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A sailplane owes its performance to the utilization o f  energy 

supplied from external sources. Sensitive rate of climb instruments 

(variometers) connected to static pressure sources are camnonly used 

to indicate rising or sinking of the sailplane. Several methods have 

been used to provide dynamic pressure compensation for rate of climb 

when zooming or diving, so that the variometer indicates rate o f  change 

in total energy instead of rate of change in potential energy. The 

di aphragm-volume most widely used compensators have been of two types; 

systems and venturi systems. 

This research concerns a study of a simple techn 

energy compensation having the primary requirement of 

que for total 

good compensation 

with a low cost, easy to make, sensor. A comprehensive library search 

and a small wind tunnel were used to explore fundamentals and to develop 

a number of probes which were flight tested with satisfactory results. 

Simple probe configurations were tested using the characteristics of 

laminar flow separation around a small cylinder to produce a sensor 

pressure having the desired relationship between static and dynamic 

pressures. Wind tunnel and flight tests confirmed the concepts for a 

wide range of speeds, altitudes, and flow directions encountered in 

soaring. 

factors important to total energy compensation. 

Data and findings are presented, along with a discussion of 
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INTRODUCTION 

The a b i l i t y  o f  a sai lp lane t o  remain a l o f t  f o r  long periods o f  

time, or t o  cover s i g n i f i c a n t  cross-country distances, i s  dependent 

upon i t s  e f f e c t i v e  use o f  energy supplied by external sources. For 

t h i s  reason, c lear  and accurate information concerning the t o t a l  energy 

s i t ua t i on  and i t s  r a t e  o f  change are extremely s i g n i f i c a n t  t o  successful 

soaring. While there are many factors  involved i n  a r igorous treatment 

of t o t a l  energy, i t  i s  possible f o r  a p i l o t  t o  i n t e r p r e t  h i s  t o t a l  energy 

s i t ua t i on  w i t h  simple modif icat ions t o  a variometer system. 

addi t ion t o  a sensi t ive variometer i s  a device which integrates the 

effects of concurrent changes i n  potent ia l  energy and k i n e t i c  energy, 

thereby providing a good ind icat ion of what i s  happening t o  useful t o t a l  

energy. 

The important 

Simp1 i f i e d  Enemy Considerations 

The t o t a l  energy of a sai lp lane a t  a given time i s  the sum o f  i t s  

potent ia l  and k ine t i c  energies. 

t o t a l  energy s i t ua t i on  by a glance a t  the a l t i m e t e r  and the a i r  speed 

indicator.  

i t  i s  most important t o  "energy management" t h a t  the p i l o t  a lso be able 

t o  sense the r a t e  o f  change i n  t o t a l  energy a t  a l l  times. 

A p i l o t  customarily determines h i s  

I n  addi t ion t o  sensing the absolute value of t o t a l  energy, 
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The rate of change in total energy is principally affected by 

two factors: 

1. The drag of the sailplane which is constantly reducing 

the useful energy, and 

2. The air mass energy effects on the sailplane. 

The drag ii dependent on the aerodynamic characteristics of the 

sailplane, its velocity, altitude, and the load factor. There is 

little a pilot can do about the aerodynamic characteristics of his 

sailplane in flight, however, he can control the velocity and the 

load factor affected by maneuvers. The air mass will be producing 

sink, climb, or velocity increments to the sailplane which are 

dependent on its characteristics and the pilot's skill in positioning 

the sailplane with respect to local air currents. 

In sumnary, the useful total energy from a pilot's viewpoint may 

be thought of as the instantaneous total energy associated with his 

given altitude and velocity, - less the energy being dissipated by the 

drag of the sailplane moving along its flight path, plus the energy 

being added to the sailplane by the air mass. 

Variometers as Total Enerqy Indicators 

Several forms of variometers exist which give accurate rate of 

climb information. Most of these instruments work on a principle of 

pressure drop across an orifice or mass flow measurements to and from 

a reference volume. When connected to a static pressure source, t k y  
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o f f e r  a good ind ica t ion  o f  r a t e  of change i n  a l t i t u d e  o r  r a t e  of 

po ten t ia l  energy change. 

velocity, t h i s  reading a lso represents the r a t e  o f  change i n  t o t a l  

energy. 

I f  an a l t i t u d e  change occurs a t  a constant 

I f  the same variometer could be connected t o  a pressure source 

which no t  only varies w i th  the s t a t i c  pressure, bu t  a lso inverse ly  

with the dynamic pressure, i t  would be possible t o  use the  same 

instrument for  ind ica t ing  rates o f  change i n  t o t a l  energy. This i s  

the basis for  the t o t a l  energy research presented i n  t h i s  report .  

PRESSURE AND ENERGY RELATIONSHIPS 

I n  s t i l l  a i r ,  a sa i lp lane f l y i n g  a t  h igh speeds could exchange 

most o f  i t s  k i n e t i c  energy f o r  po ten t ia l  energy by zooming. If thz  

sailplarle had no drag, the energy exchange would be complete, and a 

per fect  t o t a l  enersy instrument would ind ica te  no change i n  t o t a l  energy 

f o r  such a transfer. As mentioned, a sens i t i ve  variometer can be 

converted t o  function as 4 t o t a l  energy instrument if the ambient 

s t a t i c  pressure source i s  replaced by a pressure source appropriately 

combining pressures re la ted  t o  the a l t i t u d e  and ve loc i ty .  For the 

imaginary sa i lp lane w i th  no drag, a per fect  t o t a l  energy pressure source 

would simply provide constant pressure t o  the instrument throughout the 

zoom, w i th  the decreasing pressure due t o  increase i n  a l t i t u d e  exact ly  

compensated by a pressure increase inverse ly  proport ional t o  the change 



5 

in the square of the velccity. 

detects rate of change of pressure, a pressure proportional to the 

difference between the static pressure and the dynamic pressure would 

provide the desired total energy indication. 

In other words, since the variometer 

It is customary to refer to pressures in a non-dimensional form 

called pressure coefficients, defined by 

‘Local - ‘Ambient 
cp = 

q 

where: 

= local or sensor pressure source ‘Loca I 

= static pressure ’Ambient 

q = dynamic pressure 

Since PLocal 
the ambient and dynamic pressures, the required pressure coefficient 

Cp = -1 .O, i.e., 

for a total energy sensor should use the difference of 

- 
for ’Sensor - ‘Ambient 

Sensor r 
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For tt,e actual case o f  the sa i lp lane - with  drag g l i d i n g  i n  s t i l l  

a i r ,  the variometer s ink r a t e  reading wi th such a source would simply 

be the sa i lp lane polar  value associated w i th  the speed being flown. 

Such a polar, obtained from Reference 1, i s  shown i n  Figure 1, 

ind ica t ing  an increasing s ink r a t e  w 

higher drag. Thus, the use o f  a var 

depends on a p i l o t  knowing h i s  po lar  

judge whether r i s i n g  o r  sinking a i r  

t h  increasing speeds because o f  a 

m e t e r  w i th  t o t a l  energy compensation 

re la t ionships so t h a t  he can e a s i l y  

s modifying h i s  s ink r a t e  f o r  the 

known f l i g h t  speed. This i s  comnonly done by accomplished p i l o t s ,  

a1 though there have been recent developments o f  so-called 'lnetto" 

varioseters which fac to r  the sa i lp lane polar i n t o  the variometer 

reading (Ref. 2).  It i s  important t o  recognize t h a t  the t o t a l  energy 

compensation i s  a lso the essent ia l  f i r s t  step f o r  a net to  variometer, 

so the research described here i s  appl icable t o  e i t he r  form of t o t a l  

energy compensation. 

TOTAL ENERGY SENSORS 

Several forms o f  &a1 energy sensors have been Ltvelopec I n  

1940, Kantrowitz described the pr inc ip les  o f  such a technique (Ref. 3 ) .  

The I r v i n g  ventur i  was a ..re11 known approach t o  t h i s  matter (Ref. 4 ) ,  

and more recently, the Althaus ventur i  (Ref. 5) has been widely used. 

Along w i th  these probe techniques, many diaphragm systems have been 

successfully used, one o f  the most recent being the Schuemann 

compensator (Ref. 6 ) .  A recent probe compensator, known as the 
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Braunschweig tube, described in Ref. 7, uses the same principles applied 

in developing the probes discussed in this report. However, they are 

more difficult to make, and were found to be more sensitive to manu- 

facturi ng tolerances. 

The most significant aspects of the probes developed in this report 

are: 

(1) Good compensation oder a wide speed and altitude range, 

(2) Insersitivity to flow direction, 

(3) Simplicity of construction, and 

(4) Relatively low drag. 

Possibilities for Simple Total Enerqy Sensors 

There are many aerodynamic shapes that produce pressure distributions 

with local pressure coefficients of -1.0, but they are often very 

sensitive to flow conditions or variations in angle ?f attack, Reynolds 

rfoi 1 

with 

number, etc. 

where Cp = -1 .O, but the locations are likely to 

angle of attack. 

For instance, there may be several ocations on an a 

vary sensitively 

A literature search of pressure distributions over various shapes 

(Refs. 8-15) indicated the possibi!ity of using a cylinder, because the 

typical two-dimensional pressure distribution around a cy1 inder shows 

pressure coefficient values of -1.0 at about 55' to 60' from the 

stagnation point (Fig. 2). However, the gradient i s  very steep at this 

position an d  it would be necessary to locate pressure orifices quite 
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precisely. 

variations in flow angle. 

distributions for cylinders at relatively low Reynolds numbers is the 

fact that the pressure coefficients are nearly constant around the aft 

side of cylinders from about 100' to 180'. and for a wide range of 

Reynolds number are well within 10 percent of the desired Cp = -1.0 

value. 

In addition, this location would be very sensitive to 

What is more interesting about the pressure 

The best data found dated back to the period from 1916 to 1932, 

when there was a research emphasis on theoretical determinations of air 

flow around simple shapes for purposes o f  developing lift and drag 

prediction techniqges. The limitations of early experinenter's wind- 

tunnel sizes, plus their interest in the low-speed range, resulted in 

experimental data far conditions very similar to those encountered by 

sailplanes. Thus, it was possible to gain insight concerning Reynolds 

number effects and other flow phenomena of direct interest from early 

efforts. Based on these data, enough encouragement was obtained to 

proceed, and an experimental activity was initiated to explore the 

practicality of using a cylinder to obtain a suitable reference pressure 

for total energy compensation. 

Range of Conditions for Sai 1 planes 

Before determining the application of existing data and developing 

a test program, it was essential to understand the range of conditions 

and basic aerodynamic relationships for typical sailplane operations. 
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Having found t h a t  cy1 inders might o f f e r  appropriate sensor pressures , 
Reynolds numbers as a funct ion o f  cy l inder  diameter were ca lcu lated 

using Ref. 16, f o r  a range o f  ve loc i t ies  and a l t i t udes  (Fig. 3 ) .  

It i s  customary t o  base Reynolds number f o r  cy1 inders on cy1 inder 

diameter. Pract ical  cy l inder  diameters f o r  sai lp lane sensors, 

con;idering s t ruc tu ra l  as we1 1 as aerodynamic factors,  range from 

3/16-inch t o  1/4-inch. This f a c t  allowed the easy addi t ion o f  scales 

t o  Figure 3 f o r  three spec i f i c  diameters, so t h a t  Reynolds numbers may 

be obtained a t  a glance f o r  various t e s t  o r  f l i g h t  conditions. 

It can be seen t h a t  f o r  the spectrum o f  speeds from about 

40 miles per hour t o  150 mi les per hour, and f o r  a l t i t u d e s  from sea 

level  t o  20,000 feet, r a t i o s  o f  Reynolds number t o  di imeter, R/d , 
(usual1.y referred t o  as u n i t  Reynolds number) f a l l  w i th in  values o f  

2.5 x - i05/ft .  and 16 x 105/ f t .  

important region f o r  compensation ranges between R/d values o f  

5 x 105/ft .  t o  10 x 105/f t .  For 3/16-inch diameter sensors, t h i s  

resu l ts  i n  Reynolds numbers ranging from about 8,000 t o  16,000. 

I n  actual practice, the most 
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APPARATUS AND SENSORS 

Wind Tunnel 

Early experiments were performed w i th  a simple f r e e - j e t  wind tunnel 

assembled from a shop vacuum cleaner. A water manometer was made w i th  

r u l e r s  and glass tubing purchased a t  a Hobby Shop. Data obtained w i th  

t h i s  f a c i l i t y  provided some v e r i f i c a t i o n  f o r  the two-dimensional presswe 

d is t r ibu t ions  around cylinders, helped provide a f e e l  f o r  the ef fects  of 

hole size, and indicated the promise of obtaining coe f f i c i en ts  su i tab le  

fo r  t o t a l  energy compensation. 

Short ly thereafter, a small wind tunnel t ha t  had been made as an 

Explorer Scout Project w i th  the help of some NASA Langley researchers 

became available, Fig. 4. The f a c i l i t y  was powered by a 1/4-horsepower 

motor, had an 8- by 10- by 10-inch t e s t  section, and had been designed 

t o  produce uniform f low a t  speeds up t o  about 60 mph. 

By using stepped pul leys on the fan and motor drives, i t  was 

possible t o  se lect  various ve loc i t ies  simulat ing f l i g h t  condit ions over 

a range of Reynolds numbers. Velac i t ies corresponding t o  sea leve l ,  

fu l l -sca le conditions of 32, 43, and 54 mph were used. R/d values o f  

3.0 x 105/ft., 4.0 x 105/ f t .  and 5.0 x 105/f t .  provided t e s t  condit ions 

w i th in  the range of in te res t .  Veloc i ty  p ro f i les  indicated less than 

1 percent flow ve loc i ty  var ia t ions across the t e s t  section. 
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The motor could run continuously at the two low settings but tended 

to overheat at the maximuin velocity, especially when the humidity was 

high. For this reason, mcst o f  the baseline . t A a  were obtained at the 

mid-range velocity settings. 

Probe Mounting and Instrumentation 

Probe mounting provisions were 

sections of 

allowed ang 

Instrc: 

di s ti 1 1 ed w 

imp1 e n adapter was fitted to the 

bottom of the test section so that probes extended through 3 hole into 

the test section as shown in Figure 4. Angle of yaw variations were 

made by rntating the probe, using an indicator pointer attached to the 

probe mount and directly reading anjles scribed on the bottom o f  the 

Plexiglas test section. Angle of sweep data were obtained by inserting 

carefully bent tubing into the probe holder. These adapters 

e o f  sweep variations over - 25' in 5' increments. 

W a t i o n  consisted o f  simple inclined manometers using 

ter. Three wall statics permanently posit.io,ied in the test 

+ 

section were manifolded together and used at all times for reference. 

A removable total pressure probe was used to determine the stream pitot 

pressure and to calibrate velocities. 

Typical Sensor Configurations 

Brass tubing having various diameters was used fcr all sensors. 

Solder was used for plugging the en la in most instances, although brass 

screws or small brass scraps sometimes were soldered into place and 

filed to shape. For the large tubes, a small ball of steel wool inserted 
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i n t o  the end helped t o  provide a means o f  closing tube ends with solder. 

Although some tube ends were rounded o f f  during ear ly  tests, it was 

determined that  the addit ional variable o f  end-shape was hard t o  control.  

Consequently, a l l  tests reported here were made with tube ends f i led  o f f  

normal t o  the tube, and beveled very s l i gh t l y .  

Holes were d r i l l e d  with hign-speed d r i l l s  ranging i n  size from 

1/32-inch t o  1/8-inch, and deburred. A l l  measurements t o  hole posit ions 

were from the ends o f  the tubes t o  the centers o f  the holes. Most tests  

were made with tubes having 1/32-inch diameter holes, although several 

checks were made wi th  larger holes. 

For most tests, tube lengths were s i x  inches to ta l ,  w i th  about 

f i v e  inches extending i n t o  the f ree  stream. This placed the tube ends 

near the center l i n e  o f  the tunnel where the f l o w  was very uniform. 

For two-dimensional tests, 12-inch tubes were used t o  span the t e s t  

section, wi th holes placed midway on tubes such tha t  the holes were a t  

midstream o f  the t e s t  section. 

For i den t i f i ca t i on  o f  various sensors, a l l  dimensions were given 

i n  thirty-seconds o f  an inch. The dimensions applied t o  probe 

configurations were as follows: 

D-d-x f o r  a 3/16-inch diameter tube, 

wi th a 1/32-inch diameter hole located 

5/16-inch from the end, would be 

i d e n t i f i e d  as configuration 6-1-10. 
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METHOD OF CONDUCTING TESTS 

Af ter  a number o f  i n i t i a l  tests  o f  random hole configurations and 

positions, a matrix o f  t e s t  configurations was selected t o  provide 

systematic data trends. For the 3/16-, 7/32-, and 1/4-inch tube sizes, 

1/32-inch diameter holes were d r i l l e d  a t  various X/D posit ions t o  

obtain the basic trends i n  coe f f i c i en t  wi th  respect t o  X/D. Three 

wind-tunnel speed sett ings were used and the probes rotated through a 

series of angles t o  obtain pressure d i s t r i bu t i ons  around the tubes. 

The tubes were mounted normal t o  the airstream i n  a simple holder with 

an angle indicator and rotated t o  selected angles by hand. 

were allowed t o  s t a b i l i z e  and data readings taken from the water manometer. 

The same process was repeated f o r  the d i f f e r e n t  tube sizes and veloci t ies,  

thus also providing some var ia t ion i n  Reynolds number values. 

Pressures 

After the systematic set o f  base1 ine data was obtained, experiments 

were conducted wi th  mul t ip le  holes i n  the same manner. 

WIND TUNNEL TEST RESULTS 

Basic Data and Trends 

I n  Figure 5, typ ica l  pressure d i s t r i b u t i o n  data obtained on sensor 

configurations a re  shown for a set of 3/16-inch diameter probes. The 

s i m i l a r i t y  o f  these data t o  simple two-dimensional data obtained by 

ea r l i e r  experimenters i s  obvious. A s ign i f i can t  aspect o f  these data 

i s  the nearly constant coef f ic ient  f o r  hole posit ions from 100' t o  180'. 
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This indicates t h a t  a probe with an a f t  facing hole should be extremely 

insensi t ive t o  angles o f  s ides l i p  over a wide range. Also seen are 

the differences i n  coe f f i c i en t  f o r  8 = 120' - 180' when X/D varies, 

ind icat ing the three-dimensional e f fec ts  on pressure coe f f i c i en ts  t h a t  

r e s u l t  from having holes located near the end o f  the tube. 

discovery t h a t  suggested t h a t  the three-dimensional re la t i onsh ip  with 

coe f f i c i en t  could be used t o  select  a hole locat ion t h a t  would give the 

desi red c o e f f i c i e n t  . 

It was t h i s  

Af ter  some f l i g h t  t e s t  experiments, a series o f  t es ts  with varying 

sweep angles was conducted t o  determine s e n s i t i v i t y  t o  p i t c h  o r  down- 

wash angles. The resul ts,  Figure 6, showed a marked gradient o f  

coef f ic ients  f o r  var iat ions i n  probe sweep from -10' t o  +25', but  an 

i n s e n s i t i v i t y  t o  sweep over the range from -10' t o  -25'. Downwash 

calculat ions showed t h a t  a probe i n s t a l l e d  near the top of the v e r t i c a l  

t a i l  would see only a maximum o f  3' downwash change over the range o f  

l i f t  coeff icients expected t o  r e s u l t  from a high-speed zoom. 

I n  Figure 7, a sumnary o f  many t e s t  points i s  presented. The 

trend o f  coef f ic ients  as a funct ion o f  X/D f o r  a range o f  hole locat ions 

can be seen. The s i g n i f i c a n t  f i nd ing  i s  the l i n e a r i t y  o f  t h i s  trend 

through a range o f  coe f f i c i en t  values around Cp = -1.0, because t h i s  

c lea r l y  indicates the potent ia l  f o r  making a simple probe. Also shown 

a r e  data for  probes having forward sweep o f  20' exhib i t ing the l i n e a r  

trend wi th  respect t o  X/D, a t  a d i f ferent  reference level .  

be noted that  the X/D = 2.0, y = -20' gives the desired pressure 

coef f ic ient ,  Cp = -1.0. 

It should 



15 

Effect of Hole Size 

During the course o f  the erperiments, several d i f f e ren t  hole sizes 

were tested. A l l  o f  the expeience obtained w i th  various hole sizes 

supported the f indings frm Reference 8, (Figure 8), t ha t  a range o f  

hole sizes produce the same coef f ic ients  a t  a Reynolds number o f  8,500. 

During f l i g h t  tests w i th  3/16-inch diameter probes, it was fwnd tha t  a 

sensi t ive variometer wi th  addio indicated a s l i g h t  resonance w i th  the 

1/32-inch diameter hole. Doubling the hole diameter t o  1/16-inch 

eliminated the burbl ing sound noted wi th  the smaller hole. The average 

pressure readings d i d  not appear t o  be affected by hole s ize i n  the wind 

tunnel o r  i n  f l i g h t  tests, as long as the center o f  the openings were 

the same distance from the end o f  the probes. 

Reyno 1 d s Number Effects 

Although two-dimensional data i n  Figure 2 showed ef fects  o f  Reynolds 

number t o  be small f o r  the probe sizes and range o f  f l i g h t  conditions o f  

interest ,  a simple experiment was performed i n  the wind tunnel t o  see 

whether Reynolds number ef fects  could be noted. Figure 9 shows the 

resul ts  o f  doubling the Reynolds number, w e l l  i n t o  the rmge o f  greatest 

interest .  Any variat ions for the a f t  facing hole appear t o  be w i th in  

the scatter of wind-tunnel resul ts  and there was no consistent di f ference 

observed which could be at t r ibuted t o  Reynolds number. 
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P Descri -. :,tion o f  Best Configurations 

%r the range o f  ve loc i t ies from 40 t o  150 miles per hour, and for 

a l t i tudes from sea level  t o  20,000 feet, a probe diameter o f  3/16-inch 

i s  s3tisfactory. 

diamet r should be located 3/8-inch from the end o f  the probe. 

;]robe should be swept forward 20 degrees. 

probe configurations tested i n  the wind cunnel and i n  f l i g h t  are 

i l l u s t r a t e d  i n  Figure 10. 

1/4-irich wi th  the same geometric ra t i os  were also tested. 

provide the desired t o t a l  energy compensation, i t  i s  obvious they also 

p r o c x e  proportionately higher drag values than the 3/16-inch diameters. 

For th '  diameter, an a f t  facing hole 1/16-inch i n  

The 

Sketches o f  two successful 

Probes having diameters o f  7/32-inch and 

Although they 

' 

FLIGHT TESTS 

Throughout the period o f  wind tunnel experiments, f l i g h t  tests  were 

performed on various configurations. Most o f  the tests were conducted 

wi th  a Schweizer 1-268 wi th  a B a l l  E lec t r i c  Variometer Model 101-D. 

Several f l i g h t s  were alsc successfully made with Winter and PZL 

variometers. 

port ion o f  th,. t u r t l e  deck and on the upper t i p  o f  the f i r?  spar. No 

quanti tat #e measurements were made i n  f l i g h t ;  however, a standard 

procc 'ure war used t o  indicate the response o f  the variometer wi th  

d f ferent probe con,igurations. 

calm days by establ ishing gl ides a t  steady speeds ranging from 50 t o  

100 mph and zooming t o  thermalling speeds o f  about 40 mph. 

Teqts were conducted with probes mounted a f t  o f  the removable 

The most meaningful tests  were made on 
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rep 

the 

In  add 

acement 

forward 

t i o n  t o  tests  by the author w i t h  a Schweiter 1-268, 

probes were made f o r  the Althaus probe t h a t  i s  mounted on 

f i n  of the Standard L ibe l le .  F l i g h t  t es ts  s i m i l a r  t o  those 

described f o r  the 1-26 were made w i th  the L i b e l l e  by an experienced 

competition p i l o t .  Exactly the same basic probe dimensions proved 

best for  both sailplanes. 

Probe Mounting Configurations 

Because o f  easy i n s t a l l a t i o n ,  several tests  were made w i t h  probes 

mounted j u s t  a f t  o f  the removable t u r t l e  deck on a 1-268. This locat ion 

gave f a i r l y  good resu l t s  but was never as good over a range of condit ions 

as a f i n  location. The f i n  locat ion f o r  the 1-26B placed the probe i n  

f ree  stream a i r ,  not  af fected by the changes i n  pressure over the wing 

and body. The probe made f o r  mounting on the forward f i n  of the Standard 

L i b e l l e  was also operating i n  f ree  stream conditions. While these tes ts  

and other experiences suggest the f ree  stream locat ions as the most 

suitable, fuselage locat ions may be acceptable, although some tai lo,. ing 

of the probe hole pos i t ion may be necessary t o  favor compensation during 

zooms a t  the expense o f  compensation during dives. 

AdJustments During F1 i q h t  Tests 

As shown by wind tunnel resul ts ,  the pos i t ion o f  the o r i f i c e  w i t h  

respect t o  the end o f  the tube was very important. 

adjustment t o  a given i n s t a l l a t i o n ,  i t  was found t h a t  d r i l l i n g  the hole 

s l i g h t l y  f a r the r  from the end o f  the tube (approximately 1/32-inch) 

than twice the diameter, allowed easy adjustment a f t e r  i n i t i a l  f l i g h t  

For f i n a l  
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t e s t  by f i l i n g  o f f  the end o f  the tube i n  small increments and retest ing 

u n t i l  achieving good compensation. One o r  two i t e ra t i ons  usually sufficed. 

As mentioned ear l ier ,  the shape o f  the end o f  the tube affected 

compensation and care had t o  be exercised t o  bevel the edges very 

s l i gh t l y .  It was also imperative tha t  a good seal e x i s t  a f t e r  f i l i n g ;  

it was found very worthwhile t o  check f o r  leaks a f t e r  any such f i l i n g  

adjustments because a t i n y  hole i n  the soldered end produced drast ic  

effects on compensation. 

Sealinq o f  Removable Probe Joints 

Extreme d i f f i c u l t y  was experienced i n  sealing, when using tape t o  

secure removable probes inserted i n t o  metal holders. As a resul t ,  a 

series o f  tests  was run on various tapes and taping procedures. No 

taping technique was found tha t  provided dependable resul ts  and the only 

sure sealing method for a probe connection was t o  use a small sleeve of 

p las t i c  tubing i n  l i e u  of taped connections. Since the t o t a l  energy 

indicat ion i s  extremely sensi t ive t o  leaks, a l l  connections should be 

checked carefu l ly  t o  insure proper resul ts.  

F1 i q h t  Test Conclusions 

For the configurations i l l u s t r a t e d  i n  Figure 10, smoothly executed 

zooms resulted i n  a steady change i n  ra te  o f  sink readings between the 

correct values f o r  speeds a t  beginning o f  zooms t o  the proper sink rates 

for thermalling Speeds. No excessive overshoots i n  climb o r  sudden 
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increases i n  sink r a t e  were exhibi ted dur ing zooms. Simi lar  r e s u l t s  

were obtained f o r  pushovers from thermal l ing speeds t o  various cru ise 

speeds. Checks were also made dur ing rap id  t ransients with elevator 

movement, rudder movement, and sidesl ip.  Loops, lazy eights, and other 

coordinated maneuvers invo lv ing changing speeds and a l t i t u d e s  gave good 

q u a l i t a t i v e  checks during t rans ient  conditions. While f l i g h t  t es ts  

were not  made above 10,000 feet,  no var ia t ions were noticed as a r e s u l t  

o f  a1 ti tude. 

DRAG ESTIMATES FOR TYPICAL INSTALLATIONS 

Considerable data e x i s t  from class ica l  theory and experiments on 

the two-dimensional drag o f  cy1 inders i n  the desired Reynolds number 

range. From Ref. 14, a two-dimensional cy l inder  drag c o e f f i  it of 

1.15 was obtained for  the Reynolds number range o f  10,000 t o  20,000. 

For f i n i t e  cyl inders of given length/diameter r a t i o ,  a form f a c t o r  t o  

modify two-dimensional coef f ic ients  was avai lab le from Ref. 10. For a 

3/16-inch diameter cy1 indsr 5 inches long (length/diameter r a t i o  

approximately 27) t h i s  form factor,  t o  be m u l t i p l i e d  times the two- 

dimensional coe f f i c i en t ,  i s  0.78. There i s  also a reduction i n  drag 

due t o  sweep tha t  i s  proDortiona1 t o  the (cosine) o f  sweep angle, 

(Ref. 15). For a 20' sweep angle, an addi t ional  mu l t i p l y ing  fac to r  o f  

0.85 i s  appropriate. 

3 
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I n  smnary, the drag coef f ic ient  based on f r o n t a l  area f o r  a swept 

probe i n s t a l  l a t i o n  i s  approximately 

CD = 1.15 x 0.78 x 0.85 

For a 3/16-inch diameter probe 5 inches long, the drag a t  100 mph, 

5,000 ft. al t i tude,  i s  about one-tenth o f  a pound. 

FINDINGS AND CONCLUSIONS 

Meaningful information on rates o f  change o f  useful t o t a l  energy 

can be provided during f l i g h t  by a sensi t ive variometer coupled w i th  a 

pressure sensor having a c o e f f i c i e n t  Cp = -1.0. Wind tunnel experiments 

conducted w i th  a small f a c i l i t y  developed simple probes and determined 

t h e i r  character ist ics under various f low conditions. F l i g h t  t es ts  were 

conducted t o  v e r i f y  wind tunnel resul ts .  

The best probe configurations tested had the fol lowing 

character is t ics  : 

1. Cyl indr ica l  tube, diameter o f  3/16- t o  1/4-inch. 

2. Tube end squared off wi th  very s l i g h t  bevel o f  sharp edge. 

3. A f t  facing pressure o r i f i c e ,  a d r i l l e d  hole about 1/3 the tube 

diameter (1/16- t o  3/32-inch). 

4. Center o f  hole located a t  a distance two t imes the tube diameter 

from the end o f  the tube (3/8- t o  1/2-inch). 
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5. Probe swept forward about 20' with respect to flow direction. 

6. Probe mounted in free-stream air, extending a minimum of 5 to 

6 inches from the aircraft. 

7. Vertical tail location good; aft fuselage acceptable. 

Such a probe, coupled with a good variometer in a leak-free system, 

sh-ould provide the following: 

1. Good total energy rate information over a flight range from 

40 to at least 150 mphfaltitudes from sea level to at 

least 20,000 feet. 

2.  

3. 

Insensitivities to normal yaw, pitch, and roll attitude variations. 

Drag of a typical installation at 100 mph is about one-tenth 

o f  a pound. 
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