

© VisionMobile 2011 | www.visionmobile.com

1

Open Governance Index

© VisionMobile 2011 | www.visionmobile.com

2

Open Governance Index

.Cover page

About VisionMobile

VisionMobile is a leading market analysis and strategy firm,
for all things connected. We offer competitive analysis,
market due diligence, industry maps, executive training and
strategy, on topics ranging from the industry's hottest trends
to under-the-radar market sectors. Our mantra: distilling
market noise into market sense.

VisionMobile Ltd.
90 Long Acre, Covent Garden,
London WC2E 9RZ
+44 845 003 8742

www.visionmobile.com/blog
Follow us: @visionmobile

About webinos

This research was partially funded by webinos, an EU-
funded project under the EU FP7 ICT Programme
(#257103).

Webinos is an EU-funded project aiming to deliver a
platform for web applications across mobile, PC, home
media (TV) and in-car devices.VisionMobile is a member of
the webinos consortium. More info at www.webinos.org

License

Licensed under Creative Commons
Attribution 3.0 license.
Any reuse or remixing of the work should
be attributed to the VisionMobile Open
Governance Index report.

Copyright © VisionMobile 2011

Disclaimer

VisionMobile believes the statements contained in this
publication to be based upon information that we consider
reliable, but we do not represent that it is accurate or
complete, and it should not be relied upon as such. Opinions
expressed are current opinions as of the date appearing on
this publication only, and the information, including the
opinions contained herein, are subject to change without
notice.

Use of this publication by any third party for whatever
purpose should not and does not absolve such third party
from using due diligence in verifying the publication’s
contents. VisionMobile disclaims all implied warranties,
including, without limitation, warranties of merchantability
or fitness for a particular purpose. VisionMobile, its affiliates
and representatives shall have no liability for any direct,
incidental, special, or consequential damages or lost profits,
if any, suffered by any third party as a result of decisions
made, or not made, or actions taken, or not taken, based on
this publication.

v.1.11

Contents

A. Open Source Economics

B. Open Source Governance Models

C. The Governance Index

Authors

Liz Laffan, BABS, MA(IPE).

Liz Laffan is a Research Partner at VisionMobile. Liz

has been working in the telecoms and mobile

industry for over 20 years, with large telco

organisations, start-up technology ventures, software

development and licensing firms. Liz's interests lie

in open source software governance and licensing

and in particular how best can commercial

organisations interact with open source projects. She

can be reached at liz@visionmobile.com'

Also by VisionMobile

Mobile Industry Atlas | 4th Edition

The complete map of the mobile industry

landscape, mapping 1,350+ companies

across 85+ market sectors.

Available in wallchart and PDF format.

www.visionmobile.com/maps

© VisionMobile 2011 | www.visionmobile.com

3

Open Governance Index

Key messages

Business as usual?. Use of open source software in the mobile space is now business as usual. Much

has been written and debated regarding open source licenses – from the early days of the GPL license

to the modern days of the Android platform.

Openness as Governance Despite the widespread use of open source, from Android to WebKit,

there is one very important aspect of open source projects that has been neglected: openness and how

to measure it. Openness goes far beyond the open source license terms and into what is termed

Governance.

Governance goes beyond licenses. While licenses determine the rights to use, copy and modify,

governance determines the right to gain visibility, to influence and to create derivatives of a project,

whether in the form of spin-offs, applications or devices.

Governance captures all the hard questions. The governance model used by an open source

project encapsulates all the hard questions about a project. Who decides on the project roadmap? How

transparent are the decision-making processes? Can anyone follow the discussions and meetings taking

place in the community? Can anyone create derivatives based on the project? What compliance

requirements are there for creating derivative handsets or applications, and how are these

requirements enforced? Governance determines who has influence and control over the project or

platform – beyond what is legally required in the open source license.

Governance determines openness. In today’s world of commercially-led mobile open source

projects, it is not enough to understand the open source license used by a project. It is the governance

model that makes the difference between an “open” and a “closed” project.

From Android to WebKit. To quantify governance, we researched eight mobile open source

projects: Android, MeeGo, Linux, Qt, WebKit, Mozilla, Eclipse and Symbian. We selected these

projects based on breadth of coverage; we picked both successful (Android) and unsuccessful projects

(Symbian); both single-sponsor (Qt) and multi-sponsor projects (Eclipse); and both projects based on

meritocracy (Linux) and membership status (Eclipse).

Open Governance Index. We quantified governance by introducing the Open Governance Index, a

measure of open source project “openness”. The Index comprises thirteen metrics across the four areas

of governance:

1. Access: availability of the latest source code, developer

support mechanisms, public roadmap, and transparency of

decision-making

2. Development: the ability of developers to influence the

content and direction of the project

3. Derivatives: the ability for developers to create and

distribute derivatives of the source code in the form of spin-

off projects, handsets or applications.

4. Community: a community structure that does not

Open Governance Index
(% open)

Android 23%

Qt 58%

Symbian 58%

MeeGo 61%

Mozilla 65%

WebKit 68%

Linux 71%

Eclipse 84%

© VisionMobile 2011 | www.visionmobile.com

4

Open Governance Index

discriminate between developers

The Open Governance Index quantifies a project’s openness, in terms of transparency, decision-

making, reuse and community structure.

	

Does openness warrant success? Our research suggests that platforms that are most open will be

most successful in the long-term. Eclipse, Linux, WebKit and Mozilla each testify to this. In terms of

openness, Eclipse is by far the most open platform across access, development, derivatives and

community attributes of governance. It is closely followed by Linux and WebKit, and then Mozilla,

MeeGo, Symbian and Qt. Seven of the eight platforms reviewed fell within 30 percentage points of each

other in the Open Governance Index.

Best practices of open governance. Our research identified certain attributes that successful open

source projects have. These attributes are timely access to source code, strong developer tools, process

transparency, accessibility to contributing code, and accessibility to becoming a committer. Equal and

fair treatment of developers – “meritocracy” – has become the norm, and is expected by developers

with regard to their involvement in open source projects.

The Android Paradox. Android ranks as the most closed project, with an Open Governance Index of

23%, yet at the same time is one of the most successful projects in the history of open source. Is

Android proof that open governance is not needed to warrant success in an open source project?

Android’s success may have little to do with the open source licensing of its public codebase. Android

would not have risen to its current ubiquity were it not for Google’s financial muscle and famed

engineering team. More importantly, Google has made Android available at “less than zero” cost, since

Google’s core business is not software or search, but driving eyeballs to ads. As is now well understood,

Google’s strategy has been to subsidise Android such that it can deliver cheap handsets and low-cost

wireless Internet access in order to drive more eyeballs to Google’s ad inventory.

More importantly, Android would not have risen were it not for the billions of dollars that OEMs and

network operators poured into Android in order to compete with Apple’s iconic devices. As Stephen

Elop, Nokia’s CEO, said in June, 2011, “Apple created the conditions necessary for Android”.

© VisionMobile 2011 | www.visionmobile.com

5

Open Governance Index

A. Open Source Economics

The beginnings

Although open source software (OSS) has been used in the PC space since the 1980s, it has only

proliferated in the mobile space since the early 2000s. But where has open source come from?

In the early days of personal computers, software was originally given away free or shared between

hobbyists, prompting a young Bill Gates in 1976 to complain, “As the majority of hobbyists must be

aware, most of you steal your software,” and, “One thing you do is prevent good software from being

written”1. The context for this letter was that programmers were using Microsoft’s Altair BASIC

software without having paid for it, and that such unauthorized copying discouraged Gates and other

developers from investing time and money in creating high-quality software.

Nearly four decades on, and we now know that this argument holds little ground. It is estimated that it

would cost around $1.4billion to create the Linux kernel itself2; around $10.8 billion to build the

Fedora 9 Linux OS2, and around $89m to create the WebKit browser engine3. OSS has now more than

ever demonstrated its value to the mobile software industry.

Cultural roots

The “free software” movement – as distinct from “0pen source software” – was started by Richard

Stallman, who in 1989 authored one of the most widely used open source licenses, the GNU GPL .

Stallman also founded the Free Software Foundation (FSF), and wrote large amounts of code, mostly

related to EMACS and the GNU system4. Stallman passionately believes that source code should be

“free,” such that users and developers can do with it what they choose, a belief embodied in the “four

freedoms” that underpin Stallman’s philosophy of free software:

1. The freedom to run the program, for any purpose (freedom 0).

2. The freedom to study how the program works, and change it to make it do what you wish (freedom

1). Access to the source code is a precondition for this.

3. The freedom to redistribute copies so you can help your neighbor (freedom 2).

4. The freedom to distribute copies of your modified versions to others (freedom 3). By doing this, you

can give the whole community a chance to benefit from your changes.

Moreover, the Free Software Foundation maintains that “free software is a social movement. For the

free software movement, free software is an ethical imperative, because only free software respects the

© VisionMobile 2011 | www.visionmobile.com

6

Open Governance Index

users' freedom”5. As such, other considerations like business needs and the drive to create revenues

and profits are secondary to this philosophy.

Not surprisingly, this approach proved unpopular with commercial software developers, especially

given that most software was licensed in binary form only. This was because commercial software

owners believed strongly that providing source code would devalue the software, with the secret sauce

being accessibility to source code.

The commercial benefits of making source code “open” were further advocated when Eric Raymond

wrote the seminal book “The Cathedral and the Bazaar” in 1997. Raymond contrasted the traditional

in-house software development model (the cathedral) with the open source development process (the

bazaar), based on his observations of the Linux kernel development process and his experiences

managing an open source project (fetchmail).

Raymond introduced the term Linus’s Law, which states that “given enough eyeballs, all bugs are

shallow". That is, the more widely available the source code is for public testing, scrutiny, and

experimentation, the more rapidly all forms of bugs will be discovered. This viewpoint was seen as

more pragmatic than that of the FSF, acknowledging the benefits of an open source development model

whilst not mandating ‘software freedoms’ (the right to make, run and distribute changes in source

code) to the same extent as the free software movement.

Later in 1998, Eric Raymond and Bruce Perens founded the “Open Source Initiative” (OSI) , tasked

with promoting open source software use by and for commercial organisations, as well as the open

source community. Today, the OSI manages a 10-point definition6 of open source software, and

maintains a list of licenses it deems to be in compliance with this definition. Currently there are around

70 OSI-approved licenses listed, including the popular General Public License v2.1 and v3.0 (GPL);

Lesser General Public License v2.1 and v3.0 (LGPL); Eclipse Public License v1.0 (EPL) and the Apache

License v2.0 (APL)7.

In summary, the OSI definition advises that open source licenses should provide users with access to

the source code and permit free redistribution of that source code, including the ability to create

modifications and derivatives, which can also be freely redistributed. Moreover, an open source license

should not have any field-of-use restrictions, nor discriminate against any persons or organisations.

Finally, the license must not place restrictions on other software that is distributed along with the

licensed software.

What on earth does open source mean?

As we’ve seen, open source is rooted in both legal and cultural contexts. Today, however, the term

“open source” is used in far more practical ways:

Open source as a development methodology. In a commercial context, open source is a

collaborative software development methodology. Much like industry consortia or commercial

partnerships, open source is a technique for collaboratively developing software building blocks across

multiple commercial entities. As such, open source is a mechanism for sharing both risks and costs of

collaborative software development.

© VisionMobile 2011 | www.visionmobile.com

7

Open Governance Index

Open source as a product decision. In software products, companies often need to make a

decision between building a new software component in-house or buying the component from a third

party. Open source is a mid-level option between build and buy that allows a company to source

software from an external “community” and co-develop it.

Open source as a marketing tool. Open source software can be leveraged as a means of building a

reputation for benevolence and good intentions, attracting positive press, and even drawing followers

to a software platform. This is best exemplified by Google’s use of open source licensing to help create a

fanatical developer following around Android, even if the entire development process happens behind

closed doors.

Having seen what open source means in practice, it is equally important to note what open source

software is not.

Open source is not free of cost. Open source software development is not free-of-cost; there are

costs with regard to customisation, adaptation, third party component integration, software support,

maintenance of private software branches, trademark or compliance requirements, legal/technical due

diligence, and in some cases membership or sponsor fees. Indeed we have seen how Microsoft is able

to extract a patent fee from Android manufacturers due to the alleged infringement that Android

carries against Microsoft patents8.

Open source is not a community builder. Open source is often compared to “build-it and they

will come,” implying that developer communities will naturally form around software than is released

under an open source license. Yet this couldn’t be further from the truth. Software developers are

human by nature and as such are intrinsically self-centred. Developers will take an interest in an open

source project only if it provides value in some way or “scratches an itch” in hacker-speak. This is why

successful open source projects – e.g. Linux, GTK or WebKit – address a common need such as

building a vendor-neutral operating system, a graphics software stack or a browser engine.

Understanding Projects, Distributions and Platforms

Open source software comes in many forms: projects, distributions and platforms

Projects. An open source project comprises of one or more applications – for example Mozilla is an

open source project that has created a number of applications, of which Firefox, the open source web -

browser, is one. Another example of an open source project is Eclipse, which started out primarily as a

tools package, but now hosts around 240 distinct open source projects.

Distributions. The Linux kernel is also an open source project, but it nearly always comes pre-

packaged as part of a software distribution comprising various libraries and files in order to make the

code useful. A distribution is typically not 100% complete, in that it is designed for customisation, such

that end users can easily add and remove components. Examples of Linux distributions include

Ubuntu, a complete desktop Linux operating system; Debian which is a free operating system (OS) for

computers and Fedora, a Red Hat-sponsored, Linux-based operating system. The term “distribution” is

not limited to Linux distributions, though, nor even to complete operating systems, such as the

Berkeley Software Distribution (aka, BSD Unix). Instead, a distribution is simply a bunch of software

© VisionMobile 2011 | www.visionmobile.com

8

Open Governance Index

typically distributed together. Another example might be busybox, a “Swiss Army knife” of embedded

system shell utilities intended to be compiled selectively into a single executable.

Platforms. The term an open source platform is used to refer to a complete software package which

includes all the necessary applications, files and libraries such that it runs by itself with limited

requirement for additional software. Examples of open source platforms are Android and the older

Symbian platform.

Working upstream vs. downstream

There is much interdependency across open source projects. For example, Android comprises around

185 different components, a large number of which are separate open source projects. For example, the

Linux kernel, WebKit, Open GL ES and SQLite are all maintained separately.

Open source development language uses the notion of a river, in which “upstream” projects (e.g.

WebKit, GTK or BusyBox) find their way into “downstream” distributions and platforms.

In open source software, both upstream and downstream software will be developed in parallel. The

decision on how to interact with a “live” upstream project – knowing when to fork (i.e. take a copy of

the upstream project) and when to merge back the changes – can make the difference between success

and failure of the downstream project.

For example, Nokia had forked WebKit from the upstream repository, only to acknowledge that it

should not have done so due to the rising costs of keeping up with the innovation in the upstream

WebKit project. Based on these learnings, the MeeGo open source platform actively advocates that

changes should be made directly to the upstream projects, such that all downstream projects, including

MeeGo, can benefit from such changes. This of course makes much sense given that the users of the

project then spend less time maintaining separate branches. These forking and merging complexities

should not be sidelined as they will critically impact the success of the project in the long run.

The three phases of open source adoption in the mobile space

In the mobile industry, open source software has transitioned from “geekware” to business-as-usual in

the short space of 10 years. This transition has taken place in three phases.

2000-2005: The years of experimentation

The early days of mobile open source were led by mobile device manufacturers (OEMs) who were

cautiously experimenting in a sandbox, quite separate to their revenue-generating handset portfolio. At

that time, OEMs were concerned about the use of open source software from a legal perspective, due to

lack of indemnity and warranty provisions, as well as potential patent infringement issues, and the

“viral” nature of copyleft open source licenses such as the GNU GPLv2.0. This early phase saw the

development of Motorola’s Linux-Java platform, the Mizi Linux platform (a full software stack used by

Samsung in 2003) and the Linux-based MOAP-L platform developed by DoCoMo in partnership with

NEC and Panasonic. Nokia also ventured into open source at this time with the creation of the Maemo

platform which was used in the Nokia Internet Tablets. To this date Maemo remains Nokia’s most

© VisionMobile 2011 | www.visionmobile.com

9

Open Governance Index

widely deployed foray into the open source space despite the manufacturer’s attempts with Symbian,

MeeGo and Qt.

2006-7: Open source goes mainstream

Open source adoption by the mobile industry came into the fore with the creation of the LiMo

Foundation in 2007. Founded by the “who’s who” of mobile open source at that time – Motorola, NEC,

Panasonic, Samsung, NTT DoCoMo and Vodafone – this was the first formal Linux-based software

platform for mobile phones with major industry support behind it. In June 2008 the Linux Phone

Standards organisation (LiPS) was folded into LiMo, giving it further momentum within the industry.

Despite heavy investment, LiMo remained a niche offering, with practically no common software across

the so-called “LiMo compliant” handsets.

The year 2007 was also when Intel launched Moblin (Mobile Linux), an open source operating system

for embedded devices. Later in 2009, Intel turned Moblin over to the Linux Foundation, with Moblin

now part of the Nokia- and Intel-sponsored MeeGo open source project.

2008+: Open source = business as usual

There hasn’t been any bigger milestone in mobile open source than the introduction of the Android

operating system. In November 2007, Google along with the “Open Handset Alliance,” a consortium of

79 hardware and software vendors, announced the search giant’s entry into mobile. In 2008, Google

released the Android SDK, and offered the $10m Developer Challenge, which was catalytic in attracting

developer mindshare. The HTC-built G1, the first Android phone, was launched with T-Mobile in the

U.S. in October 2008. The rest is history. By June 2011, Google reported over 500,000 Android phones

were being activated daily, with shipments of Android handsets exceeding the iPhone and exceeding

the levels of smartphone market leader Symbian.

Prompted by Google’s open source move, Nokia announced in June, 2008, that it would be creating the

Symbian Foundation by buying-out the remaining Symbian shares and taking the platform open-

source. The Symbian Foundation came into being in April, 2009, and the Symbian open source

platform was launched in February, 2010, with source code available under the Eclipse Public License.

However, it was doomed to be a short-lived project, with Nokia announcing its closure in November,

2010.

In parallel, we saw Trolltech being acquired by Nokia in 2008 for its Qt open source development

platform and WebKit browser engine. The latter nearly reached a phenomenal 500 million handsets by

the end of 2010.

Today, open source software is “business as usual” in the mobile industry. But, open source is neither a

natural evolution nor a one-way street for mobile software, as it was seen in 2008 when Android and

Symbian Foundation were launched. In the two-horse race of mobile platforms, we know that

proprietary platforms like iOS can be as successful as open source platforms like Android. And while

open source plays a key role in developer attraction, it does not by any means warrant success.

Licensing fundamentals and Copyleft vs Copyright

How does open source software work, and how is it different to proprietary (“closed”) software?

© VisionMobile 2011 | www.visionmobile.com

10

Open Governance Index

Copyright and patents are crucial to understanding how open source software works. Today, there are

around 70 OSI-approved open source licenses, all of which are based on copyright law, and most of

which include patent grants. Moreover, copyright and patents are used as control points within the

mobile and consumer electronics industries with regard to what can and cannot be done with software.

There are currently over 20 outstanding patent or copyright infringement cases ongoing in the courts

amongst the major device manufacturers. In June, 2011, Nokia won a two-year battle against Apple for

infringement of over 46 Nokia patents; Apple must now pay to Nokia an undisclosed sum estimated to

be in the ‘hundreds of millions of Euros’9. Apple has meanwhile initiated patent infringement claims

against HTC, the top maker of Android phones, claiming that HTC infringes around 25 Apple patents.

Apple is also seeking to ban U.S. imports of HTC manufactured personal electronic devices – which

would be a very serious blow to both HTC and Google’s Android10. Another notable dispute is the

Nokia Qualcomm suit and counter-suit regarding various patent infringements, which resulted in

Nokia paying around $400m per annum to Qualcomm, according to some estimates11.

Given that the very foundations of mobile software licensing are based upon ownership of copyrights

and patents, and the huge sums of money that licensing of software generates, cross-industry litigation

is likely to be the norm for the foreseeable future.

So what is copyright? Copyright is the universal set of rights granted to the creator of the software (or

in many cases their employer). Put simply, if you create a new piece of software, you (or your employer)

are the copyright holder.

The creator or copyright holder is the only person or legal entity that can grant others the right to copy,

distribute and adapt the software. Moreover, the copyright owner is the only one who can license these

rights to third parties.

Whereas copyright does not protect ideas, patents do. Patents are granted on a state-by-state basis for a

limited period of time. As in copyright, the patent owner can license the software for third parties to

copy, distribute, or adapt.

Copyleft – one of the main innovations of the Free Software movement – is a word play on copyright.

Copyright law is used by an author to prohibit others from reproducing, adapting, or distributing

copies of the author's work. In contrast, copyleft allows an author to give out copies of a work with

permission to reproduce, adapt or distribute, and in addition requires any resulting copies or

adaptations to also be bound by the same license agreement.

Copyleft is embodied in the GPL license, written by Richard Stallman. Stallman calls the GPL

“copyleft” since it does the opposite of copyright licensing – instead of stopping you from sharing the

source code, it obligates you to share source on request. Therefore it is important to understand that

while copyleft software is freely available to access, it is not “free” from obligations or restrictions. For a

detailed analysis of the GPL 2.1 and its successor the GPL v3.0, see VisionMobile’s research paper

“GPLv2 vs GPLv3: The Two Seminal Licenses, Their Roots, Consequences and Repercussions” available

on the VisionMobile website.

© VisionMobile 2011 | www.visionmobile.com

11

Open Governance Index

The next table summarises the most popularly used OSS Licenses. The terms “strong copyleft,” “weak

copyleft” and “permissive” indicate the extent to which the license mandates specific redistribution

license terms for users of the software.

Popular open source licenses

License Type Projects using this license Usage in OSS
projects (est.)

GPL v2.1 Strong
copyleft

Linux kernel, Qt 45%

LGPL v2.1 Weak copyleft WebKit, Qt 8%

MPL v1.1 Weak copyleft Firefox web browser, Thunderbird email client 1%

EPL v1.0 Weak copyleft Eclipse Projects, Symbian 0.7%

MIT Permissive - Xorg (an open source implementation of X11, aka
the X Window System)

 8%

BSD v2.0 Permissive WebKit 6%

Apache
v2.0

Permissive Apache Software Foundation, Android, Subversion 5%

Source: VisionMobile

It is worth noting that the above seven most popular licenses account for just over 70% of open source

projects. This is also one of the key advantages of open source software; there are a few, commonly

used OSS licenses, as opposed to the millions of proprietary licenses in existence (one for every piece of

commercial software and its licensors).

Trademarks

Trademarks play an important role, not just in promoting brand awareness, but more importantly as a

control point in mobile open source projects.

A trademark is typically a name, word, phrase, logo, symbol, design, image, or a combination of the

above used by a business organisation or other legal entity to identify products or services as unique.

Trademarks are usually registered on a country-by-country basis, and empower the owner of a

registered trademark to protect that trademark from unauthorized use.

One of the best-known trademarks in the software industry is that of the Java “cup and steam logo”

owned by Sun Microsystems (now Oracle). Historically, Sun has controlled Java in the desktop and

mobile space by mandating that distributions pass compliance requirements (technology compatibility

kits – TCKs) in order to use the Java logo.

This has allowed Sun to control what is a “legitimate” Java implementation on mobile handsets, but as

we know has not been sufficient to reduce Java ME fragmentation across handsets. Similarly, Google

© VisionMobile 2011 | www.visionmobile.com

12

Open Governance Index

uses the Android trademark (among other control mechanisms) to enforce handset manufacturers to

pass compliance certification before they can claim their handset is powered by Android. We analyse

Google’s control mechanisms in detail in the next chapter.

For now, it suffices to say that trademark control is one of the clearest illustrations of the disconnect

between the intent of the OSS movement (which is to minimise proprietary control of software) and

successful commercial open source implementations like Android and Sun Java, which use trademarks

to control how an OSS platform is distributed and used.

Trademarks are but one control mechanism used “on top” of open source licenses. Commercial open

source projects employ a variety of control mechanisms to determine who gets to influence, use and

modify the software – all whilst using an open source license. In the next chapter, we analyse how these

control points define the governance model of an open source project, and how they can be far more

critical than the license chosen in determining “how” the software can be used.

© VisionMobile 2011 | www.visionmobile.com

13

Open Governance Index

B. Open Source Governance

What is Governance?

Much has been written and debated regarding open source licenses – from the early days of the GPL

license to the modern days of the Android open source platform. Yet we believe that there is one very

important aspect of open source projects that has been neglected: the open source governance models.

While licenses determine rights to use, copy and modify, governance determines the rights to visibility,

to influence and to create derivatives. And while licenses apply to the source code, governance applies

to the project or platform. More importantly, the governance model describes the control points used

in an open source project like Android, Qt or WebKit – and is a key determinant in the success or

failure of a platform.

Licenses vs. Governance models

 License Governance

Rights Use, copy, modify Visibility, influence and creation of derivatives

Use 70% of projects under 7
licenses

No agreed definition of governance

Examples GPL, LGPL No formal examples

Legal Binding Non-binding

Source:VisionMobile

The governance model used by an OSS project encapsulates all the hard questions about a project. Who

decides on the project roadmap? How transparent are the decision-making processes? Can anyone

follow the discussions and meetings taking place in the community? Can anyone create derivates based

on that project? What compliance requirements are there, and how are these enforced?

In short, governance determines who has influence and control over the project or platform – beyond

what is legally deemed in the open source license. In today’s world of commercially-led mobile open

source projects, it is not enough to understand the open source license used by a project. It is the

governance model that makes the difference between an “open” and a “closed” project.

Analysis of governance models

We researched eight mobile open source projects: Android, MeeGo, Linux, Qt, WebKit, Mozilla, Eclipse

and Symbian. We selected these projects based on breadth of coverage; we picked both successful

© VisionMobile 2011 | www.visionmobile.com

14

Open Governance Index

(Android) and unsuccessful projects (Symbian); both single-sponsor (Qt) and multi-sponsor projects

(Eclipse); and both projects based on meritocracy (Linux) and on membership status (Eclipse).

Our research, carried out over a six-month period, included analysis of these popular open source

projects, and conversations with community leaders, project representatives, academics and open

source scholars. We acknowledge the work of West and O’Mahony12, in particular with regard to

highlighting the importance of governance, openness and transparency, but our focus has been very

much on the use of governance models as a descriptor of open source control points. The table below

details the key criteria that we used to assess each of these open source projects in order to identify if

the governance model used is an open or closed model.

Key Governance Criteria

Access

1. Is source code freely available to all developers, at the same time?

2. Is source code available under a permissive OSI-approved license?

3. Developer support mechanisms – are project mailing lists, forums, bug-tracking databases, source

code repositories, developer documentation and developer tools available to all developers?

4. Is the project roadmap available publicly?

5. Transparency of decision mechanisms – are project meeting minutes/discussions publicly

available such that it is possible to understand why and how decisions are made relating to the

project?

Development

6. Transparency of contributions and acceptance process – is the code contribution and acceptance

process clear, with progress updates of the contribution provided (via Bugzilla or similar)?

7. Transparency of contributions to the project – can you identify from whom source code

contributions originated?

8. Accessibility to become a committer – are the requirements and process to become a committer

documented, and is this an equitable process (i.e., can all developers potentially become

committers?). Note that a “committer” is a developer who can ‘commit’ code to the open source

project. The terms ‘maintainer’ and ‘reviewer’ are also used as alternatives by some projects.

9. Transparency of committers – can you identify who committers to the project are?

10. Does the contribution license require a copyright assignment, a copyright license or patent grant?

Derivatives

11. Are trademarks used to control how and where the platform is used via enforcing a compliance

process prior to distribution?

12. Are go-to-market channels for applications derivatives constrained by the project in terms of

approval, distribution or discovery?

Community Structure

13. Is the community structure flat or hierarchical (i.e., are there tiered rights depending on

membership status?)

© VisionMobile 2011 | www.visionmobile.com

15

Open Governance Index

Google Android

Android was launched amidst developer fanfare

and industry scepticism in November 2007. It

marked Google’s entry into the mobile industry,

and fundamentally questioned the business model

of handset software with a zero-royalty, open source

platform. It was backed by the Open Handset

Alliance, a consortium of technology and mobile

companies committed to supporting Android.

At the same time, Google released the Android SDK and offered a $10m Developer Challenge, which

immediately attracted much developer attention. Almost a year later, in October, 2008, Google

released the project source code and launched the HTC G1 phone with T-Mobile in the U.S. By mid

2010, Google reported over 60 models of Android handsets launched by over 20 branded

manufacturers. As of early 2011, all major handset manufacturers – except for Nokia – have launched

Android-powered handsets, with Gartner predicting that Android will power over 300 million handsets

sold annually. The phenomenal level of adoption is not only unprecedented by any measure, but

beyond Google’s wildest dreams when the very first Android handset was launched.

We next discuss Android’s governance model.

Access

 The Android software stack comprises Android-specific components (the platform), most of which are

licensed under the Apache 2.0 license. The stack includes the Linux kernel and WebKit, which are

under the GNU GPL plus LGPL licenses, respectively, and various minor components copyrighted by

other owners.

The Apache 2.0 license is a permissive license that allows users to distribute modified versions of the

code with no obligation to provide these changes back to the community.

Besides the public Android platform licensed under APL2, Google maintains a private code branch. The

private branch is under development for the six-to-nine months prior to the release of the public code

branch. The private branch is available to two arbitrarily chosen OEMs, who work closely with Google

to develop the next Google-branded experience handsets.

 As per standard mobile platform development practices, Google provides developers with access to

mailing lists and a comprehensive suite of tools. Visibility to the roadmap is limited, as there is no

Android roadmap publicly available. In fact, development of the Android private branch and the

roadmap is controlled by Google, with little input from external parties or the Open Handset Alliance

members.

In a major blow to openness advocates, Google announced in March, 2011, that they will not be

providing public source code access to the latest version of Android, code-named Honeycomb, stating

Android project

Access 9/19

Development 8/18

Derivatives 3/6

Community 1/2

Open Governance Index 23%

© VisionMobile 2011 | www.visionmobile.com

16

Open Governance Index

“We have more work to do before we can deliver [Android] them to other device types including

phones. Until then, we've decided not to release Honeycomb to open source”13.

Development

Contributions to the Android codebase are encouraged by Google, although we understand that very

few external contributions are actually “committed” to the Android codebase.

Google requires contributors to agree to an Individual Contributor License Grant or a Corporate

Contributor License Grant. The agreements are similar in content and contain a copyright and patent

license in favour of the Android Open Source Project Leads, aka Google. Source code contributions are

verified and approved by “Approvers” and “Project Leads”, all of whom are exclusively Google

employees.

Google provides all the necessary tools and development environment for developers to contribute to

the platform but clearly prioritises control and the commercial success of the platform over open

governance.

There are no statistics available to show the number of non-Google contributions, nor how many are

accepted by Google to the Android platform – nor can we objectively measure how long it takes for a

contribution to appear in the Android code base, what determines which contributions make it into the

code base, the arbitration process when there are competing contributions, or roadmap practices, as

these processes are all closed.

Derivatives

Google tightly controls the Android platform and its derivatives, i.e., the make-up of the Android

platform on commercial handsets. Device manufacturers must pass the Compatibility Definition

Document (CDD) and Compatibility Test Suite (CTS) tests in order to be allowed use of the Android

trademark, the Android Market or other important Google Mobile Services such as GMaps, Gmail and

GTalk.

The CDD lists the minimum set of functionalities and technologies that an Android device must contain

in order to use the Android trademark. Whilst the documentation acknowledges that components can

hypothetically be replaced with alternate implementations, this practice is strongly discouraged, as

passing the CTS tests will become substantially more difficult.

As such, devices that use the Android platform but have not passed the CTS – such as oPhone and

Archos devices – are basically “derivative” products of Android OS, but cannot claim to be Android

devices, use the Android trademarks nor access the Android Market.

Devices that pass the CTS can then “seek” approval to use the Android trademark and the Google

Mobile Services, although the final criteria appear both undocumented and somewhat capricious.

As Google’s Dan Morrill put it in an e-mail on Aug. 6, 2010, “We are using compatibility as a club to

make them [OEMs] do things we want.”

© VisionMobile 2011 | www.visionmobile.com

17

Open Governance Index

The Android Compatibility Program is the subject of a legal dispute between Skyhook Wireless and

Google. In September 2010, Skyhook Wireless alleged that Google unfairly used the Compatibility

Program process to force Motorola to remove Skyhook Wireless technology in favour of Google’s own

mapping technology, thus alleging unfair and deceptive business practices and intentional interference

with contractual relations.

It is also worth noting that Google requires parties joining the Open Handset Alliance to sign up to an

“anti-fragmentation” agreement, although we understand that the contents of that agreement are

rather vague and reference primarily the Android Compatibility program. There are rumours that

Google is now asking OEM licensees to also sign similar anti-fragmentation agreements, which has

prompted complaints to the U.S. Department of Justice14.

Community structure

When launched, the Open Handset Alliance served the purpose of a public industry endorsement for

Android. Today, however, the OHA serves little purpose besides a stamp of approval for OHA

members; there is no formal legal entity, no communication processes for members nor frequent

member meetings.

All in all, Android is the most closed open source project, whilst also the most commercially successful

mobile software platform to date.

Best practices: Android project

Source: VisionMobile

Best practices

Ease of source-code access via the Apache License

Ease of access to mailing lists, very good developer tools and forums

Simple code-contributions process for developers to follow

Clever targeting of developers via the Android Challenge, Summer of Code, etc.

Practices to avoid

Unilateral Android project decision-making processes, as Google determines the roadmap, feature-
set and releases of Android

Closed code committer process, i.e., committers are exclusively Google personnel

Closed contributions process model

Opaque decision-making and control process around the Android Compliance Program

No project metrics around contributions, commits, contributors, top participants and bugs

No public information provided regarding meeting minutes or decisions.

No intention to move towards a more open governance model

© VisionMobile 2011 | www.visionmobile.com

18

Open Governance Index

Eclipse

The Eclipse Project was established by IBM in

November, 2001, as a foundation for hosting IBM’s

$40M contribution in open source development tools,

and supported by a consortium of over 80 software

vendors15. Subsequently, the Eclipse Foundation (EF)

was established in 2004 as an independent, not-for-

profit corporation, to act as the steward of the Eclipse

community. Today, all technology and source code produced through the Eclipse Foundation is made

available under the Eclipse Public License (EPL).

The Eclipse Foundation hosts over 200 open source projects, most notable being the Eclipse IDE,

which is today a de facto standard for developer tools. The Foundation provides IT infrastructure and

marketing support, manages projects governance and also carries out intellectual property due

diligence.

The Foundation employs around 15 staff, and is funded through annual membership contributions. In

2009, membership revenues were in the order of $2.7m, with an additional $300k arising from co-

marketing agreements and donations. Current Eclipse membership includes IBM, Oracle, Nokia, Cisco,

Motorola, RIM, Google, Intel, Sony Ericsson, Symbian and Adobe, amongst over 170 leading

technology companies.

We next review the governance model of the Eclipse Foundation and the totality of projects it manages.

Access

 Projects hosted by the Eclipse Foundation are licensed under the EPL license. The EPL requires all

source code modifications and derivatives to retain the EPL license. However, the EPL is a weak

copyleft license, in that EPL-licensed software can be combined with proprietary software, without

passing on these same obligations. EPL also contains a reciprocal patent license. Overall, the EPL

strikes a balance between sharing (reusing code with proprietary software) and contributions

(contributing modifications back into the community).

The Eclipse Foundation explicitly states that it is open, transparent and meritocratic16:

‘open’ to everyone such that there are no rules to exclude any potential contributions

‘transparent’ such that all project discussions, minutes, project plans and roadmaps are open, public

and easily accessible and

‘meritocratic’ such that the more you contribute, the more responsibility you earn.

All 200+ Eclipse Foundation projects use a consistent management structure. Each project has a

development team, led by the PMC Lead (Project Leader). Every project comes with an extremely

comprehensive information page detailing mailing lists, project leadership, committers (active,

participating and inactive), bugs, releases and the project plan, among other information. This makes

Eclipse project

Access 17/19

Development 15/18

Derivatives 6/6

Community 2/2

Open Governance Index 84%

© VisionMobile 2011 | www.visionmobile.com

19

Open Governance Index

the Eclipse Foundation the most “open” in terms of accessibility of information. In addition, the Eclipse

Foundation provides “Project Dash” at www.eclipse.org/dash. Dash aims to provide complete

transparency as to the contributions of all companies and developers participating at Eclipse.

Development

Eclipse projects are managed in accordance with the Foundation’s development processes, which state

how bugs, releases and roadmaps are managed, as well as detailing processes for dealing with conflicts

and disagreements.

Project development is managed within each project team, while Foundation members have voting

rights on the Eclipse roadmap, rather than on specific projects. Disagreements are only escalated as

needed to the Eclipse Management Organisation, then the Executive Director and finally the Board.

This makes Eclipse development an open, transparent and public process.

Contributions for code or documentation are evaluated using a two-step process; first, a technical

evaluation at the discretion of the project committers, and second, an IP review (to check copyright

provenance) when the contribution is greater than 250 lines of code. Whilst EF does not provide

copyright warranty or indemnity related to the projects that it hosts, a large number of its members do,

through the end products that are based on Foundation projects. All contributions are licensed to each

project under the EPL license.

Committers have write access to all project resources, and are expected to influence the project's

development. A committer must also complete a “Committer Agreement,” which details the rights of

the committer as well as his or her responsibilities in managing the code. New committers are elected

through a voting process, which is based on three requirements: trust, public voting and employer

neutrality. As of the end of 2010, there are nearly 1,000 active committers working on Eclipse projects.

Eclipse provides comprehensive statistics on distribution of committers by organisation; IBM is by far

the largest organisation by commits, making up around 30% of all contributions to Eclipse projects,

while other Eclipse members make up another 40% of contributions.

Derivatives

Each Eclipse project is free to determine its own implementation compliance and quality requirements.

Note that compliance and quality requirements are not a pre-requisite to use of the Eclipse trademarks

and logos; rather, members are entitled to use the Eclipse trademarks and logos provided they agree to

the proper usage of Foundation-wide policies and guidelines.

Community structure

The Eclipse Foundation has developed an elaborate, comprehensive community structure. Each project

team has a project leader, committers and contributors. Top-level projects are managed by project

management committees (PMCs) which are overseen by the Eclipse Management Organisation.

© VisionMobile 2011 | www.visionmobile.com

20

Open Governance Index

Eclipse has a tiered membership structure where members can choose their level of voting rights, and

monitoring/management tools, based on their interest in Eclipse Foundation projects.

Membership tiers: Eclipse Foundation

Membership benefits Costs

Committer

Can Commit Code to projects

Free

Associate

Participate in projects and annual meetings

free to non-profits & universities

otherwise US$5k per annum

Solutions

For organisations incorporating Eclipse projects into

products

$1,500 $20,000 per annum, scaling

with company revenues

Enterprise

Access to analytics on how developers use Eclipse. Access to

detailed IP policies.

$125,000 per annum

Strategic

Position on the Eclipse Foundation Board of Directors,

providing direct influence over the strategic direction of

Eclipse. Seat on the Eclipse Requirements Council driving

Eclipse technology

Strategic Developers: 0.12% of revenue,

minimum 8FT resources.

Strategic Consumers: 0.2% of revenue.

Source: Eclipse

Best practices: Eclipse

Source: VisionMobile

Best Practices

Ease of source-code access via EPL

Ease of access to mailing lists, very good developer tools and forums

Use of not-for-profit foundation structure to provide a vendor-neutral and independent structure

Projects make all technical decisions, with guidance only from the Foundation

Thorough IP review provides IP copyright certainty to commercial users of Eclipse Foundation projects

Very clear and transparent single project reporting metrics

Practices to avoid

Contributions and Committers process can appear complex to outsiders and newcomers

Tiered membership such that Board seats are weighted in favour of Strategic members, although this is
mitigated somewhat by the six seats elected by other members.

© VisionMobile 2011 | www.visionmobile.com

21

Open Governance Index

Linux kernel

Since its inception in 1991, Linux has grown to become a

major force in computing, powering everything from

mobile phones and picture frames to Google servers and

the New York Stock Exchange.

The Linux kernel comprises some 15 million lines of

code developed by contributors worldwide. The kernel is

at the core of 100+ software distributions (including

Debian, Fedora, Red Hat, openSUSE, Ubuntu) and millions of computing devices.

The Linux kernel is supported by the Linux Foundation (LF), a non-profit foundation that sponsors

kernel.org (the primary repository for the Linux kernel source code) and the work of primary Linux

creator Linus Torvalds. LF was founded in 2007 by Fujitsu, Hitachi, HP, IBM, Intel, NEC, Novell, and

Oracle, following the merger of the Open Source Development Labs (OSDL) and the Free Standards

Group (FSG), and in October 2010 further incorporated the Consumer Electronics Linux Foundation

(CELF).

The Linux Foundation hosts “workgroups” that include MeeGo, FOSSBazaar, Desktop Linux and

Carrier Grade Linux, among others. Besides project hosting, LF provides legal programs, developer

programs, regional programs and events to support the use of Linux globally.

We next review the governance model around the Linux kernel.

Access

Linux kernel source code is available from a number of sources, with the central ‘tip of tree’ repository

at http://www.kernel.org/. The Kernel.org tree is led by Linus Torvalds, along with various Linux

subsystem maintainers (the kernel code base is broken down into subsystems, like networking and

memory management, with each subsystem having a designated maintainer).

Currently at version 2.6.x, the kernel gains a new release every 2-3 months. Each new release typically

comprises over 10,000 code patches, including fixes, new features, internal API and ABI changes, and

more.

Some meeting minutes and roadmaps are publicly available, but not all. It is important to note that the

Linux Foundation is quite hands-off in terms of how the kernel.org project is managed; rather the LF

provides support with regard to adoption, use and marketing of the kernel, as described above.

The Linux kernel mailing list (LKML) is the main electronic mailing list for Linux kernel development,

where the majority of the announcements and discussions over the kernel take place. It is a very high

volume list, usually receiving between 200 and 300 messages each day.

Linux Kernel

Access 14/19

Development 14/18

Derivatives 6/6

Community 2/2

Open Governance Index 71%

© VisionMobile 2011 | www.visionmobile.com

22

Open Governance Index

Development

Kernel development is managed via the Linux Foundation’s Linux Developer Network (LDN), which

works to ensure that applications created for Linux are supported across a variety of Linux

distributions as well as promoting the betterment of Linux.

Code is contributed to the Linux kernel under a number of licenses, provided such licenses are

compatible with the GNU GPLv2, which is the license covering the kernel distribution as a whole. Any

contributions not covered by a compatible license will not be accepted into the kernel. Copyright

assignments are not required (nor requested) for code contributed to the kernel. Moreover, all code

merged into the mainline kernel retains its original ownership, meaning that the Linux kernel now has

thousands of copyright owners.

Code contributions are reviewed and approved by the 900+ maintainers of kernel subsystems before

being merged into the mainline tree. The commit process takes place during two-week-long “merge

windows”. At the end of this time, Linus Torvalds will declare that the window is closed and accept

only patches into the kernel over the next six-to-10 weeks, after which the release becomes official.

According to a Linux Foundation study17, over 60% of contributions to the kernel came from developers

with corporate affiliations. Red Hat topped the chart with 12%, followed by Intel with 8%, IBM and

Novell with 6% each, and Oracle with 3%. Further metrics regarding contributions are provided by the

“Git statistics for the Kernel”, including top contributors per technology domain, number of kernel

developers and number of commits.

Linus Torvalds directs and controls the development of the kernel.org project in what is loosely termed

a “benevolent dictatorship,” since Torvalds has the final say on disputes or disagreements around

kernel development. The Linux Foundation is not usually involved in the management of the

kernel.org project.

Derivatives

Creation of derivatives is fundamentally impacted by the GPLv2 license, which states that all changes to

the Linux kernel that are distributed must also be made publicly available. Applications can use the

Linux ABI (application binary interface) and API (application programming interface) without

themselves having to comply with the GPLv2, however. And, it’s worth noting that Linux’s available,

nearly complete POSIX API allows applications to be written independently to the underlying kernel

implementation. Such applications can be built and run 0n any POSIX-compliant system, including

most commercial Unixes, Unix-like OSes like Linux and BSD, and many embedded RTOSes, such as

LynxOS and QNX. Even Windows has some level of POSIX compliance, thanks to the Cygwin add-on

tools and runtime.

Torvalds owns the "Linux" trademark, and monitors use of it mainly through the Linux Mark Institute

and the Linux sublicense18. Whilst this practice is obviously a centralisation of power and authority

over the development of the kernel, it appears to have worked thus far, but we would see this model as

more the exception than the rule.

Distributions based on the Linux kernel and sold as products may have further trademark obligations.

© VisionMobile 2011 | www.visionmobile.com

23

Open Governance Index

Community structure

The Linux Foundation is the main organisation sponsoring and supporting kernel.org developments.

The Linux Foundation comprises three decision-making bodies: the Technical Advisory Board (helping

the Foundation interact with the Linux community), the End User Council (for corporate end users)

and the Vendor Advisory Council (where Foundation members discuss and collaborate).

The Linux Foundation has a number of tiered membership levels with increasing levels of influence:

Membership tiers: Linux Foundation

Membership benefits Costs

Individual
attendance at events

from $99 annually

Silver
1 seat on the Board of Directors

$5,000- 20,000 annually, scaling
with number of employees

Gold
up to 3 seats on the Board of Directors

$ 100,000 annually

Platinum
up to 10 seats on the Board of Directors

$ 500,000 annually

Source: Linux Foundation

The Linux foundation lists Fujitsu, Hitachi, Intel, IBM, NEC, Oracle and Qualcomm as Platinum

members with AMD, China Mobile, Cisco, Google, HP, Motorola, Nokia and Novell listed as Gold

Members.

Best practices: Linux

Source: VisionMobile

Best Practices

Ease of source-code access via GPL and LGPL

Ease of access to mailing lists, developer tools, forums

Simple code-contribution process

Transparent project metrics around contributions, commits, top participants and bugs

Practices to Avoid

None

© VisionMobile 2011 | www.visionmobile.com

24

Open Governance Index

MeeGo

MeeGo was launched by Nokia and Intel in February, 2010,

to much fanfare. At the outset, MeeGo was intended as an

open source platform for powering Nokia’s high-end

devices and driving Intel’s x86 chipset sales. Only a year

later, MeeGo became a distant “plan B” for Nokia –

following the Finnish OEM’s refocus onto Windows Phone

7 – with MeeGo’s main supporters now being Intel and LG.

MeeGo is a software distribution that comprises a number

of mature existing open source projects. The distribution is formed from contributions by Intel

(Moblin, including GTK) and Nokia (Maemo elements, but primarily Qt). MeeGo targets handsets,

netbooks and in-vehicle infotainment devices. Nokia and Intel each have their own commercial

platforms built out of the MeeGo distribution, with additional closed source components.

MeeGo is the only open source mobile platform that is managed and governed by the Linux Foundation

– so as to ensure independence of governance and confer a sense of open source credibility to the

project.

Besides providing governance, legal and marketing support, the Linux Foundation manages the MeeGo

compliance program as an independent entity; however as MeeGo devices have yet to ship, it remains

to be seen if compliance requirements will be used as a control mechanism.

Access

MeeGo is an open source project and governed by the Linux Foundation. Most of the access rights for

the framework and the vast majority of source code (>90%) are under GPL v2 and GPL v3, as of July,

2010. MeeGo places no additional rules on top of the upstream component licenses. There is no MeeGo

formal contribution license required; rather, MeeGo uses the Linux “signed off” process19.

MeeGo has a recommended licensing policy for new components or code, i.e., “For the core OS, the

licensing policy is that components must be under OSI-compatible licenses and enable linking of

proprietary components or plugins. (L)GPL version 2.x is encouraged, and for the UX layer, permissive

OSI licenses are encouraged”.

MeeGo provides source code, developer tools, mailing lists, developer forums, etc., with no access fees

or formal membership requirements. Release schedules and features are publicly available for review

and roadmap information is available – albeit via Bugzilla, where new features/requests are assigned

priority and given a proposed release date. Official releases are intended to be semi-annual, while daily

builds are also available. It was intended that there will be a MeeGo Handset Working Group that will

determine the roadmap and features to be included in new releases, etc., but in light of Nokia’s move

away from MeeGo, this is unlikely to occur. As reiterated by MeeGo, the roadmap will be heavily

influenced by the upstream projects that comprise the MeeGo distribution, of which MeeGo is but one

user/contributor. Presently these decisions are managed via discussions on the various mailing lists,

and escalations are managed via the Technical Steering Group (TSG), which comprises Nokia and Intel

MeeGo project

Access 14/19

Development 12/18

Derivatives 5/6

Community 2/2

Open Governance Index 61%

© VisionMobile 2011 | www.visionmobile.com

25

Open Governance Index

personnel. The TSG operates in an open and transparent manner, with meeting minutes publicly

available.

Development

MeeGo code ownership is via the pre-existing upstream projects that feed into the project; i.e., Maemo

is copyright Nokia, Moblin is copyright Intel and so on. These projects are then licensed under various

open-source licenses. New code contributed to the project by developers follows the Linux ‘signed off

process,’ which asks the contributor to state that the code is their own creation and legitimately free

software. MeeGo actively encourages contribution to the upstream modules which comprise MeeGo, as

opposed to MeeGo directly, and these upstream modules (such as Maemo, etc.) will have their own

contribution process (and license), which may be different to the Linux “signed off” process.

Code contributions are committed to the project by about 20 paid committers, who are publicly listed

and work for either Nokia or Intel. The process of becoming a committer is based on meritocracy and

nomination, and is reported via the MeeGo community meeting minutes. As of October, 2010, the first

non-Nokia/Intel committer had been appointed. Disputes regarding code contributions and acceptance

are usually resolved at the developer level. Failing that, they will be escalated to the appropriate

Working Groups and thereafter to the TSG.

Derivatives

MeeGo device and application compliance will be managed to ensure consistency across the MeeGo

brand. MeeGo advise that there will be no costs associated with device compliance testing. The Linux

Foundation will verify that organisations using the MeeGo Trademark are compliant with the MeeGo

compliance specification. This process has yet to be initiated, so we cannot say how successful or

transparent it is at this point. We understand that application compliance will be managed via the

distribution channels, and that there may be additional compliance criteria required for applications

beyond API compliance (most likely certifications at the Ovi store/Intel AppUp level).

Community structure

Regarding the MeeGo community structure, there are no admission processes, contracts, or

membership fees for MeeGo. The MeeGo governance model is surprisingly transparent. On a monthly

basis, Linux Foundation publishes a complete list of project statistics, including social media mentions,

mailing list size, forum topics and activity, wiki/blog stats, upcoming technical group meetings, IRC

activity and top participants, bugs, commits, and full visibility of top participants across mailing lists,

forums, IRC, and bug lists20.

© VisionMobile 2011 | www.visionmobile.com

26

Open Governance Index

Best practices: MeeGo

Source: VisionMobile

Best Practices

Ease of source-code access via open source licenses

Ease of access to mailing lists, developer tools, forums

Simple code-contribution process

Transparent project metrics re: contributions, commits, top participants, bugs, etc.

Independent management of compliance process to keep it transparent and honest

Policy of contribution to ‘up-stream’ projects first – fragmentation deterrent

Practices to avoid

Code commit privileges for Nokia/Intel personnel only as of November, 2010

© VisionMobile 2011 | www.visionmobile.com

27

Open Governance Index

Mozilla Foundation

The Mozilla Project was created in 1998 with the release

of the source code for the Netscape browser under an

open source license. In 2003, the Mozilla project created

the Mozilla Foundation, an independent non-profit

organization to manage the daily operations of the

project. The Firefox 1.0 browser was released in 2004

and in less than a year, it had been downloaded over 100

million times. Today, Firefox market penetration is

estimated at nearly 28% of total browser usage, as of May 2011.

The Mozilla Foundation owns two subsidiaries: first, the Mozilla Corporation, which employs around

400 staff, including about 200 Mozilla developers who manage the releases of the Mozilla Firefox web

browser; second, Mozilla Messaging, Inc., a subsidiary that primarily develops the Mozilla Thunderbird

email client.

The Mozilla Foundation is unlike any other non-profit foundation. The vast majority of its $80-million-

plus revenues come from search royalties from Google, in return for making Google the default search

engine within the Firefox search bar.

We next review the governance model used within the Mozilla Foundation projects.

Access

The Mozilla Foundation currently hosts 14 open source projects. This includes a set of core

technologies (layout engine, networking libraries, cross-platform components) as well as applications

built with those technologies (browser, mail reader, calendar, IRC client). The Mozilla Developer

Network (MDN) provides free developer information, forums, FAQs and build tools for all Mozilla

technologies. There are around 200 full-time Mozilla Corporation developers who are employed to

develop these technologies.

Mozilla foundation provides project code under the "Mozilla tri-license," i.e., the MPL/GPL/LGPL

triple license. Thus, the code can be licensed under the Mozilla Public License, version 1.1 or later

(MPL); the GNU GPL, v2.0 or later (GPL) or the GNU LGPL, version 2.1 or later (LGPL). The reason

that Mozilla provides the code under three different licenses is to ensure that the code is compatible

with as many common open source licenses as possible.

It is worth noting that when the Mozilla Foundation moved to this tri-license approach in 2004, it took

two years to track down all of the almost 450 contributors to the Mozilla code base and get them to

agree to relicense their contribution using the tri-license approach. This underscores how it is

imperative to get the right license strategy identified at the outset of any open source project.

Access to Mozilla project roadmaps and future code development is available via the Mozilla

Foundation wiki. Project coordination meetings are held weekly and the minutes of these meetings are

publicly available on the wiki. Additionally, there are project-specific build toolkits available to

developers, along with various message boards, IRC channels, mailing lists, Google groups and forums.

Mozilla project

Access 16/19

Development 11/18

Derivatives 6/6

Community 1/2

Open Governance Index 65%

© VisionMobile 2011 | www.visionmobile.com

28

Open Governance Index

Mozilla projects use the Mercurial source code management tool, to manage changes to the code. Bugs

are tracked using the Bugzilla tool. Formal project releases are managed by personnel titled ‘Release

Drivers,’ who are responsible for determining which patches are incorporated into which releases, and

directing development efforts for the projects.

The Mozilla Foundation is currently redrafting the MPL license from v1.1 to v2.0. The update clarifies

that trademark rights are not granted by the license, expressly reaffirms fair use rights, and allows

contributors and distributors to add additional disclaimers of warranty and limitations of liability

specific to a given jurisdiction.

Development

Contribution of code to the Mozilla Project is governed by the Mozilla Foundation Committer’s

Agreement v2.0, which states that all code contributed must be licensed to the project under the

Mozilla tri-license. The process for contributing code is straightforward and clearly documented. All a

contributor needs to do is create a code patch and forward it to the module owner responsible for

reviewing and committing the code change. Patches that cross modules, change APIs or need security-

related changes must pass a “super review”.

The process to become a “committer” is clearly outlined. At the same time, there are no statistics on

committers, their numbers or their commercial affiliations, making it difficult to ascertain the number

of committers outside the Mozilla Corporation itself. Additionally, there is no public information

regarding the number of contributions, where contributions come from, and which contributions are

actually committed.

Derivatives

Creation of derivatives is permitted by the Mozilla tri-license. However, use of the Mozilla trademarks

(such as the “Firefox” name and graphics) is permitted only if you are distributing unchanged binaries.

If you change any of the source code at all, then you are not permitted to use the Mozilla trademarks.

As a result, Mozilla-derived browsers must be rebranded. Popular Mozilla-based browsers include the

Flock Social Web Browser, Swiftfox, Debian Iceweasel, GNU Icecat and the Songbird Audio Player and

Browser. However, these are little-used, relative to Firefox21.

To allow distributions of the code without official Firefox branding, the Firefox source code config file

contains a "branding switch". This switch allows the code to be compiled without the official logo and

name, for example to produce a derivative work unencumbered by restrictions on the Firefox

trademark. In the unbranded compilation, the trademarked logo and name are replaced with a freely

distributable generic globe logo, and the name of the release series from which the modified version

was derived. A healthy market has formed around the creation of applications, called “Add-on’s”, for

Firefox. To create an Add-on, developers must sign the “Developer Agreement”. This agreement

provides a copyright license to Mozilla for use of the Add-on, and exonerates Mozilla for any

infringement issues that might arise from use of the Add-on.

There are no other formal compliance requirements for use of the various Mozilla projects.

© VisionMobile 2011 | www.visionmobile.com

29

Open Governance Index

Community structure

Membership to the Mozilla Project is free, subject to signing the Committers Agreement.

Mozilla states that it is an “open source project governed as a meritocracy, a virtual organization where

authority is distributed to both volunteer and employed community members as they show their

abilities through contributions to the project.”22

Governance of the πroject is managed by module owners who are assigned to technical or

administrative management tasks. Module owners are responsible for code maintenance, managing

conflicts relating to code contributions and determining policy with regard to licensing and trademarks.

All module owners are publicly listed, including a number who are not Mozilla employees, implying

that external developers and organisations do have influence within the Mozilla Project. Additionally

there are Google Groups listed for all modules that are publicly available to read and review. In the case

of conflicts and disputes, these are judged by one of two Mozilla “benevolent dictators” – Brendan Eich

for technical disputes and Mitchell Baker for non-technical disputes. Both have held this position since

the formation of Mozilla as an 0pen source project in 1998.

Best practices: Mozilla Foundation

Practices to avoid

Unclear as to who committers are

No project metrics re: contributions, commits, top participants or bugs.

Source: VisionMobile

Best Practices

Ease of source-code access via multiple license options

Ease of access to mailing lists, developer tools, forums

Simple code-contributions process for developers to follow

Use of non-for-profit Foundation to provide a vendor neutral and independent structure

© VisionMobile 2011 | www.visionmobile.com

30

Open Governance Index

Qt

Qt is a cross-platform application framework for

developing applications across desktop, embedded

and mobile devices. Qt (pronounced “cute”) was

created in 1991 by Trolltech ASA, and acquired by

Nokia in June, 2008. More than 100 million Qt

devices have shipped to date, according to Nokia.

Following two years of integration work, Nokia

released the Qt SDK 1.0 in June 2010, and announced Qt as the primary development environment on

MeeGo and Symbian.

The Microsoft-Nokia strategic deal announced in February, 2011 dislodged MeeGo and Symbian – and

with it Qt – out of Nokia’s smartphone roadmap. Moreover, Nokia sold the commercial licensing arm

of Qt to Digia, who is now licensing and supporting Qt customers outside mobile.

In a June, 2011 analyst communication, Nokia promised to “make Qt core to building applications that

connect the next billion users to the Internet", thereby hinting at a role for Qt in Nokia’s mass-market

phone range.

We next review the governance model of the Nokia Qt application environment.

Access

Through the years, the Qt platform has been offered under various open-source and proprietary

licenses. Initially, Qt was widely used in KDE, the first fairly complete desktop software collection for

Linux. However, Qt’s proprietary license worried many in the free software community, and in

response, the GNOME project was founded. GNOME opted for the fledgling GTK (GIMP toolkit),

which had been created as an alternative to Motif, another proprietary GUI toolkit used by Netscape

and early commercial Unixes. Trolltech eventually added a GPL license option to Qt, easing fears it

would somehow try to take control of KDE. However, the move arguably came too late, for today,

GNOME has surpassed KDE in popularity.

Later, when Qt began targeting embedded devices, Trolltech licensed the platform under a dual

licensing regime; i.e., a commercial version of Qt under a proprietary license, and an open source

version under the GPL v2 (copyleft) license. The commercial license option was intended to give

organisations certainty as to license obligations and restrictions, and provide clearer patent

indemnities and warranties.

With the Trolltech acquisition, Nokia continued with such a licensing strategy, but also released Qt

under the LGPLv2 license, in March, 2009. This weaker copyleft license allows third parties to link

their software to the Qt platform without inheriting the GPLv3’s copyleft requirement to publish all

source code.

The LGPL also makes it easier for companies in the mobile software sector to use Qt, given that use of

copyleft licenses is somewhat rare amongst mobile handset OEMs.

Qt project

Access 16/19

Development 8/18

Derivatives 6/6

Community 2/2

Open Governance Index 58%

© VisionMobile 2011 | www.visionmobile.com

31

Open Governance Index

Therefore this strategy does have its benefits to organisations. However, the use of such a dual and

now triple licensing strategy is criticised by some members of open source communities, who argue

that such a strategy is counter to the “freedoms” prescribed by the FSF. There is also a sense for some

that no matter how “free” Qt becomes, it can never fully live down its proprietary software roots.

Qt source code is available via Gitorious, a community-oriented source code repository. We understand

that Gitorious is updated constantly with commits typically visible to the outside world within 60-75

minutes of submission. All Qt releases are available on the Gitorious repository, with no difference

between the commercial version and the open source versions.

In June, 2010, Nokia announced a move towards a more transparent governance model, designed to

open up technical and product discussions to the public, and give the community access to the QA and

integration process23. At that point, the intention was to provide more transparency in the roadmap

decision-making process (and participation in it), and the ability for other organisations to create their

own roadmaps.

Qt provides a comprehensive developer forum, mailing list and suite of developer tools at no cost to

developers.

Development

Contributors to Qt need to sign an agreement granting copyright and patent licenses to Nokia. This is a

major improvement from the previous heavy-handed contributor license, which required that copyright

holders assign all copyright to Nokia.

However, the process for reviewing, approving and committing contributions to the Qt platform is still

controlled by Nokia personnel only.

The contribution process on the Qt website advises that the time it takes to approve contributions

depends on many factors, including the size of the contribution, its complexity and the availability of a

technical review. In practice, the time taken to process submitted contributions is around two weeks.

Derivatives

Rights to create derivative products from Qt stem from the license agreement under which the

developer uses Qt: i.e., GPLv3, LGPLv2 or the Qt Commercial License. Therefore, branching rights are

provided, but as per the GPL and LGPL, any changes made to the code must be published.

Nokia does not appear to use trademarks as a tool to achieving compliance for Qt – unlike Android or

Java ME. We believe this is because Nokia is not interested in Qt as a licensable platform, but as a

means to create an application ecosystem on its own devices.

© VisionMobile 2011 | www.visionmobile.com

32

Open Governance Index

Community structure

The Qt community is loosely structured. There are no formal membership agreements nor any tiered

structure. Even though all decision-making regarding the Qt project is currently managed by Nokia

personnel, we note that this is intended to change in 2011.

Best practices: Qt

Source: VisionMobile

Best Practices

Ease of source-code access via GPL and LGPL

Ease of access to mailing lists, developer tools, forums

Simple code-contribution process

Practices to avoid

Unilateral Qt project decision-making processes via Nokia

Committer privileges restricted to Qt/Nokia personnel

Closed contributions process model

No project metrics

Little transparency regarding how decisions are made and no public information provided on this

© VisionMobile 2011 | www.visionmobile.com

33

Open Governance Index

Symbian

Note: The Symbian open source project is analysed here for reference purposes only. Following

Nokia’s partnership with Microsoft, Symbian has become a closed-source, Nokia-only platform, and

is scheduled to be discontinued.

Symbian Software Ltd. was established in June,

1998, as a joint venture between Ericsson, Nokia,

Motorola, and Psion. Symbian quickly rose to

become the best-selling smartphone platform for

most of the decade. The beginning of the end came

in June, 2008, when Nokia announced that they

would fully acquire Symbian and release the

platform under an open-source license. The Symbian Foundation was tasked to manage the merge of

the Symbian OS with the S60 application platform, which was eventually released to developers in

February, 2010. With Symbian an aging platform and losing to Android both in terms of market share

and developer mindshare, Nokia had no option but to replace Symbian with Microsoft’s Windows

Phone 7, in a move whose ripples are still reverberating through the mobile industry.

The Symbian platform comprises three layers (OS, middleware and applications) and a total of 180

packages (code components). Each component was assigned to one of 12 technology domains, with

each technology domain having its own roadmap.

We next review the governance model of the Symbian Foundation, for reference purposes.

Access

Up until the March, 2011, Symbian source code was available to download under the Eclipse Public

License (EPL) and the Symbian Foundation License (SFL).

The Eclipse Public License is a weak copyleft license mandating that all Symbian platform source code

modifications and derivatives must be licensed under the EPL, but can be combined with proprietary

software without passing on these same obligations. The EPL mandates derived works to also carry the

EPL License, which has limitations in terms of code reusability, and lacks compatibility with LGPL and

GPL, under which most open source software is licensed.

Symbian code was also available under the Symbian Foundation License (SFL), but restricted to

corporate members who paid a membership fee of $1,500. Corporate members had to sign the

Membership Agreement, a copyright license for use of the Symbian platform. The SFL license also

provided a FRAND (fair, reasonable and non-discriminatory) reciprocal patent license, i.e., a stronger

patent protection than that provided in the Eclipse Public License to non-members.

The Symbian platform roadmap was made available publicly with the release of Symbian^3 in June,

2010.

Symbian Foundation had set up a large number of public forums (one per package), with over 25,000

registered users, but only 1,500 active users.

Open Governance Index

Access 17/19

Development 10/18

Derivatives 4/6

Community 1/2

Open Governance Index 58%

© VisionMobile 2011 | www.visionmobile.com

34

Open Governance Index

Development

Developers wanting to contribute to the Symbian platform had to sign a contribution agreement which

provided a copyright and patent license agreement in favour of the Symbian Foundation. Package

owners were then responsible for reviewing and committing these changes to the Symbian platform.

Major contributions such as new platform features had to be approved by all four Symbian Councils

before being integrated into the main codeline. Committers were restricted to those coming from

organisation members of the Symbian Foundation.

New features to the platform were managed through the ‘proposals pipeline,’ and had to be approved

via the four Symbian Councils, i.e., the Architecture, Features & Roadmap, UI and Release Council.

Council members were usually appointed either by handset OEMs or optionally via an open election

process. Council members met monthly and meeting minutes were publicly available.

The Symbian Foundation governance structure was extremely formal relative to other open source

communities, and was also heavily weighed in favour of “appointed” handset OEM members, who

comprised Nokia, Sony Ericsson, Samsung and Fujitsu.

Whilst the Symbian Foundation was “open” to developer contributions, it is clear that only Symbian

Foundation members were able to influence the direction of the platform. More importantly, only

“appointed” handset OEM members were able to wield any significant leverage over the platform.

We understand that OEM members were essentially funding operational and staff costs of the

Foundation in the form of fees (running in the millions of dollars) for the right to ship devices based on

the platform.

The effective lack of influence by non-member developers was what led to the creation of the Symbian

Developer Cooperative (DevCo). This was set up by the Symbian Foundation in July 2010, to give

individuals a say in the governance of the Symbian platform. Additionally the DevCo nominated

members for seats on the four Symbian Foundation Councils.

Derivatives

Symbian Foundation had established a formal platform compliance process, the Foundation Test Suite,

which was mandatory in order to use the Symbian trademark. Unfortunately, little public information

was provided about this compliance process on the Foundation website. Separately, applications

created to run on the Symbian platform had to be “Symbian signed,” and there are some minimal costs

required as part of this signing process – $200 per annum for a publisher ID, and around $150 for

formal testing of an application on each version of the platform. Additionally developers then had to

pass the Nokia signing criteria via the Ovi marketplace, which made for a relatively onerous process for

developers.

Community structure

Membership to Symbian was restricted to established companies, thereby excluding independent

developers. Members had to agree to the membership agreement and the Symbian Foundation Deed of

© VisionMobile 2011 | www.visionmobile.com

35

Open Governance Index

Adherence, which detailed membership rules, how formal membership disputes were managed and

Symbian Foundation Trademark Guidelines. Membership fees were set at $1,500.

Membership provided the ability to influence the evolution of the Symbian platform, through the right

to vote in annual elections, the opportunity to become a package owner, and eligibility for seats on the

Symbian Foundation board and the technology Councils. It is worth noting that the community

structure was very much focused on business-to-business events rather than engaging with the wider

community at a developer level.

Best practices: Symbian

Best Practices

Ease of source-code access via Eclipse Public License

Ease of access to mailing lists, some developer tools, forums

Use of a not-for-profit foundation structure to provide independence to platform organisation

Transparent tactical decision-making process via open publication of meeting minutes, councils and
committee members, decisions taken, etc.

Practices to avoid

Neglected to target developers, focussing on industry organisations only

Complex contributions process and structure

Tiered membership such that strategic decision-making still retained by a small group of
Foundation members

Bureaucratic decision-making process, i.e., four Councils required to approve new roadmap features

Closed Code Committer process, i.e., Committers had to be Symbian Foundation members

Historical lack of good developer tools

No project metrics re: contributions, commits, contributors, top participants, bugs, etc.

Source:VisionMobile

© VisionMobile 2011 | www.visionmobile.com

36

Open Governance Index

WebKit

WebKit is an open source HTML rendering engine

based on the source code of KDE’s KHTML

rendering engine and further developed by Apple. In

addition to being used in Apple's Safari browser and

on the iPhone, WebKit has been ported to Symbian,

Qt, Android, Chrome OS, BlackBerry OS, Nokia

Series 40 and Qualcomm’s BREW platform. WebKit

is now the de facto engine for smartphone browsers, having been shipped in more than 500 million

devices to Q1, 2011, by all major smartphone vendors.

WebKit is a longstanding open source project. It originates from KHTML, a part of the KDE 2.0 open

source project released in 2000. Apple then took a fork of KHTML and worked privately on its own

branch of it for years, producing WebKit for the purposes of powering Safari. In 2003, Apple released

the first Safari code, including the modifications to KHTML. It wasn’t until 2005 that Apple launched

the full WebKit open source project, but restricted reviewer and commit rights to Apple personnel only.

During this early stage of the WebKit development, there was much disagreement between the KDE

community and Apple related to the direction and content of WebKit, as well as the control of WebKit

via restricted commit rights, which effectively sidelined the KDE developer community contribution to

the project. Eventually, in late 2007, Apple responded by updating the WebKit committer and reviewer

policy to allow non-Apple developers to have full commit access to the WebKit source code version

control system.

To date, WebKit acknowledges contributions from a number of major commercial organisations, in

particular Apple, Google, Nokia, TorchMobile (now part of RIM) and Collabora (responsible for the

GTK port).

Access

The WebKit JavaScriptCore and WebCore components are available under the GNU LGPL v2.1, while

the remainder of the browser engine is available under a BSD-style license. A mature open source

project, WebKit has a straightforward governance structure. Source code is freely available via a public

Subversion repository, with the code being refreshed nightly. Bugzilla is used for issue reporting and

logging bugs. Mailing lists and forums are freely accessible, along with developer build tools.

The WebKit roadmap is a loose, unordered collection of future development requests. There is no

formal process for prioritising features; rather, contributors will focus on their own priorities for

development. Structural changes to WebKit are guided by the “Project Goals”, a public statement of

what WebKit is and is not. There are no formal releases of WebKit, either; rather, there are numerous

branches that contain product-specific implementations of WebKit that are maintained by the

sponsoring organisation.

WebKit

Access 15/19

Development 12/18

Derivatives 6/6

Community 2/2

Open Governance Index 68%

© VisionMobile 2011 | www.visionmobile.com

37

Open Governance Index

Development

Code contributions do not require signing of a formal contributions license. At the same time,

contributions are required to include a copyright ownership notice, while a suggested licensing text

features clauses on copyright ownership and redistribution, but no warranty provisions.

Contributions to WebKit are reviewed by project committers, who may grant or deny approval.

Committers have direct read-write access to the WebKit Subversion repository, enabling them to

commit changes once reviewed. There is also a public list detailing over 200 Committers from Apple,

Nokia, Google and other organisations.

The process to become a WebKit reviewer and committer is clearly and openly documented, and

operates through meritocracy. It is based on a nomination system and the developer’s contributions

history and collaboration history. WebKit reviewers are appointed regularly, and come from diverse

backgrounds, projects and organisations.

Derivatives

There are no official compliance requirements for WebKit-based browsers. Rather, every new

implementation team relies heavily on existing implementations to understand the inner workings of

WebCore and JavaScriptCore. The WebKit community employs a huge testing infrastructure called

"Layout Tests", which all implementers use to self-check their derivative implementation.

Community structure

Unlike Eclipse, MeeGo and Mozilla, WebKit does not have any formal councils, community

organisations or steering groups. Rather, there are several developers who are acknowledged as

experts, and who influence the direction of WebKit. In their main, these developers work for Apple and

Google, so naturally these organisations have much influence over the direction and roadmap of

WebKit.

Best practices: WebKit

Source: VisionMobile

Best Practices

Ease of source-code access via LGPL and other approved Open Source licenses

Ease of access to mailing lists, developer tools, forums

Simple code-contribution process

Practices to avoid

No project metrics

Little transparency regarding how decisions are made, and no public information provided on this

© VisionMobile 2011 | www.visionmobile.com

38

Open Governance Index

C. The Open Governance Index

Measuring Openness

We set out this report with an ambitious goal: to measure “openness”, i.e., how “open” or “closed” an

open source project is in ways that are rarely discussed publicly or covered in its license. In other

words, our goal has been to define and measure the governance of open source projects in a

transparent and comprehensive manner – much like how open source licenses are defined and

classified into “copyleft”, “permissive,” and so on

Unlike open source licenses, the governance model is made up of less visible terms, conditions and

control points that determine access, influence, decisions and spin-offs of that project.

We researched eight mobile open source projects: Android, MeeGo, Linux, Qt, WebKit, Mozilla, Eclipse

and Symbian. We talked to community leaders, project representatives, academics and open source

scholars to understand “how” governance works in those projects, and to measure and identify best

practices.

In this report we propose the Open Governance Index, a measure of open source project “openness”.

The Index comprises 13 metrics across the four areas of governance:

1. Access: availability of latest source code, developer support mechanisms, public roadmap, and

transparency of decision-making

2. Development: the ability of developers to influence the content and direction of the project

3. Derivatives: the ability for developers to create and distribute derivatives of the source code

4. Community: a community structure that does not discriminate between developers

We ranked projects across each governance parameter, and on a

scale of one to four on each question. The higher the score, the

more open the project.

The Open Governance Index quantifies how open a project is in

terms of transparency, decision-making, reuse and community

structure.

“Open governance” goes hand-in-hand with “open source”, as it

is about ensuring that developers and users have equal freedoms

not to just use, but also to modify and build on the project. In

many ways, open governance is the missing piece the open

source licenses do not cover. We hope our research is a step

towards a fundamental change in public understanding and transparency of the use of open source.

Open Governance Index
(% open)

Android 23%

Qt 58%

Symbian 58%

MeeGo 61%

Mozilla 65%

WebKit 68%

Linux 71%

Eclipse 84%

© VisionMobile 2011 | www.visionmobile.com

39

Open Governance Index

Governance	
 Criteria	

Access	
 Ranking	
 options	

A
nd

ro
id
	

Ec
lip

se
	

Li
nu

x	

M
ee

G
o	

M
oz
ill
a	

Q
t	

Sy
m
bi
an

	

W
eb

Ki
t	

Is	
 source	
 code	
 freely	
 available	
 to	
 all	

developers,	
 at	
 the	
 same	
 time?	

4.	
 Yes	

3.	
 No	
 –	
 discriminates	
 with	
 regard	
 to	
 either	

a.	
 developers,	
 b.	
 source	
 code	
 or	
 c.	
 time	

2.	
 No	
 –	
 discriminates	
 with	
 regard	
 to	
 two	
 of	

the	
 above	

1.	
 No	
 –	
 discriminates	
 with	
 regard	
 to	
 all	
 of	

the	
 above	

1	
 4	
 4	
 4	
 4	
 4	
 4	
 4	

Is	
 source	
 code	
 available	
 under	
 a	

permissive	
 OSI-­‐approved	
 license?	
 	

4.	
 Yes	
 –	
 approved	
 license	
 and	
 permissive	

(e.g.	
 Apache,	
 BSD,	
 MIT)	

3.	
 Yes	
 –	
 approved	
 license	
 and	
 weak	
 copyleft	

(e.g.	
 Eclipse	
 Public	
 License,	
 GNU	
 LGPL	

v2/v3)	

2.	
 Yes	
 –	
 approved	
 license	
 and	
 strong	

copyleft	
 (e.g.	
 GNU	
 GPL	
 v2/v3)	

1.	
 No	
 –	
 unapproved	
 licensed/proprietary	

license	
 	

4	
 3	
 2	
 2	
 3	
 3	
 3	
 3	

Developer	
 support	
 mechanisms	
 –	

Are	
 project	
 mailing	
 lists,	
 forums,	

bug-­‐tracking	
 databases,	
 developer	

documentation	
 and	
 tools	
 available	

to	
 all	
 developers?	

3.	
 Yes	
 –	
 developer	
 support	
 mechanisms	

open	
 to	
 all	
 developers	

2.	
 No	
 –	
 developer	
 support	
 mechanisms	
 are	

limited,	
 e.g.,	
 access	
 to	
 bug-­‐tracking	
 dbase	

not	
 provided	
 by	
 Android	
 	

1.	
 No	
 –	
 there	
 are	
 poor	
 developer	
 support	

mechanisms	

2	
 3	
 3	
 3	
 3	
 3	
 3	
 3	

Is	
 the	
 project	
 roadmap	
 publicly	

available?	

4.	
 Yes	
 –	
 full	
 roadmap	
 available,	
 with	
 explicit	

call	
 for	
 contributions	
 to	
 the	
 roadmap	
 	

3.	
 Yes	
 –	
 roadmap	
 information	
 available	
 but	

no	
 call	
 for	
 contributions	
 or	
 similar	

2.	
 No	
 –	
 No	
 formal	
 roadmap	
 exists,	
 but	
 there	

are	
 committer	
 or	
 contributor	
 requests	
 to	

bugzilla	

1.	
 No	

1	
 3	
 2	
 1	
 3	
 4	
 3	
 2	

Transparency	
 of	
 decision	

mechanisms	
 –	
 Are	
 project	
 meeting	

minutes	
 publicly	
 available	
 to	

understand	
 decision-­‐making	
 in	
 the	

project?	

4.	
 Yes	
 	

3.	
 Yes	
 –	
 there	
 is	
 some	
 information	
 but	
 it	
 is	

hard	
 to	
 find	
 and	
 doesn't	
 appear	

comprehensive	

2.	
 No	
 –	
 but	
 the	
 intent	
 is	
 to	
 provide	
 more	

information	
 and	
 make	
 the	
 process	
 more	

open	
 	

1.	
 No	
 	

1	
 4	
 3	
 4	
 3	
 2	
 4	
 3	

	
 Total	
 9	
 17	
 14	
 14	
 16	
 16	
 17	
 15	

© VisionMobile 2011 | www.visionmobile.com

40

Open Governance Index

Governance	
 Criteria	

Development	
 Ranking	
 options	

A
nd

ro
id
	

Ec
lip

se
	

Li
nu

x	

M
ee

G
o	

M
oz
ill
a	

Q
t	

Sy
m
bi
an

	

W
eb

Ki
t	

Transparency	
 of	
 contributions	
 and	

acceptance	
 process	
 –	
 Is	
 the	
 code	

contribution	
 and	
 acceptance	
 process	

clear,	
 with	
 progress	
 updates	
 of	
 the	

contribution	
 provided	
 (via	
 Bugzilla	
 or	

similar)?	

4.	
 Yes	
 –	
 contributions	
 and	
 acceptance	

process	
 are	
 clear,	
 with	
 progress	
 status	
 of	

contributions	
 provided	
 	

3.	
 Yes	
 –	
 contributions	
 process	
 and	

acceptance	
 process	
 are	
 clear,	
 but	
 no	

progress	
 status	
 of	
 contributions	
 provided	
 	

2.	
 No	
 –	
 contributions	
 process	
 only,	
 with	

progress	
 status	
 of	
 contributions	
 provided	
 	

1.	
 No	
 –	
 contributions	
 process	
 only,	
 no	

progress	
 status	
 of	
 contributions	
 provided	
 	

1	
 2	
 2	
 2	
 2	
 1	
 1	
 2	

Transparency	
 of	
 contributions	
 to	
 the	

project	
 –	
 can	
 you	
 identify	
 from	
 whom	

source	
 code	
 contributions	
 are	

provided?	

4.	
 Yes	
 –	
 there	
 are	
 good	
 project	
 statistics	

that	
 provide	
 this	
 information	
 	

3.	
 Yes	
 –	
 but	
 you	
 must	
 manually	
 find	
 and	

collate	
 the	
 information	
 from	
 various	

project	
 sources	
 	

2.	
 No	
 –	
 although	
 you	
 may	
 be	
 able	
 to	
 find	

this	
 information	
 by	
 checking	
 the	
 copyright	

notices	
 attached	
 to	
 each	
 file/contribution	
 	
 	

1.	
 No	
 	

2	
 4	
 4	
 3	
 2	
 2	
 2	
 2	

Accessibility	
 to	
 become	
 a	
 committer	
 –	
 	

are	
 the	
 requirements/process	
 to	

become	
 a	
 committer	
 documented	

and	
 is	
 this	
 an	
 equitable	
 process,	
 i.e.,	

can	
 all	
 developers	
 potentially	
 become	

committers?	

3.	
 Yes	
 –	
 the	
 process	
 is	
 documented	
 and	

accessible	
 to	
 all	
 developers	
 	

2.	
 No	
 –	
 the	
 process	
 is	
 vague/unclear	
 so	

we	
 do	
 not	
 know	
 if	
 it	
 is	
 accessible	
 to	
 all	

developers	

1.	
 No	
 –	
 commit	
 access	
 is	
 restricted	
 to	

specific	
 users/members	
 of	
 the	
 Project	

only	
 	

1	
 3	
 3	
 2	
 3	
 1	
 2	
 3	

Transparency	
 of	
 committers	
 –	
 can	
 you	

identify	
 who	
 committers	
 to	
 the	
 open	

source	
 project	
 are?	
 i.e.,	
 those	

developers	
 that	
 have	
 the	
 authority	
 to	

'commit'	
 source	
 code	
 to	
 the	
 baseline	

3.	
 Yes	
 –	
 there	
 are	
 good	
 project	
 statistics	

that	
 provide	
 this	
 information	
 	

2.	
 Yes	
 –	
 but	
 you	
 must	
 manually	
 find	
 and	

collate	
 the	
 information	
 from	
 various	

project	
 sources	
 	

1.	
 No	
 –	
 this	
 information	
 is	
 not	
 provided	
 	

1	
 3	
 3	
 3	
 1	
 1	
 2	
 3	

Does	
 the	
 contribution	
 license	
 require	

a	
 copyright	
 assignment,	
 or	
 copyright	

license	
 and/or	
 patent	
 license?	

4.	
 Yes	
 –	
 project	
 requires	
 a	
 copyright	

assignment	
 and	
 patent	
 grant	
 	

3.	
 Yes	
 –	
 project	
 requires	
 a	
 copyright	

license	
 and	
 patent	
 grant	
 	

2.	
 Yes	
 –	
 project	
 requires	
 a	
 copyright	

license/'sign-­‐off'	
 process	
 	

1.	
 No	
 –	
 no	
 contribution	
 license	
 	

3	
 3	
 2	
 2	
 3	
 3	
 3	
 2	

	
 Total	
 8	
 15	
 14	
 12	
 11	
 8	
 10	
 12	

© VisionMobile 2011 | www.visionmobile.com

41

Open Governance Index

Governance	
 Criteria	

Derivatives	
 Ranking	
 options	

A
nd

ro
id
	

Ec
lip

se
	

Li
nu

x	

M
ee

G
o	

M
oz
ill
a	

Q
t	

Sy
m
bi
an

	

W
eb

Ki
t	

Are	
 trademarks	
 used	
 to	
 control	
 how	

and	
 where	
 the	
 platform	
 is	
 used	
 via	

enforcing	
 a	
 compliance	
 process	
 prior	

to	
 distribution?	
 	

2.	
 No	
 –	
 You	
 can	
 freely	
 distribute	
 to	
 the	

code	
 and	
 use	
 the	
 project	
 trademark	

without	
 completing	
 formal	
 compliance	

requirements	
 	

1.	
 Yes	
 –	
 code	
 must	
 go	
 through	
 a	
 formal	

compliance	
 process	
 prior	
 to	
 be	
 distributed	

to	
 other	
 parties	
 	

	

1	
 2	
 2	
 1	
 2	
 2	
 1	
 2	

Are	
 go-­‐to-­‐market	
 channels	
 for	

applications	
 derivatives	
 constrained	

by	
 the	
 project	
 in	
 terms	
 of	
 approval,	

distribution	
 or	
 discovery?	

	

4.	
 No	
 	

3.	
 Yes	
 –	
 restricted	
 by	
 approval,	

distribution	
 or	
 discovery	
 	

2.	
 Yes	
 –	
 restricted	
 by	
 	
 two	
 or	
 more	
 of	

approval	
 or	
 distribution	
 or	
 discovery	
 	

1.	
 Yes	
 –	
 restricted	
 by	
 all,	
 i.e.,	
 	
 approval,	

distribution	
 and	
 discovery	
 	

2	
 4	
 4	
 4	
 4	
 4	
 3	
 4	

	
 Totals	
 3	
 6	
 6	
 5	
 6	
 6	
 4	
 6	

Governance	
 Criteria	

Community	
 Ranking	
 options	

A
nd

ro
id
	

Ec
lip

se
	

Li
nu

x	

M
ee

G
o	

M
oz
ill
a	

Q
t	

Sy
m
bi
an

	

W
eb

Ki
t	

Is	
 the	
 formal	
 community	
 structure	
 flat	

or	
 tall,	
 i.e.,	
 tiered	
 rights	
 depending	
 on	

membership	
 status	
 	

2.	
 No	
 –	
 there	
 is	
 no	
 formal	
 membership	
 or	

discrimination	
 between	
 the	
 rights	
 of	

members	
 and	
 non-­‐members	
 from	
 a	

development/access	
 perspective	

1.	
 Yes	
 –	
 there	
 are	
 tiered	
 rights	
 depending	

on	
 membership	
 status	
 	

1	
 2	
 2	
 2	
 1	
 2	
 1	
 2	

Totals	
 across	
 all	
 governance	
 criteria	
 	
 21	
 40	
 36	
 33	
 34	
 32	
 32	
 35	

Open	
 Governance	
 Index	
 %	
 	
 (rebased	
 on	
 lowest	
 score	
 14=0%,	
 highest	
 score	
 45=100%)	
 23	
 84	
 71	
 61	
 65	
 58	
 58	
 68	

Are “open” projects more successful?

Our research suggests that platforms that are most open will be most successful in the long-term.

Eclipse, Linux, WebKit and Mozilla each testify to this.

In terms of openness, Eclipse is by far the most open platform across access, development, derivatives

and community attributes of governance. It is closely followed by Linux and WebKit, and then

Mozilla, MeeGo, Symbian and Qt. Seven of the eight platforms reviewed fell within 30 percentage

points of each other in the Open Governance Index.

Our research has identified certain attributes that successful open source projects have. These

attributes are: timely access to source code, strong developer tools, process transparency, accessibility

to contributing code, and accessibility to becoming a committer. Equal and fair treatment of

© VisionMobile 2011 | www.visionmobile.com

42

Open Governance Index

developers – “meritocracy” – has become the norm, and is expected by developers with regard to their

involvement in open source projects.

We also note that there are common areas where most open source projects struggle to be “open”.

These attributes coalesce around decision-making with regard to the project roadmap and committing

code to the project. In particular, we find that open source projects that originate from commercial

organisations struggle most with relinquishing project control, not surprising considered the structured

and hierarchical decision-making nature of most organisations.

The Android paradox

Android ranks as the most closed project we examined,

with an Open Governance Index of 23%. Yet, at the

same time, it is one of the most successful projects in the

history of open source. Is Android proof that open

governance is not needed to warrant success in an open

source project?

Android’s success has little to do with the open source

licensing of the public codebase. Android would not

have risen to its current ubiquity were it not for Google’s

financial muscle and famed engineering team. Android

platform development has occurred without the need for

external developer or commercial community

involvement – as we discussed earlier, the OHA has

been a stamp of approval, not a distribution channel.

Google has provided Android at “less than zero” cost,

since its core business is not software or search, but

driving ads to eyeballs. As is now well understood, Google’s strategy has been to subsidise Android such

that it can deliver cheap handsets and low-cost wireless Internet access in order to drive more eyeballs

to Google’s ad inventory.

More importantly, Android would not have risen were it not for the billions of dollars that OEMs and

network operators poured into Android in order to compete with Apple’s iconic devices. As Stephen

Elop said in June, 2011, “Apple created the conditions necessary for Android”.

However, there are some very good lessons for us to learn from how Google has managed the Android

open source project. First, Android was released as an open source project at a point in time where it

was already a very advanced, complete project. OEMs, operators and software developers could more

or less immediately use it to create derivative handsets and applications. Second, Google kickstarted a

developer buzz around the project with the $10 million Android Developers Challenge. Alongside

financial incentives, Google provided a very strong emotional message: that of opening application

development within a previously inaccessible mobile industry. Finally, Google’s speed of innovation

(five platform versions across 2010) outpaces any external innovation, and makes the ecosystem

entirely reliant on Google.

“Android is, hands
down, the most
successful Linux
distribution ever
produced"…
"Android is a poster
child for how one
should not work in the
open source
community"

James Bottomley,
Director on the Board of the Linux
Foundation and Chair of its
Technical Advisory Board
speaking at LinuxCon Japan 2011

© VisionMobile 2011 | www.visionmobile.com

43

Open Governance Index

Best Practices

Based on our research of major mobile open source

projects, we have outlined the best practices for governance

models. These practices are listed across the four key areas

of governance: access, development, derivatives, and

community.

Access

The minimum requirement for any project to be an open source project is source-code access such that

developers can easily read, download, change and run the code. There should be no developer

discrimination, in that all source code should be available to all developers in a timely manner.

Restrictions with regard to source-code should be at a minimum, and there should be no preferential

access to specific developers, as this can cause friction and lead to branching of the project. All open

source projects should use open source licenses that are approved by the Open Source Initiative (OSI).

The next most important requirement is ease of access to developer tools, mailing lists, and forums,

such that developers can get up to speed on the specifics of the project, and build and run the code with

minimum effort.

Development

As much as possible, a simple code-contributions process should operate, such that the contributions

process is as free and unhindered as possible. Whilst we appreciate valid Intellectual Property (IP)

concerns, such as the risk of copyright infringement, these should not complicate the contributions

process any more than necessary. We also note that none of the projects reviewed in this paper

mandate copyright assignment, and we believe that this is a good example of why copyright assignment

is largely unnecessary. A broad copyright (and ideally patent) license for use of the work should suffice,

provided the project has researched and identified the appropriate open source license under which to

distribute the project. Copyright assignment is only ever needed when the project decides to change the

terms under which it licenses the source code of the project, and this should be largely unnecessary,

provided that the correct open source license is identified in the first place.

Given that the success of open source projects is largely based on the accrual of developer interest and

support, we identify the transparency of decision-making and equitable treatment of all developers

(such that they can become project committers) as being critical to long-term project success.

Restriction of commit rights to specific developers or organisations is a sure way to lose developer

support in the long run, as developers become frustrated with the inability to commit code themselves,

especially if their contributions are continually rejected or ignored.

Developers often need to know where, how and why the project is headed, as well as wanting the

opportunity to influence the project to meet their own needs: i.e., to ‘scratch their own itch,’ in open-

source-speak. The main means by which developers can achieve this influence is by being able to

commit code to the project. Therefore, it should be possible for all developers to commit code to the

“Apple created the
conditions necessary
for Android”

Stephen Elop
CEO, Nokia
Speaking at the Open Mobile
Summit, 8 June, 2011

© VisionMobile 2011 | www.visionmobile.com

44

Open Governance Index

project, once they have shown sufficient knowledge of the code to do so. This is where meritocracy

comes into play, in that those that ‘do’ are rewarded accordingly. Additionally the project should

provide transparent project metrics regarding where contributions come from, and who committers

are.

With regard to the actual development process itself, the project should have a policy of contribution to

‘up-stream’ projects first (if the project comprises other open source projects) such that changes and

benefits accrue to up-stream and down-stream projects.

Derivatives

Compliance frameworks are becoming more and more common among open source projects, in order

to deter fragmentation and ensure that applications are transferable across multiple platforms or

operating systems. However, the best mechanism to keep compliance requirements honest to is make

the compliance process as independent and transparent as possible such that it cannot be

manipulated by any one developer or organisation. For example, MeeGo has asked the Linux

Foundation to manage its trademark compliance requirements, so that they are independent of the

project.

Community

A number of projects we reviewed use a not-for-profit foundation structure to provide independence,

such that the platform is not controlled by any one organisation. Alternatively, other projects have

established a formal association with the Linux Foundation, and this lends strong ‘open source’

credibility to the project.

Another aspect of open source communities are how authority is exercised within the community. For

example, we note that both Linux and Mozilla use the benevolent dictator model, where decisions

regarding disputes are made by one person. Whilst this process may work, it is still centralisation of

authority and decision-making, and as such does not easily allow for others to permeate this decision-

making process.

Clearly, an open source license alone does not make an open project. It takes an open governance

model as well. We hope this report helps more open source projects adopt the right governance model

for success.

© VisionMobile 2011 | www.visionmobile.com

45

Open Governance Index

Endnotes

1 http://upload.wikimedia.org/wikipedia/commons/1/14/Bill_Gates_Letter_to_Hobbyists.jpg
extracted March 2011
2 Estimating the Total Development Cost of a Linux Distribution, October 2008, The Linux
Foundation, http://www.linuxfoundation.org/sites/main/files/publications/estimatinglinux.html,
extracted April 2011
3 http://www.limofoundation.org/images/stories/pdf/limo%20economic%20analysis.pdf, Mobile
Open Source Economic Analysis, LiMo Foundation White Paper dated August 2009, extracted March
2010
4 http://www.gnu.org/gnu/linux-and-gnu.html extracted March 2011
5 http://www.gnu.org/philosophy/open-source-misses-the-point.html dated 01 Nov 2010
6 http://www.opensource.org/docs/osd, The Open Source definition, extracted January 2011
7 Open Source Institute, viewed January 2011,
http://www.opensource.org/licenses/alphabetical
8 Microsoft Announces Patent Agreement With HTC,
http://www.microsoft.com/presspass/press/2010/apr10/04-27mshtcpr.mspx, April 2011
9 Nokia Wins Apple Patent-License Deal Cash, Settles Lawsuits,
http://www.bloomberg.com/news/2011-06-14/nokia-apple-payments-to-nokia-settle-all-
litigation.html, June 2011
10 Apple Patent Infringement number 2, attacks HTC, http://www.fonehome.co.uk/2011/07/13/apple-
patent-infringement-no-2-attacks-htc/ July 2011
11 In Settlement, Nokia will pay Royalties to Qualcomm,
http://www.nytimes.com/2008/07/24/technology/24qualcomm.html, July 2008
12 Joel West and Siobhán O’Mahony, “The Role of Participation Architecture in Growing Sponsored
Open Source Communities,” Industry & Innovation, 15, 2 (April 2008): 145-168
13 Google keeping Honeycomb source code on ice, says it's not ready for other devices,
http://www.engadget.com/2011/03/24/google-keeping-honeycomb-source-code-on-ice-says-its-not-
ready/ viewed March 2011
14 14 Do Not Anger the Alpha Android,
http://www.businessweek.com/magazine/content/11_15/b4223041200216.htm accessed April 2011
15 http://www.linuxfordevices.com/c/a/News/IBM-makes-40M-open-source-donation-CNET/
accessed April 2011
16 Eclipse Development Process
http://www.eclipse.org/projects/dev_process/development_process_2010.php#2_1_Open_Source_
Rules_of_Engagement
accessed November 2010
17 Linux Kernel Report 2010
http://www.linuxfoundation.org/docs/lf_linux_kernel_development_2010.pdf
accessed November 2010
18 Linux Trademark sublicense Agreement,
http://www.linuxfoundation.org/programs/legal/trademark/sublicense-agreement, accessed March
2011
19 MeeGo Signed-Off Process http://meego.com/about/contribution-guidelines/signed-process.
20 MeeGo Community Health Metrics, http://wiki.meego.com/Metrics#Community_Health_Metrics,
June 2011
21 5 Firefox Based Browsers You Probably Haven't Seen Before,
http://www.techdrivein.com/2010/06/5-firefox-based-browsers-you-probably.html accessed June
2011
22 Mozilla.org https://wiki.mozilla.org/Mozilla.org/About accessed November 2010
23 Qt and Open Governance http://labs.qt.nokia.com/2010/06/03/qt-and-open-governance/ accessed
in November 2010

