDERAL AD	mileage		
			ORIGIEAL	Stabs		IGIFAL	stag			ORIGIEA	Stage		Rigiral	stage		gital	stage	
Alabama Arizona Arkanse	$\begin{array}{r} \$, 845,84.61 \\ 2,696,024.65 \\ 1,785,771.75 \\ \hline \end{array}$	 $\$ 3,622,312,93$ $1,654,282.55$ $2,567,862.63$	$\begin{aligned} & 427.9 \\ & 120.9 \\ & 250.4 \\ & \hline \end{aligned}$	${ }^{57.6} 4$	$\begin{array}{\|r\|} \hline \$ 368,972.83 \\ 42,024.80 \\ 102,444.68 \\ \hline \end{array}$	48.7 9.6	$\begin{array}{r} 12.4 \\ 4.2 \\ 8.2 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,759,986.85 \\ 49,436.01 \\ 798,612.85 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline \$ 2,001,927.49 \\ 463,822.73 \\ 803,213.48 \\ \hline \end{array}$	$\begin{array}{r} 249.4 \\ 18.1 \\ 37.8 \\ \hline \end{array}$		 $3,651,299.83$ $1,847,849.61$ $2,320,744.20$	$\begin{aligned} & 404.4 \\ & 120.3 \\ & 224.2 \end{aligned}$	$\begin{aligned} & 57.6 \\ & 4.9 \end{aligned}$	$\begin{array}{r} 529.986 .93 \\ 56,466.74 \\ 349,562.88 \\ \hline \end{array}$	$\begin{array}{r} 72.2 \\ 0.6 \\ 46.1 \\ \hline \end{array}$	$\begin{array}{r\|} 12.4 \\ 4.2 \\ 6.2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Alabama } \\ & \text { Arizoma } \\ & \text { Arkansas } \\ & \hline \end{aligned}$
Californie Colorado Connecticut	$\begin{array}{r} 3,363,012.39 \\ 2,573,202.04 \\ 566,752.81 \end{array}$	$3,092,617.14$ $3,191,550.36$ $1,23,715,44$	$\begin{array}{r} 129.1 \\ 237.3 \\ 62.7 \end{array}$	8.2 9.2	703,031.15 169,230.23 86,951.17	$\begin{array}{r} 43.7 \\ 12.7 \\ 3.8 \\ \hline \end{array}$	14.5	$\begin{array}{r} 2,444,946.39 \\ 1,37,058.74 \\ 416,269,33 \end{array}$	$\begin{aligned} & 2,916,679.50 \\ & 1.2727 .460 .74 \\ & 779,150.24 \\ & \hline \end{aligned}$	$\begin{array}{r} 149.1 \\ 111.6 \\ 41.0 \\ \hline \end{array}$	0.4 3.2	$\begin{aligned} & 2,829,821.88 \\ & 2,483,556.16 \\ & 1,400,687.51 \\ & \hline \end{aligned}$	$\begin{array}{r} 121.8 \\ 192.5 \\ 88.3 \\ \hline \end{array}$	8.2 9.1	${ }_{887,8268.13}^{968.021}$	$\begin{aligned} & 51.0 \\ & 57.6 \end{aligned}$	14.5	California Colorado Connecticut
Delaware Floride Georgie	$\begin{array}{r} 190,680.44 \\ 1,210,499.75 \\ 17.567 .82 \\ \hline \end{array}$	$\begin{array}{r} 95,739.75 \\ 2,128,051.21 \\ 2,059,699.42 \end{array}$	$\begin{array}{r} 5.7 \\ 123.6 \\ 203.2 \\ \hline \end{array}$	$\begin{array}{r} 3.8 \\ 5.4 \\ 34.7 \\ \hline \end{array}$	$\begin{array}{r} 155,296.80 \\ 333,805.48 \\ 1,239,573.27 \\ \hline \end{array}$	$\begin{array}{r} 12.9 \\ 30.7 \\ 102.3 \\ \hline \end{array}$	50.1	$\begin{array}{r} 396,178.60 \\ 1,261,286.61 \\ 2,260,206.94 \end{array}$	$\begin{array}{r} 418,019.69 \\ 2,565,767.00 \\ 3,573,104.09 \\ \hline \end{array}$	$\begin{array}{r} 40.0 \\ 122.8 \\ 279.4 \\ \hline \end{array}$	24.7 14.0	$\begin{array}{r} 183,677.80 \\ 2,191,826.65 \\ 2,156,400.55 \\ \hline \end{array}$	$\begin{array}{r} 13.7 \\ 136.3 \\ 203.2 \end{array}$	$\begin{array}{r\|} 3.8 \\ 5.4 \\ 4.7 \end{array}$	$\begin{array}{r} 67.157 .75 \\ 269,730.00 \\ 1.142,782.14 \\ \hline \end{array}$	$\begin{array}{r} 4.9 \\ 16.0 \\ 102.3 \\ \hline \end{array}$	40.1	Delaware Florida Georgia
Idaho Illinois Indiana	$\begin{aligned} & 138,890.41 \\ & 114,597.22 \\ & 267,083.14 \end{aligned}$	$\begin{array}{r} 1,240,688.93 \\ 10,222,480.66 \\ 6,079,753,50 \end{array}$	$\begin{array}{r} 116.5 \\ 694.8 \\ 393,3 \\ \hline \end{array}$	56.6 3.5	$\begin{array}{r} 853,836.67 \\ 1,942,089.60 \\ 807,135.04 \end{array}$	$\begin{array}{r} 101.8 \\ 148.0 \\ 81.3 \end{array}$	1.8	$\begin{array}{r} 936,021,68 \\ 3,021,488.88 \\ 2,767,883,43 \\ \hline \end{array}$	$\begin{aligned} & 1,318,838.23 \\ & 1.061,189.92 \\ & 3,880.050 .12 \\ & \hline \end{aligned}$	$\begin{array}{r} 168.7 \\ 80.1 \\ 288.0 \\ \hline \end{array}$	34.1	$\begin{aligned} & 1,076,230.61 \\ & 6,349,068.85 \\ & 5,664,573.44 \end{aligned}$	$\begin{aligned} & 100.9 \\ & 561.9 \\ & 369.5 \end{aligned}$	56.2 3.5	$\begin{array}{r} 819,294.69 \\ 3,815,490.41 \\ 1,222,315.10 \\ \hline \end{array}$	$\begin{array}{r} 117.2 \\ 280.7 \\ 86.1 \\ \hline \end{array}$	3.4	$\begin{aligned} & \text { Idaho } \\ & \text { Illinois } \\ & \text { Indiana } \end{aligned}$
Iowa Kansas Kentucky	$\begin{array}{r} 171,307.77 \\ 1,294,562.84 \\ \hline 829.296 .09 \\ \hline \end{array}$	$\begin{aligned} & 3,236,735.16 \\ & 4,089,108.38 \\ & 3,345,890.85 \end{aligned}$	$\begin{aligned} & 184.7 \\ & 526.6 \\ & 286.8 \end{aligned}$	$\begin{array}{r} 14.5 \\ 0.4 \\ 16.6 \end{array}$	$778,011.62$ 598,232.45 $579,848.00$	$\begin{array}{r} 10.2 \\ 10.3 \\ \text { o8. } 7 \\ \hline \end{array}$	71.4	3,507,729, 88 3,071,837.68 $2,214,946.63$	$\begin{aligned} & 4,884,194.61 \\ & 2.892,415.67 \\ & 2.036,055.31 \end{aligned}$	$\begin{aligned} & 467.3 \\ & 424.0 \\ & 214.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 129.4 \\ 17.8 \\ 62.6 \\ \hline \end{array}$	$\begin{aligned} & 3,857,088.48 \\ & 3,693,225.33 \\ & 3,077,805.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 114.9 \\ & 499.6 \\ & 270.3 \end{aligned}$	$\begin{array}{r} 200.3 \\ 0.4 \\ 16.5 \\ \hline \end{array}$	157,660-21 794,115.48 847,933.69	$\begin{array}{r} 133.1 \\ 79.2 \end{array}$	11.6	Iowa Kansas Kentucky
Loulsiana Mene. Merjend	$\begin{array}{r} 317,573.20 \\ 1,380,999.50 \\ 143,816.23 \\ \hline \end{array}$	$\begin{array}{r} 2,410,260.07 \\ \text { 845, } \\ 353,730.71 \\ \hline \end{array}$	$\begin{array}{r} 203.8 \\ 49.0 \\ 30.0 \\ \hline \end{array}$		239.803 .83 200,682.36 416,900.00	$\begin{array}{r} 6.6 \\ 14.2 \\ 30.8 \end{array}$	2.2	$\begin{aligned} & 965,684.41 \\ & \begin{array}{l} 469.684 .28 \\ \hline 655,948,88 \end{array} \end{aligned}$	$\begin{array}{r} 1.243,480.69 \\ 732,748.78 \\ 755,697.50 \\ \hline \end{array}$	$\begin{aligned} & 66.7 \\ & 81.7 \\ & 79.5 \end{aligned}$	7.5	$\begin{array}{r} 2,318,011.76 \\ 886,022.84 \\ 327,100.00 \\ \hline \end{array}$	$\begin{array}{r} 189.4 \\ 54.0 \\ 30.8 \\ \hline \end{array}$		$\begin{aligned} & 332,060.14 \\ & 168,834.43 \\ & 443,530.00 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 9.2 \\ & 37.8 \\ & \hline \end{aligned}$	7.2	Louisiana Mane Maryland
Massachusetts Michigan Minnesota \qquad		$\begin{aligned} & 1,948,131.48 \\ & 6,04,28.80 \\ & 2,089,100.00 \end{aligned}$	$\begin{array}{r} 118.5 \\ \text { 354.3 } \\ 306.9 \\ \hline \end{array}$	4.7	$\begin{array}{r} 84,345.00 \\ 525,885 \\ 291,000.00 \end{array}$	$\begin{array}{r} 5.6 \\ 29.4 \\ 49.6 \\ \hline \end{array}$	${ }^{6.5}$	$\begin{array}{r} 678,611.29 \\ 2,36,40.85 \\ 1,936,835.11 \end{array}$	$\begin{array}{r} 878,81.29 \\ 3,240,651.26 \\ 2,001,398.90 \\ \hline \end{array}$	$\begin{array}{r} 43.7 \\ 227.3 \\ 248.7 \\ \hline \end{array}$	18.6 110.3	$\begin{aligned} & 1,865,151.14 \\ & 4,787.554 .23 \\ & 2,299,100.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 111.7 \\ & 29.1 \\ & 339.1 \\ & \hline \end{aligned}$	75.3	$\begin{array}{r} 167.325 .32 \\ 1.782,516.57 \\ 80.000 .00 \\ \hline \end{array}$	$\begin{array}{r} 9.4 \\ 91.6 \\ 15.8 \\ \hline \end{array}$	6.5	Massachusetts Michigen Minnesota
Mississippi Missowr Montans	$\begin{array}{r} 892.222 .08 \\ 1.550,936.56 \\ 4.353,989.31 \\ \hline \end{array}$	2, $533,736.04$ $3,0951824.74$ $2,846,948.68$	$\begin{aligned} & 256.7 \\ & 216.6 \\ & 3 \times 3.3 \end{aligned}$	$\begin{array}{r} \begin{array}{c} 4.1 \\ 49.6 \\ 4.6 \end{array} \\ \hline \end{array}$	$\begin{array}{r} 100,459.63 \\ 602,716.59 \\ 1,309,589.18 \\ \hline \end{array}$	$\begin{array}{r} 11.5 \\ 43.3 \\ 235.1 \end{array}$	$\begin{aligned} & 0.6 \\ & 13.7 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 1,838,908.76 \\ & 2,568,532.46 \\ & 1,779,898.60 \end{aligned}$	$\begin{aligned} & 2,208,913.73 \\ & 2,666,448.84 \\ & 732,145.14 \end{aligned}$	$\begin{array}{r} 220.0 \\ 21.8 \\ 94.6 \end{array}$	$\begin{array}{r} 19.6 \\ 30.5 \\ 9.2 \end{array}$	$\begin{aligned} & 2,282,178.51 \\ & 3,111.108 .11 \\ & 4,106,087.47 \end{aligned}$	$\begin{aligned} & 2326.6 \\ & 226.7 \\ & 566.4 \end{aligned}$	$\begin{aligned} & 40.5 \\ & 54.2 \\ & 11.9 \\ & \hline \end{aligned}$	358,017.06 527,435. 22 49,450. 39	$\begin{array}{r} 33.4 \\ 40.1 \\ 2.0 \end{array}$	$\begin{aligned} & 7.2 \\ & 7.9 \\ & 2.9 \end{aligned}$	Mississippi Mussour Montans
Nebraska Revada New Hampshire	$\begin{array}{r} 1.999 .143 .13 \\ 596.556 .99 \\ 85,727.25 \\ \hline \end{array}$	$\begin{array}{r} 4,74,007.70 \\ 1.535,202.67 \\ 434,287.54 \end{array}$	$\begin{array}{r} 920.0 \\ 203.7 \\ 28.8 \\ \hline \end{array}$	$\begin{gathered} 389.2 \\ 71.3 \end{gathered}$	37.760 .83 $51,419.58$ $190,235,78$	9.2	$\begin{aligned} & 23.2 \\ & 23.7 \end{aligned}$	$\begin{array}{r} 2,853,649.67 \\ 937,054.88 \\ 371.194 .28 \\ \hline \end{array}$	$\begin{array}{r} 3,304,247.98 \\ 830,771.98 \\ 231,583.38 \\ \hline \end{array}$	$\begin{array}{r} 717.7 \\ 126.9 \\ 31.2 \\ \hline \end{array}$	$\begin{array}{r} 491.0 \\ 10.7 \end{array}$	$\begin{array}{r} 4,740,926.86 \\ 1,549,183.14 \\ 526,913.32 \end{array}$	$\begin{array}{r} 919.2 \\ 203.7 \\ 31.3 \\ \hline \end{array}$	$\begin{gathered} 412.4 \\ 79.1 \end{gathered}$	$\begin{aligned} & 21,647.68 \\ & 37,439.31 \\ & 97,690.00 \\ & \hline \end{aligned}$	0.8 6.5	15.9	Nebraska Nevada New Hampshire
New Jersey New Mexico New York	$\begin{array}{r} 263,177.00 \\ 896,813.29 \\ 3,910.489 .81 \\ \hline \end{array}$	$\begin{aligned} & 1,269.076 .52 \\ & 3,141,31.56 \\ & 7,903,681.45 \end{aligned}$	$\begin{array}{r} 95.3 \\ 500.5 \\ 500.8 \end{array}$		$\begin{array}{r} 492,343.74 \\ 1,808,847.50 \\ \hline \end{array}$	56.1 116.9	0.5 6.6	$\begin{aligned} & 1,319,536.00 \\ & 1,41,76.68 \\ & 5,061,107.41 \\ & \hline \end{aligned}$	$\begin{array}{r} 1,319,535.00 \\ 8,92,43.37 \\ 5,996,343.59 \end{array}$	$\begin{array}{r} 89.0 \\ 99.9 \\ 385.6 \end{array}$		$\begin{array}{r} 806,401-52 \\ 2,700,342.27 \\ 9,046,729.95 \end{array}$	$\begin{array}{r} 54.6 \\ 228.2 \\ 573.0 \end{array}$	$\begin{aligned} & 0.5 \\ & 8.6 \end{aligned}$	$462,675.00$ $927,343.02$ $927,343.02$ $684,800.00$	$\begin{array}{r} 30.8 \\ 11.4 \\ 44.4 \end{array}$		$\begin{aligned} & \text { New Jersey } \\ & \text { New Mexico } \end{aligned}$ New York
Farth Carolins North Dalkota Ohio.	$\begin{array}{r} 1.141,531.23 \\ 839,992.37 \\ 2.591,001.95 \end{array}$	$\begin{aligned} & 1,323,210.24 \\ & 2,124,211,56 \\ & 4,865,556.13 \end{aligned}$	$\begin{array}{r} 96.2 \\ 734.0 \\ \hline 304.0 \end{array}$	$\begin{array}{r} 19.6 \\ \text { R21.0 } \\ 0.0 \\ \hline \end{array}$	$\begin{array}{r} 269,500.00 \\ 502,502.23 \\ 1,340,636.28 \end{array}$	$\begin{array}{r} 5.0 \\ 192.4 \\ 88.6 \\ \hline \end{array}$	$\begin{array}{r} 19.8 \\ 121.7 \\ 1.7 \\ \hline \end{array}$	$\begin{aligned} & 1.589,297.63 \\ & 1.409,404.82 \\ & 2,193,383.28 \end{aligned}$	$\begin{aligned} & 1.843,327.37 \\ & \begin{array}{l} 2,126.042,17 \\ 3,123,398,00 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 134.4 \\ & 497.4 \end{aligned}$ -243.3	$\begin{array}{r} 27.6 \\ 38.4 \\ 4.2 \\ \hline \end{array}$	$\begin{aligned} & 1,083,411.36 \\ & 2,396,617.22 \\ & 4.590,931.13 \end{aligned}$	$\begin{array}{r} 70.8 \\ 884.0 \\ 305.1 \end{array}$	$\begin{array}{r} 19.6 \\ 310.2 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 569.298 .86 \\ 228,104.56 \\ 1,515,261.26 \\ \hline \end{array}$	$\begin{aligned} & 29.4 \\ & 82.4 \\ & 87.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.5 \\ 32.5 \\ 8.7 \\ \hline \end{array}$	North Carolina Forth Dalzota Ohio
Oklahoma Oregon Pemnsyivania	$\begin{array}{r} 387,602.49 \\ 1.267 .096 .47 \\ 1.850 .129 .27 \end{array}$	$\begin{array}{r} 2,701,376.56 \\ 1.012,120.67 \\ \hline \end{array}$	$\begin{array}{r} 349.5 \\ 51.4 \\ 299.7 \end{array}$	$\begin{array}{r} 19.2 \\ 9.2 \end{array}$	$\begin{array}{r} 837,938.01 \\ 146,573.72 \\ 1.318,026.22 \\ \hline \end{array}$	$\begin{array}{r} 109.7 \\ 6.7 \\ 8.4 \\ \hline 8 \end{array}$	15.5	$\begin{array}{r} 1,618,283.19 \\ 656,497.98 \\ 3,031,621.28 \\ \hline \end{array}$	$\begin{aligned} & 1.609,237.74 \\ & 783,910.30 \\ & 3.565,732.44 \\ & \hline \end{aligned}$	$\begin{array}{r} 150.6 \\ 39.1 \\ 243.9 \\ \hline \end{array}$	$\begin{array}{r} \begin{array}{r} 30.3 \\ 32.6 \\ 3.6 \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{r} 2,212,488.84 \\ 980,015.17 \\ 5,677,212.93 \end{array}$	$\begin{array}{r} 334.6 \\ 55.6 \\ 344.6 \\ \hline \end{array}$	$\begin{array}{r} 12.6 \\ 9.2 \end{array}$	$\begin{array}{r} 1,33,827.72 \\ 178,779.12 \\ 597.607 .04 \end{array}$	$\begin{array}{r} 123.6 \\ 2.5 \\ 37.5 \end{array}$	21.9	Oklahoms Oregon Pennsylvania
Rhode Island. South Carolina Sonth Dakota	$\begin{array}{r} 578,04.18 \\ \text { s8, 396.43 } \\ 514,514.18 \\ \hline \end{array}$	$\begin{array}{r} 431,099.82 \\ 2,808,003.01 \\ 2,860,197.05 \\ \hline \end{array}$	$\begin{aligned} & 26.6 \\ & 289 \\ & 688.2 \end{aligned}$	$\begin{aligned} & 161.6 \\ & 138.0 \end{aligned}$	$\begin{array}{r} 90,919.56 \\ 39,700.00 \\ 350,634.24 \\ \hline \end{array}$	$\begin{array}{r} 4,0 \\ 10.4 \\ 107.0 \\ \hline \end{array}$	$\begin{array}{r} 6.1 \\ 39.2 \\ \hline \end{array}$	$\begin{array}{r} 316,000.03 \\ 1,256,002.49 \\ 1.187 .023 .73 \\ \hline \end{array}$	$\begin{array}{r} 312,324.31 \\ 1,846,158.75 \\ 977,914.01 \\ \hline \end{array}$	$\begin{array}{r} 20.2 \\ 101.3 \\ 300.5 \\ \hline \end{array}$	$\begin{array}{r} 16.9 \\ 126.5 \\ \hline \end{array}$	$\begin{array}{r} 51,969.47 \\ 2,389,003.01 \\ 2,533,549.03 \end{array}$	$\begin{aligned} & 30.8 \\ & 260.4 \\ & 782.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 136.3 \\ & 138.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 289,500 . \infty 0 \\ 77,332.26 \end{array}$	$\begin{gathered} 36.8 \\ 13.1 \end{gathered}$	$\begin{aligned} & 31.4 \\ & 39.2 \end{aligned}$	Rhode Island South Carolina South Dalkota
$\begin{aligned} & \text { Tennessee } \\ & \text { Teras..... } \\ & \text { Utah } \end{aligned}$	$\begin{array}{r} 254,777.15 \\ 3,975,496.70 \\ 220,749.78 \\ \hline \end{array}$	$\begin{aligned} & 3,742,215.08 \\ & 5,729,274.07 \\ & 1,740,470.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 249.6 \\ & 40.1 \\ & 140.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.6 \\ 20.1 \\ 12.3 \end{array}$	$\begin{array}{r} 1,368,324.50 \\ 2,62,108.00 \\ 240,095.90 \\ \hline \end{array}$	$\begin{array}{r} 26.8 \\ 11.9 \\ 19.4 \end{array}$	$\begin{array}{r} 94.3 \\ 168.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 1,157,624.72 \\ & 4,377,859.10 \\ & 1,290,052.62 \end{aligned}$	$\begin{aligned} & 1,690,594,84 \\ & 5,707,467.76 \\ & 1,645,381,40 \end{aligned}$	$\begin{array}{r} 98.3 \\ 449.7 \\ 161.6 \end{array}$	$\begin{array}{r} 36.5 \\ 21.2 \\ 7.6 \\ \hline \end{array}$	2,753,784.10 $5,525,635.93$ $1,372,462.42$	$\begin{aligned} & 193.0 \\ & 433.6 \\ & 124.2 \end{aligned}$	$\begin{array}{r} 23.6 \\ 246.9 \\ 7.0 \\ \hline \end{array}$	$2,356,755.56$ $2.830,745.14$ $007,924.44$	$\begin{aligned} & \hline 82.2 \\ & 98.4 \\ & 35.7 \end{aligned}$	$\begin{array}{r} 94.3 \\ 120.2 \\ 6.8 \\ \hline \end{array}$	$\begin{array}{\|l} \text { Tennessee } \\ \text { Texas } \\ \hline \text { Utah } \\ \hline \end{array}$
Vermont Virginia Washington	$\begin{aligned} & 25,473.61 \\ & 237,863.61 \\ & 497,643.46 \end{aligned}$	$\begin{array}{r} 694,976,39 \\ 1,83,339.57 \\ 1,547,600.00 \\ \hline \end{array}$	$\begin{array}{r} 51.2 \\ 129.4 \\ 124.3 \\ \hline \end{array}$	$\begin{array}{r} 28.5 \\ 16.1 \\ \hline \end{array}$	$147,454.36$ $156,805.91$ $440,238.89$	$\begin{aligned} & 11.9 \\ & 31.6 \\ & 21.2 \\ & \hline \end{aligned}$	5.0	$\begin{array}{r} 694,117.63 \\ 1,439,060.06 \\ 521,599.31 \\ \hline \end{array}$	$\begin{array}{r} 892,994.43 \\ 1,596,344.66 \\ 1,764,301.70 \\ \hline \end{array}$	$\begin{aligned} & 49.7 \\ & 89.4 \\ & 85.8 \end{aligned}$		$\begin{array}{r} 683,942.33 \\ 1,536,967.27 \\ 1,365,600.00 \\ \hline \end{array}$	$\begin{array}{r} 54.5 \\ 130.0 \\ 115.8 \\ \hline \end{array}$	$\begin{aligned} & 17.7 \\ & 18.1 \\ & \hline \end{aligned}$	68,490.42 472,957.21 $632,236.69$	$\begin{array}{r} 8.6 \\ 31.0 \\ 39.7 \end{array}$	7.8 5.0	Vermont Virginia Washington
West Virginia Wisconsin Wyoming Hawail	$\begin{array}{r} 478,768.16 \\ 1,46,40.82 \\ 117,116.50 \\ 1,064,241.58 \\ \hline \end{array}$	$1,927,128.55$ $4,083,362.08$ $1.878,948.71$ $239,180.88$	$\begin{array}{r} 171.0 \\ 344.3 \\ 255.3 \\ 12.3 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 35.9 \\ & 78.8 \end{aligned}$	$\begin{aligned} & 294,283.84 \\ & 433,989.43 \\ & 190.0641 \\ & 57,501.20 \\ & \hline \end{aligned}$	$\begin{gathered} 26.3 \\ 36.6 \\ 41.8 \\ 1.8 \\ \hline \end{gathered}$	15,7	$1,043,711.00$ 2.959 .014 .72 $1.106,97.83$ $785,901.69$	$1,656,016.44$ $3,372,631.77$ $1,266,792.83$ $373,119.33$	$\begin{array}{r} 122.3 \\ 273.7 \\ 130.5 \\ 20.6 \\ \hline \end{array}$	$\begin{array}{r} 6.0 \\ \begin{array}{c} 6.4 \\ 55.4 \end{array} \end{array}$	$1,84,60,40.36$ $2,620,63.76$ $1,454.969 .87$ $296,602.09$	$\begin{array}{r} 184.3 \\ 252.3 \\ 22.6 \\ 14.1 \\ \hline \end{array}$	4.0 18.6 78.6	$\begin{array}{r} 374,90.03 \\ 1,696,710.75 \\ 412.043 .75 \end{array}$	$\begin{array}{r} 32.0 \\ 130.5 \\ 69.3 \end{array}$	33.0	West Virginia Wisconsin Wyoming Bawaii
TOTALS	63,643,770.45	134,914,611.00	12,371.3	1966.1	26,741,403.26	2,359.3	759.1	80,802,232.55	93,317,324.02	8,556. 6	${ }^{2} 886.6$	128,275, 184.78,	2,267.3	49.6	32,381,029.51	2,443.3	567.3	totals
										Milesse: Original		2,877.4 Stage 672.9						

F－2（L927）
RvEㄴ．

TOTAL OIBELRSOSTIT， 1927.

| states |
| :--- | :--- |

Militit

		＇$\stackrel{\bullet}{\text { ¢ ¢ }}$	＇		先，1		－¢	＋${ }_{+}$	－${ }_{\infty}^{\text {m }}$ ，	¢ ¢ mom	$\stackrel{\square}{\text { ¢ }}$
			$\begin{aligned} 8 \\ \hline 0.0 \\ 0 \end{aligned}$						8		
	$\overline{-1}$					¢ ${ }_{0}$		－mo	＇ ºn $_{\underline{\circ}}$	＇ ® $^{\text {＇}} 1$	$\stackrel{0}{+}$
						88	89 8．				亭
	「	－－－\％	－iog					¢¢ ¢ ¢ ¢ ¢ ¢ ¢		－	$\stackrel{\circ}{\oplus}$
		 								员虫高芯	¢
		マシャワ					－	－\＃¢ ¢			$\stackrel{\text { ¢ }}{ }$
		旸呂응 									－
											$\stackrel{\sim}{\square}$
				 －nóます゚゙ロー		 がら゙ジ			$\left\lvert\, \begin{array}{ll} 18 \\ 0 & 8 \\ 0 & 0 \\ 0 \end{array}\right.$		
									$\left.\left\lvert\, \begin{array}{c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.\right)$		\％
		$5 \frac{5}{6}-\frac{5}{9}$		 	Bon	$\frac{-m}{20}$				\cdots	
$\stackrel{\text { ゼ }}{\stackrel{\leftrightarrow}{5}}$											$\stackrel{5}{5}$

notes．（1）mauces

f

COMPREHENSIVE CONCRETE PAVEMENT CURING TESTS NON IN PROGRESS IN TENNESSEE

Contributed by F. H. Jackson of the Division of tests (Not for release)

The most comprehensive serieg of concrete pavement curing tests, that have been carried out up to the present time, are Now being initiated in connection with the construction of about 17 miles of concrete pavement on Tennessee federal-aid project I8-A, between Memphis and Somerville. It is believed that every CURING METHOD that has received serious consideration will be included in the program. About I mile of the pavement is now COMPLETED AND it is expected that the remainder will be finished THIS YEAR.

The design of the pavement was modified from the State STANDARD 8-6-8 CROSS-SECTION TO 8-7-8 SO AS TO ELIMINATE ALL TIE bars across the center joint which would restrict the expansion or contraction of one side of the slab with respect to the other and soieffect the results of the test. The pavement consists of pLAIN CONCRETE, 18 feet WIde, with a metal center strip from Which the $3 / 4-1$ nch pins to the subgrade are removed as soon as possible after the pavement is laid. The earth shoulder on each side of the pavement is 4 feet wide.

The general scheme of the test is to cure one side of the pavement continuously with the State standard method, consisting of wet burlap for 24 hours followed by 2 inches of earth kept wet for lo days. For comparison with the standard curing, the other side of the pavement will consist of a series of sections approximately l,000 feet long, each cured in a different manner.

Twenty-four beams will be cast for each 1,000 lineal feet of pavement, 12 on the experimental side and 12 on the standard side, These beams will be tested at the ages of 3, 7 , 14, and 28 days. Cores drilled from locations corresponding with the beams will be tested at the end of 30 days. the beams will be cured in the same manner as the pavement. the sides of the eeams will ee protected with sisalcraft paper against which earth will be banked.

A detailed description of the various curing methods
FOLLOWS:

Number OF SECTION	One side of pavement	OTHER SIDE OF PAVEMENT 20.
1	BURLAP, 24. HOURS, NO FURTHER curing. Concrete laid on the bare subgrade.	Standard curing
2	Burlap, 48 hours, no further curing. Concrete lald on the gare subgrade.	Do Do
3	Burlap, 72 hours, no further curing. Cuncrete laicion the bare subgrade.	Do Do
4	Burlap, 96 hours, no further curing. Concrete laid on the bare subgrade.	Do Do
5	No curing whatever. Concrete lajd on the bare subgrade.	Do Do
6	Sisalcraft, 24 hours, no further curing. Concrete laid on the bare subgrade.	Do Do
7	Sodium silicate as a surface application. Concrete laid on the bare subgrade.	Do Do
8	Asphalt emulsion as a surface application. Concrete laid on the bare subgrade.	Do Do
9	Caleium chloride as a suizface APPLICATION; 2 pounds per square yard. Concrete lalo on the bare subgrade.	Do Do
10	Calcium chloride admixture; $2 \frac{1}{3}$ poun across the full width of the pave on the bare subgrade.	s per square yard, ent. Concrete laid

1

Number OF SECTION	One side of pavement	Other side of pavement
11	Calcium chloride as a surface APPLICATION; 2 pounds per square yard. Concrete lald on the bare suegrade.	Standard curing
12	TAR - both cold and hot - as a surface application. ConCRETE LAID ON the bare subgrade.	Do Do
13	Hunt process as a surface application. Concrete laid on the bare subgrade.	Do Do
14	Hunt process as a surface appliCATION. CONCRETE LAID ON A suggrade covered with tar paper.	Do Do
15	Tar - both cold and hot - as a surface application. Concrete lajd on a suegrade covered with tar paper.	Do Do
16	Calcium chloride as a surface APPLICATION; 2 pounds per square yard. Concrete lato on a suegrade covered with tar paper.	Do DO
17	Calcium chloride admixture; $2 \frac{1}{3}$ pou across the full width of the pave on a suegrade covered with tar pa	NDS PER SQUARE YARD, ment. Concrete lald APER.
18	Calcium chloride as a surface APPLICATION; 2 pounds per square yard. Concrete laid on a subgrade covered with tar paper.	Standard curing
19	Asphalt emulsion as a surface application. Concrete lald on a subgrade covered with tar PAPER.	Do Do

United statre Departhent of agriculture
buakau of pualio Ronoa M-2(1926)
R.B.A.
M-2(1926)
R.8.A.

REDDISH-BROWN PRINTS ON WHITE BACKGROUND USED BY MARYLAND STATE ROADS COMMISSION

COMPILED FROM A REPORT SUEMITTED
EY

Ben. F. Heidel of District 10
(Not for release)

As a suestitute for standard elueprints, the Maryland State Roads Commission has for some time past been suemitting FEDERAL-AID PLANS PRINTED ON A NEW KIND OF PAPER ON WHICH ARE DEVELOPED REDDISH-EROWN LINES OR LETTERS ON A WHITE EACKGROUND. THE PROCESS DIFFERG FROM THE STANDARD ELUEPRINTING METHOD IN THAT THE PAPER USED IS PATENTED AND THE PRINTS ARE DEVELOPED EY EXPOSURE TO AMMONIA FUMES.

The Maryland State Roads Commission is using two difFERENT MAKES OF PAPER, ONE CALLED "OZALID", MANUFACTURED IN Germany, and distrieuted in this country ey Eugene dietzgen and Co., and the other known under the trade name of "primulin" WHICH IS PRODUCED IN THE UNITED STATES AND DISTRIBUTED EY THE New York Blueprint paper Company. The manufacturers clalm the FOLLOWING ADVANTAGES FOR THE UTILITY OF THE PAPER:
1.- There is no distortion of the print due to WASHING AND DRYING.
2.- THE PRINTS DO NOT FADE WHEN EXPOSED TO THE SUNLIGHT.
3.- THE PRINTS ARE NOT FADED BY PERSPIRATION.
4.- Readily legible field notes may ae made on THE PRINTS WITH EITHER A PENCIL OR A PEN.
5.- Where the easic data for a sefies of studies ARE pLOTTED ON A TRACING, THE STUDIES MAY EE COMPLETED ON A PRINT, AND THE ACCEPTED STUDY traced upon the original tracing.
6.- Where the prints are made on thin paper, each MAY EE USED AS A TRACING TO MAKE OTHER PRINTS, SINCE EACH HAS THE PROPERTIES OF A TRACING made on tracing paper.
7.- The prints, like tracings, may ee photographed.

THE MANUFACTURERS ALSO ALLEGE THE SUPERIORITY OF THE PAPER FOR PRINTING EY THE FOLLOWING ARGUMENTS:
1.- The paper prints at the same rate of speed as STANDARD GLUEPRINT PAPER, AND THEN IS DEVELOPED EY EXPOSURE TO AMMONIA FUMES FOR A FEW MOMENTS; HENCE THE USUAL DELAY OF WASHING AND DRYING IN. WATER IS ELIMINATED.
2.- The prints may be made one day and developed the NEXT DAY WITHOUT BEING STORED, IN THE INTERVENING TIME, IN A DARK ROOM. ACCORDING TO THE method used by the Maryland State Roads CommisSION, THE OPERATOR FIRST MAKES ALL THE PRINTS AND SUESEQUENTLY THE SAME OPERATOR ACCOMPLISHES THE DEVELOPING.
3.- IT IS A SIMPLE MATTER TO BLOCK OUT INFORMATION ON A TRACING NOT DESIRED ON THE PRINT OR TO INSERT DATA NOT SHOWN ON THE ORIGINAL TRACING.
4.- Where new printing equipment is to oe installed, THE COST OF THE AMMONIA-TREATMENT CHAMBER IS APPRECIABLY LESS THAN A STANDARD BLUEPİINT WASHING AND-DRYING MACHINE.

The Maryland State Roads Commission has not made a comPARISON OF THE TOTAL DIFFERENCE IN COST RESULTING FROM THE USE OF THE PATENTED PAPER AS COMPARED WITH THE STANDARD BLUEPRINT paper. A roll of 50 yards of OZALId or primulin paper, 36 inches wide, costs the State approximately $\$ 1.00$ more per roll thain blUEPRINT PAPER. AN APPRECIABLE SAVING, HOWEVER, IS MADE IN THE NUMBER OF PRINTS SENT TO THE FIELD EECAUSE THE NEW PRINTS DO NOT FADE AND, UNDER ORDINARY CONDITIONS, LESS PRINTS ARE REQUIRED FOR A PROJECT. NO ATTEMPT HAS EEEN MADE, HOWEVER, TO COMPARE ACCURATELY THE COST OF THE NEW PROCESS WITH SIMILAR WORK ACCOMPLISHED WITH A BLUEPRINTING PLANT.

MANY OF THE PRINTS MADE by the NEW process, as suemitted to the bureau on federal-aid projects, are of inferior quality. IT DOES NOT SEEM FAIR, HOWEVER, TO ATTRIBUTE THIS INFERIORITY TO THE PAPER OR THE PROCESS. THE ROUTINE PRINTING OF THE Maryland State Roads Commission is in the hands of messenger BOYS WHO HAVE NO KNOWLEDGE OR APPRECIATION OF THE PURPOSES WHICH THE PRINTS ARE INTENDED TO SERVE. THE bOYS DO NOT SENSE

$$
1
$$

THE NEED OF A UNIFORM LIGHT ALONG THE GLASS EARREL OF THE PRINTING MACHINE. CONSEQUENTLY THE BUREAU RECEIVED PRINTS WITH BLURRED STREAKS EXTENDING THE FULL LENGTH OF SEVERAL SHEETS, SIMPLY BECAUSE SOME BOY, NOT KNOWING HOW TO CORRECT THE TROUELE, ALLOWED AN ARC LIGHT TO BURN DIMLY. THE STATE AUTHORITIES, HOWEVER, HAVE, IN THEIR OFFICE FILES, PRINTS MADE BY THEIR ENGINEERS FOR SPECIAL STUDIES, WHICH ARE AS CLEAR AS ANY BLUEPRINT COULD BE made from the same tracing. The bureau has also received a NUMBER OF EXCELLENT PRINTS.

A.A.S.H.O. COMMITTEE ON MATERIALS HOLD MEETING ON JUNE 25-26, 1928.

 (Not for release)The regular annual meeting of the Committee on Materials of the american association of State highway Officials, held at the headquarters office of the Bureau on monday and tuesday, June 25 and 26, 1928, when called to order by the chalrman h. S. Mattimore of pennsylvania - mustered representatives from 17 States.

Reports of outstanding interest were presented ey a number of the sectional research committees. Mr. Reagel of Missouri SUBMITTED REPORTS DEALING WITH THE STANDARDIZATION OF METHODS for making transverse tests of concrete, and on methods for the dehydration of rock asphalts. Mr. Rea of ohio gave a detailed DESCRIPTION OF A PROPOSED SPECIFICATION FOR GRAVEL FOR CONCRETE pavements. Mr. Ulman of pennsylvania discussed the recovery of bitumen extracted from bituminous materials, and Mr. Milburn of the Bureau outlined methods for the determination of the toughness of eltuminous aggregates. A report was also received giving the results of the work, of a joint committee of the A.A.S.H.O. and the A.S.T.M., on methods of distillation.

SUbCommittees were appointed to study the equipment used IN the weighing of concrete aggregates, and to formulate a recommended practice governing the design and use of such equipment; and to make a full investigation of abrasion tests for aggregates, with special reference to the relation between the percentage of loss and the strength of concrete; together with A study of the various proposed tests to determine the percentage of soft pleces in gravel.
.11

The committee voted to change certain requirements for PERCENTAGE OF WEAR IN THE VARIOUS ASSOCIATION SPECIFICATIONS FOR BLAST-FURNACE SLAG. IN ALL CASES WHERE THE EXISTING SPECIFICATIONS CALL FOR A PERCENTAGE OF WEAR OF $\mid 2$, THE COMMITTEE VOTED TO RECOMMEND THAT THE PERCENTAGE OF WEAR EE CHANGED TO 15.

NODEL ANALYSIS OF YADKIN RIVER BRIDGE COMPLETED Contributed by
 A. L. Gemeny of the division of Tests (Not for release)

A complete model analysis of the Yadkin River federalalo bridge eetween ialeemarle and Mt. Gilead, N. C., has just been finished as a cooperative project of the bureau and Johns Hopkins University represented by prof. J. T. Thompson. the analysis was made ey means of the Beggs deformeter gauges and a celluloid model. The results, which are now being compiled, will be included in the report of the Yadkin River Bridge TEST.

In designing an open spandrel rie arch of the type of the Yadkin River bridge, it is usually assumed that the action of the rie is unaffected by the superstructure. Oeviously, this is not the case but a mathematical analysis of the compLETE ARCH, INCLUDING THE SUPERSTRUCTURE, IS SO COMPLEX AS TO EE !MPRACTICAELE FOR THE PURPOSES OF DESIGN. A COMPARISON OF results from the model analysis and the measured results obtained ey loading the bridge itself will indicate to what extent the action of a model made of a uniform, elastic material SUCh as celluloid may be taken as representing the action of a REINFORCED CONGRETE STRUCTURE BUILT OF A NON-UNIFORMLY ELASTIC material such as concrete. It is hoped that the complete Yadkin River eridge report will be ready for puelication at an EARLY DATE.

MOUNT VERNON MEMORIAL BOULEVARD SURVEY BEGUN ON JUNE 15

(Not for release)

On June 15, 1928, the survey to determine the location of the Mount Vernon memorial boulevard was begun by the bureau under the immediate direction of the division of design. Messrs. D. T. Brown and C. S. Jarvis of this division are in charge of the field and office work, respectively. When the surveys and plans are completed, they will be suemitted to the Commission for the Celebration of the Two Hundredth Anniversary of the Birth of George Washington for the final determination of the route and the approval of the character of the proposed construction. the chalrman of this commission is the president of the United States and the vice chalrman is Senator Simeon D. Fess of Ohio. It is hoped that the construction of some of the HYDRAULIC FILLS MAY BE BEGUN THIS FALL SO THAT THE ENTIRE PROJect may be completed by January I, 1932, in time to accommodate the large crowds which are expected to visit the home and tomb of George Washington, at the bi-centennial of his birth.

THIS MEMORIAL HIGHWAY, THE AUTHORIZED APPROPRIATION FOR WHICH TOTALS $\$ 4,500,000$, IS THE MOST IMPORTANT ROAD PROJECT ever entrusted to the Bureau in the vicinity of the National Capitol. It will begin at the Virginia side of the Arlington memorial bridge over the potomac River at Washington and extend for a distance of 12 to 15 miles, depending upon the route selected, to Mount Vernon, where there is situated the estate and final resting place of our first and greatest President. the previous investigations of the Bureau indicate that the river ROUTE IS THE BEST ONE FOR MONUMENTAL PURPOSES, PRINCIPALLY because of the scenic advantages. The general nature of the development was suggested by Mr. MacDonald during the hearings before the House Committee on Roads of the Seventieth Congress, When he stated ". AND it is my conception that this boulevard could be made an extension of the Rock Creek park and potomac park developments, extending clear from the Maryland line through Rock Creek park, through potomac Park, and along the river to mount Vernon. It would be one of the most beautifull drives in the whole world; and my conception of its develOPMENT WOULD be to have it With proper construction, but with the planning and the rather simple development that has been
so successful in Rock Creek park.
"It is not my conception of Washington's character THAT HE WOULD HAVE CARED TO HAVE A ROAD LEADING TO HIS TOME, as they built roads from Rome leading to the Appian Way, where THERE SEEMED TO EE A GREAT EFFORT ON THE PART OF EACH ONE TO OUTDO THE OTHERS IN EUILDING THE MOST MAGNIFICENT TOMEE AND APPROACHES.
"I think the simple treatment of Rock Creek Park would meet more nearly the requirements of the situation."

In his report to Mr. MacDonald, comparing the estimated COSTS OF THE INLAND WITH THE RIVER ROUTE, THE RECOMMENDATION FOR WHICH HAS beEN CONCURRED IN EY the SECRETARY of Wair, and is warmly endorsed ey the Commission on fine arts, and the National Capitol park and planning Commission; Captain P. St. J. WILSON OUTLINED THE ADVANTAGES OF THE RIVER ROUTE, OVER ALL OTHER ROUTES, WITH RESPECT TO ITS SCENIC POSSIEILITIES AND ITS HISTORICAL ASSDCIATIONS, AS FOLLOWS: ". . . . AEOUT HALFWAY eetween Washington and Alexandr:a, this route passes close to AEINGTON, the hOME OF JOHN CUSTIS, MRS. WASHINGTON'S SON, WHICH still stands overlooking the river. Here nellie Custis, WASHINGTON'S ADOPTED DAUGHTER, WAS BORN. A EEAUTIFUL VIEW OF THE RIVER AND A PANORAMA OF WASHINGTON AND THE NORTH SHORE ARE OETAINAELE FROM THIS POINT.
"PASSING ON TO ALEXANDRIA, THIS ROUTE ENTERE THE CITY by Washington Street and passes directly by Christ Church, WHERE THE WASHINGTON PEW MAY STILL EE SEEN. THIS CHURCH WAS VISITED BY 154,318 PEOPLE IN 1926, IN ADDITION TO THOSE ATTENDING SERVICES. ONE OF THE OUTSTANDING POINTS OF SUPERIORITY FAVORING THE CHOICE OF THIS ROUTE IS THAT IT PASSES DIRECTLY THROUGH ALEXANDRIA INSTEAD OF AROUND IT.
"ALEXANDRIA WAS WASHINGTON'S OWN TOWN. IT WAS HIS MARKET PLACE, HIS POST OFFICE, AND HIS VOTING PLACE. IT WAS THE meeting place of the lodge of Masons to which he belonged, and THE LODGE HALL IS NOW THE REPOSITORY OF A GREAT MANY ARTICLES AND PAINTINGS ASSOCIATED WITH HIM.
"the trowel, square, and plumb gos used in laying the CORNERSTONE OF THE CAPITOL MAY EE SEEN HERE; AND, ALSO THE Biele that was used in the days of Washington. heier also is
an original painting of Washington ey Gileert Stuart, the Pope peale painting of him in early life, and many other PAINTINGS AND INTERESTING RELICS TOO NUMEROUS TO MENTION. THERE WERE 93,484 VISITORS TO THIS SHRINE IN 1926.
"There is scarcely a foot of ground in Alexandria THAT WASHINGTON DID NOT TREAD. THE OLD QUARTERS OF THE VOLUNTEER FIRE COMPANY, OF WHICH WASHINGTON WAS A MEMEER, STILL stand. In Gadsey's InN, now the City Hotel, he recruited HIS FIRST COMPANY OF PROVINCIAL TROOPS AUTHORIZED EY GOVERNOR Dinwiddie, with which he fought the Battle of Great Meadows.
"In the eall room of the city Hotel, in 1798, was held THE FIRST CELEBRATION OF WASHINGTON'S BIRTHDAY. FRCM THE STEPS OF THE SAME BUILDING HE GAVE HIS LAST MILITARY COMMAND to the Alexandria light Infantry Blues, his eodyguard during the Revolution; and here, also in Novemeer, 1799, less than 30 DAYS 日EFORE HIS DEATH, HE CAST HIS LAST VOTE.
"At the Carlyle house, still standing, he received HIS APPOINTMENT AS MAJOR IN THE BRITISH ARMY ON GENERAL BRADDOCK'S STAFF; AND IN THIS HOUSE, ALSO, AT THE CONVENTION OF THE FIVE GOVERNORS ASSEMBLED TO CONFER WITH GENERAL BRADDOCK, THE FIRST SUGGESTION OF COLONIAL TAXATION WAS MADE, THE STEP WHICH ULTIMATELY LED TO THE REVOLT OF THE COLONIES.
"Other places of historic interest still standing in the city and intimately associated with the life of Washington are the homes of Dr. Jaimes Cralk, of Dr. Elisha Cullen Dick, his family physicians, and the homes of light horse harry lee and of his two famous sons, Robert e. and sydney smith lee.
"A SHORT SIDE TRIP FROM WASHINGTON STREET DOWN KING Street takes the traveler to the George Washington Nat ional MASONIC MEMORIAL WHICH IS EEING ERECTED at the WESTERN OUTSKIRTS OF THE TOWN ON SHOOTERS: HILL.
"RETURNING TO WASHINGTON STREET AND PROCEEDING SOUTHWARD, THE TRAVELER SOON REACHES THE SOUTHERN LIMITS OF THE TOWN AND PASSES WITHIN A STONE'S THROW OF THE FIRST CORNERSTONE OF THE DISTRICT OF COLUMEIA, STILL STANDING ON JONES POINT WITH The INSCRIPTION STILL COMPLETE.
"leaving alexandria, the river route crosses hunting CREEK AND RISES TO HIGH GROUND FROM WHICH A EROAD PANORAMA of the river and distant Washington are spread before the EYE; AND THEN, OVERLOOKING THE RIVER, IT FOLLOWS THE RIDGE to old fort hunt, and thence to the postern gates of Mount VERNON."

JOHN WESLEY BALL

(Not for release)

John Wesley ball, senior highinay engineer of the REgional Office, engaged in the administration of national FOREST ROAD WORK IN THE ELEVEN WESTERN STATES, DIED ON July 22 in San francisco, following an illness of three WEEKS THAT DEVELOPED FROM A COLD AND INVOLVED SOME INFLAMMATORY RHEUMATIC CONDITIONS AFFECTING THE HEART. HE WAS ON the way to recovery when the fatal heart attack occurred.

THE COLD is believed to have been contracted while HE WAS ON A TRIP TO GIBEONSVILLE, LOCATED ON THE FOREST HIGHWay section of the sawtooth park highway, between salmon, Idaho and the Montana State boundary on the Continental Divide. Returning to San Francisco, he went back to his WORK IN THE OFFICE ON JUNE II, AND REMAINED THERE FOR A NUM BER OF DAYS, APPARENTLY RECOVERING FROM HIS COLD. HOWEVER, on June 22, he felt so gadly that it was necessary for him TO GO HOME TO BED ALTHOUGH EVEN THEN HIS FAMILY FELT NO SERIOUS MISGIVINGS CONCERNING HIS CONDITION. ON JULY 15 , HIS CONDITION WAS GRAVE EUT HE GREW MUCH EETTER DURING THE FOLLOWING WEEK UNTIL ON SUNDAY MORNING JULY 22, WHEN, CONSIDERED TO BE SURELY ON THE MEND, HE SUDDENLY COLLAPSED.

Bes!des his widow, RUTh, he leaves two yound children Elizabeth Ann, age three, and John Wesley, junior, age 10 months. The funeral was held on july 25 under the auspices of the Masonic Order.

Mr. Ball was eorn on August 8, 1888, at Malton, ind., and was graduated from the Galveston, IND., high school in 1908. AFTER 3 TERMS OF SCHOOLING IN THE INDIANA STATE NORMAL School, he entered purdue University and received a B.S.C.E. degree, in 1914, and later a C.E. degree from the same instiTUTION. AFTER SOME PRELIMINARY ENGINEERING EXPERIENCE, HE ENTERED THE HEADQUARTERS OFFICE OF THE BUREAU ON APRIL 22, 1914, AS A C̈IVIL ENGINEER GTUDENT. HE WAS ASSIGNED TO WORK IN THE WESTERN STATES AND HIS FIRST DUTY CONSISTED IN LOCATING roads in the Sequoia and Yosemite national Parks in California. From July, 1915, to March, 1916, he was loaned ey the Bureau
to Skamania County, Wash., to supervise the location and DESIGN OF THE COUNTY HIGHWAYS TO EE CONSTRUCTED WITH A LOCAL bond issue of $\$ 210,000$. From March, 1916, to March, 1917, HE WAS IN CHARGE OF THE LOCATION AND DESIGN OF THE NATIONAL FOREST HIGHWAY, NEARLY 70 MIles in Length, between Medford and Crater Lake, Ore. From November, 1917, to Feefiuary, 1918, HE DIRECTED THE fAVING OPERATIONS ON THE CANTONMENT streets at Camp Lewis, American Lake, Wash. He was in Charge of the construction of the Cow Creek section of the Canyonville-Galesville national forest road project on the Pacific Highway in Oregon, from October, 1918 , to October, 1919; AND FOLLOW!NG THIS WORK UNTIL APRIL, 1921, HE SUPERVised the construction of the Crescent Lake national forest road, on the Olympic penifsula in the State of Washington.

In April, 1921, Mr. Ball was transferred to the Regional Office where he was engaged, until the time of his DEATH, IN THE ADMINISTRATION OF NATIONAL FOREST ROAD WORK IN the public-land states, working under the immediate direction of Dr. Hewes. Mr. Ball's record indicates consistent progress IN THE BUREAU AS A RESULT OF CONSCIENTIOUS AND FAITHFUL SERVICE. FROM the time of his entrance as a student in 19/4, he ROSE REGULARLY THROUGH THE VARIOUS ENGINEERING GRADES, UNTIL HE REACHED THE HIGHEST PROFESSIONAL STATUS - SENIOR HIGHWAY ENGINEER.

Mr. Ball was a Phi Beta Kappa, a Sigma XI, a member of the Mystic Shrine, and a thirty-second degree Mason, His associates in the Bureau sympathize with his falmily in his UNTIMELY END.

