"thyy.y

A TEXT-BOOK OF BOTANY

TEXT-BOOK OF BOTANY

BY

DR. E. STRASBURGER

PROFESSOR IN THE UNIVERSITY OF BONN

DR. H. SCHENCK
PRIVAT DOCENT IN THE UNIVERSITY OF BONN

DR. FRITZ NOLL
PRIVAT DOCENT IN THE UNIVERSITY OF BONN

DR. A. F. W. SCHIMPER
PROFESSOR IN THE UNIVERSITY OF BONN

TRANSLATED FROM THE GERMAN BY

H. C. PORTER, Ph.D.

ASSISTANT INSTRUCTOR OF BOTANY, UNIVERSITY OF PENNSYLVANIA

严ondon
MACMILLAN AND CO., Limited NEW YORK : THE MACMILLAN COMPANY

1898

NOTE

The Publishers have to thank Mr. A. C. Seward, M.A., St. John's College, Cambridge, and University Lecturer in Botany, for kindly revising the proofs of the translation as it passed through the press.

September 1897.

Digitized by the Internet Archive in 2015

CONTENTS

PAGE
INTRODUCTION 1
PART I. GENERAL BOTANY
SECTION I. MORPHOLOGY
EXTERNAL MORPHOLOGY
The development of form in the plant kingdom 10
Relations of symmetry 15
Branch systems 17
The shoot 18
The stem or axis of the shoot 28
The leaf 28
The root 40
The ontogeny of plants 44
INTERNAL MORPHOLOGY
(Histology and Anatomy)
The cell 47
Cell fusion 83
Tissues 86
Tissue systems 90
The primary tissues 90
The distribution of the primary tissues 108
The secondary tissues 120
The phylogeny of the internal structure 145
The ontogeny of the internal structure 147
Structural deviations 154
SECTION II. PHYSIOLOGY
The physical and vital attributes of plants 160
The Stability of the Plant Body 164
Turgidity 165
Tension of tissues 167
Mechanical tissues (stereome) 169
Nutrition page
171
The constituents of the plant body 171
The essential constituents of plant food 172
The process of absorption 176
Water and mineral substances 178
The absorption of carbon (assimilation) 195
The utilisation of the products of assimilation 201
Transfer of the products of assimilation 202
The storage of reserve material 204
Special processes of nutrition 206
Respiration 216
Intramolecular respiration 219
Heat produced by respiration 220
The movement of gases within the plant 221
Phosphorescence 223
Growth 223
The embryonal development of the organs 224
The phase of elongation 229
The interual development of the organs 237
Periodicity in development, duration of life, and continuity of the embryonic substance 237
The Phenomena of Movement 241
Movements of naked protoplasm 242
The movements of protoplasm within walled cells 244
Movements producing curvature 247
Hygroscopic curvatures 247
Growth curvatures 248
Movements due to changes of turgor 269
Reproduction 274
Vegetative reproduction 277
Sexual reproduction 280
Alternation of generations 289
The dissemination and germination of seeds 291
PART II. SPECIAL BOTANY
SECTION I. CRYPTOGAMS
Thallophyta 301
Myxomycetes 302
Schizophyta 305
Diatomeae 312
Peridineae 315
Conjugatae 315
Chlorophyceae 318
Phaeophyceae 329
Rhodophyceae 334
Characeae 337
Hyphomycetespage340
Lichenes 375Bryophyta381
Hepaticae 385
Musci 390
Pteridophyta 397
Filicinae 400
Equisetinae 412
Lycopodinae 415
SECTION II. PHANEROGAMIA
Gymnospermae. 434
Cycadinae 437
Coniferae 438
Gnetineae 443
Angiospermae 444
Monocotyledones 462
Dicotyledones 490
List of Officinal Plants 601
List of Poisonous Plants 603
Index 605

ERRATA

Page 285, line 5 from foot, for protogymous read protogynous.
Page 355 , line 2 from foot, for paraphyses read periphyses.

INTRODUCTION

It is customary to divide all living organisms into two great kingdoms, animal and regetable. A sharp boundary line between animal and regetable life can, however, be drawn only in the case of the more highly developed organisms : while in those of more simple organisation all distinctions disappear, and it becomes difficult to define the exact limits of Botany and Zoology. This, in fact, could searcely be otherwise, as all the processes of life, in both the animal and regetable kingloms, are dependent on the same substance, protoplasm. The more elementary the organism, the more apparent the general qualities of this protoplasm become, and hence the correspondence between the lower organisms is specially striking. With more complicated organisation, the specific differences increase, and the characteristics distinguishing animal from regetable life become more obvious. For the present, it must be confessed, the recognition of an organism, as an animal or a plant, is dependent upon its supposed correspondence with an abstract idea of what a plant or animal should be, based on certain fancied points of agreement between the members of each class. A satisfactory basis for the separation of all living organisms into the categories of animals or plants can only be obtained when it is shown that all organisms distinguished as animals are in reality genetically connected. and that a similar connection exists between all plants. The method by which such evidence may be arrived at has been indicated in the Theory of Erolttion.

From the palzontological study of the imprints of fossil animals and plants, it has been established that in former epochs forms of life differing from those of the present age existed on the earth. It is also generally assumed that all living animals and plants have been derived from previously existing forms.

The conclusion is a natural one, that those organisms possessing almost exactly similar structures which have been united as species under the same genera are in reality related to one another. Indeed, it is permissible to take a further step, and assume that the
union of corresponding genera into one family serves to give expression to a real relationship existing between them.

The evolution of a living organism from others previously existing and different in form has been distinguished by Haeckel as its phylogenetic development or Phylogeny. Every organism arising from a like organism must, before attaining its mature state, complete its own individual development, or, as it has been termed by Haeckel, its ontogenetic development or Ontogrny. The supposition that the successive steps in the ontogenetic development of an organism correspond to those of its phylogenetic development, and that the ontogeny of an organism is accordingly a more or less complete repetition of its phylogeny, was first asserted by Fritz Mǘleer, who based his conclusions on the results of comparative research.

The idea of the gradual evolution of higher organisms from lower was familiar to the Greek philosophers, but a scientific basis was first given to this hypothesis in the present century. Through the work of Charles Darwin in particular, the belief in the immutability of species has been overturned.

Darwin is also the author of the so-called Theory of Selection. In drawing his conclusions, he proceeds from the variability of living organisms, as shown by the fact that the offspring neither exactly resemble their parents nor each other. To establish this theory, he also called attention to the constant over-production of embryonic germs, by which the destruction of the greater part must inevitably result. If this were not so, and all the embryos produced by a single pair attained their full development, they would alone, in a few generations, completely cover the whole surface of the earth. The actual condition of the floras and faunas is thus maintained by the restricted development of the embryos. On account of insufficient space for all, the different claimants are engaged in an uninterrupted struggle, in which the victory is gained by those that, for any reason, have an advantage. Through this "struggle for existence," as only those organisms possessing some advantage live and mature, a process of enforced selection between the more fortunate survivors must result. In this manner Darwin arrived at the supposition of a process of Natural Selection, and confirmed his position by analogy with known results obtained by experimental cross-breeding and cultivation. Newly-developed peculiarities arising from individual variability must be inherited in order to become permanent characteristics of a later generation. Just as in artificial selection, natural selection, although unconsciously, accomplishes this result. As individual peculiarities may be developed by careful breeding and rendered permanent, so by natural selection those qualities which are advantageous in the struggle for existence become more pronounced and are finally confirmed by heredity. By the continued operation of natural selection,
organisms must result which are, in the highest degree, fitted and adapted to their environment. Thus, by the survival of the fittest, through natural selection, that adaptability to the environment is gradually evolved which is such a striking characteristic of organic life. That the transitional forms in this process of phylogenetic development no longer exist, is accounted for in the theory of natural selection by the assumption that the struggle for existence must necessarily have been most severe between similar organisms. For similar organisms must have similar necessities, and the new and better-equipped forms must ultimately prevail over the original less specialised organisms, which, thus deprived of the essential requisites for their existence, finally disappear.

Although the great importance of natural selection in the development of the organic world has been fully recognised by most naturalists, the objection has been raised that it alone is not a sufficient explanation of all the different processes in the phylogeny of an organism. Attention has been called to such organs as would be incapable of exercising their function until in an advanced stage of development, and so could not originally have been of any advantage in a struggle for existence. How could natural selection tend to develop an organ which would be useless so long as it was still in a rudimentary condition? This objection has led to the supposition of an internal force residing in the substance of the organisms themselves, and controlling their continuous development in certain definite directions. Many naturalists, indeed, have gone so far as to affirm that only less advantageous qualities have been affected by the struggle for existence, while the more advantageous have been uninfluenced by it.

The phylogenetic changes in the species have been so gradually accomplished as to have escaped observation, and indirect evidence of their existence is all that can be obtained.

If the higher organisms have been evolved from the lower, there must, at one time, have been no sharp distinction between plants and animals. The simplest organisms which now exist are in all probability similar to those which formed the starting-point in the phylogenetic development of animal and vegetable life; and it is still impossible to draw a sharp distinction between the lower forms of plants and animals. The walls which surround the elementary organs of the plant body, and the green colouring matter formed within them, have been cited as decisive indications of the vegetable character of an organism. Surrounded by firm walls, the living substance becomes more isolated, and, consequently, independence of action in plants, as compared with animals, is diminished. By means of the green colouring matter, plants have the power of producing their own nutritive substances from certain constituents of the air and water, and from the salts contained in the soil, and are thus able to exist independently ;
while animals are dependent for their nourishment, and so for their very existence, on plants. Almost all the other differences which distinguish plants from animals may be traced to the structure of plants, characterised by the firm walls of the simple organs, or to the manner of obtaining food. Another characteristic of plants is the unlimited duration of their ontogenetic development, which is continuous, at certain points at least, during their whole life. That none of these criteria are alone sufficient for distinguishing plants from animals is evident from the fact that all the Fungi are devoid of green pigment, and, like animals, are dependent on green plants for their nourishment. On the borderland of the two kingdoms, where all other distinctions are wanting, phylogenetic resemblances, according as they may indicate a probable relationship with plants or animals, serve as a guide in determining the position of an organism.

While it is thus difficult to sharply distinguish the two great groups of living organisms from one another, a distinction between them and lifeless bodies is readily recognised. Living organisms are endowed with the quality of irritability, in which all lifeless bodies are deficient. External or internal stimuli influence living organisms to an activity, which is manifested in accordance with the requirements and conditions of their internal structure. Even in the smallest known organisms all manifestations of life are occasioned by a similar sensitiveness to external or internal stimuli. The question, however, continually arises whether, in the smallest and simplest organisms at present discernible with the highest magnifying power of the microscope, the ultimate limit of possible life is actually represented. As this limit has always been extended with the increased capabilities of optical instruments, it would seem arbitrary to assert that it would now be impossible to extend it still further. Nägeli accordingly assumed that beyond what is now made visible by the microscope there exists a world of still more and more simple organisms. These he conceived of as showing such a degradation of the vital processes that they finally resemble mere albuminous bodies, which, he supposed, under certain conditions might be produced by purely synthetic processes. In order that a living organism may develop out of such albuminous bodies it must originally have inherent in it the capability of development, that is, the capability of variation and the ability to retain the results of this variability as new qualifications. It must, in addition, have the capability of growth, or of enlarging the mass of its body at the cost of foreign substances, and finally, the power of reproduction, that is, of multiplication by a separation into distinct parts.

For the substance itself which serves as a basis for all development, the supposition of an inorganic origin would not be incredible; it would even be possible to imagine that, under certain conditions, this substance is continually in process of formation. On the other
hand, it must not be forgotten that, so far as is actually known, all living organisms have arisen only from similar organisms. So far as experience has shown, spontaneous generation is unknown. In olden times it was a common supposition that all nature itself was endowed with universal life. According to Aristotle, frogs and snakes sprang from mud and slime. In the same degree that knowledge of the actual development of living organisms was extended, the previously accepted cases of spontaneous generation became more and more restricted, and were finally limited to intestinal worms which could not otherwise, it was thought, be accounted for, and to microscopic organisms the origin of which was also not understood. Now, for such organisms the possibility of a spontaneous generation has been disproved by more modern investigations; the history of the development of intestinal worms is known, and the germs of organic life have been found to exist everywhere. Schwann and Pasteur have been pioneers in this work, and have shown that it is possible to hinder the development of the lower organisms, in places where it is customary to find them, by destroying all existing germs and at the same time preventing the entrance of new ones. It is due to the results obtained by these men in their investigations on spontaneous generation that we are now able to preserve food in a scientific manner. The germs previously existing in the substance to be conserved are destroyed by heat, while, by a proper mode of sealing, the entrance of new germs is rendered impossible, and the decomposition which their presence would occasion is accordingly prevented.

All known living organisms have been derived from other living organisms. The attempt to relegate spontaneous generation to an unknown field, and to admit the origin of living from dead substances, has on the other hand derived support from the progress of chemical research. In the early decades of the present century it was customary to draw a distinct line of separation between organic and inorganic chemistry, and to assume that the substances dealt with by organic chemistry could only be produced by the vital action of organisms. The laws governing inorganic chemistry appeared to have no reference to organic chemistry, the formation of organic substance being due to a special force, the "life force." In 1828 Wöhler obtained urea from ammonium cyanate, and thus for the first time produced an organic compound from an inorganic substance. In 1845 Kolbe completely synthesised trichloracetic acid, and in 1850 Berthelot synthesised alcohol and formic acid. By these results the former distinction between organic and inorganic chemistry was destroyed. Organic chemistry has become the chemistry of carbon compounds.

Botany, or the science of plants, may be divided into a general and a special part. In the general part, the structure and functions of plants as such will be considered; in the special part, the particular
structure and functions of the separate orders of plants will be discussed.

The study of the structure of plants is called Morphology ; that of their functions Physiology. In the general part, morphology and physiology will be treated separately; in the special part, conjointly.

PART I
 GENERAL BOTANY

SECTION I
MORPHOLOGY

GENERAL BOTANY

SECTION I

MORPHOLOGY

The object of vegetable morphology is the scientific study of the forms of plants. It does not attempt to discover the causes of the variation in the forms, but rather has accomplished its purpose when it succeeds in showing how one form may be derived from another. The basis of morphological study is, accordingly, phylogeny (p 2). As phylogenetic development can only be inferred, and cannot be directly followed, the methods of morphology must also be indirect. They are dependent for their successful application upon ontogenetic comparison; for, in the ontogenetic development (p. 2) of a plant, its phylogeny is, to a certain extent, repeated, so that, by a comparison of transitional forms, it is often possible to discover a connection between plants which are apparently most dissimilar. As, however, the ontogeny of a plant is neither an exact nor invariable repetition of its phylogeny, and as connecting links between extreme forms are often wanting, the results of morphological study are frequently imperfect and incomplete. Such parts or members of plants which it is reasonable to presume have had a common origin are distinguished as Homologous ; those which, while probably having different origins, yet exercise the same functions, are termed Analogous. Through the adaptation of different parts to the same function, a similarity in both external form and internal structure often results ; and in this way the correct determination of morphological relationships is rendered extremely difficult. Only homologous parts have the same morphological value. This homology is determined by the facts of phylogeny and origin, and not by any correspondence in function. On account, however, of the intimate relation existing between the form and function, and the modifying influence of the one upon the other, it will be necessary in the morphological
study of the different members of plants to take into consideration their physiological signification, as organs. When, for phylogenetic reasons, it seems possible to attribute to a number of different members a common origin, such a hypothetical original form is termed the fundamental or primitive form ("Grundform "). The various modifications which the primitive form has passed through constitute its METAmorphosis. In this way the theory of the metamorphosis of plants, which was once but an ideal conception, attains its true significance.

Slightly differentiated structures, which are found at the beginning of a series of progressively differentiating forms, are termed RUDImentary ; imperfect structures, which have arisen as the result of the deterioration of some perfect forms, are termed REDUCED.

Vegetable morphology includes the study of the external form and the internal structure of plants. The descriptive study of the external form of plants has been incorrectly termed ORGANOGRAPHY, for, by the use of the term "organ," it would seem to have a physiological signification. Morphology takes no recognition of the parts of a plant as organs, but treats of them merely as members of the plant body. The study of the internal structure of plants is often designated Anatomy or Phytotomy ; but as it usually includes also the study of the more minute internal structure, it resembles rather histology, in the sense in which that term is used by zoologists, and concerns itself to a much less degree with anatomy, properly speaking. In any case, it is the simplest plan to designate the study of the outer forms External Morphology, and that of the inner structure Internal Morphology.

I. EXTERNAL MORPHOLOGY

Plants show a great diversity in the form and arrangement of their members ; it is the task of morphology to determine the points of agreement existing between them. To do this, it is necessary to discover a common origin for their similar but variously developed members.

The Development of Form in the Plant Kingdom

The Thallus.-The simplest form that we can imagine for an organism is that of a sphere, and this is actually the form of some of the lower plants. The green growth often seen on damp walls consists of an aggregation of the small spherical bodies of Gloeocapsa polydermatica (Fig. 1), an Alga belonging to the lowest division of the vegetable kingdom. The single plants of the Beer-yeast (Saccharomyces cerevisiae) are ellipsoidal ; but, from their peculiar manner of growth, by budding, they form lateral outgrowths, and thus often appear
constricted (Fig. 2). Cylindrical and also disc-shaped forms are common to various Algae. The Dictomeue (Fig. 3), in particular,

Fis. 1.-Glooocupsa polydermatica. A, Commencement of division ; B, shortly after division; C, a later stage. $(\times 540$.) furnish a great variety of spindle, canoe, helmet, and fan-like shapes ; but they may all be derived from the more simple spherical, discoidal, or cylindrical forms. The

Fig. 2.-Saccharomyces cerevisiae. 1, Cells without buds ; 2 and 3 , budding cells. (x 540.) Bacteria, which, as the cause of contagious diseases and of decomposition, have been the object of so much recent investigation, also exhibit a great diversity of form. A small quantity of the white deposit on teeth will furnish examples of spherical, rod-like, fibrous, and spiral bacteria (Fig. 4). In the course of the development of a single species several of

Fig. 4.-Bacteria from deposits on teeth. a, Leptothrix buccalis; a^{*}, the same after treatment with iodine; b, Micrococcus; c, Spirillum dentium after treatment with iodine: d, comma bacilli of the mucous membrane of the month. ($\times 800$.)

Fig. 3.-Pinnularia viridis. A, surface view ; B, lateral view. $(\times 540$.
these different forms frequently occur. The next stage in the progressive development of external form in the regetable kingdom is exhibited by such plants as show a differentiation into apex

AND BASE. The base serves as a point of attachment, while growth is localised at the apex. In this way a growing point is developed at the apex. As an example of such a form, a young plant of the green Alga, Ulva Lactuca (Fig. 5), may be taken. The development of a more complicated external form is represented by the branched, filamentous, or band-shaped Algae, in which the origin of new formations is more and more restricted to the apex. An acropetal order of development, in which the youngest

Fig. 6.-Portion of Cladophora glomerata. ($\times 48$.)

Fig. 5.-Ulva Lactuca, young stage, showing apex and base. $(\times 220$.)

Fig. 7.-Cladostephus verticillatus. (After Pringsheim, $\times 30$.)
lateral members are always nearest the growing apex, is clearly demonstrated by the branched filaments of the common green Alga, Cladophora glomerata (Fig. 6). Still more pronounced is the apical
growth in the brown sea-weed Cludostephus verticillatus (Fig. 7). The great variety in the form of the larger Fungi and Lichens, by which they are distinguished as club-, umbrella-, salver-, or bowl-shaped, or as bearded or shrub-like, is due to the union or intertwining of apically growing filaments. This manner of development is limited to Fungi and Lichens. In other cases, the more complete segmentation exhibited by the lower plants results from the differentiation of independently branching filaments and bands.

As the apex itself may

Fig. S.-Dictyota dichotoma. (2 nat. size.) undergo successive modifications through continuous bifurcation, as in the case of Dictyota dichotoma (Fig. 8), it does not always necessarily follow that the for-

Fig. 9.-Hydrolapathum sanguineum. (1 $\frac{1}{2}$ nat. size.) mation of new members must proceed directly from the original apex. The highest degree of external differentiation among the lower plants is met with in the group of the red sea-weeds (Rhodophyceae). Many representatives of this class resemble the higher plants in the formation and arrangement of their members; Hydrolapathum sanguineum (Fig. 9), for example, as is indicated by its name, has a strong resemblance to a species of Rumex, and affords a remarkable illustration of the analogy of form existing between plants phylogenetically unconnected. On account of a supposed phylogenetic connection between the lower plants, they have been collectively designated Thallophytes, while the body of the individual organisms, having neither true leaves nor stem, is referred to as a thallus. In contrast to the thallus, the body of the higher plants,
with its segmentation into stem and leaves, is frequently termed a cormus, and the plants themselves Cormophytes. To the Cormophytes belong all plants from the Mosses upwards.

Transition from the Thallus to the Cormus.-The lowest division of the Bryophytes, the Liverworts (Hepaticae), although in many cases

Fig. 10.-Riccia fluitens. (Nat. size.)

Fig. 11.-Blesia pusille. \&, Sporogonium; r, rhizoids. $(\times 2$.)
possessing thalloid bodies without any segmentation into members, contain also forms with the same differentiation into stem and leares as the higher plants. As between these two extremes there may be found transitional forms, this class of plants, accordingly, affords valuable assistance in the phylogenetic study of the development of higher plants. A few examples will best illustrate these stages of differentiation exhibited by the Hepaticue. The bifurcately branching thallus of Riccia fluitans (Fig. 10) is flat and ribbon-like, and in its general appearance resembles the thallus of the previously mentioned brown Alga, Dictyota dichotoma (Fig. 8). A more advanced development is shown by Blasia pusilla (Fig. 11), which has incisions in the sides of its ribbon-like body. The lobes thus formed by the lateral incisions, as is shown by comparison with other more highly differentiated Hepaticae, and also by the study of their development, are properly to be regarded as rudimental leaves. Finally, in Plagiochila asplenioides (Fig. 12), with alternating ovate leaves and elongated fibrous stems, the segmentation into stem and leaf is complete.

The Cormus.-With the segmentation into stem and leaf, the
distinctive differentiation of the Cormophyte is completed. This, in all probability, has occurred twice in the phylogenetic development of the vegetable kingdom ; once in the Bryophytes, and a second time in the evolution of the Pteridophytes, presumably from ancestral forms resembling the Liverworts. All Bryophytes are attached to the surface on which they grow, by means of root-like hairs or RHIzoIDS (Fig. 11, r). It is in the next higher group of plants, which, as Vascular Cryptogams, are united in one class, that true roots, in a morphological sense, first make their appearance. They are for the most part cylindrical bodies with apical growing points. Disregarding the distinctions perceptible in its internal structure, a root may always be distinguished from a stem by the root-cap or CALYPTRA sheathing its apex, and also by the absence of leaves.

The Metamorphosis of the Primitive Forms.-After the completion of its differentiation into stem and leaf, and the appearance of roots, there occur only such modifications of the primitive form of the plant body of a Cormophyte as are embraced under its metamorphosis (p. 9), occasionally including a more or less complete fusion of parts originally separate and distinct.

The relationships between homologous members, which are often very striking, did not escape the notice of earlier observers. They suggested comparisons, although no real phylogenetic basis for such comparisons existed. Thus, an ideal conception of the form of external members was developerd, and finally reached its highest elaboration in Goethe's Theory of Metamorphosis; and its abstract scientific conclusion in the writings of Alexasuer Bratas. As the great variety exhibited in the external appearance of the lower plants precluded any possibility of assigning to them hypothetical primitive forms, the whole terminology of the external morphology of plants has been derived from conceptions applicable only to the Cormophytes. Even to-day, the same terms used in reference to the Cormophytes are applied to parts of the Thallophytes, which are evidently only analogous. In this sense it is customary to distinguish between stem and leat in such Algae as Hydrolapathuin (Fig. 9). Such a use of terms is only permissible where reference is made to the manner of segmentation, with the intention of emphasising the analogy with the somewhat similar members of the Cormophytes. The question whether, in the different groups of the Cormophytes, all the members designated by the same names are really homologous, cannot properly be discussed here. It would seem almost impossible to derive from the Bryophytes all the forms of cormophytic segmentation shown by the Pteridophytes. However this may be, from the Pteridophytes upwards, the segmentation of the members appears to have had a similar origin, and the similarity of terminology is based, therefore, upon an actual homology of the parts.

Relations of Symmetry

Every section through an organ or member of a plant, made in the direction of its longitudinal axis, is distinguished as a longitudinal
section ; those at right angles to it being termed cross or transverse sections. Such parts of plants as may be divided by each of three or more longitudinal planes into like halves are termed either Polysym-

Fig. 13.-Diagram showing the so-called decussate arrangement of leaves.

Fig. 14.-Diagram showing two-ranked alternate arrangement of leaves.
metrical, Radlal, or Actinonorphic. The degree of symmetry peculiar to any leafy shoot will be more

Fig. 15.-Diagram of a foliage-leaf. A, Surface view ; B, transverse section ; s, plane of symmetry. apparent from a diagram, that is if the leaves which it bears be projected on a plane at right angles to its axis. The radial symmetry of a shoot with opposite leaves is clearly shown in the adjoining diagram (Fig. 13). A shoot with its leaves arranged alternately in two rows shows quite different relations of symmetry. The diagram of such a shoot (Fig. 14) can only be divided into similar halves by two planes. When such a condition exists, a member or plant is said to be bisymmetrical. When, however, a division into two similar halves is only possible in one plane, the degree of symmetry is indicated by the terms syametrical, monosymmetrical, or zygomorphic. When the halves are equal, but have a different structure and are spoken of as ventral and dorsal sides, the body is termed dorsiventral. Ordinary foli-age-leaves exhibit this dorsiventral structure, and their upper and lower surfaces are not only different in appearance but they also react differently to external influences. In the accompanying figure (Fig. 15) such a
monosymmetrical, dorsiventral foliage leaf is diagrammatically represented. From the surface view (A) and from the cross-section (l^{\prime}), in which the distinction between the dorsal and ventral sides is indicated by shading, it is obvious that but one plane of symmetry (s) can be drawn. As the zoologists often term this degree of symmetry bilateral, the same term is frequently employed with reference to plants.

Branch Systems

Thallophytes as well as Cormophytes exhibit systems of branching, resulting either from the formation of new growing points by the bifurcation of a previously existing growing point, or from the development of new growing points in addition to those already present. In this way there are produced two systems of brauching, the incнotomous and the moxopodial. By the uniform development of a continuously bifurcating stem, a typical dichotomous system of branching is produced, such as is shown in Dictyotu dichutomnt (Fig. \&). In a typically developed example of the monopodial system there may always be distinguished a main axis, the noxopodicm, which gives rise to lateral branches from which, in turn, other lateral branches are developed. A good example of this form of branching is afforded by a Fir-tree. Where one of the two branches is regularly developed at the expense of the other, the dichotomous system assumes an appearance quite different from its typical form. The more vigorous branches may then, apparently, form a main axis, from which the weaker branches seem to spring, just as if they were lateral branches. This mode of branching is illustrated by the Seluginellae (Fig. 351). Such an apparent main axis is termed, in accordance with its origin, a Srmpodius. On the other hand, in the monopodial system two or eren several lateral branches may develop more strongly than the main axis, and so simulate true dichotomy or polytonry. Such monopodial forms of branching are referred to as false dichotomy or false polytomy, as the case may be. A gooll example of false dichotomy may be seen in the Mistletoe (Viscum album, Fig. 16).

Fig. 16.-Shoot of Tiscum alloum, showin: false dichotomy. ($\frac{1}{2}$ nat. size.) If, however, a lateral branch so exceeds the main axis in development that it seems ultimately to become a prolongation of the axis itself, a symporlium is again formed. This is exactly what occurs in the Lime and Beech; in both of these trees the terminal buds of each year's growth die, and the prolonga-
tion of the stem, in the following spring, is continued by a strong lateral bud, so that in a short time its sympodial origin is no longer recognisable. In most rhizomes, on the other hand, the sympodial nature of the axis can be easily distinguished ; as, for example, in the rhizome of Polygonutum multiflorum (Fig. 21), in which, every year, the terminal bud gives rise to an aerial shoot, while an axillary bud provides for the continuance of the axis of the rhizome. In the flowerproducing shoots or inflorescences of Phanerogams the different systems of branching assume very numerous forms. These will be more fully described in their proper place. To such inflorescences belong the ventrally coiled dorsiventral shoots, which produce new shoots from their convex dorsal surfaces, instead of in their leaf-axils.

The Shoot

The Development of the Shoot.—Under the term shoot a stem and its leaves are collectively included. A stem possesses an apical mode of growth (Fig. 17), and its unprotected growing point is described as naked, in contrast to that of

Fig. 17.-Apex of a shoot of a phanerogamic plant. r, Vegetative cone ; f, leaf rudiment ; g, rudiment of an axillary butl. $(\times 10$.) the root with its sheathing rootcap. The apex of the shoot generally terminates in a conical protuberance, designated the regetative cone. As it is always too small to be visible to the maided eye, it is best seen in magnified median longitudinal sections. So long as the apex of the shoot is still internally undifferentiated, it continues in embryonic condition, and it is from the still embryonal regetative cone that the leaves take their origin. They first appear in acropetal succession as small, conical protuberances, and attain a larger size the further remored they are from the apex of the stem. As the leaves usually grow more rapidly than the stem which produces them, they envelop the more rudimentary leaves, and orerarching the regetative cone, form, in this manner, a Bud. Buds are therefore merely undereloped shoots. If they are to remain for a long time undeveloped, as for example is the case with winter buds, they are protected in a special manner during their period of rest.

The Origin of New Shoots. - The formation of new growing points by the bifurcation of older points of growth, in a manner similar to that already described for Dictyotu dichotomu (Fig. 8), occurs also, in almost typical form, in the lower thalloid Heputicue (Picriu fluituns, Fig. 10). Among the Cormophytes this method of producing new shoots is of less frequent occurrence, and is then mainly limited to the Pteridophytes, for one division of which, the Lycoportiusear, it is characteristic. In this case, whenever a shoot is in process of bifurcation, two new vegetative cones are formed by the division of the growing point (Fig. 18). In most of the Lycopodiacere the new shoots thus formed develop mequally; the weaker becomes pushed to one side and ultimately appears as a lateral branch (Fig. 19). Although a relationship as regards position is generally apparent between the origin of leaves and the lateral slooots, in the system of branching resulting from such

Fif. 15.-Lonsitudinal section of at bifureating shoot (1) of Lycopulium alpinum, showing unequal development of the rudimentary shoots, $p^{\prime}, \rho^{\prime \prime} ; b$, leaf rudiments; c, cortex ; f, vascular strainls. (After Hegflmaier, $\times 60$.) a bifurcation of the vegetative cone this comection does not exist. In the more lighly developed Bryophytes, particularly in the true Mosses, new shoots arise obliquely below the

Fig. 19.-Bifurcating shoot (1) of Lycopodium inuาиdutum, showing unequal development of the rudimentary shoots, $p^{\prime}, p^{\prime \prime}$; b, leaf rudiments. (After Hegelmaier, $\times 40$.) still rudimentary leaves at some distance from the growing point. In the Phanerogams new shoots generally arise in the axils of the leaves. In the accompanying illustration of a longitudinal section of a phanerogamic shoot (Fig. 17) the rudiment of a shoot (I) is just appearing in the axil of the third uppermost leaf ; in the axils of the next older leaves the conical protuberances of the embryonic leaves are already beginning to appear on the still rudimentary shoot. These rulimentary shoots may either continue to develop, or they may remain for a time in an embryonic condition, as buds. Shoots thus produced in the axils of leaves are termed axillary shoots. The leaf in the axil of which a shoot develops is called its Supteninina leaf. An axillary shoot is usually situated in a line with the middle of its subtending leaf, although it sometimes becomes pushed to one side. As a rule, only one shoot develops in the axil of a leaf, yet there are instances where it is followed by additional or ACCESSORY SHOOTS, which either stand over one another (serial buds), as in Lonicera, Gileditschiu, Gymmocladus, or side by side (collateral buds), as in many Liliucrue.

Although in the regetative regions, i.e. the regions in which merely vegetative organs are produced, the rudiments of the new shoots of phanerogamic plants make their appearance much later than those of the leaves, in the generative or flower-producing regions the formation of the shoots follows directly upon that of their subtending leaves, or it may even precede them. In this last case the subtending leaves are usually either poorly developed or completely suppressed, as in the inflorescence of the Cruciferae, in which a series of phylogenetic changes has probably led to this result.

Shoots developing in definite succession from the growing points of other shoots are designated nopmal, in contrast to adrentitious sноотs, which are produced irregularly from the older portions of a plant. Such adventitious shoots show no definite arrangement, and frequently spring from old stems, also from the roots of herbaceous plants (Brassica oleracea, Anemone syluestris, Conroltulus arrensis, liumex Acetosellu), or of bushes (liulus, liosu, Corylus), or of trees (Populus, Ulmus, liolinia), or they may develop even from leaves, particularly from the fronds of Ferns. An injury to a plant will frequently induce the formation of adventitious shoots, and for this reason gardeners often make use of pieces of stems, rhizomes, or even leaves as cuttings from which to produce new plants. A leaf of a Begonia merely placed upon damp soil will soon give rise adventitiously to new plants.

Leaves and also normal shoots, which make their appearance as outgrowths from the portions of the parent shoot still in embryonic condition, have an external or exogexou's origin. Adventitious shoots, on the other hand, which arise from the older parts of stems or roots, are almost always exdogenous. They must penetrate the outer portions of their parent shoot before becoming visible. Adventitious shoots formed on leaves, however, arise, like normal shoots, exogenously.

The further Development of the Shoot-All normal shoots are dependent for their origination upon the embryonic substance of the growing point of the parent shoot; even when they make their appearance at some distance from the growing apex (Fig. 1 \bar{i}), embryonic substance has been reserved at that point for their formation. The growing points of adventitious shoots are also, for the most part, produced from tissue which has retained its embryonic condition in the older portions of the plant. In some cases, however, they arise from newly-developed growing points, and afford evidence of the power inherent in plants to return to an embryonic state and produce new growing points. The processes of development which result in the production of new segments at the apex of a shoot are followed by an increase in size and by the further growth of the segments. This growth is usually introduced by the rigorous elongation of the segments, by means of which their rapid unfolding from
the bud is brought about. The region of strongest growth in a shoot is always at some distance from its growing point.

The growth in length and consequent elongation of the shoot is in some cases so slight that the leaves remain close together, and leare no free spaces on the stem, thus forming so called Dwalif shoots. As examples of such dwarf shoots may be mentioned the thickly-chnstered needles or fascicled leaves of the Larch, the rosettes formed by the fleshy leaves of the House-leek (Semperitum), and also the flowers of Phanerogams with their thickly-crowded floral leaves. In the ordinary or ELONGATED SHOOTS, such as are formed in the spring hy most deciduous trees, the portions of the stem between the insertions of the leaves become elongated by the stretching of the shoot. The stem of a shoot, as contrasted with the leaves, is often spoken of as the axis; while the portions of the stem axis between the insertions of the leaves are termed the internones, and the parts of the axis from which the leaves arise the Nodes. When the baso of the leares encircles the stem, or when several leaves take their origin at the same node, the nodes become strongly marked (Litiutue).

In some cases the growth in length of a shoot continues for a longer time at certain intermediate points by means of intercalary cirowth. Such points of intercalary growth are generally situated at the base of the internorles, as in the case of the Crasses. A displacement from the position originally occupied by the members of a shoot frequently results from intercalary growth. A bud may thus, for example, become pushed out of the axil of its subtending leaf, and so apparently have its origin much higher on the stem ; or a subtending leaf, in the course of its growth, may carry its axillary bud along with it, so that the shoot which afterwards develops seems to spring directly from its subtending leaf; or, finally, the subtending leaf may become attached to its axillary shoot, and growing out with it, may thus appear to spring from it (Fig. 20).

Resting Buds.-As a means of protection, buds may become invested, in winter, with scale-like leaves or BUD-SCALES, which are rendered still more effective as protective structures by hairy outgrowths and excretions of resin and grum, and also by the occurrence of air-spaces. Not infrequently the subtending leaf takes part in the protection of its axillary bud, and the base of the leaf-stalk, after the

Fit: 20.-siamolus V「alerandi, each axillary shont (i) bearing its subtembing leaf (t), and terminating in a flower. (Nat. size.) leaf itself has fallen, remains on the shoot and forms a cap-like covering for the winter burl. The londs of tropical plants, which have to withstand a dry period, are similarly protected ;
but where the rainfall is evenly distributed throughout the year buds develop no such means of protection.

Many of the deciduous trees in Temperate regions are inclined to unfold their winter buds in the same regetative period in which they are produced. This, tendency is particularly marked in the Oak, and results in the development of a MIDSUMMER GROWTH.

All the buds of a plant do not develop; there are numerous deciduous treessuch as the Willow, in which the terminal buds of the year's growth regularly die. Sometimes buds, usually the first-formed buds of each year's shoot, seem able to remain dormant during many years without losing their vitality; these are termed dormant beds. In the case of the Oak or Beech such latent buds can endure for hundreds of years ; in the meantime, by the elongation of their connection with the stem, they continue on its surface. Often it is these, rather than adrentitious buds, which give rise to the new growths formed on older parts of stems. It may sometimes happen that the latent buds lose their connection with the woody partof their parent stem, but nevertheless grow in thickness, and develop their own wood; they then form remarkable spherical growths within the bark, which may attain the size of a hen's egg and can be easily separated from the surrounding bark. Such globular shoots are frequently found in Beech and Olive trees.

The Metamorphosis of the Shoot.-The BULbils and Gemme, which become separated from their parent plant and serve as a means of reproduction, are special forms of modified buds. They are always well supplied with nutritive substances, and are of a corresponding size. Many plants owe their specific name to the fact that they produce such bulbils, as, for example, Lilium bulliferum and Dentaria bulbifera.

Shoots that live underground undergo characteristic modifications, and are then termed ROOT-stocks or RHizomes. By means of such subterranean shoots many perennial plants are enabled to persist through the winter. A rhizome develops only modified leaves in the form of larger or smaller, sometimes scarcely visible, scales. By the presence

Fig. 21.-Rhizome of Polygonctum multiflorum. " Bud of next year's aerial growth; l, scar of this year's, and c, d, e, scars of three preceding years' aerial growth ; u, roots. ($\frac{3}{4}$ nat. size.) of such scale leaves and by its naked vegetative cone, as well as by its internal structure, a rhizome may be distinguished from a root. Rhizomes usually produce numerous roots; but when this is not the case, the rhizome itself functions as a root. Rhizomes often attain a considerable thickness and store up nutritive material for the formation of aerial shoots. In the accompanying illustration (Fig. 21) is shown the root-stock of the so-called Solomon's Seal (Polygonatum multiflorum). At d and c are seen the scars of the aerial shoots of the
two preceding years; and at l, may be seen the base of the stem growing at the time the rhizome was taken from the ground, while at " is shown the bud of the next year's aerial growth. The rhizome of Coralliorrhisa imnetu, a saprophytic Orehid, affords a good example of a root-stock functioning as a root (Fig. 20). Betres, also, helong to the class of metamorphosed shoots. They represent a shortened shoot with a flattened, discoid stem (Fig. 23, \%\%), the tleshy thickened scale

Fig. 22.-Rhizome of Coralliorrhiza innuta. a, Floral shoot ; b, rudiments of new rhizome branches. (After schacht, nat. size.)

Fri. 23. - Longitudinal section of tulip bulb, Tulipe liesnerianu. zk, Maditied stem; $=s$, scale leaves; r; terminal bud; k, rudiment of a young bulb; r, roots. (Nat. size.)
leaves ((s) of which are filled with reserve food material. The aerial growth of a bulb develops from its axis, while new bulbs are formed from buds (k) in the axils of the scale leaves. Another form of underground shoot, allied to bulbs and connected with them by transitional forms, is distinguished as a tuber. The axis of a typical tuber, in contrast to that of a bulb, is fleshy and swollen, functioning as a reservoir of reserve material, while the leaves are thin and scaly: Of such tubers those of the Meadow Saffiron (Celchicunn autumnule) or of Crocus satirus are good examples. In the Meadow Saffiron new tubers arise from axillary buds near the base of the modified shoot, but in the Crocus from buds near the apex. In consequence of this, in the one case the new tubers appear to grow out of the side, and in the other to spring from the top of the old tubers. The tubers of the Potato
(Fig. 24) or of the Jerusalem Artichoke (Helianthus tuberosus) are also subterranean shoots with swollen axes and reduced leaves. They are formed from the ends of branched, underground shoots or runners (stolons) and thus develop at a little distance from the parent plant. The so-called eyes on the outside of a potato, from which the next year's growth arises, are in reality axillary buds, but the scales which represent their subtending leaves can only be distinguished on very young tubers. The parent plant dies after the formation of the tubers, and the reserve food stored in the tubers nourishes the young plants which afterwards develop from the eyes. As, in their uncultivated

Fig. 24.-Part of a growing Potato plant, Solconum tuberosum. The whole plant has been developed from the dark-coloured tuber in the centre. (From Nature, copied from one of Baillon's illustrations, $\frac{1}{3}$ nat. size.)
state, the tubers of the Potato plant remain in the ground and give rise to a large number of new plants, it is of great advantage to the new generation that the tubers are produced at the ends of runners, and are thus separated from one another. Similar advantages accrue from surface runners, such as are produced on Strawberry plants. Surface runners also bear scale-like leaves with axillary buds, while roots are developed from the nodes. The new plantlets, which arise from the axillary buds, ultimately form independent plants by the death of the intervening portions of the runners.

Still more marked is the modification experienced by shoots which only develop reduced leaves, but the axes of which become flat and leaf-like, and assume the functions of leaves. Such leaf-like shoots are called cladodes or phylloclades. Instructive examples of such forma-
tions are furnished by liuscu: uculeatus (Fig. 25), a small shrub, whose stems bear in the axils of their scale-like leaves (f) broad, sharp-pointed cladodes ($c l$), which have altogether the appearance of leaves. The Howers arise from the upper surface of these cladodes, in the axils of scale leaves. In like manner the stems of the Opuntias (Fig. 26) are considerably flattened, while the leaves are reduced to small thorny protuberances. In this case the juicy flat shoots perform not only the functions of assimilatory organs, but also serve as water-reservoirs in time of drought. It is possible that all the leaves of a plant may become more or less completely reduced, without any marked change

Fig. 25.-Twis of Ruscus uculeatus. f, Leaf; cl, cladode ; bl, flower. (Nat. size.)

Fig. 26.-Opuntire mommernthe Haw., showing flower and fruit. (After Schlmasis, ! mat. size.)
occurring in the appearance of the stems, except that they then take on a green colour ; this, for example, is the case in the Scotch Broom (Spertium scopurium), which develops only a few quickly-falling leaves at the end of its long, naked twigs; or, as in many species of rushes (Juncus, Šcirpus), whose erect, slender, wand-like stems are entirely leafless and at the same time unhranched. As a rule, however, all leafless green Phanerogams will be found to have swollen stems, as in the variously shaped Eiuphorbiue and Cucti.

A great reduction in the leaves, and also in the stems, often occurs in phanerogamic parasites, in consequence of their parasitic mode of life. The leaves of the Dodder (C'uscrutu, Fig. 185, l) are only represented by very small, yellowish scales, and the stem is similarly yellow instead of green. The green colour would, in fact,
be superfluous, as the Dodder does not produce its own nourishment, but derives it from its host plant. C'uscuta Trifolii, one of the most fre-

Fig. 27. - Ampelopsis Teitclii. R, R, Stem-tendrils. (3 nat. size.) quent of these parasites, is often the cause of the large yellow areas frequently observable in the midst of clorer fields. In certain tropical parasites belonging to the families Pafflesiaceae and Balanophoraceae, the process of reduction has advanced so far that the flowers alone are left to represent the whole plant. Pafflesia Armoldi, a plant growing in Sumatra. is a remarkable example of this ; its Howers. although they are a metre wide, the largest flowers in existence, spring directly from the roots of another plant (species of Cissus).

A peculiar form of metamorphosis is exhibited by some climbing plants through the transformation of certain of their shoots into tendrils. Such tendrils assist the parent plant in climbing, either by twining about a support or otherwise holding fast to it. The twining bifurcated tendrils of the Grape-vine, for example, are modified shoots. and so are also the more profusely branched, hold-fast tendrils of Ampelopsis Veitchii (Fig. 27).

Shoots may undergo a still greater reduction by their modification into THORNS, as a defence against the depredations of animals. Of shoots modified in this manner, the Black Thorn (Prumus spinosa), the White Thorn (Crataegus), and the Honey Locust (Gleclitschia) afford instructive examples. The thorns are simple or branched, hard, pointed bodies. In Gleditschia (Fig. 28) the thorns are developed primarily from the uppermost of several serial buds; while secondary thorns may develop on older portions of the stem from the lower buds of the series, and thus give rise to clusters of thorns.

The most marked change in the form of the shoot, in addition to the displacement and union of its different members, takes place in phanerogamic flowers. The shoots from which flowers are developed are termed FLORAL shoots, in contrast to the FOLIAGE shoots, the functions of which are merely vegetative.

Fig. 2s.-Stem-thorn of Glenitschice tricecmenthes. (1 $\frac{1}{2}$ nat. size.)
The axis of the floral
shoot remains short and becomes flattened or even depressed at the tip. The regetative cone of the rudimentary flower-bud also undergoes corresponding modifications. The floral leaves, which spring from the Horal axis, often grow together, and in many cases become so united with the axis, that it is only possible to discover the different steps of this process by means of thorough phylogenetic and comparative morphological investigation. In most instances the rule seems to holul that axillary buds are not formed within a flower except in cases of abnormal development.

Shoots and their Order of Sequence. - If the regetative cone of the primary axis of a plant, after reaching maturity, is capable of reproduction, a plant with but one axis will result, and the plant is designated čNiANiAL or haplocaulescent. Usually, however, it is not until a plant has acquired axes of the second or third order, when it is said to be DIPLOCAULESCENT or TRIPLOCAULESOENT, or of the nth order. that the capacity for reproduction is attained. A good illustration of a plant with a single axis is afforded by the Poppy, in which the first shoot produced from the embryo terminates in a flower, that is, in that organ of Phanerogams which gives rise to the embryonic germs. As an example of a plant with a triple axis may be cited the common Plantain, Plantugo mujor, whose primary axis produces only foliage and scale leaves; while the secondary axes give rise solely to bracteal leares, from the axils of which finally spring the axes of the third order, which terminate in the flowers. In the case of trees, only shoots of the nth order can produce flowers.

The Habit or General Aspect of Plants is dependent upon their origin, mode of growth, and duration, and upon the peculiar development of their branch systems. Cormophytes which develop herbaceous aerial shoots, and persist only so long as is requisite for the development and ripening of their fruit, be it one or several regetative periods, are called herbs. Herbaceous plants, however, which, although annually dying down to the ground, renew their existence each year by means of new shoots produced from underground shoot-, rhizomes, or roots, are further distinguished as PERFNNLALS or peremial herbs. Shrubs or trees, on the other hand, have woody, persistent shoots, which bear fruit repeatedly. Shrubs retain their lateral shoots. so that their branches are formed near the ground; trees, on the contrary, soon lose their lower lateral branches, and have a main stem or trunk, which bears a crown of branches and twigs.

In catalogues and descriptions of plants the duration of the period of growth is usually expressed by special symbols: thus - indicates an annual: O a biemial, and \because a perennial herb; Fis employed to designate both trees and shruhe, and for trees the sign $\%$ is also in use.

The Stem or Axis of the Shoot

According as the axis of a shoot remains herbaceous or becomes hard and lignified, a distinction is drawn between an herbaceous and a woody stem. A long leafless shoot arising from a rosette of radical leaves and producing only flowers is called a scape. The hollow jointed stems of the Gremineae are termed grass-haclas, and should be distinguished from the similar stems or haulms of the Juncaceae and Cyperaceae, which are monjointed and filled with light porous pith. Plants with short swollen stems, being apparently stemless, are described as acaulescent. The actual stem of such acaulescent plants may be thickly clothed with leaves throughout its entire length, as in the case of the Agare, or it may bear leaves only at its apex, as in the Cyclemen. Stems are also distinguished as round, elliptical, angular, etc., according to their appearance in cross-section.

The Leaf

Development of the Leaf.-The first appearance of the leaf as a lateral protuberance (Fig. 17,f) on the vegetative cone of the shoot has already been referred to (p. 18). In a transverse section through the apex of a shoot (Fig. 29), the origin of leaves as lateral

Fig. 29.-Apical view of the regetative cone of a shoot of Evonymus japonicus. ($\times 12$.) protuberances is more evident than in a longitudinal section. The embryonic leaf rudiment generally occupies but a small portion of the periphery of the vegetative cone ; it may, however, completely invest it. In like manner, when the mature leaves are arranged in whorls, the developing protuberances of the rudimentary leaves may, although this is not usually the case, form at first a continuous wall-like ring around the growing point; and only give rise later to the separate leaf rudiments. Leaves take their origin only from such parts of a plant as have remained in an embryonic condition. To this rule there are no exceptions. A leaf never arises directly from the older parts of a plant. In cases where it apparently does so its development has been preceded by the formation of a growing point of a new shoot. When it first appears on the vegetative cone a rudimentary leaf resembles an embryonic shoot, but a difference soon manifests itself, and the shoot rudiment develops a vegetative cone and lateral protuberances for the formation of leaves. The growing point of a shoot has usually an cNLIMITED GROWTH, while the growth of a leaf is Limited. A leaf usually continues to grow at its apex for a
short time only, and then completes its segmentation and development by intercalary growth. It is true that some leaves, as those of Ferns, not only continue growing for a long time, but also retain a continuous apical growth and complete their whole segmentation in acropetal succession. On the other hand, the leaf-like cladodes. although they are in reality metamorphosed shouts, exhibit a limited apical growth like that of ordinary leaves.

Leaving out of consideration the Ferns and a few related plants, the following observations in regard to the development of the leaf hold good for the majority of Cormophytes. The unsegmented protuberance of the still rudimentary leaf, termed by Eichler the phmomind leaf (Fig. 30, A, b), first projects from the regetative cone of the shoot $(-A, r)$. This is usually followed by a separation of the primordial leaf into the leafbase (! in -1 and b) and the rudimentary lamina or upper ieaf (0 in A and B). The leaf-base, or the part of the rudimentary leaf which immediately adjoins the vegetative cone, either takes no further part in the succeeding differentiation of the

Fit. 30.-Appex of an Elm shent, C゙lers mayetris. A, showing the regetative cone ; w th the rudiments of a yonng leaf. h, still unsezmented, and of the next Wher leaf, exhibiting sermentation iuto the lamiar rudiment, a, and leat-hase, $9: B$, showing the oller leaf, viewel fitm the sile. (x j-.) leaf, or it develops into a LeAf-sheath (ragina) or into strpters. The upper leaf, on the other hand, gives rise to the leaf-blade or LamiNa. If the fully-developed leaf possesses a LEAF-stalk (petiole), it becomes afterwards interposed by intercalary growth between the upper leaf and the leaf-base.

The metamorphosis of the leaf is exhibited in its greatest diversity by the leaves of Phanerogams, in which the various homologots leaf structures have been distinguished as scale leales, Folidie lealios, BRACTEAL LEAVEs, and FLORAL LEAVES.

Foliage Leaves, generally referred to simply as leares, are the leaf structures on which devolves the task of providing nourishment for their parent plants. As the exercise of this function is dependent upon the presence of a green pigment, foliage leaves have, accordingly, a green colour. In certain cases, where their form is extremely simple. as in the needles of Conifers, the primordial leaf simply increases in length without any further differentiation into parts. In other undivided leaves, howerer, whether lanceolate, elliptical, ovate, or otherwise shaped, the Hat leaf lamina is distinct from the leaf-base, while a leaf-stalk may also be interpolated between them. If no leaf-stalk is ilereloped the leaf is said to be sessile, otherwise it is described as ataliked.

The sessile leaves usually clasp the stem by a broad base. Where, as in the case of the Poppy (Papover somniferum) and of the different species of Bupleurum, the leaf-base surrounds or clasps the stem, the leaves are described as perfoliate. If the bases of two opposite leaves have grown together, as in the Honeysuckle (Lonicera Caprifolium), they are said to be connate. Where the blade of the leaf continues downwards along the stem, as in the winged stems of the common Mullein (Verbascum thupsiforme), the leaves are distinguished as decurrent. The petiole of a leaf merges either directly into the leaf-base, or it swells at its lower end into a leaf-cushion or pulvinus, and is thus articulated with the leaf-base. This is the case, for instance, with many of the Leguminosae (Fig. 213). The leaf-blade, in turn, may be either sharply marked off from the petiole, or it may be prolonged so that the petiole appears winged, or again it may expand at its junction with the petiole into ear-like lobes. A leaf is said to be entire if the margin of the leafblade is wholly free from indentations; otherwise, if only slightly indented, it is usually described as serrate, dentate, crenate, undulate, sinuate, or incised, as the case may be. When the incisions are deeper, but do not extend more than half-way to the middle of the leaf-blade, a leaf is distinguished as lobed or cleft according to the character of the incisions, whether more or less rounded or sharp; if the incisions are still deeper the leaf is said to be partite, and if they penetrate to the midrib or base of the leaf-blade it is termed divided. The divisions of the leaf-blade are said to be pinnate or paliate, according as the incisions run towards the midrib or towards the base of the leaf-blade. Where the divisions of the leaf-blade are distinct and have a separate insertion on the common leaf-stalk or on the midrib, then termed the spindle or rhachis, a leaf is spoken of as compound; in all other cases it is said to be smple. The single, separate divisions of a compound leaf are called leaflets. These leaflets, in turn, may be entire, or may be divided and undergo the same segmentation as single leaves. In this way double and triple compound leaves may be formed. The leaflets are either sessile or stalked ; and sometimes also, as in Robinia and Mimosa, their stalklets articulate with the spindle by means of swollen pulvini. The term pedate is applied to leaves on which segments are further divided on one side only, and the new segments are similarly divided. Variations in the outline of leaves, whether they are entire, serrate, dentate, crenate, incised, etc., as well as peculiarities in their shape and segmentation, are of use in the determination of plants. The venation or nervature of leaves is also taken into consideration, and leaves are in this respect described according to the direction of their so-called veins or nerves, as parallel veined or netted veined. In parallel venation the veins or nerves run either approximately parallel with each other or in curves, converging at the base and apex of the leaf (Fig. 31, s); in netted reined
leaves (Fig. 178) the veins branch off from one another, and gradually decrease in size until they form a fine anastomosing network. In leaves with parallel venation the parallel main nerves are usually united by weaker cross veins. Netted or reticulately veined leaves in which the side veins run from the median main nerve or midrib are further distinguished as pinnately veined, or as palmately veined when several equally strong ribs separate at the base of the leaf-blade, and give rise in turn to a network of weaker veins. Parallel venation is characteristic, in general, of the Monocotyledons; reticulate venation, of Dicotyledons. Monocotyledons have usually simple leaves, while the leaves of Dicotyledons are often compound, and are also more frequently provided with stalks. Many plants are characterised by the development of different forms of foliage leaves. Such a condition is known as heterophylly. Thus the earlier leaves of E'uculyptus ylobulus are sessile and oral, while those subsequently formed are stalked and sickle-shaped. In other cases the heterophyllous character of the leaves may represent an adaptation to the surrounding environment, as in the Water Crowfoot (Rumunculus uquatilis), in which the floating leaves are lobed, while those entirely submerged are finely divided.

The nerves or reins give to a leaf its necessary mechanical rigidity and render possible its thattened

Fiti. 31.-Part of stem and leaf o a grass. h, Haulm; r, leafsheath; k, swelling of the leafsheath abore the mode; s, part of leaf-blade; l, ligule. (Nat. size.) form. The branches of the veins parallel to the margin of most leares prevent their tearing : when there are no such marginal nerves in large thin leaves, the lamina is easily torn into strips by the wind and rain. This frequently happens to the leaves of the Banana (Musa), whieh, consequently, when growing moder natural conditions in the open air, presents quite a different apparance than when grown under glass. The leaves of the Banana, after becoming thms divided, offer less resistance to the wind. In a similar manner the leaves of Palms, although undivided in their bud state, become torn even during the process of their unfolding. A similar protection from injury is afforded to the Aroid (Monstera) by the holes with which its large leaf-blades become perforated. Equally advantageous results are secured by many plants whose leaves are, from their very inception, divided or dissected. The submerged leaves of aquatic plants, on the other hand, are generally finely divided or dissected, not only for mechanieal purposes, but also to afford a more complete exposure of the leaf surface to the water. Accordingly, in such water-plants as lionunculus aquatilis (Fig. 197), which possess both floating and submerged leaves, it is generally the latter only
that are dissected and filiform in character. The pointed extremity of the foliage leaves of many land plants, according to Stahl, facilitates the remoral of water from the leaf surface. Fleshy so-called succulent leaves, like fleshy stems, serve as reservoirs for storing water.

In Monocotyledons the leaf-base very often forms a sheath about the stem ; in Dicotyledons this happens much less frequently. In the case of the Gramineae, the sheath is open on the side of the stem opposite the leaf-blade (Fig. 31, r), while in the C'yperucene it is completely grown together. The sheath of the grasses is prolonged at the base of the lamina into a scaly outgrowth, the ligule. Such a sheath, while protecting the lower part of the internodes which remain soft and in a state of growth, gives them at the same time rigidity.

Stipules.-These are lateral appendages sometimes found at the base of leaves. When present they may be either small and inconspicuous, or may attain a considerable size. When their function is merely to protect the young growth in the bud, they are usually of a brown or yellow colour, and are not persistent ; whereas, if destined to become assimilatory organs, and to assist in providing nourishment, they are green, and may assume the structure and form of the leaf-blade, which sometimes becomes modified and adapted to other purposes (Figs. 35, 36). Normally, the stipules are two in number, that is, one on each side of the petiole. In many species of Gulium, where the stipules resemble leaf-blades, the leaf-whorls appear to be composed of six members, but consist actually of but two leaves with their four stipules, which may be easily distinguished by the absence of any buds in their axils. In other species of the same genus (Galium cruciatum and palustre) there are only four members in the whorls, as each two adjoining stipules become united. In many cases the stipules have the form of appendages to the enlarged leaf-base. Sometimes both stipules are united into a single one, which then appears to have an axillary origin; or the stipules may completely encircle the stem, and thus form a sheath about the younger undeveloped leaves. This sheath-like fusion of the stipules may be easily observed on the Indiarubber tree (Ficus elustica), now so commonly grown as a decorative plant. In this case the stipular sheath is burst by the unfolding of each new leaf and pushed upwards on the stem. In the Polygonaceae the stipular covering is similarly torn apart by the developing leaves, but then remains on the sten in the form of a membranous sheath (ochrea).

Scale Leaves possess a simpler structure than foliage leares, and are attached directly to the stem, without a leaf-stalk. They exercise no assimilatory functions, and are more especially of service as organs of protection. Scale leaves exercise their most important function as bud-scales; they are then hard and thick, and usually of a brown colour. They most frequently take their origin from the enlarged leaf-base; in that case the upper leaf either does not
develop, or exists only in a reduced condition at the apex of the scale. The true morphological value of scale leaves of this nature is very evident in the bud scales of the winter buds of the Horsechestnut (Aesculus Hippocustamum); for, while the onter seales show no perceptible indications of an upper leaf, small leaf-blades can be distinctly distinguished at the apices of the inner scales. In other cases the scale leaves are modified stipules, and are then also derived from the leaf-base; while, in other instances, they themselves form the enlarged, but still undifferentiated, primordial leaves. The bud scales of the Oak are the stipules of leaves in which the lamine are only represented by minute scales. Scale leaves, usually colourless and in various stages of reduction, are found on rhizomes (Fig. 21), bulbs (Fig. 23), and tubers (Fig. -1). On the aerial stems arising from such subterranean shoots the formation of similar scale leaves generally precedes the development of the foliage leaves, with which they are connected by a series of transitional forms.

Bracteal Leaves resemble scale leaves in form, and have a similar development. They act as subtending leaves for the floral shoots, and are termed bracts. They are connected with foliage leares by intermediate forms. Though they are not infrequently green they may be otherwise coloured, or even altogether colourless.

Floral Leaves.-The modified leaves which form the flowers of Phanerogams are termed floral leaves. In the highest development attained by a phaneroganic flower (Fig. 32), the successive floral leaves are distinguished as sepals (k), petals (c), stamens (a), and carpels (9). In most cases the sepals are green and of a firm structure ; the petals, on the other hand, are more delicate and variously coloured. The stamens are generally filamentous, and produce the pollen in special receptacles. The carpels more closely resemble scale leaves, and by closing together form receptacles within which the ovules are produced. The stamens and carpels of Phanerogams correspond to the spore-bearing

Fig. 3.--Flower of Fueon'a perarina. k, sepals : c, petals ; ", stamens: : 7 , carpels. Part of the sepmls. petals, and stamens have been removed to show the pistil, consisting of two separate carpels. (Half nat. size.) leaves of the Vascular Cryptogams. Such spore-bearing leaves are termed sporophylls, and even in the Vascular Cryptogams exhibit a greater or less departure from the form of other foliage leaves. It is evident that the scale and bracteal leaves are to be considered as rudimental foliage leaves, not
only from the mode of their development but also from the possibility of transforming them into foliage leaves. Goebel, by removing the growing tip and foliage leaves of a shoot, succeeded in forcing it to develop other foliage leaves from its scale leaves. Rhizomes, grown in the light, develop foliage leaves in place of the usual scale leaves, and even on a potato it is possible to induce the formation of small foliage leaves instead of the customary scale leaves.

Leaf-Scars.-After a leaf has fallen, its previous point of insertion on the stem is marked by the cicatrix or scar left by the fallen leaf. In winter, accordingly, when the trees are denuded of their leaves, the axillary buds are plainly perceptible above the leaf-scars.

The Metamorphosis of Foliage Leaves. - A form of slightly modified foliage leaves is seen

Fig. 33.-Nepenthes robusta. (1 nat. size.) in peltate leaves, or those of which the petioles are attached to their lower surfaces somewhat within the margin, as in the leaves of the Indian Cress (Tropaeolum mujus, Fig. 180). In the process of their development the young leafblades, in this case, grow not only in the same direction as the petioles, as a prolongation of them, but also horizontally in front of them. The tubular leaves of many insectivorous plants may have commenced their development in much the same way. The leaves of Nepenthes rolusta (Fig. 33), for example, in the course of adaptation to the performance of their special function, have acquired the form of a pitcher with a lid which is closed in young leaves, but eventually opens. The pitcher, as Goebel has shown, arises as a modification of the leaf-blade. At the same time the leafbase becomes expanded into a leaf-like body, while the petiole between the two parts sometimes fulfils the office of a tendril. By a similar metamorphosis of its leaflets, bladder-like cavities are
developed on the submerged leaves of (trimulurin (Fig. 34). The entrance to each bladder is fitted with a small valve which premits the ingress but not the egress of small water-animals. While such leares display a progressive metamorphosis, in other instances the modifications are of the nature of a reduction. A metamorphosis of the whole leaf lamina, or a part of it, into tendrils (lemf-tendrilis) is a comparatively frequent occurrence, especially among the Prpilimacent. In the adjoining figure of a Pea leaf (Fig. 3.5), the upper pair of leattets have become transformed into delicate tendrils which have the power of

Fig. 34.-L゙triculeria rulgeris. A, Part of leaf with several blatders ($\times 2$ 2). 1 , single jimmle of leaf with bladiler ($\times 6$). $C^{\prime}(\operatorname{after}$ Goebel), Longitudinal section of a bladiler ($\times 20$) ; r, valve; \cdots. wall of bladder ; J, cavity of bladder.
twining about a support. In the case of the yellow Vetchling, Lathurru. Aphuca (Fig. 36), the whole leaf is reduced to a tendril and the function of leaf-blade is assumed by the stipules (n). A comparison between these two forms is phylogenetically instructive, as it indicates the steps of the gradually modifying processes which have resulted in the complete reduction of the leaf lamina of Luthyrus. But, for still other reasons, the last case deserves attention, as it shows clearly the morphological distinction between leaf and stem tendrils, and emphasises the value of comparative morphological investigation.

In Lathyrus Aphaca the stipules assume the function of the metamorphosed leaf laminæ; in other instances, as in the case of the Australian Acacias (Fig. 48, 7, 8, 9), it is the leaf petioles which, becoming flattened and leaf-like in appearance, supply the place of the undeveloped leaf-blades. Such a metamorphosed petiole is called a

PHYLLODE, and, except that it is expanded perpendicularly, exactly resembles a cladode. From the latter, however, it is morphologically different, for the one represents a metamorphosed petiole, the other a metamorphosed shoot. In accordance with this distinction phyllodes

Fig. 35.-Portion of stem and leaf of the common Pea, Pisum sativum. s, Stem ; n, stipules; b, leaflets of the compound leaf; r, leaflets modified as tendrils; a, floral shoot. ($\frac{1}{2}$ nat. size.)

Fic. 36.-Lathyrus Aphaca. s, Stem; n, stipules; l, leaf-tendril. ($\frac{1}{2}$ nat. size.)
do not, like cladodes, spring from the axils of leaves. Just as stems become modified into thorns (Fig. 28), by a similar metamorphosis leaves may be converted into leaf thorns. Whole leaves on the main axis of the Barberry (Berberis vulgaris) become thus transformed into thorns, usually three, but in their character of

Fig. 37.--Part of stem and compound leaf of Robinia Pseudacacia. n, Stipules modified into thorns; g, leaf-cushion. ($\frac{1}{2}$ nat. size.) leaves still give rise to axillary shoots provided with foliage leaves. By a similar metamorphosis, the two stipules of the leaves of the common Locust (Robinia Pseudacacia) become modified into thorns, while the leaf lamina persists as a foliage leaf (Fig. 37). In addition to stem and leaf thorns, many plants are provided with other outgrowths of similar appearance, which are often wrongly called thorns ; but as they have, in reality, an altogether different morphological origin, they are more correctly termed prickles. The prickles so characteristic of the Rose and Blackberry belong to the same category as hairs, and in no way represent metamorphosed segments of the plant body. Like hairs, they are also superficial outgrowths (EMERgences). They have no definite fixed relation to the external segmentation of a plant, but arise from any part of its surface.

Prickles vary considerably in number, they are not arranged in any definite manner, and in some cases are entirely absent.

Vernation and Estivation.-A section through a winter bud shows a wonderful adaptation of the rudimentary leaves to the narrow space in which they are confined (Fig. 38). They may be so disposed that the separate leaves are spread out flat, but more frequently they are folded, either cross-wise or length-wise on the midrib) (conduplicate), or in longitudinal plaits, like a fan (plaited, plicate): or they may be crumpled with no definite arrangement of the folds; or each leaf may be rolled, either from the tip downwards (circinate) or longitudinally, from one margin to the other (convolute), or from both margins towards the midrib, either outwards (revolute) or inwards (involute, Fig. 38, l). The manner in which each separate leaf is disposed

Fig. 38.-Transverse section of a bud of Populu: nigru. k, Bud-scales showing imbricated astivation ; l, foliage leaves with involute vernation; s, each leaf has two stipules. ($\times 15$.)

Fig. 30.-Transverse section of a leaf-bul of Tsugu cunadensis, just below the apex of the shoot, showing a is divergence. (After Hofmeistfr.)
in the bud is termed rervation. On the other hand, the arrangement of the leaves in the bud with respect to one another is designated Estivation. In this respect the leaves are distinguished as free when they do not touch, or valvate when merely touching, or imbricated, in which case some of the leaves are overlapped by others (Fig. 38, k). If, as frequently occurs in flower-buds, the margins of the floral leaves successively overlap each other in one direction, obliquely or otherwise, the restivation is said to be contorted.

The Arrangement of Leaves. - In all erect elongated shoots, and still more so in dwarf shoots, it is apparent that there is a marked regularity in the arrangement of leaves. This regularity may be most easily recognised in cross-sections of buds (Fig. 39), particularly in sections showing the apex of the vegetative cone (Fig. 29). From such an apical section it is easily seen that the regularity in the
order of arrangement of the rudimentary leaves is determined by their conformity with the position of the older leaves on the vegetative cone, and the consequent necessity of utilising the remaining free space. Thus, the position of newly developing leares is influenced by those already existing, while their formation is the result of internal causes. After the rudiments of the new leares have become protruded from the vegetative cone, they come in direct contact with the older leaves, and may then, as Schwendener has shown, become) displaced through the consequent mutual pressure, by which corresponding changes in their ultimate position may be effected. If the axis does not grow in length, but only in thickness, as the rudimentary leaves increase in size, their points of insertion will be displaced laterally by longitudinal pressure ; if the axis increases in length, and not in thickness, the insertion of the leaves will be displaced by a transverse pressure. The arrangement of the leaves would also be affected by any increase or decrease in the size of the regetative cone, unaccompanied by a corresponding increase or cessation of the growth of the rudimentary leares. Abrupt changes in the usual position of the leaves may also be occasioned by the torsion of their parent stem. Thus, the leaves of Pandanus first appear in three straight rows on the vegetative cone, and their subsequent spiral arrangement, according to Schwendener, results from the torsion of the stem. An irregular arrangement of the leaves, such as occurs, for example, on the flower-stalk of the Crown Imperial (Fritilluria imperialis), may result from the unequal size of the leaves at the time of their inception on the regetative cone.

A frequent mode of arrangement of foliage leaves is the decussate, in which two-leaved whorls alternate with each other (Fig. 29). A whorled arrangement is characteristic of floral leaves. When the number of leaves in each whorl is the same the

Fig. 40.-Diagram of a Liliaceous flower. The main axis is indicated by a black dot, opposite to which is the bract. whorls usually alternate. On the other hand, the number of members in the different whorls of floral leaves will often be found to vary greatly; or a whorl, the existence of which would be expected from the position of other whorls and from a comparison with allied plants, may be altogether wanting. In this connection a comparison of the flowers of the Liliaceae and Iridaceae will be instructive. The flowers of the Litiaceale (Fig. 40) are composed of five regularly alternating, three-leaved whorls or cycles, riz. a calyx and a corolla (each consisting of three leaves, and on account of their similar appearance usually referred to conjointly as the PERIANTH), an outer and an inner cycle of stamens, and finally, in the centre of the flower, an ovary of three carpels. In the flowers of the Iriduceae (Fig. 41)
the arrangement is exactly similar, except that one whorl, that of the inner cycle of stamens, is lacking, but the three carpels are situated exactly as if the missing cycle of stamens were present. From this similarity of arrangement, despite the absence of the one cycle of stamens, the conclusion has been drawn that, at one time, the inner row of stamens was actually present, but has now disappeared. In constructing a thforeticil. diagram of the Iriducate the missing cycle of stamens is indicated by some special sign (hy crosses in Fig. 41); a diagram in which theoretical suppositions are not taken into consideration is called an empirical dhagam. Diagrams showing the alternate arrangement of leaves, in cases where only a single leaf arises from each node, may he constructed by projecting the successive nodes

F1s. 41. - Therretical dauran! f the flow r of the Iris. The abo. shit cycletfotamess is inficetel hy crisises. of a stem upon a plane by means of a series of concentric circles, on which the position of the leaves may the indicated (Fig. 42). The angle made by the intersection of the median planes of any two successive leaves is called their Diveriexce,

Fig. 42.-Diagram showin! 产 position of leaves. The leaves numbered according to their genetic sequence.

Fic. 43.-The $\frac{2}{5}$ prosition on the out-prearl surface of the axis. U, Orthostichies; a^{\prime}, 1arastichies. The leaves are numbered aceording to thpir cenetic sequence.
and is expressed in fractions of the circumference; for example, in case the angular divergence between two successive leaves is $1 \because 0$. their divergence is expressed by the fraction $\frac{1}{3}$. In the adjoining diagram (Fig. 42) a $\frac{2}{5}$ divergence is indicated. Where the lateral distance between two successive leaves is $\frac{2}{3}$ of the circumference of the stem, the sixth leaf is above the first, the seventh above the second,
and so on. The leaves form on the axis five vertical rows, which are spoken of as orthostichies. Where the leaves are very much crowded, as in dwarf-shoots, a set of spiral rows called Parastichies, due to the contact of the nearest laterally adjacent members, becomes much more noticeable than the orthostichies. If the surface of such an axis be regarded as spread out horizontally, the parastichies become at once distinguishable (Fig. 43), and it will be evident that the sum of the parastichies cut by every cross-section through such an axis must equal the number of the orthostichies. On objects like pine cones, in which the parastichies are easily recognised, they may be used to determine the leaf arrangement. The most common divergences are the following, $\frac{1}{2}, \frac{1}{3}, \frac{2}{5}, \frac{3}{8}, \frac{5}{13}, \frac{8}{21}, \frac{1}{3} \frac{3}{4}$, etc. In this series it will be observed that in each fraction the numerator and denominator are the sum of those of the two preceding fractions. The value of the different fractions varies, accordingly, between $\frac{1}{2}$ and $\frac{1}{3}$, while always approaching a divergence angle of $137^{\circ} 30^{\prime} 28^{\prime \prime}$. The frequent recurrence of the divergence angles, expressed by the fractions of this series, is, no doubt, due to the fact that by such arrangements of the leaves, the space available is utilised to the best advantage, and with the least possibility of mutual hindrance in the performance of the assimilatory functions. If a line be drawn on the surface of a stem, so as to pass in the shortest way successively through the points of insertion of every leaf, a spiral called the GENETIC SPIRAL will be constructed. That portion of the genetic spiral between any two leaves directly over each other on the same orthostichy is termed a cycle. Where the divergence is $\frac{2}{5}$, a cycle will accordingly include five leaves, and will in such a case have made two turns about the stem. An attempt has been made to trace spirals even where the leaves are arranged in whorls, but now that the genetic causes controlling such leaf arrangements are understood, such a procedure seems rather superfluous. It is, moreover, no longer attempted to extend the spiral theory to dorsiventral shoots ; since it is now known that this arrangement of the leaves is due, not to an ideal spiral law, but to mechanical causes regulating their development. The tips of dorsiventral shoots are frequently coiled ventrally inwards, bearing their leaves either dorsally or on the sides, but, in the latter case, more on the dorsal than ventral surface. The creeping stems of many Ferns or the flower-bearing shoots of Forget-me-not (Myosotis) are good examples of such dorsiventral shoots. The line joining successive leaves in such cases is, at the best, but•a zigzag.

The Root

The third member of the plant body of Cormophytes, in its typical development as an Underground root, shows but little varia-
tion. This regularity of form is due to the uniformity of the conditions to which roots are exposed in the gromud, for AERLAL Roors, which are for the most part restricted to the moist climate of the tropics, exhibit a much greater tendency to modification. The covered vegetative cone and the inability to develop leaves are characteristic of roots, and furnish an easy means of distinguishing them from underground shoots. A ROOT-CAP or CALYPTRA affords the vegetative cone of a root the protection that is provided to the apex of a stem by the rudimentary leaves. Although, generally, the existence of a root-cap is only disclosed by a median, longitudinal section through the root-tip, in some roots it is plainly distinguishable as a cap-like covering. The very noticeable caps on the water roots of Duckweed (Lemmu) are not, in reality, root-caps, as they are not derived from the ront, but from it sheath which envelops the rudimentary root at the time of its origin. They are accordingly termed Root-Pockets (Fig. 415, ut). As a general rule, however, roots without root-caps are of rare occurrence, and in the case of the Duckweed the root-pockets perform all the functions of a root-cap. The short-lived roots of the Dodder (p, 2.) afford another example of roots devoid of root-caps. Characteristic of roots are also the Root-hains (Fig. 47, r), which are found at a short distance from their apices. As the older root-hairs die at the same rate that the new ones are developed, only a small portion of a root is provided with root-hairs at the same time. In other respects, roothairs, like prickles, show no regularity in their individual position or number. In some few instances roots develop no root-hairs; this is true of the roots of many Conifers, and of most aerial roots.

Branching of the Root.-Just as a shoot may become bifurcated by the division of its growing point (Fig. 18), so a root may become similarly branched. For the most part, this mode of branching takes place only in the roots of Lycoporliaceae, the shoots of which are also dichotomously branched (p. 19). The branching of roots usually occurs in acropetal succession, but the lateral roots (Fig. 47, su) make their appearance at a much greater distance from the growing point of the main root, than lateral shoots from the apex of their parent stem. By reason of the internal structure of their parent root, lateral roots always develop in longitudinal rows (Fig. 47). They are of endogenous origin, and before reaching the surface must break through the surrounding and overlying tissue of the parent root, by the ruptured portions of which they are often invested, as with a collar.

Adventitious roots, just as adventitious shoots, may arise from any part of a plant. They are especially numerous on the underside of rhizomes (Fig. 21,w), and also, when the external conditions are at all favourable, they seem to develop very readily from the stem nodes. A young shoot, or a cutting planted in moist soil, quickly forms adventitious roots, and roots may also arise in a similar manner from leaves, especially from Begonia leaves. The origin of adventitions roots,
as of all roots, is endogenous. Dormant root rudiments occur in the same manner as dormant buds of shoots. The ease with which willows are propagated from shoots is well known, and is due to the promptness with which they develop adventitious roots from apparently

Fig. 44.-Root-tubers of Dahlia variabilis. s, The lower portions of cut stems. ($\frac{1}{5}$ nat. size.) latent embryonic tissue, when the requisite conditions of moisture and darkness are fulfilled.

The Metamorphosis of the Root.-The customary nomenclature for the various root forms is based on their shape, size, and mode of branching. A root which is a prolongation downwards of the main stem is called the main root or TAPROOT ; the other roots are termed, with reference to the tap-root, LATERAL ROOTS of different orders, according to the order of their development. The roots may enlarge and become turnip-shaped or tuberous (Fig. 44). Such tuberous growths often greatly resemble stem tubers, but may be distinguished from them by their root-caps, by the absence of any indications of leaf development, and by their internal structure.

The tubers of the Orchiduccue exhibit, morphologicaliy, a peculiar mode of formation. They are, to a great extent, made up of fleshy, swollen roots, fused together and terminating above in a shoot-bud. At their lower extremity the tubers are either simple or palmately segmented. In the adjoining figure (Fig. $45)$ both an old $\left(t^{\prime}\right)$ and a young tuber $\left(t^{\prime \prime}\right)$ are represented still united together. The older tuber has produced its flowering shoot (b), and has begun to shrivel and dry ulp; a bud, formed at the base of the shoot, in the axil of a scale leaf (s), has already developed the adventitious roots, which, swollen and fused together, have given rise to the younger tuber.

The aerial roots of tropical Epiphytes differ considerably in their structure from underground roots. The aerial roots of the Orchidaceae and of many Aroidere are provided with a spongy sheath, the velamen, by means of which they are enabled to absorb moisture from the atmosphere. Aerial roots, in some cases, grow straight downwards, and upon reaching the ground, branch and function as nutritive roots for the absorption of nourishment ; in other instances, they turn from the light, and, remaining comparatively short and unbranched, fasten themselves as climbing roots to any support with which they come in
contact. The climbing roots of many Orchids, Aroids, and Ferns branch branches penetrate as special outgrowths of the climbing roots. Pendent aerial roots generally contain chlorophyll. In the Orchid Anyrucum globulosum the task of nourishing the plant is left entirely to the aerial roots, which are then deroid of a velamen, and very much flattened. They are distinctly green-coloured, and supply the place of the leaves which lose their green colour and are reduced to scales.

The aerial roots of the epiphytic Bromeliaceac are developed exclusively as climbing roots, while the leaves function not only as assimilating organs, but also assume the whole task of water-absorption. All the aerial roots of Epiphytes are, so far as their origin is concerned, adrentitious.

The numerous adrentitious roots which form a thickly-matted covering on the trunks of Tree-

Fig. 4. - O. hi: latif:in. '. The oll ront-tuber : $t^{\prime \prime}$. the youns root-tuber: h. Horal shont: s. seale leaf with axillary bul. l, from which the new tuber has arispu: : molinary alsentitious ronts. (1, nat. size.) ferns become hard after death, and serve as organs of protection. In some Palms (Acanthorrhiza, Iriartea) the adventitious roots on the lower part of the stem become modified into thorns, foot-thonss. The root- of certain tropical plants, such as Pandanus and the swamp-inhabiting Mangrove trees, are specially modified. These plants develop on their stems adrentitious ronts, which grow obliquely downwards into the ground, so that the stems finally appear as if growing on stilts. The Banyan trees of India (Ficus Intica) produce wonderful root-supports from the under side of their branches, upen which they rest as upon columns. The lateral roots of certain Mangrove trees become modified as peculiar breathing organs, and for this purpose grow upwards into the air out of the swampy soil or water in which the trees grow; they then become greatly swollen or flattened, and provided with special aerating passages. Such respira. toni or aeratisg moots surround the Mangrove trees like vigorous Asparagus stalks, and enable the roots growing below in the mud to carry on the necessary exchange of gases with the atmosphere.

The roots of parasites usually undergo a far-reaching reduction. The roots of the Dodder (Cuscuta) form wart-like excrescences (Fig. 18.5, H) at the point of contact with their nourishing host, which they finally penetrate. They draw nourishment from the host plant, and are consequently termed suction roots or hatstoria; such haustoria divide within their host into single threads, and from each thread a new parasitic plant may be formed. The immense flowers of Rafflesia -Arnoldi, which spring directly from the roots of Cissuls, owe their origin to similar haustoria. The reduction of the roots may extend to such a degree that, in many plants, no roots are formed. It has been already mentioned (p. 23) that in the case of Corulliurthisa imata (Fig. 22) the rhizome assumes all the functions of the
roots, which are entirely absent. Also in many aquatics, Sulrinia, HFolficu artiza, C"triculariu, Ceratophullum, roots are altogether absent.

The Ontogeny of Plants

Just as in the phylogenetic development of the regetable kingdom there is an evolution from simpler to more complex forms. so each plant in its ontogeny passes through a similar process of evolution. The study of the ontogenetic development of a plant is termed embriolegr. A young plant, in its rudimentarr, still unformed condition, is called an embrio or Germ ; and the early stages of its detelopment are spoken of as germintion. As a rule, the embryo. in the beginning of its derelopment, is microscopic and of a spherical form. In a lower organism this condition may continue from the beginning to the end of its development, as is the case in Glocecorpsa polydermatica (Fig. 1, p. 11): or the development may proceed further to the formation of filamentous, ribbon-like or cylindrical bodies. If the future plant is to have a growing point, a part of the germ substance is retained in itembryonic condition, and further development proceeds from this embryonic substance. In the more highlr-organised plants the different members arising from the growing point only gradually attain that degree of development characteristic of the particular plant. The plant must develop and attain maturity, and it is not until it has accomplished this that certain portions of the embreonic substance of the growing point are appropriated to the production of new embrros.

The different generations arising from an embryo of a plant mar exactly resemble each other, or an ALTERNATION OF GENERATION- may occur, in which case each succeeding generation is unlike its immediate predecessor. As a general rule, the alternate generations are equiralent, although this is not necessarily the case. One of the alternating generations is usually sexually differentiated. that is, its reproductive cells are only capable of derelopment after a fusion with other reproductive cells. This process of the fusion of two sexually differentiated cells is called fertilisation, and its product a fertilised egg. The asexual generation, on the contrary, produces reproductire cells, termed spupes, which require no fertilisation before germinating. In the case of the Thallophytes, the alternation of generations is often extremely complicated by the irregularity of the recurrence of the different generations, and br the interposition of other modes of reproduction, not in line with the regular succession of generations. In the Cormophytes, however, asexual and sexual generations regularly alternate, and consequentle, whenever an alternation of generation occurs, more than one generation is requisite to complete a crcle in the development of a species. Accordingly, in the conception of a species, two or more individuals are included. These indiriduals may exist separately and distinct from each other, or ther may be so
united as to appear but a single organism ; as, for example, in the Mosses, where the spore-producing generation lives upon the sexual plant, or as in Phanerogams, where, conversely, the sexual generation completes its development within the asexual plant.

In Phanerogams, owing to the formation of the embryo within seeds, that stage of the development of a plant which is termed germination is clearly defined; for not until the seed is completely

Fig. 46. Thuja occidentelis. A, Median longitudinal section through the ripe seed $(\times 5) ; B, C(\times 2)$; L, E (nat. size), different stages of serminaion ; h, hypocotyl ; c, cotyledons ; r, radicle; r, vegetative cone of stem.

Fisc. ti.--secdling of Carpinus. Betulus. h, Hypocotyl ; c, cotyledons; he, main runt : sure, lateral roots ; r, root-hairs ; ρ, epicotyl; l, l ', foliage leaves. (Nat. size.)
formed does the newly-formed plantlet begin its independent existence. The embryo, while still enclosed within the seed, generally exhibits the segmentation characteristic of Cormophytes. Protected by the hard seed-coats, it is enabled to sustain a long period of rest. Abundant deposits of nutritive material in the embryo itself, or surrounding it, are provided for its nourishment during germination. The different segments of a phanerogamic embryo have received distinctive names; thus, as in the embryo of the American Arbor Vitae (Thuja accidentalis, Fig. 46), the stem portion (h) is termed the HyPO-

COTYL, the first leaves (c) are the seed leaves or cotyledons, while the root (r) is distinguished as the Radicle. The tap-root of the fullydeveloped plant is formed by the prolongation of the radicle. In Fig. 47 a germinating plantlet of the Hornbeam (Curpinus Betulus) is shown with its hypocotyl (h) and both cotyledons (c); but its radicle has already developed into a tap-root (luw) with a number of lateral roots $(s w)$. An internode and foliage leaf (l) have been produced from the vegetative cone of the stem; while the next higher internode is also distinguishable, but has not yet elongated, and a second foliage leaf $\left(l^{\prime}\right)$ is unfolding.

A highly organised plant, which begins its development with the simplest stages and gradually advances to a higher state of differentiation, repeats in its ontogeny its phylogenetic development. In the process of its ontogenetic development much has been altered, and much omitted, so that it presents but an imperfect picture of its past history ; nevertheless, this representation is valuable, and, next to comparative methods, furnishes the most important source of morphological knowledge. Whatever is true of the development of

Fig. 48.-Seedling of Acacia pycnantha. The cotyledons have been thrown off. The foliage leaves $1-4$ are pinnate, the following leaves bipinnate. The petioles of leaves 5 and 6 are vertically expanded; and in the following leaves, $7,8,9$, modified as phyllodia, with nectaries, n. (\times circa $\frac{1}{2}$.) a plant from the embryo is also, as a rule, applicable to its further growth from the growing point, and, consequently, a knowledge of the mode of development at the growing point is of great importance in detecting homologies. The earlier a characteristic makes itself apparent in the embryo, or the nearer it is to the growing point of the old plant, so much the greater is its value in determining the general relationships existing between the different plants ; the later it is exhibited in the embryo, or the farther removed it is from the growing point of the plant, the less its general value, but the greater, in proportion, its importance in defining the character of a genus or species. From the fossil remains of former geological periods, it is safe to conclude that such Conifers as Thuja, Biota, and the various

Junipers, that now have scale-like compressed leaves, hare been derived from Conifers with needle-shaped leaves. This conclusion is further confirmed by the fact, that on the young plants of the scaly-leared Conifers typical needle-shaped leaves are at first developed. The modified leaf forms do not make their appearance until the young plant has attained a certain age, while in some Junipers needle-shaped leaves are retained thronghont their whole existence. Eren still more instructive are the Australian Acacias, whose leaf-stalks become modified, as phyllodia (p. 35), to perform the functions of the reduced leaf-blades. The proof for such an assertion is furnished by a germinating plantlet of Acaciu pycnunthu (Fig. 4®), in which the first leaves are simply pinnate, and the succeeding leaves bipinnate. In the next leaves, although still compound, the leaf-blades are noticeably reduced, while the leaf-stalks have become somewhat expanded in a perpendicular direction. At length, leaves are produced which possess only broad, flattened leaf-stalks. As many other species of this genus are provided only with bipimnate leares, it is permissible on such phylogenetic gromend to conclude that the Australian Acacias have lost their leaf-blades in comparatively recent times, and have, in their stead, developed the much more resistant phyllodes as being better adapted to withstand the Australian climate. The appearance, accordingly, of the phyllodes at so late a stage in the ontogenetic development of these Acacias is in conformity with their recent origin. It may, in like manner, be shown that in the case of plants with similarly modified leaf forms, the metamorphosis of the leaves does not take place until after the cotyledons and the first foliage leares have been developed, and it is then usually effected by degrees.

II. INTERNAL MORPHOLOGY

(Histology and Anatomy)

The Cell

All plants, as all animals, are composed of elementary orcans called cells. In contrast to animal cells, typical regetable cells are surrounded by firm walls, and are thus sharply marked off from one another. In fact, it was due to the investigation of the cell walls that the cell was first recognised in plants. An English micrographer. Robert Hooke, was the first to notice regetable cells. He gave them this name in his Microgruphia in the year 1667, because of their resemblance to the cells of a honeycomb, and published an illustration of a piece of bottle-cork having the appearance shown in the adjoinins figure (Fig. 49). Robert Hooke, however, was only desirous of ex-
hibiting by means of different objects the capabilities of his microscope ; consequently, the Italian, Marcello Malpighi, and the Englishman, Neheniah Grew, whose works appeared almost

Fig. 49.-Copy of a part of Hooke's illustration of bottle-cork, which he entitled Schematism or texture of cork. simultaneously a few years after Hooke's Micrographia, have been regarded as the founders of vegetable Histology. The living contents of the cell, the real body or substance, was not recognised in its full significance until the middle of the present century. Only then was attention turned more earnestly to this study, which has since been so especially advanced by Meyen, Schleiden, Hugo v. Mohl, Nägelt, Ferdivand Cohn, Pringshein, and Max Schultze.

If an examination be made of a thin longitudinal section of the apex of a stem of a phanerogamic plant, with a higher magnifying power than that used in the previous investigation (Fig. 17) of the vegetative cone, it will be seen that it consists of nearly rectangular cells (Fig. 50), which are full of protoplasm and separated from one another by delicate walls. In each of the cells there will be clearly distinguishable a round body (k), which fills up the greater part of the cell cavity. This body is the cell nucleus. If sections, made in different directions through the vegetative cone, be compared with one another, it will be seen that its component cells are nearly cubical or tibular, while the nuclei are more or less spherical or disc-shaped. The finely granular substance (cy) filling in the space between the nucleus (k) and the cell wall (m) is the cell plasar or cytoplasm. Recent investigations have shown that two extremely small, colourless

Fig. 50.-Embryonic cell from the vegetative cone of a phanerogamic plant. k, Nucleus; $k w$, nuclear membrane; n, nucleolus; c, centrospheres; cy, cytoplasm ; ch, chromatophores; m, cell wall. (Somewhat diagrammatic, \times circa 1000.) bodies lie in the cytoplasm, near the nucleus. These are the centrospheres or attraction spheres (cs). In addition to these there are to be found, about the nucleus, an indefinite number of somewhat larger bodies, which are also colourless and highly refractive ; these are the pigment-bearers or chronatophores (ch). Nucleus, centrospheres, cytoplasm, and chronatophores, constitute the elements of the living body of a typical vegetable cell. To designate all these collectively, it is customary to use the term Protoplasm, which is then to be understood as including all the living constituents of a cell.

Protoplasm does not show the same degree of internal differentiation in all vegetable organisms. The protoplasm of the Fungi has no
chromatophores. In the protoplasm of the lowest plants, the Fission plants or the Schizophytes, the internal differentiation does not seem to have progressed to the same extent as in the more highly organised plants.

The protoplasm of animal cells, on the other hand, is devoid of chromatophores. While animal cells usually remain continuously filled with protoplasm, vegetable cells soon form large sap cavities. It is only the embryonic cells of plants that are entirely filled with protoplasm, as the cells, for example, of an ovule or of a growing point; they afterwards become larger and contain proportionally less protoplasm. This can be seen in any longitudinal section through a. stem apex. At a short distance from the growing point the enlarged cells have already begun to show cavities or vacloles (v in A, Fig. 51) in their cytoplasm. These are filled with a watery fluid, the cell sap. The cells contimue to increase in size, and usually soon reach a condition in which their whole central portion is filled by a single, large sap carity (v in B, Fig. 51). This is almost always the case when the increase in the size of the cell is considerable. The cytoplasm then forms only a thin layer lining the cell wall, while the nucleus takes a parietal position in the peripheral cytoplasmic layer. At other tines, however, the sap cavity of a fully-developed cell may be traversed by bands and threads of cytoplasm ; and in that case the nuclens is suspended in the centre of the cell. But whatever position the nucleus may occupy, it is always embedded in cytoplasm ; and there is always an unbroken peripheral layer of cytoplasm lining the cell wall.

This cytoplasmic peripheral layer is in contact with the cell wall at all points, and, so long as the cell remains living, it continues in that condition. In old cells, however, this cytoplasmic layer frequently becomes so thin as to escape direct observation, and is not perceptible

Fig. 51. - Two cells taken at different distances from the growing point of a phaneroganic shoot. k, Nuclens; cy, eytoplasm; r, vactoles. represented in B by the sal' cavity. (*)mewhat liagranmatic, \times cirea $s n 0$.) until some dehydrating reagent, which canses it to recede from the wall, has been employed. Such a thin cytoplasmic peripheral layer has been described by Hugo v. Mohl under the name of primorimal utricle.

As a rule, every living vegetable cell has a nucleus.
Dead cells lose their living protoplasmic contents, and, strictly speaking, should no longer be termed cells, although the name was first applied to them when in that condition. In reality they represent only cell cavities. With their death, however, cells do not lose their importance to a plant. Without such cell cavities a plant could not exist, as they perform for it the office of water-carriers, while at the same time exercising other functions. The necessary rigidity of a plant is also dependent, to a great extent, on the mechanical support afforded by a framework composed of dead cells. Thus the heart of a tree consists exclusively of the walls of dead cells.

The Protoplasm.-We naturally begin with that substance which constitutes the living plant body, the Protoplasm, also more shortly designated the Plasma. In order to facilitate an insight into the real character of protoplasm, attention will first be directed to the Slime Fungi or fungus animals (Myxomycetes), a group of organisms which stand on the border between the animal and vegetable kingdoms. These Myxomycetes are characterised at one stage of their development by the formation of a plasmodiun, a large naked mass of protoplasm.

The plasmodium is formed from the protoplasm of the spores. These spores are unicellular bodies (Fig. 52, a, l), filled with cytoplasm, in which lies a central nucleus, and are surrounded by tenacious cell walls. The spores germinate in water, their contents, breaking through the spore walls, come out (c, d) and round themselves off. A change of form soon takes place; the protoplasmic mass elongates and assumes somewhat the shape of a pear, with the forward end prolonged into a fine whip-like process or flagellum (e, f, g). Thus the contents of the spore have become transformed into a swarm-Spore, which now swims away by means of whip-like movements of its flagellum.

In addition to the nucleus, which is visible in the front end of every swarm-spore, a vesicle may be seen at the other end, which, after gradually increasing in size, suddenly vanishes, only to swell again into view. This vesicle is a contractile vacuole. The presence of such a contractile vacuole in an organism was formerly considered a certain indication of its animal nature. Now, however, contractile vacuoles have been observed in the swarm-spores of many green Algae, of whose vegetable nature there can be no doubt.

The swarm-spores of the Myxomycetes soon lose this characteristic swarm-movement, draw in their flagella, and pass into the amoeba stage of their development, in which, like animal amœbæ, they assume irregular, constantly changing shapes, and are capable of performing only amoboid creeping movements. In the case of Chondiooderma difforme, a Myxomycete of frequent occurrence in rotting parts of plants (Fig. 52), a number of the amobre eventually collect together (l) and coalesce. In this way, as is also the case with
most other Myxomycetes, the amour ultimately give rise to a platmodium (n).

Although each one of the amoure is so small that it can only he seen with the aid of a microscope, the plasmodium into which they become united may attain a size large enough to be measured in centimetres.

Fig. 52.-C'houtriolerma difforme. u, Dry, shrivelled spore; b, swollen spore; c and d, spores showing escaping contents ; c, f, g, swarm-spores ; h, swarm-spore changing to a myxoamela ; $i, y o m n g e r, k$, older myxoameba; l, myxoamober about to fuse ; m, small plasmodium ; n, portion of fully-developed plasmodium. ($11-m, \times 540: n, \times!0$.

In a single amoeba of the Myxomycetes, and still better in a plasmodium, it can be seen that the fundamental substance of the cytoplasm is hyaline and viscid. This fundamental substance is called hyaloplasm. The hyaloplasm is denser on the surface of the plasmodium, entirely free from granules, and forms a homogeneous superficial layer, sometimes referred to as the protoplasmic membrane. In the
interior, on the other hand, the hyaloplasm is thin and fluid-like, it contains numerous granules, and is then designated granular plasm. In the granular plasm will be found the nuclei of the rarious amoebre from which the plasmodium has been formed.

The granular plasm of plasmodia exhibits streaming movements, as of different commingling currents, and affords a good example of the internal movements commonly shown by living protoplasmic masses. Thus, in addition to the flagellar or ciliapy motemeets, by means of which, as was observed in the swarm-spores of Chomuliomlemul, a change of position is effected through the whip-like motion of fine cytoplasmic threads, and the creeping ameboid movements, such as were also exhibited by Chrondriodermea in the amceba stage of its development, there may also be recognised, as in the case of the plasmodium, internal protoplasmic motements. A plasmodium is also capable of creeping movements. It sends out new protrusions, and draws in others previously formed. If two protrusions meet, they unite to add a new mesh to the network of the plasmodium (in, Fig. 52). The riscous structureless superficial pellicle of hyaloplasm exhibits only creeping movements, while internal protoplasmic movements also take place in the more fluid granular plasm. Thus the granular plasm is continually flowing in irregular currents, alternately towards or away from the surface of the plasmodium.

The plasmodium is able to surround and take within itself foreign bodies. These are then enclosed in racuoles and, as far as possible, digested. The granular plasm seems to be separated from the racuoles by a pellicle of hyaloplasm, similar to that on the surface of the plasmodium.

Protoplasmic bodies, or Protoplasts, enclosed by cell walls, likewise separate themselves by a similar hyaloplasmic pellicle from the cell walls and sap carities, and all other vacuoles. The granular plasm is accordingly enclosed on all sides by hyaloplasm, while the cell nucleus, with its centrospheres and chromatophores, alwars lies embedded in the granular plasm.

Within the walled protoplasts, the granular protoplasm often exhibits internal flowing movements. Such movements are especially noticeable when, by a wound, such as might result from a cut in preparing a section, a stimulus is given to the protoplasm. In cells in which the protoplasm forms only a peripheral layer, there may frequently be observed a movement in a continuously circling direction; this is known as rotatios. If, however, the sap cavity is penetrated by bands or threads of cytoplasm, the motion will generally be of that kind known as circclation; in which case the currents of protoplasm more in separate courses with different and frequently changing directions. Rotation is the more frequent form of protoplastic movement in the cells of water-plants, while in land plants circulation is generally the rule.

 awos. take fart in any af theso corealsmery wivmesm.

 plasm which remais monionls, ind retain, the eliruwatophores. This is thece

Actire cytoplasm is a riseous suhstance. Deprived of its component water it becomes hand and tenacions, and. without losing its vitality, it ceases to perform any of its rital functions until again awakened into activity by a fresh supply of water. In case of a searcity of water the plasmodia of the Mrxomycetes may form sclerothe, that is. mases of resting protoplasm of an almost wax-like consistener. Months and indecd sometimes years afterwards, it is pussible from such selerotia, if water the properly suppliel, to again protuce motile plasmodia. Similarly, in seeds kept for a long time, the pootoplasm consolidates into a hani mase, which may be easily cut with a knife, while the nuclei will be foumi to have shrunk and lost their oricinal shape. Jevertheles; the protoplasts, after absorhing water, may return again to a condition of actirtr.

Protoplasm is not a simyle substance chemially: it consists rather of different components, which are subject to contintial change and in a state of mutcal reaction. Treated as a unitorm mass. protoplasm always gives a proteid reaction: when incinerated. fumes of ammonia are given ofti.

Autive pontophasm encosally civs an alkaline. anal.

Ens at ooul than a cantal beret. An+1. Nots.
 jubul by probepa. a. arnal. (a -tan) under certain conditions. a n itatral reartion. Das perer

 Iz C. In a tote of inactirity. as in opares and omd. is can midun a ofilt
 phece. deati ensnes. The sfars nt many Bacteria ow with stand a tempeta. tane as high as 105 C. Tneatel with aloobol or ettor, or with wits of athait oancentrations. with hicharmate of the alikali metsic. ar with corrosive seth Ilmate, pritepiasm quaikly ongalites. wile at the ame tiobs insulubly proteil
compounds are formed. Coagulating reagents, accordingly, play an important part in microscopic technique; of especial value are such which, while fixing and hardening the protoplasm, change its structure in the least degree. As a fixing and hardening reagent for vegetable tissues, alcohol is particularly serviceable; under certain conditions, sublimate alcohol, or 1 to 2 per cent formaldehyde. For animal cells and for the lower plants, 1 per cent chromic acid, 1 per cent acetic acid, 0.5 to 1 per cent osmic acid, concentrated picric acid, or corresponding mixtures of these acids, and also formaldehyde, are used for the same purpose. Iodine stains protoplasm brownish yellow ; nitric acid, followed by caustic potash, yellowish brown ; sulphuric acid, if sugar be present, rose red. Acid nitrate of mercury (Millox's reagent) gives to protoplasm a brick-red colour. Treated with copper sulphate, followed by caustic potash, protoplasm is coloured violet; with an aqueous or alcoholic solution of alloxan, red. Aromatic aldehydes in the presence of a reagent for effecting condensation, such as sulphuric or hydrochloric acid, and an oxidising substance or a higher chloride, also produce in protopiasm characteristic colour reactions; thus, benzaldehyde gives a blue-green to blue; piperonal, a violet-blue ; vanillin, a violet or violet-blue reaction. Protoplasm is soluble in dilute caustic potash and also in eau de Javelle (potassium-hypochlorite), and accordingly both of these reagents may be recommended for clearing specinens, when the cell contents is not to be investigated. All of the aborementioned reagents kill protoplasm ; until they have done so, their characteristic reactions are not manifested. In their greater or less resistance to the action of solvents, in the degree of their sensitiveness to reagents, and in the intensity of the reactions, the various constituents of protoplasm, cytoplasm, nucleus, centrospheres, and chromatophores differ from one another, and thus a means of determining their component substances is afforded. Accordingly a large number of albuminous bodies or albuminates have been named which are said to enter into the composition of living protoplasm. It is worthy of note that these compounds, although still for the most part not fully determined, all contain phosphorus. Such as are peculiar to the nucleus have been comprehended under the term xiclein. Staining reagents have also become an important help to microscopic investigations for determining the composition of protoplasm. This is due to the fact that the different constituents of protoplasm take up and retain the stain with different degrees of intensity and energy. As a general rule, only coagulated protoplasm can absorb colouring matter, although some few aniline stains can, to a limited extent, permeate living protoplasts. For staining vegetable protoplasts, which have been previously hardened, the various carmines, hæmatoxylin, iodine green, acid fuchsin, eosin, methylene blue, and aniline blue, have been found particularly convenient. The different components of the protoplasm absorb the stains with different intensities, and, when reagents are employed to remove the colouring matters, they exhibit differences in their power to retain them. The nucleus generally becomes more intensely coloured than the rest of the protoplasm, especially a part of its substance, which is therefore called Chromatin. The chromatin, moreover, is not affected by gastric juices nor by solutions of pepsin containing hydrochloric acid, although both cytoplasm and chromatophores are at once digested by them. On the other hand, with a trypsin solution, chromatin is quickly dissolved. In addition to those substances, which are to be regarded as integral parts of active protoplasm, it always includes derivative products of albuminates, particularly amides, as asparagin, glutamin; also ferments, as diastase, pepsin, invertin ; at times alkaloids, and always carbohydrates and fats. The ash left after incineration also shows that protoplasm always contains mineral matter, even if only in small quantities. All substances which, as such, do not
enter directly into the composition of protoplam, hat are only included within it, are designated by the term Me:aplasm.

The Cytoplasm. - In describing the cytoplasm of the plasmodia of the Myxomycetes and of the walled protoplasts of regetable cells, mention has been made of a hyaline fundamental substance, the hyaloplasm, which forms a superficial layer on the surface of the cytoplasm entirely free from granules, while in the interior, as granular plasm, it includes granular matter. The cytoplasm was likewise shown to be a viscous substance, in which internal streaming morements of the particles take place, while at the same time its superficial layer of hyaloplasm remains unchanged. In accordance with its viscous fluid character, cytoplasm possesses certain physical pecnliarities. If cells full of protoplasm be opened under water, the ontflowing cytoplasm assumes the form of a drop.

The cytoplasm in the cells of many Algae has a structure resembling that of foam, while in the higher plants it is no less distinctly fibrillar in structure, and composed of protoplasmic threads. In both calses the chambers or spaces enclosed by the foam-like or thread-like cytoplasm are filled with solutions of varions substances. All the granular inclusions lie in the cytoplasm, either in the walls of the cytoplasmic chambers or in the cytoplasmic threads.

The small granules which are never absent from the granular plasm, and give to it its name, are called morosomes. As they show different chemical reactions, it is inferred that they have also different chemical organisations. Sometimes they appear to be vesicles fillerl with liquid, and are then termed phisodes. In the cells of many Algae such vesicles attain a considerable size, and undergo modifications of their shapes.

Large vesicles or vacuoles filled with watery solutions are found in the cytoplasm. The cytoplasm separates itself from such vacuole. by means of a protoplasmic membrane or pellicle of hyaloplasm. The sap cavities in the cells of the more highly organised plants are, in this sense, merely large vacuoles. The protoplasmic membranes which surround the vacuoles are particularly tenacious of life; thus after the other cytoplasm of a cell has been killed with a 10 per cent solution of saltpetre, the walls of the vacuoles will still continue living. As the pressure of the cell sap is controlled by these living vacuolar membranes, H. de Vries has given them the name ToNoPLASTS. Through the division of the cytoplasm its tonoplasts may become bisected, and in this way multiply. On the other hand, a single large vacuole may result from the fusion of several smaller ones. It has also been demonstrated by Pfeffer that new pellicular membranes may be formed around liquid substances in the cytoplasm.

The Cell Nucleus.-The nucleus is in all cases fibrillar in structure. It appears to be made up of threads twisted together and forming an anastomosing network (Fig. 5t), which, however, in
living objects can only be distinguished by the punctated appearance it gives to the nucleus. Streaming movements do not take place within the nucleus. An insight into the nuclear

Fig. 54.-Quiescent nucleus from the developing endlosperm of Fritilluric impericlis, hardened with alcohol and stained with safranin. l, Linin; ch, chromatin ; n, nucleolus; w, nnclear membrane; c, centrospheres. (Somewhat diagrammatic, $\times 1000$.) structure is only to be attained with the help of properly fixed and stained preparations. It is then possible to determine that the greater part of this nuclear network is composed of delicate and, for the most part, unstained threads, in which lie deeply stained granules. The substance of the threads has been distinguished as LiNin (l), that of the granules as chromatin (ch). One or more large nuclear bodies, or nucleoli (n), occur at the intersections of some of the linin threads which, although deeply stained, have not taken the same tint as the chromatin granules. The network of the nucleus lies within the nuclear cafity, which is filled with nuclear sap and surrounded by a membrane (w). Although this is generally spoken of as the nuclear membrane, strictly speaking it is a part of the surrounding cytoplasm, and is the protoplasmic layer or pellicle with which the cytoplasm separates itself from the nuclear cavity.

The Centrospheres.-The existence of these bodies, now universally acknowledged in animal cells, is generally admitted in the case of all vegetable cells, although their demonstration has not, in all cases, been successful. They form, as Guignard in particular has shown, two small homogeneous spheres lying near the nucleus and embedded in the cytoplasm. Each centrosphere has in its centre a body termed the centrosonie (c, Figs. 50, 54), composed of one or more small granules. As the successful fixing and staining of the centrospheres in vegetable cells require extreme care, their detection in the granular cytoplasm is rendered difficult.

The Chromatophores. - In the embryonic cells of growing points, where the chromatophores (Fig. 50 , ch) are principally located around the nucleus, they first appear as small, colourless, highly refractive bodies; and in the embryonic cells of ovules they have a similar appear-

Fig. 55.-Two cells from a leaf of Funaria liygrometrice. cl, Chloroplasts; n, nucleus. ($\times 300$.) ance. They may retain the same appearance in older cells (Fig. 104, A, l), but in them they also attain a further development. Chloroplasts, leucoplasts, or chromoplasts may
be developed from a similar original substance ; they are all included in the one term, chromatophores.

In parts of plants which are exposed to the light the chromatophores usually develop into chlorophyll bodies or chloroplasts. These are generally green granules of a somewhat flattened ellipsoidal shape (Fig. 55), and are scattered, in great numbers, in the parietal cytoplasm of the cells. All the chloroplasts in the Cormophytes and, for the most part also, in the green Thallophytes present this same granular form. In the lower Algae, however, the chlorophyll bodies may assume a band-like (Fig. 235), stellate or tabular shape. The fuudamental substance of the chlorophyll bodies is itself colourless, but contains numerous coloured drops, which are termed cirana. These consist of an oleaginous substance, which holds various pigments in selution ; a green, known as chlorophyll or chlorophyll-green ; a yellow, called xanthophyll ; and a reddish orange, termed carotin. These colouring substances may be extracted by means of alcohol, leaving only the colourless plasmic substance of the chlorophyll body remaining.

The casiest way in which a solution of chlorophyll can be prepared, is to extract the chlorophyll by means of alcohol from green leaves that have been previously boiled in water. The green chlorophyll pigment is also soluble in ether, fatty and ethereal oils, paraffine, petroleum, and carbon dismlphide. The alcoholic solutions appear green in transmitted light; blood red in reflected light, on account of fluorescence.

If a ray of sunlight be made to pass through a tolerably thick layer of an alcoholic solution of chlorophyll, and then decomposed by a prism, the resulting

Fig. 56.-Spectrum of an alcoholic solution of chlorophyll extracted from foliage leaves. (After Kraus.) The absorption bands in the less refractive part of the spectrum (D F- $F_{\text {: }}$) are given ly a concentrated solution, those in the more highly refractive part of the spectrmu by a dilute solution.
spectrum will show seven absorption bands (Fig. 56). The darkest band extends from Fraunhofer's line, B, to some distance beyond the line C. The other bands are not so intense: one lies between C and D, another near D, and one near E, while the other three bands are broader and cover almost the whole hlue half of the spectrum.

If benzole be added to an alcoholic solntion of chloropliyll, prepared as directed abore, and the misture, after being well shaken, is allowed to settle, the benzole will be found to have taken up the chlorophyll pigment and the carotin, while the xanthophyll will be left in the alcohol, and will collect, as a yellow solution, in a layer below the green benzole. The amonnt of chloropliyll in a green plant is
very small. Tschinch has calculated that out of a square metre of green foliage leaves only from 0.1 to 0.2 grams of chlorophyll can be obtained. Acids decompose chlorophyll ; contact even with the acid cell sap is sufficient to change the colour of the chlorophyll bodies to a brownish green. It is due to this fact that a plant turns brown when dried.

The green colour of the chlorophyll in some groups of Algae is more or less masked by other pigments. In addition to the chlorophyll green, with its accompanying yellow and orange-red pigments, many of the blue-green Schizophyceae contain a blue colouring matter, phycocyanin ; the brown Algae, a brown pigment called phycophæin ; while the red Algae possess a red pigment termed phycoerythrin. These

Fig. 57. - Cell from the upper surface of the calyx of Tropecolum majus, showing chromatophores. $(\times 540$.)

Fig. 58.-Cell from the red pericarp of the fruit of Crataegus coccinec. n, Nucleus. $(\times 540$.)

Fig. 59.-Chromoplasts of the Carrot, some with starch grains. $(\times 540$.)

foliage its autumnal brilliancy. In the leaves of coniferons trees, which only indicate the approaching winter by assuming a somewhat brownish tint, the case is different. The chlorophyll-green of their chloroplasts changes to a brownish green, but in the following spring regains its characteristic colour.

In such phanerogamic parasites or humusplants as are devoid of green colour, the chloroplasts either do not develop, or they are white, or have only a brownish or greenish colour. No chromatophores are found in the Fungi.

In the interior of plants, where light camnot penetrate, Leucoplasts are developed instead of chloroplasts from the rudiments of the chromatophores. They are of a denser consistency than the chloroplasts, and resembling a flattened ellipsoid in shape, are often somewhat elongated in consequence of enclosed albuminous crystals. If the leucoplasts become at any time exposed to the light, they not infrequently change into chloroplasts. This frequently occurs, for example, in potatoes.

The chronoplasts of most flowers and fruits arise either directly from the rudiments of colourless chromatophores, or from previously formed chloroplasts. In shape the chromoplasts resemble the ellipsoidal granules of the chloroplasts, except that they are usually smaller ; or, in consequence of the crystallisation of their colouring pigment, they assume a triangular, tabular, needle, or fanshaped form (Figs. 57, 58, 59). The colour of the chromoplasts varies from yellow to red, according to the predominance of xanthophyll

Fig. 60. - A cell of 'Turtentume glomerctu, fixed with 1 per cent chromic aed and staned with carmine. n, Nuclei; ch, chromatophores: p, prrenoils : ", starch grains. ($\times 540$.) or carotin.

The name carotin has been derived from the Carrot (Junuris: Carota), in the roots of which it is particularly abundant (Fig. 59). The frequent crystalline form of the chromoplasts is, in a great part, due to the tendency of carotin to crystallisation, although it may be also occasioned by needle-like crystals of albumen. Xanthophyll. however, is never present in the chromoplasts except in an amorphons condition.

Multinuclear Cells. - While the cells of the Cormophytes are almost exclusively uninuclear, in the Thallophytes, on the contrary,
multinuclear cells are by no means infrequent. In the Fungi, and in the Siphoneae among the Algae, they are the rule. The whole plant is thus composed either of but one single multi-

Fig. 61.-Portions of two adjacent cells in a hypha from the stalk of a Mushroom, Agaricus pratensîs. n, Nuclei ; m, pits. $(\times 540$.) nuclear cell, which may be extensively branched (Fig. 250), or it may consist of a large number of multinuclear cells, forming together one organism. Thus, after suitable treatment, several nuclei may be detected in the peripheral cytoplasm in the cells of the common filamentous fresh-water Alga Cladophora glomerata (Fig. 6, p. 12) (Fig. 60).

The nuclei of the long, multinuclear cells (Fig. 61, n) of fungoid filaments, or НYPHÆ, and also of many Siphoneae, are characterised by their diminutive size.

The Origin of the Living Elements of Protoplasm. - Every nucleus in an organism owes its origin to the nucleus of the germ cell (egg or spore) ; the nuclei of the germ cells are descended from the nuclei of previous generations. The spontaneous formation of a nucleus never takes place. In the same manner, the cytoplasm of every organism is derived from the cytoplasm of the germ cell, and, so far as is yet known, both centrospheres and chromatophores take their origin, each only from its own kind.

Nuclear Division.-Except in a few limited cases, nuclei reproduce themselves by mitotic or indirect division. This process, often referred to as Karyokinesis, is somewhat complicated, but seems necessary in order to effect an equal division of the substance of the mother nucleus between the two new daughter nuclei. In its principal features the process is similar in plants and animals.

In vegetable cells, the threads composing the nuclear network (p. 56) first become thicker and correspondingly shorter (Fig. 62, 1), the anastomosing connections forming the meshes are drawn in, while the thread itself straightens out and becomes less entangled, and in consequence more easily distinguished. At the same time the amount of the chromatin increases, and this increases its capacity of absorbing stains. Finally, the chromatin substance in the thread becomes arranged in parallel discs (A) united by linin. The thread itself then divides transversely into a definite number of segments, the Chromosomes (2,3), which thereupon range themselves in a plane in a special manner, and form the so-called nUclear plate (3). Then, or sometimes before, the segments divide longitudinally $(4, B, C)$, and the halves thus produced separate (s) from each other in opposite directions to form the daughter nuclei.

In the meantime other definite processes have been takin! place; while the thread of the nuclear network has been shortening and disentangling, the two centrospheres ($1, c$), previously lying together close to the nuclear membrane, have separated and taken up a position opposite each other (2, c). They constitute the poles of the division figure. Beginning at these two points, the nuclear memlrane disappears, and the nucleoli also become more or less completely dissolved, influenced in all probability by the centrospheres. SpINLLF:

Fig. 62.-Successive stages in nuclear and cell division. . Centrospheres; n, nuclenlu-; s, cl in. mosomes ; $s p$, spindle fibres; A, I, C, chromonomes, showin! longitudinal division an the arrangement of the chromatin. (\times circa (i00.)

FIBRES then arise from protoplasmic threads found within the nuclear cavity, presumably with the co-operative activity of the nucleolar substance. The spindle fibres converge towards both poles of the division figure, and, viewed as a whole, they have the form of a spindle. While some of the spindle fibres extend uninterruptedly from pole to pole, others become connected with the chromosomes. Through this arrangement of the spindle fibres, the position of the nuclear plate in the equatorial plane of the spindle figure is determined; while by the contraction of the spindle fibres in connection with the chromosomes,
the longitudinal halves of the chromosomes are drawn in opposite directions towards either pole of the division figure $(5,6,7)$. In the process of this movement of the chromosomes towards the poles, the other continuous spindle fibres seem to serve as supports. Before the chromosomes, however, reach the poles, a division of the centrospheres (5), commencing with their centrosomes, takes place, so that two centrospheres are previously provided for each new daughter nucleus.

In the nuclei of regetable cells, the primary spindle fibres connected with the chromosomes unite with the spindle fibres extending from pole to pole. The number of these secondary spindle fibres corresponds with the number of the chromosomes.

In forming the daughter nuclei, the free ends of the chromosomes first become drawn in (8), and the surrounding cytoplasm separates itself by means of a protoplasmic membrane (9) from the developing nuclei. Within the nuclear cavities which are thus produced the chromosomes elongate (10), and joining together, end to end, become again intertangled. The chromatin substance is diminished in quantity, nucleoli at length appear in the enlarging nuclei, and finally a condition of rest is again reached.

The changes occurring in a mother nucleus preparatory to division are termed the phophases of the karyokinesis. These changes extend to the formation of the nuclear plate, and include also the process of the longitudinal dirision of the chromosomes. The separation of the daughter chromosomes is accomplished in the metaphases, and the formation of the daughter nuclei in the anaphases of the karyokinesis. The real purpose of the whole process is consummated in the quantitative and qualitative division of the chromosomes, resulting from their longitudinal segmentation ($4, B, C$). The anaphases of the karyokinesis are but a reverse repetition of the prophases. Exceptions to the process as here described, are not of special importance, and need not be discussed.

In addition to the mitotic or indirect nuclear division there is also a direct or amitotic division, sometimes called Fragmentation (Fig. 63). It usually occurs in old cells, or in cells in which the cell contents become disorganised shortly after the nuclear division.

Instructive examples of direct nuclear division are afforded by the long internodal cells of the Stoneworts (Characene), and also by the old internodal cells of T'radescantia (Fig. 63).

The direct nuclear division is chiefly a process of constriction which, however, need not result in new nuclei of equal size. In the case of the Stoneworts, after a remarkable increase in the size of the nucleus, several successive rapid divisions take place, so that a continuous row of bead-like nuclei results. The old internodal cells of Tradescantia (Fig. 63) very frequently show half-constricted nuclei of irregular shape. While in uninuclear cells indirect nuclear division is, as a rule, followed by cell division, this is not the case after direct nuclear division.

Cell Division.-In the uninuclear cells of the Cormophytes, cell division and nuclear division are, generally, closely associated as parts of one and the same act. The spindle fibres extending from pole to pole persist as connecting fibres between the developing daughter nuclei (Fig. 62, 6, 7). The number of the connecting fibres is increased by the interposition of others in the equatorial plane. In consequence of this a barrelshaped figure is formed, which either separates entirely from the developing daughter muclei, or remains in comection with them by means of a peripheral sheath, the convecting utricle. The first is the case in cells rich in cytoplasm, the latter when the cells are more abundantly supplied with cell sap. At the same time the connecting fibres become granularly thickened $(8,9)$ at the equatorial plane, and form what is known as the cell plate. In the case of cells rich in protoplasm or small in diameter, the connecting fibres become more and more extended, and touch the cell wall at all points of the equatorial

Fig. 63.-Ohd cells from the stem of Trodescontia virginice, showing nuclei in process of direct division. ($\times 540$.) plane (10). The granular elements of the cell plate then unite and form a partition wall, which thus smultaneously divides the mother cell into two daughter cells (10). If,

Fig. 64. - Three stages in the division of a living cell of Epipuctis pulustris. (After Trevb, $\times 365$.) however, the mother cell has a large sap cavity, the connecting utricle cannot at once become so extended, and the partition wall is then formed successively (Fig. 64). In that case, the partition wall first commences to form at the point where the utricle is in contact with the side walls of the mother cell (Fig. $64, A$). The protoplasm then detaches itself from the part of the new wall in contact with the wall of the mother cell, and moves gradually across until the septum is completed (Fig. $64, B$ and $\left({ }^{\prime}\right)$; the new wall is thus built up by successive additions from the protoplasm.

In the Thallophytes, even in the case of uninuclear cells, the partition wall is not formed within connecting fibres, but arises cither simultaneously from a previously formed cytoplasmic plate, or suc-
cessively, by means of diaphragm-like projections from the wall of the mother cell. It was a division process of this kind (Figs. 65, 66), first investigated in fresh-water Algae, that gave rise to the conception of cell division, which for a long time prevailed in both animal and vegetable Histology. In this form of cell division the new wall commences as a ring-like projection from the inside of the wall of the mother cell, and gradually pushing further into the cell, finally extends completely across it (Figs. 65, 66). In a division of this sort, in uninuclear cells, nuclear division precedes cell division, and the new wall is formed midway between the daughter nuclei (Fig. 65). In the multinuclear cells of the Thallophytes, on the other hand, although the nuclear division does not differ from that of uninuclear cells, cell division (Fig. 66) is altogether independent of nuclear division. And in multinuclear, unicellular Thallophytes, nuclear division is not fol-

Fig. 65.-Cell of Spirogyra in division. n, One of the daughter nuclei ; u, developing partition wall; ch, chlorophyll band, pushed inward by the newly-forming wall. ($\times 230$.)

Fig. 66. - Portion of a dividing cell of Clarlophore fracta. w, Newly-forming partition wall; ch, intercepted chromatoplore ; k; nuclei. ($\times 600$.)
lowed by a cell division. The interdependence of nuclear and cell division in uninuclear cells is necessary to ensure a nucleus to each daughter cell. In multinuclear cells it is not essential that cell division should always be accompanied by nuclear division, as in any case sufficient nuclei will be left to each daughter cell.

Free Nuclear Division and Multicellular Formation.-The nuclear division in the multinuclear cells of the Thallophytes may serve as an example of free nuclear division, that is, of nuclear division unaccompanied by cell division. In plants with typical uninuclear cells, examples of free nuclear division also occur ; although, in that case, the nuclear division is customarily followed by cell division. This is often the case in the formation of germ cells, and is due to the fact that while the nuclei increase in number this process is not accompanied by a correspouding cell division. When, however, the number of nuclei is completed, then the cytoplasm between the nuclei
divides simultaneously into as many portions as there are nuclei. In this process we have an example of multicellular formation. This method of development is especiallyinstructive in the embryo-sac of Phanerogams, a cell, often of remarkable size and rapid growth, in which the future embryo is developed. The nucleus of the embryo-sac divides, the two daughter nuclei again divide, their successors repeat the process, and so on, until at last thousands of nuclei are often formed. No cell division accompanies these repeated nuclear divisions, but the nuclei lie scattered throughout the peripheral, cytoplasmic lining of the em-bryo-sac. When the embryosac ceases to enlarge, the nuclei surround themselves with connecting strands, which then radiate from

Fig. 67. - Portion of the peripheral protoplasm of the embryo-sac of Reseld odorata, showing the commencement of multicellular formation. ($\times 240$.) them in all directions (Fig. 67). Cell-plates make their appearance in these connecting strands, and from them cell walls arise. In this manner the peripheral protoplasm of the embryo-sac divides, simultaneously, into as many cells as there are nuclei.

Various intermediate stages between simultaneous, multicellular formation and successive cell division can often be obserred in an embryo-sac. Where the embryo-sac is small and of slow growth, successive cell division takes place, so that multicellular formation may be regarded as but an accelerated form of successive cell division, induced by an extremely rapid increase in the size of the sap cavity.

Free Cell Formation.-Cells produced by this process differ conspicuously from those formed by the usual mode of cell division, in that the free nuclear division is followed by the formation of cells which have no contact with each other. This process can be seen in the developing embryo of the Gymnosperms, in Ephedra, for example, and also in the formation of the spores of the Ascomycetes. In the case of Ephedra there first occurs a free division of the nucleus of the fertilised egg ; each daughter nucleus then divides once or twice, so that four or eight nuclei are ultimately produced. A rounded, cytoplasmic mass collects about each nucleus and surrounds itself with a cell wall
(Fig. 68) ; but the four or eight cells thus formed have no contact with each other, and the cytoplasm of the mother cell is not totally consumed by their formation.

Fig. 68.-Free cell formation in the fertilised egg - cell of Ephedra altissima. $(\times 100$.

Cell-Budding.-This is simply a special variety of ordinary cell division, in which the cell is not divided in the middle, but, instead, pushes out a protuberance which, by constriction, becomes separated from the mother cell. This mode of cell multiplication is characteristic of the Yeast plant (Fig. 2, p. 11) ; and the spores, known as conidia, which are produced by numerous Fungi, have a similar origin (Fig. 286).

Cell-Formation by Conjugation.-A sexual cell is only able to continue its development after fusion with another sexual cell. The two cells so uniting are either alike, and in that case are called gavetes, or unlike, and are then distinguished as egg and sperinatozoid. The spermatozoid is the male, the egg the female sexual cell. The gametes may be motile or nou-motile (Fig. 69, B). The motile gametes frequently resemble the swarmspores (Fig. 69, A) generated by the same parent for the purpose of asexual reproduction. As a rule, however, they are smaller than the swarm-spores, and have usually only half as many cilia. In the more highly specialised sexual cells the egg usually retains the structure of an embryonic cell, but the spermatozoid undergoes various changes. A cytoplasmic cell body, a nucleus, and the rudiments of chromatophores are always present in the egg. The male sexual cell (Fig. 70), on the other hand, becomes transformed, in the more extreme cases, into a spirally twisted body, provided with cilia, and exhibiting an apparently homogeneous structure. Only a knowledge of the history of its development, and the greatest care in hardening and staining, have rendered it possible to recognise the homology of the structure of such a spermatozoid with that of an embryonic cell. It has been shown that one part of its spiral body corresponds to the cell nucleus (k), another, together with the cilia, to the cytoplasm (c), and the vesicle (b), at the other extremity, to the sap cavity of a cell. After the spermatozoids are set free from the sexual organs, they require water for their dispersal. They are motile, and are thus enabled to seek out the egg-cells, which, in most cases, await fertilisation within the organ in which they have been formed.

Motile, male sexual cells occur only in the Cryptogams. In the Phanerogams (Fig. 71) the non-motile male cell ($g z$) is carried to the egg by the growth of the pollen tube (Fig. il, A), in which it is enclosed. In the union of the two sexual cells in the act of fertilisation, the egg nucleus (ek) and the sperm nucleus (ski) fuse and form
the nucleus of the fertilised egg-cell. The cytoplasm of the male cell also commingles with that of the female cell, but the chromatophores of the embryo are derived from the egg-cell alone. It is

Fig. 69.- A, An asexual swarm-spore of Ulothrix zonata ; $B, 1$, a gamete; 2 and 3 , conjugating gametes; 4, zygote, formed by the fusion of two gametes. $(\times 500$.)

Fig. 70.-A, Spermatozoid of Chara fragilis; B, spermatozoid of the Fern Phegopteris Giesbrechtii. The darker portion, k, corresponds to the cell nucleus; the lighter, c, to the cell cytoplasm ; cl, cilia ; b, vesicle. ($\times 540$.)

Fig. 71.-Fertilisation of a phanerogamic Angiosperm, somewhat diagrammatic. A, End of pollen tube; in it the generative cells $g z$, each of which contains a sperm nucleus; $v k$, the vegetative cell in process of dissolution. B - D, Egg in successive stages of fertilisation,- B, showing the generative cell with its sperm nucleus, sk, penetrating the egg; C, the union of sperm nucleus, sk, and egg nucleus, $e k ; ~ c$, centrospheres; D, the germ nucleus, lik, resulting from the fusion of the sperm and egg nuclei; ch, rudiments of chromatophores. (x circa 500.$)$
still uncertain whether a similar fusion of the centrospheres of the sexual cells also takes place. It is regarded as more probable that the centrospheres of the egg nucleus-more rarely those of the sperm nucleus-become functionless, so that the centrospheres of the fertilised egg are derived only from the sperm nucleus, or from the nucleus of the female cell.

The egg becomes capable of development as the result of fertilisation, although there are exceptional cases in the organic kingdom, especially among the Arthropods, where an unfertilised egg may produce an embryo. This is called parthenogevesis. In the regetable kingdom the existence of parthenogenesis in plants with advanced sexual differentiation has only been proved in the case of Chara crinita, one of the Characeae.

Multiplication of the Chromatophores.-This is accomplished by a direct division, as a result of which, by a pro-

Fig. i2. - Chlorophyll grains from the leaf of Funarice hygrometrice, resting, and in process of division. ($\times 540$.) cess of constriction, a chromatophore becomes divided into two nearly equal halves. The stages of this division may best be observed in the chloroplasts (Fig. 72).

Inclusions of the Protoplasm - Starch. The chloroplasts in plants exposed to the light almost always contain starch grains. These grains of starch found in the chloroplasts are the first visible products of the assimilation of inorganic matter. They are formed in large numbers, but as they are continually dissolving, always remain small. Large starch grains are found only in the reservoirs of reserve material, where starch is formed from the deposited products of previous assimilation. Such starch is termed Reserve starch, in contrast to the assimilation STARCH formed in the chloroplasts. All starch used for economic purposes is reserve starch. The starch grains stored as reserve material in potatoes are comparatively large, attaining an average size of 0.09 mm . As shown in the adjoining figure (Fig. 73), they are plainly stratified. Their stratification is due to the varying densities of the successive layers. They are eccentric in structure, as the organic centre, about which the different layers are laid down, does not correspond with the centre of the grain. The starch grains of the legumes and cereals, on the other hand, are concentric, and the nucleus of their formation is in the centre of the grain. The starch grains of the Bean, Phaseolus rulgaris (Fig. 74), lave the shape
of a flattened sphere or ellipsoid ; they show a distinct stratification, and are crossed by fissures radiating from the centre. The disc-shaped starch grains of wheat are of unequal size, and only indistinctly stratified (Fig. 65). A comparison of the accompanying figures (Figs. 72T5), all equally magnified, will give an idea of the varying size of the starch grains of different plants. The size of starch grains varies, in fact, from 0.002 mm . to 0.170 mm . Starch grains 0.170 mm . large, such as those from the rhizome of C'anna, may be seen even with the naked eye, and have the appearance of brilliant points. In addition to the simple starch grains so far described, half-compound

and compound starch grains are often found. Grains of the former kind are made up of two or more individual grains, surrounded by a zone of peripheral layers enveloping them in common. The compound grains consist merely of an aggregate of individual grains unprovided with any common enveloping layers. Both half-compound (Fig. 73, B) and compound starch grains (Fig. 73, C, D) occur in potatoes, together with simple grains. In oats (Fig. 76) and rice all the starch grains are compound. According to Nägeli, the compound starch grains of rice consist of from 4 to 100 single grains; those of Spinacia glabra sometimes of over 30,000 . Starch thus formed from previously assimilated organic substances also requires chromatophores for its production. It is produced by means of leucoplasts, which are, in consequence, often termed starch-butlders. If the formation of a starch grain should begin near the periphery of a leucoplast, the grain would eventually, by its continued enlargement, protrude from the leucoplast. As new layers of starchy matter are then deposited only
on the side remaining in contact with the plastid, the starch grain thus becomes eccentric (Fig. 77). Should, however, several starch grains commence to form at the same time in one leucoplast, they would become crowded together and form a compound starch grain, which, if additional starchy layers are laid down, gives rise to a halfcompound grain.

It has recently been asserted that starch grains are crystalline bodies, so-called sphærites, and are composed of fine, radially arranged, needle-shaped crystals (trichites). Their stratification, according to this view, is due to variations in the form and number of the crystal needles in the successive layers. In a few individual cases, Arther Mefer has succeeded in showing that the stratification of the starch grains corresponds to the alternation of the periods of day and night, i.c. to the interference which is thus caused in the mutritive processes. The growth of starch grains is also affected by the solvent action of surrounding substances, whereby the peripheral layers may be partially removed, and then no longer completely envelop the entire grain. Starch grains are composed of a carbohydrate, the formula of which is $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right) \mathrm{n}$. Most starch grains only contain amyloid, one variety of which becomes liquid in the presence of water at a temperature of $100^{\circ} \mathrm{C}$., and another, which, under the same conditions, does not become liquid. In addition to this amyloid many starch grains contain also amylodextrin. In certain cases, as in Oryza sativa var. glutinosa and Sorghum vulgare var. glutinosnm, the starch grains consist principally of amylodextrin. Although starch rich in amyloid gives a blue reaction with a solution of iodine, the starch rich in amylodextrin takes a red wine colour. Starch grains become swollen in water at a temperature of 60° to $70^{\circ} \mathrm{C}$., according to Arthl r Meyer, because of the conversion into tenacious globules of the more readily soluble of the two amyloids ; at $138^{\circ} \mathrm{C}$. starch grains become completely dissolved. Starch swells very readily at ordinary temperatures in solutions of potassium, or sodium hydrate. Heated without addition of water, i.e. roasted, starch becomes transformed into dextrin, and is then soluble in water and correspondingly more digestible. That starch grains give a dark cross in polarised light is due to the double refraction of the component crystalline elements.

The amount of starch contained in reservoirs of reserve material is often considerable ; in the case of potatoes 25 per cent of their whole weight is reserve starch, and in wheat the proportion of starch is as high as 70 per cent. The starch flour of economic use is derived by washing out the starch from such reservoirs of reserve starch. In the preparation of ordinary flour, on the contrary, the tissnes containing the starch are retained in the process of milling.

Aleurone.-Aleurone or protëin grains (gluten) are produced in the seeds of numerous plants, especially in those containing oil. They are formed from vacuoles, the contents of which are rich in albumen, and harden into round grains or, sometimes, into irregular bodies of indefinite shape. A portion of the albumen often crystallises, so that frequently one and occasionally several crystals are formed within one aleurone grain. In aleurone grains containing albumen crystals there may often be found globular bodies, termed globoids, which, according to Pfeffer, consist of a double phosphate of magnesium and calcium in combination with some organic substances.

Crystals of calcium oxalate are also found enclosed in the aleurone grains.

The seeds of Ricinus (Fig 78) furnish good examples of aleurone grains with enclosed albumen crystals and globoids. The aleurone grains themselves lie embedded in a cytoplasm that is rich in oil. In the cereals the aleurone grains which lie only in the outer cell layer of the seeds (Fig. 79, al) are small, and free from all inclusions; they contain neither crystals nor globoids. As the outer cells of wheat grains contain only aleurone, and the inner almost exclusively starch, it follows that flour is the richer or poorer in albumen, the more or less completely this outer layer has been remored before the

Fig. is. $-A$, Cell from the endosperm of Ricinus communis, in water; B, isolated aleurone grains in olive oil; k, albumen crystals; g, globoid. ($\times 540$.) wheat is ground. From the inner layers finer and whiter flour can be made ; while more nourishing flour is obtained from the outer layers.

Reactions for aleurone are the same as those already mentioned for the albuminous substance of protoplasm. Treat-

Fig. 79.-Part of a section of a grain of wheat, Triticum vulgare. p, Pericarp; t, seed coat, internal to which is the endosperm; al, aleurone grains; am, starch grains ; n, cell nucleus. ($\times 240$.) ment of a cross-section of a grain of wheat (Fig. 79) with a solution of iodine would give the aleurone layer a yellow-brown colour, while the starch layers would be coloured blue.

Albemen Crystals.-Crystals of this nature are especially frequent in aleurone grains (Fig. 78). They have previously been mentioned as occurring in the chromatophores. In the illustration of the leucoplasts of Phajus grandifolius (Fig. 77), the rod-shaped crystals are represented as light stripes (in B and E). In the green Algae, the angular, strongly refractive bodies lying in the chloroplasts and surrounded by a ring of starch granules are albumen crystals. A good example of these bodies, known as pYrexoids or AMYLUM CENTRES, may be scen in the green bands of Spirogyra (Fig. 235). Albumen crystals may also occur directly in the cytoplasm ; as, for instance, in the cells poor in starch, in the peripheral layers of potatoes. Albumen crystals are sometimes found even in the cell nucleus. This is particularly the case in the Toothwort (Lathraea squamaria). Albumen crystals usually belong either to the regular or to the hexagonal crystal system. They differ from other crystals in that, like dead
albuminous substances, they may be stained, and also in that they are capable of swelling by imbibition. Subjected to the action of water or a dilute solution of caustic potash, they at first increase in size without losing their crystalline outline.

Crystals of Calcium Oxalate.-Few plants are devoid of such crystals. They are formed in the cytoplasm, within vacuoles which afterwards enlarge and sometimes almost fill the whole cell. In such cases the other components of the cell become greatly reduced; the cell walls at the same time are often converted into cork, and the whole cell becomes merely a repository for the crystal. The crystals may be developed singly in a cell, in which case they belong either to the tetragonal or monosymmetrical crystal system ; or, as is more frequently the case, they form CRYSTAL AGGREGATES, clusters of crystals radiating in all directions from a common centre. In the Liliaceae, Orchidaceae, and other Monocotyledons, compact bundles of needle-shaped crystals of calcium oxalate, the so-called RAPHIDES, are especially frequent (Fig. 80).

Fig. S0.-Cell from the cortex of Drctcuena rubra, filled with mucilaginous matter and containing a bundle of raphicles, $r .(\times 160$.) Such crystal bundles are always enclosed in a large vacuole filled with a mucilaginous substance. The degree of concentration of the mother liquor from which the crystals have separated, determines, according to Kny, their crystal form, whether tetragonal or monoclinic.

Siliceous bodies, which are only soluble in hydrofluoric acid, are often found in the cytoplasm of many cells, especially of Palms and Orchids, and often completely fill the whole cellular space.

Tannin.-Highly refractive vacuoles filled with a concentrated solution of tannin are of frequent occurrence in the cytoplasm of cortical cells, and may often grow to a considerable size.

The dark-blue or green colour reaction obtained on treatment with a solution of ferric chloride or ferric sulphate, and the reddish-brown precipitate formed with an aqueous solution of potassium bichromate, are usually accepted as tests for the recognition of tannin, although equally applicable for a whole group of similar substances.

Fats and Oils in plants are mixtures of fatty acid esters. Frequently, as in species of Allium and Aloe, a fatty oil appears in the old chlorophyll grains. The occurrence of castor oil in the form of highly refractive drops in the cytoplasm of the aleurone-containing cells in the endosperm of the castor-oil seeds, has already been referred to. Oil usually occurs in
this form. But fatty substances may also appear in the cytoplasm as irregularly-shaped, more or less soft grains, as for example in the vegetable butters and in the wax of various seeds; they may even be crystalline, as in the needle-like crystals of Para-nuts (Bertholletia excelsa) and of Nutmeg (Iyristica fragrans).

Glycogen.-This substance, related to sugar and starch, and of frequent occurrence in animal tissues, fulfils, according to Errera, the same functions in the Fungi as sugar and starch in the higher plants. Cytoplasm containing glycogen is coloured a reddish-brown with a solution of iodine. This colour almost wholly disappears if the preparation be warmed, but reappears on cooling.

Ethereal Oils and Resins.-In most cases the strongly refractive drops found dispersed throughout cytoplasm are globules of some ethereal oil. It is the presence of such oils in the petals of many flowers that give to them their agreeable perfume. Under certain conditions the oil globules may become crystallised. This occurs, for example, in Rose petals. Secretions from surrounding cells are often deposited in special receptacles in which, through oxidisation, camphor or resin is formed.

Special cells of this kind, with corky walls and filled with resin or ethereal oils, are found in the rhizomes of certain plants, as for instance in those of Calamus (Acorus Calamus) and of Ginger (Zingiber officinale) ; also in the bark, as, for example, of Cinnamon trees (Cinnamomum) ; in the leaves, as in the Sweet Bay (Laurus nobilis); in the pericarp and seed of the Pepper (Piper nigrum); in the pericarp of Anise seeds (Illicium anisatum).

Mucilaginou's Matter is often found as a part of the cell contents in the cells of bulbs, as in Allium C'epa and Scilla maritiona, in the tubers of Orchids, also in aerial organs, especially in the leaves of Succulents, which, living in dry places, are thus enabled to maintain their water-supply by means of their mucilaginous cells.

Caoutchouc and Gutta-percha. - These substances are found in a number of plants belonging to different groups, in particular in the Uiticacene, Euphorbiaceae, and Sapotaceae. They occur in the so-called milk sap of special cells in the form of small, dense globules, which, suspended in the watery cytoplasm, give it its milky appearance.

Sulpher.-As being of unusual occurrence, mention should be made of the presence of sulphur in the form of small refractive grains in the protoplasm of certain Bacteria, the Beggiatooce. These Bacteria live in water containing much organic matter, and, according to Wisogradsky, obtain their sulphur from sulphuretted hydrogen. In fulfilling its function in the Bacteria the sulphur becomes oxidised into sulphuric acid.

The Cell Sap.-Under this term is included especially the fluid which in old cells fills the inner sap cavity. It is generally watery and clearer than the fluid contained in the smaller vacuoles of the
cytoplasm. No sharp distinction can, however, be drawn between the sap cavity and vacuoles, and, moreover, a number of such vacuoles may take the place of the sap cavity itself. The cell sap usually gives an acid reaction, though in water-plants, according to Tschirch, this reaction is often uncertain. The substances held in solution by the cell sap are very various. The soluble carbohydrates, in particular the sugars, cane sugar, the glucoses, and especially grape sugar, frequently occur in the cell sap. The glucoses may be recognised by their reducing properties.

If preparations containing glucose be placed in a solution of copper sulphate, and, after being washed out, are transferred to a solution of caustic potash and heated to boiling, they will give a brick-red precipitate of cuprous oxide. If canc sugar or saccharose be present, this same treatment gives only a blue colour to the cell sap.

Carbohydrates are transported in a plant principally in the form of glucose ; cane sugar, on the contrary, is stored up as reserve material ; as for example, in the sugar-beet, in the stems of sugar-cane, and in other plants from which the sugar of economic use is derived.

InUlin, a carbohydrate in solution in cell sap, takes the place of starch in many orders of plants, as, for example, in the Compositae.

Treated with alcohol, inulin is precipitated in the form of small granules, which may be redissolved in hot water. When portions of plants containing much inulin, such as the root tubers of Dahlia variabilis, are placed in alcohol or dilute glycerine, the inulin crystallises out and forms sphærites, spheroidal bodies composed of radiating crystal needles arranged in concentric layers.

Asparagin is also generally present in the cell sap.
There are frequently found dissolved in the cell sap tannins, alkaloids, and Glucosides, such as coniferin, hesperidin, amygdalin, solanin, æsculin, saponin, and also bitter principles related to the glucosides. It is also often possible to detect in the cell sap one of the benzole group, phloroglucin, which, in the presence of hydrochloric acid, stains lignified cell walls a violet colour. Organic acids are also of frequent occurrence in the cell sap ; thus, malic acid is usually present in the leaves of the succulents. For the most part, these organic acids unite with bases, and the salts which are formed often crystallise. Of acid salts, which are less frequent than free acids, the binoxalate of potassium found in Field Sorrel (Rumex) and Wood Sorrel (Oxalis) deserves special mention.

The cell sap is often coloured, principally by the so-called Anthocyanin. This is blue in an alkaline, and red in an acid reacting cell sap, and, under certain conditions, also dark red, violet, dark-blue, and even black. Blood-coloured leaves, such as those of the Purple Beech, owe their characteristic appearance to the united presence of green chlorophyll and anthocyanin. The different colours of flowers are due to the varying colour of the cell sap, to the different distribution of the cells containing the coloured cell sap, and also to the different combinations of dissolved colouring matter with the yellow, yellowish red, or
red chromoplasts and the green chloroplasts. There is occasionally found in the cell sap a yellow colouring matter known as xanthin; it is nearly related to xanthophyll, but soluble in water. The cell sap also contains inorganic salts in solution, particularly nitrates, sulphates, and phosphates.

The Cell Wall.-At the growing points of plants the cells are separated from one another only by extremely thin membranes or cell walls. The rapid growth in length which sets in a short distance from the growing point, as a result of the increase in the size of the cells, must be accompanied by a corresponding GRowth in surface of the

Fig. 81. - Strongly thickened cell from the pith of Clematis vitalba. m, Middle lamella; i, intercellular space; t, pit; w, pitted transverse cell wall. $(\times 300$.)

Fig. 82.-Part of a sclerenchymatous fibre from Vince major. The striations of the outer layers are more apparent than those of the inner layers. The walls, as seen in optical section, are also shown. ($\times 500$.)
cell walls. So long as this growth in surface continues, the cell walls remain thin. After the cells have attained their ultimate size, the growth in thickness of the cell walls then begins. Such thickened cell walls are not, in most cases, homogeneous, but exhibit a stratified appearance (Fig. 81), owing to the different refractive power of the thickening layers. Treated with caustic potash, these different layers appear as if composed of still thinner lamellæ. In many cases the thickening layers exhibit delicate striations in surface view. The striations extend through the whole thickness of the layers, usually running obliquely to the long axis of the cell, and often crossing one another in the different thickening layers (Fig. 82).

In a much-thickened cell wall, owing to chemical and optical
differences, there can frequently be distinguished three distinct layers -a primary, a secondary, and a tertiary thickening layer. These layers are deposited on the primary cell wall, which, in the case of cells arising from cell division, is represented by the newly-formed partition wall. The secondary thickening layer is usually the most strongly developed, and forms the chief part of the cell wall. The tertiary or inner layer is thinner and more highly refractive. In special cases, but only in the formation of reproductive cells, an inner thickening layer, completely detached from the others, is produced, as in the formation of pollen grains and spores, which, enclosed only

by this inner membrane, finally become freed from the older thickening layer. This process is often alluded to as Rejurenescence ; in such cases, it should be noted, there are, in reality, no new cells formed.

The thickening of the cell wall seldom takes place uniformly over the whole surface; but some portions are thickened, while, at other points, the original or primary cell wall remains unchanged. In this way pores are formed which penetrate the thickening layers. These pores or PITS may be either circular (Fig. 84), elliptical, or elongated. The pits in adjoining cells converge, and would form one continuous canal, were it not that the unthickened primary cell wall persists as a closing membrane between two converging pits. As a result of the continued thickening of the cell wall, the canals of several pits often unite, and so branched pits are formed. Such branched pits have usually very narrow canals, and occur for the most part only in extremely thick and hard cell walls, as, for instance, in those of
the so-called sclerotic cells or sclereides. Simple pits may, on the other hand, expand on approaching the primary cell wall.

The structures known as BORDERED PITS (Fig. 83) are but a special form of such expanded simple pits. In bordered pits the closing membrane is thickened at the centre to form a Torc's (Fig. 83, C').

Fig. S5.--Part of two sieve-tubes of the Pine, Pinus sylvestris, showing sieve-pits. ($\times 540$.)

Fig. 86. $-A$, Part of an annular tra cheid ; B, part of a spiral tracheid; C, longitudinal section through part of a reticulate vessel, showing perforated partition wall, s. ($\times 240$.)

By the curving to one side or the other of the closing membrane, the torus may so act as to close the pit canal (Fig. 83, B). Bordered pits

Fig. ST.-Part of transverse section of a stem of Impatiens parvifora. e, Epidermis ; c, collenchyma ; p, thin-walled parenchymatous cells ; i, intercellular space. ($\times 300$.) are only formed in cells which are soon to lose their living contents and thus serve merely as channels for conducting water. The bordered pits apparently act as valves. Seen from the surface a bordered pit appears as two concentric rings (Fig. 83, A). The smaller, inner ring represents the narrow opening of the pit into the cell cavity ; the larger, outer ring indicates the junction of the wall of the PIT CHAMBER with the primary cell wall.

Very large pits between adjoining living cells have often thin places in their closing membrane, and are then spoken of as compound pits. A special example of such pits is afforded by the SIEVE-PITS, in
which the closing membrane, in that case called the sifve-plate, is perforated by fine openings or pores (Fig. 85).

In cases where the greater part of the cell wall remains unthickened, it is characterised rather by

Fig. S8. - Part of transverse section of a leaf of Ficus elastica. c, Cystolith; e, e, e, triplelayered epidermis; p, palisade parenchyma; s, spongy parenchyma. $(\times 240$. a description of its thickened than unthickened portions ; it is in this sense that the terms annular, spiral, and reticulate are used (Fig. 86). Just as in the case of cells with bordered pits, annular, spiral, and reticulate cell walls are only acquired by cells that soon lose their contents, and act in the capacity of water-carriers. Such wall thickenings serve as mechanical supports, to give rigidity to the cells, and to enable the cell walls to withstand the pressure of the surrounding cells. Collenchymatous cells are living cells, the walls of which are thickened principally at the corners (Fig. 87). Cells on the surface of plants have usually only their outer walls thickened (Fig. 100). By the thickening of cell walls at special points, protuberances projecting into the cell cavity are formed ; in this way the formations known as cystoliths arise.

Certain large cells in the leaves of the Indiarubber plant (Ficus elastica) contain peculiar clustered bodies, formed by the thickening of the cell wall at a single point (Fig. 88). In their formation a stem-like body or stalk first protrudes from the cell wall ; by the addition of freshly-deposited layers this becomes club-shaped, and, by continued irregular deposits, it finally attains its clustered form.

So far only centripetal wall thickenings have been described. Cells, the walls of which are centrifugally thickened, can naturally only occur where the cell walls have free surfaces. The outer walls of hairs generally show small inequalities and projections. The surface walls of spores and pollen grains (Fig. 89) show a great variety of such centrifugally developed protuberances, in the form of points, ridges, reticulations, and bands of an often complicated internal structure.

The Origin and Growth of the Cell Wall.-The cell wall is a product of the protoplasm. When a previously naked protoplast, as a swarm-spore of an Alga, envelops itself with a cell wall, this is effected, as is now generally believed, by the transformation of its
protoplasmic membrane into a cell wall. The newly-formed partition wall, resulting from cell division, is developed from the cell plate, which is also of cytoplasmic origin. The new lamellæ of a cell wall in process of thickening are also derived from the protoplasmic membrane of the enclosed cytoplasm.

The growth in thickness of a cell wall by the deposition of successive lamellæ is termed growth by apposition. The growth in surface of cell walls may, in many cases, be attributed to the deposition of new lamellæ simultaneously accompanying the distension of the old. The subsequent growth in thickness of

Fig. 89.-A, Pollen-grain of Cucurbita Pepo in surface view, and partly in optical section, rendered transparent by treating with oil of lemons ($\times 240$); B, part of transverse section of pollen grain of Cucurbita verrucosa. $(\times 540$.) the single lamellæ of the cell walls, by the interpolation of new particles of cell-wall substance between the old, is designated GRowth by intussusception.

Cell Wall Substance.-The transformation of the cell plate, or of the protoplasmic membrane of the cytoplasm, into lamellæ of the cell wall, is accompanied by a change in their substance. The granules of the cell plate disappear and apparently dissolve, while the lamellæ of a cell wall are eventually formed from the solution. Possibly the lamellæ of cell walls possess a crystalline structure similar to that of starch grains, with which they seem to correspond in many structural peculiarities and in the double refraction of their layers.

The most important constituent of cell walls is cellulose. With the exception of the Fungi it is present in the cell walls of all plants.

Grlsor succeeded in obtaining cellulose in a state of crystallisation. He treated a plant section for a time with cuprammonia, then washed the section carefully with ammonia of a suitable concentration, and afterwards with distilled water. In the cells of sections treated in this manner he found cellulose crystals in the form of sphærites or dendrites. Cellulose is a carbohydrate of which the chemical composition is expressed by the general formula $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right) \mathrm{n}$. It is insoluble in either dilute acids or alkalies. By the action of concentrated sulphuric acid it is converted into dextrose. After treatment with sulphuric or phosphoric acid, iodine will colour it blue; it shows a similar reaction when exposed to the simultaneous action of a concentrated solution of certain salts, such as zinc chloride or aluminium chloride, and of iodine. Accordingly, chloroiodide of zinc, on account of the blue colour imparted by it, is one of the most convenient tests for cellulose.

The cell walls never consist entirely of pure cellulose, but contain a considerable amount of other substances, which are not stained blue
by chloroiodide of zinc. In unlignified cell walls PECTOSE is particularly prominent. It is easily distinguished by the readiness with which it dissolves in alkalies, after being previously acted upon by a dilute acid.

Susceptibility to certain stains, for example congo red, is a characteristic of cellulose ; while other stains, such as safranin and methylene blue, colour pectose more deeply. According to Masgis, the partition wall formed in the higher plants during cell division consists almost wholly of pectose ; the next developed laminæ, the secondary cell-wall layer, of a mixture of cellulose and pectose ; the last formed, or tertiary layer, chiefly of cellulose. If the secondary layer of the cell wall remain unlignified, the amount of pectose contained in it increases with age and helps to strengthen the middle lamella, or primary cell-wall layer.

Among the substances entering into the composition of cell walls, in addition to cellulose and pectose, mention must be made of callose. It is characterised by its insolubility in cuprammonia and solubility in soda solution, and in a cold 1 per cent solution of caustic potash. It is coloured a red brown by chloroiodide of zinc, with aniline blue it takes an intense blue, and with corallin (rosolic acid) a brilliant red. Its presence in the higher plants is limited to a few special cases ; it envelops the sieve-pits and is always present in calcified cell-wall layers, as, for example, in cystoliths (Fig. 88). According to Mangin, callose exists in the cell walls of the Fungi and Lichens, generally in combination with cellulose, or more rarely with pectinaceous substances. Gilsos asserts, on the other hand, that the cell walls of all the Fungi that he has thoroughly investigated, consist of a special nitrogenous substance, which he has called Mrcosin, and considers that it corresponds to animal chitin. This chitin, according to Gilson, takes the same place in the cell walls of the Fungi as cellulose in the cell walls of the higher plants. In addition to chitin, the cell walls of Fungi always contain carbohydrates.

Where cell walls become LIGNified or SUBERISED, it is particularly the secondary layer that receives the wood or cork substance, while the tertiary or internal layer retains its cellulose character.

The lignification is occasioned by the deposition in the cell wall of certain substances, among which are always coniferin and vanillin. It is these two substances which give the so-called wood reactions,-a violet colour with phloroglucin and hydrochloric acid, a yellow colour with anilin sulphate. With chloroiodide of zinc a lignified cell wall becomes yellow, not blue.

Suberised cell walls take a yellowish brown colour with chloroiodide of zine ; with caustic potash, a yellow. Van Wisselingh has lately disputed the presence of cellulose in suberised cell walls, and regards the cork substance or stberin as a fatty body, which is composed of glycerine esters and other compound esters, as well as of one or more other substances which are infusible, insoluble in chloroform, and decomposed by a solution of caustic potash.

Cutinisation, which is similar to but not identical with suberisation, is usually due to the subsequent deposition of cutin in cellulose cell walls.

Vax Wisselinge has shown that phellonic acid, which is always present in suberin, is constantly absent in cutin. Cutin withstands better the action of
caustic potash. In other respects, the reactions given by cutinised cell walls with chloroiodide of zinc or solutions of caustic potash are almost identical with those of suberised cell walls.

While after lignification cell walls are still permeable to both water and gases, suberisation or cutinisation renders them impervious. Accordingly, suberised and cutinised cell walls are found especially in the surface of plants, as a means of protection and preservation.

The layers of the cell walls of some cells, particularly the superficial cells of certain fruits, as of Sage, and of numerous seeds, such as Flax and Quince seeds, become mucilaginous, and swell in water to a slime or vegetable mucus, which, according to G. Klebs, serves the purpose of attaching the seeds to the soil. The internal cells of some leguminous seeds with a mucilaginous endosperm, such as the seeds of the Carob tree (Ceratonia Siliqua), have similar mucilaginous layers, which serve as reserve substance. Firm cell walls can also be transformed into GUM, as is so often apparent in Cherry and Acacia trees, portions of whose woody cells often succumb to GUmmosis.

The several varieties of gums and vegetable mucus react differently, according as they are derived from cellulose, callose, pectose, or from allied substances. According to Mangin they may be microchemically distinguished by their reaction with ruthenium red, which stains only such as are derived from pectose or related substances, such as the mucilage of the seeds of the Cruciferae and Quince (Cydonia), the mucus cells of the Malveae, the gums of the Cherry and Acacia, the gum tragacanth from Astragalus gummifer. The mucus of Orchid tubers, on the other hand, is related to cellulose, and remains uncoloured with the same reagent.

The cell walls of the seeds of many Palms, as also those of Ornithogalum (Fig. 84), have strongly developed thickening layers, which are full of pits. These thickening layers are lustrous white, and, as in the case of the seeds of the Palm, Phytelephas macrocarpa, may attain such a degree of hardness as to be technically valuable as vegetable ivory. Such thickening layers may contain other carbohydrates in addition to cellulose; thus the cell walls of the seeds of Tropaeolum and Paconia contain an AMYloid, which turns blue even with iodine alone. These thickening layers are dissolved during germination, and are accordingly to be considered as a reserve substance of the seeds.

Cell walls often become coloured by tannin or derivative substances ; in this way, for instance, the dark colour is produced which is often seen in the shells of seeds and in old wood. The colours of the woods of economic value are due to such discoloured cell walls. Inorganic substances are often deposited in large quantities in old cell walls. Among such substances calcium oxalate is often met with, commonly in crystal form ; also calcium carbonate, although perhaps not so frequently. In the cystoliths of Ficus elastica (Fig. 88) so much calcium carbonate is deposited that it effervesces with hydrochloric acid. In many plants, as, for instance, most of the Characeae, the quantity of calcium carbonate in their cell walls is so great as to
render them stiff and brittle. Silica is also present in the superficial cell walls of the Gramineae, E'quisetaceae, and many other plants.

Cell Forms.-As cytoplasm is a viscous fluid, and would tend, if unimpeded, to take a spherical shape, it may be assumed that the natural and primary form for cells is spherical. Such a shape, however, could only be realised by cells which, in their living condition, were completely free and unconfined, or in such as were able to expand freely in all directions. Newly-developed cells, which are in intimate union, are, at first, always polygonal. Through subsequent growth their shape may change. The cubical cells of the growing point either elongate to a prism or remain short and tabular. If the

Fig. 90. $-A$, A sclerenchymatous fibre ; B, a tracheid ; C, part of a spiral tracheid; D, part of a latex tube. $(A, B, C, \times 100 ; D$, \times circa 150.) growth is limited to certain definite points, and is regular, they become stellate ; if irregular, their outline is correspondingly unsymmetrical. In consequence of energetic growth in length, fibre-like, pointed cells are developed. If the walls of such cells become much thickened, they are called sclerenchyma fibres (Fig. 90, A). These show diagonal markings, due to their elongated pits, which are generally but few in number. When fully developed, the living contents of such cells are small in amount and frequently they contain only air. In the last case, they merely act as mechanical supports for the other parts of the plant. Cells somewhat similar, but shorter and considerably wider, not sharpened at the ends, and provided with bordered pits, are called tracheids (Fig. 90, B). The tracheids, in their fully developed condition, never have any living contents, but serve as watercarriers for the plant. So long as they remain active, they contain only water and isolated air-bubbles; their active functions afterwards cease, and they become filled with air. Tracheids, which are specially elongated, and at the same time have only a narrow lumen, and, like the sclerenchymatous fibres, serve merely mechanical purposes, are known as fibre tracheids. Very long tracheids with a wide lumen and thin walls, functioning, like typical tracheids, as water-carriers, are distinguished as vasiform or vascular tracheids. They are characterised by the annular, spiral, or reticulate markings of their thickening layers, and may also be provided with bordered pits.

The thickening layers of sclerenchyma fibres may be either lignified or unlignified ; those of tracheids are always lignified. The characteristic thickened walls of the vasiform tracheids serve to sustain the pressure of the surrounding living cells.

Of all the cells in the more highly organised plants, the latex cells or milk cells, also spoken of as latex tubes, attain the greatest length. In the Euphorbiaceae, Urticaceae, Apocyneae, and Asclepiadaceae they arise from cells which are already differentiated in the embryo. Growing as the embryo grows, they branch with it and penetrate all its members, and may thus ultimately become many metres long. The latex cells themselves have, for the most part, unthickened smooth elastic walls which give a cellulose reaction. They are provided with a peripheral layer of living cytoplasm and numerous nuclei. Their sap is a milky, usually white fluid, which contains gum-resins, i.e. a mixture of gums and resins, caoutchouc, fat and wax in emulsion. In addition, they sometimes hold in solution gums, tannins, often poisonous alkaloids, and salts, especially calcium malate, also, in the case of Ficus Carica and Carica Papaya, peptonising ferments. In the latex cells of the Euphorbiaceae there are also present in the latex peculiar dumb-bell-shaped starch grains. On exposure to the air the milky sap quickly coagulates. In the adjoining figure (Fig. 90, D) is shown a portion of an isolated latex cell dissected out of the stem of an Asclepiadaceous plant, Ceropegia stapelioides.

Special cells, which differ in form, contents, or in their peculiar wall thickenings from their neighbouring cells, are distinguished as idioblasts. If strongly thickened and lignified, they are called sclerotic cells (stone cells) or sclereids. They generally contain some secreted substance. In a previous figure (Fig. 80) an idioblast, containing a bundle of raphides, is represented. Idioblasts, resembling tracheids and functioning as water reservoirs, are found between the chlorophyllcontaining cells in the leaves of some of the Orchidaceue.

Cell Fusion

Cell fusion occurs much less frequently in plants than in animals. Yet in all sexually differentiated plants, just as is the case in animals, fertilisation depends for its consummation on the fusion of living protoplasts. A fusion occurring between naked cells has already been noticed in describing the formation of a plasmodium by the Myxomycetes (Fig. 52). When the hyphæ of Fungi touch one another, their walls are often absorbed at the point of contact, and the living contents of two different hyphæ become united. In higher plants a similar fusion takes place in latex vessels and in sieve-vessels. Latex vessels have the same structure and contents as latex cells. Their occurrence, like that of latex cells, is limited to a few distinct plant families,
such as the Papaveraceac, of which the Poppy (Paparer) or Celandine (Chelidonium), with its characteristic orange-coloured "sap," are familiar examples, or the Compositae, of which in particular the Lettuce (Lactuca) may be cited. Latex vessels are distinguished from latex cells only by the method of their development, which has resulted from the fusion of rows of elongated cells, the separating transverse walls of which have become more or less completely absorbed. In this manner a network of latex vessels, such as that in the Spanish Salsify (Scorzonera hispanica), may be formed (Fig. 91). In the formation of the sievevessels, or sieve-tubes as they are usually

Fig. 91.-Tangential section through the periphery of the stem of Scorzonera hispanica, showing reticulately united latex vessels. ($\times 240$.) termed (Fig. 92), the cell fusion is much less complete. It is confined to fine canals, which perforate the cross-walls, which are known as sieve-plates. The cells thus united by the sieve-pores remain as distinct segments of the sieve-vessels. It is worthy of special note that, despite the fact that after the nuclei of the different sieve-tube segments become disintegrated, their cytoplasm still continues living. The walls of sieve-tubes are always unlignified. Their sap cavities contain a watery, and more or less diluted, solution of albuminous substances, which, by means of the pores of the sieve-plates, may pass from one segment of the sieve-tube to another. As a rule, small starch grains may also be found in the sieve-tubes. The pores of the sieve-plates never attain great dimensions (Fig. 92, B, D), and are generally extremely small. Sieve-plates are sometimes found also in the lateral walls of the sieve-tubes, and the sieve-pits permit communication between adjoining sieve-tubes. Such lateral sieveplates are frequent in the Conifers (Figs. 85, 93). As a rule, sievetubes only remain functional for a short time. After their activity ceases, the sieve-plates become invested with the strongly refractive callus-plates (Figs. 92 C, 93 B) already referred to (p. 80) in discussing callose.

A cell fusion also takes place in the formation of vessels or trachee, but it should not be considered as a union between living cell bodies, but merely as one between cell cavities. The vessels are formed by the absorption of the transverse walls of rows of cells, the lateral walls of which are peculiarly marked by spiral or reticulate thickenings, or, as is more frequently the case, by bordered pits. In cases where the transverse walls are at right angles to the side walls,
they usually become perforated by a single round opening while the rest of the wall remains as a thickening ring (Fig. 86, C). When the transverse walls are oblique, they are then perforated by several openings, between which portions of the wall remain, like rungs of a ladder (Fig. 94, q). According to the mode of their wall thickening, vessels are distinguished as spiral, reticulate, or pitted. When the trans-versely-elongated pits of a vessel are arranged in more or less parallel rows (Fig. 94), it is called a scalariform vessel. The thickening of the vessel walls is always lignified. The living contents of the cells,

Fig. 92.-Parts of sieve-tubes of Cucurbita Pepo, hardened in alcohol. A, Surface riew of a sieveplate; B, C, longitudinal sections, showing segments of sieve-tubes; D, contents of two sievetube segments, after treatment with sulphuric acid; s, companion cells; u, albuminous contents ; $p r$, peripheral cytoplasm ; c, callus-plate ; c^{*}, small, lateral sieve-pit, with callus-plate. $(\times 540$.
after the perforation of the transverse walls, become completely absorbed, and the fully-formed vessels or tracheæ contain only water and a limited amount of air.

There is no difference between vasiform tracheids and vessels other than that the former are single elongated cells, and the latter fused cell rows. Generally speaking, tracheids are formed in parts of plants still in process of elongation, vessels in parts where growth in length has already ceased. True vessels make their first appearance in some of the Ferns, for instance, in the common Bracken (Pteris aquilina). In the main, despite the name Vascular Cryptogams, Ferns have only vasiform tracheids. Even in the Gymnosperms the Gnetaceae are the only family regularly provided with vessels. It is in the Angiosperms that vessels first become of frequent occurrence. Vessels are not of an unlimited length. A few plants however, such as the Oak, and especially climbing woody plants, as the Lianes, have vessels several metres long; but, as a rule, their length is not more
than a metre, and in plants the woody portion of which conducts water only by vessels, the vessels have an average length of only ten centimetres. The length of

Fig. 93.--Part of the wall of sievetubes of Pinus sylvestris, in tangential section, after treatment with chloroiodide of zinc ; A, before, B, after formation of the callus-plate ; C, portion of a sievetube no longer in activity. ($\times 540$.)

Fig. 94.-Lower third of a scalariform vessel from the rhizome of the common Bracken Fern, Pteris aquilina. t, Transversely elongated pits in the lateral walls; q, scalariform perforations of the terminal wall. (After De Bary, $\times 95$.)
an individual vessel is defined by the presence of transverse walls, which are not perforated except by bordered pits.

Tissues

A continuous aggregation of cells in intimate union is called a tissue. The origin of vegetable tissues is, in general, attributable to cell division. It is only in the Fungi and Siphoneae that a tissue arises through the interweaving of tubular cells or cell filaments (Figs. $95,96)$. In such cases, where the filaments are so closely interwoven as to form a compact mass of cells, the apparent tissue thus formed has the same appearance as the tissues of higher plants (Figs. 97, 98).

The mutual interdependence of the cells of a tissue is manifested both by the conjunction of their pits (Figs. 81, 83, 84), and by the general similarity of their wall thickenings.

The PROTOPLASTS OF MOST CELLS ARE DIRECTLY CONNECTED WITH ONE ANOTHER BY MEANS OF EXTREMELY DELICATE THREADS OF
cytoplasm. These cytoplasmic threads penetrate the cell walls, and in particular the partition membranes of their pits (Fig. 99). It may be inferred that the conduction of stimuli from one cell to another is carried on by means of these cytoplasmic connections. Viewed thus, the whole plant becomes a living unit. Between cells having such cytoplasmic connections and a fusion of cells, such as a sieve-tube, there is little distinction. In this sense a whole plant forms a single cell fusion, although incomplete and limited by cell walls.

The cells in a tissue may either fit closely together, leaving no openings or spaces, or so-called intercellular spaces (intercellulars) may be left between the individual cells.

Where cell filaments are interwoven into a tissue, their intercellular spaces are represented by the openings left between

Fig. 95.-Longitudinal section of the stalk of the fructification of Boletus edulis. $(\times 300$.) the loosely-intertwined filaments (Figs. 95, 96). In tissues resulting from cell division the intercellular spaces arise subsequently, as the

Fig. 96.-Transverse section of the stalk of the fructification of Boletus edulis. $(\times 300$.)

Fig. 97.-Longitudinal section of the sclerotium of Claviceps purpurea. $(\times 300$.)

Fig. 98.-Transverse section of the sclerotium of Claviceps purpurec. $(\times 300$.)
partition wall between two cells formed by cell division originally belonged to both mutually.

Such a partition wall may ultimately split and so give rise to intercellular spaces, but this only occurs after it has been thickened. The cause of such splitting is to be found in the hydrostatic pressure existing within the cells, and their consequent tendency to assume a spherical shape. The formation of intercellular spaces commences, therefore, at the cell corners, where the primary wall, consisting of pectinose material, becomes swollen.

The simplest and at the same time most frequent intercellular
spaces are triangular or quadrangular in outline, as seen in crosssection (Figs. $81 i, 87 i$). In cases where special portions of adjoining cells are in extremely energetic growth, intercellular chambers and passages, of more or less irregular shape, may be formed between them. If the growth of adjoining cells is very unequal, it may lead to a complete separation of their cell walls;

Fig. 99. - Longitudinal section of the cortical cells of Nerium Oleander, after treatment with chloroiodide of zinc and methylene blue to show the cytoplasmic connection between the cells. (After KienitzGerloff, $\times 900$.) or the cells, or even a whole system of tissues, may be stretched and torn apart. It is by such a process that hollow stems are formed. Intercellular spaces arising from a splitting of adjoining cell walls are accordingly termed schizogenic ; those formed by tearing or dissolution of the cells themselves are called lysigenic intercellular spaces. Most intercellular spaces contain only air, although in special instances they may contain water or excreted products, such as gum, mucilage, resin, or ethereal oils, and in other less frequent cases latex. Schizogenic intercellular spaces are usually filled with air, while the lysigenic spaces contain almost always either water or excretion products.

Of the schizogenic intercellular spaces, those filled with ethereal oils or resin, on account of their frequency, should be particularly noticed. Short cavities and longer passages, or ducts, containing ethereal oils, are to be found in the stems, roots, and leaves of numerous plant families. The Umbelliferae are especially rich in these, and the oil-ducts form the characteristic markings (vittæ) on their fruits. The Conifers are especially characterised by resin-ducts (Fig. 139, h), which, even during their formation by the separation of the cell walls, seem to fill with an excretion from the cells. The enlargement of such intercellular spaces is accompanied by a division of the surrounding cells, the number of which is thus correspondingly increased. The cells themselves remain thin-walled, and in close contact, but bulge out somewhat into the ducts. Lysigenic intcrcellular spaces, acting as receptacles for secretions, have the appearance of irregular cavities in the tissue. Where they contain oil or resin, they develop from a group of cells in which these substances appear in the form of drops. The cell group then becomes disorganised by the gradual absorption of the cell walls, beginning with those of the cells in the centre of the group. In this way are formed the receptacles filled with ethereal oils, as, for example, those in Dictamnus (Rutaceae), (Fig. 116), and in Aurantieae, as in the Orange and Lemon. The exudation of resin, in the case of coniferous trees, is preceded by the formation of abnormal tissues, which afterwards become converted into resin. Such was also the origin of amber, which is the fossil resin of the Amber-fir (Picea succinifera). The formation of gum in lysigenic gum cavities is due to the modification of the cell walls, and either normal tissues participate in this process, as in the case of the gum-arabic of the Acacia, or abnormal tissues are first developed and then transformed into
gum, as, for example, the gum on Cherry trees. Latex does not occur in lysigenic intercellular spaces.

The separating walls resulting from cell division are simple lamellæ. That part of the partition wall between two cells which stands out so distinctly in a cross-section does not consist of the original primary cell wall alone. It is made up of both the primary wall and the primary thickening layers, and is called the middle lamella (Figs. $81 \mathrm{~m}, 83 \mathrm{~m}$). In soft tissues the middle lamella, according to Mangin, is composed of pectose combined with calcium (calcium pectate) ; in woody and corky tissues it has the same composition, but is also lignified. By boiling soft tissues in water, the cells may often be easily isolated through the consequent swelling and dissolution of the middle lamella. In ripe fruit, an isolation of the cells frequently takes place spontaneously, through the dissolution of the middle lamella. A lignified middle lamella, on the other hand, seems able to withstand more effectually the action of oxidising agents. Consequently, it is possible, by subjecting a section of pine-wood to the action of Schulze's macerating mixture (potassium chlorate and nitric acid), and subsequently treating with concentrated sulphuric acid, to remove all secondary and tertiary thickening layers, so that only the middle lamellæ remain as a delicate network. If the macerating process be continued for a longer time, without the subsequent treatment with sulphuric acid, the middle lamellæ become finally dissolved. The thickening layer will then be left free from all lignification, and will in that condition give the blue cellulose reaction with chloroiodide of zine (p. 80). Schulze's macerating method may accordingly be employed to isolate the elements of lignified tissues. The inexplicable attitude of the middle lamella towards chemical reagents gave rise at one time to the presumption of a peculiar intercellular substance which, like a glue, bound together the cells of a regetable tissue. The supplementary deposition of pectose in the middle lamellæ (p. 80) frequently gives rise to the formation of rod-like protuberances and excrescences, which project into the intercellular spaces, or these spaces may be filled up by the formation of gussets (Fig. 83, C, m^{*}). The yellowish brown colour assumed by the pectose deposited on the walls of intercellular spaces, on treatment with chloroiodide of zinc, led to the erroneous supposition that the intercellular spaces in plants were lined by a thin layer of living cytoplasm.

Vegetable tissues may be divided into two groups, parenchyma and prosenchyma, between which, however, no sharp distinction can be made. A typically developed parenchymatous tissue is one in which the thin-walled cells are equally expanded in all directions, and are, for the most part, rich in protoplasm. Typical prosenchymatous tissue, on the other hand, consists of thick-walled, elongated cells, either in the form of fibres or spindle-shaped cells, with interlocking, pointed ends, and with little or no protoplasmic contents. A parenchymatous tissue, in which the cells are thick-walled and elongated, resembles prosenchyma, but may be distinguished from it by the absence of pointed cell terminations, and especially by the greater abundance of protoplasm. Thin-walled prosenchyma is not, on the other hand, necessarily lacking in protoplasm, but is characterised by its pointed and interlocking cells.

An undifferentiated tissue, the cells of which are still capable of division, is termed embryonic tissue, or meristen. The meristem of embryonic rudiments and of the growing point is called proneristen,
and all meristematic tissue which can be shown to have been developed directly from such promeristem is termed primary. A primary meristem, in the midst of a completely developed tissue, may still retain its meristematic character. Fully differentiated tissue is designated permanent tissue in contrast to meristematic tissue. At times, permanent tissue may again become capable of division, and in that condition is called SEcondary meristen.

Tissue Systems

A mass of tissue so united in the body of a plant as to form a distinct histological unit constitutes a tissue system. In the more highly organised plants three such systems may be distinguished-the tegumentary system, the vascllar bundle system, and the fundainental tissue system.

The tissues which make up the different tissue systems are distinguished as prinary and secondary, according as they are derived from the promeristem or secondary meristem.

The primary tissues of the tissue systems will be considered first.

The Primary Tissues

The Tegumentary System.-In the Pteridophytes and Phanerogams the plant body is covered by a distinct outer tegument or EPIDERMIS. On the inside, the epidermis, which is usually composed of but a single layer of cells (Fig. 87, e), is sharply marked off from the adjoining tissue, while on the outside it is much thickened. This is especially the case in all aerial parts of plants adapted for a long life, but on the more perishable parts of a plant, such as the floral leaves, or on those parts more protected, as the root, the cells of the epidermal layer are generally thin-walled or only slightly thickened. Even when the external walls of the epidermal cells are considerably thickened, the side walls, at least in part, remain unthickened. The external walls are also more or less cuticularised, while their outermost layer, which is more decidedly cuticularised and capable of withstanding even the action of concentrated sulphuric acid, extends as a CUTICLE continuously over the surface of the epidermis. The cuticle has its origin in the primary walls of the younger epidermal cells, which, during the increase in size of the plant, become very much distended and at the same time strengthened by the deposition of cutin. The cuticle frequently becomes folded, and so assumes a striped appearance (Fig. 107). Plants in dry climates, or so situated that, for any reason, transpiration from their outer surfaces must be diminished, are characterised by the extraordinarily thickened and cuticularised walls of their epidermal cells. In some of the Gramineae, Equisetaceae, and many other
plants, the cell walls of the epidermis are silicified. In the Equisetaceae the impregnation with silica is so considerable that these plants are used for polishing. Heating, even to redness, does not destroy the structure of such silicified epidermal cells.

Deposits of wax, as De Bary has shown, are also present in the cutinised layers of the epidermis, and consequently water will flow off the epidermis without wetting it. The wax is sometimes spread over the surface of the cuticle as a wax covering. This is the case in most fruits, where, as is so noticeable on plums, it forms the so-called bloom. The wax coverings may consist of grains, small rods, or crusts.

On the nodes of many Gramineae the rod-shaped wax bodies have a considerable length (Fig. 100). The wax deposits attain their greatest thickness on the

Fig. 100.-Transverse section of a node of the sugar-cane, Saccharum officinamem, showing wax incrustation in the form of small rods. ($\times 540$.)
leaves of some of the Palms; on the Peruvian Wax Palm, Ceroxylon andicola, the wax covering is more than 5 mm . thick. This wax, as well as that obtained from the fruit of Myrica cerifera, is known as vegetable wax, and possesses an economic value. The wax incrustations may be melted by heat; they are soluble in ether and in hot alcohol. In many cases, in place of the wax coverings, small grains and scales of a fat-like substance, which is soluble even in cold alcohol, are excreted from the hairy surface of the epidermis. The dusty coverings thus formed appear either mealy white or golden yellow, and are the cause of the striking appearance of the Gold and Silver Ferns, especially in species of Gymnogramme.

In many Ferns groups of slightly thickened, epidermal cells are distributed over the leaves. These cells are richly supplied with contents, and exude drops of watery fluid. Cells of this nature, which thus serve the purpose of exuding or, at other times, of absorbing water, have been termed hydathodes by Haberlandt. In many other cases, slimy or sticky excretions are produced between the
thickening layers of the epidermis and the cuticle, which press up the latter and finally burst it. Such excreting surfaces often occur inside buds. Sticky zones are frequently formed on stems, as in the case of Lychnis viscaria and other Sileneae, as a means of protection to the buds higher on the stem from undesirable visitors. Small creeping insects, which would otherwise rob the flowers of their honey, seem as little able to pass beyond such a sticky zone, as other larger animals to surmount the rings of tar often placed around the trunks of trees for a similar protective purpose. Excreting epidermal surfaces form also the nectaries of flowers, which by means of their sweet secretions lure such animals, generally insects, as are instrumental in their pollination.

The cells of the epidermis are in uninterrupted contact with each other, and the general firmness of the whole epidermis is also greatly enhanced by their undulating side walls (Fig. 101). In plants with

Fig. 101.-Surface view of the epidermis from the upper side of a leaf of Mercuriattis perennis. $(\times 300$. $)$

Fig. 102.-Surface view of the epidermis from the under side of a leaf of Impatiens parrflora, showing stomata. ($\times 160$.)
special land and water forms, as Ranunculus, the epidermal cells of the land form alone have the undulating side walls. In the delicate epidermal cells of flowers, ridges projecting into the interior of the cells are frequently formed on the inner side of their side walls (Fig. 107). The protoplasm of epidermal cells generally appears to be reduced to a thin, peripheral layer, and the sap cavities filled with colourless sap. Around their nuclei cluster the colourless rudiments of the undeveloped chromatophores, showing that, although exposed to the light, their further development may cease in cells not destined to take part in the assimilatory processes. Such epidermal cells with undeveloped chromatophores, besides acting as an external protection, serve as water-reservoirs; their side walls, by means of folds in the unthickened parts, can expand and collapse as a bellows, according to the variations in their supply of water. In the Ferns and also in several families of the Phanerogams the division of labour between the epidermis and the adjoining tissue is not so
strictly carried out, and the epidermal cells contain chloroplasts. The epidermis of Impatiens parviffora (Fig. 102) has tolerably large but only slightly green chromatophores, and thus occupies an intermediate position between the two extremes. The cell sap of epidermal cells is often coloured red; in many cases it has been demonstrated that plants thus acquire a protection from excessive illumination.

The formation of stomata in the epidermis is characteristic of all parts of the more highly-developed plants which are exposed to the air. Each stoma thus forms an intercellular passage perforating the epidermis and bounded by two elliptical epidermal cells, termed GUARDcells (Figs. $103 A, 104 A$). The guard cells always contain chloro-

Fig. 103.-Epidermis from the under side of a leaf of Iris florentina. A, In surface view; b, in transverse section ; f, vestibule ; s, opening ; c, cuticle ; a, respiratory cavity. ($\times 240$.)
plasts, and are also characterised by their peculiarly thickened walls, which form ridge-like protuberances projecting above and below from the sides of the guard-cells adjoining the air-passage (Figs. 103 B , $104 \mathrm{~B})$. Midway between the projecting ridges, on the other hand, the walls of the guard-cells remain unthickened (Fig. 105).

The guard-cells themselves jut out into the air-passage (Figs. 103 B, $104 B$, 105), and thus facilitate its closing. In addition, the external thickened walls of the two adjacent epidermal cells become, in some cases, suddenly narrowed on approaching the guard-cells (Figs. $103 B, 105$). By this means a hinge-like connection is formed which renders the guard-cells independent of the other epidermal cells. At other times this same result is accomplished by raising the stomata above the epidermis, or, which has the same effect, by sinking them below the
thickened epidermal walls. Frequently the epidermal cells adjoining the guardcells are less thickened or lower than the other cells of the epidermis (Fig. 104). Such special epidermal cells are called subsidiary cells.

The stomata are formed by the division of a young epidermal cell into two cells

Fig. 104.-Epidermis from the under side of a leaf of Tradescantia virginica. A, In surface view ; B, in transverse section; l, colourless rudiments of chromatophores surrounding the nucleus. $(\times 240$.)
of unequal size, one of which, the smaller and more abundantly supplied with protoplasm, becomes the stoma mother-cell; while the larger, containing less protoplasm, usually continues as an epidermal cell. The stoma mother-cell

Fig. 105.-Transverse section of the epiderinis of Aloe nigricans. i, Inner, uncutinised thickening layer. ($\times 240$.)
becomes elliptical in outline and divides again, by a vertical wall, into the two guard-cells, between which, by a splitting of the wall, the intercellular passage is formed. Before the formation of the definitive stoma mother-cell, successive divisions of the young epidermal cell often occur; in such cases the finally developed stoma is generally surrounded by subsidiary cells.

Stomata are chiefly developed on the green parts of plants, but are sometimes found even on the coloured floral leaves. They are naturally found in greatest numbers on the leaves, as it is there that they are
most needed to facilitate the interchange of gases necessitated by the processes of assimilation. In dorsiventral leares the stomata occur, for the most part, if not exclusively, on the under surface, and arerage about 100 to the square millimetre, although in some plants their number may reach 700 . Leaves which are alike on both sides have their stomata equally distributed on their upper and under surfaces. Floating leaves of aquatic plants have stomata only on the side exposed to the air. In some cases, as in the Oleander (Nerium Oleander), several stomata are situated together in depressions in the under surfaces of the leares. In the tissue directly under each stoma there is always a large intercellular air-chamber, termed the respiratory catity (Fig. 103, B, a), which is in direct communication with other intercellular spaces extending throughout the leaf tissue. In plants grown in abundance of moisture, these intercellular spaces in leaves are larger than in the case of plants growing in drier situations.

In contrast to the stomata, which as air-pores serve for the interchange of gases, a few plants also possess Water-stomata or Waterpores, situated at the ends of the so-called reins or nerves of the leaves. These pores serve as organs for the discharge of water or watery solutions. Calcium carbonate, in solution, is frequently excreted in this way, and in many species of Surifraga it forms white scales on the margins of the leaves. Although water-pores may often be found at the apices and tips of the marginal teeth of young leaves. they seem to dry up as the leaves become more mature. The guardcells of water-stomata always lose their living contents prematurely, and thus the passage between them remains continually open. The waterstomata (Fig. 106) are always larger than the air-stomata. Although submerged leares of aquatic plants are deroid of air-stomata, water-stomata often occur on them.

Hairs or trichomes and tegumentary outgrowths or emergences are characteristic of the tegumentary system. The simplest form of hairs are the Papilles, which are merely epidermal cells, the external

Fig. 10ti.-Water-pore from the maryin of a leaf of Tropacolum majus, with surrounding epidermal cells. ($\times 240$.) walls of which have protruded in a conical form. Papille are often developed on the petals of flowers, and are the cause of their velvety appearance (Fig. 10i). Longer hairs, such as the root-hairs
(Fig. $47, r$), are also correspondingly long prolongations of single

Fig. 107.-.Surface of the upper epidermis of a petal of
Violu tricolor, showing ridge-like projections from the lateral walls, and protruding papillie. $(\times 250$. epidermal cells. The soft, hairy growths found in young buds are generally similarly prolonged epidermal cells which, as a protective covering, surround the young growing tissues and sometimes remain on fully-developed plants to shield them from too rapid evaporation and sudden changes of temperature. The parts of plants possessing such hairy coverings usually have a white appearance, on account of the air retained both between and in the

Fig. 108.-Seet-hairs of the cotton, Gossypium herbaceum. A, Part of seed-coat with hairs ($\times 3$); B_{1} insertion and lower part, B_{2} middle part, and L_{3} upper part, of a hair. ($\times 300$.)

Fig. 109.-stinging hair of U゙rtica dioien, with a portion of the epidermis, and, to the right, a small bristle. (x oi0.)
hairs. The hairs developed from some of the epidermal cells of the
seed coats of various species of Gossypium attain an unusual length, and supply the cotton of commerce (Fig. 108). These cotton hairs are sometimes 6 cm . long, and in their fully-developed state contain only air; their cell walls are thicker than those of ordinary hairs, and covered with a delicate cuticle. They are usually somewhat flattened and at the same time twisted; and are wider in the middle than at

Fig. 110.- A, Spindle-shaped hair from the under surface of a leaf of the Wallfower, Cheircenthus cheiri; B, cross-section of leaf showing insertion of hair; C, stellate hair and adjoining epidermis from the unter side of a leaf of the Stock, Matthiolu annua. $(A, C, \times 90 ; B$, $\times 240$.)

Fig. 111.-Glandnlar hair from the petiole of Primuld sinensis. (After De BARI, $\times 142$.)

Fig. 112.-Glandular scale from the female inflorescence of the Hop, Humulus Lupulus, in vertical section. A, before, B, after the cuticle has become distended by the excretion. In B the excretion has been removed by alcohol. (After De Bary, $\times 142$.)
either end (Fig. 108, B_{2}). Bristles are short, pointed hairs, in the thickened cell walls of which calcium or silica has been deposited (Fig. 109, below, to the right).

The stinging hairs (Fig. 109), such as those of Nettles (Urtica) and of the Loasaceae, are special forms of bristles, and arise as prolongations of single epidermal cells. These however, swell in the course of their development, and becoming surrounded by adjoining epidermal cells pre-
sent the appearance of being set in sockets ; while, at the same time, by the multiplication of the cells in the tissue at their base, the whole hair becomes elevated on a column-like protuberance. The hair tapers towards the apex and terminates, somewhat obliquely, in a small head, just below which the wall of the hair remains unthickened. As the wall of the hair is silicified at the end and calcified for the rest of its length, the whole hair is therefore extremely stiff. Such hairs furnish a means of defence against animals. The heads break off at the slightest touch, and the hairs piercing the skin pour out their poisonous

Fic. 113.-Scale-hair of Asplenium bullbifcrum. ($\times 90$.)

Fig. 114. - Glandular colleter from a stipule of Viola tricolor, showing also a unicellular hair. ($\times 240$.)
contents, which, especially in the case of the Loasuceae, may cause severe inflammation.

- Unicellular Hairs, such as we have so far considered, may terminate in well-defined heads resulting from the swelling of their tips, or their side walls may develop irregular excrescences; on the other hand, they may remain short and expand like a balloon, or remain close to the surface of the epidermis as spindle-shaped (Fig. 110, A) or stellate (Fig. 110, C) hairs. Multicellular hairs may be merely simple rows of similar cells, as the hairs on the stamens of Tradescantia (Fig. 53) ; or their terminal cells may become swollen into globular lieads (Fig. 111), like those on the Chinese Primrose (Primula sinensis); or an epidermis may be covered with shield-, star-, or bowl-shaped hairs (Fig. 112). Sometimes the hairs become variously branched,
and in special cases, as in the scale hairs of Ferns (Fig. 113), they may even have the shape of a small leaf.

Emergences, unlike hairs, are not formed solely by epidermal cells, but a number of cells, lying more or less deeply in the sub-epidermal tissues, also take part in their formation. Thus, for example, while only a few rows of sub-epidermal cells enter into the formation of the emergences (Fig. 114) on the margins of the stipules of the Pansy (Viola tricolor), nuch deeper-lying tissue participates in the development of the emergences which, as Prickles, serve in the case of roses as a means of protection, and at the same time are of assistance in climbing. Vascular bundles also may be included within the emergences, as is well shown in the club-shaped digestive glands or tentacles (Fig. 115) on the leaves of the Sundew (Drosera). Some emergences resemble in structure certain of the metamorphosed members of the plant body described in the preceding chapter; the resemblance between prickles and thorns, for instance, is particularly noticeable. The phylogenetic origin of emergences, and therefore the morphological value of metamorphosed members, is altogether different. The irregular distribution of emergences affords an easy means of distinguishing them from such metamorphosed members as resemble them in appearance.

Both hairs and emergences sometimes act as secreting organs, and are then termed glands. In many cases they are concerned with the active exudation, and at times also the absorption of water. They then belong to the class of organs designated hydathodes by Haberlandt (cf. p. 91). Hairs which function as hydathodes are usually multicellular; they are provided with a short stalk and terminate in a head. Other glandular hairs excrete a resinous substance. The hairs of Primula sinensis (Fig. 111) are in reality such glands, and it is from their excretions that the plant derives its peculiar odour. The cuticle of the terminal globular head is pressed away from the cell wall by the resinous matter excreted from the hair, until, finally, the bulging

Fig. 115.-Digestive gland from Drosera rotundifolice. $(\times 60$. cuticle is ruptured and the resinous secretion exudes. The similar but more complicated glandular hairs of Hops (Fig. 112) produce a secretion called lupulin, to which beer owes its bitter taste and distinctive aroma. The secretion is set free by the bursting of the cuticle, the latter having been previously pressed out from the underlying cell wall as a continuous membrane (Fig. 112, B).

The mucilaginous matter produced in young buds by the mucus papillæ or Colleters results from the partial dissolution of the cell wall under the cuticle. After the mucilaginous secretion has been discharged by the ultimate rupture of the cuticle, another new cuticle forms over the continually developing cell wall, and the process is again repeated. The colleters are but special forms of hairy structures, and are often developed in buds to protect the young organs from drying, by means of the mucilaginous modification of their cell walls. Where the dissolution of the cell wall is accompanied by secretions from the underlying cells, the colleters assume rather the character of glandular hairs. Such glandular colleters are prevalent in the winter buds of trees; in the Horse-chestnut (Aesculus Hippocustanum), for example, the bud-scales of the winter buds are stuck together by a mixture of gum and resin, which has been exuded fron colleters of this nature. The glandular hairs of the Pansy (Fig. 114) act in a similar manner.

The emergences on the leaves of the Sundew (Drosera), described as digestive glands (Fig. 115), discharge glistening drops of mucilaginous matter, not under the cuticle, but directly from the surface of the glands at the ends of the tentacles. Small animals are caught by means of these sticky excretions, and are afterwards digested by the plant. The nectaries of flowers also often excrete sugary solutions directly from their surfaces. The excreting cells are generally thin-walled and not cuticularised. The excretion of nectar may also take place through water-stomata. Finally, intercellular secretion CAVITIES are found on the emergences of the inflorescence of Dictamnus Fraxinellu. The lower distended portions of its ampullaceous emergences contain a fragrant ethereal oil, which fills the lysigenous cavity formed by the dissolution of the secreting cells (Fig. 116). In addition to these glandular emergences, other internal glands which are developed from the epidermis and the underlying layer of cells are found in the leaves of Dictamnus.

In some plants the epidermis is composed of several layers; but this is of comparatively rare occurrence. Such a many-layered epidermis results from a division of the young epidermal cells parallel to their external surface. The epidermis of Ficus clastica (Fig. 88) has three layers, and serves as a reservoir for accumulating water. The cystoliths of Ficus elastica, already referred to, occur in considerably swollen epidermal cells. The multi-layered epidermis of the aerial roots of many Orchids, and of various Aroids, undergoes a peculiar modification and forms the so-called velamen radicuil (p. 42), a parch-ment-like sheath surrounding the roots, and often attaining a considerable thickness. The cells of this enveloping sheath are generally provided with spiral or reticulate thickenings, and lose their living contents. They then become filled with either water or air, depending upon the amount of moisture contained in the surrounding atmosphere. These root-envelopes absorb water like blotting-paper; when the velamen
is filled with water, the underlying tissues impart a greenish shimmer to the root; but if it contains only air the root appears white. The epidermis of fruits, and particularly of seeds, exhibits a considerable variety of modifications in its mode of thickening, and in the relations the thickening layers bear to one another. The purpose of these modifications in the epidermis becomes at once evident, when it is taken into consideration that, in the case of flowers and seeds, in addition to protecting and enclosing their internal parts, the epidermis has often to provide for their dissemination and permanent lodgment.

The Vascular Bundle System. -The primary vascular bunDLES extend in the form of strands throughout the body of the higher plants. In more transparent stems, such as those of Impatiens parviflora, the bundles may be clearly distinguished and their direction followed. The arrangement of the bundles of leaves is apparent from their venation. In many parallelveined leaves the bundles are easily isolated. This is often done accidentally, as when, for example, in

Fig. 116.-Glandular hair from the inflorescence of Dictammus Fraxinella, in longitudinal section ; to the right a simple hair laid open at the base. (After Rauter, $\times 220$.) picking a leaf of Plantain (Plantago merlia) a pull is given at the same time. The leaves, and sometimes also the stems of Mosses, are provided with strands of elongated cells, which are termed conducting bundles. These strands consist either of elongated empty elements, which serve as water-carriers, or include also cells with protoplasmic contents which transport nutritive material (Fig. 159). In the leaves these conducting bundles constitute the midrib. They always consist of elements devoid of protoplasm, acting only as water-conductors, and of cells provided with living protoplasmic contents, and concerned with the transport of nourishment.

A high degree of differentiation of the vascular bundles is first attained by the Pteridophytes, which are accordingly designated Vascular Cryptogams.

In the Pteridophytes, and throughout the higher plants, two distinct portions may be distinguished in a vascular bundle, the TRACHEAL or
xylem portion, and the sieve or phlofi portion. While each portion may form independent strands, they are generally united in one vascular bundle (Figs. 117-119). Other terms often used to designate the vascular bundles are fibro-vascular bundles and mestome. The vascular portion is also termed the XYLEA or HADROME, and the sievetube portion the PHLOEM or LEPTOME. The rascular portion contains TRACHE® and TRACHEIDS as most essential for the fulfilment of its func-

Fig. 117.-Transverse section of a vascular bundle from the internode of a stem of Zea Mais. a, Ring of an annular tracheid; $s p$, spiral tracheid; m and m, vessels with bordered pits; r, sievetubes; s, companion cells; cpr, compressed protophloem; l, intercellular passage; $r g$, sheath ; f, cell of fundamental tissue. $(\times 180$.)
tion as a water-conductor, vascular elements ($a, s 1$, m, Figs. 117, 118), or tracheids alone, and, in addition, living, elongated parenchymatous cells that may be designated xylem or wood parenchyar. In the phloem portion the most essential elements are the sieve-tubes (r), which serve for the conveyance of albuminous matter. They are always accompanied by other living cells; either by the so-called companion cells (s), or in addition by elongated parenchymatous cells, or by the parenchyma alone. The companion cells are sister cells of the sievetubes, for both have arisen by longitudinal division from the same mother
cell. The companion cells are not so large as the sieve-tubes, and may be distinguished from them by their more abundant protoplasmic contents, and especially by the fact that they retain their nuclei, while the nuclei of the sieve-tubes soon disappear. In Monocotyledons (Figs. 117. 118), and in the Rimunculaceae among the Dicotyledons (Fig. 119), the phloem consists solely of sieve-tubes and companion cells; in the other Dicotyledons parenchymatous elements are also present, and these are accordingly distinguished as phloem or sieve parenchyma; no companion cells are found in Gymnosperms and Pteridophytes,

nearer the centre, and the wider nearer the circumference, in roots this order is exactly reversed. Closely allied to the collateral type is the bicollateral type of bundle. In the latter the xylem is accompanied by phloem on each side, both on the outside and inside. Such bicollateral bundles are characteristic of the Cucurbitaceae, but occur also in several other families of Dicotyledons.

The vascnlar bundle strands of the Pteridophytes (Fig. 121),

Fig. 119.-Transverse section of a vascular bundle from a stolon of Renunculus repens. ε, Spiral tracheids ; m, vessel with bordered pits ; c, cambium ; v, sieve-tubes; $r g$, sheath. ($\times 180$.)
although usually termed concentric bundles, cannot be compared with the single vascular bundles of the Phanerogams, but correspond rather to an aggregated complex of such bundles. The centre of such a vascular bundle strand consists of tracheids (sp), and also, in special instances, of tracheæ (sc). These elements show typical scalariform markings, and only the very smallest are spirally thickened ($s p$). The xylem parenchyma ($l p$) surrounds the tracheal elements, while both
are encircled by phloem consisting of sieve-tubes (c) and phloem parenchyma (s).

Such vascular bundle strands occur in the Ferns and Sclaginellaceac, and also in the Lycopodiaccae, where they exhibit even a greater degree of coalescence. In the Equistaccae the vascular bundles correspond more nearly to the collateral bundles of the Phanerogams.

The vascular bundles are developed from strands of meristematic tissue which are called PROcanbium strands. In those portions of plants which still retain an energetic vertical growth, the procambium strands remain undifferentiated, except at definite points, where single rows of cells lose their meristematic condition and form narrow, annular, and spiral vessels and sieve-tubes, or sievetubes and companion cells, the structure of all of which is of such a nature as to render their elongation possible. Such primary vascular elements are termed protoxylem ; while the corresponding sieve elements are in like manner designated protophloen. The protoxylem

Fig. 120.-Transverse section of central portion of the root of Acorus Calcinus. m, Medulla; s, xylem; v, phloem; p, pericycle; e, endodermis; c, cortex. $(\times 90$. occupies the innermost, the protophloem the outermost side of a procambium strand, from which a collateral bundle is eventually formed. After the vertical growth of any part of a plant ceases, the differentiation of the procambium strand into a collateral vascular bundle is continued from the inner and outer sides of the strand toward the centre. If the whole meristematic tissue of a procambium strand is exhausted in this process, the finally-developed vascular bundles are said to be CLOSED ; but if any of the meristematic tissue remains in an undifferentiated condition between the xylem and phloem portions, the bundles are spoken of as open. The Pteridophytes have, almost without exception, closed bundles ; in Monocotyledons also the bundles are always closed (Fig. 117) : Gymnosperms and Dicotyledons, on the contrary, have open bundles (Fig. 119).

The meristematic tissue which remains undifferentiated between the xylem and phloem portions of a bundle is called the canibium (Fig. 119).

In fully-developed vascular bundles the protoxylem and proto-
phloem cease to perform their functions. The protoxylem elements become compressed and ruptured by the tension resulting from the continued vertical growth (a and a^{\prime}, Fig. 118), so that in their stead a lysigenic intercellular space is often formed (Figs. 117, 118). The protophloem elements (cf. Figs. 117, 118) at the same time become disorganised, and their sieve-plates closed by a covering of callus.

In accordance with the orientation of the xylem, the protoxylem

Fig. 121.-Transverse section of the rascular-hundle cylinder of the petiole of Pteris aquilina. $s c$, scalariform vessels; sp, protoxylem; $s c^{*}$, part of a transverse wall showing scalariform perforations; l_{p}, xylem parenchyma; v, sieve-tubes ; $p r$, protophloem ; $p p$, starch layer; e, endodermis; s, phloem parenchyma. ($\times 240$.)
of roots is found on the outer, not on the inner side of the rascular strands (Fig. 120).

The Terminations of the Vascular Bundles.-In leaves, particularly in the deciduous leaves of Angiosperms, the vascular bundles become much branched until finally they are reduced to extremely fine strands. In the leaves of Gymnosperms this branching of the bundles does not usually take place, but instead, a single vascular bundle frequently runs throughout the whole length of the leaf. The
rascular bundles of the reticulate-veined leares of Dicotyledons illustrate the most extreme form of branching.

The fine distribution of the bundles in the leaf-lamina facilitates the regular conduction of water to all parts of the leaf-tissue, and at the same time renders easier the remoral of the assimilated products. An extended distribution of the bundles in the leaves is thus evidently of adrantage to a plant. In the same degree as the ramifications of the vascular bundles are continued, the bundles themselves become attenuated and simpler in structure Fig. 122). The ressels first disappear, and only spirally and reticulately thickened tracheids remain to provide for the water-conduction. The phloem elements undergo a similar reduction. In Angiosperms, in which the sieve-tubes are accompanied by companion cells, the sievetubes become narrower, whilst the companion cells retain their original dimensions. Finally, in the cells forming the continuation of the sieve-tubes, the longitudinal
 formed. With these the sieve-tubes terminate, although the vascular portion of the bundles still continues to be represented by short spiral tracheids, until finally they too disappear, either terminating blindly or anastomosing with other vascnlar bundles.

The Fundamental Tissue System usually forms the principal part of the primary tissues of the body of a plant. The whole tissue of the lower plants, as it shows no internal differentiation, may: in a certain sense, be considered fundamental tissue. The other tissues have gradually been dereloped from the fundamental tissue in the course of phylogenetic development. The fundamental tissue in the higher plants is enclosed by tegumentary tissue, and traversed by the vascular bundle system. While the tegumentary tissue protects the plant externally, and the vascular bundle system performs the office of conduction, and also of mechanically strengthening the plant, the duty of proriding for the nutrition of the plant and of storing reserve food material falls chiefly to the fundamental tissue. The fundamental tissue consists, therefore, for the most part of parenchymatous cells containing chloro-

Fig. 120. - Termination of a vascular bundle in a leaf of Impatiens parriflore. $(\times 2+2$. phyll, at least to such depth as the light penetrates ; but internally, and wherever the tissues are so situated as to be unaffected by the influence of the light, a colourless parenchyma is found. The fundamental tissue system also takes part in providing for the mechanical rigidity of plants, and in connection with this function it possesses
collenchyma (Fig. 87, c) and sclerenchyma as its special mechanical tissues. The collenchyad is unlignified and very elastic, and thus fitted for stretching; it is the form of mechanical tissue suitable for those parts of plants still undergoing growth in length. The sclerenchymatons fibres, on the other hand, are formed after growth in length has ceased, and sclereides arise even later. The elongated cells of the fundamental tissue also perform a certain share of the work of conduction, and are specially active in the transport of carbohydrates. Secondary or waste products, resulting from chemical changes, are also deposited in special cells of the fundamental tissue. Consequently idioblasts (p. 83), containing crystals or rows of crystal-containing cells, are often met with in the fundamental tissues, together with cells, tubes, cavities, or canals containing tannin, gum, resin, ethereal oils, latex, or alkaloids. Such waste products are for the most part

Fig. 123.-Transverse section of the petiole of Nuphar luteum. l, Intercellular air-space; i, idioblast. $(\times 60$.
deposited near the surface of a plant, in order to serve as a defence against destructive animals, or that they may afterwards be thrown off along with the superficial tissue. Cells containing these waste products, particularly crystal cells and latex tubes, are often found, therefore, accompanying the phloem portion of the vascular bundles.

The Aroideae, Nymphacaceae, and several other plant families possess a peculiar form of idioblasts, the so-called internal hairs, which project into the intercellular spaces of the fundamental tissue. In the wide intercellular passages of the leaf and flower stems of the Water-Lily these idioblasts are stellate in form (Fig. 123). Their walls are strongly thickened, and provided with short protuberances in which small crystals of calcium oxalate are deposited.

The Distribution of the Primary Tissues

In the body of multicellular plants a distinction between an outer small-celled and firm tissue and an inner large-celled looser tissue
soon becomes apparent. The outer tissues are best adapted for protection, the inner for conduction and storage. The cells of the inner tissues accordingly become elongated for the purpose of conduction. The outer tissues in plants, which must provide independently for their own nourishment, contain chromatophores fitted for assimilation, and are correspondingly coloured, while the inner tissues remain colourless. The outer portion of the fundamental tissue thus differentiated is called the cortex, the inner the medulla or prith. An epidernis, distinguishable from the cortex, is found in some of the Mosses, but a sharp distinction between these tissues is first found in the more highly organised plants.

In the Stem of a Phanero-

Fig. 124.-Transverse section of an internode of the stem of Zea Mais. $p r$, Primary cortex; $p c$, pericycle ; $c v$, vascular bundles ; $g c$, fundamental tissue of the central cylinder. ($\times 2$.) gamic plant there is an outer skin or epidermis (Fig. 125, e) on the external surface ; then follows the primary cortex (Figs. 124, $125, p r)$, and internal to this

Fig. 125. - Part of a transverse section of a young stem of Aristolochia Sipho. e, Epidermis; pr, primary cortex; st, starch-sheath; c, central cylinder; pc, pericycle, in this case with a ring of sclerenchyma fibres; $c v^{\prime}$, phloem, and $c v^{\prime \prime}$, xylem portions of the vascular bundle; $c b$, cambiun ring; m, medulla; $m s$, primary medullary ray. ($\times 45$.) the so-called central cylinder, for which Van Tieghem has proposed the name Stele (column). The innermost layer of the primary cortex, which may be designated by the term phloeoterma, is for the most part not distinctly differentiated, but can be recognised in the aerial stems of land plants as a starch-sheath ; while in the rhizomes of land plants and in the stems of waterplants it forms the endodermis. Differentiated as a starchsheath (Fig. 125, st), the phloeoterma is rendered conspicuous by the quantity of starch contained in its cells; when developed as an endodermis, portions of the lateral walls of its cells become suberised. In a cross-section these suberised portions of the cell walls of the
endodermis appear as dark spots (Fig. 126), but in a tangential section as sinuous lines. The stele or cextral cylinder of the stem contains rascular bundles (Fig. 125, cr), which, in the Equisetucene and some other Pteridophytes, as well as in the Gymnosperms and Dicotyledons (Fig. 125), are arranged in a circle, whereas in Monocotyledons (Fig. 124) they are irregularly distributed. In all these cases the xylem portion of the rascular bundle is directed towards the centre, and the phloem portion away from the centre of the stem. That part of the peripheral tissue of the central cylinder lying outside of the bundles is called the pericycle ($p c$) or pericambium, and is the special

Fıg. 126.-Transverse section of an adventitious root of Allium Cepc. c, Prinary cortex; e, endodermis ; p, pericycle ; α, amular tracheids ; $s p$, spiral tracheids ; sc and s^{*}, scalariform vessels; r, phloen. ($\times 240$.)
seat of new growths. If the bundles are arranged in a circle (Fig. 125), that part of the central cylinder enclosed by them is the Pith or medclla (m), and the tissue between the different bundles the prianay medullary rays. In the case of scattered bundles (Fig. 124), a distinction between medulla and medullary rays is no longer possible, and the whole tissue surrounding the bundles must then be considered as corresponding to the primary medullary rays. The division of the tissue systems in the stems of the higher plants into epidermis, primary cortex, and central cylinder, brings with it a corresponding division of the fundamental tissue into the fundamental tissue of the primary cortex and the fundamental tissue of the central cylinder. Wherever there is
no sharp distinction between primary cortex and central cylinder, comparative investigation alone can determine whether a tissue belongs to the primary cortex or to the central cylinder. Although the fundamental tissue of the primary cortex is preeminently a chlorophyll-containing tissue, portions bordering on the epidermis frequently become converted, for mechanical purposes, into strands of collenchyma or sclerenchyma. Such a mechanical tissue, which serves to strengthen the epidermis, is known as a hypoderia. Of the tissues composing the central cylinder, the pericycle, the primary medullary rays, and medulla consist of fundamental tissue, and are chiefly composed of colourless parenchyma. A part, however, of the tissue of the pericycle may become sclerenchymatous (Fig. 125, pc) ; sclerenchymatous elements also often surround

Fig. 127.-Transverse section of the rhizome of I'teris aquilinu. s, Vascular bundle strands (schizosteles); l, sclerenchymatous plates; $l p$, peripheral zone of selerenchymatous fibres; R, cortex; e, epidermis. ($\times 7$. .) individual bundles as sheaths, or accompany the phloem portion in the form of strands (Figs. 117, 119). Whenever such a sheath of sclerenchyma is developed about a bundle, it is always interrupted on both sides of the bundle, at the junction of the xylem and phloem portions, by parenchymatous cells, or by cells which are only slightly thickened and lignified. These cells facilitate the exchange of water and food material between the vascular bundles and the fundamental tissue, and are spoken of as transfusion strands.

In the casc of Phanerogams the central cylinder is simple and occupies a more or less central position. In some few instances, however, it breaks up into several partial cylinders or schizosteles. Such schizosteles are found in the stems of Auricula and Gunnera. The tissue that surrounds and separates these central cylinders corresponds to the primary cortex.

The vascular bundle strands (p. 104) of the Pteridophytes are also to be regarded as schizosteles. In the stems of Ferns they are usually separated from one another (Fig. 127) and situated in the fundamental tissue belonging to the primary cortex. This is also the case in the Selaginellas. In Lycopodium (Fig. 128), on the contrary, the schizosteles become united into a central gamostele. In these gamosteles the xylem portions of the single schizosteles form separate bands, wihilst the alternating phloem portions are fused with one another. The vascular bundles of the Equisctaceae (Fig. 346), on the other hand, are collateral. They are similar to those of Phanerogams, and, like them, are arranged in a circle within the central cyiinder ($c l$) with the xylem innermost and the phloem outermost. They surround a large medullary cavity (m) formed by the disruption of the pith of the internodes. The central cylinder is completely enclosed by the primary cortex (ch).

In the stems of Ferns, strands or plates of sclerenchymatous fibres are dispersed throughout the fundamental tissue, which belongs to the primary cortex. These plates of sclerenchyma, particularly noticeable from the brown colour of the walls of their fibres, surround and accompany the schizosteles. In Selaginella, on the other hand, the schizosteles are suspended within intercellular passages by means of cell filaments. In the case of Lycopodium the gamosteles are protected, and the rigidity of the stem secured by a strongly thickened inner zone of the cortex (Fig. 128, $2 i$).

In Roots, the division between primary cortex and central cylinder is sharply marked by the endodermis, into which the innermost layer of the primary cortex is usually transformed (Figs. 120, 126, e). The central cylinder becomes completely shut off from the primary cortex

Fig. 125.-Transverse section of stem of Lycoporlium complanatum. ep, Epidermis ; re, ri, pp, outer, inner, and innermost parts of the primary cortex, surrounding the gamostele; sc, sealariform tracheids; $s p$, amnular and spiral tracheids ; v, phloem. ($\times 26$.)
by the suberisation of the lateral walls of the endodermal cells, and by their close and uninterrupted contact. While, by this means, the passage of gases from the intercellular spaces of the cortex into the central cylinder, and the consequent obstruction of the waterchannels, are prevented, the passage of water from the cortex to the central cylinder can, at the same time, go on unhindered through the unsuberised inner and outer walls of the endodermal cells. In this manner it is possible for the water, absorbed from the soil by the root hairs or by the surface of the roots, to be transferred to the tissues of the central cylinder. In the older parts of the roots, which no longer absorb water from the soil, the cells of the endodernis become greatly thickened, but generally on one side only. Should the thickening occur at an early stage, then special endodermal cells, directly external to the xylem strands, remain unthickened and serve as transfusion cells
(Fig. 129, f). While the root-hairs are as a rule developed from the cells of the epidermis, they may, in case the epidermis is thrown off with the root-cap, arise from the outermost cortical layer, which then assumes the functions of an epidermis. In any case the epidermis ultimately disappears, and the outermost cortical layer becomes cuticularised and, as an exodervis, takes its place. In aerial roots the epidermis may become converted into a many-layered tracheidal ROOT-Sheath (p. 100).

The primati cortex of roots is composed of colourless tissue which, with few exceptions, consists wholly of parenchyma. Although the cells of the outer layers of the cortex are uninterruptedly in contact with one another, the inner layers are often provided with intercellular air cavities or passages.

The outer layer of cells (Figs. $120,126,129, \mu$) of the ceatral CYliNDER of roots often forms the pericycle (pericambium) ; this usually consists of a single layer of cells, but may be many-layered or entirely absent. The xylem and phloem portions of the xylem bundles of

Fig. 129.-Part of a transverse section of a root of Iris florentinc. e, Endodermis, showing cell walls thickened on one side; f, transfusion cell ; p, pericycle; r, phloem ; s, ressel of xylem ; c, cortex. ($\times 240$.) roots form separate strands (p. 103), radially disposed and alternating with each other (Figs. 120, 126). It has already been shown that the narrowest elements of the rascular strand are outermost. Roots are described as diarch, triarch, polyarch, according to the number of the radiating vascular strands. For example, the roots of Acorus Calamus (Fig. 120) are octarch, those of Allium Cepa (Fig. 126) hexarch. The vascular strands may either meet in the centre (Fig. 126) or they may surround a central pith (Fig. 120). Like the corresponding tissue in the stem, the fundamental tissue between the xylem and phloem strands may be termed primary medullary ray tissue.

There is never more than one central cylinder in a root ; in the tubers of Orchids the apparently large number of such cylinders may, on phylogenetic grounds, be considered as having resulted from a fusion of an equal number of roots.

Leaves consist chiefly of fundamental tissue. This tissue is a continuation of the fundamental tissue of the primary cortex, and is termed the mesophyll. It is traversed by vascular bundles, and corered externally with an epidermis. As the vascular bundles on entering a leaf are accompanied by fundamental tissue from the central cylinder
of the stem, they are in reality partial cylinders or schizosteles. In Pteridophytes, the partial cylinders of the leaves join those of the stems, and both have the same structure; in Phanerogams each partial cylinder of a leaf includes only a single vascular bundle, so that as many partial cylinders as vascular bundles enter the leaf. The mesophyll and the tissue of the partial cylinders always remain separated in the leaves. The sheaths of fundamental tissue from the central cylinder, which often accompany the vascular bundles when they enter the leaves, eventually disappear with the repeated branchings of the bundles. The mesophyll thereupon forms a mesophyll sheath, which corresponds to the phloeoterma of stems (p. 109), and closes contiguously about the free ends of the bundles (Fig. 121). Thus, in the more highly organised plants, the epidermis, prinary cortex, and the tisstes of the central cylinder, or of the partlal cylinders, With their vascular bundles, form isolated tissue systens, the mutual individuality of which is maintained to the very last ramifications. The cells of the mesophyll sheath are characteristically elongated, and are distinguishable by their uninterrupted contact. In addition to the isolation of the mesophyll from the tissue of the partial cylinders, the mesophyll sheath has also to perform the important function of taking up the carbohydrates in solution and of transferring them from the leaf to the stem. The vascular bundles, in turn, provide the leaf with water together with the salts held by it in solution, and also carry away the albuminous substances produced in the leaf.

The leaf-bundles of Gymnosperms are unbranched, and the necessary communication between the bundles and the surrounding tissue is maintained by means of bundle-flanges. On the vascular side of the bundle, the projecting flanges consist of dead parenchyma without protoplasm, the cells of which contain only water, and are provided with bordered pits, so that in this respect they resemble tracheids ; on the phloem side the parenchymatous cells of the bundle-flanges are full of living protoplasm. The transfusion of the contents of the bundles and the surrounding tissue is carried on by means of the bundle-flanges; the mesophyll receives its supply of water from the vascular portion, while the albuminous substances of the leaf-tissue are in turn transferred to the phloem portion of the bundles.

In certain families of the Dicotyledons, particularly in the Crassulaceae, the mesophyll of the leaf-lamina forms peculiar masses of tissue called the efitheme between the swollen terminations of the bundles and the epidermis. The cells of the epitheme are small and, for the most part, devoid of chlorophyll ; they are full of water, and joined closely together, leaving only very small interspaces, which are filled with water. The epithemes serve as internal hydathodes (cf. p. 91) for the discharge of water, in most cases by means of water-pores (p. 95) situated immediately over them.

The mesophyll of the coloured floral leates of the Angiosperms usually consists of a somewhat loose tissue, containing intercellular spaces and traversed by vascular bundles. The laminæ of many assi-
milating FOLIAGE LEAVES, especially of shade-loving plants, may have a similar uniform structure ; but they are usually more complicated, and exhibit a difference in the structure of their upper and lower sides (Fig. 130). They are, accordingly, dorsiventral, and, in correlation with this difference in structure, their two surfaces react differently toward external influences. In such dorsiventral structures the upper epidermis is succeeded by one or more layers of cylindrical parenchymatous elements elongated at right angles to the surface, and known as the Palisade cells. These are especially rich in chlorophyll, and contain only small intercellular spaces. Adjoining the palisade parenchyma, and extending to the epidermis (ep") on the under surface of the leaf, is a loose tissue called the spongy parenchiad. In contrast to the palisade cells, the cells of the spongy parenchima are less

Fig. 130. - Transverse section of a leaf of Fungus sylcutica. ep, Epidermis of upper (ventral) surface ; $e p^{\prime \prime}$, epidermis of under (dorsal) surface; $e p^{\prime \prime \prime}$, elongated epidermal cell above a vascular bundle; pl, palisade parenchyma; s, collecting cells; sp, spongy parenchyma: 1 , idioblast with crystals, in k^{\prime} with crystal aggregate ; st, stoma. ($\times 360$.)
abundantly supplied with chlorophyll ; they are also much more irregular in shape, and enclose large intercellular air-spaces. The palisade cells are elongated in the same direction in which the rays of light penetrate the leaf-lamina, and by this means are particularly adapted to their special function of assimilation. The spongy parenchyma, on the other hand, is arranged to facilitate the free passage of gases, and to that end develops large intercellular spaces in direct communication with the stomata of the under epidermis. Haberlandt has estimated that to every square millimetre of surface in a leaf of Picinus communes there are, in the palisade cells, 403,200 chlorophyll granules; in the cells of the spongy parenchyma only 92,000 ; that is, 82 per cent of all the chlorophyll granules belong to the upper surface of the leaf, and only 18 per cent to the under side. The palisade cells are often arranged in groups, in which the lower ends of the cells of each group converge (Fig. 130). In this way several
palisade cells come into direct contact with a single expanded cell of the spongy parenchyma, which thus functions, apparently, as a collecting cell for a group of palisade cells. The products of assimilation are passed on from the collecting cell through the spongy parenchyma, to be finally carried to the mesophyll sheath surrounding the vascular bundles.

In the cross-section (Fig. 130) of a leaf of the Beech (Fagus siluatica) only a small vascular bundle is shown. The large bundles are so surrounded by elongated collenchymatous cells that they appear as projecting ribs on the under side of the leaf. In other leares the rascular bundles, especially on the phloem side, are accompanied by sclerenchymatous fibres. Other strands of sclerenchyma which are independent of the rascular bundles are often met with in the hypoderma. Single (k) and aggregate crystals (k^{\prime}) are also present in the mesophyll of leares. Often, as in the case of the Beech, cells containing single crystals accompany the bundles throughout their whole course. In addition to crystal cells, all the other forms of secretory cells and glands may exist in leaves.

At the base of the lamina the tissues close together and pass into the leaf petiole. The dorsiventral structure of the leaf becomes less evident in the petiole; the cells become more elongated, either for the better performance of their conductive functions, or to enhance the mechanical rigidity of the tissue. In Angiosperms the partial cylinders of the leaf, usually an odd number, and each containing a single vascular bundle, arrange themselves in regular order as they pass through the petiole, and frequently form a bow-shaped figure, opening upwards. On entering the stem the vascular bundles of the leaf join the vascular bundles of the central cylinder; the fundamental tissue of the leaf-cylinders becomes, similarly, united with the corresponding tissue of the central cylinders. In the petioles of Ferns, the partial cylinders are accompanied, as in the stem, by sclerenchymatous fibres. It is the peculiar arrangement of these brown-walled sclerenchymatous plates which forms the double eagle apparent on crosssections of the petiole of Pteris aquilina, and from which it derives its specific name. The partial cylinders of the leaves of Pteridophytes also join the partial cylinders of the stem, and their corresponding elements become united.

The Course of Vascular Bundles.-The bundles maintain a definite course and arrangement within the body of a plant. It is sometimes possible, by maceration, to obtain preparations in which the course taken by the bundles may be followed. Similarly, by allowing a leaf, stem, or flower to lie in water until it has become softened and disintegrated, a skeleton formed by the more imperishable rascular system may be obtained.

Tascular bundles which pass from a leaf into a stem, and continue for a distance in a distinct course, are called leaf-traces. The leaftraces may be composed of one or more rascular bundles, and are
accordingly distinguished as one-strand or many-strand leaf-traces. Sometimes a single vascular bundle becomes branched, and so appears to be composed of more than one bundle. Eventually, however, each bundle coalesces with another entering the stem from a lower leaf. The arrangement of the bundles in a stem varies according to the distance and direction traversed before the coalescence of the bundles takes place. A relatively simple bundle arrangement may be seen in the Equisetaceac. In this family the leaves are arranged in alternating whorls. From each leaf a one-strand leaf-trace enters the stem; at the next lower node each bundle bifurcates, and each half coalesces with the bundles entering the stem from the leaves of that node. This arrangement of the bundles may be shown diagrammatically, by representing the bundles as if on the surface of an unrolled cylinder, so that they all appear in one plane. This is shown in Fig. 131, and the connections of the bundles of the lateral branches with the bundles of the parent stem are also shown (g). As the branches, in the case of the Equisetaceac, alternate with the leaves, their bundles on entering the stem are between two leaf-traces of the same node, and at once become fused with the leaf-trace which has come from the leaf immediately above them in the next higher node. The arrangement of the bundles in the Yew (Taxus baccata), although its leaf-traces have only one bundle, is much more complicated (Fig. 132), for the bundles maintain a distinct course throughout twelve internodes before coalescing. Each bundle at first descends in a straight direction through four internodes; it then curves to the side to give place to a newly-entering leaf-trace, with which it finally coalesces at the twelfth internode. The position of a leaf necessarily determines the point of entrance of its leaf-trace into the stem, and accordingly a diagram (Fig. 132) of the bundles of Taxus will exhibit a divergence of the leaf-trace corresponding to the $\frac{5}{13}$ divergence of the leaves. The course taken by the leaf-traces in the stem, however, is independent of the leaf position, and varies considerably in different stems, although the divergence of their leaves may be the same.

As a general rule, the leaf-trace bundles in Gymnosperms and Dicotyledons arrange themselves in a circle in the stem. There are, however, Dicotyledons in which the vascular bundles form two (Phytolacca dioica, Piper) or more circles (Amarantus, Papaver, Thalictrum). In such cases the inner circle is usually more or less irregular.

In the stems of Monocotyledons (Fig. 124) the vascular bundles are scattered, and without any apparent regular order. Their irregular
arrangement is due to the varying distances to which the bundles of the leaf-traces penetrate into the central cylinder of the stem. A common arrangement of the bundles in monocotyledonous stems is that of the so-called Palm type, in which each leaf-trace consists of the numerous bundles which pass singly into the stem from the broad leaf-base. The median bundle penetrates to the middle of the stem. The depth to which the lateral bundles penetrate varies with their remoteness from the median bundle. In their descending course the bundles gradnally curve outwards, and finally join other bundles near the periphery of

Fig. 132.-Diagram showing the course of the vascular bundles in a shoot of Taxns buccata.
the stem. The number of internodes, therefore, through which a bundle passes before coalescence is variable; the median bundle, however, continues distinct for the longest distance. The deeper penetration and greater length of the median bundle become apparent in a median longitudinal section of such a stem (Fig. 133). In addition to the leaf-trace bundles or concmon bundles, which are common to both leaf and stem, there are others, called CAULINE BUNDLES, which belong solely to the stem, and again others, Foliar bundles, which, on entering the stem from the leaf, at once coalesce with other bundles and have no
independent existence in the stem. The bundles enclosed in the partial central cylinder of the Pteridophytes are continued as cauline bundles in the stem, and those from the partial cylinder (Schizostele) of the leaves join on to the bundles of the stem.

The stems of many Dicotyledons (Begonias, Aralias) in addition to leaf-traces possess cauline bundles, which are situated in the pith within the ring of leaf-

Fig. 133. - Diagram showing the course of the vascular bundles of Monocotyledons of the Palm type, with alternating, tworanked amplexicaul leares. The numbers indicate the sequence of the leares; m, median bundle. (After De Bary.)

Fig. 134.-Diagram showing the course of the rascular bundles in a seedling of Taxus buccata. im, Cotyledons; , course of the bundles in the part of the stem above the cotyledons; , xylem; and : phloem after their separation.
trace bundles of the internodes; while the arrangement of the bundles at the nodes is more complicated, as the cauline bundles then branch and are connected with the leaf-traces.

Within the central cylinder of roots, the xylem and phloem strands pursue their rertical direction without deriation. If the changes occurring in the arrangement of the vascular bundles, during their passage from the hypocotyl (p. 45) into the root, be followed in a seedling, it will be found that the xylem and phloem portions of collateral bundles separate from one another, and at the same time the xylem portions twist through an angle of 180°, so that their
inner sides become turned outwards. The separation of the xylem and phloem may be accomplished without any further division of the bundles, the xylem and phloem portions of which then simply arrange themselves side by side; or it may be accompanied by a complete radial division of the phloem, and a subsequent coalescence between the parts of the phloem of different bundles. In the adjoining figure (Fig. 134) the transition stages occurring in the Yew (Taxus baccata) are diagrammatically shown. The two vascular bundles from the cotyledons ($c c$), in their passage through the hypocotyl, undergo a radial division extending through the phloem to the protoxylem. The two halves of each xylem portion separate from one another, and the protoxylem strands turn through 180° and thus come to lie on the inner side of the xylem strands. The two halves of the phloem portion separate from each other in a tangential direction, and coalesce with the phloem portion of the adjacent bundle. Thus, in the root, two phloem strands finally alternate with two xylem strands. At the same time, owing to the disappearance of the pith, there is a diminution in the diameter of the central cylinder of the roots.

A Special Form of Growth in Thickness of the Stem by means of the Continued Enlargement of the Fundamental Tissue.-This is often exhibited by many Palms. Eichler has shown that growth in thickness is solely due to the continued expansion of the already existing cells of the fundamental tissue of the central cylinder. In this process, by the expansion of the cell lumen and increased thickening of the walls, the strands of sclerenchymatous fibres accompanying the rascular bundles on their phloem sides also become greatly enlarged. In this form of growth in thickness, which appears to be limited to the Palms, no new elements are formed.

The Secondary Tissues

Through the activity of a cambial tissue, functioning either as a primary or secondary meristem (p. 90), secondary tissues are added to the previously existing primary tissues, or even substituted for them. Although, phylogenetically considered, secondary tissues seem to have been developed first in the Pteridophytes in forms now only known in a fossil condition, Calumarieae, Sigillarieae, Lepidodendre, they are now only of general occurrence in the Phanerogams, and in them the formation of secondary tissues is almost exclusively confined to the roots and stems.

The Cambium Ring.-The cambium of the open vascular bundles of Gymnosperms and Dicotyledons, which exhibit a growth in thickness, commences its activity almost directly after the formation of the primary tissue. The cambium or primary meristem remaining between the xylem and phloem portions of the bundles consists of only a few
layers of thin-walled cells full of protoplasm. Of these cambial layers the middle one is termed the initial layer; and from it proceeds the development of new tissue elements. Its activity consists in a continued division by means of tangential and occasionally radial walls. The new cells thus continuously given off toward the xylem and phloem sides of the bundles experience another tangential division before attaining their definite form as elements of the xylem or phloem portions. The vascular bundles of Gymnosperms and Dicotyledons capable of secondary growth are usually arranged in a circle. After the cambium in the bundles begins its activity, a zone of tangentially dividing tissue, called the interfascicular cambium, develops in the primary medullary rays between the original bundles, and, uniting with the cambium in the bundles, forms a complete cambium ring. This cambium ring is thus composed of two distinct forms of meristematic tissue ; for while the cambium of the bundles or the FasciCULAR CAMBiUM consists of primary meristem (p. 90), the connecting zone of interfascicular cambium is of later development, and is consequently a secondary meristem (p. 90). A cross-section of a young stem of Aristolochia Sipho, with the cambium ring in process of formation, is represented in Fig. 135 ; in Fig. 136 a single bundle of the same cross-section, more highly magnified, shows the fascicular cambium in a condition of active division. Within the bundle may be seen two large vessels ($m^{\prime \prime}$), in a still incomplete state; while in the adjoining fundamental tissue the cells which give rise to the interfascicular cambium may be plainly distinguished. All the tissue arising from the inner side of the cambium ring goes to form the wood, while that produced on the outside is termed bast. The vascular portions of the wood form the wood strands, the sieve portions within the bast the Bast strands. By the activity of

Fig. 135.-Transverse section of a stem of Aristolochia Sipho 5 mm . in thickness. m, Medulla; $f v$, vascular buidle; $v l$, xylem; cb, phloem; fc, fascicular cambium; ifc, interfascicular cambium; p, phloem parenchyma; $p c$, pericycle; sk, ring of sclerenchyma; e, starch-sheath; c, primary cortex; cl, collenchyma in primary cortex. (× 9.) the interfascicular cambium, the primary medullary rays are continued throughout both the wood and bast. As the wood and bast strands enlarge, SECONDARy medullary rays are developed from the fascicular cambium. In one direction the secondary medullary rays terminate blindly in the wood, and in the other in the bast ; the later they develop, the
less deeply they penetrate the tissues on either side of the cambium. The primary medullary rays are therefore often distinguished as long, the secondary as short medullary rays. The expression transverse parenchyma is also sometimes used to designate the medullary

Fif. 136.-Transverse section of a stem of Aristolochia Sipho in the first year of its growth, showing a vascular bundle with gambium in active division. p, Vascular parenchyma; vlp, protoxylem ; m^{\prime} and $m^{\prime \prime}$, vessels with bordered pits; $i c$, interfascicular cambium in continuation with the fascicular cambium ; r, sieve-tubes; cbp, potophloem ; $p c$, pericycle; $s k$, inner part of ring of sclerenchymatons fibres. $(\times 130$. $)$
rays, which in fact are composed almost exclusively of parenchymatous tissue. The cells given off by the initial layer of the cambium for the formation of medullary rays do not undergo a further division, as in other cases, but assume at once the character of medullary ray cells.

The cambium cells have, for the most part, the shape of right-angled prisms, of which the radial diameter is smaller than the tangential. The ends of these prisms
are usally one-sided. tapering to a point, alternately on the right and left sides. The length of the cambiam cells varies in different plants, but those from which medullary rays are formed are the shorter. The primary vaseular portions of the bundles projecting into the medulla constitute what is known as the medtllafi sheath.

Owing to climatic rariations, the cambium tissue of wooly plants exhibits a periodical activity which results in the formation of anytal rings of growth (Figs. 137, 139. 145). In spring, during the period of energetic growth, larger tracheal elements are developed than in the following seasons (Figs. 139, 146). For this reason a

Fig. 13:-Portion of a foar-rear-old stem of the Pine. Piels sulpstris, cut in winter. I. Tran* rerse riew: f. radial riew: t, tangential view: f. early wow : s. wate woud : m, meinlla : f.

 ms". radial riew of melullary rays in the bast: . cambium ring: b. bas: : h. resin canal-: \because. bark esternal to the first periderm layer. corresponding to the primary cortex. (x 0.1
difference is perceptible between the Early woud (spring wood), which is composed of large elements especially active in the converance of water (Fig. 139. f), and the Late Wood (autumn woodl consisting of narrow elements which impart to a stem its necessary rigidity (Fig. 139. s). Throughout the greater part of the temperate zone, the formation of wood ceases in the latter part of August, until the following spring, when the larger elements of the spring wood are again developed. Through the consequent contrast in the structure of the early and the late wood, the limits (Fig. 137, i) between successive annual rings of growth become so sharply defined as to be risible
even to the naked eye, and so serve as a means of computing the age of a plant.

Under certain conditions the number of annual rings may exceed the number of years of growth, as, for instance, when Midsummer growth occurs, such as commonly happens in the Oak, when, after the destruction of leaves by caterpillars, a second formation of spring wood is occasioned by the new outgrowths thus induced. In the wood of tropical plants the annual rings may be entirely absent. This occurs, for example, in the tropical Conifers of the genus Araucaria, which, in this respect, show a marked contrast to the Conifers of the northern zone. Any interruption of growth, such as would occur during a drought, followed by a period of renewed activity, may occasion the formation of annual rings even in tropical plants.

Although a cessation in the formation of wood takes place so early, the cambium tissue continues to form bast so long as climatic conditions permit. As a rule, however, fewer elements are added to the bast than to the wood. Up to a certain period, in the age of woody plants, the elements of both wood and bast exhibit a progressive increase in size.

The living elements may remain in a state of greater or less activity throughout the whole of the wood, extending even to the pith; such wood is called splint wood: the Beech (Fagus sylratica) may be quoted as an example ; in the other wood, the heart-wood, the living elements die after a certain time, so that only dead tissues are found within a certain distance of the cambium. Before the death of the living cells, they usually produce certain substances, such as tannin and gums, which penetrate the cell walls of the surrounding elements, and also partially close their cavities.

The tannins impart to the dead wood a distinct colour, often very characteristic, especially when it has been transformed into wood dyes, or so-called xylochrone. The tannin in the woody walls acts as a preservative against decay, while the gums close the functionless water-courses of the dead wood. The dead portion of the wood of a stem is called the heart-wood or duranen, in contrast to the living sap-wood or alburxum. Usually the splint or sap-wood is at once distinguishable from the heart-wood by its lighter colour. In some stems, however; the heart-wood does not change its colour. In that case, as the protecting materials are generally absent, it is liable to decay, and then, as so often occurs in the willow, the stem becomes hollow.

The sap-wood is limited, according to the kind of wood, to a larger or smaller number of the younger annual rings, and to it falls the task of water-conduction. The distinction between sap- and heart-wood is sharpest where the latter is dark-coloured, as in the Oak, with its brown heart-wood, and in species of Diospyros, whose black heart-wood furnishes ebony. The darker the heart-wood, the harder and more durable it usually is. The following may be mentioned as examples of woods which yield dyes and colouring principles-Haematoxylon campechianum,
L. (Campeachy wood, logwood), with a blue heart-wood from which hematoxylin is extracted ; Pterocarpus santalinus, L. fil. (red sandal-wood), from the heart-wood of which santalin is obtained; Caesalpinia brasiliensis, L., and C. echinata, Lam. (Brazil wood, Pernambuco wood), with a red heart-wood which supplies brasilin ; and the Alsage Orange, Maclura aurantiaca, Nutt. (yellow Brazil wood), which has a yellow heart-wood from which morin is derived.

Tyloses (Fig. 138) are also instrumental in closing the water-courses of the heart-wood. These are intrusive growths from living cells, which penetrate the cavities of the adjoining tracheal elements during the transition of the sap-wood into heart-wood. In the formation of tyloses the closing membrane of the pits of pitted vessels forms bulging ingrowths into the vessel cavities. Such bulging ingrowths increase in size until several meet, and so more or less completely close the cavities of the vessels into which they have intruded. The closing membrane of the

Fig. 138. - Transverse section of a vessel from the heart-wood of Robinia Psenducacio, closed by tyloses; at a, a is shown the connection between the tyloses and the cells from which they have been formed. $(\times 300$.) bordered pits in the heart-wood is pushed to one side, so that the torus presses against the opening of the pit and completely closes it. According to H . Mayr, resin does not penetrate the walls of wood cells under normal conditions; the wood of Conifers only becomes resinous through the impregnation of the cell walls with resin, aiter they have become dried up through wounds or other causes. The resin-ducts of Conifers may also be closed by the formation of tyloses.

The elements of secondary growth in Gymnosperms and Dicotyledons differ. The vascular strands of Gymnosperms are composed almost exclusively of tracheids (Fig. 139). These are provided with bordered pits which are situated, for the most part, in their radial walls. With the exception of the genus Ephedra, true vessels are not found in the secondary growth, nor in the primary vascular portions, of the bundles of Gymnosperms. The wood produced by the cambium consists of radial rows of tracheids, the number of which is occasionally doubled by the radial division of a cambium cell (Fig. 139, a). The tracheids of the early wood (f) are distinguishable from the late tracheids (s) by their larger lumina.

In the Pine, the early as well as the late tracheids have bordered pits in their radial walls only ; while in other Conifers they are present also in the tangential walls of the later-formed tracheids. The bordered pits in the early tracheids are not only more numerous, but also larger than those in the later tracheids (Fig. $141, t)$. The tracheids are often over a metre long, much longer than the cambium cells from which they are developed. They attain this length by a subsequent growth, during which their growing ends become pushed in between one another.

In addition to the tracheids, small amounts of wood parenchyma are also produced in Gymnosperms by a transverse division of the cambium cells. It is in the parenchymatous cell rows of the wood of Pines, Spruce-Firs, and Larches that the schizogenous resin-ducts are produced (Fig. 139, h). In other Conifers the wood parenchyma consists of simple rows of cells, which afterwards become filled with resin.

In the structure of their secondary tissue the wood strands of Dicotyledons exhibit a great variety of form. These structural differences may, however, be reduced to a few phylogenetic rariations. In fact, it is customary to derive all the elements entering into the forma-

Fic. 139.-Transverse section of the wood of a Pine at the junction of two anmual rings. f, Early wood; s, late wood; t, bordered pit; t, interposition of a new row of tracleids resulting from the radial division of a cambium cell; h, resin canals; m, medullary rays ; g, limit of late wood. ($\times 240$.)
tion of the wood of Dicotyledons from the two classes of tissue already met with in the Gymnosperms, tracheal tissue and the parenchymatous tissue of the wood. To the tracheal tissue belong the tracheids (Fig. $143, t$) and the vessels (g). Under the parenchymatous tissue of the wood are included wood parenchyma (Fig. 144, hp), with relatively short cells rich in contents ; fibrous cells (ef), of greater length, but with similar contents and not more strongly thickened ; and wood fibres (h), which are usually greatly elongated, pointed at both ends and strongly thickened.

The tracheal tissue consists of elements which lose their living contents at an early stage, and in their fully-developed condition are in reality only dead cell cavities. In this class are included tracheids having relatively wide lumina
and large bordered pite Fig. 143, t), and often also spirally thickened tracheids which serve as water-carriers : visctif Tracheids (gt), with similar functions, but with the structure and thickenings of ressels: FIBRE TRA"HEIDjit. with small lamina and pointed ends. having only small, obliquely elongated bordered pits, and, in extreme cases, exercising merely mechanieal functions : and finally traiHEE (y), formed by cell fusion, and provided with all the different forms of thickenings by which they are distinguished as annular, spiral, reticulate, or pitted vessels. All ressels function as water-earriers. If they have small lumina and resemble tracheids, they may be distinguished as tral heidal tessels ty'; if, as is generally the case, they have bordered pits on their lateral walls, they are usually provided with tertiary thickening layers in the form of thin spiral bands (Fig. $14 s, m$). In the parenchymatous tissue of the wood, the cells (Fig. 144) generally retain their living contents, and never develop true bordered pits with a torus in the closing membrane, which are

Fits. 140. - Part of a transverse section of the stem of a Pine. s, Late wool; c cambium: c, sievetroes: p. bast parenchyma; k, cell of bast parenchyma, containing crystal ; cr., sieve-tubes, compresed and functionless; m, morlullary ray. ($\times 2 \pm 0$.) so characteristic of the water-conducting elements. All tisoues of this class may be best derived from wood parenchyma. The woorl parenchyma is produced by transverse divisions of the cambium cells, and accordingly consists of rows of cells (hp) with transverse division walls, and others obliquely disposed, which correspond to the alternately differently pointed ends of the cambium mother cells. The cells of the woor parenchyma are provided with simple round or elliptical pits, varying in size in different kinds of wood; they generally contain starch; and some of them also take up by-products, resulting from metabolism, or from the chemical changes taking place within a plant in the processes of its nutrition and growth. The cells having the closest resemblance to those of typical wood parenchyma are the so-called fibrots cells eff. In their contents, as well as in their wall thickenings, they are similar to the cells of wood parenchyma, but are formed directly from one entire cambium cell. In their formation, the cells of the cambium tissue do not undergo a transverse division, but become more or less elongated and fibrous. The LIbRIFORM FIbRES or WOOD FIbres ' h) have a similar origin, but are even more elongated and hare thicker walls, and, at the same time, narrow. obliquely elongated, simple pits. Although the wood fibres may continue living, in the more extremely developed forms (h) they lose their living contents. They are then filled with air. and their function is merely meehanical. Under certain conditions, by later transverse divisions, the libriform tibres may become transformed into septate Whod fibres (gh). The transverse septa thus formed remain thin, and form a striking contrast to the more strongly thickened lateral walls.

While the tracheal tissues are engaged in providing for the conduction of water, the duty of conducting and storing the products of assimilation, in particular the carbohydrates, is performed by the parenchymatous tissues of the wood. Both forms of tissue, however, aid in maintaining the rigidity and elasticity of the plant body, and, in their most extreme development, furnish such elements as the fibre tracheids on the one hand, and on the other the empty wood fibres, which are only capable of performing mechanical functions.

The wood of Dicotyledons is made up of the elements of these

Fig. 141.-Radial section of a Pine stem, at the junction of the wood and bast. s, Late tracheids ; t, bordered pits ; c, cambium ; v, sieve-tubes ; $v t$, sieve-pits; $t m$, tracheidal medullary ray cells; $s m$, medullary ray cells in the wood, containing starch; $s m^{\prime}$, the same, in the bast; em, medullary ray cells, with albuminous contents. ($\times 240$.)
two classes of tissue, the tracheal and the parenchymatous, but all the different elements are not necessarily represented in any one kind of wood.

Drimys, a genus closely allied to the Magnolias, is the only Dicotyledon of which the wood is formed solely of tracheids. This Dicotyledon closely resembles the Conifers in structure. In numerous Leguminosae, Willows, Poplars, and species of Ficus, on the other hand, the tracheal tissues are only represented by vessels, which perform the task of water-conduction. In the wood strands of these plants there are also present wood parenchyma and a large amount of wood fibres, which contain only air. In Maples, on the contrary, the wood fibres contain living protoplasm and starch ; this circumstance renders the formation of wood parenchyma
in Maples to some extent superfluous, and it is therefore sparingly developed. In addition to wood fibres the Maple chiefly develops vessels, while the formation of tracheids is restricted to the late wood. The mechanical elements of the wood of the Ivy (Hedera Helix) and Grape-Vine (Vitis vinifera) are septate wood fibres. In Oaks, Beeches, and in the Rosiflorae wood fibres are absent, and the necessary rigidity is provided for by fibre tracheids. The wood of the Lime (Figs. 145-148) is composed of vessels (Fig. 146, m), tracheids (t), wood parenchyma (p), and wood fibres (l).

Fig. 142.-Tangential section of the late wood of a Pine. t, Bordered pit; $t m$, tracheidal medullary ray cells; sm, medullary ray cells containing starch; $e t$, pit bordered only on one side; i, intercellular space in the medullary ray. ($\times 240$.)

Fig. 143.-Elements of the tracheal tissue of the wood; diagrammatic. (For description, see text.)

The vessels and tracheids form radial rows, alternating with rows of wood fibres. In the early wood wide pitted vessels are produced, the formation of which afterwards ceases, and in the late wood only tracheids are formed (Fig. 146, t). The annual rings are thus sharply defined (Fig. 146, t). The new vessels of the succeeding spring join the tracheids of the previous year, and in this way a sufficient connection for the water transport is obtained. All transitional forms between vessels and tracheids are to be found in the wood of the Lime. Besides bordered pits, tertiary spiral thickenings are also developed in the tracheal elements. The wood fibres (Figs. 146, 147, 148, l) are relatively thin-walled, with wide cavities and narrow elongated pits, and contain air. The wood parenchyma (Figs. 146, 148, p) forms interrupted tangential bands.

The tracheal water-courses in the wood of Dicotyledons are more or less completely isolated from each other. Their isolation is the more complete where, as in the Leguminosue, Willow, and Ficus, vessels are the only water-carriers. If both trachere and tracheids are present, as in the Lime, then the tracheids unite the tracher together and the conduction of water is rendered possible in all directions. In any case, a union exists at the junction of the annual rings, between the

Fig. 144.-Elements of the pareuchymatous tissue of the wood; diagrammatic. (For description, see text.)

Fig. 145.-Transverse section of a stem of Tilie pervifolie, in the fourth year of its growth. $p r$, Primary cortex; c, cambium ring; cr, bast; $p m$, primary medullary ray; $1^{m} m^{\prime}$, expanded extremity of a primary medullary ray; $s m$, secondary medullary ray; g, limit of third year's wood. (\times 6.)
tracheal tissues of successive years. Large vessels are characteristic of climbing woody plants (Lianes, Fig. 151), but they are accompanied by smaller ones, with which they are in communication. When both large and small vessels are present together, the smaller appear to act as water-carriers, while the larger are utilised as water-reservoirs. Whenever communication takes place between tracheal elements, and it always occurs when they are in direct contact, it is effected by means of bordered pits or actual openings. The distribution of the
living elements in the wood strands always bears a distinct relation to the water-courses which they accompany, enclosing them in a more or less complete sheath. The living cells adjoining the tracheal elements are in communication with them by means of one-sided bordered pits. When such pits occur in living cells the pit carities are absent, but present in the case of tracheal elements ; they differ from the true bordered pits in the absence of a torus on the pit-closing membrane, and in being unlignified. No communication exists between the tracheal elements and the dead wood fibres; in cases where they adjoin each

Fin. 146.--Portion of a transverse section of the wood of Tilia purvifolia. m, Large pitted vessel; t, tracheids; l, wood tibre ; p, wood parenchyma; r, medullary ray. ($\times 540$.)
other there are either no pits developed or they are extremely small and few in number.

The elements of the bast strands of Gymnosperms and Dicotyledonous woody plants may be referred, just as in the case of the wood strands, to two distinct forms of tissue, the SIEve-TUBE and the parenchymatous portion. The former is composed of sieve-tubes, or sieve-tubes with their companion cells. Its function is the conduction of proteid material; that of the parenchymatous tissue, on the other hand, is the conduction of the carbohydrates and the absorption of the by-products of metabolism. The phloem tissues remain functional only a short time, they afterwards lose their contents and become, for the most part, crushed and disorganised.

In the bast strands of Gymnosperms, the phloem elements produced by the cambium (Fig. 140, c) consist solely of sieve-tubes, the parenchymatous cells of the bast parenchyma (p and k), and, in certain cases, of bast fibres. These elements of the bast generally form alternating bands.

In the Pine and other related Abietineae the bands of sieve-tubes are interrupted only by bands of bast parenchyma containing starch (Fig. 140, p), and

Fig. 147.-A radial section of the wood of Tilia purvifolia, showing a small medullary ray. g, Vessel; l, wood fibres; tm , medullary ray cells in communication with the water-courses by means of pits; sm, conducting cells of the medullary ray. $(\times 240$.)

Fig. 148. -Tangential section of the wood of Tilia parvifolia. m, Pitted vessel; t, spiral traclieids; p, wood parenchyma; l, wood fibres; r, medullary rays. $(\times 160$.)
also tannin-like substances and crystals (k) deposited in single, vertical rows of cells. Other Conifers, the Araucaricae, Taxincae, and some of the Cupressineae, exhibit definite, vertical rows of bast parenchyma cells which are characterised by their abundant albuminous contents. These cells stand in close relation to the sieve-tubes and take the place of companion cells, which are not found in Gymnosperms. In the bast of the Taxineae, Cupressineae, and other nearly related families there also occur tangential bands of strongly thickened bast fibres, which alternate regularly with tangential bands of sieve-tubes and bast $p^{\text {arenchyma. }}$

Crystals of calcium oxalate may be deposited in the thickening layers of the bast fibres, or in their middle lamella. The single elements composing the sievetubes communicate by means of terminal sieve-plates. The sieve-tubes of Conifers have also sieve-pits on their radial walls, which (Fig. 141, vt) correspond in position to the bordered pits of tracheids. At a certain distance from the cambium the sieve-pits, both terminal and lateral, become overlaid by callus-plates. During the vegetative period following their development, the sieve-tubes bccome empty and compressed together (Fig. 140, cv). The rows of bast parenchyma cells containing albuminous substances, which are found in some Conifers, undergo disorganisation at the same time as the adjacent sieve-tubes; the bast parenchyma cells which contain starch, on the other hand, continue living for years, and even increase in size, while the sieve-tubes become disorganised.

The elements of the phloem tissue included in the bast strands of woody Dicotyledons are represented by sieve-tubes and companion cells. To the parenchymatous tissues of the bast belong bast parenChYMA, BAST FIBRES, and transitional forms between them. The bast fibres, like the fibres of the wood, may occur in an unthickened form as fibrous cells, either with or without living contents, or they may be filled with starch, and finally may become septate.

The bast parenchyma conducts and stores the carbohydrates, and also takes up the by-products of metabolism, even to a greater degree than the parenchymatous tissues of the wood. Just as in the case of the Gymnosperms, the sieve-tubes of Dicotyledons remain functional but for a short time, afterwards becoming empty and compressed. The companion cells experience the same fate as their sister-cells, the sieve-tubes, while the starch-containing bast parenchyma remains active for many years. The different appearance presented by the bast of various woody Dicotyledons is due to the larger or smaller lumen of the sieve-tubes, to the presence or absence of bast fibres, and also to the manner of distribution of the component elements.

An example of bast with an especially regular arrangement is afforded by the Lime (Fig. 149). In a cross-section, even under a low magnifying power, an alternation of shining white and dark - coloured tangential bands is noticeable. When more highly magnified, it can be readily seen that the white bands consist of strongly thickened bast fibres (Fig. 149, l). Adjoining them, there follow, towards the periphery, one layer of bast parenchyma cells (p), then a zone of wide sievetubes (v) and small companion cells (c); next to these come two layers of bast parenchyma (p), abundantly supplied with starch, and followed by a single interrupted layer of bast parenchyma cells containing crystals (k), and finally, another band of bast fibres (l). The farther removed the sieve-tubes and companion cells are from the cambium, the more crushed they become, until ultimately they appear as a compressed mass of cell walls without cell cavities.

The medullary rays of the Gymnosperms (Fig. 137, ms) and woody Dicotyledons (Fig. 145, pm, sm) form radial bands, composed wholly or in part of parenchymatous elements. Their function is to supply the cambium and wood with the products formed in the leaves
and conveyed away by the bast. The medullary rays in this way link together by radial bands of living cells the protoplasm-containing elements of the bast and wood, thus uniting all the separate living tissues of the stem. The medullary rays are in turn accompanied or, if many-layered, traversed by intercellular air-cavities, which, beginning in the periphery of the stem, penetrate the cambium and communicate with all the intercellular spaces throughout the living elements of the wood and bast. All the living elements are kept in communication with the atmosphere by means of the inter-

Fig. 149.-Portion of a transverse section of the bast of Tilia parvifolia. v, Sieve-tubes ; v^{*}, sieveplate ; c, companion cells; k, cells of bast parenchyma containing crystals ; p, bast parenchyma; l, bast fibres ; r, medullary ray. ($\times 540$.)
cellular spaces of the medullary rays, and the necessary interchange of gases is thus rendered possible.

The substances contained in the parts of the medullary rays within the wood, chiefly consisting of starch, tannins, resin, and crystals, are essentially the same as those in the wood parenchyma. In the medullary rays of certain Gymnosperms, particularly in the Pine, single rows of cells, without living contents and situated usually at the margin of the medullary bands, become tracheidal in structure (Fig. 141, tm), and united with one another and with the tracheids by means of bordered pits. Their purpose is to facilitate the transfer of water radially between the tracheids. In other Conifers, where such tracheidal elements are not found in the medullary rays, bordered pits are developed in the tangential walls of the tracheids of the late
wood, and by means of them is effected the transfer of water in a radial direction. The living cells of the medullary rays of the wood bear the same relation to the water-carriers as does the wood parenchyma, and like them are connected with the water-conducting elements by means of bordered pits. They take up water from them and give it out again, as it may be needed, to other living cells ; on the other hand, in the spring, at the beginning of the season of growth, they press into the water-courses the products of assimilation, in particular glucose and small quantities of albuminates, in order that these substances may be transferred in the quickest way to the points of consumption. Accordingly, during the winter and in the beginning of spring, sugar and albumen may be detected in the tracheal elements, and may then be obtained from the watery sap of "bleeding" trees, or from artificial borings or incisions, particularly in such trees as the Maple, Birch, and Hornbeam. In the wood of Dicotyledons it is usually only special rows of the medullary ray cells which stand in such close relation with the tracheal tissues. In these special rows, generally on the margins of the medullary rays, the cells are elongated vertically, and on that account have been distinguished as vertical medullary ray cells. The other cells, or those of the middle layers of the medullary bands, on the other hand, are called horizontal medullary ray CELLS ; they are narrower and more elongated radially. These have, moreover, no especial connection with the tracheal elements, but are designed for conducting and storing assimilated matter. In the medullary rays of the Lime (Fig. 147), although this specialisation of the cells is not so evident as in many other cases, the marginal cells of the medullary rays are, nevertheless, particularly noticeable, as they alone have bordered pits on the sides toward the vessels (g), and are also wider than the other cells of the inner rows.

Within the bast zone the medullary rays are also distinguished as cortical rays, and in the bast of Dicotyledons they have a simpler structure than in the wood. It is evident, not only from the connection existing between the cells of the medullary rays and the bast parenchyma, but also from the relations exhibited in Dicotyledons between the medullary ray cells and the companion cells of the sieve-tubes, that the function of the cortical rays is to take up the substances passing down the bast strands. For not only is the bast parenchyma in communication with the cells of the medullary rays by means of bordered pits, but the companion cells are so disposed on the sides of the sieve-tubes as more surely to come in contact with the medullary rays.

In the Pine and other Abietineae, whose bast parenchyma is devoid of cells functioning as conductors of albuminous matter, their place is taken in this respect by rows of medullary ray cell. (Fig. 141, cm). These maintain an intimate connection with the sieve-tubes by means of sieve-pits. They lose their contents in the same manner as the sieve-tubes, and, like them, become compressed and
disorganised. On the other hand, the cells of the cortical rays, which contain starch, like the similar cells of the bast parenchyma, increase in size, and pushing between the compressed sieve-tubes, continue living for years.

The division of labour within the medullary rays of the Gymnosperms and Dicotyledons is so well carried out, that only the rows of elongated, conducting cells are accompanied by intercellular air-spaces. When the walls of such cells are much thickened, they are pierced with pits which open into the intercellular airpassages, and so facilitate the interchange of gases.

The width and height of the medullary rays may be more easily determined from tangential than from radial sections.

FIG. 150.-Diagrammatic representation of the growth in thickness of a dicotyledonous root. $p r$, Primary cortex ; c, cambium ring; g^{\prime}, primary vascular strand; s^{\prime}, primary phloem strand; p, pericycle; e, endodermis; $g^{\prime \prime}$, secondary wood; $s^{\prime \prime}$, secondary bast; k, periderm. In such tangential sections the medullary rays appear spindle-shaped (Figs. 141, 148). With few exceptions, as in the Oak and Beech, the medullary rays are rarely of more than limited dimensions. The Oak, in addition to numerous small medullary rays, has other larger rays which may be as much as a millimetre broad and a decimetre high. In the Poplar, Willow, and Box the medullary rays are so extremely small that they are scarcely visible, even with the aid of a magnifying-glass. The height of the broad primary rays of many Lianes, on the other hand, may be equal to that of a whole internode. In certain Conifers, resin-ducts occur not only in the wood, but also in the broader medullary rays. These radial resin-ducts are in communication with the vertical ducts. It is due to this fact that such a large amount of resin exudes from wounds in Pine or Fir trees.

The roots of Gymnosperms and Dicotyledons, in which the stems increase in thickness, also show a similar GROWTH IN THICKNESS. Whenever secondary growth begins in a root with its xylem and phloem strands alternating with each other (Figs, 120, 126), areas of cambium arise on the inside of the phloem strands, through the division of the fundamental tissue; these give off wood elements towards the centre of the root, and bast towards the periphery. These cambium areas soon meet in the pericycle, just in front of the xylem strands, and so form a complete zone of meristematic tissue. In Fig. $150, A$, this process is diagrammatically represented. As a result of the activity of its cells the cambium ring soon loses its sinuous form, and becomes a simple ring. In front of the primary vascular strands (g^{\prime}),
the cambium produces medullary ray tissue, and this constitutes the broadest medullary rays which lead to the strands of primary xylem (Fig. 150, B). A cross-section of such a root, in which the secondary growth has continued for some years, can scarcely be distinguished from a cross-section of a stem. By careful examination, however, the presence of primary tissue in the centre of the root can be discovered, and its nature thus determined. The wood of the root is also more porous than in the stem, and bears a close resemblance to early wood. On account of this lack of differentiation in the wood, the annual rings of growth are less distinctly defined in roots than in stems.

Anomalous forms of Growth in Thickness.-Extraordinary deviations from the usual type of secondary growth are afforded by some stems and roots of Gymnosperms and Dicotyledons. Among the Gymnosperms in the Cycadaccae and

Fig. 151.-Transverse section of the stem of Mucuna altissimu. 1, 2, 3, Successively formed zones of wood ; $1^{*}, 2^{*}, 3^{*}$, successively formed zones of bast. ($\frac{3}{4}$ nat. size.)
certain species of Gnctum, in the Chenopodiaceae, Amarantaceae, Nyctaginaceae, Phytolaccaceae, and other families of Dicotyledons, the cambium which has been formed in the ordinary manner soon loses its function, and a new cambium ring is developed external to the bast zone, for the most part in the pericycle, or in a tissue derived from it. This cambium ring forms wood on the inside and bast on the outside, with the accompanying medullary rays. It then ceases to divide, and a new ring takes its place. This process repeats itself, and ultimately leads to the formation of concentric wood and bast rings, which, in cross-sections of the sugarbeet, may be distinguished with the naked eye. These concentric zones may be still more plainly seen in a cross-section of Mucuna altissima (Fig. 151), a Liane belonging to the order Papilionaceae. The stem shows in this case an inner axis of wood (1) surrounded by a zone of bast (1^{*}) ; next follows a cylinder of wood (2) and bast $\left(2^{*}\right)$, and finally a third $\left(3,3^{*}\right)$ in process of formation in the midst of the pericycle. An extraordinary appearance is exhibited by cross-sections of stems, which show several separate wood cylinders (Fig. 152). Such a structure is peculiar to various tropical Lianes of the genera Serjania and Paullinia belonging to the family Sapindaceae. This anomalous condition arises from the unusual
position of the primary vascular bundles, which are not arranged in a circle but form a deeply lobed ring ; so that, by the development of interfascicular cambium, the cambium of each lobe is united into a separate cambium ring. Each of these rings, independently of the others, then gives rise to wood and bast (Fig. 152). An even more peculiar structure is exhibited by many Lianes of the Bignoniaceac, the wood of which is cleft by radially projecting masses of bast (Fig. 153). The primary stem of the Bignoniaccae shows the ordinary circular arrangement of the vascular bundles. Wood and bast are at first produced from the cambium ring in the usual manner, and form an inner, normal wood cylinder of axial wood. Such normally formed axial wood cylinders are common to many, otherwise abnormally developed Lianes. The cambium ring of the Bignoniaceac, after performing for a time its normal functions, begins, at certain points, to give off internally only a very small quantity of wood, and externally a correspondingly large amount of

Fig. 152.-Transverse section of the stem of Serjania Laruotteanc. sk, Part of the ruptured sclerenchymatous ring of the pericycle ; l and $l *$, bast zones; $l g$, wood; m, medulla. $(\times 2$.

Fig. 153.-Transverse section of the stem of a Bignonia. (Nat. size.)
bast. As a result of this, deep wedges of irregularly widening bast project into the outer so-called periaxial wood (Fig. 153). The originally complete cambium becomes thereby broken into longitudinal bands, which are broader in front of the projecting wood than at the apices of the bast wedges. As the periaxial wood is always developed from the inside, and the wedges of bast from the outside of their respective cambium bands, they extend past each other without forming any lateral connection.

Secondary Growth of Monocotyledons. - As we have already seen, Palnis grow in thickness only as the result of the increase in size of the individual tissue elements. There are, however, certain monocotyledonous plant families and genera, especially Dracaena, Iucca, Aloe, and the Dioscoreaceae, in the stems and roots of which a cambium ring is developed. As in such cases, the cambium ring generally arises in the pericycle, outside the scattered vascular bundles and from the
fundamental tissue, it is a secondary meristem: it does not, as in Dicotyledons and Gymnosperms, produce continuously wood and bast in opposite directions, but, instead, closed vascular bundle strands and fundamental tissue (Fig. 154).

The cells arising from the division of the cambium cells (c) are given off almost entirely towards the centre of the stem. The new cells thus derived either divide by means of rariously disposed longitudinal walls, and produce new vascular bundles ($f^{\prime \prime}$), or, by forming tangential and transverse walls only, they give rise to the radially arranged cells of the fundamental tissue, which fills the space betreen the rascular bundles. These secondarily developed bundles, like the primary bundles, are closed, that is, they do not possess a cambium, but have nevertheless a somewhat different structure. Their xylem portions consist solely of tracheids prorided with bordered pits, and completely enclose the thin-walled and sparingly developed phloem. Towards the periphery of the stem the cambium ring produces only a small amount of parenchymatous tissue, the cells of which sometimes contain bundles of raphides (r). A stem of a Dracaena having this form of secondary growth may attain a considerable thickness.

Periderm. - It is very seldom that the epidermis, by the division of its own cells, is in a condition to keep pace for any length of time with the increasing dimensions of the stem. This, however, is the case with the Mistletoe (Viscum album), the number of whose epidermal cells is continually augmented by the formation of new lateral walls, while the outer walls

Fig. 1.54. - Transverse section of the stem of Cimplyline (Dracaence) rubra. fo, Primary vascular bundles: $f^{\prime \prime}$: secondary vascular bundles: $f^{\prime \prime \prime}$, leaf-trace bundle within the primary cortex: m, parenchymatous fundamental tissue; s. bundle-sheath: t, tracheids; c, cambium ring: cr, cortex, the outer portion being primary, the inner secondary cortex ; $p h$, cork cambium ; l, cork ; r, hundles of raphides. ($\times 30$.) are at the same time strengthened by inward thickenings to supply the place of the older, ruptured, thickening larers. The stems
also of one of the Maples (Acer striatum), even when a foot or more thick and over forty years old, remain covered with a living, growing, epidermal layer. As a rule, however, the epidermis on stems which grow in thickness becomes stretched and finally ruptured. The tissue of the primary cortex, by the expansion and division of its cells, can accommodate itself more easily than the epidermis to the increased dimensions of the stem, arising from the growth in thickness of the central cylinder. This process of cortical growth is particularly noticeable in the primary medullary rays (Fig. 145, mm^{\prime}) between the primary phloem. The formation of the periderm generally begins during the first vegetative period, after the secondary growth has reached a certain stage. The commencement of its formation is indicated by the brown colour of the external surface of the stem, which, however, remains green so long as the epidermis continues alive. The periderm is derived from a secondary meristem, termed the cork cambium or phellogen. This phellogen may arise, in the epidermis, in a deeper layer of cells of the primary cortex, or even in the pericycle itself. The cells of the phellogen divide by tangential walls, and also, at times, by radial walls, in order to accommodate themselves to the increasing thickness of the stems. Of the new cells thus formed, those given off towards the periphery of the stem are the cork cells (Fig. 154, l). They usually have a tabular shape, fit closely together without intercellular spaces, and possess suberised, secondary, thickening layers. The cork cells are, for the most part, filled with air, containing also a yellow or brown substance, and usually possess brown walls. The cell walls may be thin or thick, frequently thickened on one side, and occasionally to such an extent that they are known as stone cork. The cork tissue frequently shows an alternation of thick-walled and narrow with thin-walled and larger cells. These layers mark annual growths. The cork cells, being impermeable to water, prevent the loss of moisture by transpiration, while at the same time they shield and protect the inner tissues. An example, showing how effectively cork cells retard transpiration, is afforded by a potato, which, when peeled and so deprived of its protecting cork covering, loses in twenty-four hours, according to EDER, about sixty-four times as much water as it would otherwise have done.

The cork of the Cork-oak (Quercus Suber) is formed of broad layers of soft large cells, alternating with narrow and thinner layers of cells, which mark the limit of the annual growth. This may be seen in bottle-corks. The first, spontaneously developed cork of the Cork-oak is stripped off, whereupon a new phellogen is formed in the deeper-lying tissue. The cork thus produced is removed every six or eight years, and furnishes the cork of economic value.

In many cases the phellogen takes its origin in the epidermis (Fig. 155). This is the case in the Willow, in all Pomaceae, and in a great number of other woody plants. The epidermal cells become divided into outer and inner cells, the
latter of which assume the function of a phellogen. More frequently the phellogen develops from the layer of cells next adjoining the epidermis, as, for example, in the Elder (Sambucus nigra), where it takes its origin from the outermost layer of collenchyma (Fig. 156, ph).

At the same time that the cork is forming from the outer side of the phellogen, a so-called CORK CORTEX or PHELLODERM is also frequently developed from its inner side. The cells of the phelloderm retain their living protoplasm, and usually contain chloroplasts. They ultimately become rounded off, so that intercellular spaces are formed between them. The term periderm includes both cork and phelloderm. All secondary tissues given off by the cambium ring towards the periphery, together with all the secondary tissues formed by the phellogen from both its inner and outer sides, are designated collectively sEcondary CORTEX.

All tissues external to the phellogen are cut off from food supplies, and consequently die. When the first cork layer has its origin deep within the stem, a BARK is formed through the ensuing death of the excluded peripheral tissues. If the cork layer formed by the phellogen be thin, the stem has a smooth surface, as in the Beech; if it produces thicker cork layers, the

Fig. 155.-Transverse section of the peripheral tissues of a one-yearold twig of Pirus communis at the beginning of the formation of periderm. ${ }^{2 h}$, Phellogen. ($\times 300$.) surface of the stem appears rough and full of fissures, as is the case in the Cork-oak. The primary phellogen generally ceases its activity after a short time, and another deeperlying phellogen is formed. After a time this new phellogen discontinues its functions, and another (Fig. 157) is dereloped, as in the case of Quercus sessiliflora, until ultimately the phellogen comes to be formed in secondary bast parenchyma instead of in the primary tissue. That portion of the bast cut off by the periderm loses its nutritive contents and only retains waste products. If the layers of the secondary periderm constitute only ares of the stem circumference, the bark will be thrown off in scales, as in the SCALY BARK of the Pine and Plane tree ; if, on the contrary, the periderm layers form complete concentric rings, then hollow cylinders of the cortical tissues are transformed into the so-called RINGED BARK, such as is found in the Grape-vine, Clematis, and Honeysuckle. Bark which is not easily detached becomes cracked by the continued growth in thickness of the stem, and has then the furrowed appearance so characteristic of the majority of old tree-trunks. The usual brown or red colour of bark, just as in similarly coloured heart-wood, is occasioned by the presence of tannins, to the preservative qualities of which is due the great resistance of bark to the action of destructive agencies. The peculiar
white colour of Birch-bark is caused by the presence of betulin (birchresin) in the cells.

In roots which grow in thickness the phellogen usually develops in the pericycle (Fig. $150, b, k$), and in consequence of this the primary cortex of the roots dies and peels off. The succeeding phellogen layers are formed in exactly the same way in the root as in the stem.

In most woody plants, particularly in Dicotyledons, cortical pores, or LeNTICELS (Fig. 156), make their appearance simultaneously with the formation of periderm. The lenticels take their origin in a phellogen layer ($p l$) which, in the case of peripheral cork formation, almost always develops directly under the stomata. The phellogen, from which the lenticels arise, unlike the cork phellogen, does not form cork cells, but a lenticel tissue composed of complementary cells (l)

Fig. 156.- R'ransverse section of a lenticel of S九mbucus nigire. e, Epidermis; ph, phellogen ; l, complementary cells ; p, phellogen of the lenticel ; pd, phelloderm. $(\times 90$.)
traversed by intercellular spaces. On the inside, however, a phelloderm is regularly derived from the phellogen. The complementary cells press the epidermis outwards and finally rupture it. Where the complementary cells are only loosely united, the intermediate bands or closing layers are developed from the phellogen alternately with denser layers of cells, which, as in the case of the epidermis, become eventually ruptured. The cork-forming phellogen joins the phellogen of the lenticels at its margins. In cases where the cork is more deeply seated in the inner tissue, the lenticels begin their development at a corresponding depth. The lenticels are so constructed, in Prumus avium and Betulu, that they can accommodate themselves to growth-in-thickness; in Quercus Suber, Fraxinus Ornus, they are not in a condition to do so ; while in Phamnus Frangula and Pirus Mulus each lenticel gives rise to a group of lenticels. The develop-
ment of a secondary periderm is accompanied by the formation of new lenticels. By means of the lenticels the intercellular spaces of the inner tissues are kept in communication with the outer atmosphere. The air enters the intercellular spaces of the medullary rays through the lenticels, and is thence distributed throughout the living tissues of the whole plant. In stems in which the periderm is free from lenticels, provision is made for securing the free passage of gases through openings left by the overlapping margins of the periderm layers.

The Falling of Leaves.Preparatory to the falling of leaves an absciss layer is formed, by means of which the separation of the leaves from the stem is effected. This layer arises through the division of all the living cells in the plane of separation, including even those of the vascular bundles. At a later stage, a layer of cells in the middle of the absciss layer becomes absorbed, and the separation of the tissues of leaf and stem is completed by the rupture of the tracheal elements and sieve-tubes. The absciss layer is usually formed just before the leaves fall, although frequently much earlier. The wound left on the stem either simply dries up, as is the case in the Ferns, or it is closed by a layer of cork, which is formed just below the surface

Fig. 157. - Transverse section of the peripheral tissues of the stem of Quercus sessiliflore. 1, 2, 3, successively formed layers of cork ; pr, primary cortex, modified by subsequent growth; internally to pc, pericycle; sc, sclerenchymatous fibres, from the ruptured ring of sclerenchymatous fibres of the pericycle; s, subsequently formed sclereids ; s^{\prime}, sclereids, of secondary growth ; $c r$, bast fibres with accompanying crystal cells; k, cells, with aggregate crystals. All of the tissue external to the imermost layer of cork is dead and discoloured, and has become transformed into bark. ($\times 225$. and joins the periderm of the stem. This cork layer may be formed before the fall of the leaves, but in that case it does not extend through the living elements of the vascular bundle, and does not become complete until after the leaves have fallen. The ends of the tracheal elements at the leaf-scars become filled with a protecting gum, and in
addition, they, as well as the ends of the sieve-tubes, become compressed and finally cut off by the developing cork.

Wounds.-In the simplest cases the exposed tissues of wounded surfaces become dry through loss of moisture, and dying in consequence, form over the deeper-lying tissues a protective covering of dry, brown cells. This method of protecting wounded surfaces, although very general in Cryptogams, rarely obtains in Phanerogams, but instead the wounds become closed by the formation of cork. Cork formed over wounded surfaces is called wound CORk. It is derived from a cork cambium that develops in the tissue under the wounds, and with its development the process of healing, in succulent and parenchymatous portions of plants, is completed. In woody plants a so-called Callus is formed by the active growth of the living cells bordering on the wound. These abnormal swollen growths close together over the wound, and by the suberisation of their cell walls provide a sufficient protection. Generally, however, a cork-forming phellogen arises in the periphery of the callus. In stems of Gymnosperms and Dicotyledons, wounds which extend into the wood become surrounded and finally overcapped by an outgrowth of tissue arising from the exposed cambium. While the callus tissue is still in process of gradually overgrowing the wounded surface, an outer protective covering of cork is developed ; at the same time a new cambium is formed within the callus, through the differentiation of an inner layer of cells, continuous with the cambium of the stem. When the margins of the overgrowing callus tissue ultimately meet and close together over the wound, the edges of its cambium unite and form a complete cambial layer, continuing the cambium of the stem over the surface of the wound. The wood formed by this new cambium never coalesces with the old wood. Accordingly, marks cut deep enough to penetrate the wood are merely covered over by the new wood, and may afterwards be found within the stem. In like manner, the ends of severed branches may in time become so completely overgrown as to be concealed from view. As the wood produced over wounds differs in structure from normal wood, it has been distinguished as callu's wood. It consists at first of almost isodiametrical cells, which are, however, eventually followed by more elongated cell forms.

The Formation of Burrs.-The curled or extraordinarily knotted appearance of wood, such as the bird's-eye or curled maple, which adds so much to its technical value, is due to the unusually sinuous course taken by the elements of the wood. This variation from their usual direction is caused by the development of numerous adventitious buds, which turn the vascular bundles out of their accustomed course ; the direction of the wood elements is moreover often affected by the medullary rays, which sometimes become so abnormally swollen that they appear almost circular in tangential sections.

The Phylogeny of the Internal Structure

The phylogenetic differentiation in the internal structure of a plant does not altogether coincide with the progress of its external segmentation. Even unicellular plants in the group of Siphoneous Algae may exhibit a high degree of external differentiation ; thus the unicellular Alga, Caulerpa (Fig. 250), has developed appendages having outwardly the form of leaf, stem, and root. Similarly, the red seaweed, Hydrolapathum (Fig. 9), although composed almost wholly of one form of cells, bears in its external segmentation a striking resemblance to one of the most highly organised plants. The internal differentiation of this Alga has only advanced so far, that the outer cells containing the red chloroplasts form an assimilating tissue of isodiametrical cells, while the internal colourless and more elongated cells function as a conducting tissue. The relatively highest degree of internal development found in the Algue is attained by the Laminariae. In their stem-like axis, which may have a considerable thickness, the external tissues frequently contain canals filled with mucilaginous matter: while internally are found rows of cells resembling sieve-tubes. The axes themselves grow in thickness through the continuous division of the cells of an outer cell layer. A kind of cortical tissue is formed as a result of this growth which exhibits concentric layers, and of which the innermost cells gradually elongate and pass over into the socalled medulla. In the Fungi internal differentiation is the result of the more or less intimate union of the intertwining hyphæ. In extreme cases the hyphæ forming the body of the Fungus may be so closely woven together as to give, in a cross-section, the impression of a parenchymatous tissue (Figs. 95-98), in which, by the subsequent thickening of the cell walls, the pits in adjoining hyphæ are brought into contact. In the fructifications of many of the Hymenomycetes and Gasteromycetes, some of the longer and more swollen hyphæ contain a cloudy, highly refractive, and, in some instances, coloured substance, and appear, accordingly, to serve as a special tissue for the purpose of conduction. A marked advance in the differentiation into different tissue systems is first apparent in the Bryophytes, and even in them the formation of an epidermis distinct from the fundamental tissue is exceptional. In the thallus of the Marchantieae of the Hepaticae, and at the base of the spore capsules of the Bryineae, among the Mosses, the external layer of cells becomes more or less sharply defined from the underlying tissues. In the Marchantieae (Fig. 158) this outer layer is pierced by openings which have been termed breathing-pores, but these have a different origin from the stomata of higher plants. They are rather, as Leitgeb has shown, openings into cavities, which have arisen through the overarching of certain portions of the surface by other more rapidly growing portions. In the Bryineae, on the other hand,
stomata similar in structure to those of the Pteridophytes and Phanerogams are found in the outer cell layer at the base of the spore capsules. It would seem, however, that these stomata of the Brinineae are probably not homologous with those of higher plants ; as there is no direct phylogenetic connection between them, and it is more reasonable to regard them as merely analogous formations, such as so often occur in the evolution of organs. The Marchantieae also possess mucilage passages, which arise through the mucilaginous degeneration of single cells or cell rows. Certain of the Marchantieae have also strands of greatly elongated, dark-walled cells. In all Heputicae there may be found in special cells characteristic oil bodies of an irregular, clustered shape. It is also worthy of note that, although the differentiation of the internal tissues has progressed further in the Marchantieae than in any other of the Hepoticue, in their external segmentation they

Fig. 158.-surface and transverse view of the thallus of Marchantie polymorpha. In A, an airpore, as seen from above; in B, as seen in cross-section. ($\times 240$.)
are surpassed by many others of the same group; so that here also internal and external differentiation do not keep pace with one another. Among the Musci the Bog-Mosses (Siphagnaceae) are characterised by an external sheathing of porous cells about the stem (Fig. 320). The sheathing cells recali those on many aerial roots (p. 100), and in the Bog-Mosses they also consist of dead cells with porous and spirally thickened walls. By means of this sheath water is drawn up from the ground by capillarity and conveyed to the leaves, throughout which similar porous and dead cells are regularly distributed. In the stems of many of the Bryineue there is also developed a simple form of conducting tissue (Fig. 159) ; and the many-layered midrib of the single-layered leaf lamina is also traversed by a conducting strand. In spite of their more adranced differentiation, the Bryophytes may still be included, just as they were originally in 1813 by De Candolle, in his classification of the regetable kingdom according
to the natural system, with the other lower Cryptogams in the class of cellular plants, as distinguished from the Vascular plants or Pteridophytes and Phanerogams. A separation of the tissues into the three systems of tegumentary, fundamental, and rascular tissue occurs

Fig. 159.-Transverse section of the stem of Mnium undulatum. l, Conducting-bundle ; c, cortex ; e, peripheral cell layer of cortex ; f, part of leaf; r, rhizoils. $(\times 90$.)
for the first time in the vascular plants; while the systems themselves also exhibit a widely extended differentiation.

The Ontogeny of the Internal Structure

However a plant may arise, whether from an asexually produced spore or from a fertilised egg, its first inception is always as a single cell. In unicellular, spherical, or rod-shaped organisms, such as Glooocupsu polydermaticu (Fig. 1) or Bacteria (Fig. 4), the whole course of development is concluded with the cell division which gives birth to two new independent organisms. If the cell divisions be continuous and parallel, and the newly-developed cells remain in contact, Cell filaments (Fig. 4, a^{*}) will be formed ; if the division walls have different inclinations, and are at the same time all in the same plane, CELL sURFACES are produced; and if the walls are formed in three dimensions of space, cell masses are the result. Such an organism will attain but a low degree of development if all its cells have a like value, and continuously reproduce themselves in the same manner. With the distinction into BASE and APEX a plant manifests a higher degree of differentiation. A

VEGETATIVE or GROWING POINT is then developed, usually at the apex, and in the simpler cases this consists of but a single cell (Fig. 5). The apex assumes more and more the character of an APICAL CELL from which all the organs of the plant take their origin ; thus, in the case of Cladostephus verticillatus (Fig. 7), the many-celled main axis terminates in a single conical cell which, by transverse and longitudinal divisions, gives rise to the cellular system of the whole plant. Its side branches are likewise formed from similar apical cells, which develop, in regular acropetal order, from certain of the lateral cells of the parent stem, and determine the character of the branching, to which reference is made in the specific name of this sea-weed. Flat, ribbon-like plants also, such as Dictyote dichotomu (Fig. 8), may have conical but correspondingly compressed apical cells (Fig. 160, A), from which segments are cut off by concave cross walls, and become further divided by subsequent longitudinal walls. The dichotomous branching

Fig. 160.-Apex of Dictyota dichotome, showing in A, B, C, D successive stages in the bifurcation of the growing point ; (c, apical cell. (After Nägeli.)
so apparent in Lictyotel is preceded by a longitudinal division of the apical cell into two equal adjoining cells (B, a, a). By the enlargement and continuous division of these two new apical cells the now bifurcated stem becomes prolonged into two forked branches (Fig. $160, D)$. In other ribbon-like Algae, on the other hand, and in similarly shaped Hepaticue, as in Metzgeria and Aneura, the apical cell is wedge-shaped (Fig. 161), and the successive segments are cut off alternately right and left by intersecting oblique walls; from these segments the whole body of the plant is derived by further division. The apparently strictly dichotomous branching of Hepaticae provided with such apical cells is in reality due to the early development of new apical cells in young segments (Fig. 161, b). In the case of the erect radially symmetrical stems of the Musci, most Ferns and Equisetaceae, the apical cell has generally the shape of an inverted pyramid with plain sides and a convex base, and forms the apex of the vegetative cone characteristic of the more highly organised plants.

In the Common Horsetail (Equisetum areense), for example, the apical cell of the main axis viewed from above (Fig. 163, A). appears as an equilateral triangle, in which new walls are successively formed in a spiral direction, parallel to the original walls (p). Each new segment thus derived is divided by a new division wall (Figs. 162, 163, m) into an upper and lower half ; each of these halves, as is shown most clearly by an optical section just below the apical cell (Fig. 163, B), becomes again divided by a sextant wall (s) into two new cells. It is unnecessary to trace the further divisions, and it will suffice to call attention to the fact, that all cell walls parallel to the outer surface of such regetative cones or portions of plants are termed Periclinal

Fig. 1n̉l.-Diagrammatic representation of the apex of Metzgeria furcater in process of branching, viewerl from the dersal side. a, Apical cell of parent shoot; b, apical cell of daughter shoot. (After Kirs, \times circa 3:0.) Walls, while such as meet the surface and the periclinal walls at right angles are designated ANTiclinal. of which those in the plane of the axis of an organ are called radial.

Fig. lè.- Median longitudinal section of the regetative cone of Equistuan artense Explanation in the text. ($x \geq 40$.)
Some distance below the apical cell of Equistum arcense the first leafwhorl arises from the vegetative cone as a circular wall, which grows by the formation of cell walls inclined alternately inwards and outwards
in the wedge-shaped marginal cells which form its surface layer (Fig. $162, f)$. This is succeeded at a lower level by other and older leaf-whorls $\left(f^{\prime}, f^{\prime \prime}\right)$. An initial cell (g) may be distinguished in the axil of the second leaf-whorl, and this is destined to become the three-sided apical cell of a side branch. In the Lycopodinae, the most highly developed of the Pteridophytes, a distinct apical cell can no longer be recognised, while in the Phanerogams the cells of the vegetative cone are arranged as shown in the accompanying figure of Hippuris vulgaris (Fig. 164), in which the embryonic tissues are arranged in layers which, as was first noticed by Sachs, form confocal parabolas. The outermost layer, which covers both vegetative cone and also the developing leaves, is distinguished as the dermatogen (d); the cells of

A

Fig. 163.- A, Apical view of the vegetative cone of Equisetum ervense; B, optical section of the same, just below the apical cell; l, lateral walls of the segments. ($\times 240$.)

Fig. 164.-Median longitudinal section of the vegetative cone of Hippuris rulgaris. d, Dermatogen ; pr, periblem; $p l$, plerome; f, leaf rudiment. ($\times 240$.)
the innermost cone of tissue, in which the central cylinder terminates, constitute the plerones ($p l$); while the layers of cells lying between the dermatogen and plerome are called the periblem $(p r)$. In the same figure may be noticed the uniformity with which the dividing walls of the different layers intersect at right angles. This arrangement was regarded by Sachs as characteristic of the whole plant structure. The anticlinal walls at right angles to the surface form a system of orthogonal trajectories for the periclinal walls.

True roots are first found in the Pteridophytes, and possess an apical cell in the shape of a three-sided pyramid (Fig. 165, t). In addition to the segments given off by the apical cell parallel to its sides, it also gives rise to other segments (k) parallel to its base. It is from the further division of these latter cap-like segments that the Rоот-CAP
is derived. In the roots, as in the stems of the Lycopodinue, no apical cells are found. In like manner the roots of Phanerogams, although exhibiting several different types of root-growth, follow the same law in the arrangement of their elements as the vegetative cone of the stems. It will, accordingly, be sufficient to describe a root of one of the Gramineae (Fig. 166) as a representative of one of these types. The vegetative cone of this root differs from that of the stem previously described (Fig. 164) in the possession of a root-cap. The dermatogen

Fig. 165.-Merlian longitudinal section of the apex of a root of I 'teris cretice. t, Apical cell; k, initial cell of root-cap; h^{n}, root-cap. ($\times 240$.)
(d) and periblem ($p r$) unite at the apex in a single cell layer, outside of which lies the calyptrogen (k) or layer of cells from which the root-cap takes its origin. In many other roots, however, the formation of the root-cap results from the periclinal division of the dermatogen itself, which, in that case, remains distinct from the periblem. In the apices of Gymnosperms the dermatogen, periblem, and calyptrogen are not marked out as distinct regions. In roots, as in stems, the plerome cylinder ($p l$) almost always terminates in special initial cells.

At a short distance below the growing point the embryonic tissue
loses its meristematic character, and becomes transformed into the differentiated body of the plant. As a general rule, in plants with an epidermis, primary cortex, and central cylinder, the epidermis is developed from the dermatogen; the primary cortex from the

Fig. lồ. - Median longitudinal section of the apex of a root of the Barley, Hordeum rulgare. k, Calyptrogen ; d, dermatogen ; c, its thickened wall ; $p r$, periblem ; $p l$, plerome ; en, endodermis ; i, intercellular air-space in process of formation; a, cell row destined to form a ressel ; r, exfoliated cells of the root-cap. ($\times 180$.)
periblem ; the central cylinder from the plerome. This differentiation of the tissues does not take place in all cases; and, in fact, does not extend to the embryonic tissue, the peculiar cell arrangement of which is due rather to physical causes. The vascular bundles must pass through the periblem in order to reach the leaves. The periblem is therefore capable of producing, not only the primary cortex, but
also the vascular bundles and accompanying tissues of the central cylinder. The terms dermatogen, periblem, and plerome are employed merely for convenience to designate certain cell layers, and are not to be regarded as significant of any peculiar histogenetic or tissue-forming ability. The external layer from which the epidermis develops usually remains a single cell layer. The rudiments of the still undeveloped vascular bundles soon appear in the central cylinder as procambium strands; while the endodermis of roots is derived at an early stage from the innermost layer of the cortex.

In stems with apical cells the rudiments of new leaves and sHoots are developed from single peripheral cells, or cell groups of the vegetative cone (Fig. 162). In such cases, not only the new shoots, but even the leaves, usually begin their development with an apical cell. The apical cells of the leaves, however, soon disappear, and further growth proceeds along their whole margin.

In a stem with no apical cell (Figs. 16, 164) the rudiments of the leaves and new shoots first appear as small protuberances, the formation of which is generally initiated by the periclinal division of a group of periblem cells; while, in the meantime, the cells of the overlying dermatogen continue their characteristic anticlinal divisions. In the case of new shoots developing at some distance from the growing point of the parent stem, the cells from which they are destined to arise retain for that purpose their original embryonic character. In spring, as Ludwig Koch has shown, the formation of the buds on the rapidly growing shoots of bushes and trees may be postponed, so that the rudimentary lateral shoots first appear in the axils of the eighth or even the tenth youngest leaves, and consequently at points where the differentiation of the surrounding tissue has already begun.

The vegetative cone, in the case of strictly dichotomously-branch ing shoots (cf. Fig. 14), increases the number of its cells in the direction of the plane of the subsequent bifurcation, and eventually gives rise to two new growing points. With the exception of those Pteridophytes, whose roots as well as stems are dichotomously branched, the branches of the roots arise in acropetal succession; and their branching first begins in regions considerably removed from the growing point, and where the differentiation of the tissues is already complete. In Phanerogams new roots are developed in the pericycle: in Pteridophytes in the innermost cortical layer. The lateral roots must consequently push through the whole cortical layer of the parent root. They are situated either directly in front of the vascular strands of the parent root, or between the xylem and phloem strands. The number of rows of lateral roots is, therefore, as Van Tieghem has pointed out, either equal to or double the number of vascular strands. As the strands of the vascular bundles of roots take a straight course, the lateral roots must similarly form straight rows. The distances between the rows themselves are equal, or when the lateral roots are
situated to the right and left of each rascular strand, the rows are arranged in pairs with wider intervals between each pair.

Inasmuch as a multicellular plant begins its development as a single cell, either from a spore or fertilised egg, and then gradually passes into its multicellular condition with corresponding internal and external differentiation, IT REPEATS IN ITS ONTOGENY THE STEPS OF ITS phylogenetic development. These phylogenetic processes, however, undergo material modification in the course of the ontogenetic development of a plant. The internal modifications are in some respects less marked than those experienced by the external organs, because the internal inherited structure is less subject to the disturbing action of external influences. The ontogeny of the internal differentiation of a plant is on this account often of service in determining its relationships. In most cases, it may be safely said that every change in the internal differentiation of an organ is of more general significance the earlier it manifests itself in the development of the embryo, and the nearer it occurs to the growing point in which the embryonic development is continued. Conversely, a characteristic is so much the more significant for the determination of immediate relationships, the later it makes its appearance in the ontogenetic development.

Structural Deviations

Plants, even of the same species, never exactly resemble each other. Every individual organism has its own peculiar characteristics by which it may easily be distinguished from every other of the same species. To a certain extent individual variability may be due to ATAVish, or the reappearance of previous ancestral qualities. The greater part, however, of such individual variations are the result of newly developed peculiarities. Variations which are inherited lead to the development of NEW VARieties. Independent or spontaneous deviations are often the cause of monstrosities, and as these are apt to disturb the regular functions of an organ they are frequently the occasion of disease. The study of the abnormal development of plants is called Phytoteratology. That a plant becomes abnormally developed may be due either to internal or to external causes. As an example of VARIATIONS OCCASIONED BY internal CaU'ses may be cited the socalled BUD-VARIATIONS, which result in the abnormal development of single shoots. In like manner a variation in the number of the members of a floral or leaf whorl may occur as a result of internal causes; thus, for example, Paris quadrifoliu occasionally exhibits a hexamerous instead of a tetramerous symmetry. The internal structure of a plant may likewise be disturbed, and the development of its vascular water-courses or of its mechanical elements become considerably altered. In many cases variations are, no doubt, the result of changes in the mode of nutrition; this fact has been
taken advantage of by horticulturists to bring about certain wished for results. Among external causes of variations the influence exercised by parasites upon the development of the whole plant is particularly striking. Euphorlia Cyparissius, when attacked by a rust fungus (Aecidium Euphorliae), becomes sterile, remains unbranched, has shorter and broader leaves, and in its whole appearance is so changed as scarcely to be recognisable. Plant lice sometimes cause a flower to turn green, so that instead of floral leaves green foliage-like leaves appear. Another peculiar example of abnormal growths are the galls or cecidia produced on plants by Fungi, or more frequently by insects. The effect of these formations on the normal development of the tissues of a plant. is more or less disturbing, according to their position, whether it be in the embryonic substance of the growing point, or in the tissues still in course of differentiation, or finally in those already developed. The larvie of Cecidomyia rosaria live in the growing points of willow stems, and occasion a malformation of the whole stem by the production of galls known as "willow-roses." Flies (Diptera) often deposit their eggs in the tissues of partially developed leaves, in consequence of which the leaves become more or less swollen and twisted. After the leaves of the Oak have attained their full growth they are often stung by a gall-wasp of the genus Cynips. The poison introduced by the sting, and also by the larve hatched from the eggs deposited at the same time, occasion at first only a local swelling of the leaf tissue, which finally, however, results in the formation of round, yellow, or red galls on the lateral ribs on the under side of the leaf. As galls materially differ from one another according to the nature and cause of their formation, it is generally possible to determine the insect or Fungus by which they were induced. As an explanation of malformations which originate in the plants themselves, some exciting cause must be presumed which turns the processes of development from their usual course. The earlier such an influence makes itself felt in the rudiments of organs the more severe is its effect upon their development. When the embryonic substance of the growing point is affected by such an influence altogether unexpected modifications of the usual order of growth may result. As the embryonic substance of the growing point is of itself capable of producing all such forms as are peculiar to the species, instead of a flower a stem may be developed, or the growing point of a root may continue its further development as a stem. Leaves, even when somewhat advanced in growth, may under changed conditions vary their usual character, particularly within the limits of their possible metamorphosis; for example, the staminal and carpellary leaves of a flower may thus become transformed into additional perianth leaves. The later the rudiments of an organ are acted upon by a disturbing influence, so much the less
far-reaching are the modifications which it produces ; and thus intermediate forms between two organs may be produced which correspond more or less closely to one or the other of them. Finally, through the capability of a fully-differentiated tissue to renew, as a secondary meristem, its embryonic condition, an organ of an entirely different morphological value may be produced instead of one already in process of formation ; in this way, for example, a shoot may take the place of a spore capsule. Consequently neither the abnormal interchangeability, at times manifested between morphologically different members, nor the development of intermediate forms between them, can be considered as proof of their phylogenetic connection. Malformations are, accordingly, not to be accepted as evidence in morphoLOGICAL QUESTIONS, EXCEPT IN THE RARE CASES WHEN THEY MAY BE CONSIDERED AS A REAPPEARANCE OF ANCESTRAL QUALITIES.

PART I
 GENERAL BOTANY

SECTION II
PHYSIOLOGY

SECTION II

PHYSIOLOGY

Plants, like animals, are living organisms. Beginning their derelopment with the simplest structure, and increasing in size from internal causes, they assume their definite form and complete their existence according to laws determined by inheritance. surrounded by a world which differs very widely from them as regards chemical constitution, ther produce the substances necessary to their growth from the raw materials afforded by the environment. To this end the different parts of their bodies are enabled by independent movements to take such relative positions as are most favourable to their mode of growth. In spite of the number of individuals and the limited duration of life, the continuance and extension of the species are provided for br an ability to reproduce like organisms.

Nourishment, independent growth, power. of hotement, and peprodtction are, together with pespiration, the striking attributes which characterise plants as living organisms, and distinguish them from all lifeless bodies.

An organism consisting of but one cell, as is shown by the life of the simplest plants. is capable of exercising all the functions necessary for the continuance of its existence. In the case of plants, howerer, which consist of many hundreds or thousands of cells arranged in three dimensions of space, it is impossible, for purely physical reasons, that all the cells should bear the same relations to the outer world. The cells in the interior must exist under conditions altogether different from those which are in direct contact and intercourse with the world outside. Consequently, the differently arranged elements inlst be adapted for different modes of life, and, since they must exercise their functions in different ways, must show what is called Differentiation.

This necessary division of labour has led to the development of external organs and internal structures wonderfully auapted to the requirements of the whole plant. Correlated with the rarious Classes and relationship of plants, there are certain differences as regards
form and function. But, in all plants, those organs to which the same functions are assigned have assumed the form most efficient for their purpose ; so that, for example, the leaves and roots of plants otherwise most dissimilar are constructed on the same general plan. In proof of this may be cited the general terms leaf, root, stem, and flower, the comprehensiveness of which is even more evident in popular speech than in the technical language of Botany, which has given to these terms a more strictly defined and limited meaning.

Similarity in the appearance and structure of organs indicates the exercise of common functions and duties; while dissimilarities in the form and structure of different organs-such as the leaf and root-are indicative, on the other hand, of their different utility to the plant. There lies, then, in the morphological and anatomical development of an organ an unmistakable proof that it exists because of its function, and that it is not of accidental origin.

The attributes and functions of organs, as well as of single cells, are the subjects of physiological study. It is evident, however, that such study must be based upon an intimate knowledge of the outer and inner structure of plants; just as the working and efficiency of a machine first become comprehensible through a knowledge of its construction. On the other hand, the study of external and internal Morphology becomes animated by Physiology, and attains thereby a deeper purpose and meaning.

It is the province of Physiology to discover the points of correspondence among the numerous individual phenomena, and to bring to light such as possess an essential functional significance. On the other hand, it is the variations, or family peculiarities, which are of value in Systematic Botany, since from them a knowledge of family relationships may be derived. For example, it suffices for the physiological conception of flowers to know that they are the organs of sexual reproduction in higher plants; that the male cells are somehow developed from the pollen formed in the anthers; that from the female cells enclosed within the ovules, after their union with male cells, the embryos or rudimentary plants are derived. These important facts are equally true for all flowers, no matter how dissimilar they may appear.

The Physical and Vital Attributes of Plants

With the exception of the more or less fluid developmental stages in some of the lower organisms, as in Amoba or the plasmodia of Myxomycetes, plants, in spite of the great amount of water contained in them, are of the nature of solid bodies. As such they possess in common even with inanimate objects the physical attributes of weight, density, elasticity, conductivity for light, heat, electricity, sound, etc. Important as these attributes are for the very existence and continuance of the life of a plant, they do not constitute that life itself.

Vital phenonena are essentially bound up with the living protoplasm. No other substance exhibits a similar series of remarkable and varied phenomena, such as we may compare with the attributes of life. As both physics and chemistry have been restricted to the investigation of lifeless bodies, any attempt to explain vital phenomena solely by chemical and physical laws could only be induced by a false conception of their real significance, and must lead to fruitless results. The physical attributes of air, water, and of the glasses and metals made use of in physical apparatus, can never explain qualities like nutrition, respiration, growth, irritability and reproduction. It would, indeed, be superfluous to emphasise the fact, were it not that this error is from time to time repeated.

The phenomena of life can only be studied and determined by the most careful observation and critical examination of living organisms. It is therefore necessary to establish what part the purely physical and chemical properties, which belong to all bodies, take in the phenomena of life, and to what extent they are essential to the maintenance of life itself. A perception of the strictly physical and chemical processes going on within an organism is especially desirable, because operations are then involved with the causes and effects of which we are already familiar. In questions regarding strictly vital phenomena the case is quite different; for it then becomes impossible to predict what effect a particular cause will produce. The free end of a horizontally extended flexible rod bends downwards merely by its own weight. The same result will follow if any part of a dead plant, such as a dry stem, be substituted for the rod. But if a living, growing stem be used in the experiment, then the action of gravity will manifest itself in a manner altogether at variance with its ordinary operation. That part of the stem which is still in a state of growth will ultimately curve upwards, and by its own activity assume an UPRIGHT POSITION; it moves in a direction exactly contrary to the attractive force of gravity. If a tap-root be similarly experimented upon, it will, on the contrary, continue its downward movement until it places itself in a line with the direction of the attraction ; a rhizome, however, under like circumstances, would constantly maintain its growing apex in a horizontal position.

In these three experiments the force of gravity is exerted upon flexible portions of plants. The physical conditions are the same in each case, yet how entirely different the results !

The explanation of this dissimilarity in the effects of the action of gravity is to be sought in the fact that gravity acts upon living substances, not only physically but also in another way, as a stimulus which induces a response in the internal forces of the plant body. In these particular experiments it is the force of growth which, locally, either increases or restricts the force of gravity, and produces results which do not correspond either qualitatively or
quantitatively with the known operations of the laws of gravity. Living substance is dominated by the operation of stimuli. Irritability is its most important attribute, for it is irritability alone that renders possible what we call life.

By irritability is meant the undoubted, though not fully understoor, connection between external stimuli and the response of a living organism. The disproportion that may exist between a cause and its ultimate effect is plainly apparent in a steam engine in motion or in the firing of firearms. The slight pressure of the finger in firing a cannon has as little correspondence, either quantitatively or qualitatively, with the destructive effect of the shot, as the small effort necessary to open the throttle-valve of a locomotive to the continuous motion of a heavily-ladened goods train. The opening of the valve of an engine before the steam is up has no effect; it is only when, by this process, the compressed steam is liberated that it is followed by such enormous results. In the engine the connection between the cause and its effect is known ; in the effects of stimuli on protoplasm this comection is not apparent, for in the protoplasm the intermediate processes remain invisible to the eye, even when aided by the best microscope. There is, however, no occasion for the supposition that the connection between the stimulating cause and its effect on the protoplasm is accomplished by processes which are otherwise foreign to the protoplasm itself, and which are called into existence only under the influence of a special force, the vital force. It was formerly thought necessary to ascribe not only all indications of life, but even all the transforming processes carried on within animate objects, to the effects of a special vital force or principle. Now, however, the conception of the vital processes has become so modified as no longer to require the supposition of such a special vital force; while the impossibility of explaining the manifold variety of their manifestation by the action of a single force, and the advances made in chemistry ($c f^{\circ}$. p. 5), have shown the futility of such a supposition.

Although, at the present time, the existence of a special, independent vital force is denied by Physiology, and only such agencies are accepted as are inhereut in the substance of an organism itself, still we must at the same time take account of such a vital force in so far as it may be regarded as the expression of a living substance, endowed with a peculiar, internal structure, which is in some way so constituted that certain actions and conditions are followed by definite vital processes. It is, then, this peculiar quality of irritability that distinguishes living protoplasm from other bodies, and which constitutes the fundamental distinction between living and dead protoplasm. Such a view is, however, not contrary to accepter ideas; simple chemical bodies, indeed even chemical elements, such as sulphur, phosphorus, etc., exist in different
"modifications" with fundamentally different peculiarities. In considering living organisms, it is the irritability or living modification of the protoplasmic substance which must occupy the attention. The object, therefore, of Physiology consists principally in discovering the attributes and characteristics incident to the modifications of living protoplasm.

These attributes and characteristics are so distinctive as to separate by a wide gap living bodies from all other matter. It is, in fact, impossible to form any conception of the manner in which living bodies have arisen on this once molten planet from lifeless matter. Acceptance of the theory of evolution authorises, it is true, the transfer of the inception of life on the earth to geological periods separated by millions of years from the present time; but the initiative character of such dawning life remains no less incomprehensible. From a consideration, however, of the attributes of the living substance, it can with safety be said that the external conditions of life could not at that time have been so very different from those now existing on the earth; for it is a characteristic quality of living matter that its vital activity, even its very existence, is circumscribed and limited by external, cosmic influences. The vitality of vegetable protoplasm can only be preserved within a definite range of temperature, within about sixty degrees Celsius, while its full vital activity is restricted to still narrower limits. Too intense light or an insufficiency of water destroys its life ; while the most minute quantities of certain poisons suffice to shatter instantly and irrevocably that mysterious structure, in which, under favourable conditions, lies concealed the capacity to vivify the whole world.

Although living plants are themselves responsible for the manner in which their vital phenomena manifest themselves, they stand, nevertheless, in the closest reciprocal relations with their environment, upon the condition of which they are altogether dependent. From the outer world they obtain not only their nourishment, but receive also from it, particularly from the vibrations of light and heat, the energy that they again expend in the manifold processes of their vital phenomena. It is to the operation of these external influences that the stimuli are due which constantly call forth in vegetable protoplasm the manifestation of vital phenomena. These external influences, however, are only serviceable to the processes of life when they operate within definite limits of intensity. The lowest limits of intensity for the effective operation of an external influence is designated the minmum, the highest the maximum, while that degree of intensity at which it is most operative in calling forth the most active manifestation of a definite vital phenomenon is termed the optinum (cf. also p. 234). For the different vital processes of the same plant, and also for those of distinct plants, these so-called Cardinal ponsts are generally different. Thus, some plants flourish best when
exposed to bright sunlight, while the shade-loving plants only attain their perfect development in a subdued light, such as that of a forest. Not only does the intensity of the required illumination differ for different species of plants and also for individuals of the same species, but it may be inconstant even for the same plant. Shade is absolutely essential for many tropical plants in a young state, although at a later age they can endure and may even require the full light of the tropical sun.

On exposure to a low temperature, about the freezing point of water, most plants become frozen and die, generally. Very sensitive plants may even become frozen at a temperature considerably above zero, before ice has been formed in their tissues. In the case of other plants the internal formation of ice in their tissues does not of itself occasion death. The formation of ice always begins in the intercellular spaces and not within the cells. Its continued formation is accompanied by an increasing concentration of the cell sap; as a consequence of this ice first begins to form in plants at a temperature below zero, and only gradually increases in case of a greater reduction of temperature.

I. The Stability of the Plant Body

One of the most important and essential physical attributes of a plant is its rigidity. Without that quality plants could retain no enduring form. The capacity to return, by their own independent movement, to farourable positions from which they may have been forcibly disturbed by external influences, is, in trees and shrubs, and also in the more rigid herbs, restricted to the extreme tips of the growing stems.

How great are the demands made upon the stability of plants will be at once apparent from a consideration of a rye haulm; for although it is composed of hundreds of thousands of small chambers or cells, and has a height of 1500 mm ., it is at its base scarcely 3 mm . in diameter. The thin stems of reeds reach a height of 3000 mm . with a base of only 15 mm . diameter. The height of the reed exceeds by two hundred times, and that of the rye haulm by five hundred times, the diameter of the base. In comparison with these proportions our highest and most slender buildings, such as tall chimneys, are extremely thick structures ; in them the height is only from twelve to seventeen times the diameter of the base. In addition, moreover, to the great disproportion between the height and diameter of plants, they are often surmounted by a heary weight at the summit; the rye straw must sustain the burden of its ears of grain, the slender Palm the heavy and wind-swayed leaves, which in Lodoicea Sechellarum have a length of 7 m . and a breadth of $3-4 \mathrm{~m}$., while in the Palm Raphiu taedigera the leaves reach a size of 20 m . in
length and 12 m . in breadth. In the case of free-growing plants, which attain the height of high buildings, e.g. Eucalyptus and Sequoia, the proportions noticed in a single grass-haulm no longer obtain.

In plants, however, the rigid immobility of a building is not required, and they possess instead a wonderful degree of elasticity. The rye straw bends before the wind, but only to return to its original position when the force of the wind has been expended. The mechanical equipment of plant bodies is peculiar to themselves, but perfectly adapted to their needs. The firm but at the same time elastic material which plants produce, is put to the most varied uses by mankind ; the wood forms an easily worked yet sufficiently durable building material, and the bast fibres are employed for a variety of economic purposes.

In young stems and plants, in which the stiff but elastic wood and sclerenchymatous fibres are not developed, the necessary rigidity cannot be attained in the same way as in the older and woody stems. But although the principal component of such young stems is water (often 90 per cent or more), they maintain a remarkable degree of rigidity and elasticity through the elastic tension of their extremely thin and delicate cell walls.

Turgidity. - When air or water is forced, under pressure, into an elastic receptacle such as a rubber tube, the walls of the tube become stretched and the tube longer and thicker. By this process the tube becomes just so much stiffer and firmer the greater the internal pressure and the more elastic and thinner its wall. By the similar tension of their elastic cell walls arising from internal pressure, the rigidity and elasticity of thin-walled plant cells, and organs composed of them, are maintained. The cellulose walls of parenchymatous cells are, in spite of their delicate structure, exceedingly firm and, at the same time, elastic; when distended, therefore, by a strong internal pressure they exhibit physical properties similar to those of a rubber tube. In order to understand how such an internal pressure, actually existing within a cell, can arise, it is necessary to take into consideration the physical phenomenon of osmosis, first investigated by the botanist Dutrochet, and later more particularly studied by Pfeffer and De Vries. Disregarding the recent and as yet merely theoretical views, according to which osmotic pressure, like that of steam, is supposed to be derived from the impact of motile, isolated molecules or ions against the walls, it will be assumed that osmosis is due simply to the mutual attraction of small particles of solid matter and their solvents. It depends also on the molecular attraction which converts solid bodies into solutions, and which so operates that the dissolved substances become uniformly distributed throughout the solution.

When two solutions of unequal concentration are separated by a membrane which is equally permeable to both, an attraction and
diffusion of both liquids will take place through the separating membrane. If, however, the membrane is more easily permeated by one of the solutions than by the other, then a larger quantity of the one than the other will pass through it; and, in case the membrane is only permeable for one solution, that one alone will be drawn through it. If a pig's bladder be filled with a solution of common salt and then immersed in water, the flow of water into the bladder is more rapid than the outflow of the salt solution, and, in consequence, an internal pressure is exerted within the bladder sufficient to expand it to a hard, rigid body.

A pressure similar to that arising from the osmotic attraction of the salt solution is produced in plant cells by the substances, particularly organic and inorganic acids, salts and sugar compounds, held in solution in the cell sap. The living protoplasm of the cell does not allow any of the sulbstances dissolved in the sap to pass out, except such as escape through the diffusion taking place between the cells themselves. In this process a constant transmutation and transformation of the cell substances occurs, but, as may be observed in cells with coloured cell sap, these are held in by the protoplasm, and in particular by the protoplasmic membrane (p. 51). These substances, however, draw in water through the cell walls and the protoplasm, and so set up a pressure within the cells often as high as 3 atmospheres. In some instances this pressure may amount to $10,12,15$, and 20 atmospheres (e.g. cells of the cambium and medullary rays of trees). Thus a tension is created which frequently exceeds that exerted by the steam of the most powerful locomotives. Through the force of such a tension the cell walls become so distended, that cells under the influence of this pressure or TURG!DITY become longer and larger than in their unexpanded condition.

When, from any cause, the quantity of water in such a turgescent cell is diminished the internal pressure is naturally decreased, and the distended cell walls shrink together again. The cell grows smaller, and, at the same time losing its rigidity and elasticity, becomes soft and flaccid.

This condition occurs from natural causes when a succulent plant loses more water by evaporation than it can replace, and, in consequence, becomes flaccid. Such a flaccid plant plainly shows that the rigidity is not maintained by its framework of cell walls, but by the hydrostatic pressure within the cells, for with a more abundant water supply it returns to its original condition.

In addition to loss by evaporation, water is also withdrawn from cells by the same molecular force which causes the internal or endosmotic pressure. In cases where the cells are surrounded by a solution which exerts an attraction upon water, the turgidity of the cells is proportionally weakened, and, if the force of the exosmotic pressure is sufficient, it may be altogether orercome. On account of the consequent
plasmolysis, or the contraction and separation of the protoplasm from the cell walls, occasioned by the withdrawal of water, the tension of the cell walls is decreased, and the cell becomes flaccid and collapses (Fig. 167), although completely surrounded by an aqueous solution. If placed in pure water, however, the previous turgescence of the cells can be restored, that is, if their protoplasm has not been too strongly affected by the action of the solution. If the protoplasm has been killed in the process, it becomes permeable to water, and it is no longer possible to set up an internal pressure. Fresh sections of Beets or Carrots, placed in water, give up none of their sugar or colouring matter ; but after the protoplasm has been killed (by cooking or freezing), the sugar and colouring matter at once escape into the surrounding water, and the sections lose their firmness and rigidity.

Through a kuowledge of the strength of a solution necessary to produce plasmolysis, a means is afforded of measuring the internal pressure within plant cells. For example, if a solution of saltpetre with an osmotic pressure of 5 atmospheres (a 1 per cent solution, according to Pfeffer's iuvestigations, gives rise to a pressure of about $3 \frac{1}{2}$ atmospheres) is just sufficient to overcome the turgidity of a plant cell (which in the case of stretched elastic cells shows itself by the limit of contraction being reached), then, conversely, the cell sap exerts upon water an equivalent endosmotic pressure. The force required to forcibly stretch a

Fig. 16i.-Internodal cell of Vitella. F, Fresh and turgescent; P, with turgor reduced, flaccid, shorter and smaller, the protoplasm separated from the cell walls in folds; ss, lateral segments. (\times circa 6.) flaccid or plasmolysed organ to its original length furnishes also a rough means of estimating the pressure dereloped in turgescent tissues.

In the tension produced by turgidity we see how purely physical processes determine the rigidity of plants. These physical processes are, however, dependent upon the vital functions of plants, inasmuch as they can only be called into action by living protoplasm. Living plant cells have thus power to regulate the physical effects of osmotic pressure by increasing or diminishing, or even suddenly overcoming their turgidity (cf. Movements of Irritability, p. 269). It will also be apparent, in considering the operation of other physical forces, that the primary and essential result of the vital action is to give rise to the operation of physical processes, to favour, constrain, or vary them in such a way that they become of service to plant life.

Tension of Tissues.-The rigidity of parenchymatous tissue,
although to a large extent dependent upon the tension arising from the turgidity of its individual cells, is nevertheless considerably enhanced by the opposing pressure between the inner and outer tissue systems, in particular, between the pith and the epidermal and cortical tissues. The pith in this case represents the cell sap, as it is continually striving to increase its volume ; the epidermal and cortical layers, on the other hand, by the pressure of the internal pith cylinders, are stretched and distended, just as are the cell walls by the osmotic pressure of the cell sap. The tension thus arising from the mutual resistance of different tissue systems acts upon the various plant organs like the turgidity of the single cells, and keeps them firm and rigid.

The tension of tissues is easily demonstrated by removing a strip of the peripheral tissue from a piece of a turgescent stem (of a Sunflower, Helianthus, for example), and cutting out the pith. It will be found that the outer tissue at once becomes shorter, and the pith longer than when they were both united in the stem. If the length of the stem experimented upon was 50 cm ., the cortical strip would shrink to 46 cm ., and the pith lengthen to $55-60 \mathrm{~cm}$. From this experiment it will be seen that the natural length of a stem represents the equilibrium maintained between the tendency of the pith to elongate and of the outer tissues to contract. The cortical tissue between the epidermis and the pith affords a transition between the two extremes of tension, the inner cell layers are compressed like the pith, and the outer layers stretched like the epidermis. The tension of tissues is also demonstrated by the fact that each strip of a fresh shoot which has been split longitudinally will curve outward, so that the pith forms the convex, the epidermis the concave side.

There is often a great difference in tension even between the outer and inner layers of the tissue of hollow organs, such as the stalks of a Dandelion (Taraxacum officinale), which, when split longitudinally, curl into helices of many turns, especially if placed in water. A tension exists wherever resistant and unequally strained tissues are in contact, and often occurs in parts of plants where it does not assist, as in the leaves and stems, in maintaining the rigidity of the plant body. Longitudinal and transverse tensions occur, particularly when, through secondary growth, newly formed growing tissues have to overcome the resistance of other tissues. In this way the primary and then the secondary cortex of trees become greatly stretched by the new cambial growth, so much so, that if a ring of bark he removed from a stem and then placed round it, its edges cannot be brought together again, even by the expenditure of considerable force, on account of the tangential contraction which has taken place.

In the meristematic tissues of growing points there is scarcely any perceptible tension, while, on the other hand, in regions which are in a state of elongation the tension of the tissues attains its highest limit. After an organ has completed its growth the elasticity of the cell walls and the turgescence of the cells decrease; and the tension of the tissues is therefore also diminished. The requisite rigidity is, however,
provided for by special groups of cells with thickened and hardened walls, which thus constitute a firm framework for the other tissues similar to the bony skeleton of the higher animals.

Mechanical Tissues (Stereome).-The supporting framework of plants is provided by the thick-walled elements of the wood, the thickened sclerenchymatous fibres of the fundamental tissue and the bast, and more rarely by groups of stone-cells. The resistance which these forms of tissue offer when the attempt is made to cut or break them affords sufficient evidence of their hardness, tenacity, and rigidity. Moreover, Schwendener has been able to determine their mechanical value by means of exact physical experiments and investigations. According to such estimates, the sustaining strength of sclerenchymatous fibres is, in general, equal to the best wrought-iron or hammered steel, while at the same time their ductility is ten or fifteen times as great as that of iron. Just as the mechanical tissues of the internal framework of plants exhibit the physical properties most essential for their purpose, their arrangement, as Schwexdener showed, will also be found equally well adapted to the various ends in view, according as they may be required to withstand the strain of flexure, traction, or pressure. To withstand bending, and to offer the utmost possible resistance to it, a peripheral disposition of the rigid mechanical tissue is the most favourable.

When a straight rod (Fig. 168) is bent, the convex side elongates and the concave side contracts, that is, the outer edges (a, a and a^{\prime}, a^{\prime}) are exposed to the greatest variations in length, while, nearer the centre (i, i and i^{\prime}, i^{\prime}) the deflection a:rd consequent variations in length are less. Accordingly, if the supporting skeleton of a plant stem be placed near the centre $\left(i, i^{\prime}\right)$, then a considerable degree of curvature is possible with but little flexure of the mechanical tissue. Nearer the periphery it would be subject to greater strain, and so offer a greater resistance to the deflecting force. In erect stems and flower-stalks, where rigidity is an essential requirement, the mechanical tissue is situated at the periphery, and often takes the form of projecting ridges (Fig. 169, 1, 2). In roots, and in many rhizomes and stolons, as they must push circuitously between impeding obstacles, the skeleton system is central, as by this

Fig. l6s.-Longiturlinal section of an elastic cylinder before and after curvature. Before curvature the peripheral (a, a^{\prime}) and central (i, i^{\prime}) vertical lines are of the same length ($31 \div \mathrm{mm}$.). After curvature the peripheral line a^{\prime} is $6 \cdot 2 \mathrm{~mm}$. longer ; the other peripheral line $a, 6.3 \mathrm{~mm}$. shorter. At the same time the central lines undergo but little change of dimensions ; i^{\prime} is lengthened $1 \because 2 \mathrm{mm}$. , $i 1.3 \mathrm{~mm}$. shortened. arrangement it is subject to less deflection, and can more effectually sustain strains upon its longitudinal elasticity (Fig. 160, 4). Fig. 169, 3
represents a transverse section through a hand-like leaf of Phorminm tenax, the New Zealand flax, which may reach a length of two metres; it illustrates how such a leaf is strengthened by sclerenchymatous

Fig. 169.-Disposition of mechanical tissue to secure rigidity. Transverse sections, 1 , of a young shoot of Simbucus ; $\boldsymbol{2}^{2}$, of the floral shoot of Eryngium ; 3, of a leaf of Phormium tenes; 4, of a root; c, collenchyma; s, sclerenchyma functioning as mechanical tissue (deeply shaded); g, green, and u, colomless leaf pareuchyma; h, hypoderma.
plates and strands. The mechanical elements of this leaf afford the strongest English ships' cables.

Where, however, pressure must be guarded against (as in Plumstones, and in Hazel and Walnuts), the mechanical resistance is maintained by an arching mass of sclerotic cells, which, like sclerenchymatous fibres, are often further strengthened by deposits of mineral matter.

Stems of trees which have to support heavy and frequently large crowns, must, like pillars, be constructed to withstand pressure and bending.

All such heavily thickened, inflexible skeletal elements have lost their capacity for growth, and cannot, therefore, be utilised in those parts of plants which are in an actively growing state. In such cases where greater rigidity is required than can be maintained by cell turgidity and tissue tension, it is secured by the development of collenchyma (p. 78). This tissue, according to Ambronn's researches, in addition to its extreme resistance to tearing, possesses the power of elongating under the influence of the force of growth. The
more capable it is of growth the more it responds to the growth in its neighbourhood. It forms, so to speak, the cartilaginots tisste of plants. In many organs, as for example in leaf-stalks, collenchyma is the permanent strengthening tissue.

Since, as has already been pointed out, the resistance of the mechanical elements to flexure is greater the farther they are removed from the centre of an organ, it will be readily seen that, while a flattened, outspread organ can be easily bent, if it were folded or rolled together, its power of resisting a deflecting force would be increased. In accordance with this principle many leaves become plaited or rolled (Fig. 1i0), and so acquire a sufficient rigidity without the assistance of any specially developed mechanical tissues.

II. Nutrition

By nutrition are understood all the processes of metabolism, or the chemical transformation and conversion of matter carried on by plants in the production and appropriation of their food-supply. Without nourishment and without new building material no growth or development is possible. As the processes of elaboration and secretion are continuous, if the food-supply is not kept equal to the demands made upon it, the death of the organism from starvation must ensue, while a continuance of its growth and further development is only possible when there is a surplus of the elaborated food material.

The Constituents of the Plant Body.-By means of chemical analysis the constituent substances of plants have been accurately ascertained. It requires, however, no analysis to realise that a part, often indeed the greater part, of the weight of a plant is derived from the water with which the whole plant is permeated. Water not only fills the cavities of living, fully-dereloped cells, but it is also present in the protoplasm, cell walls, and starch grains. By drying at a temperature of $110^{\circ}-120^{\circ} \mathrm{C}$. all water may be expelled from regetable tissues, and the solid matter of the plant will alone remain. The amount of dried substance in plants varies according to the mature and variety of the plant and of the particular organ. In woody parts it constitutes up to 50 per cent of their weight, but in herbaceous plants amounts to only 20 or 30 per cent. In more succulent plants and fruits it makes up only 5 -15 per cent of their total weight; in water-plants and Algae, -5 per cent, while everything else is water.

The dried substance of plants is combustible, and consists of organic compounds, which contain but little oxygen, and are converted by combustion into simple inorganic compounds, for the most part into carbonic acid and water. The elements carbon, hydroges, and oxycer form the chief constituents of the combustible dried substance.

Next to them in quantity is Nitrogen, which is derived principally from the protoplasm. After combustion of the dried substance of plants there always remains an incombustible residue, the AsH, consisting of the mineral substances contained in the plant. As these mineral substances undergo transformation during the process of combustion, they are found in the ash in different chemical combinations than in living plants. From numerous analyses made of the ash of a great variety of plants, it has been determined that nearly all the elements, even the less frequent, are present in plants.

In addition to the four already named, the elements found in the ash of plants are sulphur, phosphorus, chlorine, iodine, bromine, fluorine, selenium, tellurium, arsenic, antimony, silicon, tin, titanium, boron, potassium, sodium, lithium, rubidium, calcium, strontium, barium, magnesium, zinc, copper, silver, mercury, lead, aluminium, thallium, chromium, manganese, iron, cobalt, and nickel.

Many of these elements, indeed, occur only occasionally and accidentally, while others-sulphur, phosphorus, chlorine, silicon, potassium, sodium, calcium, magnesium, and iron-are met with in almost every ash. As might be inferred from the irregular occurrence of many of the elements, they are not all necessary for nutrition, and although their occasional presence in a plant may sometimes change certain of its special characteristics (thus the presence of zinc produces the socalled calamine varieties, such as, for example, Thluspi ulpestre rar. calaminare, Viola lutea rar. caluminaria, etc.), they do not exercise a decisive influence upon its existence.

The Essential Constituents of Plant Food.-Chemical analysis, while enabling us to determine the substances present in plants, does not show how far they are essential for nutrition. From culture experiments, in which the plants are grown in a medium of which the constituents are known, and kept under chemical control, it has been ascertained that, in addition to carbon, hydrogen, oxygen, and nitrogen, which form the principal part of the combustible elements of the dry substance of plants, sulphur, phosphorus, potassium, calcium, magnesium, and iron are absolutely indispensable to the growth of all green plants. In the absence of even a single one of these elements no normal development is possible.

According to Molisch, only nine of these elements are required by the Fungi. It is not, however, iron, as might be supposed, but calcium, that is unessential. On the other hand, the ten substances named suffice for the nutrition of most green plants; but it is not to be denied that certain other substances are of use in the plant economy and of advantage to growth, although not indispensable. Thus, for example, Buckwheat flourishes better when supplied with a chloride, and the rresence of silica is advantageous as contributing to the rigidity of the tissues. It has also been discovered that by the presence of certain substances, in themselves of no nutritive value, the absorption of actual nutritive matter is increased (cf. p. 175). In the case even of the very poisonous copper salts, experience
has taught that when they are brought into contact with the leaves (by sprinkling the plants with solutions to prevent the inroads of insects), they exercise a beneficial influence on the formation of chlorophyll, and increase assimitation, transpiration, and the length of life.

The nutritive substances are, naturally, not taken up by plants as elements, but in the form of chemical compounds. Carbon, the essential component of all organic substances, is obtained by all green plants solely from the carbonic acid of the atmosphere, and is taken up by the green leaves. All the other constituents of the food of plants are drawn from the soil by the roots. Hydiogen, together with Oxygen, is obtained from water, although the oxygen is derived also from the atmosphere and from many salts and oxides. Nitrogen is taken up by the higher plants only in the form of nitrates or ammonium salts. As the ammonia of the soil formed by the soil bacteria from organic decaying matter is transformed by the help of other socalled nitrifying bacteria into nitrites, and eventually into nitrates, only the nitrogen combined in the nitrates need be taken into consideration.

Bacteria, as contrasted with the higher plants, are particularly characterised by their attitude towards nitrogen. In addition to the bacteria, which, by their nitrifying capability, are of service to green plants, there are other soil bacteria which set free the nitrogen of nitrogenous compounds and thus render it unserviceable for the nutrition of green plants. On the other hand, other forms of bacteria convert the free nitrogen of the air into compounds (amides?) which serve not only for themselves, but also for the ligher plants as convenient nitrogenous food material. This remarkable nitrifying power of bacteria has led to a life partnership (symbiosis) between them and some of the higher plants (Leguminosae). In such symbiotic relations the bacteria provide the higher plants with nitrogen in a form in which it may be assimilated, while, in turn, they are supplied with the carbon compounds essential for their nutrition (cf. p. 211 and Fig. 186).

SULPHURAN PHOSPHORUS form, likenitrogen, important constituents of protoplasm. All proteid substances contain sulphur. The sulphur is taken into plants in the form of sulphates; phosphorus in the form of phosphates. Potassiun, unlike sodium, is essential to plant life, and is presumably active in the processes of assimilation and in the formation of protoplasm ; it is introduced into plants in the form of salts, and constitutes $3-5$ per cent of the weight of their dried substance. Magnesium, like potassium, participating in the most important synthetic processes of plants, is found in combination with various acids, particularly in reservoirs of reserve material (in seeds to the extent of 2 per cent) and in growing points (in leaves only $\frac{1}{2}$ per cent). Calcium also is taken up in the form of one of its abundant salts, and in considerable quantities ($2-8$ per cent). Calcium plays an important part in the metabolic processes of plants, not indeed as an actual constituent of protoplasm, but as a vehicle for certain other
essential substances, and, through its capacity to form compounds, as a means of fixing and rendering harmless hurtful by-products. Iron, although of the greatest importance in

Fig. 1:1.-Water-cultures of Fugopyrum esculentuin. I. In nutrient solution containing potassium ; I., in mutrient solution without potassium. (After Nobbe, rerlucell.) the formation of chlorophyll, is present in plants only in small quantities.

In order to determine the nutritive value of different substances the method of watel-culture has proved particularly useful (Fig. 171). In these culture experiments the plants, grown either directly from the seed or from cuttings, are cultivated in distilled water to which have been added certain nutritive salts. If all the essential nutritive salts are present in the culture solution, eren larger plants, such as Indian Corn, Beans, etc., will grow to full strength and mature seeds as well as if grown in earth. It is not necessary in these experiments to provide carbon compounds in the nutrient solution, as plants do not derive their carbon supply through their roots, but, with the help of their leaves, from the carbonic acid of the atmosphere.

The young plants would grow for a time just as well in pure distilled water as in the nutrient solution; but as the supply of nourishment stored in the seeds became exhausted, they would gradually cease to grow, and die. If one of the essential constituents of plant food be omitted from the nutrient solution, although the young plants would grow better than in the distilled water, they would in time become abnormally developed. When, for example, a plant is grown in a nutrient solution containing all the essential food elements except iron, the new leaves developed are no longer green, but are of a pale yellow colour ; they are "chlorotic," and not in a condition to decompose the carbonic acid of the atmosphere and nourish the plant. Upon the addition, however, of a mere trace of iron to the solution the chlorotic leaves in a very short time acquire their normal green colour.

So long as the necessary nutritive substances are prorided, the form in which they are offered to the plants, as well as the proportionate strength of the mutrient
solution (if not too concentrated), may vary. Plants have the power to take up these substances in very different combinations, and are able to absorb them in other proportions than those in which they occur in the soil. In concentrated nutrient solutions the absorption of water is increased; conversely, in very dilute solutions it is the salts that are chiefly taken up. The presence also of certain substances often exerts an active and generally beneficial influence upon the capacity for absorbing other substances : thus, calcium salts increase the absorption of potassium and ammonium salts. The following are the proportions of one among the many nutrient solutions recommended :

Distilled water	1000 to 1500 grams.
Potassium nitrate	1.0	,
Magnesium sulphate	0.5	$"$
Calcium sulphate	.	0.5	,			
Calcium or potassium phosphate	.	.	0.5	$"$		

To this solution a trace of some iron salts should be added.
The solution should be kept in the dark to prevent the development of algoid growths, and occasionally aerated during the culture experiment.

As a most important result of such culture experiments, it has been demonstrated that only the ten elements already named are necessary for the growth of plants; all other elements, although present in plants in large quantities, are of subordinate value to plant life. This is true, for instance, of sodium, which in combination with Chlorine actually predominates in some plants, and occasions the characteristic development of many of the succulent salt-plants; and also of SILICON, which, as silica, is so abundantly deposited in the cell walls of many plants-Equisetaceae, Grasses, Sedges, Diatoms (in the ash of Wheat-straw 70 per cent, and of Equisetaceue 70-97 per cent)that, after combustion of their organic substances, it remains as a firm siliceous skeleton, preserving the structure of the cell walls. The hardness and firmness of the cell walls are so greatly increased by these siliceous deposits that some of the Equisetacecue are even used for polishing and scouring; while the margins of grass blades, from a similar deposition of silica in their cell walls, are often rendered sharp and cutting. The silicified cell walls of Diatoms occur as fossils, and form deposits of SILICEOUS EARTH (Kieselguhr) in some geological formations. The value of the siliceous concretions, termed "Tabasheer," that are found within the joints of Bamboo has not, as yet, been satisfactorily explained. Aluminium, although like silica everywhere present in the soil, is only in exceptional instances taken up by plants. Aluminium has been detected in the ash of Lycopodiaceous plants; Lycopodium complanatum contains a sufficient quantity of acetate of aluminium to render the sap useful as a mordant. The same salt is found also in Grapes. On the other hand, although scarcely a trace of iodine can be detected by an analysis of sea-water, it is found, nevertheless, in large quantities in sea-weeds, so much so that at one time they formed the principal source of this substance.

It was first asserted by C. Sprengel, and afterwards emphasised by Liebig, that the mineral salts contained in plants, and once supposed to be products of the vital processes of the plants themselves, were essential constituents of plant food. Conclusive proof of this important fact was, however, first obtained by the investigations of Wiegmann and Polstorff.

The actual proportions of the more important ash constituents of some wellknown plants can be seen from the following table of ash analysis by W'olff. The table also shows exactly what demands those plants make upon the soil, that is, what substance they take away from it, in addition to the nitrates which do not appear in the ash.

The great difference brought out by the table in the proportions of the more important phosphoric acid and of the less essential silica and lime contained in Rye and Pea seeds, as compared with the amounts of the same substances in the straw, is worthy of especial notice.

Plants.	Ash in 100 parts of ciry solid matter.	100 Parts of ash contain									
		$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	CaO	MgO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Mn}_{3} \mathrm{O}_{4}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	SO_{3}	SiO_{2}	Cl
Rye (grain)	$2 \cdot 09$	$32 \cdot 10$	1.47	$2 \cdot 94$	11.22	$1 \cdot 24$..	$47 \cdot 74$	1-28	$1 \cdot 37$	0.48
Rye (straw)	$4 \cdot 46$	$22 \cdot 56$	$1 \cdot 74$	$8 \cdot 20$	$3 \cdot 10$	$1 \cdot 91$..	$6 \cdot 53$	$4 \cdot 25$	$49 \cdot 27$	$2 \cdot 18$
Pea (seeds)	$2 \cdot 73$	$43 \cdot 10$	0.98	4.81	$7 \cdot 99$	$0 \cdot 83$.	$35 \cdot 90$	$3 \cdot 42$	0.91	$1 \cdot 59$
Pea (straw)	$5 \cdot 13$	$2: \cdot 90$	4.07	$36 \cdot 82$	$8 \cdot 04$	1.72	\ldots	$8 \cdot 05$	6.26	$6 \cdot 83$	$5 \cdot 64$
Potato (tubers)	$3 \cdot 79$	$60 \cdot 06$	$2 \cdot 96$	$2 \cdot 64$	$4 \cdot 93$	$1 \cdot 10$.	16.86	$6 \cdot 52$	$2 \cdot 04$	$3 \cdot 46$
Grape (fruit)	$5 \cdot 19$	$56 \cdot 20$	1.42	10.76	$4 \cdot 21$	$0 \cdot 37$.	$15 \cdot 5 \mathrm{~S}$	$5 \cdot 62$	$2 \cdot 75$	$1 \cdot 52$
Tea (leaves)	$5 \cdot 20$	$34 \cdot 30$	$10 \cdot 21$	$14 \cdot 8 \cdot 3$	$5 \cdot 01$	$5 \cdot 48$.	14.97	7.05	$5 \cdot 04$	$1 \cdot 84$
Coffee (beans)	$3 \cdot 19$	$62 \cdot 47$	$1 \cdot 64$	$6 \cdot 29$	$9 \cdot 69$	$0 \cdot 65$..	$13 \cdot 29$	$3 \cdot 80$	$0 \cdot 54$	0.91
Tobacco (leaves)	$17 \cdot 16$	29.09	$3 \cdot 21$	36.02	7-36	$1 \cdot 95$.	$4 \cdot 66$	$6 \cdot 07$	$5 . \%$	6.71
Cotton (fibres).	$1 \cdot 14$	$39 \cdot 96$	$13 \cdot 16$	$17 \cdot 52$	$5 \cdot 36$	$0 \cdot 60$		10.68	$5 \cdot 94$	$2 \cdot 40$	$7 \cdot 60$
Spruce (wood) .	() $\because 21$	$19 \cdot 66$	137	$33 \cdot 97$	$11 \cdot 27$	1.42	23.96	$2 \cdot 42$	$2 \cdot 64$	$2 \cdot 73$	0.07

Plants which require a large amount of potassium, such as the Potato, Grapevine, and Coffee-tree, are termed potash plants.

In the preceding table the figures:do not express absolutely constant proportions, as the percentage of the constituents of the ash of plants varies according to the character of the soil ; thus, the proportion of potassium in Clover varies from 9 to 50 per cent ; the proportion of calcium in Oats from 4 to 38 per cent.

The Process of Absorption.-As all matter taken up by plants must, as a rule, pass through continuous cell walls, it must be absorbed in a liquid or gaseous state. The only exception to this rule occurs in the amœboid forms of the lower plants (Amoebae and Plasmodia), which, as they have no cell walls, are in a condition to take up and again extrude solid matter (small animals, living or dead, also plants and particles of inorganic substances).

The fact that plant cells are completely enclosed by continuous walls renders it necessary that food, to pass into the cell, must be either liquid or gaseous. In this condition the constituents of plant food are, however, imperceptible, and thus the manner of plant nutrition remained for a long time a mystery, and it was only during the
last century that the nature of the nourishment and nutritive processes of plants was recognised.

Plant nourishment is dependent upon the permeability of the cell walls to liquids and gases. Although impervious to solids, the cell walls of living cells are permeated with "imbibed" water; and to this "imbibition water" in the cell walls, together with the physical character of the cell walls themselves, are due their flexibility, elasticity, and ductility. The permeability of cell walls for imbibition water is only possible within certain limits, so that they thus retain the character of solid bodies.

Treated with certain chemical reagents (potassium hydrate, sulphuric acid, etc.) cell walls become swollen and gelatinous, or even dissolve into a thin mucilaginous slime. This change in their character is due to an increase in the amount of their imbibition water, induced by the action of the chemicals; otherwise, the water imbibed by ordinary cell walls is limited in amount. The walls of woody cells take up by imbibition about one-third of their weight; the cell walls of some seeds and fruits and of many Algae absorb many times their own volume.

The cell walls are not ondy permeable to pure water, but also to substances in solution. This fact, that the cell wall offers no resistance to the diffusion of crystalloid bodies when in solution, is of the utmost importance to plant nutrition ; cell walls, on the other hand, which are scarcely or not at all permeable to liquids (cuticularised walls), take no part in the absorption of plant nourishment, except in so far as they may still be permeable to gases.

In order that liquids may enter by osmosis into the living cell, they must first pass through the protoplasm, i.e. the lining of the cell wall. Living protoplasir is not, however, like the cell walls, equally permeable to all substances in solution, but, on the contrary, COMPLETELY ExCludes certain substances, while allowing others to pass through more or less readily. Moreover, it is able to change its permeability according to circumstances, and thus THE OUTER PROTOPLASMIC MEMBRANE HAS THE POWER OF DECISION, whether a substance may or may not effect an entrance into the cell. Similarly the INNER PROTOPLASMIC MEMBRANE exercises a similar but often quite distinct power over the passage of substances from the protoplasm into the cell sap. The same determinating power is exercised by these membranes in the transfer of substances in a reverse direction. On account of the selection thus exercised by the protoplasm, it is possible that, in spite of continued osmotic pressure, the contents of a cell are often of quite a different chemical nature from the immediately surrounding medium. To this same peculiar quality of the protoplasmic membranes is also due the selective power of cells, manifested by the fact that different cells, or the roots of different plants, appropriate from the same soil entirely different compounds; so that, for instance, one plant will take up chielly silica, another
lime, a third common salt, while the aluminium, on the other hand, is rejected alike by all three. The action of sea-weeds in this respect is even more remarkable; living in a medium containing 3 per cent of common salt, and but little potassium salts, they nevertheless accumulate much larger quantities of potassium than sodium. In addition they store up phosphates, nitrates, and iodine,-substances which are all present in sea-water in such small quantities as scarcely to be detected by chemical analysis.

That osmosis may continue from cell to cell, it is essential that the absorbed material must become transformed into something else, either by the activity of the protoplasm or by some other means. Local accumulations of sugar or other soluble reserve material in fruits, seeds, bulbs, and tubers would otherwise not be possible; for osmotic action, if undisturbed, must in the end lead to the uniform distribution of the diffusible substances equally throughout all the cells. But if equilibrium is prevented by the transformation of the diffusible substances into others that are indiffusible, the osmotic currents towards the transforming cells will continue, and the altered and no longer diffusible substances will be accumulated in them. In this manner glucose passing into the cells of tubers or seeds becomes converted into starch. As a result of this a constant movement of new glucose is maintained towards these cells, which thus become reservoirs of accumulated reserve material.

From the power of protoplasm to regulate osmotic currents, in that by reason of its permeability it allows the osmotic forces to operate, or, on the other hand, may modify and altogether prevent them, it is apparent that here also, just as in the case of the rigidity of plants, osmosis, although a purely physical phenomenon, is controlled by the protoplasm and rendered serviceable to plant life.

Water and Mineral Substances

The fact that water is essential to the life of all living organisms is so obvious that, in the infancy of natural history and philosophy, from Thales to Empedocles, water was regarded as the original principle of all existence, at least of the organic world. Even so late as the sixteenth century it was held by Van Helmont, the first to investigate experimentally the question of the nutrition of plants, that the whole substance of plants was formed of water. If the importance of water in this respect was greatly overrated, the universal necessity of water for all vital processes is still recognised in the present more advanced stage of scientific knowledge. Without water there can be no life. The living portions of all organisms are permeated with WATER ; it is only when in this condition that their vital processes can be carried on. Protoplasm, the real vehicle of life, is, when living,
of a viscous, thinly fluid consistency, and when freed from its water either dies or becomes perfectly inactive.

The circumstance that protoplasm, when in a state of inactivity, as in spores and seeds, can often endure a certain degree of desiccation for a limited time, forms no exception to this rule. During such periods its actual vital functions entirely cease, and only renew their activity when water is again supplied.

In most plants desiccation occasions death, and it is always to be regarded as due to some special prorision or exceptional quality when entire plants or their reproductive bodies can be again brought to life by a subsequent supply of water. Thus, for example, some Algerian species of Isoctes, and the Central American Selaginella lepidophylla, can withstand droughts of many months' duration, and on the first rain again burst into life and renew their growth. In like manner many Mosses, Liverworts, Lichens, and Algae growing on bare rocks, tree-trunks, etc., seem able to sustain long seasons of drought without injury. Seeds and spores: after separation from their parent plants, remain productive for a long time; seeds of Mimosa, which had been kept dry for orer sixty years, proved as capable of germination as those of recent growth. A similar ritality was shown by moss spores which had lain in a herbarium fifty years. The often-repeated assertion concerning the germination of wheat found with Egyptian mummies (" mummywheat") has, however, been shown to be erroneous. Many seeds lose their power of germination after having been kept dry for only a year ; others, even after a few days; and others again, as the seeds of the willow, cannot endure drying at all. It must not be forgotten that in all these instances a certain amount of hygroscopic water is retained by plants even when the air is quite dry. Orer the sulphuric acid of the desiccator, seeds retain for weeks 6 per cent or more of their weight of water. The withdrawal of this hygroscopically absorbed water kills all regetable tissues without exception.

Apart from permeating and energising the cells, water has other and more raried uses in plant life. It is not only directly indispensable for the solution and transportation of the products of metabolism, but also indirectly, in that its elements, hydrogen and oxygen, are made use of in organic compounds in plant nutrition. Water thus used (cf. p. 200) may be designated constitution water. It is also necessary for the turgidity and consequent rigidity of parenchymatous cells (p. 165) ; it is of use in the process of the growth of plant cells, which take it up in large quantities, and, through their consequent expansion, enlarge their volume with but little expenditure of organic substance.

A further and still more important service which water performs for plants consists in the conveyance and introduction into the plant body of the nutrient substances of the soil. Although a large amount of water is retained in the plant body (up to 96 per cent in succulent tissues) for the maintenance of rigidity and enlargement of the organs, a still larger quantity of the water taken up by the roots passes through the plant merely as a medium for the transport of nourishment, and is again discharged through the leaves by
evaporation. By this Transpiration from the aerial part of plants, the water passing into them from the roots escapes, and at the same time, by preventing saturation, which would otherwise be produced, tends to maintain a continuous upward movement of the water. The current of water thus produced is accordingly termed the Transpiration current. As the result of evaporation only water, in the form of vapour, and gases can escape from the plant. As the watery fluid ABSORBED BY THE ROOTS CONTAINS SALTS, OXIDES, AND OTHER NONVOLATILE SUBSTANCES IN SOLUTION, THESE ON EVAPORATION ARE LEFT In the plant and gradually increase in quantity. This accumulation of mineral salts is absolutely necessary for the plant, for the nutrient water taken up by the roots is so weak in mineral substances (it contains but little more solid matter than good drinkingwater), that the plant would otherwise obtain too little food if it were only able to take up as much water as it could retain and make use of.

All those contrivances in plants, therefore, which render possible or promote evaporation, operate chiefly in the SERVICE OF NUTRITION. Were transpiration not in the highest degree useful and even necessary for the acquisition of mineral substances, provision would certainly have been made by plants to restrict it within the smallest possible limits. For transpiration increases the amount of water required by plants disproportionally to their powers of absorption, and exposes them, moreover, to the danger of perishing. through the insufficiency of their water-supply.

Herbaceous land plants evaporate, in a few days, according to the calculations of SACHs, more than their own weight of water. A Tobacco or Sunflower plant will lose by evaporation in one day as much as a litre of water ; and it has been estimated that trees lose in the same way $50-100$ litres daily.

In spite of the increased danger of drying up, as the result of evaporation, special provision is made by plants for facilitating transpiration (p. 188). To supply the increased demands for water thus produced there is set up a strong current of water containing nutritive salts in solution, which passes through the plants, and after yielding up its solid constituents, escapes in the form of invisible aqueous vapour. Thus plants, in order to obtain their nutrient substances, proceed in the same manner as the smaller animals (Sponges, Ascidians), which draw in and maintain a continual flow of water through their bodies, in order to retain as food the nourishing particles suspended in it.

The Absorption of Water.-"Water," as here used, it must always be remembered, does not mean chemically pure water, but rather a dilute watery solution of various substances in the ataoSphere, from the mineral salts of the earth, and froni organic humus. In this connection it is also necessary to emphasise the fact that living plants do not absorb this nutrient water in-

ACTIVELY AND INYOLUNTARILY, as a sponge, but through the peculiar selective power of their cells (p. 177) they exercise a choice from among the substances available.

The simpler and less highly developed plants, which are but slightly differentiated, are able to absorb water through the surface of their whole body. This is also generally true of all submerged aquatic plants, even of the Phanerogams. Water-plants which obtain their nourishment in this way often either possess no roots (Utricularia, Salvinia), or their roots serve merely as mechanical hold-fasts. With plants living on dry land the conditions are quite different; their stems and leaves develop in the air, and they are restricted to the water held by capillarity in the soil. In order to obtain this water in sufficient quantities, special organs are necessary, which may spread themselves out in the soil in their search for water. These organs must absorb the water from the soil, and then force it to the aerial portions of the plant. This office is performed for a land plant by its root system, which, in addition to providing the supply of water, has also the task of mechanically sustaining the plant, and withstanding all influences which could lead to a disturbance of equilibrium by loosening the hold of the plant on the earth.

Conversely, loose soil is naturally bound together by the branching roots ; and on this account plants have an economic value in holding together loose earth, particularly on dykes and land subject to inundation.

If the development of the root system of a germinating Bean or Oak be observed, it will be found that the growing root of the embryo at once penetrates the soil and pushes straight downwards. Lateral roots are then given off from the main axis, and, growing either horizontally or diagonally downwards, penetrate the earth in the neighbourhood of the primary root. These lateral secondary roots in turn develop other roots, which radiate in all directions from them, and so occupy and utilise the entire soil at their disposal. The branching of the root system can proceed in this manner until, within the whole region occupied by the roots of a large plant, there is not a single cubic centimetre of earth which is not penetrated and exhausted by them.

All plants do not form a deep-growing tap-root like that of the Oak, Silver Fir, Beet, Lucerne, etc. ; some confine themselves to utilising the superficial layers of the soil by means of a thickly-branched lateral root system (Pine, Cereals). The agriculturist and forester must, accordingly, take into consideration the mode of branching and growth of the roots of a plant just as much as the liabit of growth of its aerial portions. Plants which make use of different layers of soil may be safely cultivated together in the same soil, and succeed one another in the same ground. For similar reasons, in setting out trees along the borders of fields, the deep-rooted Elm should be preferred to the Poplar, whose roots spread out near the surface.

Gardeners are in the habit of cutting off the tap-roots for the sake of conveni-
ence in transplanting or for pot culture, and also to force a more rigorous development of the lateral roots.

Desert or xerophilous plants, according to the observations of Volkens, send out deeply penetrating roots, which only branch profusely on reaching depths where they find water.

In order to secure a still more intimate contact with the particles

Fig. 1i2.--Tip of a root-hair with adhering particles of soil. (xcirca 240.) of the soil, there are produced from the surface of roots small, exceedingly numerous and fine, cylindrical bodies, which penetrate the smallest interstices of the soil, and fasten themselves so closely to its smallest particles as to seem actually grown to them (Fig. 172). These ultimate branches of the root system, which discover the very smallest quantity of moisture, and seek out the most concealed crevices in their search for nourishment, are the ROOT-HAIRS (p. 95),-delicate tubular outgrowths of the epidermal cells. Although they have the diameter of only a medium-sized cell, and appear to the naked eye as fine, scarcely visible, glistening lines, they often attain a length of several millimetres and enormously enlarge the absorbing surface of their parent root. According to F. SCHwarz the epidermal surface of the piliferous zone of the roots of Pisum, which has 230 root-hairs to the square millimetre, is thus increased twelvefold.

The root-hairs do not cover the whole surface of roots, not even in the youngest roots, but only a comparatively small zone, a short distance above the growing root-tip. Soon after they have attained their greatest length, and have come into the closest contact with the earth particles, they die off. New root-hairs are developed to supply their place, so that a zone of root-hairs is thus constantly maintained just above the root-tip; while beyond this advancing zone of hairs the root epidermis becomes again completely divested of root-hairs (Fig. 173). To be convinced of this fact, it is only necessary to carefully pull up a young plantlet growing in a loose and not too dry soil, as such a condition

Fig. 173.-Seedling of Carpinus Betulus. r, Zone of roothairs near root-tip; h, hypocotyl ; $h r$, main root: $s v$, lateral roots; l, r, leaf; c, epicotyl; c, cotyledons. is especially farourable for the development of root-hairs. Each root,
just above the tip, will be found clothed for a short distance with earth particles held fast by root-hairs, which thus mark the zone occupied by them. The older parts of roots, even in plants which persist for many years, take no part in the process of absorption. They envelop themselves with cork, increase their conducting elements by growth in thickness, and function exclusively in the transfer of the water absorbed by the younger portion of the roots. Even in the young roots the absorption seems principally confined to the regions covered with root-hairs, or, in case no root-hairs are developed, to a corresponding zone of the root epidermis.

Through the intimate union of the youngest roots with the soil, they are able to withdraw the minute quantity of water still adhering to the particles of earth, even after it appears perfectly dry to the sight and touch. There still remains, however, a certain percentage of water, held fast in the soil, which the roots are not able to absorb. Thus, Sachs found that the water left by a Tobacco plant, and which it could not absorb, amounted in cultivated soil to 12 per cent, in loam to 8 per cent, and in sand to $1 \frac{1}{2}$ per cent. The root-hairs seem to take up chiefly the substances held by the soil by means of its ABSORPTIVE POWER.

The absorptive power of soil depends, partly, upon chemical changes taking place within it, but partly also on physical processes (the superficial adhesive force of its particles). The chemical changes are especially concerned with the retention of ammonium and potassium salts, as well as phosphates; the former as difficultly soluble silicates or double silicates, while phosphoric acid is held in combination with calcium or iron. Magnesium and calcium salts are, on the contrary, but slightly absorbed. They are, like the chlorides, the nitrates, and, in part, also the sulphates, easily displaced ; in soil treated with a solution of saltpetre, for example, the potassium will remain in combination in the soil, while calcium nitrate passes off in solution.

Humus acids contribute, to a certain extent, to the chemical changes occurring in soil, as do also soil bacteria, which possess strongly oxidising and reducing powers.

The absorptivity of the soil, which, moreover, is not absolute, and varies with different soils (sandy soil absorbs poorly), operates advantageously for plants by the consequent rapid accumulation of large supplies of food-material for their gradual absorption.

The absorptive power of soil for water is due to its capacity to retain water by capillarity, so that it does not run off. Of the soils investigated by SAchs, cultivated soil retained in this way 46 per cent, loam 52 per cent, and sand only 21 per cent of water.

The activity of the roots in providing nourishment is not only manifested in overcoming the adhesive and absorptive power of the soil. The young roots, and especially the root-hairs, in addition to the carbonic acid exhaled by them, and which, no doubt, also aids in loosening the soil, excrete a stronger acid, by means of which they dissolve otherwise insoluble substances. Roots growing upon a polished plate of marble will so corrode it that an etched pattern of
their course and direction is thus obtained. By placing the roots upon litmus paper, it may be demonstrated that the corrosion is due to the action of an acid.

The nutrient water with which the cell walls of the epidermal cells and root-hairs first become permeated is taken up by the epidermal cells, and thence passes through the cortical cells and the endodermis (p. 113) to the central cylinder of the root.

The Distribution of the Nutrient Water-1. Root-Pressure.The causes which determine the direction and strength of the movement of the water through the living cells of the root-cortex into the vascular bundles are not yet fully understood. The fact that the water does actually pass into them, but at times indeed is forced into them with a considerable pressure, may be easily demonstrated. If the stem of a

Fig. 174.-Vigorous exudation of water as the result of root-pressure from a cut stem of Dahlia rariabilis. The smoothly cut stem s is joined to the glass tube g by means of the rubber tubing c. The water W, absorbed by the roots from the soil, is pumped out of the vessels of the stem with a force sufficient to orercome the resistance of the column of mercury Q. strongly-growing plant, such as the Sunflower, Dahlia, or Indian Corn, be cut off close above the ground, and the cut surface dried and then examined with a magnifying-glass, water will, in a short time, be seen to exude from the severed ends of the bundles. By close inspection, it is also possible to determine that the water escapes solely through the vascular or woody portion of the bundles. When the soil is kept warm and moist the outflow will be greater, and will often continue for several days. During this time, a half-litre or more of water will be discharged. This water, as analysis shows, is not pure, but leaves on eraporation a residue of inorganic and organic substances.

Again, if a hollow glass tube be placed on the root-stump and tightly fastened by rubber tubing, the exuded fluid will be forced up the glass tube to a considerable height. How great the force of this pressure is may be shown by attaching an S tube to the stump and closing it with mercury (Fig. 174). The column of mercury will in some cases be forced to a height of 50 or 60 , and under favourable conditions to 100 or more centimetres, thus indicating a root-pressure which may sometimes considerably exceed one atmosphere, and is of sufficient power to raise a column of water 6,8 , and 13 metres high.

If, instead of the effects of the pressure, the volume of water exuded each hour be observed, the remarkable fact will be demonstrated that the roots regularly discharge more water at certain hours than at others (Periodicity of RootPresstife.

When it was shown that the roots were capable of exercising so great a pressure, it was at first believed that the ascent of the sap to the tops of the highest trees was due to root-pressure. This, however, would be impossible in view of the following considerations. The volume of water supplied by rootpressure is not sufficient to satisfy the quantity given off by evaporation. On the contrary, by moderately vigorous transpiration, such as takes place on a summer day, the root-pressure is of a negative character. Thus, if an actively evaporating plant be cut off near the root, no outflow of water will take place. On the other hand, the stump will energetically draw in water supplied to it; and not until it has become saturated does the force of the root-pressure make itself apparent. In plants growing under natural conditions, the root-pressure is only effective on damp, cool days, or at nights, when the transpiration is greatly diminished. In spring, when the roots are beginning their activity, the conditions are most favourable, the wood is full of water, and the transpiring leaves are not yet unfolded. When the wood is injured, "sap" is exuded in drops from the vessels and tracheids.

The so-called bleeding from wounds or cut stems is chiefly due to root-pressure, but it is also augmented by the pressure exerted by the living cells of the wood (wood parenchyma, medullary rays). The out-flowing sap often contans, in addition to numerous salts, Considerable quantities of organic substances (dissolved albuminous matter, asparagin, acids, and especially carbohydrates).

The amount of saccharine matter in the sap of some plants is so great that sugar may be profitably derived from it. The sap of the North American sugar maple, for example, contains from 2 to 3 per cent of sugar, and a single tree will yield $2-3$ kilos. The sap of certain plants is also fermented and used as an intoxicating drink (palm wine, pulque, a Mexican bererage made from the sap of the Agave, etc.)

The bleeding which takes place on warn1, sunny winter days from wounds or borings in trees is not due to root-pressure, but to purely physical causes. It is brought about by the expansion of the air-bubbles in the tracheal elements of the wood, and may be artificially produced at any time in winter by warming a freshlycut piece of wood; when the wood is allowed to cool, the air contracts and the water in contact with the cut surface will be again absorbed.
II. The Water-condection in Plants.-In living plant-tissues the cells of which require more or less water for their growth, for the maintenance or augmentation of their turgidity, and to supply the water lost by transpiration, there is a constant transfer of water from one cell to another. This transfer between the adjacent cells takes place much too slowly to equalise the great amount of water lost by evaporation from the foliage of a tall tree. In ORDER TO TRANSFER THE WATER, QUICKLY AND IN LARGER QUANTITIES, FROM the roots to the leaves, plants Make dise, Not of the living PARENCHYMA, BLT OF THE WOODY PORTION OF THE VASCULAR

Bundles. The woody elements which thus conduct the water have no protoplasm ; they are to be regarded as dead cells, in which the last office of the protoplasm was to give the walls their peculiar structure.
III. The Transpiration Cur-rent.-It has long been known that the ascending transpiration current in woody plants, which is directed to the points of greatest consumption, flows solely through the wood. It had been observed that plants from which portions of the cortex had been removed, either purposely or accidentally, remained nevertheless perfectly fresh. The adjoining figure, taken from one of the first books in which the vital processes in plants were accurately described (Essars on Tegetable Statics, by Stephen Hales, 1727), shows the method employed in proving this fact experimentally (Fig. 175). At Z in the branch b all the tissues external to the slender wood have been removed. Since the leaves of this branch remain as fresh as those of the branch c, it is evident that the transpiration current must pass through the wood and not through the cortical tissues. On the other hand, when a short length of the wood is removed from a stem, without at the same time unduly destroying the continuity of the bark, the leaves above the point of removal will droop as quickly as on a twig cut off from the stem. It has also been shown by experiment that in herbaceous plants the rascular portions of the bundles provide for the conduction of the ascending currents.

As Sachs demonstrated by spectroscopical analysis, a dilute solution of lithium nitrate taken up by an uniujured plant first ascends in the wood before it passes laterally into the other tissues. By means of the same solution, Pritzels and Sachs determined the velocity of the movement of the transpiration curreut, which naturally varies according to the plant and the effect of external conditions upon transpiration; under favourable circumstances it attains a rate of 1-2 metres an hour. This method of showing the exclusive share of the wood in the con-
duction of the water, and, also, of determining the maximum velocity of the transpiration current, from observations based on the path and rate of movement of a coloured solution taken up by a plant, is not free from objection; for the colouring matter would not pass through the stem at the same rate as the water in which it is dissolved, but would be drawn out and held back by the cells. The employment of coloured solutions will, however. be found instructive for merely showing the course of the transpiration current. The transparent stems of the Balsam, Impatiens parviflora, and the white floral leaves of Lilies, Camellias, Mock Orange, etc., in which the coloured rascular system will stand out as a fine network, are especially adapted for such an experiment.

In water-plants and succulents, in which little or no transpiration takes place, the xylem is correspondingly feebly developed. In land plants, on the other hand, and especially in trees with abundant foliage, the wood attains a much greater development. All the wood, however, of a larger stem does not take part in the task of waterconduction, but only the younger, outer rings. Where there is a distinction between heart- and sap-wood, under no conditions does the heart-wood take part in the conduction of the water, which is transferred exclusively by the younger rings of the sap-wood.

The character of the forces which cause the ascent of the transpiration currents is still unexplained. Transpiration itself only makes a place for the inflowing water ; it does not furnish the force which is necessary to rapidly convey a large volume of water for a considerable distance through the wood. Every operation by which work is accomplished implies a corresponding expenditure of force; and the force which is capable of raising great masses of water to the tops of a tall Poplar or of a Eucalyptus 150 m . high, must be considerable. But, as yet, all efforts to determine the nature of this force have been fruitless, and all previous suppositions have been shown to be untenable.

It has been already explained that the root-presstiee cannot exert such a force during transpiration (p. 18t).

Osmotic Forces act too slowly to be of any value, and, moreover, there is no fixed distribution of osmotic substances that would account for such a current.

The transpiation current cannot be due to capillabity. In the first place, continuous capillaries are entirely wanting in some plants (the Conifers, for example), and in the stems of others they are only present for comparatirely short distances. Secondly, the concare menisci in the elements of the wood are not in relation with any level or convex surface of water, in which case alone they could have effect. Thirdly, the height to which liquids can rise by capillary attraction, and it would be less in the ressels and tracheids than in a glass tube, does not approach the beight of an ordinary tree; and, finally, the rate of ascent induced by capillarity decreases so greatly with the increasing height of the fluid, that so copious a flow of water as occurs in plants would be impossible.

Atmospheric presscre has, also, been shown not to be the cause of the transpiration current. It is true that the ressels and tracheids of rigorously transpiring plants contain rarefied air between the short columns of water. This is evident from the way in which stems cut under mercury become penetrated by it. But
as the water-courses in plants are all completely shut off from the outer atmosphere, the external atmospheric pressure could have no effect. The rarefied air within the plants, moreover, shows no such regularity in its distribution that it could possibly give rise to so continuous a flow of water. Further, as the atmospheric pressure can only sustain the weight of a column of water 10 m . high, while the sap of a Begonia ascends $60-100 \mathrm{~m}$., the inadequacy of the atmospheric pressure to give rise to such a movement must be admitted.

The supposition that the water ascends in the form of rapour through the cavities of the wood, and is afterwards condensed in the leaves, is untenable, as is at once obvious from a consideration of the anatomical structure of the wood, the interruption of its cavities by short columns of water, and the temperature of the plants themselves. And, moreover, the special task of the transpiration current, to transfer the nutrient salts, could not be accomplished if such a supposition were true.

It has also been suggested that all of these processes might be aided by the co-operation of the hiving cells which are so abundant throughout the wood, and which have command of active osmotic forces, to the service of which they could unite a regulative irritability. Later investigations, however, have shown that poisonous solutions, which would at once kill all living protoplasm, are regularly transported, in great quantities, to the summits of the loftiest Oaks and Firs. Thus the supposition that the living elements in any way co-operate in the ascent of the transpiration current is absolutely precluded.

The view most generally accepted at the present time, that the transpiration Current ascends in the cavities of the wood through the vessels and tracheids, seems to be supported by observation as well as by the structural features of the wood, but leaves the question as to the cause of the movement still unanswered.

Sachs, in his THEORY OF IMBIBITION, sought to solve the problem by supposing that the water ascended in the substace of the lignified walls, and that the upward movement was due to the force of molecular attraction, and to the disturbance of the equilibrium existing between the water and the substance of the cell walls.

In more recent attempts to account for the ascent of the sap, the direct transfer to the root cells of the force of suction arising from the transpiring green leaves, has been regarded as resulting from the internal cohesion of the water itself. On such a supposition, however, no evidence is furnished that the suction would, in itself, be sufficient to induce a movement like that of the transpiration current.

The Giving-off of Water.-The requisite amount and essential concentration of the nutrient water supplied by the transpiration current are maintained only by the constant discharge of the accumulating water. This may occur in two ways, either more profusely by the evaporation of the water through the cell walls in the form of vapour-that is, by transpiration-or less copiously and also less frequently by the actual exudation of drops of water.
I. Transpiration.-In their outer covering of cork, cuticle, and wax, plants possess a protection from a too rapid loss of water. A Pumpkin, with its thick cuticle and outer coating of wax, even after it
has been separated from its parent plant for months, suffers no great loss of water. A potato is similarly protected by a thin layer of cork from loss of water through evaporation. The green organs of plants, on the other hand, as they are active in the processes of nutrition, and must be able to get rid of their surplus water in order to secure the proper concentration of their nutrient salts, make little use of such protective coverings. On the contrary, they are provided with special contrivances for promoting evaporation. The cell walls of all living organs are saturated with water, and, when the cuticle of the epidermis is not too strongly developed, water is constantly evaporated, even from uninjured cells, in amounts varying with the area of the exposed surfaces. From this point of view, it will be seen that the flat expansion of foliage leaves renders them admirably ADAPTED FOR THE WORK OF TRANSPIRATION. Evaporation is also promoted by the numerous stonata (Air-Pores) which penetrate the epidermis,and which give the air, saturated with watery vapour, an opportunity to escape from the intercellular spaces. Although the stomata are so small that neither dust nor water can pass through them into the plant, they are usually present in such enormous numbers (p. 94) that their united action compensates for their minuteness. When it is taken into consideration that a medium-sized cabbage leaf (Brassica oleracea) is provided with about eleven million, and a Sunflower leaf with about thirteen million air-pores, it is possible to estimate how greatly evaporation must be promoted by these fine sieve-like perforations of the epidermis.

The stomata also afford plants a means of regulating evaporatION. The pores, which are the mouths of intercellular spaces, are surrounded by gUARD-CELLS. As the term guard-cell suggests, these cells have the power of closing the pore. The closing and opening of the stomata are accomplished through a change in the tcrgidity in the guard-cells. In consequence of their peculiar wall thickenings, elasticity, and lateral attachment, a change of turgidity affects the size and shape of the guard-cells in such a way that, by diminished turgidity, they become flatter and close the air-passage, while an increase of turgidity has the contrary effect and opens them (Figs. 176,177).

In many plants the so-called accessory cells (p. 94) participate in various ways and degrees in these processes, depending upon the special structure of the whole apparatus. The opening and closing of the stomata may be effected by either external or internal stimuli ; but such stimuli affect different plants in a different manner. Generally speaking, the stomata begin to close on the diminution of the water-supply; they open, on the other hand, when active transpiration is adrantageous (in light, in moist air, etc.). The quantity and quality of the substances held in solution in the nutrient water react in a remarkable manner upon the stomata. The size of their opening is decreased, and the quantity of water evaporated is therefore lessened when more than the usual amount of
nutrient salts is present in the transpiration current ; as in that case if, through contimued evaporation, the mutrient water should become too concentrated, it might act disastrously upon the plant. Alkalies usually tend to increase turgidity, while acids diminish it.

It has already been pointed out, in describing the morphology of

Fig. 176.-Stoma of Hellelorus sp. in transverse section. The darker lines show the shape assumed by the guard-cells when the stoma is open, the lighter lines when the stoma is closed. (After schwendener.) The cavities of the guard-cells with the stoma closed are shaded, and are distinctly smaller than when the stoma is open.
the stomata, that they are chiefly to be found on the surfaces of the leaves. The leaves are accordingly to be considered as special ORGANS OF TRANSPIRATION (and assimila-

Fig. 17i.-Stoma of a perianthleaf of Galtonice centicens. s, Guard-cell with diminished turgidity, having the wall on the side towards the opening straight ; s^{\prime}, turgescent guardcell with curved lateral wall, half opening the passage i. (After Leitgeb.) tion, p. 196). This is also evident from the manner in which the vascular bundles branch after entering the leaves. As a large water-main divides into a network of smaller pipes where the consumption of the water takes place, so a leaf-trace bundle, after its long and uninterrupted course through the stem, suddenly branches as soon as it enters the leaf-blade. The adjoining illustration (Fig. 178), showing the nervature or distribution of the vascular bundles in a Crataegus leaf, will convey some idea of the extensive branching which the bundles of a leaf undergo, especially when it is taken into consideration that only the macroscopic and none of the finer microscopic branchings are represented in the figure. By means of this conducting system, a copious supply of nutrient water can be delivered directly from the roots to every square millimetre of the leaf. There is, however, a special reason why the leaves are so abundantly supplied. They are the actual laboratories of plants, in which, out of the carbonic acid of the atmosphere and the water, and nutrient salts of
the soil, the organic building material of the plant-body is produced. For similar reasons, it is in the leaves that the broad expansions of tissue for the special promotion of transpiration are found. The amount of water actually evaporated from the leaf surfaces in the performance of their vital functions is almost incredible. For instance, a strong Sunflower plant, of about the height of a man, evaporates in a warm day over a litre of water. It has been estimated that an acre of cabbage plants will give off two million litres of water in four months, and an acre of hops three to four millions. The quantity of water daily required to maintain the water-supply of a single large tree, amounts to many litres. The water evaporated in the five months from June to November from an Oak standing perfectly free and apart, and having about 700,000 leaves, has been estimated at 111,225 kilo-

Fig. 178.-Course of the vascular bundles (venation) in a leaf of Crataegus. (From a photograph; natural size.) grams. According to Dietrich, for every gramme of dry, solid matter produced, there is, on the average, $250-400$ grams of water evaporated.

Expermental Demonstration of Thansphation.-The evaporation from plants, although imperceptible to direct observation, may be easily demonstrated, and its amount determined by the help of a few simple appliances. One method of doing this is to weigh a plant before and after a period of vigorous evaporation, and thus determine the amount of water actually lost. Or, if the water evaporated by a plant placed under an air-tight bell-jar be absorbed by calcium chloride or concentrated sulphuric acid, it will only be necessary to determine the increase in weight of the absorbing substance to estimate the amount of water given off by evaporation. The amount of water taken up by a plant may also be shown by so arranging the experiment that the water passes in through a narrow tube, as then even a small consumption of water will be quickly indicated by the rapid lowering of the water-level, which will be the more rapid the smaller the bore of the tube.

The important part taken by the stomata in the process of transpiration may be easily shown, according to Stahl, by means of the cobalt reaction, or the change in colour of dark-blue dry cobalt chloride to light rose upon absorption of water. In making this experiment a leaf placed between strips of paper which have been previously saturated with this cobalt salt and then thoronghly dried, is laid between glass plates. The paper on the side of the leaf most abundantly supplied with stomata will then first change its colour,

Fig. 179.-Suction of a transpiring shoot. The leafy shoot is fitted so that it is airtiglit in a glass tube filled with water and with the lower end immersed in a vessel of mercury. The mercury is drawn up the tube by the suction exerted by the transpiring shoot. (From Detarer's Physiol. Prakt.) and that too the more rapidly the more widely open are the stomata. The cobalt reaction can thus also be utilised to determine any variation in the size of the openings of the stomata.

It is erident from these and similar experiments that more water is evaporated in a given time from some plants than from others. These variations are due to differences in the area of the eraporating surfaces and to structural peculiarities (the number and size of the stomata, presence of a cuticle, cork, or hairy corering, etc.). But even in the same shoot transpiration is not always uniform. This is attributable to the fact that, both from internal and external causes, not only the size of the openings of the stomata raries, but also that transpiration, just as evaporation from a surface of water, is dependent upon external conditions. Heat, as well as the dryness and motion of the air, increases transpiration for purely physical reasons; while light, for physiological reasons, also promotes it.

From both physical and physiological causes, transpiration is much more rigorous during the day than night. Plants like Impatiens parviflora, which droop on warm days, become fresh again at the first approach of night.

Suction in Transpiring Shoots.-A shoot, the cut end of which is placed in water, shows by remaining fresh that it must be able to draw up water to its extreme tips. The force of suction exerted by such a transpiring foliage shoot may be demonstrated, by fitting the cut end in a long glass tube filled with water in such a manner that it shall be air-tight. Thus arranged, the shoot will be able to sustain and raise a column of water 2 metres high. If the lower end of the tube be inserted in mercury, as shown in the adjoining figure (Fig. 179), it will be found that even the heary mercury will be lifted by the transpiring shoot to a consider-
able height. Yigorous coniferous shoots absorb water through the cut end with a force of suction equal to one atmosphere, and are thus able to raise the mercury to a height equal to the barometric pressure (760 mm .). The complete exclusion of the external atmosphere is absolutely requisite for the existence of such a suction-force, a condition actually fulfilled in the water-courses of plants.
II. Extdation of Water.-The discharge of water in a liquid state by direct exudation is not of so frequent occurrence as its loss by evaporation in the form of vapour. Early in the morning, after a damp night, drops of water may often be found on the young leaves of Indian Corn, and also on the leaves of Alchemilla and the Garden Nesturtium. These drops gradually increase in size until they finally fall off and are again replaced by smaller drops. These are not dew-drops, although they are often mistaken for them ; on the contrary, these drops of water exude from the leaves themselves. They are discharged near the apex of the leaves of the Indian Corn, but in the case of Alchemilla from every leaf-tooth, and of the Sasturtium from the ends of the seven main nerves (Fig. 180). The Fig. 1s0.-Exudation of drops of water drops disappear as the sun becomes
 higher and the air warmer and relatively drier, but can be produced artificially if a glass bell-jar be placed over the plant, or the evaporation in any way diminished. Whenever plants become overcharged with water through the activity of the roots, it is discharged in drops. These are pressed out of special water-pores (p. 95), and sometimes even from the stomata and clefts in the epidermis; while in Daturc they have even been observed to exude directly through the walls of the epidermis. It is possible to cause similar exudations of water by forcibly injecting water into a cut shoot.

Such exudations of water are particularly apparent on many Aroids, and drops of water may often be seen to fall within short intervals, sometimes erery second, from the tips of the large leaves. From the leaves of a species of Colocasia the exuded drops of water are even discharged a short distance. In Spathodea, a tropical member of the Bignoniaccae, the space enclosed by the calyx, in which the young floral organs are developed, is filled with water. Again, in unicellular plants, especially some of the Fungi (Mucor, Pilobolus, Phycomyces), the copious exudation of water is very evident. The water in this case is pressed directly through the cell walls.

The organs for the discharge of water, which Haberlandt has collectively termed hydathodes (pp. 91, 99, 114), in some instances, like
animal sweat-glands, actively press out the water; or, on the other hand, they may simply allow it to filter through them when the internal pressure has attained a certain strength.

It would almost seem that, in case of inactive transpiration, such exudations of liquid water supplied the place of evaporation, were it not that the out-pressed liquid is not pure water, as in transpiration, but always contains salts and, sometimes, also organic substances in solution. In fact, the quantity of salts in water thus exuded is often so abundant that after evaporation a slight incrustation is formed on the leaves (the LIME-SCALES on the leaves of the Saxifrages). In some instances, also, the substances in solution in the water seem to be exuded with a purpose, as in the case of the SECRETIONS OF THE NECTARIES and of the DIGESTIVE GLANDS OF INSECTIVOROUS PLANTS (p. 215), and of the discharges of the viscid stigmatic fluid. The superfluous water is discharged by a few plants, the Pumpkin, for example, into the cavities of their stems and leaf-stalks, and is again absorbed from these reservoirs when needed.

Special Contrivances for regulating the Water-supply.-Almost all the higher plants possess in the power to close their stomata a special means of checking transpiration during a temporary insufficiency of the water-supply. In districts subject to droughts of weeks or months' duration, only such plants can flourish as are able either to withstand a complete drying up without injury (p. 179), or to exist for a long time on a scanty supply of water. This last case is only rendered possible by the extreme reduction of transpiration, or by the formation of organs in which, in times of a superfluity of water, it may be retained for later use.

Such protection against excessive transpiration is afforded by the formation of cork or cuticular coverings, by the reduction in the number and size of the stomata, and also by their occurrence in cavities or depressions. The rolling up of the leaves, as well as the development of thick growths of hair and the assumption of a vertical position to aroid the full rays of the sun, are also measures frequently adopted to lessen transpiration. The most efficient protection, howerer, from too great a loss of water by transpiration is undoubtedly obtained by the reduction of the transpiring surfaces, either through a diminution in the size of the leaves or through their complete disappearance.

The upright position of the leaves, or the substitution of expanded, perpendicularly directed leaf-stalks for the leaves (Phillodia), particularly characterises the flora of Australia. A clothing of hair, on the other hand, protects the leaves of many South African Proteaceae (e.g. Leucadendron argenteum). Some of the Gramineae (Stipa capillata, Festuca alpestris, Sesleria tenuifolia, S'. punctoria, ete.) roll or fold their leaf-blades, in times of drought, by means of special hinge-like devices, into narrow tubes, and so maintain a sufficient supply of water by diminishing the transpiration from their stomata. Reduction of the leaves is illustrated by the desert forms of Genisto and Sarothamnus and by the Cypress-like Conifers. A complete disappearance of the whole leaf surface takes place in most Cacti, in which also the stems become swollen and converted into water-reservoirs (Fig. 25). A similar development of succulent swollen stems frequently occurs in the Euphorbiaccae (Fig. 181), in the Compositac (Kleinia articulata), Stapeleac, and many other plant families found in arid regions. It has been estimated that the amount of water evaporated by a Melon-Cactus is reduced by its succulent development to $\frac{1}{0000}$ of that given
off by an equally heary climbing plant (Aristolochia). Instead of the stem the leaves themselves may become succulent, as in the House-leek and other species of Sempervivum, also in many species of Sedum, Aloe, and Agave. Both stem and leaves are equally succulent in many species of Mesembryanthomum. In other plants, the parenchyma of their stem tubers (epiphytic Orchids) or of their thickened roots (Oxalideae) serve as water-reservoirs. Epiphytic Bromeliaceae catch the rain-water in reservoirs formed by their closely-joined leaves, and then eagerly take it up through the scaly hairs which cover the leaf surfaces, as in species of Tillandsia. Again, many epiphytic Orchids and Aroids collect the rain-water in a swollen sheath developed from the epidermis of the aerial root (velamen radicum, p. 100). In the case of other epiphytic Orchids, Aroids, and Ferns (Asplenium Nidus, for instance), the humus and other material caught in receptacles formed by the leaves or aerial roots act like a sponge in taking up and retaining water, while the

Fig. 181.-Euphorbice globosa. The reduced leaves may be seen on the upper globose shoots. absorptive roots penetrate into these moist, compost-like masses and absorb both water and nutrient substances. Many species of Frullania (a Liverwort common on Beech trees) possess, on the other hand, special water-sacs on the under side of their thallus (Fig. 319). A particularly remarkable contrivance for maintaining a constant supply of water is exhibited by the epiphytic Dischidia Rafflesiana, a number of whose leaves form a deep but small-mouthed urn, into which the roots grow. It would seem at first sight unnecessary that plants like the Mangrove tree, which stand with their roots entirely in water, should require protection against too rapid transpiration ; but, as this tree grows in salt or brackish water, it is necessary to reduce the amount of water absorbed, in order to prevent a too great accumulation of salt in the tissues.

The Absorption of Carbon (Assimilation)

In any attempt to distinguish the relative importance of substances utilised in plant nutrition, carbon undoubtedly ranks first. Every organic substance contains carbon, and there is no other element which could supply or take part in the formation of so many or such a variety of substances, both in living organisms and in the chemical laboratory. Organic chemistry, in short, is merely the chemistry of carbon compounds.

It requires no chemical analysis to realise that plants actually contain carbon, although in an imperceptible form. Every burning splinter of a match shows, by its carbonisation, the presence of this element. An examination of a piece of charcoal in which the finest structure of the wood is still distinguishable, shows how abundant is the carbon and how uniformly distributed. Estimated by weight, the
carbon will be found to make up about half the dry weight (when freed from water) of the plant.

Whence do plants derive this carbon? The "humus" theory, accepted for a long time, assumed that the humus of the soil was the source of all the supply; and that carbon, like all the other nutrient substances, was taken up by the roots. That plants grown in pure sand free from humus, or in a water-culture, increase in dry substance, and consequently in carbon, clearly demonstrates the falsity of this theory. The carbon of plants must therefore be derived from other sources ; and, in fact, the carbon in humus is, on the contrary, due to previous regetable decomposition. The discovery made at the end of last and the beginning of the present century, that the carbon of plants is derived fron the carbonic acid of the athosphere, and is taken up by the action of the green leaves, is associated with the names of the Dutchman Ingenhouss, and the Geneva Professors Sevebier and Theo. de Saussure. This discovery is one of the most important in the progress of the natural sciences. It was by no means easy to prove that the invisible gaseous exchange between a plant and the atmosphere constitutes the chief source of nourishment; and it required the courage of a firm conviction to derive the thousands of pounds of carbon accumulated in the trees of a forest, from the small proportion contained in the atmosphere.

10,000 litres of air contain only 4-5 1. of carbonic acid, which weigh 8-10 grams ; $\frac{8}{11}$ of this weight is oxygen, howerer, and only $\frac{3}{11}$ carbon. Accordingly, 10,000 litres of air contain only 2 grams of carbon. In order, therefore, for a single tree, having a dry weight of 5000 kilos, to acquire its $2,500,000$ grams of carbon, it must deprive 12 million cubic metres of air of their carbonic acid. From the consideration of these figures, it is not strange that the discovery of Inienhouss was unwillingly accepted, and afterwards rejected and forgotten. Liebig was the first in Germany to again call attention to this discovery, which to-day is accepted without question. The immensity of the numbers just cited are not so appalling when one considers that, in spite of the small percentage of carbonic acid in the atmosphere, the actual supply of this gas is estimated at about 3000 billion kilos, in which are held 800 billion kilos of carbon. This amount would be sufficient for the regetation of the entire earth for a long time, even if the air were not continually receiving new supplies of carbonic acid through the respiration and decomposition of organisms, through the combustion of wood and coal, and through volcanic activity. An adult will exhale daily about 900 grams $\mathrm{CO}_{2}(245$ grams C$)$. The 1400 million human beings in the world would thus give back to the air 1200 million kilos of CO_{2} (340 million kilos C). The CO_{2} discharged into the air from all the chimneys on the earth is an enormous amount. The Krupp works at Essen, according to Hexsex, send out daily into the atmosphere about $2,400,000$ kilos of carbon. The whole carbon supply of the atmosphere is at the disposal of plants, as the CO_{2} becomes uniformly distributed by constant diffusion.

Not all plants, nor indeed all parts of a plant, are thus able to abstract the carbon from the carbonic acid of the air. Only such organs as are coloured green by chlorophyll are capable of exercising
this function, for the chlorophyll bodies themselves are the laboratories in which this chemical process, so important for the whole living world, is carried on. From these laboratories is derived the whole of the carbon which composes the organic substance of all living things, plants as well as animals. Animals are unable to derive this most essential element of their bodies from inorganic sources. They can only take it up in organic substances, which have been previously formed in plants. Such plants, also, as are without chlorophyll, as, for example, the Fungi and some of the higher parasitic plants, are dependent for their nutrition upon organic substances previously formed by the chlorophyll bodies of other plants.

Within the past ten years it has, indeed, been repeatedly determined that certain nitrifying bacteria have the power of forming a small amount of organic substances from carbonates, carbonic acid, and ammonia. The process by which the organic carbon compound is derived must, however, be altogether different from that of green plants, as the bacteria contain no chlorophyll, and their nutritive activity is in no way dependent upon the light.

Roots and other organs unprovided with chloroplyll, and also the colourless protoplasm in the green cells themselves, are similarly dependent upon the activity of the chloroplasts. In the red-leaved varieties of green plants, such as the Purple Beech and Red Cabbage, the chlorophyll is developed in the same manner as in the green parent species, but it is hidden from view by a red colouring matter in the epidermis : in the case of the brown and red Algae, on the other hand, the chlorophyll pigment is concealed by a colouring matter, which is contained in the chromatophores along with the chlorophyll.

The derivation of carbon from carbonic acid and its conversion into organic substances is termed Assimilation. In its broadest sense, and especially in the animal kingdom, the word assimilation is used for all nutritive processes by which the nourishment is built up into the substance of an organism. But in Botany the meaning of the term has gradually been restricted, and now by assimilation the carbon assimilation of the chlorophyll granules alone is understood. Moreover, all the other so-called processes of assimilation are dependent upon carbon assimilation.

The chlorophyll bodies, however, cannot independently produce organic substances from carbonic acid and water, but require the co-operation of light. The chlorophyll apparatus is unable to assimilate without light, although all the other requirements are present for active assimilation. A definite amount of heat is also naturally necessary for chlorophyll activity, just as for any other vital process.

The vibrations of the ether perceptible as light, supply the energy for the decomposition of carbonic acid and the production of carbon, just as other vibrations of ether, in the form of heat, supply the energy requisite for the working of a steam-engine. Not all light vibrations
are equally capable of arousing the assimilatory activity. Just as the rays of different refrangibility differ in their action, both upon the eye and the photographic plate, so they have a different effect upon assimilation. It would be natural to suppose that the chemically active rays, the blue and violet, which decompose silver salts and other chemical compounds, would also be the most effective in promoting the assimilatory activity of the chlorophyll bodies. Exactly the contrary, however, has been shown to be the case. The highly refractive chemical rays have little or no effect on assimilation ; the red, orange, and yellow rays, that is, the so-called illuminating rays of the spectrum, are on the contrary the most active.

In the blue-green fresh-water Algae, and also in the brown and red Seaweeds, in which the chromatophores contain true chlorophyll in addition to their peculiar special colouring matter, the maximum assimilation takes place, according to Exgelmass, in another part of the spectrum than it does in the case of green plants. The assimilation in these Algae seems indeed to be carried on in the part of the spectrum, the colour of which is complementary to their own. All the rays of the mixed white light are usually at the disposal of plants growing freely in the open air ; only the Seaweeds found in deep water (at the most but 200 m . deep) grow in a prevailing blue light, while the deeper-lying tissues of land plants live in red light, as this penetrates further into the parenchymatous tissues.

In studying the effect of different kinds of light upon assimilation, it is customary either to use the separate colours of the solar spectrum, or to imitate them by means of coloured glass or coloured solutions. For such experiments it will be found convenient to make use of double-walled bell-jars filled with a solution of bichromate of potassium or of ammoniacal copper oxides. Plants grown muder jars filled with the first solution, which allows only the red, orange, and yellow rays to pass through, assimilate almost as actively (90 per cent) as in white light (100 per cent). Under the jars containing the second solution, which readily permits the passage of the photo-chemical rays, assimilation is extremely low ($5-\overline{7}$ per cent).

But little is known with regard to the processes carried on in green cells during assimilation; and although it is evident that only the green chlorophyll bodies are capable of assimilating, it is still by no means clear what part the green chlorophyll pigment performs. The pigment which may be extracted firm the protoplasm of the chlorophyll bodies makes up only a small part of their substance, and gives no reaction from which its operations may be inferred. The light absorbed by the chlorophyll pigment also stands in no recognisable relation to the requirements of assimilation ; for the blue and violet rays, which are inoperative in assimilation, are most strongly absorbed (see p. 59). It has not as yet been determined what part the mineral constituents of the transpiration current take in the process. On the other hand, the protoplasmic body of the chloroplasts cannot assimilate when the green pigment is not present ; that is, when from any canse the corpuscles are 1 revented from turning green. For, as the existence of the green pigment is dependent upon the presence of iron, upon a proper temperature, and, with few exceptions (Ferns, Conifers), upon the action of light, its formation in the chlorophyll bodies may be prevented by depriving them of the requisites for its development. The chromatophores will then remain yellow (in leaves) or white (in stems), and no longer assimilate.

As a result of the chemical processes involved in the decomposing activity of assimilation, only the special end-product and one byproduct are at present known. SACHS discovered that the organic compound, first to be detected as the special ultimate products of assimilation in the higher plants, is a carbohydrate, which may either remain in solution, or in the form of starch grains may become microscopically visible at the points of its formation. In the case of the lower plants, in the Algae, for example, the first visible product is often not starch but a fatty oil.

A short time after assimilation begins, in sunshine, sometimes within five minutes, minute starch grains appear either in the centre or on the margins of the chloroplasts. These grains gradually enlarge until, finally, they may greatly exceed the original size of the chloroplasts. Should, however, the assimilation cease, which it regularly does at night, then the starch grains are dissolved and as soluble carbohydrates (glucose, etc.) pass out of the cell. In some plants (many Monocotyledons) there is no starch formed in the chloroplasts, but the products of assimilation pass in a dissolved state directly into the cell sap. In exceptional cases, however, starch is also formed where there is a surplus of glucose, sugar, and other substances, as, for example, in the guard-cells of Monocotyledons. This seems then to be a reserve substance rather than a special product of assimilation. In Tropacolum, for instance, the formation of canesugar precedes the production of starch in the chloroplasts.

The formation of starch may be shown to be a direct result of assimilation by means of the "iodine reaction," and without the aid of a microscope. If a leaf cut from a plant previously kept in the dark until the starch already formed in the leaves has become exhausted, be treated with a solution of iodine after being first discoloured in hot alcohol, it will in a short time assume a yellowish brown colour, while a leaf vigorously assimilating in the light will, with the same treatment, take a blue-black colour. In Fig. 182 the result of the iodine reaction is shown on a leaf, part of which had been covered with a strip of dark paper or tinfoil. The cells darkened by the overlying paper or foil formed no starch, while those exposed to the light are shown by the iodine reaction to be full of

Fig. 182.-A leaf showing the iodine reaction. Part of an assimilating leaf was covered with a strip of tinfoil. Afterwards, when treated with a solution of iodine, the part of the leaf darkened by the overlying tinfoil, having formed no starch, gave no colour reaction. ($\frac{3}{4}$ nat. size.) it. A green leaf kept in air devoid of carbonic acid, although fully exposed to the light, will similarly form no starch.

Sensitive leares, like those of many Leguminosae, often suffer more under such conditions than when the possibility of assimilation is precluded by their being deprived of light.

The by-product arising from the assimilatory process is PURE oxygen. - The volume of oxygen thus set free is equal to the volume of carbonic acid taken in. If plants assimilate in a known quantity of air containing carbonic acid gas, its volume will therefore remain the same. The chemical process of assimilation resulting in the decomposition of the carbonic acid may be thus expressed :

$$
\begin{aligned}
6 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}= & \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}+6 \mathrm{O}_{2} \\
& \text { (Starch) }
\end{aligned}
$$

From this chemical equation it is evident that water is Requisite

Fig. 183.-Evolution of oxygen from assimilating plants. In the glass cylinder C, filled with water, are placed stems of Elodea cunadensis; the freshly-cut ends of the stems are introduced into the test-tube R, which is also full of water. The gas-bubbles B, rising from the cut surfaces, collect at S. H, stand to support the test-tube.
(at a temperature of $14^{\circ} \mathrm{C} .100$ FOR THE PROCESS OF ASSIMILAtion. The actual composition of starch corresponds rather to a multiple of the above symbol, or $\mathrm{n}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)$, so that the whole equation should be multiplied by n.

The oxygen given off by green plants, although not perceptible when they are growing in the open air, becomes apparent in the case of water-plants. It was, indeed, through the evolution of bubbles of oxygen from waterplants that Ingenhouss first had his attention called to the assimilatory activity of leaves. To see this process, it is only necessary to place a cut stem of a waterplant in a vessel of water exposed to the sunshine, when a continuous series of small bubbles of gas will at once be seen to escape from the intercellular passages intersected by the cut. The gas thus evolved may be collected with little trouble (Fig. 183), and will be found to be chiefly oxygen, but containing also traces of nitrogen and carbonic acid taken up from the water. As water absorbs much less oxygen than carbonic acid vols. of water will dissolve only 3
vols. of oxygen, but 100 vols. of carbonic acid), the escaping bubbles of oxygen become visible; whereas the flow of the carbonic acid dissolved in the water to the assimilating plant is imperceptible.

Artificially conducting carbonic acid through the water increases, to a certain degree, the evolution of oxygen, and thus the assimilatory activity. Similarly an artificial increase of carbonic acid in the air is followed by increased assimilation. In sunshine assimilation attains its maximum in air containing about 8 per cent of carbonic acid; with a higher percentage it begins to decrease. If the amount of carbonic acid gas be increased two hundred times (from 0.04 per cent to 8 per cent in the atmosphere), the formation of starch is only increased $4-5$ times.

Carbon monoxide (CO) cannot be utilised by green plants; it cannot take the place of the carbon dioxide, and is poisonous to plants.

Under the same external conditions, the assimilatory activity of different plants nay vary from internal causes. In the same time and with an equal leaf surface, one plant will form more, and another less carbohydrates. In this sense, it is customary to speak of a "specific energy of assimilation," which is partly due to the different number and size of the chloroplasts, as well as to a difference in the air-spaces and consequent aeration of the leaves, but, without doubt, has also its cause in their greater or less energy.

As examples of medium assimilatory activity, the leaves of the Sunflower and Pumpkin may be cited. Under conditions favourable for assimilation, the leaves of these plants form in a summer day of fifteen hours about 25 grams starch per square metre. The carbon for the formation of the starch was supplied in this case from 50 cubic metres of air. A room of 120 cubic metres would accordingly contain enough carbonic acid for 60 grams of starch. From these figures a faint conception may be gained of the enormous activity of the assimilatory processes, which are necessary to furnish the yearly grain supply of a large country.

The Utilisation of the Products of Assimilation

The Formation of Albuminous Substances. -The chlorophyll bodies supply plants with organic nourishment in the form of a carbohydrate. Although the greater part of the organic plant substance consists only of carbohydrates, as, for example, the whole framework of cell walls, yet the living, and consequently the most important component of the plant-body, the protoplasm, is composed of albuminous substances. These albuminous substances have a composition altogether different from that of the carbohydrates. In addition to carbon, oxygen, and hydrogen, they also contain nitrogen, sulphur, and frequently phosphorus, the nitrogen indeed in considerable proportion (about 15 per cent). There takes place accordingly within plants a new formation of albuinnous substances from the carbohydrates. There are certain indications that this formation is, in part, accomplished within the green cells of the leaves,
but it must also be carried on in cells devoid of chlorophyll, as, for instance, in those of the Fungi.

As little is known concerning the process of the synthesis of the albuminous substances of plants as concerning the formation of the carbohydrates from the carbonic acid and water. It has generally been supposed that they are formed from the carbohydrates and mineral substances already mentioned, as these are known to be transported to the region where the formation of protoplasm occurs, and are there consumed. The carbohydrates utilised in this process seem to be principally Glucose (both grape-sugar, dextrose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O}$, and fruit-sugar, lævulose, $\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and maltose $\left(\mathrm{C}_{6} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O}\right)$; for, whatever may be the form of the original carbohydrate, whether starch, inulin, cane-sugar, reserve-cellulose, or glycogen, glucose or maltose is always the first product formed from it.

The mineral nitratcs, sulphates, and phosphates take part in the process, chiefly in the form of potassium and magnesium salts. Nitrogen and sulphur are liberated from the nitrates and sulphates, with decomposition of the acid radicals ; while of the phosphates, the acid group is utilised in the formation of nuclein in the cell nucleus. Calcium salts, although they take no direct part in these processes, seem, nevertheless, to be indispensable. Their importance, indeed absolute necessity, for most plants, is due to their functioning as a medium for conveying the mineral acids, and for neutralising, or precipitating, injurious by-products which are produced in the formation of albumen. The most frequent of these by-products is oxalic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}\right)$, which, either as a free acid or as a soluble potassium salt, acts as a poison upon most plants. The oxalate of potassium, which is first formed from the potassium nitrate, reacts with the calcium salts present, with the formation of calcium oxalate, which is only slightly soluble and, as it accumulates, crystallises out and thus becomes harmless. Wherever the formation of albumen or nuclein takes place, oxalic acid is formed, the calcium salts of which may usually be found in adjacent cells often in enormous quantities, in the form of aggregates of crystals, raphides, or crystal sand.

The process of the formation of oxalic acid, or its potassium salt, might be conceived of as taking place according to the following theoretical equation :

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+2 \mathrm{NO}_{3} \mathrm{~K}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}+30 \\
& \text { Glucose Potassium nitrate Asparagin Potassium oxalate Water Oxygen }
\end{aligned}
$$

Starting with glucose and potassium nitrate, there would be formed in addition to potassium oxalate, water, and oxygen (which for the most part is consumed in the respiration, but also in many cases, as free oxygen, may be detected or estimated), an amido compound, Asparagis, $\mathrm{C}_{2} \mathrm{H}_{3}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CONH}_{2}\right)(\mathrm{COOH})$. Asparagin is a body which, like oxalic acid, is widely distributed throughout the regetable kingdom. Particularly large accumulations of this substance (first discovered in Asparagus) are found in etiolated seedlings of many Papilionaccae (1 litre of sap from Bean seedlings contains about 12-15 grams), always, however, under circumstances which suggest the possibility that Asparagin participates in the synthesis of the albuminous substances. In all probability its formation precedes that of the ultimate proteid substances. Asparagin is soluble in water and watery sap, and so is in a position to permeate the cell wall, which the colloid albuminous substances are not able to do in the same degree.

Transfer of the Products of Assimilation

When proteid substances are to be conveyed through the tissues, as, for example, from seeds rich in proteids into the seedlings, they
first become dissolved and form soluble amides. They are in this form transferred to places where in combination with carbohydrates and mineral acids they are used anew in the formation of albumen.

Besides asparagin, there are still other but less widely distributed amides found in plants, as leucin, typosin (which, like asparagin, will crystallise out on treatment with alcohol as glistening sphærites), glutamin (in the Pumpkin), betain (in the Turnip), also allastors, etc.

In addition to the transfer of nitrogenous constructive material through the parenchymatous tissues, the long-distance transport of the ready-formed albuminous substances seems rather to take place through the open sieve-tubes of the bast. It appears to be in the sieve-tubes, which contain, during life, albuminous substances, starch grains, and drops of oil, that the conduction of organic substances is effected from the leaves to the roots. In fact, it was long ago concluded that the increased thickening of the cortical layers observed just above wounds made by ringing trees, was due to the interruption and detention of a flow of nourishing sap through the bast towards the roots.

The transfer of the carbohydrates through unbroken cell walls to the various points of consumption can only be accomplished when they are in solution. In case they are not already dissolved in the cell sap, in the form of glucose, maltose, sugar, or inulin, they must first be converted into soluble substances. This is of the highest importance for the transfer and utilisation of starch and reserve cellulose. They are converted by the influence of diastase into glucose or maltose. Diastase belongs to those peculiarly acting substances termed UNorganised ferments or enzymes, which possess the remarkable power of decomposing or transforming certain organic compounds without themselves becoming changed or consumed in the process. By virtue of this property they are enabled to transform unlimited quantities of certain substances. The best known of the unorganised ferments are diastase, which converts starch into maltose, intertin, emulsin, myrosin, as well as the peptonising ferments in insectivorous plants and in the latex of rarious plants.

These ferments are proteinaceous substances, which in many of their chemical reactions resemble living protoplasm, but with which they must not be confused. Their power of exciting fermentation is not due to any vital property; they are simply chemical substances, and like them, when in solution, may be precipitated, etc., without losing any of their active principles. Diastase, for example, may be extracted from germinating barley seeds by water or glycerine. After it has been precipitated by means of alcohol and dried to a powder, it may again be dissolved in water, and will still be in a condition to transform enormous quantities of starch, especially if in the form of paste, into sugar.

Other substances similar to diastase, and also capable of dissolving starch, are widely distributed throughout the vegetable kingdom, and are classed together as diastatic ferments. They are especially abundant in starchy germinating seeds,
as well as in tubers and bulbs, in leaves and young shoots. They have also been found, strange to say, in organs where there was no starch for them to act upon. The diastatic transformation and dissolution of the starch is accomplished in a peculiar manner. The starch grain is not dissolved as a homogeneous crystal, uniformly from the surface inwards, but becomes corroded by narrow canals, until it is finally completely disorganised and falls into small pieces (Fig. 184).

The transformation of the starch formed in the chlorophyll corpuscles during the day, takes place, as a rule, at night; for in the daytime the

Fig. 184.-Different stages of corrosion shown by the starch grains of germinating Barley. action of the diastatic ferment is weaker, and is also counterbalanced by the formation of new starch. The glucose which is thus produced in the leaves passes out of the mesophyll cells into the elongated cells of the vascular bundle-sheaths. The glucose and maltose are transferred in these CONDUCTING SHEATHS through the leaf-stalks into the stem. Thence they are conveyed to the young shoots and buds or carried down to the roots; in short, they are finally transported to places where they are required for the nutrition of the plant. The glucose and maltose often become converted into other carbohydrates during their passage from one organ to another, particularly into starch. Starch thus formed from other carbohydrates, and not directly by assimilation, is often referred to as TRANSITORY STARCH, and is usually distinguishable by the smaller size of the grains. At the points of consumption these carbohydrates are again converted into glucose, in which condition alone they seem adapted for direct nutrition.

The Storage of Reserve Material

All the products of assimilation are not at once consumed. In spite of this, however, assimilation is continued, and the surplus products beyond the requirements of immediate consumption are accumulated as Reserve material for future use. Large amounts of such reserve material are accumulated by the American Agave during many periods of vegetation, to be finally expended in nourishing the immense inflorescence with its hundreds of flowers and fruits. In our herbs, bushes, and trees, as the yearly growth and consequent consumption cease at the end of each vegetative period, and as the assimilating organs have by that time attained their greatest expansion and efficiency, the surplus of reserve material is the greatest at the close of
the season, and is stored in special Reservoirs of reserve material. All growth of the succeeding year, either of the plants themselves or of their embryonic offspring, is dependent upon the existence somewhere of a supply of reserve material, which may be utilised by the plant until the organs of assimilation are developed. Reserve materials will accordingly be found stored in different forms in the cells of the embryo, or in the surrounding tissues of the seed, in underground rhizomes, tubers, bulbs, and roots, or in the cortical layers, the medullary rays, the wood parenchyma (especially the fibres), and the medulla of persistent stems. Conveyed to these depositories of reserve material, the glucose and maltose are again converted into other carbohydrates, usually starch, which is formed from them by the activity of the starch-producing leucoplasts. In other cases the reserve carbohydrates take the form of cane-sugar, inulin, or reserve cellulose (e.g. vegetable ivory in the fruit of Phytelephas). Still more remarkable is the transformation of carbohydrates into fats and oils, occurring in the ripe and ripening seeds of many plants, in fruits (Olive), and also in strictly vegetative tissues. In winter the starch in the wood of many trees also becomes converted into oil, but in the succeeding spring it is again changed to starch. It is finally, at the opening of the buds, converted into glucose or maltose, and conveyed by the transpiration current to the young shoots. Other receptacles of reserve material contain scarcely any carbohydrate, but on the other hand there is much more albuminous matter in the form of thick protoplasm, aleurone grains, protein crystals, and fats (seeds of Ricinus). That in the germination of young plants similar tissues with protoplasm, nucleus, cell wall, etc., are formed from these different materials, seems to indicate that all these constructive materials are of almost equal value to the plants. This is due to the fact that plants can, apparently without difficulty, transform the carbohydrates, fats, or albuminous substances one into the other, a result not yet accomplished by chemical processes.

Other Products of Metabolism

The chemical activity of the vegetable cell is by no means exhausted in the production of the substances mentioned : the increasing number of chemical compounds found to be derived from the first product of assimilation is a matter of continual surprise. Of most of them neither the manner of their formation nor their full importance in metabolism is understood. The conditions are not even fully known which are necessary for the formation and functional activity of the organic ACIDS (malic, tartaric, citric, etc., which may in part be considered as products of imperfect respiration) and tannins, although both are so frequent in plants. The function of the glucosides is also imperfectly understood. These are nitrogenous and non-nitrogenous compounds, and are not widely distributed. They are soluble in water, and by the action of ferments are broken up into glucose and other derivative products. In the Amygdalaceae they appear as amygdalin, in the Solanaccae as the poisonous solanis, in the Cruciferae (mustard seeds) as myronic Acid, in the bark of the Horse-chestnut as the extremely fluorescent esculin, in species of Digitalis as the poisonous digitalin. Coniferin, which is contained
in lignified cell walls, and especially in the cambial sap of the Conifers, is also included in the glucosides. Coniferin has recently acquired an economic value, as from it vanillin, the aromatic principle of vanilla, may be artificially produced. In this process the coniferin is decomposed, through the action of a ferment or acid, into glucose and coniferylalcohol, through the oxidation of which its aldehyde, vanillin, is formed.

It is as yet unknown what part in the metabolic processes of plants is performed by the bitter pienciples, such as the lupulin of Hops, aloin of Aloes, absynthin of Wormwood. There is the same uncertainty with regard to the functions of the alkaloids. Since most alkaloids, strychnin, brucin, veratrin, coniin, muscarin, atropin, quinin, morphin, codein, coffeïn (theïn), theobromin, aconitin, nicotin, pilocarpin, cocaine, etc., are violent poisons, their vegetable bases and repugnant bitter principles furnish a certain protection to plants against destructive animals. This, however, does not preclude the possibility that they, like the poisonous oxalic acids, may at the same time have an important physiological significance.

The colouring matters and ethereal oils, althongh in actual weight present only in small quantities, make themselves particularly noticeable to the senses of sight and smell. They probably represent only by- and end-products of metabolism ; and, with the exception of chlorophyll, take no further part in the vital processes of plants, except in so far as they are beneficial to the general wellbeing by enticing (e.g. flowers, fruits) or repelling animals. Their biological significance is accordingly much better known than their physiological function. Just as the ethereal oils are frequently found in special excretory receptacles, the resins, gum-resins, and gum-mucilages, which are also excretion products, are usually deposited in canals or glandular cavities (p. 88), and are often mixed with ethereal oils. Whether their formation in the particular instances is necessary for the carrying out of the normal processes of metabolism is altogether uncertain. They are, at any rate, useful to plants when wounded, serving as a protection against evaporation and the attacks of parasites.

The significance of the so-called india-rubber (caoutchouc) and gutta-percha (in the latex, p. 73) in the economy of the plant is still less known. In addition to these substances, there also occur in latex, resins, ethereal oils, alkaloids (in opium), starch grains and other carbolydrates, oil-drops and albuminous substances. The presence of these substances in the latex, valuable as constructive material, and occasionally also of active enzymes (peptonising ferments are found in the milky juice of Ficus Carica and Carica Papaya), gave rise to the suggestion that the latex cells and tubes function in the transport of the nutrient matter. It has, however, been found that, even in starved plants, the latex remains unconsumed; and the present knowledge of these often caustic and poisonous saps is limited to. their external utility in the economy of plant life. By their obnoxious properties they defend plants from the attacks of enemies. Also, in the event of plants being wounded, the latex is pressed out either by the surrounding turgescent tissue or by the tension of the elastic walls of its own cells, and forms, as it quickly coagulates in the air, an efficient covering for the wound. In other plants, especially in trees, wound-gum serves the same purpose (p. 81).

Special Processes of Nutrition

Parasites, Saprophytes, Symbionts, and Insectivorous Plants. The acquisition of organic nutritive substances through the activity of
assimilating green cells is the most frequent, and is consequently considered the normal method of plant nutrition. Other modes of nutrition are only possible at the cost of organic substances already produced by the assimilating activity of green cells. The dependent relations existing between the colourless and green cells, and between the leaves and roots of all green plants, have already been pointed out. Just as in the case of the cells devoid of chlorophyll, some plants also forgo all attempts to develop an adequate chlorophyll apparatus, and by so doing lose all ability to provide themselves with nourishment from the inorganic matter about them.

Great numbers of such colourless plants derive their nourishment from the bodies of dead animals and plants. All organic matter at one time or another falls into the power of such plants as are devoid of chlorophyll; it is chiefly due to their decomposing activity in the performance of the nutritive processes that the whole surface of the earth is not covered with a thick deposit of the animal and plant remains of the past thousands of years. These peculiar plants are not satisfied with the possession of the lifeless matter alone; they even seize upon living organisms, both animal and vegetable, in their search for food.

It is chiefly the vast number of Fission-Fungi (Bacteria) and true Fungi which nourish themselves in this way as Parasites (upon living organisms) or as SAPROPHYTES (upon decaying remains of animals and plants). But even some species of the most widely separated families of the higher phanerogamic plants have also adopted this method of obtaining food.

As a result of this modification of their manner of life, the organisation and functions of these higher plants have undergone the most remarkable transformation. From the corresponding changes in their external appearance, it is evident how far-reaching is the influence exercised by the chlorophyll. With the diminution or complete disappearance of the chlorophyll, and consequent adoption of a dependent mode of life, the development of large leaf surfaces, so especially fitted for the work of assimilation, is discontinued. The leaves shrink to insignificant scales, for with the loss of their assimilatory activity the exposure of larger surfaces to the light is no longer essential for nutrition. For the same reason active transpiration becomes unnecessary; the xylem portion of the vascular bundle remains weak, and secondary wood is feebly developed. In contrast to these processes of reduction resulting from a cessation of assimilation, there is the newly-developed power in the case of parasites to penetrate other living organisms and to deprive them of their assimilated products. In saprophytic plants, however, where the question is merely one of absorbing nourishment from organic remains, the external adaptations for taking up nourishment continue more like those for absorbing
the mineral salts from the soil, for it then depends only upon an intimate union with the decaying substances.

Cussuta europaea (Fig. 185) may be cited as an example of a parasitic Phanerogam, a plant belonging to the family of the Convolvulaceae. Although, through the possession of chlorophyll, it seems to some extent to resemble normally assimi-

Fig. 185.-Cuscuta europala. On the right, germinating seedlings. In the middle, a plant of Cuscute parasitic on a Willow twig; b, reduced leaves; $B l$, flower-clusters. On the left, cross-section of the host-plant W, showing haustoria H of the parasite $C u s$, penetrating the cortical parenchyma and in intimate contact with the xylem v and the phloem c of the vascular bundles; s, ruptured cap of sheathing sclerenchyma.
lating plants, in reality the amount of chlorophyll present is small, while the leaves are reduced to mere scales. And as the devices for a parasitic acquisition of nourishment are so easily seen, much more so, for instance, than in parasites which attack their host-plant underground, it will be at once evident that Cuscuta (Dodder) affords an example of a wonderfully well-equipped parasite.

The embryonic Cuscuta plantlet, coiled up in the seeds, pushes up from the ground in the Spring, but even then it makes no use of its cotyledons as a source
of nourishment ; they always remain in an undereloped condition (Fig. 185, at the right). Nor does any underground root system develop from the young rootlet, which however soon dies off. The seedling becomes at once drawn out into a long thin filament, the free end of which mores in broad circles, and so ineritably discovers any plant, available as a host, that may be growing within its reach. In case its search for a host-plant is unsuccessful, the seedling is still able to creep a short distance further at the expense of the nourishing matter drawn from the other extremity of the filament, which then dies off (t) as the growing extremity lengthens. If the free end, in the course of its circular morements, comes ultimately into contact with a proper nourishing plant, such as, for example, the stem of a Nettle or a young Willow shoot (Fig. 185, in the centre), it twines closely about it like a climbing plant. Papillose protuberances of the epidermis are developed on that side of the parasitic stem in contact with the host-plant, and pierce the tissue of the host. If the conditions are favourable, these prehatstoria are soon followed by special organs of absorption, the hatstoria (H). These are peculiarly developed adventitious roots which arise from the internal tissues of the parasite, and possess, in a marked degree, the capability of penetrating to a considerable depth into the body of the host-plant by means of solvent ferments and the pressure resulting from their own growth. They invade the tissues of the host, apparently without difficulty, and fasten themselves closely upon its vascular bundles, while single hyphal-like filaments produced from the main part of the haustoria penetrate the soft parenchymatous cells and absorb nourishment from them. A direct connection is formed between the xylem and phloem portions of the bundles of the host-plant and the conducting system of the parasite, for in the thin-walled tissue of the haustoria there now develop both wood and sieve-tube elements, which connect the corresponding elements of the host with those of the parasitic stem (Fig. 185, at the left). Like an actual lateral organ of the hostplant, the parasite draws its transpiration water from the xylem, and its plastic nutrient matter from the phloem of its host. The haustoria of Orobanche (Broom rape), another parasite, penetrate only the roots of the host-plant, and only its light yellow or reddish-brown or amethyst-coloured flower-shoot appears above the surface of the ground. Orobanche, like Cuscuta, also contains a small amount of chlorophyll. Both are dreaded pests; they inflict serious damage upon cultivated plants, and are difficult to exterminate.

Many parasitic plants, especially the Raffesiaccac, have become so completely transformed by their parasitic mode of life that they develop no apparent vegetative body at all; but grow altogether within their host-plant, whence they send out at intervals their extraordinary flowers. In the case of Pilostyles, a parasite which lives on some Asiatic species of Astragalus, the whole vegetative body is broken up into single cell filaments, which penetrate the host-plant like the mycelium of a fungus. The flowers alone become visible and protrude from the leaf-axils of the host-plant.

In addition to these parasites, which have come to be absolutely dependent upon other plants for their nourishment, there are certain parasites which, to judge by external appearances, seem to be quite independent, for they possess large green leaves with which they are able to assimilate vigorously. In spite of this, however, these plants only develop normally, when their root system is in connection with the roots of other plants by means of disc-shaped haustoria. Thesium, belonging to the Santalacelle, and the following genera of the Rhynan-
thaceae, Phinanthus, Euphrasia, and Perlicularis, may be mentioned as examples of plants showing these peculiar conditions. Another member of the same natural order, Melampyrum, has, on the other hand, developed a saprophytic mode of life. The Mistletoe (Tiscum album), although strictly parasitic, possesses, nevertheless, like many of the allied foreign genera of the Lorantlucene, fairly large leaves well supplied with chlorophyll, and fully able to provide all the carbohydrates required.

Humus plants, like some of the Orchitacene (Neottic, Corelliorrhize, etc.), and the Monotropene, are restricted to a purely saprophytic mode of mutrition, and to that end utilise the leaf-mould accumulated under trees. The thick roots or rhizomes of these plants offer so little surface for the absorption of nourishment, that it appears as if the threads of the Fungi, which are always found knotted and coiled together in their outer cells, and the free ends of which spread out in surrounding humus, must in some way co-operate in their nutritive processes.

The roots of green plants which live in a soil rich in decaying regetable matter possess similar fungoid growths which, as in the above-mentioned Orchids, lie partly rolled up in the root-cells, and in part spread out in the humus. Interwoven masses of hyphe sometimes so thickly surround and encircle the young root-tips that a direct absorption by the roots from the soil is rendered impossible. These give rise to a formation known as Mrcornhiza. In this manner, according to Frank, the root-tips of the forest-forming Cupuliferae and Coniforae, as also of many Ericaccae, are always corered by a fungus sheath. This fungus regetation appears to be in no way injurious, but, on the contrary, probably of benefit, at least, judging from the results of culture experiments made with these plants without mycorrhiza. As yet, the mutual relations existing between the Fungi and the flowering plants is not fully understood ; possibly their connection may be a symbiotic one, in which the fungus hyphre perform for the trees the functions of the root-hairs, and, in turn, receive from the tree a part of their nourishment.

A marvellous relation between roots and Bacteria exists in the case of the Leguminosce. It has long been known that peculiar outgrowths, the so-called root-tubercles, are found on the roots of many Leguminosae (Bean, Pea, - Lupine, Clover, etc.) (Fig. 186). Within the last few years, the astonishing discovery has been made that these tubercles are caused by certain Bacteria, chiefly by Rhizobium leguminosarum (Bucillus rudicicola). These Bacteria penetrate through the root-hairs into the cortex of the roots, and there give rise to the tubercular growths. These tubercles become filled with a bacterial mass, consisting principally of swollen and abnormally developed (hypertrophied) Bacterioins, but in part also of Bacteria which have remained in their normal condition. The former seem to be eventually consumed by the host-plant, while the latter remain with the dead roots in the soil, to provide for future reproduction. As the experiments of Helleiegel and the investigations of Nobbe, Beterinck, and Frank prove,
we have here another example of symbiosis, in which the Leguminosue furnish carbohydrates to the Bacteria, which, in turn, possess the power of taking up free nitrogen, and passing it on to the host in an available form (p. 173). This is at least certain ; the Leguminosal with such tubercles contain at maturity more nitrogen than could have been procured from the nitrates and other substances in the soil in which they grow.

In addition to increasing the supply of nitrogen, the presence of Pihiobbium seems to exert a favourable influence on the growth of its host-plant. Peas and Lupines do not thrive well in even the richest soil, if it has been sterilised, and the formation of the tubercles prevented. On the addition of other unsterilised soil in which the Bacteria are known to exist, the tubercles will then appear on the roots, the plants become at once stronger, and show by their increased growth a greater activity of their metabolic processes.

While parasitism or saprophytism is of rare occurrence among the higher plants, and confined to single species, in which it often occurs only irregularly and is dependent upon the environment, among the lower plants it is more general; large families with innumerable genera and species are found completely devoid of chlorophyll (Fungi and Bacteria), and altogether para-

Fig. 186.-A root of Vicia Faba, with numerous root-tubercles. (Reduced.) sitic or saprophytic in their mode of life. Of the Fungi and Bacteria some are true parasites, and are often restricted to certain special plants or animals, or even to distinct organs; others, again, are strictly saprophytic in their habit, while others may be either parasitic or saprophytic, according to circumstances. What renders the conduct of these lower organisms particularly striking, is the peculiarity possessed by many of them of not fully utilising all of the organic matter at their disposal ; but, on the contrary, so decomposing and disorganising the greater part of it by their fermentative activity that their own development soon becomes restricted. When Yeast-fungi develop in a litre of grape-juice they use very little of it for their own nourishment, but by far the greater part of it becomes decomposed by the fermentation they induce. As a result of this fermentation, together with the production of carbonic acid, the grape-sugar solution becomes converted
into an alcoholic liquid, containing small amounts of glycerine, succinic acid, and ester-like compounds in which the yeast itself can no longer thrive. The nourishing material of the litre of grape-juice could have supported a vastly larger quantity of yeast had the fermentation not set in. In the same manner, when Mucor-fungi attack an apple, they not only take the small amount of organic matter necessary for their sustenance, but at the same time convert the whole apple into a soft decaying mass. In addition to this peculiar nutritive activity, intramolecular respiration (p. 219) is also active in the promotion of fermentation and putrefaction. A considerable degree of heat is also evolved in the course of these processes. The utilisation of this heat in making hot-beds is a familiar practice. The heat produced by damp fermenting hay or raw cotton may often become so great that spontaneous combustion ensues. In germinating Barley an increase in temperature of from 40 to 70 or more degrees has been observed. The development of so much heat in this case is not due solely to the respiration of the barley seeds, but, according to CoHn, to the decomposing activity of a fungus (Aspergillus fumigatus). The spontaneous combustion of raw cotton is, on the other hand, caused by a Micrococcus. Coagulated albumen and thick gelatine are rendered fluid by many Fungi and Bacteria, while the escaping gases (carbonic acid, sulphuretted hydrogen, ammonium sulphide, ammonia, etc.) show how deep-seated is the decomposition. It is by similar processes of decomposition that dead organic matter becomes thoroughly disorganised and rendered harmless. To the decomposing action of Fungi and Bacteria is due the severity of many diseases which they produce in living organisms (potato disease, wheat smut, cholera, typhus, diphtheria, anthrax, etc.). By the possession or formation of substances (alexine, antitoxine), which react as specific poisons upon the infecting Bacteria, plants, and particularly animals, in turn protect themselves against the attacks of such micro-organisms. It is due to a knowledge of this fact that the science of Therapeutics has been enabled to cope more and more successfully with infectious diseases.

Fungi and Bacteria, in addition to the power, dangerous to themselves, of disorganising their own nutrient substratum by fermentation and putrefaction, also possess the capability of making an unsuitable substratum suitable for their sustenance. By means of inverting ferments they can convert an unsuitable cane-sugar into an available grape-sugar, and by their diastatic ferments they are able to form starch from glucose and maltose.

As is evident from their thriving upon such various substrata, Fungi have the power of producing from the most different carbon compounds (and also from nitrogenous mineral compounds such as ammonium tartrate, or even ammonium carbonate) protoplasm, cell wall, nuclein, fat, glycogen, etc. It is also an astonishing fact that,
while certain Fungi and Bacteria do not require free oxygen for their development (Anaerobionts), others (the so-called aerobiotic forms) are unable to develop or indeed to exist without oxygen.

While many Fungi inflict far greater injury upon their host-plants by the decomposition they induce, than by the withdrawal of the nutritive substances, others produce a different effect. The Rust-fungi, for instance, do comparatively little injury to their host ; while the relation between host and Fungus in the case of the Lichens has been shown to be absolutely beneficial. The Lichens were formerly considered to be a third group of the lower Cryptogams and of equal value with the Algae and Fungi. It is only in recent years that the astounding discovery was made by De Bary and verified by the investigations particularly of Schwendener, Reess, and Stahl, that the body of the Lichens is not a single organism, but in reality consists of Algae (e.g. fission-Algae), which also exist in a free state, and of Fungi, which for the most part belong to the Ascomycetes. The Fungus hyphae within the Lichen weave themselves around the Algae; and while the latter occupy the upper or outer side of the leaf-like or cylindrical thallus as the more favourable position for assimilation, the hyphae come into the closest contact with them and absorb from them part of their assimilated products. The Fungi in return provide the Algae with nutrient water, and enable them to live in situations in which they could not otherwise exist. As a result of this close union with the Fungi, the Algae are in no way exhausted, but become more vigorous than in their free condition, and reproduce themselves by cell division. As both symbionts, the Algae as well as the Fungi, thus derive mutual advantage from their consortism, Lichens form one of the most typical examples of regetable symbiosis.

The cause of the regular appearance of the fission-Algae Nostoc and Anabaena in the roots of the Cycadeae and in the leaves of Azolla and other water-plants is much less easy to explain.

In connection with these cases of symbiosis between plants, mention may here be made of the similar symbiotic relation existing between animals and plants. Like the Lichen-fungi, the lower animals, according to Brandt, profit by an association with unicellular Algae by appropriating their assimilated products without at the same time disturbing the performance of their functions. Fresh-water Polyps (Hydra), Sponges (Spongilla), Ciliata (Stentor, Paramecium), also Heliozoas, Vermes (Planaria), and Amoebae (A. proteus) are often characterised by a deep green colour, due to numerous Algae which they harbour within their bodies, and from the products of whose assimilation they also derive nourishment. In the case of the Radiolarias, the so-called " yellow cells," which have been distinguished as yellow unicellular Seaweeds, function in the same way as the green Algae in the other instances. Another remarkable example of symbiosis in which the relationship is not one merely of simple nutrition, has been dereloped between certain plants and ants. The so-called ANt-plasts (Myrmecophytae) offer to certain small extremely warlike ants a dwelling in convenient carities of the stems (Cecropia), in hollow thorns (Acacia spadicigera and sphaerocephala, Fig. 187, 1), in swollen
and inflated internodes (Cordia nodosa), or in the labyrinthine passages of their large stem-tubers (Myrmecodia). At the same time the ants are prorided with food in the case of the Cecropias and Acacias in the form of albuminous fatty bodies ("food bodies," Fig. 187, F'), and by the Acacias also with nectar. The ants in exchange guard the plants most effectively against the inroads of animal foes as well as against other leaf-cutting species of ants, which, in the American tropics, kill trees by completely and rapidly divesting them of their entire foliage. These same leaf-cutting ants live in symbiosis with a Fungus (Rozites yongylophora). Upon the accumulated leaves ("Fungus-gardens"), according to Möller, the ants make pure cultures of the fungus mycelium, whose peculiar nutritive outgrowths serve them exclusively for nourishment. Other familiar examples of symbiosis are those existing between flowers and birds or insects. The flowers in these instances provide the nourishment, usually nectar or pollen, but sometimes also the ovules (Yucca-moth and the gall-wasp of the figure), while the animals are

Fig. 187.-Acacia sphaerocephala. I, Leaf and part of stem; S, hollow thorns in which the ants live ; F, food-bodies at the apices of the lower pinnules; N, nectary on the petiole. (Reduced.) $I I$, Single pinnule with food-body, F. (Somewhat enlarged.)
instrumental in the pollination. Here also each symbiont is dependent upon the other. In the case of the unintentional dissemination of fruits and seeds by the agency of animals, the symbiotic relations are less close.

Of all the different processes of supplementary nutrition employed by plants, those exhibited by Insectivorous Plants in the capture and digestion of animals is unquestionably the most curious. Although they are green plants and in positions to provide their own organic nourishment, they have, in addition, secured for themselves, by peculiar contrivances, an extraordinary source of nitrogenous organic matter, by means of which they are enabled to sustain a more vigorous growth, and especially to support a greater reproductive activity, than would otherwise be possible without animal nourishment. It is not accidental that the plants which have become carnivorous are, for the most part, either inhabitants of damp places, of water swamps, and moist tropical woods, or that they are epiphytes. The nitrogenous
and phosphoric salts of the soil are not obtained by them in the same quantities as in the case of the more vigorously transpiring land-plants. This is very evidently the case in the Sundew (Drosera), which is loosely attached by a few roots upon a thick spongy carpet of Bog-moss, and must find in the animal food a valuable addition to its nitrogenous nourishment.

A great variety of contrivances for the capture of insects are made use of by carnivorous plants. The leaves of Drosera are covered with stalk-like outgrowths ("tentacles"), the glandular extremities of which discharge a riscid acid secretion (Figs. 188 and 115). Any small insect, or even larger fly or moth, which comes in contact with any of the tentacles is caught in the sticky secretion, and in its ineffectual struggle to free itself it only comes in contact with other glands and is even more securely held. Excited by the contact stimulus, all the other tentacles curve over and close upon the captured insect, while the leaf-lamina itself becomes concave

Fig. 188. - A leaf of Droserd rotundifolia. The stalked glands and their secretions serve for the capture and digestion of insects. (After Darwis, enlarged.) and surrounds the small prisoner more closely. The secretion is then discharged more abundantly, and contains, in addition to an increased quantity of formic acid,

Fig. 189.-A leaf of Dioncuea muscipula, showing the sensitive bristles on its upper surface, which, in the parts shaded, is also thickly beset with digestive glands. (After DARwin, enlarged.) a peptonising ferment. The imprisoned insect, becoming thus completely covered with the secretion, perishes. It is then slowly digested, and, together with the secretion itself, is absorbed by the cells of the leaf.

In Pinguicula it is the leafmargins which fold over any small insects that may be held by the minute epidermal glands. In species of Ctricularia (Fig. 34), growing frequently in stagnant water, small green bladders (metamorphosed leaf-tips) are found on the tips of the dissected leaves. In each bladder there is a small opening closed by an elastic valve which only opens inwards. Small snails and crustaceans can readily pass through this opening, guided to it by special outgrowths ; but their egress is prevented by the trap-like action of the ralre, so that in one bladder as many as ten or twelve crustaceans will often be found imprisoned
at the same time. The absorption of the disorganised animal remains seems to be performed by forked hairs which spring from the walls of the bladder.

More remarkable still, and even better adapted for its purpose, is the mechanism exhibited by other and now well-known insectivorous plants. In the case of Venus Fly-trap (Dionaea), growing in the peat bogs of

Fig. 190.-Pitchered leaf of a Nepenthes. A portion of the lateral wall of the pitcher has been removed in order to show the fluid (F), excreted by the leaf-glands. (Reduced.) North Carolina, the capture of insects is effected by the sudden closing together of the two halves of the leaves (Fig. 189). This action is especially due to the irritability of three bristles on the upper side of each half-leaf (the leaf surfaces themselves are much less sensitive). Upon the death of the insect caught by the leaf, a copious excretion of digestive sap takes place from glandular hairs on the leaf surface, followed by the absorption of the products of the digestive solution. In the case of other well-known insectivorous plants (Nepenthes, Cephalotus, S'arracenia, Darlingtonia), the traps for the capture of animal food are formed by the leaves which grow in the shape of pitchers (Figs. 33, 190). These traplike receptacles are partially filled with a watery fluid excreted from glands on their inner surfaces. Enticed by secretions of honey to the rim of the pitcher (in the case of Nepenthes), and then slipping on the extraordinarily smooth surface below the margin, or guided by the downward-directed hairs, insects and other small animals finally fall into the fluid and are there digested by the action of ferments and acids. In Sarracenia and Cephalotus, Goebel was unable to discover any digestive ferments ; but in Cephalotus, however, it was possible to determine that the secretions have antiseptic properties. The lid-like appendage at the opening of the pitcher of Nepenthes, Sarracenia, and Cephalotus does not shut; its function seems to be merely to prevent foreign substances from falling into the pitcher, and particularly to keep out the rain. The entrance to the tubular leaves of Darlingtonia is under the helmet-like extremity, and therefore a lid is unnecessary.

III. Respiration

It is a matter of common knowledge that animals are unable to exist without breathing. In the higher animals the process of respiration is so evident as not easily to escape notice, but the fact that plants breathe is not at once so apparent. Just as the method of the nutrition of green plants was only discovered by experiment, so it also required carefully conducted experimental investigation to demonstrate that plants also must breathe in order to live ; that, like animals, they take up oxygen and give off carbonic acid. Even Liebig in 1840, in his epoch-making work (Die organische Chemie in
ihrer Anvendung auf Agricultur und Physiologie), showing the application of organic chemistry to agriculture and physiology, refused to believe in the respiration of plants. Although the question had already been thoroughly investigated by Saussure in 1822, and by Dutrochet in 183 \bar{i}, and its essential features correctly interpreted, Liebig pronounced the belief in the respiration of plants to be opposed to all facts, on the ground that it was positively proved that plants on the contrary decomposed carbonic acid and gave off the oxygen. He asserted that it was an absurdity to suppose that both processes were carried on at the same time ; and yet that is what occiurs.

Assimilation and respiration are two distinct vital processes carried on independently by plants. While in the process of assimilation green plants alone, dind only in the light, deconpose carbonic acid and give off onygen, all plant organs without exception both by day and by night take up oxygen and give off carbonic acid. Organic substance, obtained by assimilation, is in turn lost by respiration. A seedling grown in the dark so that assimilation is impossible, loses by respiration a considerable part of its organic substance, and its dry weight is considerably diminished. It has been found that during the germination of a grain of Indian Corn, a full half of the organic reserve material is consumed in three weeks. That green plants growing in the light accumulate a considerable surplus of organic substance, is due to the fact that the daily production of material by the assimilatory activity of the green portions is greater than the constant loss which is caused by the respiration of all the organs. Thus, according to Boussingault's estimates, in the course of one hour's assimilation a plant of Sweet Bay will produce material sufficient to cover thirty hours' respiration.

The question may be asked, why then is respiration essential to life? It cannot be that its importance for plants arises from the loss of substance; that would be but a mere waste of material which had been previously elaborated by the plant. A means of judging of the importance of respiration is afforded by the behaviour of the plants themselves when deprived of oxygen. By placing them, for example, under a jar containing either pure nitrogen or hydrogen, or in one from which the air has been exhausted, it will then be found that all vital activity soon comes to a stand-still ; plants, previously growing vigorously, cease their growth ; the streaming motion of the protoplasm in the cells is suspended, as well as all external movement of the organs. Motile organs of plants become stiff and rigid and sink into a death-like condition. If oxygen be admitted, after not too long an interval, the interrupted performance of the rital function is again renewed. A longer detention in an atmosphere deroid of oxygen will, however, irrevocably destroy all traces of vitality; as in every condition of rigor internal chemical changes take place, which, by a prolonged exclusion of oxygen, lead to the destruction and disorganisation
of the living substance. The presence of oxygen is necessary to THE CHEMICAL PROCESSES TAKING PLACE WITHIN THE CELL, IN ORDER to maintain the living substance in a condition of normala ACTIVITY.

The absorption of oxygen and the evolution of carbonic acid by living plants can be demonstrated both qualitatively and quantitatively by simple experiments. From what has already been said of the contradictory nature of assimilation and respiration, it will be at once apparent that these experiments must be conducted either in the dark or on portions of plants devoid of chlorophyll. Coloured or white flowers, roots, germinating seeds and Fungi furnish suitable objects on which, at any time, the gaseous interchange occurring during respiration may be observed. The more abundant the protoplasm and the more energetic its vital activity, so much the more vigorous is the respiration. The best results are obtained, therefore, from young portions of plants in an active state of growth. It should also be mentioned that from the following experiments only the carbonic acid and not the whole of the products of the respiratory activity are determined. From theoretical considerations, and also from exact chemical analysis, it has been definitely established that, in addition to carbonic acid, water is formed from the organie matter by respiration.

The absorption of oxygen and the formation of carbonic acid may be clearly shown by the following experiments (Fig. 191). A flask (B) filled with young mushrooms or Composite flowers is inverted with its mouth in an open vessel of mercury (Q), and a few centimetres of caustic potash solution introduced within its neck. In the same degree as the carbonic acid produced by respiration is absorbed by the caustic potash, the volume of air in the flask will be reduced and the mercury will rise in the neck. After a time, the ascent of the mercury ceases and it remains stationary. If the quantity of air remaining in the flask be estimated, it will be found that it has lost a fifth of its original volume; this means, however, that the whole of the oxygen (which makes up one-fifth of the atmospheric air) has been absorbed. If caustic potash is not used in this experiment to absorb the exhaled carbonic acid, the mercury remains at its natural level, or, in other words, the volume of air in the flask remains unchanged. From this experiment it is apparent that the volume of oxygen absorbed is equal to the volume of carbonic acid evolved, as expressed by the formula $\frac{\mathrm{CO}_{2}}{\mathrm{O}_{2}}=1$. This equivalence of rolume between the oxygen absorbed and the carbonic acid exhaled exists only in cases where the oxygen is used exclusively for respiration, and not where it is consumed in transforming the contents of the cells, as is observed in the germination of seeds rich in fat, and in the interchange of gases in the case of the succulents. In the germination of seeds rich in fat, the fat is converted into carbohydrates richer in oxygen. The oxygen consumed remains combined in the plant. On the other hand, in the case of the succulents, their peculiar power of effecting oxidation during the night and subsequent deoxidation in the light, modifies the gaseous interchange of respiration.

The absorption of oxygen in the respiration of plants can also be shown by the fact that a flame, held in a receptacle in which plants have been kept for a time, is extinguished. If a lighted taper be thrust into a glass cylinder which has been partially filled with flowers or mushrooms, and then tightly covered and allowed to remain for a day, it will be extinguished, as the oxygen of the air in the cylinder will all have been absorbed. The carbonic acid exhaled in respiration can
be quantitatively determined from the increase in the weight of the caustic potash by which it has been absorbed, or from the amount of barium carbonate precipitated by conducting the respired carbonic acid through baryta water (to which some BaCl_{2} has been added). In this last experiment it will of course be necessary to free the air from all traces of carbonic acid before it is admitted to the respiring plants.

Intramolecular Respiration.-In the middle of the seventies Prlứger made the surprising discovery that frogs are not only able to live for some time in an atmosphere devoid of oxygen, but even continue to exhale carbonic acid. From similar investigations it was found that plants also, when deprived of oxygen, do not die at once, but can prolong their life for a time and evolve carbonic acid. Under these circumstances it is apparent that both elements, the carbon as well as the oxygen, must be derived from the organic substance of the plants themselves: the oxygen can only be obtained through some unusual process of decomposition carried on within the plant. This form of respiration has consequently been described as intramolecular.

The amount of carbonic acid produced in a given time by intramolecular respiration is usually less than that given off in the same time during normal respiration. There are plants, however (for instance, Vicia Faba), whose seedlings, in an atmosphere of pure hydrogen,

Fig. 191.-Experiment in respiration. The inverted flask (B) is partially filled with flowers, which are held in place by the plug of cotton (W). Through the absorption of the carbonic acid exhaled in respiration, by the solution of caustic potash (K), the mercury (Q) rises in the neek of the flask. will exhale for hours as much carbonic acid as in the ordinary air. During intramolecular respiration all growth ceases and abnormal processes of decomposition take place, whereby alcohol and other products are formed.

It had formerly been believed that the inciting cause of respiration was the oxidising activity of the oxygen, which was thought to act upon the living
substance in the same way as upon an easily oxidised body. But the discovery of intramolecular respiration led to a new conception of the processes of normal respiration. According to it, the protoplasm seems by its vital activity constantly to produce one or more substances which greedily seize upon oxygen. The affinity of these substances for oxygen is so great that, in case no free oxygen is at their disposal, they decompose and take it from the protoplasmic substance itself (just as chlorine has the power of decomposing other compounds to combine with hydrogen). Plants breathe, accordingly, not as a result of the decomposing oxidation of the oxygen in the air, but they absorb oxygen because respiration is essential to the performance of those metabolic processes on the continuance of which their own vitality depends. Respiration, like nutrition and growth, is an expression of a particular vital activity of the protoplasm. From this standpoint, it is at once evident that respiration becomes intensified with every increase in the vital activity, and on the other hand, decreases with every diminution of the vital functions.

To understand the physiological reason or the existence of such a vital process as respiration is more difficult. The behaviour of plants in an atmosphere free from oxygen demonstrates, at all events, that normal respiration is requisite for the vital activity of the protoplasm ; that, through it, in a word, the equilibrium of the living substance is disturbed, and so the stimulus given to further molecular movements and renewed vital activity. Through the disturbing activity of respiration, the energy of the protoplasm is continually aroused, and the latent forces, accumulated through the operation of the vital processes, are again set free: it is, in other words, the specific source of all vital energy. In intramolecular respiration, the necessity for oxygen disturbs the equilibrium in an unnatural way, and sets free forces, which lead, not to the continuance of the vital activity, but to the destruction of the living substance.

That specific vital energy can be otherwise derived than through the utilisation of free oxygen is shown in the case of the Anaerobionts (p .213), which live and multiply without the presence of free oxygen. The formation of ferric hydroxide by the so-called iron bacteria, as well as the production of sulphuric acid by the sUlphur bacteria, is probably the result of an attempt on the part of those microorganisms to substitute other sources of energy for normal respiration.

The energy gained by the absorption of oxygen is accompanied by a loss of combustible organic substances. This loss is first felt by the protoplasmic body itself, but is soon made good again at the expense of the carbohydrates and fats; so that no permanent loss of protoplasmic substance from respiration is perceptible, but a visible diminution of the carbohydrates and fats can be detected.

Heat produced by Respiration.-Respiration is, chemically and physically considered, a process of oxidation or combustion, and, like them, is accompanied by an evolution of heat. That this evolution of heat by plants is not perceptible is due to the fact that considerable quantities of heat are rendered latent by transpiration, so that transpiring plants are usually cooler than their environment; and also to the fact that plants possess very large radiating surfaces in proportion to their ctass. The spontaneous evolution of heat is easily shown experimentally, if transpiration and the loss of heat by radiation are prevented and vigorously respiring plants are selected. Germinating
seeds (Peas), if examined in large quantities, show under proper conditions a rise in temperature of $2^{\circ} \mathrm{C}$. The greatest spontaneous evolution of heat manifested by plants has been observed in the inflorescence of the Araceae, in which the temperature was increased by energetic respiration $10^{\circ}, 15^{\circ}$, and even $20^{\circ} \mathrm{C}$. Also in the large flower of the Victoria regia temperature variations of $15^{\circ} \mathrm{C}$. have been shown to be due to respiration. One gramme of the spadix substance of an Araceae exhales, in one hour, up to 30 cubic centimetres CO_{2};

Fig. 192.-Experiment to show the direct communication of the external atmosphere with the internal tissues of plants. The glass tube R, and the leaf P, are fitted air-tight in the bottle G; upon withdrawal of the air in the bottle by suction on the tube R, the external air penetrates the intercellular spaces of the leaf, through the stomata, and escapes in the form of small air-bubbles from the cut surface of the leaf-petiole. (From Detmer's Physiol. Pract.)
and half of the dry substance (the reserved sugar and starch) may be consumed in a few hours as the result of such vigorous respiration.

That other processes, in addition to respiration, co-operate in the production of heat is apparent from the fact that the amount of heat evolved does not vary proportionally to the carbonic acid exhaled. The high temperature (up to $70^{\circ} \mathrm{C}$.) observable in germinating Barley does not result from respiration alone, but is due to the decomposing activity of a Fungus.

The Movement of Gases within the Plant. - The entrance of
oxygen into the plant body is not accompanied by any respiratory movements, as in the case of animals ; but takes place solely through diffusion. Those cells which are in direct contact with the air or water can absorb their requisite oxygen directly; while cells in the midst of tissues are dependent upon the oxygen which can diffuse through the surrounding cells. Such a diffusion from cell to cell would not, however, be adequate, in the case of the vast cellular bodies of the higher plants, to provide the living cells of the interior with a sufficient supply of oxygen. This is accomplished by means of the air-spaces, which, as INTERCELLULAR PASSAGES, penetrate the tissues in all directions and so bring to the protoplasm of the inner cells the air entering through the stonata and lenticels (p. 143). That the intercellular spaces were in direct communication with each other and also with the outer atmosphere, was rendered highly probable from anatomical investigation, and has been positively demonstrated by physiological experiment. It is, in fact, possible to show that air forced by moderate pressure into the intercellular passages makes its escape through the stomata and lenticels; and conversely, air which could enter only through the stomata and lenticels can be drawn out of the intercellular passages. The method of conducting this experiment can be seen from the adjoining figure (Fig. 192). Through the cork of the bottle (G), which is partially filled with water, a glass tube (P) and a leaf (P) are inserted; when the air in the bottle (Q) is drawn out by suction through the glass tube (R), a stream of airbubbles passes out through the intercellular spaces of the severed leafstalk, and is maintained by the air entering through the stomata of the leaf-lamina. By a similar experiment it can also be shown that in corky stems the communication between the intercellular spaces in the medullary rays, cortex, and wood and the external atmosphere is maintained through the lenticels. The movement of the gases within the intercellular spaces is due partly to the diffusion, induced by the constant interchange of gases caused by respiration, assimilation, and transpiration, and partly to their own instability, arising chiefly from modifications of the temperature, pressure and moisture of the surrounding atmosphere, but which is also increased by the movement of the plants themselves, through the action of the wind.

Intercellular air-spaces are extensively developed in water and marsh plants, and occupy the greater part of the plant body. The submerged portions of waterplants unprovided with stomata secure a special interial atmosphere of their own, with which their cells maintain an active exchange of gases. This internal atmosphere is in turn replenished by the diffusion taking place with the surrounding atmosphere. In marsh-plants, which stand partly in the air, the large intercellular spaces form connecting canals through which the atmospheric oxygen, without being completely exhausted, can reach the organs growing deep in the swampy soil, surrounded by marsh-gas and otherwise cut off from any communication with the atmosphere.

Phosphorescence.-The same conditions which accompany respiration also give rise to the production of light or phosphorescence in a limited number of plants, particularly in Fungi and Bacteria. This phosphorescence at once disappears in an atmosphere deroid of oxygen, only to reappear on the admission of free oxygen. All the circumstances which facilitate respiration intensify phosphorescence; the converse of this is also true. According to the results of investigations concerning the phosphorescence of animals, from which that of plants does not probably differ in principle. the phosphorescence is not directly dependent upon the respiratory processes, but is due to the production by the protoplasm of a special colloid substance in the form of globules or granules, which give out light when undergoing crystallisation. On free exposure to the atmosphere, and under proper conditions of moisture and temperature, this phosphorescent substance, even after its remoral from the living organism, is still capable of giving out light for a long time.

The best-known phosphorescent plants are certain forms of Bacteria which develop on the surface of fish and meat, and the mycelium, formerly described as "Rhizomorpha," of the fungus Agaricus mellens. As further examples of spontaneously luminous Fungi may be cited Aquricus olearius, found growing at the foot of olive trees in South Europe, and other less familiar Agarics (-1 q. ignens, nuctilucens, Gurdneri, etc.). The phosphorescence of decaying wood is also, without doubt, due to the growth of Fungi or Bacteria. Of plants taking part in the phosphorescence seen in water, the most important are Pyrocystis noctiluca, an Alga, and the spontaneously luminous Bacteria.

The so-called phosphorescence of the Moss, Sch istestigu, and of some Selaginellas and Ferns. has nothing in common with actual phosphorescence, but is produced solely by the reflection of the daylight from peculiarly formed cells Fig. 325). The phosphorescence observed in some sea-weeds results, on the other hand, from the fluorescence and opalescence of certain of their albuminous substances. or from the iridescence of their cuticular layers.

IV. Growth

The size which plants may attain varies enormouslr. A Mushroom seems immeasurably large in contrast with a Micromecus, but inexpressibly small if compared with a lofty Californian E‘equoiu. A Bacillus of the size of a Mushroom, or a Mould-Fungus of the height of a Sequaiu. are, with their given organisation, physiologically as inconceivable as a Mushroom with the minuteness of a Micrococcus. The size of an organism accordingly is an expression of its distinct individuality, and stands in the closest relation to structure and conditions of life, and in each individual raries within certain narrow limits

However large a plant may be, and however innumerable the number of its cells, it nevertheless began its existence as a single cell,
microscopically small and of the simplest structure. To attain its final size and perfect development it must grow, that is, it must enlarge its body and undergo differentiation. Eren for the minute unicellular bacteria growth is essential, as they multiply chiefly by cell division. Each daughter cell must grow and attain the dimensions of the parent cell, or in a few years the capacity for existence itself will be lost through their continually decreasing size. It is in fact impossible to conceive of a plant where perfect derelopment is not the result of growth. If a growing Oak or Cedar be compared with the single spherical egg-cell from which it has arisen, it is at once clear that by the term growth we mean not only an increase in rolume, but include also a long series of various developmental stages, and external and internal modifications. A mere increase in volume does not necessarily imply growth, for no one would say that a dried and shrivelled turnip grows when it swells in water. On the contrary, active growth may be accompanied by a considerable loss of substance, as is shown by the sprouting of potatoes kept in a dark cellar. Water is lost through transpiration as well as organic substance through respiration, and yet the new shoots show true growth.

In the lower organisms growth is exhibited in its most simple form. In an Amœba or a Plasmodium growth is simply an increase in their substance ; in a unicellular Alga or in a Fungus it means, in addition to this, an enlargement of their cell walls. In the higher plants the processes of growth are far more complicated and various, so that, according to Sachs, four chief phases of growth can be distinguished, which, however, are not sharply separated, but merge imperceptibly one into the other.

1. The embryonic phase, or the first origination of new cells or organs, according to their proper position and number.

2 . The formative phase, or the continuance of the embryonal development, and the assumption of a definite form.
3. The phase of elongation of the already formed embryonal organs.
4. The phase of internal development and completion of the tissues.

The Embryonal Development of the Organs

Plants, in contrast to the higher animals, continually develop new organs. These arise either from tissues retained in their embryonic condition, as at the growing point, or they have their origin in regions which hare already more or less completely attained their definite form. The leares and shoots spring directly from the tissues of the growing point; the first lateral roots, however, make their appearance at some distance from the growing point, where a perceptible differentiation of the tissues has already taken place.

Leafy shoots may also take their origin from old and fullydeveloped tissues, which again assume an embryonic character, accompanied by an accumulation of protoplasm and renewed activity in cell division. But as this only occurs in exceptional cases, shoots which thus arise out of their regular order are termed adrentitiouts.

The manner of the Formation of New Organs at the Growing Point has already been described (p. 149). It is only necessary here to again call attention to the fact that the young organs develop in acropetal succession, so that the youngest is always nearest the apex. This is, in fact, the most natural method in consideration of the apical growth of the axes. In spite of that, however, special cases are known in which the young organs arise at some distance from the growing point, and between older organs (in the inflorescence of Typha). The point from which new organs arise, and the number which develop, are chiefly dependent upon inherited internal disposition. Although external conditions exert in this respect but small influence, it has been recognised that the available space, and the subsequent pressure of the older organs of the vegetative cone, as well as the torsion of the axis, operate in determining the ultimate position of new organs on the parent axis. The influence of other factors, light, gravity, chemical and mechanical stimuli, which at certain times in the later life of the tissues are of extreme importance, have usually but little effect on the embryonal development. Yet, on the other hand, the position of the first division wall of the germinating spore of Marsilia is determined by the action of gravity, and the direction of the first wall (as well as of the preceding nuclear division) in the spore of Equisetum is determined by its relative position to the light.

In Adventitious Formations, on the contrary, the influence of external forces is often very evident, as, for example, in the formation of climbing-roots, which in the Ivy and other root-climbers are developed only on the shaded side of the stem. In the Alga Caulerpa the new leaf-like organs arise only on the illuminated side of the parent organ. It is, on the other hand, the force of gravity which excites the formation of roots on the under side of underground rhizomes. It is also due to gravity that the growing points of shoots are formed only from the upper side of the tubers of Thladiantha dubia, or that new twigs develop, for the most part, from the upper side of the obliquely growing branches of trees. Contact stimuli, on the other hand, determine the primary inception and point of development of the haustoria of Cuscuta (p. 208). The sexual organs of Fern prothallia are always developed on the side away from the light; that is, in normal conditions on the under side, but in case of artificial illumination on the upper side.

As a result of one-sided illumination and the stimulus of gravity, together with the favouring influence of moisture, the rhizoids spring
only from the under side of the gemmæ of Marchantia, so that eventually the two originally similar sides assume an altogether different anatomical structure.

Many adventitious formations are the result of definite external causes; as, for example, the galls induced by the stings of insects and the deposits of animal eggs and larve (cf. p. 155).

The development of adventitious formations is especially induced by mutilation of plants. New formations are in this manner produced at points from which they would never have arisen on the uninjured plants. In the case of Pelargoniums, Oleanders, Willows, and many other plants, it is possible to induce the formation of roots wherever the shoots are cut. In other plants, however, there seem to be certain preferred places, such as the older nodes, from which, under the same circumstances, roots develop. In like manner new shoots will appear in the place of others that have been removed. In the development OF NEW FORMATIONS ON A MUTILATED PLANT THOSE VERY ORGANS ARISE, OR PREFERABLY ARISE, OF WHICH THE PLANT HAS BEEN DEPRIVED. Rootless shoots develop first of all new roots. Roots and root-stocks deprived of their shoots form first new shoots. In these processes there is manifested an internal reciprocity in the formative growth of organs, which has been termed the CORRELATION OF GROWTH.

Correlation of growth is often, also, very apparent in the normal development of the organs of uninjured plants. It is due to this that scales of buds are developed in their special form rather than as foliage leaves. For, as Goebel showed, it is possible by artificial means, as, for example, by the timely removal of the leaves of the parent shoot of Acsulus, Acer, Syringa, Quercus, or in the case of Prunus Padus, by cutting off the upper extremity of the shoots, to induce the formation of normal foliage leaves in the place of the scales. The vigorous growth which ensues in the fruit and in the fruit-coverings after fertilisation and development of the embryo in the ovule, affords another example of correlation; for, in case no fertilisation of the egg-cell occurs, all those changes which produce a ripe fruit from the flower do not take place ; and, instead, another correlative process is manifested by which the now useless organs are discarded. Certain plants, especially those modified by cultivation, form an exception to this : in many varieties of banana, in the seedless mandarin, and in the variety of raisins known as sultana, etc., although no seeds capable of germination are produced, the formation of a so-called fruit is nevertheless continued. Even in these instances it is essential for the formation of fruit that there shall have occurred a previous pollination of the stigma, or the fertilisation of the ovules, which, however, do not mature. In some few exceptional cases, however, as in the Fig, even this impetus to fruit formation is not necessary. The manner of the formation of conducting tissues in plants, and also their anatomical development, are regulated by correlation. From these few instances it may be seen how the principle of correlation affects the most rarious of the vital processes, even under normal conditions, and how the harmonious development and function of the single members of the plant body are controlled by it.

The polarity manifested by plants should also be considered as a special example
of the correlation existing between the different parts of the plant body. This polarity is particularly apparent in stems and roots, and finds its expression in the tendency of every small piece of a stem to develop new shoots from that end which was nearer the stem apex, while the roots take their rise from the other end. Pieces of roots in like manner send out roots from the end originally nearer their apex, and shoots from the end towards the stem.

In accordance with this principle, detached pieces of stems produce new shoots from their "shoot-pole," and injured roots new roots from their "root-pole." This polarity, particularly investigated by Vöchtivg and sachs, makes itself apparent in eren the smallest pieces of stems or roots, and may, in this respect, be compared to the magnetic polarity exhibited by every small piece of a magnet. Unlike poles of a plant may readily be induced to grow together, while like poles may only be brought to do so with difficulty, and then do not develop rigorously. As a result of such experiments, a radial polarity has also been recognised by Vörtisg in stem and root tissue: thus, for instance, pieces of a stem or yoot, inserted in a lateral incision of a similar organ, become united with it, if thes are so placed that the side originally outermost occupies the same relative position in the new organ, but if this position is altered no such union takes place. Leares take, in respect to polarity, a special position, for they are not organically included within new formations derived from them. Thus, from the basal end of a leaf, an entire plant, with roots, stem, and leares, may arise, while the regeneratire leaf itself gradually dies. It is of especial interest to obserre the effect of external influences upon the position of new formations, when they come into opposition to the internal disposition of the plants themselves. In this respect, the behaviour of different species raries greatly. In one, the internal factors predominate, that is, the new formations appear quite independently of external conditions ; in another, the external influences of the moment preail ; but the internal disposition of the plant, when thus constrained for the time being, ultimately makes itself apparent and the new formations never develop vigorously. A willow twig, planted in a reversed position, with the shoot-pole in the ground, will produce roots, and from the root-pole may even produce shoots. These, however, usually soon die and their place is supplied by other stronger shoots arising from the shoot axis just abore the roots. It is only by the most careful suppression of any such developments that the shoots from the root-poles may be kept alive. In so-called "creeping" trees, the formation of side branches from the upper side of the hanging branches is faroured by external conditions, but the internal polarity prevents their rigorous development, and those formed soon die. In the cultiration of grapes and fruit-trees this peculiarity is utilised to produce shortlived, fruit-producing shoots by bending over the rines or training the branches of the trees in the cultivation of wall fruits. On the other hand, in some cases the internal polarity is easily orercome by external influences. It is sometimes sufficient merely to reverse the erect thallus of Bryopsis, one of the Siphoneae, to convert the former apical portion into a root-like tube which penetrates the substratum and fastens itself to the grains of sand. It has also been positively determined, although otherwise such cases are unknown among the higher plants, that the growing points of the roots of Seottia and of certain Ferns (Platycerium, Aspleniuin csculcntum) may be converted through some inherent tendency into the regetative cone of a stem.

The correlation phenomena manifested in the formation of new organs have the greatest practical importance, for the propagation of plants by cuttings or grafting is based upon them.

In artificial reproduction detached pieces of plants are made use of for the purpose of producing a fresh complete plant. In many cases this is easily done, but in others it is more difficult, or even impossible. The favourite and easiest method is by means of cuttings, that is, the planting of cut branches in water, sand, or earth, in which they take root (Pelargonia, Tradescantias, Fuchsias, Willows, etc.). Many plants may be propagated from even a single leaf or portion of a leaf, as, for instance, is usually the case with Begonias. The young plants spring from the end of the leaf-stalk, or from its point of union with the leaf-blade, or from the ribs, particularly when they are artificially broken or incised. In other cases the leaves, while still on the parent plant, have the power to produce adventitious buds, and,

Fig. 193.-Different modes of grafting I, Crown grafting; II, splice grafting; III, bud grafting ; W, stock ; E, scion.
in this way, give rise to new plants (see Vegetative Reproduction, p. 279). Even from roots or pieces of roots it is also possible to propagate some few plants. An example of this is afforded by Ipecacuanha, whose roots are cut in pieces and then sown like seeds. The Dandelion possesses the same capability of developing from small portions of the root, and to this peculiarity is due the difficulty with which it is destroyed.

In grafting or budding, cuttings from one plant are inserted in another, so that they grow together to form physiologically one plant. The union is accomplished by means of a callus (P .144), formed by both the scion and the adopted stock. Vessels and sieve-tubes afterwards develop in the callus, and so join together the similarly functioning elements of both parts. Such an organic union is only possible between very nearly related plants, thus, for example, of the Amygdalaceae, the Plum, Peach, Almond, Apricot, may readily be grafted one upon the other, or of the Pomaceae, the Apple with the Quince; but not the Apple with the Plum.

In spite of the apparent physiological mion between the old stock and the newly-formed growth, from a morphological standpoint they lead an altogether separate and distinct existence. In its structural character, forms of tissues, mode of secondary growth, formation of bark, etc., each maintains its own individuality. In special cases it has been affirmed that they do mutually exert, morphologically, a modifying effect upon each other (Graft-hybrids). In practice several different methods of inserting cuttings are in use, but only the more important can be mentioned here.

Grafting is the union of a shoot with a young and approximately equallydeveloped wild stock. Both are cut obliquely with a clean surface, placed together, and the junction protected from the entrance of water and fungi by means of grafting wax.

Cleft or tongue grafting is the insertion of weaker shoots in a strongei stock. Several shoots are usually placed in the cut stem of the stock, care being taken that the cambial region of the different portions are in contact, that the cortex of the shoots is in contact with that of the stock. In other methods of grafting the cut end of the shoot is split longitudinally and the cut shoot inserted in the periphery, or a graft may be inserted in the cortex or in the side of the stock. In grafting in the cortex the flatly-cut shoot is inserted in the space cut between the bark and the splint wood (Fig. 193, I).

In lateral grafting, the shoot, after being cut down, is wedged into a lateral incision in the stock.

A special kind of grafting is known as budding (Fig. 193, III). In this process a bud ("eye") and not a twig is inserted under the bark of the stock. The "eye" is left attached to a shield-shaped piece of bark, which is easily separated from the wood when the plants contain sap. The bark of the stock is opened by a T -shaped cut, the "eye" inserted, and the whole tightly covered. Occasionally some of the wood may be detached with the shield-shaped piece of bark (budding with a woody shield). In the case of sprouting buds, the budding is made in spring ; in dormant buds, which will sprout next year, in summer. Budding is especially used for roses and fruit-trees.

The Phase of Elongation

For the performance of their proper functions, the embryonic rudiments of the organs must complete their external development. They must unfold and enlarge. This subsequent enlargement of the embryonic organs of plants is accomplished in a peculiar and economical manner. While the organs of animals increase in size only by a corresponding increase of organic constructive material and by the formation of new cells rich in protoplasm, and thus require for their growth large supplies of food substance, plants attain the chief part of their enlargement by the absorption of water-that is, by the incorporation of an inorganic substance which is most abundantly supplied to them from without, and to obtain which no internal nutritive processes are first necessary. The elongation of a plant organ to its definite extension, whereby it is often enlarged a hundred or thousand fold, may be compared with the extension of certain animal organs by means of an influx of water, as occurs in the case of the

Coelenterata or Echinodermata. When an ambulacral foot of a starfish or a sea-urchin is lengthened from a millimetre to several centimetres by filling with water from the water-vascular system, the water has in this instance the same biological significance as in the elongation of the plant organs, except that in the latter case the process is not of repeated occurrence.

The great advantage resulting from this easy method of enlargement is apparent from a consideration of the importance of a large external surface for the nutrition of a plant. Assimilation is just so much the more productive, the larger the exposure of green surface, and the more accessible it is to the surrounding carbonic acid. In like manner, the superficial enlargement is exceedingly advantageous as regards the absorption of nourishment from the soil. It is accordingly of great economic value biologically that the growth through elongation is accomplished chiefly by the absorption of water.

The absorption of water by living cells does not take place with the same rapidity and without interruption as in the case of porous bodies. Before the cells can take up additional water they must enlarge by actual processes of growth. The water, penetrating the young cells by imbibition or by the force of osmotic pressure, is uniformly distributed through the protoplasm, which fills the cell; in case the protoplasm is already abundantly supplied with water, it is instead accumulated in vacuoles (Fig. 50). As the vacuoles contain also organic and inorganic matter in solution, they exert an attractive force and give rise to further absorption of water. The sap of the vacuoles would, in turn, soon be diluted and its attractive force diminished, were it not that the regulative activity of the protoplasm soon provides for a corresponding increase of the dissolved salts, so that the concentration and attractive force of the sap are continually being restored or even increased. The separate vacuoles thus enlarged ultimately flow together into one large sap-cavity in the middle of the cell, while the protoplasm forms ouly a comparatively thin layer on the cell walls, which now exhibit considerable surfacegrowth.

During this increase in the volume of the cell, the protoplasm has experienced but little augmentation of its substance, or other modification. The enlargement of the cell has been almost wholly produced by the increased volume of water in the sap cavity, which, to distinguish it from the "nutrient water," "imbibition water," and "constitution water" of the plant, may be designated "inflation water."

As is often observed with the occurrence of many vital phenomena, the rate of distension of the walls with the inflation water is not uniform, but begins slowly, increases to a maximun rapidity, AND THEN GRADUALLY DIMINISHING ALTOGETHER CEASES. As all the cells of equal age in an organ go through this process of inflation at the same time, the phenomena of increase and decrease in the rate of growth are apparent in the growth of the organ, and give rise to GRAND PERIODS OF GROWTH. Minor periods, or fluctuations in the rate of growth, occurring within the grand periods, are due to irregu-
larities in the swelling of the cells, occasioned by change of temperature, light and other influences operative on growth.

The large amount of water absorbed by the growing organ in the process of elongation does not lessen its rigidity, but, on the contrary, it is to the turgor thus maintained that the rigidity is due (cf. p. 165). Osmotic pressure seems also to take an important part in the growth of the cell wall itself. Cells in which the turgor is destroyed by a decrease in the water-supply exhibit no growth of their cell walls; it is thus evident that the distension of the cell walls is physically essential for their surface-growth. This distension is in itself, however, by no means the cause of their growth; the internal physiological conditions of the growth of the cell walls are dependent upon the vital activity of the living protoplasm. Without the concurrent action of the protoplasm, there is no growth in even the most distended cell wall ; on the contrary, active growth of the cell wall may take place with the existence of only a small degree of turgor tension. A CORresfondence between the turgor tension of the cell walls and the AMOUNT OF GROWTH CANNOT, UNDER THESE CONDITIONS, BE EXPECTED, nor can, on the other hand, the conclusion be drawn that turgor tension is inoperative in the processes of growth. The importance of the turgor tension is variously estimated, according to the conception of the manner in which the growth in substance of the cell walls takes place. There have been for some time two conflicting theories in regard to this. According to one, the growth of the cell wall is due to the interpolation of new particles of constructive material between the already existing particles of the cell-wall substance (intussesception); in the other theory, the assumption of the interpolation of new particles is disputed, and growth in surface is attributed to the plastic (inelastic, not resuming its original position) expansion of the distended cell wall. As in this case the growing membrane would continually become thimner, its growth in thickness results from the repeated deposition of new layers (Apposition) of substance on the internal surface of the original wall. It is, however, a question of purely theoretical interest, by which of the methods the growth of the cell membrane is effected in particular cases. While, in general, neither of these views is inconsistent with the external phenomena of growth, in some special cases intussusception, and in others apposition, seems to offer the more satisfactory explanation. It is, in fact, not improbable that the Growth of the cell walls is DUe to both processes. It is evident that at least some degree of turgor tension is necessary for the existence of this form of expansion. To support the theory of intussusception it has also been found necessary to suppose that the new particles are not interpolated until the spaces between the particles of the cell-wall substance has been enlarged by the distension of the wall itself.

The process of elongation has so far been considered only in relation to the single cell, preparatory to the consideration of the phenomena presented by the growth of multicellular organs.

The operations of growth in plant organs proceed very slowly; so slowly as to be, in general, imperceptible. The stamens, however, of many Gramineue grow so rapidly that their elongation is evident, even to the naked eye. An increase in length of 1.8 mm . a minute has been observed in the stamens of Triticum (Wheat). This approximately corresponds to the rate of movement of the minute-hand of a watch. In comparison with it, the next known most rapidly growing organ
is the leaf-sheath of the Banana, which shows an elongation of $1 \cdot 1 \mathrm{~mm}$., and a Bamboo shoot, an increase in length of 0.6 mm . per minute ; while most other plants, even under favourable circumstances, attain but a small rate of elongation (0.005 mm . and less per minute).

In order to measure the growth in length of a plant, it is customary to magnify in some way the actual elongation for more convenient observation. This may be effected by means of a microscope, which magnifies the rate of growth correspondingly with the distance grown. With a high magnifying power the growing apex of a Fungus hypha seems to advance across the field of vision as if impelled by an invisible power. For large objects, the most convenient and usual method of determining the rate of growth is by means of an auxanometer. The principle of all auxanometers, however they may differ in construction, is the same,

Fig. 194.-Simple and self-registering auxanometer. For description see text.
and is based upon the magnification of the rate of growth by means of a lever with a long and short arm. In Fig. 194, at the left, a simple form of auxanometer is shown. The thread fastened to the top of the plant to be observed is passed over the movable pulley (r), and held taut by the weight (g), which should not be so heavy as to exert any strain on the plant. To the pulley there is attached a slender pointer (Z), which is twenty times as long as the radius of the pulley, and this indicates on the scale (S) the rapidity of the growth, magnified twenty-fold. By a growth in the length of the plant-stem of $\frac{1}{6} \mathrm{~mm}$., the pointer would accordingly register 4 mm .

Self-registering auxanometers are also used, especially in making extended observations. In Fig. 194, at the right, is shown one of simple construction. The radius of the wheel (R) corresponds to the long arm, and the radius of the small wheel (r) to the short arm of the lever, in the preceding apparatus. Any movement of the wheel, induced by the elongation of the shoot, and the consequent descent of the weight (G), is recorded on the revolving drum (C) by the pointer attached to the weight (Z), which is, in turn, balanced by the counterweight (W). The drum is
covered with smoked paper, and kept in rotation by the clock-work (U). If the drum is set so that it rotates on its axis once every hour, the perpendicular distances between the tracings on the drum will indicate the proportional hourly growth.

The grand periods in the growth of an organ, due to the internal causes, are clearly shown by such self-registering auxanometers by the gradual increase and final decrease in the perpendicular distances, representing the increment of growth. Strefl found the daily growth in length of a root of Lupine, expressed in tenths of millimetres, to be: 58,70, 92, $97,165,192,158,137,122,83,91,59,25,25,8,2$, o. For the first internode of the stem, growing in the dark, the daily growth observed was: 8 , 9, II $12,35,43,41,50,51,52,65,54,43,37,28$, 18, 6, 2, 0.

The grand periods of growth, that is, the gradual increase from nil to a maximum, and the succeeding decrease to nil again, are, however, not evident throughout the whole of a root ; during the growth in length only a small portion of a root is actually, at one time, in process of elongation. In roots of land-plants the growing region extends over only about one centimetre of the extreme tip, often indeed over only $\frac{1}{2}$ centimetre; while all the rest of the root has already completed its growth in length. This may be made clear by marking off with india-ink, near the tip of a root, narrow zones of equal width, which would thus also be made up of cells of nearly equal size. In Fig. 195, I, is shown a germinating Bean, Vicia Faba, whose root-tip has been marked in this way; Fig. 195, II, represents the same root after 22 hours of growth. The marks have become separated by the elongation of the different zones, but in different degrees, according to their position. The greatest elongation is shown by the transverse zone 3 ; from there the growth in length decreases towards the younger zones (2 and 1), as well as towards the older (4 to 10). This

Fig. 195.-Unequal growth of different regions of the root-tip of Vicia Faba. I, The root-tip divided by marking with india-ink into 10 zones, each 1 mm . long. $I I$, The same root after twenty-two hours; by the unequal growth of the different zones the lines have become separated by unequal distances. (After Sachs.) peculiar distribution of growth is but the result of the grand periods of growth of the cells in zones of different ages. In the millimetre-broad zones of a root of Vicia Faba SACHS found, after twenty-four hours, that the increase in growth, expressed in tenth-millimetres, was as follows :-

Zones : I., II., III., IV., V., VI., VII., VIII., IX., X., XI.
Increase: 15, 58, 82, 35, 16, 13, 5, $3,2,1,0$.
The elongating region in shoot axes is generally much longer than in roots, and usually extends over several centimetres, in special cases even over 50 or more centimetres. The distribution of the increase corresponds in stems, as in roots, with the grand periods of growth of the cells. Even by intercalary growth, where the region of elongation is not confined to the apex but occurs in any part of
the organ, generally at its base (leaves and flower-stalks of many Monocotyledons), grand periods of growth are also apparent. A shoot of Phaseolus multiflorus which was divided, from the tip downwards, into transverse zones 3.5 mm . broad, showed in forty hours, according to Sachs,
in zones : I., II., III., IV., V., VI., VII., VIII., IX., X., XI., XII.
an increase of $20,25,45,65,55,30,18$, Iо, 1о, $5,5,5$ tenth-millimetres.

This periodicity in the growth in length occurs even when the external influences affecting growth remain unchanged, and is determined by internal causes alone.

External Influences upon Growth.-External factors often take an active part in the process of elongation, either as retarding or accelerating influences. As growth is itself a vital action, it is affected by any stimulus acting upon the protoplasm ; on the other hand, as it is also a physical function, it is modified by purely physical influences. Growth is particularly dependent upon temperature, light, moisture, the supply of oxygen, and the existence of internal pressure and tension.

The influence of tenperature is manifested by the complete cessation of growth at a temperature less than 0° or higher than $40^{\circ}-50^{\circ}$. Between the minimum and maximun temperatures, at which growth ceases, there lies an OPTIMUM temperature (p. 163), at which the rate of growth is greatest. This optimum temperature usually lies between 22° and $37^{\circ} \mathrm{C}$. The three CARDINAL POINTS OF TEMPERATURE here given include a wide range, as they vary for different species and even for individual plants of the same species. In tropical plants the minimum temperature may be as high as $+10^{\circ} \mathrm{C}$., while those of higher latitudes, where the first plants of spring often grow through a covering of snow, as well as those of the higher Alps and polar regions, grow vigorously at a temperature but little above zero. In like manner, the optimum and maximum temperatures show great variation in different species of plants. The optimum does not usually lie in the middle between the minimum and maximum, but is nearer the maximum.

The influence of light makes itself felt in a different manner from changes of temperature. Light as a general rule retards growth. This is apparent from observations on stems and roots grown in the dark, and is also true in regard to the growth of leaves, if the disturbing effects resulting from long-continued darkness be disregarded. Too great an intensity of light causes a cessation of the growth of an organ, while feeble illumination or darkness increases it. The effect of darkness upon the growth of plants is, however, differently manifested according to its duration, whether it be continuous, or interrupted, as in the changes of night and day. Long-continued darkness produces an abnormal growth, in that the growth of certain organs is unduly favoured, and of others greatly retarded, so that a plant grown altogether in the dark presents an abnormal appearance. The stems of Dicotyledons, in such case, become unusually elongated, also soft and
white in colour. The leaf-blades are small and of a yellow colour, and remain for a long time folded in the bud (Fig. 196, E'). A plant grown under such conditions is spoken of as "etiolated."

This diminution in the size of the leaf-blades and the elongation of the stem (and leaf-stalks) are not manifested by all plants, nor under all circumstances. The stems, for instance, of certain Cacti are much shorter when grown in the dark than in the light. Similarly, the leaves of varieties of the Beet (Beta) grow as large, or even larger, in the dark than in the light; this is also true, under conditions favourable to nutrition, of the leaves of other plants (Cucurbita). In the shade of a forest leaves often become larger than in full daylight. They are then proportionally thinner, and the palisade cells which, in leaves fully exposed to the light, are in close contact, become pointed below, and thus produce intercellular spaces between them. In this way the modifying influence of light of diminished intensity is apparent in the internal structure of such scotophilous leaves. Flowers, however, if sufficient constructive material be provided by the assimilating leaves, develop, according to Sachs' observations, as well in the dark as in the sunlight, except that they are sometimes paler in colour. If, however, the assimilatory activity of the green leaves be reduced or destroyed by depriving them of light, many plants, as Vöching found, form only inconspicuous or cleistogamous flowers.

The tissues of etiolated stems and leaf-stalks are fuller of water and thinner-walled than in normally growing plants. Even the roots of such plants are often found to be less strongly developed. The supply of reserve material at the disposal of plants growing in the dark is utilised, together with the help of an unusual amount of inflation water, in the elongation of the axis. This elongation of the shoot axis, resulting from growth in darkness, is of especial value in the development of young plants from underground tubers, rhizomes, and seeds ; for in this way the light is quickly reached, and they are the sooner capable of independent nutrition. The advantage derived from a rapid

Fig. 196.-Two seedlings of Sinapis alba, of equal age : E, Grown in the dark, etiolated; N, grown in ordinary daylight, normal. elongation is especially apparent when the leaves must themselves reach the light by their own elongation. This is often necessary, particularly for the leaves of Monocotyledons, which spring from bulbs and rhizomes. They act just as the stems of Dicotyledons, and attain an abnormal length in the dark.

From what has already been said it would seem that plants must grow more rapidly during the night than day, and this is actually the
case where other conditions affecting growth remain the same by night as by day. A too low temperature during the night may, however, completely counteract the accelerating influence of darkness upon the growth.

Just as the rays of light of different wave-length and refrangibility were found to be of different value in the process of assimilation, so growth is by no means equal in differently-coloured light. It is то THE STRONGLY REFRACTIVE, SO-CALLED CHEMICAL, RAYS THAT THE

Fig. 197.-Two leaves of Ranunculus Purshii. L, An aerial leaf; W, a submerged water-leaf. (After Goebel.)
influence of light on growth is due: the red-yellow end of the spectrum acts upon many plants in the same manner as darkness.

Moisture exerts a twofold influence upon growth. It acts as a stimulus, and also, by diminishing transpiration, increases turgidity.

Plants in damp situations are usually larger than those grown in dry places, and in fact may differ from them in their whole habit and mode of growth. Direct contact with water seems frequently to exert a special influence upon the external form of plants. Amphibious plants, that is, such as are capable of living both upon land and in water, often assume in water an entirely different form from that which they possess in air. This variation of form is particularly manifested in the leaves, which, so long as they grow in water, are finely dissected, while in the air their leaf-blades are much broader (Fig. 197). The leaf-stalks and internodes also often exhibit a very different form in air and water, and undergo the same abnormal elongation as in darkness. This is especially noticeable in submerged water-plants, whose organs must be brought to the surface of the water (young stems and leafstalk of Trapa natans, stem of Hippuris, leaf-stalk of Nymphaea, Nuphar, Hydrocharis). Such plants are enabled by this power of elongating their stems or leafstalks to adapt themselves to the depth of the water, remaining short in shallow
water and becoming very long in deep water. The pressure of the water upon the tip of the growing organ, as well as the insufficient supply of oxygen, seem to act upon the growth, in this instance, as regulating stimuli.

The great importance of free oxygen has already been alluded to in connection with respiration (p. 219). Without gaseous or dissolved oxygen in its immediate environment the growth of a plant entirely ceases.

Mechanical Influence.-Pressure and traction exert a purely mechanical influence upon growth, and also act at the same time as stimuli uponit. External pressure at first retards growth ; it then, however, according to Pfeffer, stimulates the protoplasm and occasions the distension of the elastic cell walls, and frequently also an increase of turgor. As a consequence of this increased turgor the counter-resistance to the external pressure is intensified. If the resistance of the body exerting the pressure cannot be overcome, the plasticity of the cell walls renders possible a most intimate contact with it; thus, for instance, roots and root-hairs which penetrate a narrow cavity so completely fill it that they seem to have been poured into it in a fluid state. It would be natural to suppose that the effect of such a tractive force as a pull would accelerate growth in length, by aiding and sustaining turgor expansion. But the regulative control exercised by the protoplasm over the processes of growth is such that mechanical strain, as Hegler has shown, acts upon growth to retard it (except in the maximum of the grand periods). The elastic resistance and rigidity of cell walls are increased by the action of a strain; such a strain may also induce the formation of collenchyma and sclerenchyma which would not otherwise have been developed.

The Internal Development of the Organs

The internal development of the organs is only completed after they have finished their elongation and attained their ultimate size. They are then first enabled to fully exercise their special function. To this end cell cavities usually become more or less fused, and the cell walls thickened, often in a peculiar and characteristic manner (p. 75).

In the case of plants equipped for a longer duration of life, a growth in thickness follows the growth in length (p. 119).

Periodicity in Development, Duration of Life, and Continuity of the Embryonic Substance

The periodically recurring changes in the determinative external influence, especially in light and temperature, occasioned by the alternations of day and night and of the seasons, cause corresponding periodical variations in the growth of plants. These variations do not follow passively every change in the condition of the external influences. On the contrary, the internal vital processes of plants so accommodate themselves to a regular periodicity that they continue for a time their customary mode of growth, independently of any external change. The nightly increase of growth, which is especially noticeable after midnight in the curve of growth, and the retardation of growth, specially marked after mid-day, will continue to be exhibited
for some time in prolonged darkness when the temperature remains constant, thus under these conditions Helunthus tuberosus has been observed to continue its regular daily periods for two weeks, affording an example of the inexplicable occurrence of so-called AFTER-EFFECTS, which are frequently mentioned in a later chapter.

Still greater is the influence exerted on the life of plants by the alternation of winter and summer, which in the plants of the colder zones has rendered necessary a well-marked winter rest. This is not in reality an absolute rest; for although the outwardly visible processes of development and growth stand still, the internal rital processes, although retarded, never altogether cease.

The anstal periods of growth occasioned by climatic changes, which are rendered so noticeable br the falling of the leares in the autumn, and the development of new shoots and leaves in the spring, have stamped themselves so indelibly upon the life of the trees and shrubs of the temperate zones, that, when cultirated in tropical lands where other plants are green throughout the year and blossom and bear fruit, they continue to lose their leaves and pass for a short time at least into a stage of rest. The Oak and Beech have become so habituated to this annual periodicity that they never depart from it ; other trees again gradually accustom themselves to the new conditions, as the Cherry and Peach, for instance, which in Ceylon have become erergreen trees. The Peach is reported to produce flowers and fruit throughout the entire year ; while the Cherry, like many other trees of the temperate zone, ceases altogether to bear flowers in tropical climates. It is due to a similar labituation to an annual periodicity that in some cases it is so difficult, or eren altogether impossible, to induce plants br artificial cuiture to flower out of season. The behariour of different species also raries in this respect; in general, those flower: accommolate themselves best to forcing which, like the Hyacinth, Crocus, Tulip, Syringa, and Cornus mas, naturally flower early. That the internal rital processes are not promoted by artificial heat to the same extent as growth in length, is at once perceptible from the abnormal appearance of many forced plants whose leares and flowers do not attain their full development (the flowers of the Lily of the Valler. when forced artificially, develop even before the leares:.

Low temperature, especially frost, is often of adrantage in the preparatory rital processes during the period of rest; this is made erident br the accelerated transformation of the reserve material, and by the active growth in spring.

Although to so many plants winter is the season of rest and cessation from growth, other plants, c.g. certain Lichens and Mosses, seem to find in the warmer days of winter the most favourable conditions of regetation; and in summer, on the contrary, either do not grow at all or only rery little. Similarly, many spring plants attain their highest development, not in summer, but during the variable weather of March and April, and, for the most part, they have entered upon their rest period when the summer regetation is just awakening.

In countries where there are alternate rainy and dry periods, the latter generally correspond to the winter period of regetative rest.

Inuration of Plant Life.- The life of a plant, during the whole of its development, from its germination to its death, is dependent upon external and internal conditions. In the case of the lower vegetable
organisms, such as Algae and Fungi, their whole existence may be completed within a few days or even hours, and indeed some of the higher herbaceous plants last only for a few weeks, while the persistent shrubs and trees, on the other hand, may live for thousands of years.

After the formation of the seeds, there occurs in many plants a cessation of their developmental processes, and such a complete exhaustion of vitality that death ensues. Such an organic termination of the period of life occurs in our annual summer plants, but also takes place with plants in which the preparatory processes for the formation of fruit have extended over two or more years, as in the case of the 10 to 40 -year-old Agave, which, after the formation of its stately inflorescence, dies of exhaustion. In plants, on the other hand, which in addition to the production of flowers and fruit accumulate also a reserve of organic substance, and, with their reproductive organs, form also new growing points, life does not cease with the production of the seeds. Such plants possess within themselves the power of unlimited life, the duration of which may only be terminated by unfavourable external conditions, the ravages of parasites, injuries from wind, and other causes.

The longevity of trees having an historical interest is naturally best known and most celebrated, although, no doubt, the age of many other trees, still living, dates back far beyond historical times.

The celebrated Lime of Neustadt in Würtemberg is between 800 and 1000 years old ; the age of the Fir of Béqué is estimated at 1200 years, and a Yew in Braburn (Kent) is at least as old. A stem of a Sequoia in the British Museum has, with 1330 annual rings, a diameter of 4.5 m ., and, according to Carrethers, must have originally been 28.5 m . in circumference. An Adansonia at Cape Verde, whose stem is 8.9 m . in diameter, and a Water Cypress, near Oaxaca, Mexico, are also well-known examples of old trees. Of an equally astonishing age must have been the celebrated Dragon-tree of Orotava, which was overturned in a storm in 1868, and afterwards destroyed by fire. The lower plants also may attain a great age; the apically growing mosses of the calcified Gymnostomum clumps, and the stems of the Sphagnaccae, metre-deep in a peat-bog, must certainly continue to live for many hundred years.

In thus referring to the ages of these giant plants, it must not be understood that all the cells remain living for so long a time, but rather that new organs and tissues are developed, which continue the life of the whole organism. All that is actually visible of a thousand-year-old Oak is at most but a few years old. The older parts are dead, and are either concealed within the tree, as the pith and wood, or have been discarded like the primary cortex. The cells of the original growing point have alone remained the whole time alive. They continue their growth and cell division so long as the tree exists; while the cells of the fundamental tissue arising from them,
and destined for particular purposes, all lose their vitality after a longer or shorter performance of their functions.

The cells of the root-hairs often live for only a few days; the same is also true of the glandular cells and trichomes of stems and leaves. The wood and bast fibres, as also the sclerenchymatous cells, lose their living protoplasm after a short time. Entire organs of long-lived plants have frequently but a short existence; the sepals, petals, and stamens, for example. The foliage leaves, also, of deciduous trees live only a few summer months and then, after being partly emptied of their contents, are discarded.

Before the falling of leares a separative layer is first formed in the elongating leaf-base (p. 143); while a layer of cork, formed either before or after the leaffall, closes the leaf-scar. The formation of ice in the absciss layer, as may easily be observed after the first frost, facilitates the separation of the leaf from the stem. The leaves even of evergreen plants continue living but a few years, before they too fall off. Small twigs, especially of Conifers, are also subject to the same fate.

The cells of the medullary rays afford the best examples of long-lived cells constituting permanent tissues. In many trees, as in the Beech, living medullary ray cells over a hundred years old have been found, although, for the most part, they live only about fifty years.

Continuity of the Embryonic Substance.-While the cells of the permanent tissue have thus but a limited activity, the vitality of the embryonal tissues is unlimited, and never terminates from natural causes. From such embryonal tissue the growing points of perennial plants are formed, and the growing points of their descendants, as Sachs has pointed out, are also derived from it, through the substance of the sexual cells. The embryonic substance does not change; it produces new individuals, which live but a short time, but is itself perpetuated in their offspring; it continues always productive, always rejuvenescent and regenerative. The thousands and thousands of generations which have arisen during the past ages were its products ; it continues living in the youngest generations with a capacity for production still unabated and undiminished. The single organism is perishable; its embryonic substance, however, is imperishable and unchangeable, and continually gives rise to new tissues. Considered from this standpoint, the difference between short- and long-lived plants, between annual herbs and thousand-year-old trees, appears in quite another aspect. From the embryonic substance of the oldest trees there are produced, each year, new leaves and shoots, which, however, remain united with the dead remains of former years. In annual herbs, on the other hand, the embryonic substance in the embryo becomes separated each year from the dead plant, and developing new leaves, stems, and roots, forms a completely new individual.

The old and well-known maxim of Harvey's, "Omne vivum ex ovo," is, in other words, only the expression of the principle of the continuity of the embryonic substances. And similar to it, in its continual
ritality and organic imperishability, is the substance of the lowest unicellular organisms, continually reproducing themselves by division and ever changing into new individuals.

V. The Phenomena of Movement

In every living organism there is constantly occurring in the course of the metabolic processes an active movement and transposition of substance. As these movements are for the most part molecular they are generally imperceptible; but that they actually take place is demonstrated with absolute certainty by the local accumulation and diminution of substance, shown both by weighing and by the results of chemical analysis.

There are also other forms of movement which play an important part in the physiology of every organism, and on which its vital processes are to a large extent dependent: these are the movements due to heat and the related conditions of vibration resulting from light, electricity, etc.

Apart from the movements of this class, which may take place within organisms which, externally, are apparently at rest, there occur also in plants actual changes in position, externally noticeable but usually of gradual operation; yet in special cases they may involve rapid motion. These movements may be carried on either by the whole plant or by single organs. Reference is here made only to the Spontaneous movenent resulting from the activity of a plant organism itself, and this should not be confused with the Passive movements due to externally operating mechanical agencies, such as water and wind, which, although they have a certain importance for plant life, will not be here considered.

Protoplasm itself is capable of different movements. Naked protoplasmic bodies almost always show slow movements resulting in a gradual change of position ; but cells enclosed by cell walls possess also the power of independent locomotion, often indeed to a considerable extent. Multicellular plants, however, as a rule ultimately attach themselves, by means of roots or other organs, to the place of germination, and so lose for ever their power of locomotion, except in so far as it results from growth. A gradual change in position due to growth is apparent in plants provided with rhizomes, the apical extremities of which are continually growing forward, while the older portions gradually die off. A yearly elongation of 5 cm . in the apical growth of the rhizomes would result, in twenty years, in moving the plant a distance of one metre from its original position. A seedling of C'uscuta in its search for a host plant illustrates the power of maintaining, for a time, a creeping movement over the surface of the soil ; a growing Caulerpa (Fig. 250) likewise exhibits in the course of years a similar advancing movement. In addition to these move-
ments, occasioned by a growth in length, plants firmly established in the soil possess also the power of changing the position and direction of their organs by means of curvature and rotation. In this way the organs are brought into positions necessary or advantageous for the performance of their function. By this means, for example, the stems are directed upwards, the roots downwards; the upper sides of the leaves turned towards the light; climbing plants twined about a support, and the stems of seedlings so bent that they break through the soil without injury to the young leaves.

Movements of Naked Protoplasts

The creeping movements of naked protoplasts, such as are shown by an amœeba or plasmodium, in the protrusion, from one or more sides, of protuberances which ultimately draw after them the whole

Fig. 198.--Amœboid movement. The arrows indicate the direction and energy of the movement; the crosses, the points at rest. At the time being the principal movement is from H to V, but at any moment it may be towards R or L, and so change the direction of the course taken by the amœeba. protoplasmic body, or are themselves again drawn in (Fig. 198), are distinguished as ameboid movements. These movements resemble, externally, the motion of a drop of some viscid fluid on a surface to which it does not adhere, and are chiefly due, according to Bertiold, to superficial tension, which the protoplasm can at different points increase or diminish, by means of its quality of irritability. (By means of irregular changes of surfacetension similar amoeboid movements are also exhibited by drops of lifeless fluids.)

In the swimming movements by means of cilia, on the contrary, the whole protoplasinic body is not involved, but it possesses special organs of motion in the form of whip-like flagella or cilia. These may be one, two, four or more in number, and arranged in various ways (Figs. 69, 70). They move very rapidly in the water and impart considerable velocity to the protoplast, often giving it at the same time a rotatory movement. While the swiftest ship requires 10-15 seconds to travel a distance equal to its own length, the velocity with which these protoplasmic bodies are impelled by their cilia, in a second, is two or three times their length, although, owing to their diminutive size, the distance travelled by them in an hour would amount to only about a metre. The protoplasmic body is conveyed by the motion of the cilia in a definite direction, which is so regulated by the action of stimuli that it may be instantly changed. In this way the direction and velocity of the ciliary movements are made
serviceable to the protoplasmic organisms through the irritability of the protoplasm. Gravity and light, certain substances in solution, and mechanical hindrances are the principal influences which regulate the movements of free-swimming protoplasmic bodies and cells. The direction of the movements of the swarm-spores of Algae are chiefly determined by the light. So long as they remain in darkness they move through the water in all directions; but as soon as they are illuminated from one side only, a definite direction in their movements is perceptible. They move either straight towards the light or turn directly away from its source. Their retrogressive movements from the light occur either in case of too intense illumination, or at a certain age, or through some unknown disturbing irritation. The advantage of such heliotactic movenents (phototactic) is at once apparent when the part taken by the swarm-spore in the life of an Alga is considered. In order to provide for the future nutrition of the stationary Alga into which it afterwards develops, it must seek the light. If a point with suitable (that is, not too intense and not too weak) illumination be attained, then the swarm-spore must attach itself by the end which carries the cilia : to do this it must turn itself from the light towards a dark object. On the other hand, as the swarm-spores do not come to rest at all in absolute darkness, but swim continuously until thoroughly exhausted, the possibility of their attaching themselves in a spot devoid of light is excluded, and where the new plant could not assimilate.

The swarm-spores of water Fungi and motile Bacteria, according to Pfeffer's investigations, are chiefly influenced in their movements by the unequal distribution of dissolved, solid, or gaseous matter (oxygen) in their environment. According to their momentary requirements and their sensitiveness to stimuli, they move either towards or away from the points of highest concentration.

As the result of similar chenotactic movenents spermatozoids approach the female sexual organs. Pfeffer has demonstrated that the spermatozoids of Ferns are enticed into the long necks of the archegonia by means of malic acid: while the archegonia of the Mosses attract the spermatozoids by a solution of cane-sugar. In such cases an extremely small quantity of dissolved substance is often a sufficient stimulus to call forth active chemotactic movements ; a 0.001 per cent solution of malic acid suffices for the attraction of Fern spermatozoids. The movements of amœbæ and plasmodia are similarly induced by external influences. These naked protoplasts live not only in water (amœbæ), but also in moist substrata (plasmodia, amoebæ), and seem to possess the power of seeking out situations with more moisture, or of avoiding them (before the formation of spores) : their movements are also influenced by the direction of currents in the water (rheotaxis). In cases where cells enclosed by cell walls (Sphaerellu pluriutis) swim freely about by means of cilia, the cilia spring from the protoplasm and pierce the cell walls.

Diatoms and Desmids exhibit quite a different class of movements. The Diatoms glide along, usually in a line with their longitudinal axes, and change the direction of their movements by oscillatory motions. From the manner in which small particles in their neighbourhood are set in motion, it was concluded that special organs of motion probably protrude, like pseudopodia, through openings in their hard silicified shell ; while more recently, in a few instances, Hauptrleisci has been able to render visible the protoplasmic motile organs. The protrusion of a transparent thread of mucilaginous matter is claimed to have been seen by Bütschli and Latterbora in the case of a large Diatom which propelled itself by this means. This means of locomotion resembles that of the nearly related Desmids, which, it has been shown, maintain their peculiar movements with the help of a similar mucilaginous protrusion. The pendulous advancing movements of the filamentous Oscillariae and Spirulinae are also said to be dependent upon similar mucilaginous exudations. The mechanism of the movements of Spirogyra is still unexplained.

The Movements of Protoplasm within Walled Cells

Although plants which are firmly attached and stationary exhibit no such locomotory movements, the protoplasm within their cells does possess a power of movement. Such internal protoplasmic movements are especially active in the non-cellular Siphoneae, in the elongated internodal cells of the C'haraceae (Fig. 167), and often in the hairs of many plants, as well as in the leaf-cells of some aquatic plants. The active protoplasmic currents in Caulerpa move along its outer walls and around the internal cellulose bands, stretching from wall to wall in the manner of an immense imprisoned plasmodium.

The three following different forms of protoplasmic movement within cell cavities may be distinguished: CIRCULATION, Rotation, and orientation.

In the case of Circulatory movement the different currents of protoplasm, although often quite close together, flow in different directions. This motion is seen most frequently in cells of which the nucleus is suspended in the centre of the cell cavity by means of protoplasmic threads. In these threads continuous protoplasmic currents flowing towards and away from the nucleus connect the protoplasm enveloping it with the protoplasm clothing the cell wall (Fig. 53). Sometimes, even in extremely fine threads of protoplasm, two currents may be seen to pass each other (e.g. in the stamens of Tradescantia, the stinging hairs of Urtica, and the bristles of Cucurbita).

In the rotatory movement the protoplasm moves along the cell wall in one direction only, dragging with it the nucleus and often also the chlorophyll grains. In an elongated cell, in which the rotation usually takes place in the direction of the longitudinal axis, as the protoplasm forms one united body, there must be a strip of immovable protoplasm which separates the rotating masses. This stationary part is termed the neutral or interference zone. The rapidity of the movement diminishes towards the cell wall, and the layer of
protoplasm directly contiguous to the cell wall is not in motion. The rotatory movements are easily seen in Chara and Nitella, where they take a spiral course, and they are also very energetic in the cells of the leaves of Elodea canadensis and of Vallisneria spiralis, and also in the root-hairs of Hydrocharis morsus ranae and Trianea bogotensis.

The cause of these movements, which may take different directions in adjoining cells, and may also continue after the protoplasm has been drawn away from the cell walls by plasmolysis (p. 166), is not yet understood. It is, however, known that the continuance and activity of such protoplasmic movements, the existence of which was first observed by Corti in 1722 , and later rediscovered by Treviranes in 1807, are dependent on factors which, in general, support and promote the vital activity; while the presence of free oxygen and proper conditions of temperature seem to be particularly favourable to them. Through the study of sections in the cells of which currents had been induced in the protoplasm, by the injuries sustained in their preparation and by other abnormal conditions, grave errors have arisen concerning the existence of such protoplasmic movements in cells, in which under normal conditions they cannot be observed. The presence of protoplasmic currents in a cell may, in fact, indicate either an energetic vital activity, or, on the other hand, be merely a symptom of a pathological or, at least, of an excited condition of the protoplasm.

The movements of orientation of the protoplasmic body do not proceed in the same uninterrupted manner as the circulatory and rotatory movements. They are also usually so gradual as to be only recognisable through their operations. They are induced by changes in the external influences, especially as regards the intensity of the light, and result in producing a definite position of the protoplasmic bodies, as, for example, the orientation of the chlorophyll grains with regard to the light.

Movements of this kind have been most frequently observed in Algae, in submerged Duckweed (Lemna trisulca), in the prothallia of Ferns and Mosses; but similar movements can also be observed in the higher plants.

In the cells of the filamentous Alga Mesocarpus, the chloroplasts, in the form of a single plate suspended length-wise in each cell, turn upon their longitudinal axes according to the direction and intensity of the light. In light of moderate intensity, according to Stahl's observations, they place themselves transversely to the source of light, so that they are fully illuminated (transverse position); when, on the other hand, they are exposed to direct sunlight, the chlorophyll plates are so turned that their edges are directed towards the source of light (profile position). A similar protection of the chloroplasts against too intense light, and their direct exposure, on the other hand, to more moderate illumination, is accomplished, where they are of a different form and more numerous, by their different disposition relative to the cell walls. In moderate light the chlorophyll bodies are crowded along the walls, which are transverse to the direction of the rays of
light (Fig. 199, T'). They quickly pass over to the walls parallel to the rays of light, however, as soon

Fig. 199.--Varying positions taken by the chlorophyll grains in the cells of Lemna trisulce in illumination of different intensity. T, in diffuse daylight; S, in direct sunlight; N, at night. The arrows indicate the direction of the light. (After Stahl.) as the light becomes too intense, and so retreat as far as possible from its action (Fig. 199, S). In darkness or in weak light the chloroplasts group themselves in still a third way (Fig. $199, N$), the advantage of which is not altogether clear.

The form of the chlorophyll bodies themselves undergoes modification during changes in their illumination ; in moderate light they become flattened, while in light of greater intensity they are rounded and thicker.

As a special mode of protection against too intense light, the chloroplasts of the Siphoneae (and the same thing is observed in many plants) become balled together in separate clumps. In correspondence with the changes in the position of the chloroplasts, the colouring of green organs naturally becomes modified. In direct sunshine they appear lighter, in diffused light a darker green. The attention of Stchs was first called to the phenomena of the movements of the chloroplasts, by the accidental observation that the shadow of a thermometer was represented in dark green on a leaf otherwise directly illuminated by the sun.

Wounds and one-sided cell-wall thickenings likewise give rise to orientation movements, as they occasion a crowding together on one side of the nucleus and protoplasm.

Movements producing Curvature

The movements of the organs of stationary plants, unicellular as well as multicellular, are accomplished by means of curvatures. In an organ that has grown in a straight line the longitudinal sides are all of equal length ; in an organ that is curved, however, the concave side is necessarily shorter than the convex side. When, accordingly, the opposite sides of a pliable organ become of unequal length, the organ must curve toward the shorter side (Fig. 168). Inequality in the length of the opposite sides may result from various causes. A curvature occurs if the length of one side remains constant, while the
opposite side becomes shorter or longer, and also from the unequal elongation or contraction of both sides, and similarly from the elongation of one side and the contraction of the other.

Such curvatures most frequently occur in plants as a consequence of unequal growth. More rarely they are due to the different length of the opposite sides, resulting from unequal turgor tension. This is principally the case in fully-grown organs, as in leaf-cushions (p. 268) and stamens. A third source of curvature is found in the unequal amount of water taken up by imbibition, and the consequent unequal distension of the cell walls on the opposite sides of an organ.

1. Hygroscopic Curvatures (Imbibition Movements)

As the cell walls of actively living cells are always completely saturated with imbibition water, hygroscopic curvatures are exhibited only by dry and, for the most part, dead tissues; although occasionally they also take place in living tissues which can endure desiccation without injury, as in the cases of Mosses, Lichens, and Selaginella lepidophylla (p. 179). The hygroscopic movements in any case, however, are due to the physical properties of the cell walls, and have no direct connection with the vital processes, except in so far as the capacity of cell walls to swell and take up large quantities of imbibition water is due to the protoplasm by which they were formed. The activity of the protoplasm in the formation of the cell walls is likewise manifested in their anatomical structure, in their stratification and striation, and in the position of the pits, as well as in the arrangement and disposition of the cells themselves.

The absorption of imbibition water by cell walls is accompanied by an increase in their volume, and conversely the volume of the cell

Fig. 200.-Fruit of Erodium gruinum. A, in the dry condition, coiled ; B, moist and elongated. walls is diminished by the evaporation of the imbibition water. Accordingly, whenever unequal amounts of water are held by the cell walls on the different sides of an organ, either through unequal absorption or evaporation, hygroscopic movements
are produced, which result in the curvature of the organs. In many cases the organs of plants are especially adapted to such movements, by means of which, in fact, important operations are often accomplished, as, for example, the dehiscence of seed-vessels and the dissemination and burial of seeds.

The rupture of ripe seed-vessels, as well as their dehiscence by the opening of special apertures (Papaver, Lychnis, Antirrhinum, etc.), is a consequence of the unequal contraction of the cell walls due to desiccation. At the same time, through the sudden relaxation of the tension, the seeds are often shot out to a great distance (Tricoccae, etc.). In certain fruits not only curratures but torsions are produced as the result of changes in the amount of water they contain, e.g. Erodium gruinum (Fig. 200), Stipa pennata, Avena sterilis, by means of which, in conjunction with their stiff barb-like hairs, the seeds bury themselves in the earth.

The opening and closing of the involucre of many Compositae (Erigeron, Carlina, etc.) at the time of the ripening of the seeds, and the changes in the position of the pappus-hairs (T'araxacum, Tragopogon, etc.), are also due to hygroscopic movements resulting from variations in the amount of moisture in the atmosphere. In dry weather the pappus is spread out in the form of an umbrella, but in wet weather it closes up. The opening of anthers and sporangia, the rupture of moss-capsules, and the dissemination of the spores of the Equisetaceae, Hepaticae, and Myxomycetes are also effected by similar movements. Anthers and sporangia possess peculiarly thickened cells (fibrous cells, annulus), by the contraction of which their dehiscence is produced. The opening of the moss-sporangium is, in like manner, due to the hygroscopic movements of the teeth of the peristome, while the sporangia of the Liverworts are provided with specially thickened spiral bands (elaters), which, like the capillitia of the Myxomycetes, effect the discharge of the spores. In the case of the Equisetaceae the outer walls of the spores themselves (the perinium) take the form of four arms, which, like elaters, are capable of active movements, by means of which numbers of spores become massed together before germinating, and the isolation of the diœcious prothallia prevented.

In order to call forth imbibition movements the actual presence of liquid water is not necessary ; for, through their hygroscopicity, cell walls have the power of absorbing moisture from the air. They are hygroscopic, and for this reason the ensuing movements are also often termed lygroscopic movements.

2. Growth Curvatures

Movements from which curvatures result are, for the most part, produced by the unequal growth of living organs. The unequal growth is due, partly to internal causes which are still undetermined, and partly to the operation of external influences which can be positively demonstrated and defined. The movements resulting in the first case are spontaneous, and are called autonomic movenents or nutations; in the second case the movements are the result of external stimuli, and are distinguished as irritable or paratonic movenents.

Autonomic Movements are most plainly apparent in young actively-growing organs, although nutations have been shown to be
exhibited by all growing plants, as their tips do not grow forward in a straight line, but, instead, describe irregular elliptical curves. These movements, which Darwin termed circumnutations, while often not perceptible to the eye, are very noticeable in some special organs. The unfolding of most leaf and flower buds, for example, is a nutation movement which, in this instance, is induced by the more vigorous growth of the inner side of the young leaves. The same unequal growth manifests itself most noticeably in the leaves of Ferns and many Cycudeae. In the same manner, movements of nutation are caused in other lateral organs when growth is more energetic on either the upper side (epinasty) or on the lower side (hyponasty). From the nutation of the shoots of Ampelopsis quinquefolia a curvature is produced which continuously advances with the increased growth; so that, by means of its hooked extremity, a shoot is better enabled to seek out and cling to a support. When the unequal growth is not confined to one side, but occurs alternately on different sides of an organ, the nutations which result seem even more remarkable. Such movements are particularly apparent in the flower-stalk of an Onion or of Yucca filamentosa, which, although finally erect, in a half-grown state often curves over so that its tip touches the ground. This extreme curvature is not, however, of long duration, and the flower-stalk soon becomes erect again and bends in another direction. Thin and greatly elongated organs must, from purely physical reasons, quickly respond to the effects of unequal growth. The thread-like tendrils of many climbing plants, so long as they are in a state of active growth, afford excellent objects for the observation of nutation movements. If the line of greatest growth advances in a definite direction around the stem, its apex will exhibit similar rotatory movements (revolving nutation). This form of nutation is characteristic of the tendrils and shoots of climbing plants, and renders possible their peculiar mode of growth. The so-called revolving nutation of twining plants is not an autonomic movement, and will be considered later with the paratonic movements.

Paratonic Movements.-The phenomena of paratonic movements are of the very greatest importance to plant life, for through their operations the organs of plants first assume such positions in the air, or water, or in the earth as are necessary for the performance of their vital functions. A green plant which spread its roots over the surface and unfolded its leaves below ground could not exist, even though all its members possessed the best anatomical structure. The strongest roots would become dried up without the necessary absorption of water, and the leaves could not assimilate in the dark. The organisation and specific functions can have effect only when the root penetrates the soil. Similarly, the leaves are efficient only when exposed to air and light. Seeds are not always so deposited in the soil, with the embryonal stem directed upwards and the radicle down-
wards, that their different organs can, merely by direct growth, attain at once their proper position. A gardener does not take the trouble to ascertain, in sowing seed, if the end which produces the root is directed downwards or the stem end upwards, he knows that in any position the roats grow into the ground and the stems push themselves above the surface. Plants must accordingly have in themselves the power of placing their organs in positions best adapted to the conditions of their environment. That is only possible, however, when the externally operative forces and substances can so influence the growth of a plant that it is constrained to take certain definite directions.

The same external influences excite different organs to assume quite different positions. Through the influence of gravity, the taproot grows directly downwards in the soil, while the lateral roots take a more or less diagonal direction. The main stem grows perpendicularly upwards ; it, like the primary root, is orthorropic. The lateral branches, on the other hand, just as the secondary roots, assume an inclined position and are plagiotropic. The apical extremities of shoots are constrained to seek the source of light; the leaves, on the contrary, under the same influence place their surfaces transversely to the direction of the rays of light.

The different positions assumed by an organ when acted upon by external influences has been termed by Sachs anisotropy. In addition to the purely morphological structure of the plant body, anisotropy also determines essentially its external form and appearance.

That all these paratonic movements cannot result merely from the action of external forces alone will be at once recognised if it be taken into consideration that anisotropic but in other respects similar organs are affected differently by the same influences, and that even the same organs react differently at different ages ; and that, moreover, the external forces produce effects which bear no relation to their usual physical and chemical operations. It will, on the contrary, be at once apparent that they are rather the result of definite processes of growth, arising from an irritability to stimuli induced by external influences (cf. p. 161).

In order that external influences may produce such stimuli, plants must be sensitive to stimuli, that is, the stimuli must produce in them certain modifications with which, in turn, certain definite vital actions are connected. The precise manner in which an external influence produces an internal stimulation within an organism is not at present known. In order that an external physical force can operate as a stimulus, there must exist within the living substance definite structures or organs which are influenced by it. When the position of an organ is dependent upon the direction of an external influence, its sensitive structure must possess polarity. But for such a polar structure to be of any effect, it must have a definite orientation ; so it is necessary to assume that the directive stinuli are received by

THE RESTING PORTIONS OF THE PROTOPLASM, THAT IS, BY THE SURFACE LAYER. The movements of growth occasioned by external stimuli are, for the most part, movements in response to directive stimuli which lead to a definite position of the organ, relatively to the direction of the operative influence. The principal external stimuli that come into consideration are light (and electricity), heat, gravity, chemical influences (oxygen, nutritive substances, water, etc.), impact and friction.

As the points of greatest irritability in plants or their organs are often more or less removed from the points where the effect of the stimulation is manifested, a propagation of the stimulation must take place. Thus, a stimulus received by a non-motile organ may be conveyed to an organ capable of motion, and there produce movement. In the case of roots, for example, the geotropic stinmulus is received by the non-motile root-tip, while the movement is induced in the part of the root in process of elongation.

The capacity of organs to assume a definite direction by means of curvatures of growth is distinguished, according to the nature of the particular inciting stimulus, as heliotropism, geotropism, hydrotropism, etc. ; and these again are either positive or negative, according as the direction taken by the curvature is towards or away from the irritating stimulus; while plant organs which place themselves more or less transversely to the line of action of the operative forces are termed diatropic. As a special result of diatropism, a transverse position is assumed which is exactly at right angles to the direction in which the influence which acts as the stimulus is exerted. Dorsiventral organs, in particular, exhibit a tendency to assume diatropic and even transverse positions.

A. Heliotropism

The importance of light to plant life is almost incalculable. It is not only absolutely essential for the nutrition of green plants, but it has also a powerful effect upon the growth and general health of the plant organs. Deprived of light for any length of time, leaves and flowers usually fall off; fully developed, vigorous organs of green plants soon become yellow in the dark, and droop and die. Prolonged darkness acts like a poison upon those portions of plants accustomed to the light. On the other hand, exactly the reverse is true of plants or organs whose normal development is accomplished in darkness. Upon them the light has a most injurious, even fatal, effect, as may be easily observed in the case of Fungi and Bacteria. The hygienic importance of daylight in dwelling-places is due to the destructive action of light upon such forms of plant life. That some plants seek the light, while others avoid it, is not surprising in view of the adaptability which organisms usually exhibit in respect to the influences with which they come in contact in the natural course of their development.

A good opportunity for the observation of heliotropic phenomena
is afforded by ordinary window-plants. The stems of such plants do not grow erect as in the open air, but are inclined towards the window, and the leaves are all turned towards the light as if seeking help. The leaf-stalks and stems are accordingly positively heliotropic. In contrast with these organs the leaf-blades take up a position at right angles to the rays of light in order to receive as much light as possible. They are diaheliotropic, or transversely heliotropic, in the strictest sense (Fig. 201). If among the plants there should be one with aerial roots, Chlorophytum for instance, an example of NEGATIVE HELIOTROPISM will be afforded, as the aerial roots will be found to grow away from the window and turn towards the room.

For more exact investigation of heliotropic movements it is necessary to be able to control more accurately the source and direction

Fig. 201.-Heliotropic curvature of a seedling of Galium Aparinte, resulting from one-sided illumination; in 1 the apex is in a line with the direction of the light, the leaves at right angles to it; in 2 , with the illumination from the opposite direction, the same plant has quickly changed the position of its alex, while the cotyledons are only beginning to assume their heliotropic position. (Somewhat enlarged.)
of the light. This can be best accomplished by placing the plants in a room or box, lighted from only one side by means of a narrow opening or by an artificial light. It then becomes apparent that the direction of the incident rays of light determines the heliotropic position ; every alteration in the direction of the rays produces a change in the position of the heliotropic organs.

The apical ends of positively heliotropic organs will be found to take up the same direction as that of the rays of light.

The exactness with which this is done is illustrated by an experiment made with Pilobolus crystallinus. The sporangiophores of this Fungus are quickly produced on moist horse or cow dung. They are positively heliotropic, and turn their dark sporangia towards the source of light. When ripe these sporangia are shot away from the plant, and will be found thickly clustered about the centre of the glass covering a small aperture through which the light has been admitted; a proof that the sporangiophores were all previously pointed exactly in that direction.

Upon closer investigation of the manner in which the Positive

HELIOTROPIC CURVATURE of an organ is accomplished, it is found THAT the side turned towards the light grows more slowly, The side AWAY FROM THE LIGHT MORE RAPIDLY THAN WHEN ILLUMINATED From all sides. This may be readily shown by previously marking with Indian ink regular intervals from one to two millimetres apart on the opposite sides of the organ. After the curvature has taken place the intervals between the marks will be found to be much farther apart on the shaded side than on the side turned to the light. As compared with the elongation under normal conditions of growth, the marks on the illuminated side have remained nearer together, while those on the shaded side have drawn farther apart; that is, the growth in the case of a positive heliotropic curvature has been retarded on the illuminated side and promoted on the shaded side. It also becomes evident, from observation of the ink-marks, THAT CURVATURE TAKES PLACE ONLY IN THE PORTIONS OF STEMS STILL IN PROCESS OF GROWTH, AND THAT THE CURVATURE IS GREATEST Where the growth is most vigorous (Fig. 201). The curvature is then only a result of unequal growth induced by one-sided illumination.

It was formerly believed that the inereased growth of the shaded side was produced by the beginning of etiolation, and that the diminished growth on the illuminated side was due to the retarding effect whieh light exerts upon growth in length (p. 234). Other heliotropic phenomena were found to be at variance with this explanation of heliotropism. Unieellular perfectly transparent Fungus liyphæ are also subject to positive heliotropie eurvature, although in this instance there can be no shaded side; on the contrary, the side of a hypha turned away from the light is espeeially illuminated on account of the refraction of the light rays. The fact, too, that negative heliotropic curvatures also take place renders it evident that heliotropism cannot be due to one-sided etiolation; for in negative heliotropism the side most directly illuminated is the one that grows more rapidly, although the retarding effect of light on the normal growth in length of negatively heliotropic organs is equally operative (roots, rhizomorpha).

It is evident from these considerations that it is not the difference in the intensity of the light which causes the heliotropic curvatures, but the direction in which the most intense light rays enter the organs. Light acts as a motory stimulus when it penetrates an organ IN ANY OTHER DIRECTION THAN THAT WHICH CORRESPONDS WITH THE POSITION OF HELIOTROPIC EQUILIBRIUM.

The heliotropic curvatures are most strongly produced, just, as in the case of the heliotactic movements of freely moving swarmspores, by the blue and violet rays, while red and yellow light exerts only an extremely slight influence, or none at all. It is due to the fact that the red-yellow and blue-violet rays are always present together in daylight, that the heliotropism of the leaves is of advantage to their assimilatory activity.

Sensibility to heliotropic influences is, prevalent throughout the vegetable kingdom. Even organs like the roots of trees, which are
never under ordinary circumstances exposed to the light, often exhibit heliotropic irritability. Positive heliotropism is the rule with aerial vegetative axes. Negative heliotropism is much less frequent ; it is observed in aerial roots, and sometimes also in climbing roots (Ivy, Ficus stipuluta, Begonia scandens), in the hypocotyl of germinating Mistletoe, in many, but not all, earth roots (Sinapis, Helianthus), in tendrils (chiefly in those with haptera or holdfasts), and in the stems of some tendril-climbers. By means of their negative heliotropic character, the organs for climbing and attachment turn from the light towards their support, and are pressed firmly against it.

Negative heliotropie eurvatures are occasionally produced, not in the region of most rapid growth, but in the older and more slowly growing portions of the stem. The stems of Tropacolum majus, for example, exhibit positive heliotropic curvatures in the region of their greatest elongation; but lower down the stems, with the retardation of their growth, they become negatively heliotropic.

Transverse heliotropish is confined almost solely to leaves and leaf-like assimilatory organs, such as Fern prothallia and the thalli of Liverworts and Algae. In these organs transverse heliotropism, in conformity with its great utility for assimilating, predominates over all other motory stimuli. Thus it is possible to cause the leaf-blades of a Malva or a Tropacolum to turn completely over by illuminating their under surfaces by means of a mirror. The leaf-blades themselves, and also the thalli of the Cryptogams, are capable of carrying on transversely heliotropic movements, while the movements of the growing portions of leaf-stalks seem to be influenced by their leafblades.

In too bright light the transverse position of the leaves becomes ehanged to a position more or less in a line with the direetion of the more intense light rays. In assuming a more perpendieular position to aroid the direct rays of the mid-day sum, the leaf-blades of Lactuca Scariola and the North American Silplium laciniatum neeessarily take the direetion of north and south, and so are often referred to as compass plants. (As regards the vertieal position of phyllodes, in conneetion with which may be mentioned the vertically-placed leaves of many Myrtaceae and Proteacae, see p. 195.)

The heliotropic character of organs may change through the activity of external influences, and also at different stages of their development and growth ; just as in the case of the heliotactic swarm-spores, the higher plants in ordinary light may be positively, and in very intense illumination negatively heliotropic. The youngest portion of the shoots of Ivy and Tropucolum are positively heliotropic, while the lower and older portions turn away from the light. The flower-stalks of Linaria cymbalaria are at first positively heliotropic. After pollination, however, they become negatively heliotropic, and as they elongate they push their fruits into the crevices of the walls and rocks on which the plant grows, and thus assure the lodgment of the seeds and the possibility of their future germination.

B. Geotropism

That the stems of trees and other plants should grow upwards and their roots downwards, is such a familiar occurrence and so necessary for the performance of their respective functions as to seem almost a matter of course. Just as in the discovery of gravitation, it required an especially keen spirit of inquiry to lead to the investigation of this everyday phenomenon. The fact that everywhere on the earth, even on the sides of the steepest mountains, stems take a perpendicular direction ; and that, while buried in the earth, this same direction is assumed with certainty by germinating seeds and growing shoots; and chiefly the fact also that a shoot, when forced out of its upright position, curves energetically until it is again perpendicular, led to the supposition that the cause of these phenomena must be in a directive force proceeding from the earth itself. The correspondence in the behaviour of a stem in always assuming a perpendicular position, with the continued maintenance of the same direction by a plumb-line, suggested at once the force of gravitation, and the English investigator KNIGHT, in 1809 , demonstrated that the attraction of gravitation, in fact, exerted an influence upon the direction of growth. As Knight was not able to nullify the constantly operative influence of gravity upon plants and so directly prove its influence, he submitted them to the action of centrifugal force-an accelerative force operating like gravity upon the masses of bodies, and which had, in addition, the advantage that it could be increased or diminished at will. Knight made use of rapidly rotating, vertical wheels, upon which he fastened plants and germinating seeds in various positions. The result of his experiments was that the stems all turned towards the centre of the wheel and the roots directly away from it. On wheels rotating in a horizontal plane, where, in addition to the centrifugal force, the onesided action of gravitation was also still operative, the shoots and roots took a definite middle position ; the shoots and roots still grew in opposite directions, but their line of growth was inclined to the plane of rotation, at an angle dependent upon the rotating velocity. The position thus assumed was evidently the result of the combined action of the centrifugal force and gravity, which was manifested in the directions taken by the plants according to their comparative strength and respective influence on growth. In this way it was positively ascertained that terrestrial gravitation determines the positions of plant organs in respect to the earth.

Later, it was also shown that not only the perpendicular direction of stems and primary roots, but also the oblique or horizontal direction taken by lateral branches, roots, and rhizomes, is due to a peculiar reaction towards the force of gravitation.

The property of plants to assume a definite position with respect to the direction of gravitation is termed GEOTROPISM. It is customary
also, as in the case of heliotropism, to speak of positive and negative geotropism, diageotropism, and transverse geotropism, according to the position assumed by the plant or organ with respect to the centre of the earth. Still another form of geotropic irritability, lateral geotropism, renders possible the winding of stem-climbers.

Negative Geotropism. - All vertically upward growing organs, whether stems, leaves (Liliiflorae), flower-stalks, parts of flowers, or roots (such as the respiratory roots of Avicennas, Palms, etc.), are negatively geotropic. In case such negatively geotropic organs are forced out of their upright position, they assume it again if still capable of growth. As in heliotropism, GEOTROPIC CURVATURE RESULTS FRON THE INCREASED GROWTII OF ONE SIDE AND THE RETARDED GROWTH OF THE OPPOSITE SIDE ; and the region of greatest growth is, in general, also that of the greatest curvature. In negatively geotropic organs, growth is accelerated on the side towards the earth; on the upper side it is retarded. In consequence of the unequal growth thus induced, the erection of the free-growing extremity is effected. After the upright position is again attained, the one-sided growth ceases and the organ continues to grow in an upward direction.

The process of negative geotropic movement is dependent : (1) upon the vigour of the existing growth ; (2) upon the sensibility of the organ ; (3) upon the fact that the stimulus of gravity works most energetically when the apex of the orthotropic organ is removed about 135° from its position of geotropic equilibrium; the more nearly the zone capable of curvature approaches this position, the stronger is the motory stimulus ; (4) and, also, upon the fact that after a stimulus has ceased to act upon a plant, the induced stimulation continues to produce socalled After-effects, just as by a momentary stimulus of light an after-perception persists in the eye.

These considerations determine the actual course of the directive movement of geotropism, which, as will be seen from the adjoining figure (Fig. 202), does not consist merely of a simple, continuous curvature. The numbers $1-16$ show, diagrammatically, different stages in the geotropic erection of a seedling grown in semidarkness and placed in a horizontal position (No. 1). The growth in the stem of the seedling is strongest just below the cotyledons, and gradually decreases towards the base. The curvature begins accordingly close to the cotyledons, and proceeds gradually down the stem until it reaches the lower, no longer elongating, portions. Through the downward movement of the curvature, and partly also through the after-effect of the original stimulus, the apical extremity becomes bent out of the perpendicular (No. 7), and in this way a curvature in the opposite direction takes place. Thus, under the influence of the stimulus, the stem bends backwards and forwards, until, finally, the whole growing portion becomes erect and no longer subject to the one-sided action of the geotropic stimulus. (A good example of excessive curvature beyond the vertical is afforded by vigorously growing aerial shoots of Hippuris vulyaris.) Analogous phenomena to those here described are exhibited in the case of all paratonic curvatures of growth. In case of a different distribution and rapidity of growth, or of the unequal sensitiveness, rigidity, or thickness of the organ, as well as in the case of a difference in its position at the commencement of the curvature, the process, as indicated in the figure, is correspondingly modified.

Positive Geotropism, on the other hand, is observable in tap-roots, in many aerial roots, and in the leaf-sheaths of the cotyledons of many monocotyledons which penetrate the earth during germination. All these organs, when placed in any other position, assume a straight downward direction and afterwards maintain it. Formerly, it was believed that this resulted solely from their weight and the pliancy of their tissues. It is now known that this is not the case, and that positive geotropic, like negatively geotropic movements, are possible only through growth. The power of a downward curving root-tip to penetrate mercury (specifically much the heavier), and to overcome the resistant pressure, much greater than its own weight, proves conclusively that positive heliotropism is a manifestation of a vital process. Positive geotropic curvature is due to the fact that the growth of an organ in length is promoted on the upper side, and retarded, even more strongly, ON THE SIDE TURNED TOWARDS THE earth. A young germinal root of Vicia Fubu, growing vertically, elongated equally on all sides 24 mm . ; when placed horizontally, it exhibited a growth of 28 mm . on the upper and of only 15 mm . on the lower side. A root of Castanea resca, with a growth in a vertical direction of 20 mm. , showed, in a horizontal position, a growth of the upper side of 28 mm . and of the under of only 9 mm . In these experiments, by marking with Indian ink, the unequal elongation in the downward curvature may be demonstrated by the greater divergence of the marks on the upper than the lower side; it is also evident that, as in negative heliotropism, the curvature takes place in the regiou of greatest elongation (Fig. 203). As the portion of a root capable of elongation is very short, no excessive over-
curvature, as in the case of negatively geotropic stems, takes place.

Diageotropism.-Most lateral branches and roots of the first order are diageotropic, while branches and roots of a

Fig. 203. - Geotropic curvature of the root of a seedling of Vicia Faba. I, Placed horizontally ; II, after seven hours; III, after twenty-three hours; Z, a fixed index. (After Sachs.) higher order stand out from their parent organ in all directions. Diageotropic organs are only in a position of equilibriun when theil longitudinal axes form a definite angle with the line of the action of gravity. If forced from their normal inclination they return to it by curving. A special instance of diageotropism is exhibited by strictly horizontal organs, such as rhizomes and stolons, which show a strictly transverse geotropisin, and, if removed from their normal position, their growing tips always return to the horizontal. A more complex form of geotropic orientation is manifested by dorsiventral organs. These, in contrast to radial organs, such as most roots and stems, are not developed on a uniform plan on all sides, but show two usually externally perceptible different sides-a dorsal and a ventral side. The foliage leaves of most dicotyledons and zygomorphic flowers (Antirrhimum, Aconitum, etc.) furnish pronounced examples of dorsiventral structure. All such dorsiventral organs, just as radial organs that are diageotropic, form a definite angle with the direction of gravity, but are only in equilibrium when the dorsal side is uppermost. If, in spite of the proper inclination of the longitudinal axis, the dorsal side should lie underneath, it elongates until it comes back again into a dorsal position.

> A state of torsion often results from the orientation movements of dorsirentral organs to recover from abnormal positions. Similarly, a torsion must also, of necessity, occur when a geotropic organ, which has become curred orer toward its parent axis, turns itself about so as to face outwards (Exothoprss). The rotation of the ovaries of many Orchidaccae, of the flowers of the Lobeliaccac, of the leaf-stalks on all hanging or oblique branches, of the originally reversed leaves (with the palisade parenchyma on the under side) of the Alstroemeriae, and of Allium ursinum, all afford familiar examples of torsion regularly occurring in the process of orientation.

Stem-Climbers. - In addition to the better-known forms of geotropism already mentioned, stem-climbers exhibit a peculiar and only recently recognised geotropic movement, by means of which they are enabled to twine about upright supports. This movement depends upon the geotropic promotion of the growth of one side (not, as in negative or positive geotropism, of the upper or lower portions). Thus a geotropic curvature in a horizontal plane is produced (Lateral geo-

TROPISM), resulting in a revolving motion of the shoot apex. Stemclimbers occur in very different plant families; and although an upward growth is essential to their full development, which they do not attain if left on the ground, their stems are not able of themselves to maintain an erect position. The erect stems of other plants, which often secure their own rigidity only through great expenditure of assimilated material, are made use of by stem-climbers as supports on which to spread out their assimilatory organs in the free air and light. The utilisation of a support produced by the assimilatory activity of other plants is a peculiarity they possess in common with other climbers, such as tendril- and root-climbers. Unlike them, however, the stem-climbers accomplish their purpose, not through the use of lateral clinging organs, but by the capacity of their main stems to twine about a support. The first internodes of young stem-climbers, as a rule, stand erect. By further growth the free end curves energetically to one side, and assumes a diageotropic, more or less oblique or horizontal position. At the same time the inclined apex begins to revolve in a circle either to the right or to the left. This is the movement which it has been customary to speak of as "revolving nutation," but which it is better to term revolving movement. The expression "nutation" is not in this case correct, as by it are understood autonomic movements ; while THE REVOLVING MOVEMENTS OF STEM-CLIMBERS RESULT FROM THE EXTERNAL SIMULUS OF GEOTROPISM, which causes a promotion of growth in either the right or left side of the young internodes of the inclined shoot apex. As a result of this, a movement towards the other side is induced. On account of the direct connection of the apex of the shoot with the lower erect internodes, this revolving movement necessarily gives rise to a similar rotation of the revolving apex on its longitudinal axis. Through this rotation the torsion, which would otherwise be produced by the revolving movement of the inclined tip of the shoot, is released. (This process will at once become apparent by imitating' the movement with a rubber tube.) Thus the apex of a stem-climber sweeps round in a circle like the hand of a watch, and rotates at the same time like the axle to which the hand is attached. Through this rotation of the shoot apex, the part of the stem subjected to the action of the lateral geotropism is constantly changing; and the revolving movement once begun, must continue, as no position of equilibrium can be attained.

Without the constant and unchanging action of gravitation in determining the direction of the revolving movement, the twining of a shoot continuously about a support is hardly conceivable. It is accordingly not without reason that the revolving movement is a continuous, fixed, geotropic movement, and not an autonomic nutation without definite directive force. Lateral geotropism is a physiological requisite for the climbing, and the existence of stem-climbers as such is dependent upon this peculiar form of geotropism. To this dependence, however, is also due the fact that stem-climbers can only twine about upright or slightly inclined sup-
ports. This is, it is true, a limitation to their power of climbing, but one which is not without adrantage, for the plauts are thus constrained to ascend to freer light and air.

When an upright support occurs anywhere in the immediate neighbourhood of the apex of a climbing shoot it is sure to be discovered. The apical extremity, of which the movement is but little disturbed by the

Fig. 204.-Free coils formed by a shoot of Ipomoca purpurea. (From Detmer's Physiol. Pract.) leaves, which remain for a long time undeveloped, is forced by its lateral geotropism against the support, and byits next revolutions twines around it. If the support be thin, the coils, at first almost horizontal, are only loosely wound about it. Later they become more spiral, and so wind more tightly. This is accomplished by the ultimate predominance of negative geotropism in the coiled portions of the stem, which tends continually to draw out the coils and make the stems upright. This action of negative geotropism is well shown in the case of shoots which have formed free coils without a support (Fig. 204). By the resistance offered by the supports to the complete elongation of the spiral stems, the shoots are held firmly in position. In many twining plants the roughness of their surfaces (due to hairs, bristles, hooks, furrows) also assists in preventing the shoots sliding down their supports. The autonomic torsion arising in the older portions of the stems is also of assistance in holding climbing plants, especially those with furrowed stems, tightly wound about their supports. The twining of stemclimbers, as well as the attachment to their supports, is due to geotropic processes of growth, and not, as in tendril-climbers, to contact stimuli.

In addition to the autonomic torsions, a torsion from purely mechanical causes is necessarily manifested in the elongation of the coils of a twining stem which are at first nearly horizontal, so far at least as it is not equalised by the free movement of the apex. (To make this form of torsion apparent, it is only necessary to hold firmly the inner end of a horizontal coil of rubber tubing, and draw out the other end until the tube is straight. If a mark has previously been drawn along one side, say the convex side of the tube, its position, after the tube has been extended, will show clearly the actual torsion that has taken place.)

From their manner of winding, stem-climbers can twine only around slender or, at the most, moderately thick supports. Here again is a limitation to their powers of climbing ; but in this instance also the limitation has its advantages, for by climbing the trunks of large shade trees, these plants, which require the unobstructed light, would be placed in an unfavourable position.

The direction of the revolving movements, and accordingly also of the windings, of most stem-climbers is constant. The twining stems are for the most part sinistronse (Comrolvulus, Phaseolus, Pharbitis, etc.). Seen from above, the windings run from the north towards the west ; that is just the reverse of the movement of the hands of a watch. Viewed from the side, the windings ascend the support from the left below to the right above (Fig. 205). Dextrorse stem-climbers with

Fig. 205.-A sinistrorse stem-climber, Pharbitis hispidn. The upper leaves remain small for a long time.

Fig. 20t.-A dextrorse stem-climber, Mrrsiphyllum asparagoides. The short lateral shoots have developed phylloclarlia.
windings from east to west occur less frequently (Hop, Honeysuckle, Polygonum Conrolvulus, etc.). In the example chosen for illustration (IIyrsiphyllum asparayoides, Fig. 206) the undeveloped condition of the lateral members in comparison with the elongated internodes of the stem is very apparent. A very few plants, such as Blumenbachia lateritia, Hibbertia dentata, and Scyphantus, seem able to climb equally well either to the right or to the left. A similar irregularity is shown in Solamum Dulcamara, which, however, rarely winds, and then only under special circumstances.

When the apex of a sinistrorse shoot points towards the north, it is the east side of which the growth is promoted by geotropism; in dextrorse climbers, on the contrary, the growth of the west side is more rapid. That the same stimulus affects in different plants the growth of opposite sides, may be explained by the difference in the arrangement of their irritable structures (through their reversed position) within the organ. From the fact that the promotion of growth occurs always on the same side, it will be apparent that the apex of an inverted twining stem must unwind from its support. (Concerning the behaviour of stem-climbers on the Klinostat, compare p. 264.)

Curvature of Grass-Haulms.-All the examples of geotropic movements, so far observed, took place in the growing portions of plants, and whether occurring in unicellular or multicellular organs, were due to a disturbance of the course of growth. A curvature even of lignified twigs can also be produced by the one-sided stronger growth of the cambium and of the young secondary tissues. Even many-year-old branches of Conifers are all able, although slowly, to exhibit geotropic curvatures. The nodes of grasses show that resting tissues also can be excited to new growth by the stimulus of gravitation. The knot-like swellings on the haulms of the Grasses are not nodes in a morphological sense, but are cushion-like thickenings of the leaf-sheaths above their actual insertion on the shoot axis. The part of the stem thus enveloped is very tender and flexible. When a grass-haulm is laid horizontally, which not unfrequently occurs through the action of the wind or rain, the nodes will begin to exhibit an energetic growth on their lower sides. As the upper sides of the nodes take no part in the growth, but are instead frequently shortened through pressure and

Fig. 207.-Geotropic erection of a grass-haum by the curvature of a node. 1, Placed horizontally, both sides ($u, 0$) of the node being of equal length; 2 , the under side (u) lengthened, the upper side (o) somewhat shortened; as a result of the curvature the grass-haulm has been raised through an angle of 75°. loss of water, knee-like curvatures are formed at the nodes, by means of which the haulm is again quickly brought to an erect position (Fig. 207). In this way laid corn is able to right itself. Similar curvatures to those of the grass nodes may be produced in the true nodes of the grasslike Dianthi, and of the Polygonaceae (Polygonum, Rumex) and Commelinuceae (Trade:cantia).

Modifications in the character of the geotropism, as of the heliotropism, of an organ may be occasioned by the operation of internal as well as external influences. Such changes in their geotropic position frequently occur, as Vöchting has demonstrated, during the development of flower-buds, flowers, and fruits (buds and flowers of Paparer, flowers and fruits of Aquilegiu, Delphinium, Aconitum, and in the burial of the fruit of Trifolium subterrancum, Arachis hypogaea, etc.).

Of the changes in the geotropic conditions of plant organs due to external causes, those are particularly noticeable which result from a failure of a sufficient supply of oxygen, by which, for example, roots and rhizomes are made negatively geotropic. And even more important are the modifications arising from the action of light, by which the geotropic irritability of rhizomes and foliage leaves may be so modified or weakened as to permit of more advantageous heliotropic positions.

C. Hylrotropism, Caloritropism, Thermotropism, etc.

Whenever any external force or substance is important to the vital activity of a plant or any of its organs, there will also be found to be developed a corresponding irritability to their influences. Roots in dry soil are diverted to more favourable positions by the presence of greater quantities of moisture. The force of this Positive hydroTROPISM may be so great as to overcome the geotropic equilibrium of the roots, and thus give rise to hydrotropic curvatures. Conversely, the sporophores of many mould Fungi avoid moisture. To this property is due the fact, so advantageous for the distribution of the spores, that their sporangiophores grow directly away from a moist substratum. Corresponding to the chemotactic irritability of Bacteria and spermatozoids, roots, fungus hyphæ, and pollen tubes exhibit positive and negative CHEMOTROPIC CURVATURES. These vary according to the concentration of the solution, so that an attractive substance, at a higher concentration, may act repulsively. Thermotropism (due to the stimulus of heat), Rheotropism (occasioned by the direction of water currents), and Aerotropism, a form of chemotropism, are additional phenomena, which have been distinguished as arising from the special action of external stimuli, and which stand in direct relations to certain vital requirements of plants.

In the case of electropism, which has also been demonstrated in plants, no such essential relations have been discovered ; the disposition of plant organs in a direction contrary to that of an electric current, seems in no way to affect their growth. The fact of the existence of electropism in plants shows clearly that an irritability may be present, from which no direct benefit is ordinarily derived, and which accordingly could not have been attained by natural selection.

D. The Method of Slow Rotation-The Klinostut

All the curvatures of growth previously discussed have been induced by the one-sided action of stimuli, the source of which determined the direction of the movements as well as the position of equilibrium. An influence operating equally on all sides is unable to produce a curvature in an organ of which the irritability is equally developed on all sides. In like manner no curvatures can take place when the plant is
uniformly rotated, with a velocity sufficient to preclude the continuous operation of a stimulus on any one point long enough to occasion a one-sided growth. As in that case, no one side will be exclusively acted upon, but the growth of all will be equally promoted or retarded ; the action of external influences, although exerted in only one direction, will be equalised. On this account the "method of slow rotation," originally instituted by SACHS, is of great assistance in the observation and investigation of the phenomena of movements. By means of it, heliotropic movements due to one-sided illumination may be prevented without the necessity for either exposing the plants to the injurious effects of continued darkness, or providing for an equal illumination on all sides. This method is, moreover, of especial value in investigating the movements due to the action of gravitation, for it is not possible to exclude its influence, as it is those arising from light, definite temperature, oxygen, etc.

When plants are slowly rotated on a horizontal axis, the one-sided action of gravitation is eliminated and geotropic curvature is thus prevented in organs which react equally on all sides. The rotations are best produced by the kinostat, an instrument by means of which an exactly horizontal axis is rotated by clock-work. That geotropic curvatures of radial organs are, in fact, precluded by means of the klinostat, furnishes a remarkable corroboration of the result of Knight's experiments, and may also be regarded as a further proof that such curvatures are due to terrestrial gravitation. Through the equalisation of the action of external directive influences, radial portions of plants exhibit on the klinostat only such movements as arise from internal causes. The most important of these autonomic movements are those resulting in epinastic and hyponastic curvatures (p. 249), and the retrogression of recently formed paratonic curvatures through longitudinal extension (autotropism).

Such autonomic movements should not be coufused with those exhibited by dorsiventral organs on the klinostat, in consequence of the unequal irritability of their different sides. Through the special irritability of the dorsal side (p .258) of foliage leaves and zygomorphic flowers, it is during their rotation more strongly acted upon by geotropic influence than the ventral side ; as a result of this curvatures are produced which so closely resemble those resulting from epinasty that they were for a long time actually considered as such. When stem-clinibers are rotated on the klinostat, their revolving movement ceases, the part of the stem capable of growth unwinds and straightens, and afterward exhibits only irregular mutations. It is thus evident from their behaviour that their winding and particularly their revolving movements are dependent upon geotropism.

E. Curvatures induced by Contact Stimuli

The protoplasm of plants, like that of animals, exhibits an irritability to contact, whether momentary or continuous. This is apparent,
not only from the behaviour of the naked protoplasmic bodies of spermatozoids, swarm-spores, plasmodia, and amœbæ, but also from the reactions manifested by walled cells and by whole organs, the functions of which may be so disturbed by the action of mechanical stimuli that death ensues.

The almost universal irritability of vegetable protoplasm to mechanical stimulation is utilised by a number of plants for the production of movements which lead to their ultimate attachment to the irritating body. Tendril-climbers, in particular, have developed this irritability to contact stimuli as a means of attaching themselves to supports ; and in that way are enabled to elevate their assimilating and also their reproductive organs into more favourable situations. In the case of twining plants which possess similar powers of climbing, the process of elevation, as has already been shown, is accomplished by means of the geotropic irritability of the stems themselves. In the case of tendril-climbers, on the contrary, the attachment to the support is effected, not by the main axis of the plant, but by lateral organs of different morphological claracter. These may either maintain, at the same time, their normal character and functions, or, as is usually the case, become modified and as typical tendrils serve solely as climbing organs. The support operates, moreover, not as a hindrance to a movement previously induced, as in the case of stemclimbers, but itself produces curvature in the tendrils in consequence of contact or friction. The contact of a tendril with a solid body acts upon its growth in such a way that the elongation of the contact side is arrested, while that of the opposite side is promoted. As a result of this, a sharp curvature of the tendril ensues, which coils it about the support. The more slender the tendrils and the stronger their growth, the more easily and quickly this process occurs. Through the tendency of the curvature to press the tendrils more and more firmly against the support, deep impressions are often made by them upon yielding bodies, soft stems, rubber tubing, etc.

In the more typically developed tendrils the curvature does not remain restricted to the portions directly subjected to the action of the contact stimulus. Apart from the fact that, in the act of coiling, new portions of the tendrils are being continually brought into contact with the support and so acted upon by the stimulus, the stimulation to curvature is also transferred to the portions of the tendril not in contact with the support. Through the action of the propagated stimulus, not only is the free apex of the tendril turned more quickly around the support, but a tendency to curvature is imparted to the portion of the tendril between the support and the parent shoot. As it extends between two fixed points, this tendency causes it to coil spirally, like a corkscrew. With the spiral coiling, a torsion is produced, and, on account of the fixed position of the two end
points, it cannot be exerted in one direction only, the spiral, for purely mechanical reasons, coils partly to the left and partly to the right.

Points of Reversal (x)

Fig. 208.--Portion of a stem of Sicyos angulatus with tendril ; x, point of reversal. thus occur in the windings which, in equal numbers to the right and to the left, equalise the torsion (Fig. 208). Through the spiral coiling of the tendrils the parent-stem is not only drawn closer to the support, but the tendrils themselves, through their consequent elasticity, are enabled to withstand the injurious effects of a sudden shock.

Advantageous changes also take place in the anatomical structure of the tendrils after they are fastened to the supports. The young tendrils, after their elongation, exhibit active nutations, and thus the probability of their finding a support is enhanced. During this time they remain soft and flexible, while the turgor rigidity of their apices is maintained only by collenchyma. In this condition they are easily ruptured, and have but little sustaining capacity. As soon, however, as a support is grasped, the coiled-up portion of the tendrils thickens and hardens, while the other part lignifies, and becomes so strengthened by sclerenchymatous formations that the tendrils can finally sustain a strain of many pounds. When the tendrils do not find a support they usually dry up and fall off, but in some cases they first coil themselves into a spiral.

The tendrils of many plants (Cobcca, Cissus) are irritable on all sides; others, on the contrary, on only the lower side (tendrils of Cucurbitaceac and others with hooked tips) ; while others possess extremely sensitive shoots (Nutisia). In some cases the tendrils quickly coil themselves to the support, but others coil more slowly (Passiffora, Sicyos, Bryonia); while in other tendrils the supports are very slowly grasped (Smilax, Vitis).

According to Pfrffer's investigations, it is of great importance to the tendrils in the performance of their functions that they are not induced to coil by every touch, but only through contact with the uneven surface of solid bodies (as thus adjacent cells become unequally affected). Rain-drops consequently never act as a contact stimulus ; and even the shock of a continued fall of mercury produces no stimulation. Tendril-climbers are not, like twining plants, restricted
to nearly vertical supports, although, on account of the manner in which the tendrils coil, they can grasp only slender supports. A few tendrilclimbers are even able to attach themselves to smooth walls. Their tendrils are then negatively heliotropic, and provided at their apices with small cushion-like outgrowths, which may either develop independently on the young tendrils (Ampelopsis Veitchii), or are first called forth by contact irritation (Ampelopsis hederacea). Through their sticky excretions these cushions become fastened to the wall and then grow into disc-like suckers, the cells of which come into such close contact with the supporting wall that it is easier to break the lignified tendrils than to separate the holdfasts from the wall. Fig. 209 represents the tendrils of Ampelopsis Veitchii (Vitis inconstans). The suckers occur on its young tendrils in the form of knots. In Ampelopsis hederacea the suckers are only produced as the result of contact, and the tendrils of this plant require thin supports.

Sometimes, as in the case of Lophospermum scandens (Fig. 210), the leaf-stalks, although bearing normal leaf-blades, become irritable to contact stimuli and function as tendrils. Of leaf-stalks which thus act as tendrils, good examples are afforded by Tropueolum, Meurandia, Solumum jasminoides, Nepenthes, etc. The subsequent modifications occurring in more perfectly developed tendrils are not noticeable in the case of petiolar tendrils, although the coiling portion of the leaf-stalks of Solanum jasminoiles do become strongly thickened and lignified; while the leaf-blades of Clematis, by remaining small for a time, enhance the tendril-like character of their

Fig. 209.-Portion of a climbing shoot of Ampelopsis I'eitchii (Vitis inconstans). The tendrils (R) have fastened themselves to a suooth wall by means of holdfasts. leaf-stalks, and by bending backwards also assist in maintaining the initial contact with a support. At other times the midribs of the leafblades themselves become prolonged, and assume the function of tendrils (Gloriosa, Littonia, Flayellaria). In many species of Fumaria and Corydalis, in addition to the leaf-stalks, even the leaf-blades of the leaflets twine around slender supports, while the parasitic shoots of Cuscuta (Fig. 185) are adapted for both twining and climbing.

F. Curvatures of grouth due to Variations in Light and Temperature

The flowers and foliage leaves of many plants exhibit the peculiarity that their different sides (the upper and under sides of foliage-leaves and
leaf-stalks, the inner and outer sides of floral leares) show an unequal growth in response to even transitory and slight variations in temperature and in the intensity of light. Whenever, on account of such variations, the growth of the under side of a leaf exceeds that of the upper side, the whole leaf moves upwards and towards the parent axis; while if the growth of the upper side is the stronger, the leaf is depressed.

Movements of this nature are especially noticeable in flower-leares,

Fig. 210.-Lophospermum scandens climbing by means of its tendril-like petioles.
and bring about the opening and closing of the flower. A rise of temperature causes the flowers of the Tulip and Crocus, and also those of Aloniz, Ornithogalum, and Colchicum, to open, while sudden cooling causes them to close. Tulips and Crocuses, if brought, while still closed,

Fig. ㄹ⒒ - Composite flower of Leontorlon hastilis, closed when kept in darkness, open when illuminated. (From Detmer's Physiol. Proct.) into a warm room, open in a rery short time; with a difference of temperature of 15 $20^{\circ} \mathrm{C}$., in from two to four minutes. Crocuses respond to an alteration in temperature of $\frac{1}{2}^{2}$ C.; Tulips to a variation of $2^{\circ}-3^{\circ}$ C. In warm sunshine the spring or summer flowers are open for the visits of insects, but on a lowering of temperature the sexual organs are covered up and protected. The stronger growth of one side occurs in this case either at the base or upper part (Colchicum) of the perianth leares.

The composite flowers of Taraxacum, Leontodon, and other Composites, also the flowers of Nymphaea, Cacti, etc., open when illuminated, and close when kept in darkness (Fig. 211). Variation of light produces also unequal growth in foliage-leaves, particularly in those of the Chenopodiaceae, Caryophyllaceae, and Balsaminaceae, and cause them to assume so-called sleep positions.

In many instances the morements of the floral leaves are produced by variations of light as well as of temperature ; for example, the flowers of the Tulip and Crocus open in the light and close in the dark, although the temperature remains constant. In the case of opposing external influences, the resulting direction of the movement of the flower-leaves is determined by the one which is predominant. The dependence of these movements upon different, and often opposing, influences, together with the continuance of movements induced by previously operative influences (after-effects, pp. 256,272), was for a long time a difficult problem, and obscured the discovery of their true cause.

These movements, occasioned by variations in the illumination and temperature, must not be confused with those of heliotropism and thermotropism ; in both of which the movement induced in an organ is dependent upon its relative position with respect to the source of the light or heat, and not upon the varying intensity of the stimulus.

3. Movements due to Changes of Turgor (Movements of Irritability)

The various movements hitherto considered are, to a large extent, the result of the action of forces acting on growth. These movements were therefore confined to organs, or parts of organs, still in a state of growth. In contrast to the almost universal immobility of all fully-grown organs, it is particularly interesting to find that some plants have found a means of carrying on vigorous movements without the assistance of growth.

It has already been shown (p. 166) that through the pressure of increasing turgidity the elastic cell walls become greatly distended and the cell cavity largely expanded, while, on the other hand, the cell walls shrink and the cell becomes smaller when the turgor is diminished (Fig. 167). It is to these changes in volume, which thus result from alterations in turgor, that the varying movements of fully-developed living organs are due.

Such variation movements occur only in leaves (foliage and flower leaves). These movements are especially noticeable in the compound leaves of the Leguminosue and Oxalideae, and also in the leaflets of Marsilia (a water-fern). In the motile regions of these leaves special masses of tissue are, both physiologically and anatomically, adapted for the promotion of this form of movement.

This tissue appears externally as a firm cushion or pelvines, sharply distinguished from the rest of the leaf-stalk, and is the direct cause of the leaf more-
ments. Anatomically considered, the pulvinus consists, for the most part, of strongly turgescent parenchyma with very elastic cell walls. The vascular bundles and mechanical elements, which, in other portions of the leaf-stalk, have an approximately circular arrangement, unite in the pulvinus in the form of a single flexible strand, and so offer little opposition to the movement of the leaf resulting from the curvature of the motile region (cf. Fig. 165, i). The parenchyma of the pulvinus forms a thick enveloping layer about this axial strand, by means of which, through the pressure arising from a difference in the turgescence of its opposite sides, a movement of the whole leaf-blade is brought about, similar to that of the outspread hand by the motion of the wrist.

These variation movements are either autonomic, when the variations of turgor are due to no recognisable external influence, or paratonic, when the turgor is regulated in a definite way by the action of external stimuli.

Autonomic Variation Movements.-A remarkable example of this form of movement is furnished by the small lateral leaflets of Desmodium (Hedysurum) gyrans, a papilionaceous plant growing in the damp Ganges plains. In a moist, warm atmosphere $\left(22^{\circ}-25^{\circ}\right)$ these leaflets make circling movements which are in no way disturbed by variations in the intensity of the light, and which are of such rapidity that their tips describe a complete circle in 1-3 minutes. The autonomic variation movements of Trifolium and Oxulis take place, on the contrary, only in darkness. Thus the terminal leaflets of Trifolium pratense exhibit oscillatory movements in the dark with an amplitude which may exceed 120°, and are regularly repeated in periods of $2-4$ hours ; but on exposure to light the leaflets cease their oscillations and assume a fixed light position.

Paratonic Variation Movements are chiefly induced by variation in the intensity of the light, by the stimulus of gravitation, and by mechanical irritation (shock, friction), and also, but more rarely, by variations of temperature. The pulvini of leaves may be affected by sereral different stimuli; the leaves of Mimosa pudica, for example, are set in motion by the action of light, and also by the stimulus of a shock, and in addition, exhibit autonomic movements.

A change from light to darkness, as from day to night, occasions nyctitropic movements, or the so-called sleep movements. In the day or light position, which is the same as that of diaheliotropic foliageleaves, the leaf-blades are perpendicular to the incident rays of light. With the commencement of darkness the leaves or the single leaflets fold either upwards with their upper surfaces inward, or downwards with their lower surfaces together, and so remain until the diurnal position is again assumed on recurring illumination. The turgor of the whole motile organ of the Bean, for instance, increases with darkness, but in the upper half more ($4-5$ atmospheres) than in the lower; while the turgor of the motile organ is decreased by illumination, the upper half in particular loses the rigidity acquired by the tissue-
tension, and, in consequence of the resulting superior pressure of the lower halt, the leaf is raised again to its diurnal position.

According to Darmin, the leaves are protected from too great a loss of heat by radiation by the assumption of the nocturnal position. This loss of heat may sometimes be very considerable, so much indeed, that nyctitropic leaves, forcibly retained in their diurnal position, were frozen, while adjacent "sleeping" leares sustained the night temperature without injury. As sleep morements are also manifested by plants growing in tropical climates, where no injurious noeturnal diminution of temperature oceurs, the advantage acerving from the sleep position in the previons instance is not explanatory of the nyctitropic behariour of leares in all cases. Sleep movements are garticularly noticeable in Pinsodus, Trifulium, Podiun, Acacio leghantion, -f mina sypuersis Fig. 2l?). Mimess puilier. etc.

Tow intense light frequently causes the change from the diurnal

position, and a movement either towards or away from the nocturnal position. The leaflets of the common Locust (Robivin psendacurie) are iolded downwards at night. In ordinary diffuse darlight they assume their diurnal. ontspread position ; but. if exposed to the direet rays of the mid-day sum, they turn obiliquely upwards.

 Ir the help of getropic rariation morements Ptase

The change from the diurnal to the nocturnal position continues for a time to take place, even in constant darkness or prolonged illumination. The leares themselres seem to have a tendeney to pass at regular intervals from one condition to the other. The daily periods are the result of the stimulus imparted by the light, the periodic action of which induces the regalar changes of position. If, howerer, the external stimulus ceases to operate, the internal disposi-
tion still continues for some time to give rise to visible after-effects (pp. 256, 272), until finally, from the abnormal conditions, an abnormal state of rigour (light rigour, dark rigour) and symptoms of disease are manifested.

Only a few plants respond with pronounced variation movements to mechanical irritation (shock, friction, injury). Formerly, these alone were considered irritable plants, as in the regetable kingdom only the apparent mechanical irritations, from which visible movements resulted, were then regarded as stimuli.

Of irritable plants in this sense, mention has already been made of Dionaea muscipula (p. 215), whose leaves when touched on the upper side, especially if the bristles are disturbed, fold together. The most

Fig. 213.- Mimosa pudica, with leaves in normal, diurnal position; to the right, in the position assumed on stimulation : B, flowers.
familiar example of this irritability to mechanical stimuli is furnished by Nimosa pulica, a tropical leguminous shrubby plant, which owes its name of sensitive plant to its extreme sensitiveness to contact. The leaves of this plant are doubly compound (Fig. 213). The four secondary leaf-stalks, to which thickly-crowded leaflets are attached left and right, are articulated by well-developed pulvini with the primary leaf-stalks; while they, in turn, as well as the leaflets, are similarly provided with motile organs. Thus all these different parts are capable of independent movement, and the appearance of the entire leaf becomes, in consequence, greatly modified. In their unirritated, light position (Fig. 213, on the left) the leaf-stalk is directed obliquely upwards, while the secondary petioles with their leaflets are extended almost in one plane. Upon any vibration of the
leaf, in favourable conditions of temperature ($25^{\circ}-30^{\circ} \mathrm{C}$.) and moisture, all its parts perform rapid movements. The leaflets fold together, and, at the same time, move forward, the secondary petioles lay themselves laterally together, while the primary leaf-stalk sinks downwards (Fig. 213, on the right). Leaves thus affected, if left undisturbed, soon resume their former position.

The behaviour of the leaves is still more marvellous when only a few of the leaflets are acted upon by the stimulus. This is easily demonstrated by holding a burning match near the leaflets of one of the pinnæ. The leaflets directly affected by the flame fold quickly upwards, and this movement is performed successively by each pair of leaflets of the pinna until the articulation with the primary leaf-stalk is reached. The stimulation is then conveyed to the other pinnæ, the leaflets of which go through the same movement in a reverse order ; finally, the secondary petioles themselves draw together. Suddenly, when the whole process seems apparently finished, the main leaf-stalk in turn makes a downward movement. From this leaf the stimulus is able to travel still further through the stem, and it may thus induce movement in leaves 50 cm . distant.

The movements of the pulvini are due solely to differences in turgidity. It has been observed that a sudden escape of water into the intercellular spaces takes place out of the cells of the lower or irritable side of the pulvinus of the primary leaf-stalk. According to the recent investigations of Haberlandt, the conduction of the stimulus does not appear to be accomplished by the movement of the water thus discharged, but by the mucilaginous contents of sacs which are situated in the phloem portion of the vascular bundles, and which are easily affected by variations in the hydrostatic pressure.

The position of an irritated leaf resembles externally its sleep or nocturnal position, but in reality the turgor tension of the pulvinate motory organ is different. In the nocturnal position the turgor in the different sides of the pulvinus is unequally increased, and its rigidity, as a whole, is therefore increased ; in the position assumed after a shock the turgidity of the upper and lower sides is unequally diminished, and as a result of this process the pulvinus loses its rigidity.

Robinia, Oxalis acetosella and Biophytum (Oxalideae) exhibit similar, although less active, movements, under the influence of mechanical stimuli.

The state of rigour sometimes occurring in motile organs may also be best observed in Mimosa, for, although so sensitive to the action of external influences, it does not exhibit its irritable movements at all times. Whenever the temperature of the surrounding air falls below a certain degree, no movements take place and the whole plant passes into a condition known as COLD RIGOUR, while, on the other hand, at a temperature of about 40°, heat rigour occurs. Drought RIGOUR is induced, just before wilting, by an insufficient supply of water, and a dark rigocr by a prolonged retention in darkness.

In a vacuum, or on exposure to hydrogen and other gases-chloroform vapour, etc.-movement also ceases, partly on account of insufficient

Fig. 214. - A single flower of Centaurea jucea with perianth removed: A, stamens in normal position; B, stamens contracted; c, lower part of tubular periantli; s, stamens ; a, anther-tube ; g, style; P, pollen. (After Pfeffer, enlarged.) oxygen, and partly from the actual poisonous action of the gases themselves. If the state of rigour is not continued too long, the original irritability will again return on the restoration of normal conditions.

The movements of irritability exhibited by the staminal leares of some Berberidaceae (Berberis, Mahonia) and Compositae (Cynareae and Liguliforcae) bear a certain relation to those of foliage leaves. The bow-shaped filaments of the stamens of the Compositae straighten upon mechanical irritation. As they frequently contract $10-20$ per cent of their length, the style becomes extended beyond the anther-tube (Fig. 214). The reduction in the length of the filaments is accompanied by a moderate increase in their thickness, due to the elastic contraction of the cell walls, and the consequent expulsion of water into the intercellular spaces. The stamens of Berberis and Mahlouia are only sensitive to contact on the inner side near their base, and as their contraction occurs only on the inner side, the anthers are thus brought into contact with the stigma. Examples of variation movements of carpellary leaves may be seen in the flowers of Mimulus, Strobilenthes (Goldfussia), Mertynia, Torenia, and other plants. The two lobes of the styles of these flowers fold together when irritated. Similarly, in the flowers of Stylidium, a sudden upward movenent of the bent style occurs when it is irritated by a touch ; but the style then loses its sensitiveness.

VI. Reproduction

The life of every plant is of limited duration. Death ensues, sooner or later, and the decayed remains form a part of the surface soil. All existing plants are descended from ancestral forms. A spontaneous generation of new organisms from lifeless matter does not, as far as experience teaches, take place, and all existing vegetable life owes its existence to the capacity inherent in all organisms of reproducing their kind. Reproduction is accordingly a vital power which must be exercised by every existing plant species. In special cases, it is true, abnormal forms, sports or monstrosities, are produced unlike their parent plants ; but although they grow vigorously and develop a strong vitality, they have lost the capability of giving rise to equally strong descendants, or are unable to compete successfully
with wild plants in the struggle for existence, and consequently would soon die out were they not protected and multiplied by artificial means. A great number of our cultivated plants belong to this class of artificially maintained plant forms.

It is also evident from the very nature of reproduction that in the production of new organisms a process of rejuvenation is continually being carried on.

The formation of independently existing offspring necessitates also their separation from the parent plant. The formation of a new bud by a tree would never be distinguished as reproduction so long as the bud remained in connection with the tree as a part of its life. But if the bud became separated from the tree and continued its existence as an independent plant, that would constitute a form of reproduction, and, in fact, this actually takes place in many plants.

The conditions of the outer world make the still further demand upon reproduction, that from it a multiplication of the species should result. As the germs after separation from the mother plant do not always find the conditions necessary for their development and so, for the most part, perish, the extinction of the whole species would soon result if a plant produced but a single germ. That in reproduction care is taken for the multiplication of the individual in an almost spendthrift manner, is shown by a consideration of the innumerable spores produced by a single mushroom, or by the thousands of seeds contained in the fruit capsule of an orchid.

Separation, rejuvenation, and multiplication of the individual are accordingly the essential requisites of reproduction.

These requirements are fulfilled by plants in the most varied manner. Each great division of the vegetable kingdom has adopted its own special method; and each family and genus, or even the different species, are characterised by some peculiar feature of their manner of reproduction. Systematic botany is so essentially based upon the different development of the reproductive organs and their functions, that it consists for the greater part of special descriptions of the processes of reproduction in the vegetable kingdom.

Numerous and varied as these processes are, they are in reality but modifications of two different and distinct modes of reproduction.

The simpler of these, or Tegetative Reproduction, consists in the formation of cells or cell bodies which, after their separation from the parent plant without undergoing any further change, either germinate at once, or develop into new organisms after a period of rest. This mode of reproduction, in which the growth and development of the parent plant are directly continued, is also distinguished as monoGENETIC, VEGETATIVE, or ASEXUAL reproduction.

In Sexual Reproduction, the second of the two modes of propagating vegetable life, two kinds of reproductive cells are first formed, but neither is directly capable of further development, and both perish in
a very short time, unless opportunity is given for their fusion with each other. Not until one cell (the female) has fully taken up and become inseparably united with the other cell (the male), does it acquire the capacity of derelopment and growth. This mode of reproduction is designated sEXUAL or DIGENETIC reproduction.

The physiological significance of sexual reproduction is not at once apparent. In many plants the vegetative mode of reproduction is sufficient to secure the necessary multiplication of the species, so that plants are able to continue without sexual reproduction. Many Fungi, for instance, are reproduced only regetatively; the cultivated Banana, many Dioscorenceae, and varieties of the Grape, Orange, Strawberry, no longer reproduce themselves sexually, but are propagated solely in a vegetative manner. The Garlic, which forms small bulbs in place of flowers, the White Lily, and Pemunculus Ficairia, which reproduces itself by root tubers, are hardly able to produce good seeds. They multiply exclusively by asexual methods without suffering any degeneration. Continued reproduction by vegetative means used to be regarded as necessarily injurious.

Since monogenetic reproduction is sufficient for the preservation of the species, sexual reproduction must answer some purpose not attained by the regetative mode of multiplication, for otherwise it would be altogether superfluous that the same plant, in addition to the regetative, should also possess the sexual form of reproduction, which is so much more complicated and less certain. Even the Mould Fungus (Incor Mucelo), whose regetative spores (conidia) are very widely distributed, occasionally develops sexual reproductive cells in specially formed sexual organs.- In many of the lower plants (Algae and Fungi) it has been shown that the development of sexual cells is dependent upon definite external influences. Klebs has demonstrated, in fact, that it is possible by regulation of the extemal conditions to induce the non-cellular Alga Tuucheriu to produce at will either non-sexual swarm-spores or sexual cells. In many plants unfavourable external conditions apparently give the impetus to a sexual mode of reproduction. The sexual product (zygospores of Algae) seems better able than the regetative germs (swarm-spores of Algae) to remain a long time at rest, and so withstand the disastrous effects of an unfarourable environment. No inference can be drawn, however, from the function of the sexual germs in this instance concerning the necessity for the existence of a sexual, in addition to a regetative, mode of reproduction ; for in other cases it is the vegetative reproductive bodies, as, for example, the spores of Ferns and Horsetails, which are especially equipped for a period of enforced rest.

What makes digenetic reproduction essentially different from monogenetic is the UNION OF THE SUBSTANCE OF THE PARENTS AND THE CONSEQUENT TRANSMISSION AND BLFNDING OF THE PATERNAL AND Maternal properties. As special care is almost always taken
in sexual reproduction to ensure that the uniting cells have been developed from different individuals of the same species, an equalising influence is exerted which tends to maintain the permanence of the species as a whole. Any accidental variations in the form or properties of one individual of a species would, through crossing with others normally developed, disappear in the descendants, while the descendants by vegetative reproduction would retain them. A phenomenon of not infrequent occurrence, and one which shows, on the other hand, the persistency with which inherited attributes are retained in sexual reproduction, is the unexpected reappearance in the descendants of the attributes of former generations (ATATISM).

While, on the one hand, sexual reproduction tends to maintain the unchangeability of the form by abolishing isolated rariations, on the other hand, variations may be confirmed in the descendants when they were similarly manifested by both parents. As a result of the union between individuals of different varieties, or species, or even of different genera (cf. Hybridisation, p. 289), offspring may be produced which, if not sterile, have a remarkable tendency to variation and so to the formation of new forms.

It is in this influence exerted upon the quality that the chief difference between sexual and vegetative reproduction is shown. By VEGETATIVE REPRODUCTION THE QUANTITATIVE MULTIPLICATION OF THE INDIVIDUAL IS SECURED, WHILE BY SEXUAL REPRODUCTION A QUALITATIVE INFLUENCE IS EAERTED, which is of the greatest importance for the continued existence of the species. Sexual reproduction might therefore be spoken of as the QUALITATIEE reproduction of the species, and vegetative reproduction as the QUANTITATIVE reproduction of the individual. The vegetatively produced progeny consist of unmixed descendants ; the sexually produced offspring, on the other hand, are the result of a blending of the parents.

Vegetative Reproduction

Vegetative reproduction, the purely quantitative character of which as a mere process of multiplication has been emphasised, exists generally throughout the regetable kingdom, and but few plants, some of the Conifers and Palms, are altogether devoid of it. Mention has already been made in considering artificial propagation (p. 22S) that, from the separate parts or single cells, or even from the naked energides (Siphoneae) of many plants, the regeneration of a new and perfect individual may ensue. In vegetative reproduction the process is similar except that the separation of the part from the parent plant is an organic one, occurring in the natural course of development. The vegetative form of reproduction is manifested in various aspects, and may be distinguished as a multiplication by means of multicellular vegetative bodies (budding), or by single cells (spore-formation).

Multiplication by Multicellular Vegetative Bodies (Budding) often consists merely in the separation of lateral shoots, or in a division of a single plant into several. In this way the lateral shoots of the Water Fern, Azolla, through the death and disruption of the older parts of the parent axis, become separated from one another and continue their growth as independent plants; similarly, separate plants originate from the vegetative body of the Duckweed (Lemna).

Multiplication by stolons, rhizomes, and tubers results in a similar formation of independently existing plants. As may be seen in the Strawberry, Potato, Rununculus repens, etc., the shoots produced from many of the axillary buds of the widely outstretched stolons take root and form new plants. In cases where the runners themselves eventually die, the parent plant becomes finally surrounded by a colony of entirely independent plants.

Instead of forming runners, the single tuber may divide (Corydalis solida), and in this way give rise to two, four, or more new tubers. New bulbs are produced in the leaf-axils of the bud-scales of bulbs, while brood buds (bulbils, gemmæ) are frequently developed on aerial vegetative organs.

Bulbils are found on the infloresceuce in the place of the flowers in many species of Allium, in the grass Poa bulbifcra, and also in Polygonum viviparum. In Lilium bulbiferum, Dentaria bulbifera, etc., the bulbs in the axils of the leaves are specially constructed with a view to detachment from the parent plant. The swollen leaves contain reserve food material, and frequently develop roots before falling from the plant. In Ranunculus Ficaria the roots of the axillary buds are full of reserve food material, and resemble grains of corn. When the plant dies the bulbils remain on the ground, and have given rise to the fable of showers of grain. Bulbils or gemmæ are met with also among the Mosses, Liverworts, and Charas. The winter buds of many water-plants (Hydrocharis, Utricularia, Potamogeton crispus, Lemna, etc.) have a peenliar biological significance. They are formed in the autumn, and sink to the bottom of the water; in the sncceeding spring they rise to the surface and form new plants.

In addition to the instances just cited, in which the regetative reproductive bodies take their origin from points where lateral shoots are normally formed, they may also appear in places where no shoots are normally developed. Thms the adrentitious formations often fonnd on leaves, particularly on the leaf-blades, serve the purpose of reproduction. Just as the leaves of the Begonia, after they have been cut off, are able to give rise to new plants, in other cases the leares possess this power while still growing on the parent plant. Some Ferns afford specially characteristic examples of this (Asplenium decussatum, A. Fabianum, A. bulbifcrum, A. viviparum) ; adventitions buds are produced on their lamine, which develop into small rooted plants, which then fall off and complete their development (Fig. 215). The adventitions buds of Cystopteris bulbifera take the form of bulbils with small swollen leaves. Adventitions plantlets are frequently formed also on the leares of Cardamine pratensis, and Cardamine amara manifests a similar tendency. One of the best known examples of such adrentitions formations is afforded by the leaves of the tropical Bryophyllum, in whose marginal indentations the brood plantlets develop in great numbers. Gemmæ are abundantly produced on the thallus of many Hepaticac (Marchantia, Lunulariu),
and by their continuous growth the gemmæ capsules (Fig. 316, b) are always kept well filled.

A most remarkable instance of adventitious budding sometimes occurs, in which adventitious buds, which have arisen in the nuccllus of the orule, grow into the

Fig. 215.-Asplenium Fabianum. A young plant (T), with leaves and roots (W), has sprung from the leaf (M) of the older plant.
embryo-sac, and there develop just as if they were embryos; examples of this phenomenon may be found in Evonymus, Citrus, Funkia (Fig. 216), Coelelogyne. Formerly it was thought that such a polyembixony was due to the existence of numerous egg-cells in one embryosac ; but more thorough investigation has shown, however, that it arises from the vegetative formation of ADVEATItious germs. At the same time the eggcell previously existing in the embryosac is able to continue its development after fertilisation, but is usually prerented from so doing by the adventitious or nucellar embryos. The seeds in such cases would no longer contain the products of sexual reproduction, but would be degraded to organs of vegetative multiplication. The adventitious germs in the polyembryonic seed are, however, so far dependent upon sexual reproduction, that for the most part they only attain their development in case fertilisation has previously taken place; but in Coelelogyne, one of the Australian Euphorbiaceae, of which usually only female specimens are found in cultivation, the adventitious

Fig. 216.-Vegetative formation of embryos in Funlia ovata (Hosta coernler() by the budding of the nucellus; n, nucellus with cells in process of forming the rudiments (ae) of the adventitious embryos ; S, synergidæ; E, eggcell, in the lower figure developing into a sexu-ally-produced embryo. (After Strasburger.) germs develop without the stimulus of fertilisation. This plant, accordingly, affords another example of APOGAMY, or of the substitution of a vegetative for ia sexual mode of reproduction, such as occurs in different degrecs in certain Ferns, Athyrium filix femina var. cristatum, Aspidium falcatum, Todea africana, and Pteris cretica. In the last-named example the sexual
organs are no longer formed, although the young plants arise, by a regetative process of budding, from exactly the same part of the prothallium where the archegonia would have been developed. In the case of Aspidium filix mas var. cristatum the apogamy seems to have resulted from cultivation. In a broad sense the development of bulbils in the place of flowers, in the species of Allium, might be considered as an example of apogamy.

Parthenogenesis, or the development of an egg-cell without previous fertilisation, might also be riewed as an instance of the same phenomenon in plants with more adranced sexual differentiation. In only one case, Chara crinita, has parthenogenesis been positively proven. The female plants of this species of Chara are widely distributed throughout Northern Europe, and develop normal plants from their egg-cells, although the male plants are found only in Asia and in South Europe, so that fertilisation could not have taken place. The egg-cell of Chara crinita has thus lost its special sexual character without altering its external appearance. The essential sexual attribute of being incapable of further development, without fusion with a male cell, has disappeared; it has become a regetative cell.

Vegetative Multiplication by Single Cells (Spore-Formation). -As in the case of multicellular vegetative bodies, multiplication can be effected also through the separation of single cells. Strictly speaking, this manner of multiplication actually takes place whenever a division of the vegetative body occurs in micellular Bacteria, Fungi, and Algae. Cells which serve the purpose of vegetative reproduction, and have a special form and method of development, are first met with in the higher Cryptogams. They are frequently formed in special organs or receptacles. Such organs, in the case of the Fungi, are the sporangia or conidiophores, and the more complicated fructifications in or on which the spores are formed. Instead of spores with cell walls many Algae develop swarm-spores, which propel themselves in the water by means of cilia, and are thus enabled to seek out positions favourable for germination (cf. p. 243). In all higher Cryptogams (Mosses, Ferns, Equisetaceae, etc.) the vegetative reproductive cells are produced in peculiar multicellular sporangia, which open spontaneously by hygroscopic movements when the spores have reached maturity. Among the higher Cryptogams there is not developed from the spore a daughter plant similar to the parent, but there results an entirely differently organised structure, which, by sexual reproduction, produces a plant bearing spores, and similar to the original form.

Sexual Reproduction

For the purpose of sexual reproduction two kinds of cells, male and female, are produced. Although neither alone is capable of development, the actual reproductive body is formed by the fusion into one cell of two such sexually differentiated cells. It has already been pointed out that through such a union of two distinct cells, qualitative changes may arise in the resulting organism, which would not hare been possible had it been produced by merely regetative processes.

As it is thus necessary in sexual reproduction not only to provide for the production of male and female cells, but also to ensure their union, it becomes at once evident that, for sexual reproduction, the organs must have a different morphological and anatomical structure than if they were designed solely for vegetative activity. The sexual organs accordingly often exhibit a special and peculiar form, which differs materially in appearance from the vegetative parts of a plant.

The Union of Sexual Cells (Fertilisation).-Leaving out of consideration the necessary external contrivances to that end, fertilisation is accomplished by means of a chemotactic or chemotropic stimulus (pp. 243, 263). It is generally the non-motile egg-cells or female sexual organ which exert an attractive influence upon the motile male cells; as, for instance, in the case of the Mosses, where the spermatozoids are enticed within the archegonia by a solution of canesugar, or, as in Ferns, where they are similarly stimulated by malic acid. When, however, there is no difference in the external form of the male and female cells, then both are usually motile, and the attraction seems to be exerted mutually. This is probably the case with the motile and externally similar sexual cells (GAMetes) of the lower Cryptogams, particularly of the Algae (Fig. 69). In the conjugation of the Conjugatue, however, although both sexual cells are externally alike, one cell alone is usually motile, and passes through the connecting canal to the other; and in the Fucuceue, though the egg-cells are ejected from the mother plant, they have not themselves any power of movement, while the male cells or spermatozoids, by means of their cilia, are capable of independent motion. This capacity of the male cells for independent movement is common to most Algae, with the exception of the Florideae, by which the walled male cells are passively conveyed to the female organ by the water. Throughout the whole group of the higher Cryptogams, the male cells are motile spermatozoids, capable of seeking out the non-motile egg-cells concealed within the archegonia. But in the sexually differentiated Fungi the male substance usually remains enclosed in special hyphr which press themselves close against the female organs, and, by the perforation of the intervening cell wall, the fusion of their contents is rendered possible. The fertilisation of the Phanerogams is accompanied by a perforation of the intervening cell walls similar to that which occurs in the Fungi. In this case the male cell is enclosed within the pollen grain; the female, as a naked egg-cell, is included in the embryo-sac, which in turn lies in the ovule, and in the Angiosperms the ovule is again enclosed within the ovary. The double-walled pollen grains possess no independent power of movement, but are conveyed to the female sexual organs by the assistance of external agencies (animals, currents of air or water). The pollen grain then grows out into a tube which is acted upon by chemotropic (including hydrotropic and aerotropic) influences, and grows like a fungus-filament through the tissues of the ovary and
ovule until it penetrates to the egg-cell in the embryo-sac ; whereupon the union of the sexual cells is easily effected (Fig. 71).

To render certain the accomplishment of this Pollination, or conveyance of the pollen to the female sexual organs, special and often complicated contrivances are made use of by the different Phanerogams, according to the means of conveyance upon which they are dependent.

Plants of which the pollen is carried by wind are designated Anemophilous. As this method of conveyance depends upon the chance of wind direction, an enormous amount of pollen characterises wind-fertilised plants.

Such enormous quantities of pollen are often taken up from pine forests by the wind that clouds of pollen fill the air. The surface of Lake Constance in spring is so thickly covered with pollen that it is coloured yellow (" the lake blooms," it is then said), and in the Norwegian fiords, at a depth of 200 fathoms, the pollen of Conifers, according to F. C. NoLl, forms for a time the principal nourishment of the Rhizopod Saccamina.

The male flowers of such anemophilous plants are accordingly either freely exposed to the wind in Catkins (Coniferae, Amentaceae), or the versatile anthers, as in the Grasses, depend from long, lightlyswaying filaments. The pollen grains themselves do not stick together but escape from the opened anthers in the form of fine powder. The pollen grains of many Conifers are rendered extremely buoyant and easy of conveyance by the wind by two sac-like protrusions of the exine. In some anemophilous plants the pollen is discharged by the sudden extension of the filaments, previously rolled up in the bud (Urticaceue, e.g. Pilea), or by the hygroscopic tension of the anthers. The female organs are also often especially adapted for the attachment of the pollen thus floating in the air. The stigmas either spread out like a brush (Corylus), or are finely feathered or provided with hairs (Grasses, Walnut), or drawn out into long threads (Indian Corn). In the Conifers, with freely exposed ovules, the grains of pollen are caught and retained in a drop of fluid exuded from the micropyle, into which they are gradually drawn as the fluid dries up. In other Conifers whose ovules are concealed in the cone of the female inflorescence, scale-like formations catch the pollen and conduct it to the sticky opening of the young ovules.

For the fertilisation of the higher plants, the presence of water is not so essential as it is for most Cryptogams. Only a few submerged Phanerogams make use of the agency of water for effecting their pollination, and are, on that account, termed hydrophilous plants. The pollen of the submerged Zoster exhibits certain peculiarities, distinctly referable to the necessity of effecting fertilisation under water. It does not form round grains, but in their place elongated thread-like filaments devoid of an exine, which, as they have the same
specific weight as the surrounding water, are easily set in motion by the slightest currents, and are thus brought into contact with the stigmas.

In the case of the submerged water-plants, Lallisneriu, Eloden, and species of Enhalus, found in the Indian Ocean, the pollination is accomplished on the surface of the water. Thus, for example, the male flowers of Vallisneria, after separating from the parent plant, rise to the surface of the water, where they open and float like little boats to the female flowers, which, by the elongation of their spirally coiled flower-stalks, ascend, at the same time, to the surface of the water, only to become again submerged after fertilisation.

In the great majority of Phanerogams pollination is effected by means of animals. By enticing in various ways insects, birds, or snails, plants are enabled not only to utilise the transporting power but also the intelligence of animals in the service of pollen-conreyance. The pollination is then no longer left to chance; and as the transport of pollen to the sexual organs becomes more assured, the necessity for its formation in such enormous quantities as in anemophilous plants is obriated. For the most part, such plants (Fig. 219) are adapted to pollination by insects (Entomophily). For their nourishment, plants offer not only the sugary sap, which, as nectar, is excreted from different parts of the flowers, but also the pollen itself, which furnishes a nitrogenous food material and which, together with the honey, is kneaded by bees into bee-bread. As additional means of enticement, and to attract animals from a distance to the nectar offered by the sexual organs, special perfumes and conspicuous colours have also been developed. The attractive-appaRittes of plants is generally formed by the coloured floral leaves ; by the outer floral leaves or calyx (Nigella, Aconitum), or by the perianth (Lily, Tulip), or as an extra-floral show apparatus, by the hypsophyllary leaves and parts of the shoot, which do not belong strictly to the flower (Astrantia major, Richardia uethiopica, Melampyrum, Dalechampiu, Bongainvillea spectabilis). The pollen of the entomophilous, in contrast to that of the anemophilous plants, is not a dry powder, but its grains are stuck together with an oily mucilaginous fluid; in other cases, they are held together by their rough outer surfaces and can only be removed from the anthers by animals. The structure of the flower is so contrived, as Christian Conrad Sprejgel first pointed out in 1793 in his famous work on the structure and fertilisation of flowers ("Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen "), that the pollen grains must necessarily become attached to certain parts of the body of the animal risiting it in search of food, and so be conveyed to the sticky or hairy stigma of other flowers. The remarkable variety of means employed to secure pollination, and the wonderful adaptation shown by the flowers to the form and habits of different insects, border on the marvellous. In addition to the
stimulus of hunger, plants utilise the reproductive instinct of animals for securing their pollination. Not a few plants (Stapelia, Aristolochia, and members of the Aiaceae), by the unnatural colour of their flowers, combined with a strong carrion-like stench, induce carrion-flies to visit them and deposit their eggs; in so doing they effect, at the same time, the pollination of the flowers. In South America, instead of insects, it is the humming-birds which are especially active in the conveyance of pollen. In addition to such Ornithophilous Plants whose pollination is accomplished through the agency of birds (Marcgraria nepenthoides, and different species of Feijoa and Abrtilon), pollination in some cases is effected by means of snails (Malacophilous Plants). To their instrumentality the flowers of Calla palustris, Chrysosplenium, and also the half-buried flowers of the well-known Aspidistril owe their pollination.

Self and Cross Fertilisation. - It has already been pointed out that it is by sexual reproduction, in contrast to the vegetative mode of multiplication, that qualitative modifications are effected. Such qualitative changes are best attained when the sexual cells are derived from different individuals; although, when they spring from the same individual, through the recurrence of ancestral characteristics (atavism, p. 277), there is always the possibility of the appearance of descendants which differ greatly from those produced vegetatively, by the same plant. By such close fertilisation, however, 110 opportunity is given for a new blending with others of the same species. It is an old maxim founded on experience, that prolonged close-breeding produces a deteriorating effect, as the slightly injurious variations, which otherwise would have been equalised by cross-breeding, become augmented. It is in accordance with this same principle that, in the sexual reproduction of plants, varied and often complicated contrivances are manifested, which conduce to CROSS-FERTILISATION (union between sexual cells of different individuals), even when the individuals themselves are hermaphrodite and possess two kinds of sexual organs, as in the case of the majority of Phanerogams.

As, however, self-fertilisation takes place also in a small number of plants, either regularly or from necessity, it is evident that whatever may be the advantage derived from a union of two distinct individuals, it is no more essential for sexual reproduction than for vegetation multiplication. Though in consideration of the otherwise predominant tendency to cross-fertilisation, self-fertilisation, just as apogamy, appears to be a retrogression. Self-pollination, although regularly occurring, frequently fails to occasion self-fertilisation, as often the pollen will not develop pollen-tubes on the stigmas of the flower (self-sterile) by which it was produced, but only on those of different flowers (Secale cereale, Corydulis cava, Lobelia fulgens, Verbascum nigrum, etc.).

The antipathy between the sexual organs of the same flower, in certain plants, so greatly exceeds the bounds of indifference that they act upon each other as
poisons. Thus, for example, it is known of certain Orchids that pollination with their own pollen causes the death of the flower, while in other cases the pollen is killed in a short time by the stigmatic fluid.

In other instances, self-fertilisation occurs where cross-pollination either is not effected, or else in conjunction with it (Wheat, Barley, C'anna, Viola species, Linum usitatissimum, etc.). By many plants, in addition to the large flowers adapted to insect pollination, small, inconspicuous flowers are produced which, usually concealed underground or by the lower leaves, never open, and only bear seeds which have been produced by self-fertilisation. In some plants the majority of the seeds are derived from such cleistogamous flowers (Viola), and sometimes their seeds alone are fruitful (Polycurpum tetraphyllum possesses only cleistogamous flowers). As the greater number of such plants, however, in addition to the seeds of the self-fertilised small cleistogamous flowers, produce others resulting from the cross-fertilisation effected in the larger flowers (Impatiens noli-tangere, Lamium amplexicaule, Speculariu perfoliata, etc.), the ancestral plants of the cleistogamous generations, as well as their descendants, have, at least, the opportunity for cross-fertilisation open to them.

Special contrivances for assuring the crossing of the sexual cells, particularly by preventing self-pollination, are found to exist throughout the whole vegetable kingdom.

Self-pollination is most effectually aroided when the plants are unisexual, that is when both male and female plants lead a separate existence. Such DIECIOUS plants exist in almost all classes of plants from the lower Cryptogams to the most highly developed Phanerogams (many of the lower Algae, species of Fucus, Marchantia, Polytrichum, Equisetaceale, Taxus, Hemp, Hops, Date-Palm, etc.). In moneccious plants the male and female organs occur on different flowers, but the flowers are borne on the same plants. The fertilisation between different flowers is thus secured ; but even here crossing with other individuals is, for the most part, assured by dichogamy.

The term dichogamy is used to denote the fact that the male and female scxual organs attain their maturity at different times. When either the male or female sexual organ matures before the other, the self-pollination of morphologically hermaphrodite flowers is avoided and crossing assured. Both hermaphrodism and monœeism are more advantageous than diœecism, as all the plants in such cases are able to produce seeds ; while in diœcious plants the male flowers cannot be utilised for the direct production of seeds. Dichogany secures crossing in such a simple manner, and is so easily attained by hermaphrodite plants, that it is of very general occurrence in the vegetable kingdom. According to the priority of the maturity of their sexual organs, plants are designated PROTANDROUS OF PROTOGYMOLS.

Protandry, the earlier maturing of the male sexual organs, is the more frequent form of dichogamy. It occurs in the flowers of the Geraniaceae, Campanulaceae, Compositae, Lobeliaceac, Umbelliferae, and in Epilobium, Digitalis, etc. of the Malvacee. The anthers, in this case, open and discharge their pollen at a time when the
stigmas of the same flowers are still imperfectly developed and not ready for pollina-

Fig. 217.-Inflorescence of I'lantago media with protogynous Howers. The upper, still closed flowers ($申$) have protruding styles; the lower (δ) have lost their styles, and disclose their elongated stamens. tion. Accordingly, protandrol's flowers can only BE FERTILISED BY THE POLLEN OF YOUYGER FLOWERS.

In the less frequent Protogriy the female sexual organs are susceptible to fertilisation before the pollen of the same flowers is ripe; so that the protogriols FLOWERS ML'ST BE FERTILISED BY THE POLLEN OF older flowers (Anthoxanthum odoratum, Luะula pilosu, S'crophularia nodosa, Helleborus, Magnolia, Plantago merlia, Fig. 217).

A still more complicated method of effecting cross-fertilisation, because involving also morphological and anatomical differences of structure, results from Heterostyly, or the peculiarity of some species of plants of producing stigmas and anthers which vary in height in different individnals of the same species. A good example of heterostyled flowers is afforded by the Chinese Primrose (Fig. 218). This plant has two forms of flowers, long-styled (L) and short-styled (K), while the positions of the stigmas and anthers in the two kinds of flowers are exactly reversed. The pollen grains of the short-styled flowers, moreover, are larger, and the stigmatic papillæ shorter, than in those with the longer styles $(p, P$, and $n, N 7$. The purpose of such morphological and a natomical differences existing between flowers of the same species was first understood after they were discorered by Darwis to be a contrivance for cross-pollination. Fertilisation is most successfinl in such cases when the pollination of the stigmas is effected by the

Fig. 21s.-Primula sinensis; two heterostyled flowers from different plants. L, Long-styled; K, short-styled flowers; $(\dot{G}$, style ; S, anthers ; P, pollen-grains; and N, stignatic papillæ of the long-styled form ; p and n, pollen-grains and stigmatic papillæ of the short-styled form. ($P, N, p, n, \times 110$.)
pollen of anthers correspondingly sitnated. By such a "legitimate" fertilisation more and better seeds are produced than by "illegitimate" fertilisation, and in
some cases Limur peremne legitimate fertilisation alone is Iroluctire. Legitimate fertilisation is rendered more certain br the faet that insects in risitiug the flowertouch correspondingiy placed sesual organs with the same portions of their body. The towers of Primroses have strles of two different lengths prworphic hetebo--TILI); the same feculiarity is exhibited by Pulwasiat, Hittonia, Fugpyymw. Linua. There are also flowers with thimorphic heterostyly L ythruin salioaria. and some sprecies of oupalis, in which there are two circles of stamens and three variations in the height of the stigmas and anthers.

In a great number of flowers self-pollination is made mechanically imposible. as their omn pollen is prevented by the respective positions of the semal organ from coming in contact with the stigma (Hercogamy. In the Iris, for example. the anthers are sheitened ender the brawehed petaloid style, upon whose lip-like stigma no yollen can come, unlers through the ageney of insects. In the Orehieranve and Asorpiadacoac self-rollination is rendered imposille both by the nature of the frollen masses and by their rosition. A complicated form of structural con-

 tion of the carrell connectre foud the hel-et-shapod apper lip. an l the depo ition of the
 \div saated style $=\frac{1}{2}$, the staminal apparatus at rest. with wongective enclusel within the upger A1 : : 3. the same, when Nistarbel if the etarance of the proboscis of the bee in the direction of the arrow; f. flamem: ; s, connectire: * the uletructiv; half of the anther.
trivance. by meas of which crose-pollimation is securet. may be seen in a flower of Salria pratansis Fig. 219. The anthers of this flower are concealed in the uprer lip of the corolla, from which the strle. with ite bilooed stigma, projects. When a bumble-bee risits the fiower in search of honey, it must first with its [roboscis push out of the way the small plate of. formel of two sterile anther halres grown together. These are situated at the end, of the short arme of the connectiven 6 . which are so elongated that ther might easily be mistaken tor the filaments f of the stanuens. The fertile anther inalres are situated at the other ends of the connectives, and so are brought in contact with the hairy back of the lamble-bee when it pur-hes against the plate at the short end of the lever-like connectives. The pollen thas attached to the bee will be brashel off its back by the forkel stigma of the next flower it enters. Goul examples of hercogamous flowers are atforded by the Popiowacead, by Kol whose anthers are heid in I wekets of the corolla. by Timoa. Aristoleshin, ete.

Hybridisation.-The union of two sexual cells is, as a rule, only possible when they are derived from closely allied plants; it is only then that ther exercise an attractive influence upon each other and
fuse together in the act of sexual reproduction. The sexual cells of Mosses and Ferns, apart from all other considerations, would not unite because the spermatozoids of Mosses are attracted to the female organs by sugar, while those of the Ferns are only stimulated by malic acid. In the case of Phanerogams, a mixed union of sexual cells is likewise prevented by various obstacles to pollination and fertilisation. Occasionally, however, the sexual cells of different varieties, species, or even genera have shown themselves able to unite and produce descendants capable of development. Such a union is termed Hybridisation, or bastard-formation, and its products HYBRIDS or BASTARDS.

Through the demonstration of the possibility of hybridisation, the sexuality of plants, for a long time doubted, was indisputably proven. (With this object in view, hybrids were raised in great numbers by Kölreuter as early as 1761.) It also demonstrated that the real purpose of sexual union was the combination of the properties of both parents, for transitional forms are found among hybrids which in many characteristics resemble the male and in others the female ancestor, or they may show an equal combination of the characters of both. Less frequently it happens that the hybrid resembles one ancestor almost exclusively. In such a case the attributes of the other ancestor remain latent, and may appear quite unexpectedly, through atavism, in later generations. Had one species simple leaves and the other compound, their hybrid would have leaves more or less cleft ; or were the flowers of one parent species red and those of the other yellow, the hybrid frequently bore flowers with red and yellow markings (mosaic hybrids), or which were orange-coloured. If an early blooming form were crossed with a late bloomer, the hybrid would flower at a time intermediate between the two. From these and similar differences shown by hybrids, it became clear that the inherited characteristics of both the male and female cells were transmitted by sexual reproduction, and that the only function of the male fertilising substance was not, as was at one time believed, merely to give an impetus to the development of the egg-cell. A large number of spontaneous hybrids have been found which have arisen naturally from plants with a special capacity for hybridisation. That such natural hybrids do not oftener occur is due to the lack of an opportune time or space for their development, and also to the fact that in the case of pollination of flowers with different kinds of pollen, that of their own species seems always more effectual in effecting fertilisation.

The more closely allied the parent plants, the more readily, as a rule, may hybrids between them be produced. Many families seem to incline naturally to hybridisation (Solanaccae, Caryophyllaceae, Iridaceae, etc.) ; others again develop hybrids only occasionally or not at all (Cruciferae, Papilionaceac, Urticaceae, Convolvulaceae, etc.). Even in the same family the related genera and species exhibit great differences in the readiness with which they may be crossed. The Grapevine and also the Willow are easily crossed with other species of their own genus,
and the same is also true of the different species of Dicnthus, while the species of Silene cross with each other only with difficulty. Species hybrids are easily produced from species of Nicotiana, of Verbascum, and of Geum; on the other hand, it is very difficult to cross different species of Solanum, Linaria, or Potentilla. The hybridisation, however, of nearly allied forms is often impossible-the Apple with the Pear, for instance, although the Peach and Almond may be crossed, and also the species of even the different genera Lychnis and Silene, Rhododendron and Azalea, Aegilops and Triticum, each according to their "sexual affinity."

Derivative hybrids arise when hybrids are crossed with one another, or with one of the original parent forms. In this way it has been possible to unite six species of Willow in one hybrid, and in the case of the Grape-vine even more species have been combined. It is only in rare cases, however, that the form of the hybrid remains constant in the succeeding generations. These exhibit more frequently a tendency to revert to one of the original ancestral forms.

In addition to their inherited qualities HYBRIDS EXHIBIT NEW pecullarities not derived from their parent forms. These are a MODIFIED FERTILITY, GREAT TENDENCY TO VARIATION, and often a MORE LUXURIANT GROWTH. The fertility is often so enfeebled that the hybrids are sterile and do not reproduce themselves sexually. This enfeeblement of the sexuality increases the more remote is the relationship of the ancestral forms. The tendency to variability is often greatly enhanced in hybrids, especially in those arising from the hybridisation of different varieties of the same species. Hybrids, particularly those from nearly related parents, produce more vigorous vegetative organs, they bloom earlier, longer, and more profusely than the uncrossed plants, while at the same time the flowers are larger, more brilliant, and exhibit a tendency to become double. The luxuriance of growth and the increased tendency to produce varieties displayed by the hybrids have made the whole subject of hybridisation one of great practical as well as theoretical importance.

It is doubtful if hybrid forms can be produced (graft-hybrids) by a vegetative union of portions of two different plants (grafting, budding). It will seem very improbable, as in all properly regulated experiments the vegetatively united forms have preserved their independent individuality (p. 227).

Alternation of Generations

In the lower Cryptogams, as well as in the Phanerogams, vegetative and sexual reproduction may exist, either side by side or following one another often in apparently irregular succession. After many generations have been produced in a vegetative way, in the case of the Algae or Fungi, sexual organs suddenly appear ; but by both modes of reproduction descendants of similar appearance are produced. Although in this case sexually and vegetatively produced generations succeed each other, it would not, strictly speaking, be
considered as an example of the alternation of generations. This expression has been restricted to cases Where there is a regular alternation between a tegetative and sexual generation, each of which has an entirely different organisation.

A Fern-plant produces only asexual spores. By their germination, howerer, a Fern-plant is not produced, but in its place a diminutive plantlet, which remains without stem and leaves, without vascular bundles, and without any internal differentiation. This is the prothallidm, which in turn produces sexual organs with spermatozoids and egg-cells, from which a large Fern-plant is developed after fertilisation. In a similar manner, sexual and asexual generations alternate in the Mosses and in the Hydropterideac, Equisetinac, Lycopodinac. In the three last-named, as in the case of the Ferns, the prothallia are developed regetatively from the spores of the large plant, and these again give rise sexually to an Equisetum, a Lycopodium, etc. In the Equisctinac the spores are externally exactly alike, but some give rise to male, others to female prothallia. In the case of the Hydropterideae and the heterosporous Lycopodinae (Sclayincllac, Isocteae) the spores from which the male prothallia are derived are smaller (microspores) but more numerous than those which give rise to the female prothallia (macrospores). At the same time, the prothallium does not in all cases grow out of the spores as au independent plantlet, but remains within it and only exposes the sexual cells for purposes of fertilisation ; so that the male sexual cells are produced within the microspores and the egg-cells within the macrospores. Thus, in the higher Cryptogams the alternating sexual generation, or the one producing the sexual cells, remains concealed within the spores. In Phanerogams (Gymnosperms and Angiosperms) the sexual generation has undergone even greater reduction. It has nevertheless been determined that the pollen grains of the Phanerogams correspond to the regetatively produced microspores of the Vascular Cryptogams, and that in them the male sexual cells also arise tlrough a process of division. Similarly, the embryo-sac of the Phanerogams, in which, in addition to the more or less reduced prothallium (synergidæ, antipodal cells), the female sexual cell (the egg-cell) occurs, must be regarded as the equivalent of the asexnally produced macrospores. The young plant (the embryo), just as in Selaginella, is also formed in the macro-spores-that is, in the embryo-sac. Viewed in this way, it is evident that AN alteration of generations takes place also in Phanerogams. Hofmeister, the discorerer of this most important fact, drew most ingenious inferences from it concerning the genetic connection of the higher with the lower plants, of Phanerogams with the Vascular Cryptogams.

In the alternating generations are clearly manifested the essential functions of both modes of propagation-the quantitative, in the extraordinary multiplication by asexual reproduction ; the qualitative, in the sexual fusion. For while thousands of asexual spores are produced from a single Fern-leaf, from the prothallium of the sexual generation seldom more than one new Fern-plant arises, but that one plant derives a qualitative value from the cross-fertilisation necessitated by the dichogamy of the prothallia.

Just as the Fern-plant can occasionally arise by budding (p. 279) directly from the prothallium, without the intervention of a sexual act, the formation of spores is also sometimes omitted, and the prothallia
can then spring directly from the Fern-leaf (APOSPORy, in varieties of Athyrium and Aspidium).

The Dissemination and Germination of Seeds

If the seeds after their separation from the parent plant simply fell upon the earth, the young seedlings would be injuriously restricted to the place already occupied by the parent plant, and would also spring up in such large numbers that they would mutually exterminate each other. The dissemination of the seeds thus becomes a necessity, and although a larger or smaller proportion perish in the process, a small number eventually find themselves in a favourable environment.

For their dissemination, seeds make use of the same agencies as are employed for the conveyance of pollen. Thus their dispersion is effected by means of currents of air and water ; by their forcible discharge from their receptacles ; by animals ; and also by their accidental transportation by railroads and ships.

To ensure the dispersal of seeds by the wind, all those contriv-

Fig. 220.-Winged seed of Bignonia mucronatu. (Nat. size.)
ances are of use which serve to increase their superficial area with but small augmentation of their weight. Of this nature are the hairy appendages of seeds and fruit-walls, as in Gossypium, Epilobium, Populus, Salix, Typha, Clematis, and the fruits of the Compositae with their pappus, of Valeriana, etc. Compared with the accelerated fall in a vacuum, the retardation exerted by the resistance of the air (by which the opportunity for dispersal through the agency of the wind is enhanced) in the case of Cynaria Scolymus is, in the first second, as six to one. Similar adaptations for utilising the agency of the wind as a means of dispersal are the wing-like appendages formed from the expansion of the sepals (Dipterocarpus) or of the ovary (Acer, Fraxinus, Ulmus, Polygonum, Robinia, Gleditschia, and the fruits of many Umbelliferae), or of the seeds themselves, as in the winged seeds of the Bignoniaceae (and many Ternstroemiaceae).

In a Bignonia seed (Fig. 220), with its widely outspread, glossy
wings, the centre of gravity is so disposed that the seed floats lightly along through the air in an almost horizontal course, and with a motion like that of a butterfly. The seeds of Zanonia, one of the Cucurlitaceae, are very similarly equipped. In the Lime the subtending leaf which is attached to the inflorescence is retained to facilitate the dispersal of the seeds by the wind; and in the seeds of the Fir the winged appendages are derived from the tissue of the placental scale. The aerial transportation of seeds and fruits, winged only on one side, is accompanied by a continuous spirally twisting movement which assists to retard their fall.

The diminutive size of many reproductive bodies, and the proportionate enlargement of their surface in comparison with their volume, increase their buoyancy. Microscopically small Fungi, spores, and Bacteria are in consequence easily transported by the wind. In the spores of Lycoperdon caelatum Dingler found the retardation to be as 1 to 1000 , which, according to N$̈ G E L I$, could only be theoretically explained by the supposition that the retardation was intensified by a thin layer of air permanently adhering to the surface of the spores.

Seeds and fruit are also frequently transported great distances by the agency of water. In the case of maritime plants the seeds are often especially adapted (water-tight tissues; large air-spaces serving as swimming-bladders, etc.) for transport by ocean currents. Through the possession of such devices, the seeds of West Indian plants are carried to Norway by the Gulf Stream, and the appearance of Cocoanut palms as the first vegetation on isolated coral islands is in like manner due to the adaptation of their fruits to transport by water.

Animals participate largely in the dissemination of seeds; either by eating the agreeably tasting and often attractively coloured fruit, and excreting the undigested seeds, or by their involuntary transportation of seeds and fruits which have become in some way attached to them. This is effected in many cases by hooks and bristles (Lappa, Gulium Aparine, Bidens, Echinospermum, Xanthium, and the fruits of Medicago minima, so common in sheep's wool and erroneously termed woollice). Or the seeds become attached to animals by means of some sticky substance ; in this way the seeds of the Mistletoe, which stick to the beaks of birds eating the berries, finally adhere to the branches of trees upon which the birds wipe their bills. The widespread distribution of fresh-water plants can only be accounted for through the agency of aquatic birds.

The natural distribution of plants has been greatly modified by the interference of man, especially in these days of universal commercial intercourse by rail and sea. By their instrumentality not only hare the useful plants been widely distributed over the earth, but the weeds have followed in the same way; and many a seed thus accidentally carried to other lands has finally found there a new place of growth.

The forcible discharge of spores and seeds is effected by the
sudden liberation of hygroscopic or tissue tensions. It has already been mentioned that the capillitia of the Myxomycetes and the elaters of the Liverworts serve for the dispersal of the spores. In the case of the Box (Buxus), the smooth seeds are forcibly discharged by the contraction of the pericarp, like a bean pressed between the fingers. The dry fruit of Hura crepitans bursts apart with a report like that of a pistol, and is scattered in pieces far and wide. The turgescence and elasticity of the cell-walls give rise to the tension which results in the forcible discharge of the sporangia of Pilobolus, and in the ejection of the ascospores of many Ascomycetes. The bursting and rolling up of the segments of the seed-vessels of Impatiens, by means of which the dispersal of the seeds is effected, are due to the sudden release of tissue-tensions. Similarly, the fruits of Momordica claterium and Ecballium dehisce suddenly and eject the seeds with considerable force. It is unnecessary to cite further examples ; those already given may be sufficient to call attention to a few of the different means made use of for the dispersal of the reproductive germs.

Germination.-The dry condition of the seed and the cessation of all vital activity render the resting germ extremely resistant to the action of external influences, and capable of maintaining its vitality during the course of its dissemination, until it is ultimately fixed in the earth. In effecting their permanent lodgment in the soil, seeds are aided by the various structural peculiarities of their surface (furrows, bristles, hairs, etc.). The fruits of the Geraniaceae (Erodium, Fig. 200) and Gramineae (Stipa, Avena sterilis, and species of Aristida) are enabled, by means of movements due to hygroscopic torsion, to bury themselves in the ground. In the case of Trifolium subterraneum and Arachis hypogaea the same result is accomplished by the geotropic growth of the fruit-stalks, while the seed-capsules of Linaria cymbalaria are deposited in the crevices of walls and cliffs by the negative heliotropic movements of the fruitstalks. Nuts, acorns, and seeds buried by squirrels or other animals in the ground and forgotten, or for any reason not made use of, often germinate. The seedlings of Mangrove trees, Phisophora and Bruguiera, exhibit a most peculiar manner of growth to ensure their lodgment in the ground. The seed germinates in the fruit before it is detached from the tree. When the radicle has attained a considerable length, the young seedling, separating either from the cotyledons or from the fruit-stalk, falls to the earth; it then bores into the mud and is thus enabled to commence its growth without delay. Many seeds and fruits acquire a more or less voluminous Mucilaginous sheath, which serves a double purpose. Quince seeds, Flax seeds, seeds of the Plantain, of Crucifers, the fruits of Salvia Horminum, seed of Cuphea and Cobaea (in the mucilage cells of which delicate thickening bands are rolled up), afford the best-known examples of such slimy envelopes, which, in addition to fixing the seed to the
ground, serve to absorb water by holding it in their substance or drawing it in hygroscopically (cf. Mistletoe berries). Fruit-walls, by their spongy nature, may also serve as water-carriers (ripe fruits of Tropacolum, Poterium spinosum, Medicago terelellum).

The germination of seeds, once securely lodged in the soil, may begin immediately or after a longer or shorter PERIOD OF REST.

The seeds of many Conifers do not germinate for several years. Some plants again, in addition to seeds which germinate in the first year, produce others which require a longer rest (Trifolium pratense, Robinia Psoulacacia, Cytisus Laburnum, Reseda lutea, etc.). Even under favourable circumstances such seeds do not germinate until a definite lengtl of time has elapsed. Germination may be delayed also by external conditions, and the vitality of the seed may still be retained for years. Thus, for example, on the removal of a forest from land that had been under cultivation for forty-six years, Peter found that a great variety of fieldplants at once sprang up as soon as the requirements for their germination were restored.

Germination, according to the observations of Klebs, is introduced by true processes of growth, which result in THE RUPTURE OF THE sefd-coverings. This is effected either by the growing radicle, or, in many Monocotyledons, by the cotyledon. In other seeds enclosed within a shell, the bursting of the shell through the growth of the endosperm or cotyledons precedes germination. In cases where the shell is very hard and does not consist of two halves easily separable by internal pressure (as in Cherry-stones), special places are often provided for the egress of the young seedling. At the end

Fig. 221.-Section through the upper part of the fruit of Acrocomia sclerocerpa. S, The hard shell ; P, the plug which is pushed out of the shell by the germinating embryo, K; E, endosperm. (After Pfitzer.) of a cocoa-nut, for example, such points of egress, behind the thimnest of which the embryo will be found emerging from the endosperm, are very easily seen. Through the extremely hard, thick shell of another Cocoa-palm, Cocus lapidea, there are three long germinal pores, while the seedling of Acrocomia selerocarpa has only to push a loosely fastened plug out of the thick shell of the seed (Fig. 221). Similar contrivances are found in the case of Pandumus, Cumna, Tippha, Potumogeton, and many Dicotyledons (Tetragonia expunsu, Medicago, and some species of Onobrychis and Portuluca). Seedlings penetrate the soil by means of the elongation of the primary root, or of the hypocotyl, or also, as is the case with many Monocotyledons, through the movements of the geotropic cotyledons. After the descending part is firmly attached to the soil, by either root-hairs or lateral roots, THE UPWARD GROWTH COMmences. In this process the cotyledons may either remain within the seed or unfold above ground. The first is often the case where the cotyledons are full of reserve material (Phaseolus multiflorus, Aes-
culus, Quercus), or where their function is to absorb nourishment from the endosperm (in Palms and the scutellum of Gramineue). More frequently the cotyledons are pushed above ground, and may then be thick and filled with reserve nourishment, or thin and turning green on exposure to the light. In many Monocotyledons, as also in Ricinus, etc., the cotyledons, even if they afterwards appear above ground, may first take up the nutritive substances of the endosperm ; while in the Conifers the cotyledons perform the same office above ground. The cotyledons are drawn from the seed by the curvature of the hypocotyl or of the petioles of the cotyledons (Smyrnium, Delphinium). The seed-coverings also are often further ruptured by the swelling of the hypocotyl (Cucurbita, etc.). The unfolding of the first leaves above ground is frequently accompanied by a contraction of the Root, occasioned by its distension in a transverse direction; the seedling is in consequence drawn deeper into the soil, and its position rendered more secure. Even older plants, particularly those whose leaves form a radical rosette, notwithstanding their upward growth, are held close to the ground through a similar contraction of their roots.

When its attachment in the soil is properly provided for, and after the first germ-leaves are unfolded, the young plant has acquired the capacity for self-sustenance, its further growth and development being dependent upon its own activity.

PART II
 SPECIAL BOTANY

```
    SECTION I
CRYPTOGAMS
```


SPECIAL BOTANY

Spectal Botany is concerned with the special morphology and physiology of plants. While it is the province of General Botany to investigate the structure and vital processes of the whole vegetable kingdom, it is the task of Special Botany to interpret the structure and vital processes of its separate divisions. The aim of General Morphology is to determine the phylogenetic derivation of the external and internal segmentation of plants, and to refer their numerousstructural peculiarities to the primitive form from which they have arisen. The purpose of Special Morphology, on the other hand, is to trace the development which has been reached in the different divisions of the plant kingdom, to understand the form of individual plants, and to trace the connection between one form and another. Thus the methods of special morphology are also phylogenetic, and furnish the basis for a natural system of classification of the vegetable organisms based upon their actual relationships. Although such a system must necessarily be very imperfect, as it is not possible to determine, directly and indisputably, the phylogenetic connection of different plants, but only to derive indirectly their relationships from morphological comparisons, the aim which we set before us is none the less both legitimate and essentially justifiable.

Such a natural system, founded on the actual relationship existing between different plants, stands in direct opposition to the artificial System, to which has never been attributed more than a practical value in grouping the plants in such a manner that they could easily be determined and classified. Of all the earlier artificial systems, the sexual system proposed by Carl Linneus in the year 1735 is the only one which need be considered.

Linneus, in establishing his classification, utilised characteristics which referred exclusively to the sexual organs, and on this basis distinguished twenty-four classes of plants. In the last or twentyfourth class he included all such plants as were devoid of any visible sexual organs, and termed them collectively Cryptogays. Of the

Cryptogams there were at that time but comparatively few forms known, and the complicated methods of reproduction of this now large class were absolutely unknown. In contrast to the Cryptogams, the other twenty-three classes were distinguished as Phanerogams or plants whose flowers with their sexual organs could be easily seen. Linsexts divided the Phanerogams, according to the sexual character of their flowers, into such as possessed hermaphrodite flowers (Classes I.-XX.). and those in which the flowers were umisexual (XXI.-AXIII.). Plants with hermaphrodite flowers he again divided into three groups: those with free stamens (I.-XV.), which he further distinguished according to the number, mode of insertion, and relative length of the stamens: those with stamens united with each other (NVI.-XIN.) ; and those in which the stamens were united with the pistil (NX.). Each of the twenty-four classes were similarly subdivided into orders. While some of the classes and orders thus constituted represent naturally related groups, although by the method of their arrangement in the artificial system they are isolated and widely removed from their proper position, they include, for the most part, plants which phylogenetically are very far apart.

Lisisu's himself (1738) felt the necessity of establishing natural families in which the plants should be arranged according to their "relationships." So long, however, as the belief in the immutability of species prevailed, the adoption of a system of classification expressive of relationship and family could have $n o$ more than a hypothetical meaning, and merely indicated a supposed agreement between plants having similar external forms. A true basis for a natural system of classification of organisms was first afforded by the theory of evolution.

The system adopted as the basis of the following description and systematic arrangement of plants is the natural system of A1.EXander Braun, as modified and further perfected by Eichler and others.

According to this system we have to distinguish between Crirrmogams as the lower division, and Phanerogass as the higher division of the plant kingdom.

SECTION I

CRIPTOGAMS

The Cryptogams include an extraordinary variety of the most different plant forms, extending from unicellular organisms to plants exhiliting segmentation into stem, leaf, and root. The Cryptogams, however, are collectively distinguished from Phanerogams by the mode of their dissemination by spores, in contrast to that of the Phanerogams, which
is effected by seeds ; spores are formed also by Phanerogams, but they are not the immediate cause of the origin and development of new individuals. Seeds are multicellular bodies, within which is included the multicellular rudiment or embryo of a plant; while spores which, in the case of the Cryptogams, become separated from the mother plant, and give rise to a new and independent organism, are unicellular structures. Cryptogams may therefore be termed spore plants or Sporophytes, and Phanerogams seed plants or Spermaphytes; although uniformity to previous usage and custom would recommend adherence to the older terms.

The Cryptogams are divided into the three following groups:-
I. The Thallophyta, embracing a great variety of plants whose vegetative portion may consist of one or many cells in the form of a more or less branched thallus.
II. The Bryophyta, which include forms with a leaf-like thatlus, as well as cormophytic forms, with evident segmentation into stems and leaves. The Bryophytes possess no true roots, and their conducting bundles are of the simplest structure.
III. The Pteridophyta, or Fern-plants, exhibit a segmentation into stems, leaves, and roots, and also possess true vascular bundles. While thus resembling the Phanerogams in structure, they differ from them in their mode of reproduction, and in their dissemination by means of spores.

The Thallophytes and Bryophytes are also characterised as cellular plants, in contrast to the Pteridophytes or Vascular Cryptogams, which, together with the Phanerogams, are collectively designated vascular plants.

I. THALLOPHYTA

The Thallophytes may be divided according to their natural relationships into the following classes :-

1. Myxomycetes, Slime-Fungi.
2. Schizophyta, Fission-Plants.
3. Diatomeale, Diatoms.
t. Peridineae, Dinoflagellates.
4. Conjugatae, Conjugates.
5. Chlorophyceae, Green Algae.
6. Phaeophyceae, Brown Algae.
7. Rhodophyceue, Red Algae.
8. Characeue, Stoneworts.
9. Hyphomycetes (Eumycetes), Fungi.

Formerly it was customary to divide the Thallophyta comprised in these ten classes into the two groups of Algae and Fungi. The Algae are Thallophytes which possess chromatophores with colouring pigments, particularly chlorophyll; they are, therefore, capable of assimilating and providing independently for their own nutrition. The Fungi, on the other hand, are colourless and have a saprophytic or parasitic
mode of life. Such a method of classification, however, although possessing a physiological value, has no phylogenetic significance, as it gives no expression to the natural relationship of the Fungi to the Algae, from which they have been derived. Of the ten classes previonsly enumerated, the Schisophyta, Peridineue, and Rhorophycue include hoth assimilating and colourless non-assimilating forms: the Diatomeue, Comjuyutue C'hlorophlincene, I'hueophyceue, and Charucue contain exclusively assimilating forms; the Myromycetrs and Hyplumucetes, on the contrary, include exclusively colourless and not independently assimilating forms.

By the term Algae in its restricted sense are muderstood only the Thallophytes represented in the classes 3 to 8 ; by Fungi, only the Hyphomycets. To the ten classes of the Thallophytes may be added, as Class 11, the Lichens (Lichenes), in which the thallus affords an instance of a symbiosis of Algae and Fungi ($1 . \geqslant 13$). From a strictly systematic standpoint, the Fungi and Algae composing the Lichens should be classified separately, each in their own class ; but the Lichens, among themselves, exhibit such a similarity in structure and mode of life, that a better conception of their characteristic peculiarities is obtained by their treatment as a distinct class.

As a rule the Thallophytes are distributed and multiplied by means of asexually produced spores, but with a varying mode of development in the different groups ; and also, although not in all classes, they exhibit a sexual mode of reproduction. This reproduction consists, in the simplest cases, in the production of a single cell, the zygospore or zygote, by the mion or conjegation of two smihatif formed sexual cellis or gametes. In many of the more highly developed forms, however, the gametes are differentiated as small male cells or spermatozoids, and as larger female cells, the eggcells or oospiferes. As a result of the fusion of an cge-cell and a spermatozoid, an ouspore is produced. The first form of sexual reproduction or fertilisation is termed mogamous, the second ouganot- ; but these are comected by intermediate forms.

Class I

Myxomycetes (Slime-Fungi)

The Myxomycetes form an independent group of lower Thallophytes; in certain respects they occupy an intermediate position between plants and animals, and have in consequence also been termed Myertuzent or Fungus-animals. They are represented by mumerous species (about 50 genera), and are widely distributed over the whole earth. In their regetative condition the slime-Fungi consist of naked
masses of protoplasm, the PLASMODIA, containing numerous small nuclei but utterly devoid of chlorophyll. In consequence they are reduced to a saprophytic mode of life upon decaying vegetable remains, or as parasites they often obtain their nourishment from living plants. The plasmodia (p. 51) are found most frequently in forests, upon soil rich in humus, upon fallen leaves, and in decaying wood. They creep about on the substrata, changing their form at the same time, and thrust out processes or pseudopodia, which may in turn coalesce. Their movements are regulated by the intensity of the light and heat to which they are exposed, and by the amount of moisture and nourishment supplied by the substratum. Although in the vegetative condition the plasmodia are negatively heliotropic and positively hydrotropic, these characteristics become changed when the process of spore-formation begins. The plasmodium then creeps out from the substratum towards the light and air, and, after coming to rest, is converted into single or numerous and closely contiguous fructifications, according to the genus. On the periphery of each fructification an outer envelope or peridium is formed; while internally the contents of the fructification separate into spores, each of which is provided with a nucleus, and enclosed by an outer wall. The spores thus formed have accordingly an asexual origin. In many genera, part of the internal protoplasm within the sporangium or spore-receptacle is utilised in the formation of a CAPILLITIUM, consisting of isolated or reticulately united threads or tubes. Upon the maturity of the spores, the peridium of the sporangium becomes ruptured, and the spores are dispersed by the wind. In the case of the genus Ceratiomyrec, the process is somewhat simplified, as the fructification is not enveloped by a peridium, and the spores are produced at the extremities of short stalks. Sexual reproduction is entirely absent in the Myxomycetes.

A good exampie of the development of the plasmodia from the spores is afforded by Chondrioderma difforme, a Slime-Fungus common on decaying leaves, dung, etc., upon which it forms small, round, sessile sporangia. The germination of the spores (a, Fig. 52, p. 51) may be easily observed when cultivated in an infusion of Cabbage leaves or other vegetable matter. The spore-wall is ruptured and left empty by the escaping protoplast. After developing a flagellum or ciliux as an organ of motion, the protoplast swims about in the water, being converted into a swarm-spore (Fig. 52, e-g), with a cell nucleus in its anterior or ciliated end, and a contractile vacuole in the posterior end of its body. Eventually the cilium is drawn in, and the swarm-spore becomes transformed into a Mrxameba (Fungus amoeba), which creeps about, and, while undergoing constant alteration in its shape, at the same time it takes up food material by enclosing within its protoplasmic body small particles of foreign matter. The amœeb have also the capacity of multiplication by division. In conditions unfavourable for their development they surround themselves with a wall, and as michocrsts pass into a state of rest from which, under favourable conditions, they again emerge as swarm-spores. Ultimately a number of the Myxamœeæ approach close together
(Fig. 52. I and coalesce, forming small plasmodia (Fig. 52, wh), which in turn fuse with uthers into larger plasmodia (Fig. 52. n). Both the amelue and pla-modia are nourished by the small food particles taken up by the protoplasm, which also exhibits active, internal, streaming movements. After an interval of a few daythe plasmodium creeps to the surface of the subotratum to the air and light, and passing into a resting stage becomes at length converted into a white sporangium with a double wall. consisting of an outer, ealcareous, brittle peridium and an inner and thimer enveloping pellicle which, in addition to the numerons speres, "neloses also a poorly developed mapillitium.

The development of the other Myxomecte is accomplished in a vimilar mamer. Viry large plasmotia, often over a foot in lerealth, of a bright yellaw colour and creany eonsi-tency, are formed by the tan-pit Fungus Fulign surines (Athatium septicum), and as the "Hlowers of tan" are often found in summer on moist tan bark. If expond to desicention, the phamodia of this Myannyere pen into a resting state, and become converted into spherical or strand-like st Lemeth. from which a plasmodium is again frembuct on a firther supply of water. Finally, the whole plasmodime becones transformed into a dry cushion or vakeshaped fructifeation of a white, scllowish, or brown colotr. The fructifoction, in this istance, is enveloped by an outer calcareous erust or ribi, and is subdividel by numerous internal septa. It eneloss numerous dark violet-coloured speres. and is traversed by a filamentons capillitiun, in which are dispersed irregularly. shaped vesiches containing granules of calcimn carbonate. A frutifotion of this nature, or so-called iethalium, consists, therefore, of a mumber of sprangit combined together, while in most of the Myxomyertes the sporangia are simplo and formed singly.

The structure and nature of the sprangia alforl the most convenint mians of distinguishing the different genera. The following shecies may be mentioned asexhihiting eharacterintic differences in the form of the ir sporangia.

Stomentili fusen forms simple, stalked, eylindrical sporangia (Fig. 222, Al) whieh are witen found standing in clusters on dead leaves, bark, cti. The stalk is prom longed as a colomella through then

 -porangium, and gives rive to a delpcate, reticulate capillitium, within the mesties of which the the ilask. vioket spores. The periditun is thin and non-prersistent. Arcyemp peniom primbees its opherical sporangía on ruttell wencl. They wre silulif. stalked, of a reldh-h-brawn ralous, and without a columella. At man turity the peridium ruptures ciren larly and the upper part falls aif Whoretpon the aptlitimm httactel (0) the leat walls of the -pming inat springs out cullenly, and ot- froc thic -pora Fig. 222, l). Contrurie rem alon leveleps its redliviltirbwn amenogia on rotten -tomgas of trom. They are simple abil-talkel, without cithor celunwlla or mathlition. Tar -porangit ipen at the top, but the thackinel portiont of the thagld prithome

with its reddish-brown oval sporangia, may frequently be found on moss, grass haulms, etc. The sporangia are simple, and have a double peridium and a

Fig. 223. - Trichia raria. A, Closed and open sporangia $(\times 6) ; B$, a fibre of the capillitium ($\times 240$); C, spores (\times -40). reticulate filamentous capillitium, bit no columella (Fig. 224). Trichia varia, one of the commonest species on decaying wood, has a sessile globose sporangium with a yellowish

Fici. 2.2. - Leocarmes fragilis. Groups of sporangia upon Moss. (Nat. size.) peridium, which, after rupturing, forms a dish-shaped receptacle. The capillitium is made up of delicate tubes strengthened by spiral thickenings, and having free extremities (Fig. 22:3).

A few Slime-Fungi, termed collectively Acrasieae, exhibit a more simple mode of spore-formation. The spores on germination give rise directly to amœbe without the previous development of swarm-spores. The amcebæ multiply by division, and withont previously undergoing fusion form so-called aggregate plasmodia. In the process of spore-formation each amoba of such aggregate plasmodia surrounds itself with a wall and assumes the nature of a spore.

Plasmodiophora Brassicae, one of the few parasitic Myxomycetes, causes tuberous swellings on the lateral roots of various species of Brassica. Its plasmodia fill the cells of the hypertrophied parenchyma of these swellings, and these, eventually dividing into numerous spores, are set free by the disorganisation of the plant. The spores germinate like those of Chondicoderina, and the Myxamœebr penetrate the roots of a young Cabbage-plant. The formation of true sporangia, however, does not take place, and this Slime-Fungus represents a more simply organised or, in consequence of its parasitic mode of life, a degenerate Myxomycete.

Class II

Schizophyta (Fission-Plants)

The Schizophyta comprise only Thallophytes, having very simple structure ; they may be either unicellular or filamentous, consisting of a row of cells, or they may assume the form of cell colonies. They have no sexual mode of reproduction, and multiply only by cell division or by asexually-formed spores. They include two orders-the Fission-Algae or Schizophyceae, and the Schi:omycetes (Fission-Fungi or Bacteria). The cells of the Schizophycece contain an assimilating blue-green colouring matter. The Schizomycetes, on the other hand, which are only
exceptionally provided with such a pigment, live either parasitically or saprophytically, and may be regarded as a derived form of s-thionhpreat.

Order 1. Schizophyceae (Fission-Algae)

The Fission-Algae were formerly thought to show a variation from other Algae in the differentiation of their cells. It was customary to distinguish within the protoplasts of their walled cells an apparently homogeneous colourless ceatran- Bods, separated from the other portion of the cell contents by a delicate membrane, and possessing a greater capacity for taking up stains. According to the recent investigations of Megiler, this central body: has, however, the strneture of a true nuclens, and undergoes indirect kargokinetic division. In certain of the filamentons forms, special cells, no longer capable of division, may contain several nuclei, the number of which is in such cates the result of fragmentation. The cell mucleus is surromided by a colvired peripheral layer. This layer may be considered as equivalent to a chromatophore ; it contains, in addition to chlorophyll, a bluegreen or verdigris-coloured pigament, termed phycoeganin, to the presence of which this group of the Scmzorhyta owes its name of Cranuphychar. or Blue-green Algac. There are also found within the cells, usmally lodged in the periphery of the chromatophores, small grambar bodies of an unknown significance, the so-called cyanophyein grains: while mucous globules are also disposed in the vicinity of the melens. In addition to these, vacnoles occasionally oecur in the cells. The cell walls consist of cellulose, and often exhibit distinct stratification, and in many species they undergo a mucilaginous moditication of their outer layers. Multiplication is effected in a regetative mamer, simply by the division of the whole contents of the cells and by the formation of partition walls. In the case of the unicellular forms, included cont lectively in the family of the C'lreenomectur the daughter cells separate after the division, and become either entirely isolated or remain as cell colonies in proximity with one another. In the filamentons forms or Nistomenter, the daughter cells contime in contact and form cell rows. These cell filaments eventually break up, into shorter segments. which repeat the process of multiplication and segmentation. It is from this mode of reprodnction by the division or fission of the cellthat the name Fission-Algae has been derived.

The Fission-Algae represented hy numerous specics are univer-ally distributed. They ocem' at Hoating water forms, attachen to stones and plants, or they form mucilaginous or pubescent coatings on damp soil, moist rocks, tree-trmaks, muss, ete.

 are cincloped ly a thin wall and have a bluegreta colour. In uterr genera colf
colonies are formed by the daughter cells, which result from division, remaining enclosed in a common gelatinous envelope, formed by the mueilaginous degencration of their cell walls. Thus, the four-cornered, tabular cell colonies of the genus Merismopedia, often found floating in the water, are formed by repeated cell division, which is always in one plane and in two directions only. The cell colonies of Glococapsa, whose different species form, for the most part, olive-green or bluegreen patches on damp walls and rocks, present a peeuliar appearance, as shown in Fig. 225. The walls of the cells are mucilaginous and swollen. When a cell divides, the walls of the daughter cells also become mucilaginous, while at the same time they remain enclosed within the walls of the mother cell. In this manner, through division in three dimensions of space, a cubical or rounded colony composed of $2,4,8$ or more cells is produced which eventually breaks up into danghter colonies.
2. Nostocaceac.-The simplest forms of this family, in which are included the

Fic. 225.-Glococapsa polydermatica. A, In process of division ; B, to the left, shortly after division; C, a later stage. (×.540.)

Fig. 226.- A, Oscillaria princeps ; (", terminal cell ; b, c, portions from the middle of a filament. In c, a dead cell is shown between the living cells. IB, Oscilluriu Froelichii; b, with granules along the partition walls. $(\times 540$.)
most highly developed of the Fission-Algae, are merely filamentous rows of cells, unbranched and without any distinction of base or apex. This is the ease in the genus Oscillaria (Fig. 226), whose single filaments are motile and exhibit peculiar gliding movements. The filaments consist of disc-shaped, blue-green cells, with numerous small'granules disposed in their peripheral protoplasm, which, as a rule, appears to be especially accumulated along the transverse walls (Fig. 226, B). The terminal cells of the filaments are usually rounded. By the rounding off and separation of any two adjoining cells the whole filament may break up into short germinal segments, termed hommogonia, which then grow out again into long filaments. In species in which the filaments are invested with thick sheathing walls, the hormogonia creep out of the cell envelope, leaving only the empty sheath remaining. The species of Oscillaria are found in tufts, either freely floating or growing upon damp soil.

While in the case of Oscillaria and in several other genera the cells are all alike, many Nostocaceae not only develop special cells, termed heteiocrysts, which seem to be incapable of further development, but also thick-walled resting cells or spones. This is the habit of the genus Nostoc, which is found growing on damp'
soil or floating in water in the form of gelatinous masses, in which are embethed the unbranched cell filaments like rows of beads. Heterocysts poorly supplied with cell contents oreur at irregular intervals (Fig. 227, h in these chains of eells, while

 ment with two heterocysts (h), athe a large dutaber of spures (sp) ; B, inolateal spure begimaing to germinate; $(\prime$, young flament developent from spore. (After Bens:v:T, \times (i.so.) from the veretatire cells, rieleer in contents, spores $(s p)$ are produced. On wermination these spores give rise to a new tilament composed of similaty united cells Fig. 22̃, B, C.

In certain Niostucaemer the cell filanment are characterised by falon branching. This peudnhranching oceurs when a cell of a filament becomes bent outwards and is pushed upward, by the continted division of the lower cells, so that the upleer portion assumes the alple brance of a lateral branch.

Many C'yennuplyyrane take part with the Fungi in the formation of Lichens. Some species also are endophytic and inhabit cavities in other plants. Thus, species of - Wistro are constantly foumd in the tissues of certain IIeputicur, in Lommu, and in the roots of C'ycus and Gumeru; and similarly a species of Amblumu oceurs in Asollu.

Especially interesting are the floating forms of the C'ymmonhycor, which rise in quiet water to the surface, and collect there in large masses. In the protoplasm of the cells of these species (6\%) Cilumbtrichue chhinulutu, - Imblumu plos aque, of fresh-water lakes) are fomd numerons vacuoles, which are filled with gas and render it possible for the Algae to theat on the surface of the water.

Order 2. Schizomycetes (Fission-Fungi, Bacteria)

The Fission-Fungi differ from the Fission-Algae principally throngh the absence of an assimilating green pignent in their cells. In them, too, no cell nuclens has as yet bren found, although, according to Heciber, a cell nucleus is present in certain species which he inveatigated. Their protoplasm is colourless and always enelosed by thin cell walls. In a condition of plasmolysis, induced by means of a salt solution, the protoplasm becomes contracted, and shrinks from the cell walls, from which it may be concluded that within the cells of Bacteria there is a sap eavity surromded by a peripheral ertoplasmic layer. Like the Fission-Agae the Fi-sion Fungi oceur under a great variety of forms. The latter, however, are of a much smaller size, including in fact the smallest of known livine organioms. The spherical cells of Mirminocins momitiosus, which develops on cooked potatoes, bread, milk and meat, and is distinguished lyy the formation of a houd-red
pigment, measure only 0.0005 mm . in diameter, while the rod-shaped cells of the Tubercle Fungus, Bucillus: Tuberculusis, are only from 0.0015 mm . to 0.005 mm . long.

The simplest form of Fission-Fungi are represented by minute spherical cells, Cocci. Forms consisting of short, rod-shaped cells are designated Bacterium ; those of the same shape but longer are known as Bacillus. Simple cell filaments are termed Leptuthrix ; spiral, closely-wound filaments are classified as Spirillum, when more loosely wound as Vibrio, and longer spiral filaments as Spirocheete. In the highest stage of their development the Fission-Fungi consist of cell filaments exhibiting false branching, as in certain of the Nostocaceue. As in the Fission-Algae, but more frequently, the cell walls become swollen and mucilaginous. In this condition of their development, termed Zooglea, the Cocci, Bacilli, etc., appear to be embedded in a gelatinous mass, as in the Alga Tostoc.

While most Bacteria have only one form throughout the whole course of their growth, and are accordingly spoken of as species of the genera Micrococcus, Bucterium, Bucillus, etc., there are, on the other hand. so-called pleomorphic species which exhibit differences of form corresponding to different stages in their life-history:

Multiplication of the individual is accomplished regetatively by the active division or fission of the cells; the preserration and distribution of the species by the asexual formation of resting-spores. Bacteria may be divided into the following two groups, according to their mode of spore-formation :-

1. Arthrosporots Bacteria, in which regetative cells, just as in the case of Nostoc (Fig. 22i), simply become thickwalled and converted into spores (cf. Leuconostoc, Fig. 231, E).
2. Endosporot's Bacteria, in which the spores are formed within the cells by the contraction of the protoplasm and its investment with a new cell wall (cf. Bucillus sultilis, Fig. 230, B).

Many Bacteria are motile. Their independent movements are due to the vibration and contraction of fine protoplasmic cilia. These flagella, according to A. Fischer, are distributed over the whole surface of the cells (e.g. Bacillus sultilis, Fig. 228, and also the Typhus Bacillus), or they are polar, and spring from a single

Fig. 2ns.-Barill s su'tilis. Fwaming rods with numerous tine flagella. spores cultivated in an infusion of hay, A, after $\frac{7}{f}$ hours: B, after si hours, with fully-lleveloped flagella. (After A. Fischer, λ 1500.) point. A single, polar flagellum occurs in Fibrin cholerue: a polar terminal tuft of flagella in Bacterium termo: a lateral polar tuft
in the swarm-spores of Cludothrix. The ciliary tufts may become so closely intertwined as to present the appearance of a single thick flagellum. The cilia, although arising from a protrusion of the cell protoplasm, are never drawn within the body of the cell, but undergo dissolution before the formation of spores takes place. The existence of such special flagella has not as yet been demonstrated in the FissionAlgae, so that, in this respect, there is a characteristic difference between them and the Fission-Fungi.

The Fission-Fungi are represented by numerous species, and have a world-wide distribution. Although they present but little variety of external form, the separate and scarcely distinguishable species exhibit numerous variations in their metabolic and nutritive processes (cf. also pp. 212, 197). A distinction is also made between saprophytic and parasitic forms. To the former belong the morphologically most highly-developed species, which the highest is represented by Cladotlirix dichotoma. This FissionFungus is found in stagnant water, and consists of falsely branching, delicate filaments (Fig. 229) attached to stones and Algae, and forming a slimy coating over them. The filaments are composed of rod-shaped cells enclosed within an outer filamen tous sheath. Multiplication occurs through the separation from the parent filament of longer or shorter branches, which pass into a swarm stage and eventually fall into still smaller rod-like segments. These segments either escap from the enveloping sheath or are set free by its dissolution. Eight or ten flagella spring from a point on the side of the cylindrical swarm segments or, as they art termed, rod-gonidia. After swarming, the rod-gonidia settle down, and attaching themselves to a support grow out into new filaments.

There are also always found associated with Cladothix numerons other sapro phytic Bacteria, Vibriones, Spirilla, Cocci, Zoogleer. It is doubtful whether thewe are all merely different stages in the development of Claduthrix. This riew ha: certainly not been positively demonstrated as yet by actual continuous observation. Among the most common filamentous Fission-Fungi occurring in water are the Sulphur Bacteria (c.g. Beggiatoa alba), which form small granules of sulphur is
their cells if sulphuretted hydrogen be present in their environment. Another filamentous Fission-Fungus, Cronothrix Kiilhniana, in the sheaths of whose filaments deposits of lyydrated oxide of iron are found, is of frequent occurrence in springs and water-pipes, where it forms brown slimy masses and renders the water unfit for drinking. In both of these last-named Schizomycetcs the filaments, unlike those of Cladothrix, are unbranched.

The majority of Bacteria, like these important water-bacteria, maintain a saprophytic mode of life. Their metabolic processes vary in correspondence with their numerous decomposition products, and are usually adapted to definite conditions of nutrition. Thus the Hay bacillus, Bacillus subtilis, develops in an infusion of hay. The spores are able to withstand the heat employed in making the infusion, and produce in from 12 to 15 hours, on the surface of the liquid, a gelatinous pellicle consisting of closely compacted parallel filaments. Each filament is composed of long rod-shaped cells in active process of division (Fig. 230, A). After exhaustion of the nutrient substance of the infusion, an endogenous formation of spores takes

Fig. 230.-Buctillus subtilis. A, Pellicle of parallel filaments ($\times 500$) ; B, formation of spores ($\times 800$).
place within the cells of the filaments (B). In germinating, the walls of the spores become ruptured on one side and their elongating protoplasmic contents emerge as rod-shaped swarm-spores provided with numerous flagella (Fig. 228), and multiply further by division.

Many saprophytic Bacteria are characterised by their capacity to induce fermentation and putrefaction, and in the operation of their metabolic processes are able to decompose certain organic compounds. Thus Lcuconostoc mescntcrioides occasions the mucous fermentation of beet-sugar. It forms gelatinous masses resembling frog-spawn, consisting of a number of polygonal colonies enclosing rosary-like chains of cells within the mucilaginous sheaths (Fig. 231, D). In its mode of spore-formation this species of Fission-Fungus closely resembles the Fission-Algae Sostoc. Special cells of the chain become larger and transformed into arthrospores (E). In the process of germination these spores become invested with a gelatinous sheath (B), and develop into thick but short rows or chains of cells (C). These unite into colonies, and these again into groups of colonies, thus forming large gelatinous masses similar to the original. The Vinegar bacterinm, Bactcrium accti, oxidises alcohol into vinegar ; Bacillus amylobactor occasions the butyric fermentation ; Bactcrium terino the putrefaction of albumen, meat, etc.

Among the parasitic Bacteria there are numerous forms which may be described as harmless, as for example Sareina ventriculi (Fig. 232, A), which forms cubical masses of cocci in the stomach and intestines of man ; also the various Bacteria, Microcoecus, S'pirillum dentium, Leptothrix buccalis, etc. (Fig. 4, p. 11), which occur in the cavity of the mouth. Of dangerous or pathogenic Bacteria which have been demonstrated to be the cause of infectious diseases, mention may here be made of the following: Bacillus Tuberculosis, the cause of tuberculosis (Fig. 232, C);

Fig. 231.-Leuconostoc mesenterioides. A, Isolated spores; B, C, formation of chain of cells with gelatinous sheath ; D, portion of mature zooglea; E, formation of spores in the filaments of the zoogloea. (After Van Tieghem, $\times 520$.)

Fig. 232.-A, Sarcina rentriculi $(\times i 00) ; B$, Spirochapte Obermeieri $(\times 950) ; C$, Bucillus Tuberculosis, plasmolysis of contents occasioned by mode of treatment $(\times 1500) ; D$, İibrio cholerae $(\times 950) ;$ E, Streptococcus pyogenes ($\times 950$). (After Baumgarten.)

Vibrio cholerae asiaticae, the comma bacillus of Asiatic cholera (Fig. 232, D); Spiroehucte Olcrmeieri (Fig. 232, B), found in the blood of patients suffering from intermittent fever ; Bacillus Typhi, the bacillus of typhoid ferer ; the pyogenic Bacteria, Streptococcus pyogenes (Fig. 232, E) and Staplylococeus aureus; Sticptococcus Erysipelatis, occurring in the lymphatic glands of persons affected with erysipelas; Bacillus Anthracis, the anthrax bacillus, with a mode of spore-formation similar to that of the Hay bacillus.

Mhizobium Leguminosaruin (Bacillus radicicola) lives in symbiosis with the Leguminosae, and causes the formation of their root-tubercles. After multiplying enormously in the cells of the root-tubercles, the Bacteria eventually undergo transformation into bacterioids (see p. 211).

Class III

Diatomeae (Diatoms)

The Dictomeae constitute a large class of unicellular Algae, including about 1500 species. They usually occur associated together in large numbers, in both fresh and salt water, and also on damp soil.

The individual cells or frustules are either solitary and freeswimming, or they are attached by means of gelatinous stalls, excreted
y the cells themselves. Sometimes these chains remain connected nd form bands or zigzag chains, or, on the other hand, they are ttached and enclosed in gelatinous tubes, while in the case of the narine genus Schizonema they lie embedded in large numbers in a elatinous branching thallus, often over 1 dcm . in breadth. The cells lso display a great diversity of shape; while generally bilaterally ymmetrical, they may be circular or elliptical, rod- or wedge-shaped, urved or straight. The structure of their cell walls is especially haracteristic ; it is composed of two halves or VALVES, one of which overaps the other like the lid of a box (Fig. 3, B, p. 11). The cells thus resent two altogether different views, according to the position in which hey are observed, whether from the girdle (Fig. 3, B) or VALVE-SIDE Fig. $3, A$). Both valves are so strongly impregnated with silica, that, ven when subjected to intense heat, they remain as a siliceous skeleton, etaining the original form and markings of the cell walls. The walls f the cells, particularly on the valve side, are often ornamented with umerous fine, transverse markings or ribs, and also with small rotuberances and cavities. In many instances (Fig. 3) a longitudinal ine corresponding to an opening in the cell walls, and exhibiting wollen nodules at both extremities and in the middle, is distinguishble in the surface of the valves. Forms provided with such a median uture or RAPHE are characterised by peculiar backward-creeping novements, resulting from the extrusion of protoplasmic protrusions rom their longitudinal edges. Each frustule has always a central ucleus and one (Fig. 3) or two large or numerous smaller (Fig. $33, D)$ cliromatophores embedded in its parietal protoplasm. These hromatophores or ENDOCHROME PLATES, as they are often called, re flat, frequently lobed, and of a brownish-yellow colour. In ddition to chlorophyll they contain a golden brown colouring matter, ermed diatomin. Globules of a fatty oil are also included in he cell contents, and take the place of starch as an assimilation roduct.

The Diatomeae multiply vegetatively by bipartition, which always akes place in one direction. In this process the two valves are first ushed apart from one another by the increasing protoplasmic contents f the mother cell, which then divides longitudinally and always in uch a direction that each of the two new cells retains one valve of the riginal frustule. After the division of the protoplasm of the mother ell is accomplished, each daughter cell forms, on its naked side, a ew valve fitting into the old one. The two valves of a cell are herefore of different ages. In consequence of this peculiar manner of livision, as the walls of the cells are silicified and incapable of disension, the daughter cells become successively smaller and smaller, intil finally, after becoming reduced to a definite minimum size, they indergo transformation into AUXOSPORES. The auxospores are usually wo or three times larger than the frustules from which they arise,
and by their further development they re-establish the original siz of the cells.

The formation of auxospores is accomplished in various ways. In the case Mclosira, a free-swimming genus whose cells are joined together in chains, th single cells simply swell greatly in size, and secrete two new valves (Fig. 233, I)

Fig. 233.-Formation of auxospores. A, Himantidium pectinale $(\times 200) ; B$, Cocconema lanceolatum
$(\times 400) ; C$, Epithemia turgirla $(\times 200) ; D$, Melosía dium pectinalc $(\times 200) ; B$, Cocconema lanceolatum
$(\times 400) ; C$, Epithemia turgirla $(\times 200) ; D$, Melosiic corians $(\times 250)$. (A-C after Smith; D after Pritzer.) (1) An altogether different mode of spore formation is exhibited by the isolated unattached cells of Cocconema lanceo Tatum (Fig. 233, B). In this instance two cells place themselves together sid by side, and throwing off their valves surround themselves with an envelop ing gelatinous mass. Each nake protoplast, without, howerer, under going conjugation, is then transforme into a single large auxospore, whic ultimately becomes invested with new cell wall. In other genera tru conjugation occurs; thus, in the cas of Himantidium pectinale (Fig. 233 A), each auxospore is the result of the conjugation of two indiriduals. Or the other hand, in the formation o the auxospores of Epithemia turgide (Fig. 233, C), each of the conjugating frustules first divides into daughte cells, which then, fusing two and two with the corresponding daughter cells of the other frustule, give rise to two auxo spores. The anxospores do not pass througln a period of rest, but begin at once to multiply by division.

Countless numbers of Diatoms live in the ocean, and they constitute also a ${ }^{1 r o}$ portionately large part of the plankTon, that is, the free-swimming organic worle on the surface of the sea. The plankton Diatoms have no middle suture or raphe on the surface of their valves, and are especially adapted to swimming or floating To this end they are often provided with horn-like protuberances or membranous wings, which, like the contrivances of seeds for a similar purpose, greatly enhanet their buoyancy.

Diatoms occur also as fossils. Their silicified valves form a large part of the deposits of Siliceors Eabth, Kieselguhr, mountain meal, etc., and in this form they are utilised in the manufacture of dymamite.

On account of the extreme fineness of the markings of their valves, it is eus tomary to employ certain species of Diatoms as test objects for trying the lenses of microscopes. Pleurosigme anyulatum is commonly used for this purpose, and, with a sufficiently strong lens, it is posisible to distinguish on the surface of the S -shapert valves a system of fine markings, forming a network of six-sided meshes to the right and left of the raphe.

Class IV.

Peridineae

The Pcridincac or Dinoflagellata were formerly classed with the lowest animals, out are, in reality, unicellular Thallophytes. They live for the most part in salt water, and form, together with the Diatomcac, an important part of the plankton loating on the surface of the ocean. Their cell plasma contains a nucleus, a com,licated system of vacuoles, and light yellow, tabular chromatophores. The presnee of these chromatophores in the Peridincac has, in particular, been considered ndicative of their vegetable nature. The Pcridincac re further characterised by two long protoplasmic ilia or flagella, to the vibrations of which the movenents of the cells are due. The flagella spring from he ventral side of the cells, and lie in two furrows, which cross each other at right angles, on their urface (Fig. 234). Only a few Peridincae are entirely raked ; most of them have peculiarly sculptured cell ralls, consisting of intersecting cellulose plates or ibs. They multiply by division, and in the autumn orm thick-walled cysts, in which condition they ass the winter. Conjugation has not been observed.

In addition to the forms which, like Algae, susain themselves by means of assimilating yellow hromatophores, there occur also colourless Periincac, whose chromatophores are only represented

Fig. 234.-Peridinium bipes, ventral view. (After Schilling, $\times 750$.) y colourless lencoplasts. Such species, although early related to the brown Peridineac, live either as saprophytes or in the same ray as animals. Gymnodinium hyalinum, a colourless, naked, fresh-water form, xhibits a mode of life resembling that of a Myxomycete. For the purpose of bsorbing nourishment it loses its cilia and assumes the form of an amceba; in his condition it encloses and digests small Algae.

Class V

Conjugatae

In the class of the Conjugatue is included a large independent roup of green, fresh-water Algae, comprising over 1000 species, in he form either of solitary cells or filamentous rows of cells. They lerive their name from their peculiar mode of sexual reproduction, vhich consists in the CONJUGATION of two apparently similar cells, esulting in the formation of a ZYGOSPORE. They are in this respect harply distinguished from all the other green Algae, the Chlorophyceue, rom which they may be distinguished also by the absence of any sexual mode of spore-formation, and by the complicated structure of heir green chromatophores.

1. Zygnealaceae. - In this family, all of which are filamentous in character, the genus Spirogyra, with its numerous species, is the best known. It is commonly found in standing water forming unattached masses of intertangled green filaments. The filaments exhibit no dis-

Fig. 235. - Cell froill a filament of Spirogyre ; k, nucleus ; ch, chromatophore ; r, pyrenoid. ($\times 200$.) tinction of base and apex, and are composed of simple rows of cells, which vary in length in different species. Growth results from the division and clongation of the cells in one direction only (cf. Fig. 65, p. 64). Each cell has a large nucleus situated either in the peripheral protoplasm or suspended in the centre of the cell by protoplasmic threads extending from the parietal protoplasm. The name of the genus, spirogyra, is due to the peculiar spiral form of its green band-like chromatophores. These spiral bands lie in the parietal protoplasm, and contain numerous pyrenoids (p. 71). In Fig. 235 is represented a species with three such spiral chromatophores; in other species their number is sometimes less, sometimes more. The chromatophores in the other genera of the Zilgnemareue exhibit a variety of form ; thus, in the filaments of Zyggnema the chromatophores are starshaped.

Conjugation, in the case of Spirogyira, is preceded by the development of converging lateral processes from the cells of adjacent filaments. When two processes from opposite cells meet (Fig. $236, A$), their walls become absorbed at the point of contact, and the whole protoplasmic contents of one cell, after

Fig. 236.-A, ('onjugation of sjiromyr quininu ($\times 240$). 1 , spiroyyru longat ($\times 150$) ; z, zy\%ospore. contracting from the cell wall, passes through the canal which is thus formed into the opposite cell. The protoplasm and nuclei of the conjugating protoplasts then fuse together and form a zygospore invested with a thick wall, and filled with fatty substances and reddish-brown mucous globules. It is the
function of the zygospore to act as a resting-spore, to tide over the winter or a period of drought, and eventually, on germination, to give rise to a new filament of Spirogyru. This form of conjugation, which is the one peculiar to most species, is described as scalariform (Fig. $236, A$), as distinct from the lateral conjugation of some species, in which two adjacent cells of the same filament conjugate by the development of coalescing processes, which are formed near their transverse wall (Fig. 236, B).
2. Mesocappaceae.-The representatives of this family are also composed of filamentous rows of cells, but exhibit a difference in their mode of conjugation. In this case, in the process of conjugation, which is either scalariform or lateral, only a portion of the protoplasm of both conjugating protoplasts, together with their nuclei and a greater part of their chromatophores, passes into the connecting canal, and there, fusing into a zygospore, becomes separated from the parent cells by transverse walls.
3. In the Desmidiaceae, the third family of the Conjugatue, are comprised the

Fir. 237.-A, Cosinarium coelatum in process of division ; B, Cosmarium Botrytis; C, the same with fully-developed zygospore; D, Micrasterias Crux melitensis. (After Ralfs.)

Fig. 238.-Closterium moniliferum; p, pyrenoid; K, vesicle with crystals. ($\times 240$.)
unicellular forms. They are ornamented with delicate markings, and, like the Diatoms, exhibit a great variety of form (Figs. 237, 238). Their cells are composed of two symmetrical halves, separated, as a rule, from each other by a deep constriction, the isthmus. Each half contains a large, radiate, irregularly defined chromatophore, or a number of plate-like chromatophores united into one. Within the chromatophores are disposed several pyrenoids, while the nucleus lies in the centre of the cell in the constriction. The cells themselves display a great diversity of form and external contiguration (Figs. 237, 238). The cell walls are frequently beset with wart- or horn-like protuberances. In some genera there is no constriction between the two halves of the cell. This is the case, for instance, in the crescent-shaped Closteriuin moniliferum (Fig. 238), whose two chromatophores consist of six elongated plates, united in the long axis of the
plant, while in each end of the cell there is a small vacuole containing minute crystals of gypsum in constant motion. Many Desmids are characterised by heliotactic movements; they protrude fine mueilaginous threads through the cell walls, by means of which they can push themselves along, and take up a position in a line with the direction of the incident rays of light.

Multiplication is effected by cell division. This is accomplished by the formation of a partition wall across the middle of the cell after the nuclear division is completed. Each daughter cell eventually attains the size and form of the mother cell, by the outgrowth of a new half on the side towards the new division wall (Fig. 237, A). After the completion of their growth, the two cells separate from each other.

The conjugation of the protoplasts takes place, in the case of the Desmidiaceac, outside their cell walls, Two cells approach each other, and surround themselves with a mucilaginous envelope. Their cell walls rupture at the constriction, and parting in half allow the protoplasts to escape, which then unite to form a zygospore. The zygospores of the Dcsmidiacou frequently present a very characteristic appearance, as their walls are often beset with spines (Fig. 237, C^{\prime}). The four empity cell halves may be seen close to the spore.

Class VI

Chlorophyceae (Green Algae)

In the C'hlorophyceae are included the majority of the Algae provided with green chromatophores. They group themselves naturally into three orders, according to the structure of the thallus: the Protococcoideue, which include all the unicellular forms, whether living as isolated cells or as cell colonies; the Confertoidene, comprising forms consisting of simple or branched cell filaments or cell surfaces; the Siphonear, with a thallus variously developed, but usually consisting of a single, multinuclear, tubular cell.

Sexual reproduction has not been demonstrated for all species of the Chlorophyreae. In the simplest cases it is effected by the conjugation of naked gametes, of similar form and equal size. The gametes, as distinct from those of the C'onjugutue, are motile ciliated protoplasts, and are known as Planugametes. In other genera there is a differentiation of the sexual cells into a female non-motile egrocell or oosphere and a motile ciliated male cell or spermatozoid. lixamples of this advance from isogimy to OOGAMY are afforded by each of the above three orders.

In addition to asexual reproduction, the Chlor(p)leyceue almost always exhibit an asexual mode of reproduction by the formation of motile ciliated swarm-sporsic (zoospores) which resemble the planogametes.

The cells in which the swarm-spores are formed are terned sporangia ; similarly those producing gametes are designated game-
tangia. Cells in which spermatozoids take their origin are termed ANTHERIDIA ; those giving rise to egg-cells, oogonia. If the sexual form be derived from an asexual form of reproduction, all these organs, as well as those similarly named in the other classes of the Thallophytes, must be regarded as homologous.

The Conjugatac and Characeac, as well as the three orders of the Chlorophyceae, also possess green chromatophores, and hence the designation Green Algae, in its widest, unrestricted sense, is also applicable to them. The Conjugatae, however, are sharply characterised by their peculiar manner of sexual reproduction. The Characcae also form a distinct group, and are marked off from the Chlorophyccae by the more highly advanced segmentation of their thallus and the more complicated structure of the female sexual organs and of the antheridia, both of which are enclosed within special enveloping receptacles, while the antheridia and oogonia of the Chlorophycece are always devoid of any external covering of sheathing sterile cells.

Order 1. Protococcoideae

The Protococcoidecte include only unicellular Algae, whose cells lead a separate existence, or are united into cell families with a definite or indefinite order of arrangement. They occur, for the most part, as freelyswimming, fresh-water forms, but are also found in damp places. The cells are uninuclear, and contain one or more chromatophores. In the simpler forms multiplication takes place vegetatively by cell division ; but, in most cases, asexual swarm-spores, provided with two cilia, are produced. Sexual reproduction, which does not occur in all genera, is effected by the conjugation of two exactly similar planogametes which fuse into a zygospore or zygote. The fertilisation of an egg by a motile spermatozoid is only known to take place in the case of Eudorinu and Volvox.

Many of the Protococcoideue are polymorphous, and assume, according to the season of the year and the conditions of their enviromment, different external forms corresponding to different stages in their development.

Scenclesmus acutus, a polymorphous free-swimming form, very conmon everywhere in water, is generally found in small cellfamilies, consisting of four spindle-shaped cells lying close together (Fig. $239, i, k)$. Under certain conditions, however, this Alga passes into the Palmella stage, and it then appears as spherical cells, multiplying by cell division (a, b). Each of these cells may again divide

Fig. 239.-Scenedesmus acutus. Different stages of development. (After Chodat.)
into four spindle-shaped cells, which, after escaping from the mother cell, either remain isolated (c, d, e)
or connected together by fine threads Dactylococcus stage, Fig. 239, g). By the longitudinal division of the cells of these forms the four-celled Scencelcsmus family may again be produced (f, h, i, k). No formation of swarm-spores occurs in this Alga.

One of the simplest forms of this order is represented by the genus Chlonella, which multiplies solely by cell division. This genus is particularly interesting also from a biological stand point, as its small round cells live symbiotically in the plasma of Infusoriu, in the cells of Hydra viridis, spongilla fluviatilis, and other lower animals.

Petiastrum (Fig. 240) may be cited as an example of a genus which gives rise to cell-families. Each cell-family forms a free-swimming plate, composed internally of polygonal cells, and on the margin it consists of cells mure or less acutely crenated.

Fig. :240.- P'eliostrum grenulutum. A, An old cell-family: u, cells containing spores ; b, spores in process of extrusion the other cplls have already discharged their spores) ; P, cell-family shortly after extrusion of the spores: C. cell-family $4 \frac{1}{2}$ hours later. (After Al.. Bratex, $\times 300$.)

The formation of asexual swarm-spores is effected in Peliustrum by the division of the contents of a cell into a number in the case of the species illustrated, I. yramulatum, into 10) of naked swarmspores, each with two cilia. The swarmspores, on escaping through the ruptured cell wall (Fig. 240, $4, l$, are enclosed in a common envelope. After first moving vigorously about within this envelope, they eventually collect together and form a new cell-family. Pediastrum possests also an asexual mode of reproluction. The gametes are all of equal size, and, exeept that they are smaller and are produced in greater numbers, they are otherwise similar to the swarm-spores. They move freely about in the water, and in conjugating fuse in $1^{\text {airs }}$ to form zygote. The further development of the zygote into cell-families is not yet fully known. In the spring the cell-families develops from pecnliar, thick-walled. spiniferous resting-ells or polyhfmes, the contents of which separate into swarm-spores, which eseape enclosed in a common enselope, and give rise to a new family. The pulyhedra are probably formed from swarmspores developed in the zygotes.

The ${ }^{\text {rolemencue }}$ include also forms whose cells live either isolated or united into

colonies, but which, unlike the type of the I'retercomemele beretofore considerel,
are also provided in their vegetative state with cilia and surrounded by a delicate envelope. The cilia, usually two in number, project through this external envelope, and by means of them the Algae of this family are enabled to swim freely about. In this respect they continue their vegetative existence in that condition which, in the case of the other Protococooideae, is only assumed transitionally by the swarmspores. The multiplication of the Volvocaceae is effected by simple division of the ciliated cells ; their sexual reproduction by conjugating gametes or by means of egg-

Fig. 242.-Volvox aureus. A, Colony with three eggs, o, shortly after fertilisation; a, spermato-zoid-packets in process of development; t, vegetative daughter colonies ($\times 180$); B, sper-matozoid-packet of 32 cells, seen from above; C, the same seen from the side ($\times 687$) ; D, spernatozoids ($\times \& 24$). (After L. Klein.)
cells fertilised by spermatozoids. The genus Sphaerella (Haematococcus) belongs to the simplest solitary forms of this family, the presence of some forms of which (particularly S. pluvialis), on account of the hæmatochrome contained in their protoplasm, often impart a bright red colour to small pools of water in which they are found. Sphaerella nivalis, another species of this same genus, is also the cause of the so-called "red-snow" of the snowfields in high northern latitudes and in the Alps. The swarm-cells have a widely-distended envelope and two cilia (Fig. 241, A). They can withdraw their cilia and become resting-cells, which eventually separate again into several swarm-cells by the division of their protoplasmic contents
(B^{\prime}). The gametes, which may be produced in large numbers (32 or 64) in every cell ($\left(^{\prime}\right.$), possess two delicate cilia, a red eyc-sput, and a chromatophore. After swarming, the gametes conjugate in pairs (E) and give rise to zegotes (F). The zygotes become invested with a thick wall, and serve as resting-spores (\vec{j}^{\prime}). While the gametes of Sphucrellu and of most other I'olvocuccue are similar and of equal size, in the case of Eudurinu and Iolenx, which may also be considered as the most highly-developed forms of the whole order, the sexual cells are more difterentiated, and assume the form of large passive egg-cells and small biciliate sperma-
 aureus (I^{r}. minor), found in small pools and ditches, forms hollow, spherical colonies (cenobia), which are often large enough to be visible to the naked eye. The colonies are composed of numerous cells (11 , to 22,000 , regularly distributed in a peripheral layer. The cells are comected laterally with each other by protoplasmic threads, usually six in number, which extend through their distended cell walls (Fig. 242, A), and from each cell two delicate cilia are given off externally. The Iolvox colonies multiply vegetatively by the formation and final escape of new daughter colonies, resulting from the division of a single cell (A, t). Spermatozoids and egg-cells are produced either in the same or different colunies. The spermatozoids arise through the division of special cells. (so-called antheridia) into numerous daughter cells, which esentually form tabular packets of elongatel spermatozoids $\left(B, C^{\prime}\right)$. The anterior extremity of the spermatozoids of folvox aureus is colourless, and terminates in two cilia; in their opposite, posterior cud the spermatozods contain a bright green chromatophore. In the anterior portion there are a lateral red eye-spot, two contractile vacuoles, and a cell-nucleus (D). The egg-cells are produced by the enlargement of individual cells of the colony. They are large and green, non-motile, and surrounded by a gelatinous envelope ($-\mathcal{A}, ~ o)$. After fertilisation by the spermatozoids, which, in swarming, escape into the interior of the hollow sherical colony, they become transformed into firm-walled resting oospores, which on germination gives rise to a new colony. The mother colory dies after the egg-cells have reached maturity.

Order 2. Confervoideae

The Confertoideue exhibit, as compured with the unicellular I'rot. coccoidecte, an adrance in the external segmentation of the thallus. It is always multicellular, and, in most of the genera, consists of simple or branched filaments. The thallus of the marine genus Uliu (L"lou luctucu, sea lettice) has, however, the form of a large, leaf-like cell surface (Fig. $5, \mathrm{p}$, 1:3). Although a greater part of the C'mfervidene live in fresh or salt watcr, where they are found either free-swimming or attached to some substratum by a colourless basal root-cell, a few aerial forms ($6 /$ hoolepideue) grow on stones, trunks of trees, and, in the tropics, on leaves. 'To this family belongs the aerial Alga Trentephlen (or ('hroolepus) Jolithus, often found growing on stones in mountainous regions. The cell filaments of this species appear red on account of the hematochrome they contain, and possess a violet-like odour.

The asexual reproduction of the Comferaidene is accomplished by the formation of ciliated swarm-spores, although in many cases they may also develop resistant resting-spores.

Sexual reproduction is effected either by the fusion of planogametes (p. 319), or the sexual cells are differentiated as non-motile egg-cells and motile spermatozoids.

Ulothrix zonata, almost everywhere abundant in fresh water, may serve as a type of the isogamous Confervoideac. The filaments of Clothixix exhibit no pronounced apical growth ; they are unbranched, attached by a rhizoid cell, and consist of single rows of short cells (Fig. 243, A). Each cell contains a nucleus and one band-shaped, green chromatophore in the form of an almost complete hollow cylinder. Asexual reproduction is effected by means of swarm-spores (1-8), which have four cilia (C), and are formed by division in any cell of the filament. The swarm-spores escape through a lateral opening (B) formed by absorption of the cell wall, and, after swarming, give rise to new filaments. The sexual swarm-cells, or planogametes, are formed in a similar manner by the division of the cells, but in much greater numbers. They are also smaller, and possess only two cilia. In other respects they resemble the swarmsporcs, and possess a red-eye-spot and one chromatophore. By the conjugation of the planogametes in pairs, zygotes $(F-H)$ are produced, which, after drawing in their cilia, round themselves off and become invested with a cell wall. After a shorter or longer period of rest the zygotes are converted into unicellular germ plants (J), and give rise to sereral swarm-spores (K), which in turn grow out into new filaments. Ulothrix, like many filamentous Algae, passẹs into a socalled Palmella stage, in which, under certain conditions, the separate cells of the filaments give rise by

Fig. 243.-Ulothrix zonate. A, Young filament with rhizoid cell $r(\times 300)$; B, portion of filament with escaping swarm-spores ; C, single swarm-spore ; D, formation and escape of gametes ; E, gametes ; F, G, conjugation of two gametes; H, zygote: J, zygote after period of rest; K, zygote after division into swarin-spores. (After Dodel-Port, $B-K \times 482$.) division to colonies of cells. The individual rounded cells thus produced have often been mistaken for species of Protococcoideac. In this manner, according to Chodat, is formed the common Pleurococcus vulgaris, which occurs as the green covering on the trunks of trees, and consists of round cells which multiply by division, in which, however, the formation of swarm-spores has been suppressed in the course of adaptation to an aerial mode of existence. In its unicellular condition, according to CHODAT, the cells are round, and multiply by division ; they either remain
isolated or they may be united in groups of two or more ; but under some circumstances they produce short, branched cell filaments.

Cladophare is a genus comprising numerous species, including Cladophora glomeratu, a form specially abundant in rivers. It consists of branched filaments of long cells, growing in tufts attached to a support, and exhibiting well-marked apical growth (Fig. 6, 1. 12). The cells, unlike those of Clothrix, are multinuclear, and contain also numerous polygonal, closely-crowded chromatophores (Fig. 60, p. 59. By the protrusion and elongation of lateral outgrowths from the cells just below their upper transverse walls, the filaments become extensively branched; while, in addition to their apical growth, they increase in length also by the division of the cells and the formation of new transverse walls (Fig. 66, 1. 64). The swarm-spores of this species are liciliate (Fig. 244), and are formed in large numbers in the cells at the tips of the branches, from which they escape through an opening in the upper end of the lateral wall. Having completed their swarming, they become invested

Fig. 244. - Cledophora glomerute. swarm-spore. ($\times 540$.)

Fic. 245.- A, B, Gellngonium: A, escaping swarm-spores ; D, frim swarm-spore. C, I, , Delogonium ciliutum. C, before fertilisation; D, in process of fertilisation ; 0 , ongonia ; a, dwarf. males ; $\stackrel{\therefore}{ }$, spermatozoin. (After Pringeneim, $\times 350$.)
with a cell wall, and, after a period of rest, they eventually grow out into a new cell filament. In other species of Cladophore, smaller, sexual swarm-spores have alse been observed which, as in the case of Clothrix, fuse together in ${ }^{\text {nairs }}$ in the precess of conjugation.

The genera Oedogonium and Bulbochucte may be quoted as examples of ongamous Confervoideac. While the thallus of the latter is branched, the numerous species of Oedogonium consist of unbranched tilaments, cach cell of which possesses one nucleus and a single parictal chromatophore composed of numerous mited hands. The asexual swarm-spores of Oclogmemem are unusually large and lave a circlet of cilia around their colonrless anterior extremity (Fig. 245, l^{\prime}). In this case the swarm-spores are formed singly, from the whole contents of an! single cell of the filament (A), and escape by the rupture of the cell wall. For the purpose of sexual reproduction, on the other hated, special erlls become swollen and differentiated into barrel-shaped oogonia. A single large egg-cell with a colourless receptive spot is formed in cach ongonium by the contraction of its protoplasm, while the wall of the oogonimm becomes perferated by an opening at a point opposite the receptive spot of the egg. At the same time, other, generally shorter, cells of the same or another filament become converted interantheridia.

Each antheridium gives rise either to one or, as is more generally the case, to two spermatozoids. The spermatozoids are smaller than the asexual swarm-spores, but have a similar circlet of cilia. They penetrate the opening in the oogonium and fuse with the egg-cell, which then becomes transformed into a large, firm-walled oospore. On the germination of the oospore its contents become divided into four swarm-spores, each of which gives rise to a new cell filament. In the adjoining figure (Fig. 246) a germinating oospore of Bulbochaete with four swarm-spores is represented.

In some species of Oedogonium the process of sexual reproduction is more coniplicated, and the spermatozoids are produced in so-called dwarf males. These are short filaments (Fig. 245, C, a) consisting of but few cells, and are developed from asexual swarm-spores (ANDRospores) which, after swarming, attach themselves to the female filaments, or even to the oogonia. In the upper cells

Fig. 246. - Bulbochatete intermedia. A, Oospore ; B, formation of four swarm-spores in the germinating oospore. (After Pringsheim, \times 250.) of the dwarf-male filaments thus derived from the androspores, spermatozoids are produced which are set free by the opening of a cap-like lid (Fig. 245, D, a). In consequence of the greater complication in the process of their sexual reproduction, the oogamous Confervoideae are considered to represent a higher stage of development than the isogamous forms.

Order 3. Siphoneae

The Siphoneae are distinguished not only from the Chlorophyceae but from all other Algae by the structure of their thallus, which, although more or less profusely branched, is usually composed of but one cell, or if it is multicellular, each cell contains several nuclei. In the first case, the cell wall encloses a single protoplasmic mass, in the peripheral portions of which are embedded the many nuclei and numerous small green chromatophores. In the class of the Hyphomycetes, the Phycomycetes, or Algal Fungi, exhibit the same characteristic structure, and may be regarded as probably derived from the Siphoneae.

The Siphoneae comprise about forty genera, which, however, do not include a great number of species. They live for the most part in salt-water, although the species of Vaucheria thrive in fresh-water or are found as terrestrial Algae, growing on damp soil. Botrydium is also terrestrial, while some forms of the Siphoneae are endophytic, and live in the leaves of the higher plants.

Sexual reproduction has advanced to oogamy only in the genus Vaucheria; in other instances it is isogamous and the conjugating gametes are alike in form and size.

The simplest form of the Siphoneae is represented by Botrydium, to which genus belongs the cosmopolitan species Botrydium granulatum. This Alga grows on damp clayey soil, where it forms groups of green, balloon-shaped vesicles about two millimetres in breadth. The vesicles are attached to the ground by prolongations from the base, in the form of a branching system of filamentous rhizoids devoid of
chromatophores (Fig. 247, A. The cell walls of the vesicle and rhizoids of each individual enclose but one protoplast. Multiplication may take place vegetatively, hy budding, resulting in the outgrowth of a new vesicle from the aerial portion of the thallus. After enlarging considerally in size and seuding down rhizoids into the substratum, the young plantlet isolates itself from the mother vesicle hy a new cell wall. Asexnal reproluction is povided for ly the formation of swarmspores. In this process the whole plant becomes converted into a single sporangium hy the division of its protoplasmic contents into numerous swarm-spores, which make their eseage through an opening at the apex. Each swarm-spore has two to four chromatophores, but only a single cilium, which is situated at its anterior, colourless

Fig. 247.-Botrydium grumulutum. A, The whole plant ; B, swarm-spore ; C, planogametes; u, a simgle grametu; $b-\epsilon$, two gametes in process of fusion ; f, zygote. $(A \times 2 S ; B, C \times 540$.

Fig. 24.-I'ulucil riu wevilis. A, B, A spmankiull ith process of formation ; C, D, E, formation of a swartor spore ($\times 95$) ; F, swarm-spere ($\times 2 j$) ; ($;$, pertion y the colourless peripheral protoplasm in the antiver entl of the swarm-sjore ($\times 50$).
(nd (Fig. 247, 1'). The formation of swarm-spors oceurs only when the thallus is covered with water. After coming to rest the heliotactie swarmers (p . 243) inm-t themselves with a cell wall and give rise to new plantlets. Sexual reproluction may also occur. For this purpose, in summer or in times of drought, the prote. plasm of the vesicles becones broken up into a mumber of rounded or angular nemb motile spores or aplanodametes. These spores may remain at rest, perlaps for a friod of a year or more, until supplied with water, when numerous small sexual planoganctes (r, a) are formed from their contents. These planegametes are owh provided with two cilia and a red eye-spot, ant, by conjugating in pairs, give rito zegotes ($b-f^{\prime}$). The zygotes round themselver off anel germinate, cither diretly or after a period of rest. The planogameses are also heliotactic. Through the formation of the gametes within the resistant resting-spors the latter aequire the character of gametangia.

The thallus of Vaucheria, the only oogamous genus of the Siphoncae, also consists of a single cell attached to the substratum by means of colourless rhizoids ; but its aerial portion, unlike that of Botrydium, is branched and filamentous.

The swarm-spores of Vaucheria are developed in special sporangia, cut off from the swollen extremities of lateral branches by means of transverse walls (Fig. 248, $A-E)$. The whole contents of such a sporangium become converted into a single green swarm-spore. The wall of the sporangium then ruptures at the apex, and the swarm-spore rotating on its longitudinal axis forces its way through the opening. The swarm-spore (F) is so large as to be visible to the naked eye, and contains numerons nuclei embedded in an investing layer of colourless protoplasm. It is entirely surrounded with a fringe of cilia, which protrude in pairs, one pair opposite each nucleus (G). Morphologically the swarm-spores of Vaucheria correspond to the collective individual spores of Botrydium. The sexual reproduction of Vaucheria is not effected like that of the other Siphoneae, by the conjugation of motile gametes, from which, however, as the earlier form of reproduction, it may be considered to have been derived. The oogonia and antheridia first appear as small protuberances, which grow out into short lateral branches and become separated by neans of septa from the rest of the thallus (Fig. 249, o, a). At first, according to Outmañs, the rudiments of an oogonium contain numerous nuclei, of which all but one, the nucleus of the future egg-cell, retreat again into the main filament before the formation of the separative septum. In its mature condition the oogonium has on one side a beak-like projection containing ouly colourless protoplasm,

Fig. 249.-Vaucheria sessilis. ${ }^{1}$ Portion of a filament with an oogonium, o; antheridium, a; ch, chromatophores; n, cell nuclei; ol, oil globules. ($\times 240$.) while the rest of the oogonium is filled with numerous chromatophores and oil globules. The apical portion of the projection becomes mucilaginous, and is finally ruptured by the extrusion of a colourless drop of protoplasm from the egg-cell which, in the meantime, has been formed by the contraction of the contents of the oogonium. The antheridia, which are also multinuclear, are more or less coiled ((1), and open at the tip to set free their slimy contents, which breaks up into a number of swarming spermatozoids. The spermatozoids, which are very small and entirely devoid of chromatophores, consist chiefly of nuclear substance. They collect around the receptive-spot of the egg-cell, into which one spermatozoid finally penetrates. After the egg-cell has been fertilised by the fusion of its nucleus with that of the spermatozoid, it becomes invested with a wall and converted into a resting oospore.

The marine Siphonear, on account of the more complicated segmentation of their thallus, afford one of the most interesting types of algal development. The genus Caulcrpa, represented by many species inhabiting the warmer water of the ocean, las a thick, creeping main axis or stem. Increasing in length by apical growth, the stem-like portion of the thallus gives off from its under surface profusely branched colourless rhizoids, while, from its upper side, it produces green thalloid segments which vary in shape in the different species. In Caulerpa prolifora (Fig. 250) these outgrowths are leaf-like, are frequently proliferous, and have only a limited growth. In other species they are pinnately lobed or branched. The whole
thallus, however branched and segmented it may be, encloses but one cell-cavity, which is, however, often traversed by a network of cross-supports or trabeculæ.

The thallus of Codium, also a marine form, consists at first of a single cell, but in time develops lateral outgrowths which become thickly intertwined and cut off by transverse walls. In the case of Codium Purse, the vegetative body thus formed has the shape of a hollow sphere, while the thallus of Cinlium tomentosum is cylindrical and dichotomously branched. The genus Bryopsis, on the other hand, has a delicate, मimately-branched thallus. Although originally unicellular, the

Fic. 250. - Coulerpu proliferu. The shated lines ont the thallus leaves indicate the currents of protoplasmic move-

F1u. 251.-A.ctubuluriu mell. terrell 0 . (Nat. size.) ment ; a, growing apex of the thallus axis ; b, b, younf thallus lobes ; r, rhizoids. ($\frac{1}{2}$ nat. size.)
thallus develops lateral tubular branches that eventally become septated from it by the formation of tramserse walls.

Other marine siphoncuc become enernsted with calcium oxalate and calcinm carbonate, and bear a resemblance to coral, c.y. Hulimede upuntio, which restmblin Opuntia on a small scale. Acctabularia mediterranea, also one of the calcareons S'iphoneue, has a stalked umbrella-like thallus (Fig. 251) attached firmly to the substratum by means of rhizoids. The dise consists of a number of closely-crowded tubular ontgrowths radiating from the tip of the stalks, in which are developet the non-motile spores, the so-called aplanospores. These are liberated when the dine falls to pieces, and form gametangia (as in Botrydium) ; and in the latter planogametes are developed, which conjugate in pairs.

Class VII

Phaeophyceae (Brown Algae)

With exception of a very few fresh-water species, the Phreophyceae are only found in salt-water. They include over 160 genera, are all fixed, and attain their highest development in the colder waters of the ocean. They show great diversity in the form and structure of their regetative body. The simplest representatives of this class (e.g. the genus Ectocarpus) closely resemble the Conferroideate, in haring a filamentous thallus consisting of a branched or unbranched row of simple cells. Some Phacophyceac, again, have a cylindrical, copiously branched, multicellular thallus (e.g. Cludostephus, whose main axes are thickly beset with short multicellular branches, Fig. 7, p. 12) ; while in other cases the multicellular thallus is band-shaped and dichotomously branched (e.g. Dictyotu, Fig. \&, p. 13). Growth in length in both of these forms ensues from the division of a large apical cell (Fig. 7, p. 12 ; Fig. 160, p. 148). Other species, again, are characterised by dise-shaped or globose thalli.

The Laminarucease and Fucacae include the most highly-developed forms of the Phacophyceae. To the first family belongs the genus Laminaria found in the oceans of northern latitudes. The large-stalked thallus of the Laminarias resembles an immense leaf; it is attached to the substratum by means of branched, root-like hold-fasts, developed from the base of the stalk.

In the case of the Laminaria dimitata (Fig. 25.2), and similarly in other species, a zone at the base of the palmately divided leaf-like expansion of the thallus retains its meristematic character, and by its intercalary growth produces a succession of new laminæ. Each older lamina becomes pushed up and gradually dies, while a new one takes its place and becomes in turn palmately

Fio. 252. - Laminarice digitate, forma Cloustoni, North sea. (Reduced $\frac{1}{3}$. Officinit.) divided by longitudinal slits. The large size of their thalli is also characteristic of the Laminarias : L. saccharina (North Sea), for instance, is frequently 3 m . long and the stalk more than 1 cm . thick.

The greatest dimensions attained by any of the I'lueoplyceue are exhihited by certain of the Antarctic Laminariureae. Of these, Macrocystis mpriferu is noted for its gigantic size ; rising obliquely upwards to the surface of the water from the sloping sides of elevations in the ocean bed; its floating thallus has a length of 200 to 300 m . With the exception of a naked lower portion this bears numerous long pendent lobes, each of which is provided at the base with a large bladder-like float filled with air. Even more remarkable, on account of their tree-like character, are the Antarctic species of Lessmia, in which the main axis is as thick as a man's arm ; from it are given off lateral branches with hanging leaf-like segments. The plant attains a height of several metres, and has a trec-like habit of growth.

The Fucucene, although relatively larse, do not compare with the Laminuracerae in size. As examples of well-known forms of this order may he cited Fucus ressiculesilus:

Fig. 2j3.-F゙ume resiculnsus. 1 , Air-blander; f, receptacles. (Rerluced $\left.\frac{1}{3}.\right)$ (Fig. 2.53, l), which has a band-shaped, dichotomonsly branching thallus with air-bladders, and Furus plutycurpus without bladders. Both species are fastened to the substratum by discoid hold-fasts, and growing sometimes over 1 metre long, are found covering extended areas of the littoral region of the sea-coast. Sirgassum, a related genus chiefly inhabiting tropical oceans, surpasses the other brown sea-weeds and even all other Algae in the segmentation of its thallus, and in this respect it bears a close resemblance to the higher plants. The thallus of siarymssum shows in fact a distinction into slender branched cylindrical axes with lateral outgrowths, which, according to their function, are differentiated as foliage, bracteal, or fertile segments or as air-bladders. Various species of sirfossum which have been swept away from the coast hy currents, finally collect in large floating masses in quiet regions of the ocean (Sargasso sea). Dintussum lucciformm is carried even to the coast of Europe.

The cells of the l'hucondy ean have usually hut one muclens. They are supplied with a larger or smaller number of chromatophores, which, in addition to chlorophyll, contain a brown pigment, pirco. PIICiN, which imparts to the Algac a yellowish-hrown or dark brown colour. Many Phocompherene produce and store up a fatty sulbstance in the place of starch. Among the more highly-developed forms the thallus exhibits a fairly highly differentiated anatomical structure.

The outer cell layers, as a rule, function as an assimilatory tissue, the inner cells as storage reservoirs. In some species the axial cells of the thallus are arranged in definite strands with sieve-tube like elements and true sieve-tubes.

According to the manner of their sexual and asexual reproduction, the Phaeophyceae fall naturally into three orders.

Order 1. Phaeosporeae

In this order are included the Laminarias, as well as the majority of the other Phacophycece. Asexual multiplication is effected by means of swarm-spores, which are produced in large numbers in simple, so-called unilocular sporangia; they have a red eye-spot, a chromatophore, and two laterally inserted cilia (Fig. 254).

Fig. 254.-Cladostephus verticillatus. A, Closed sporangium ($\times 280$) ; B, swarm-spores escaping from a sporangium ($\times 250$); C, a single swarm-spore (\times circa 2000), with red eye-spot a $a p$, and yellow chromatophore chr. (After

Fig. 255. - Cledostephus verticillatus, with gametangium partly discharged. (After Pringshein, \times 500.) Pringsheim.)
Many genera exhibit also a sexual mode of reproduction resulting from the conjugation of isomorphous planogametes, which, except that they fuse in pairs in the formation of zygotes, otherwise resemble the asexual swarm-spores (Fig. 256). Unlike the swarm-spores, however, they are produced in many-chambered, plurilocular gametangia, in each cell of which seldom more than one gamete is formed (Fig. 255).

The members of this order afford an illustration of a transition from isogamy to oogamy. In the small family of Cutleriaceae, to which belongs Zanardinia collaris, whose thallus is disc-shaped and attached at the centre, and the Cutlerias with a furcately-divided thallus, the conjugating gametes

Fig. 256.-Ectocarpus siliculosus. a, Gametes; b, c, fusion of two gametes. (After Berthold.) are of unequal size. The female macrogametes are much larger than the male microgametes, and have their origin, one in each cell, in larger and fewer-celled gametangia. After swarming, the female gamete loses
its cilia, and rounding itself off, becomes converted into an egg, which, after its fertilisation by a microgamete, is invested with a wall and forms a resting zegote.

Order 2. Fucaceae

Asexual reproduction is wanting in this order, while sexual reproduction is distinctly oogamous. The oogonia and antheridia, as in Fucus risiculosus and platycarpus, for example, are formed in special flask-shaped depressions termed cosceptacles, which are crowded together below the surface in the swollen tips or receptacles of the dichotomously branched thallus (Fig. 253, j^{\prime}). The conceptacles of F. platycorpus (Fig. 257) contain both oogonia and antheridia, while F. resiculusus, on the contrary, is diaci-

Fig. 25\%. - Fiumus platycarpus. Monocions conceptacle with oogonia of different ages (n), and clusters of antherillia (") ; p, paraphyses. (After Thuret, \times circa 25.) ous. From the inner wall of the conceptacles, between the oogonia and antheridia, spring numerous, unbranched, sterile hairs or paraphysen, of which some protrude in tufts from the mouth of the conceptacle (Fig. 257). The antheridia are oval in shape, and are formed in clusters on special short and much-branched filaments (Figs. 257 a, 258 C). The contents of each antheridium seprarate into a large number of spermatozoids, which are discharged in a mass, still enclosed within the iuner layer of the antheridium (Fig. 255, B. Eventually set free from this outer covering, the spermatozoids ap. pear as some what elongated, orate bodies, having two lateral cilia of unequal length and a red eye-spot (G). The oogonia (Fig. 257, o) are nearly spherical, and are borne on a short stalk consisting of a single cell. They are of a yellowish-brown colour, and enclose eight spherical egg-cells, which are formed by the division of the oogonium mother cells. The eggs are enclosed within a thin membrane when ejected from the oogonium (Fig. 258, A). This membranous envelope deliquesces at one end and, turning partly inside out, sets free the eggs. The spermatozoids then gather round the eggs in such numbers that by the energy of their movements they often set them in rotation $(F, I I)$. After an egg has been fertilised by the entrance of one of the spermatozoids it becomes invested with a cell wall, attaches itself to the substratum, and gives rise by division to a new plant. In the case of other Fucaceue which produce four, two, or even only one egg in their oogonia, the nucleuof each oogonium, according to Olmmasis, nevertheless first divides into eight daughter muclei, of which, however, only the proper mmber give rise to aggcapable of undergoing fertilisation. The oogonia, accordingly, of the Atlantio Himanthulia larea, which proluces only one egg, just as those of other species in which two or four are developed, may be regarded as having beell evolved phylagenetically from oogonia in whieh eight eggs are formed.

Fig. 25s.- $A-F, F u c u s$ platycarpus : A, eight egg-cells extruded from the oogonium, still surrounded by the inner layer of the cell wall; B, contents of an antheridium surrounded by the inner layer of the cell wall ; C, an antheridium fixed in alcohol and stained with hæmatoxylin; D, section of contents of an oogonium similarly treated and stained; E, egg-cells set free by the rupture of the inner layer of the oogonium by which they were enveloped when first extruded; F, an egg-cell with spermatozoids. G, H, Fucus vesiculosus: G, spermatozoids fixed by a solution of iodine ; H, an egg-cell with spermatozoids. (C and $G \times 540$; other figs. $\times 240$.)

Order 3. Dictyotaceae

In this urder there are only a fell furms (c.g. Dictyou dichutume, Fig. \&, 1. 13. The asexual spores, of which only two or four are formed in a sporangium, are nonmotile. The sexual organs are difterentiated into oogonia and antheridia. Each oogronimm contains a single egg-cell, which it eventually ejects, and the antheridia produce numerous spenmatia or non-motile male cells without cilia. The procen of fertilisation has not as yet been observed. In the form of their spwres and spermatia the Dictyutacue resemble the lihudopheycouc, from which, however, they are distinguished by the absence of a trichogyne and hy their characteristic frumt formation.

Economic Uses.-The dried stalks of the officinal Lotminuria digitata, furms Cloustuni ('harm. germ.), are used as dilating agents in surgrary. Iodine is ob. tained from the ash (raree, kelp) of various Laminuriacene and Fucucac, and formerly soda. Many Laminarias are rich in mannite (c.!. Lomeinuria succhutinn, and are used in its production, and also as an article of food by the Chinese anl Japanese. Species of Alaria are used as an article of food in the Polar regions. The larger Phacophyccue are utilised also as manure.

Class VIII

Rhodophyceae (Red Algae)

The lihodoplycene or Floridene, of which about 280 genera are known, constitute, like the l'hueophyceue, an independent group oi Thallophytes, for whose phylogenetic derivation from the lower Algate there is, as yet, no positive evidence. They are attached to some support, and almost exclusively marine, and specially characterise the lowest algal region on the coasts of all oceans, especially in temperate and tropical latitudes. A few genera (6%.

Fre. 259.-('humirus crispits. s, wal eystucarps. (直 hat. size. (
thallus is flattened and ribbon-like Betruchospermum, Lemumeu, Hilide lrumultiu) srow in fresh-watel streams.

The thallus of the red Algate exlibits a great variety of forms As in the brown Algae, there are no single-celled forms like those characteristic of the sipher mur. The simplest forms are represented by branched filaments consisting of single rows of celts (.\%/G. Cullithammiun). In other cares the branched tilamentons thalluappears multicellular in crow sections. In many other forms the (e.g. C'homdius inisus, Fig. 2.59 ,

Gigurtinu mammillos, Fig. 260) ; while in still other species it consists of expanded cell surfaces attached to a substratum.

The forms with more adranced segmentation resemble the vascular plants externally, and exhibit a differentiation into a cylindrical axis and flattened leaf-like thalloid branches which, as in Delesseria (Hydiolupathum) sanquinea, may even be provided with middle and lateral ribs (Fig. 9, p. 13). All the Floridecle are attached at the base by means of rhizoidal filaments or discoid hold-fasts. In the more delicate species the cell walls are thin ; while in the firmer and more compact forms they are mucilaginously thickened. The thalli of the Corallinacecre, which have the form of branched filaments or of flattened or tuberculate incrustations, are especially characterised, on the other hand,

Fig. 2b0.-Giqartine momillose. s, Wart-shaped eystocarps. (${ }_{4}^{3}$ nat. size. UFFICINAL.) by their coral-like appearance, owing to the large amount of calcium carbonate deposited in their cell walls. The calcareous Floridede are chiefly found on coasts exposed to a strong surf, especially in the tropics.

The Phodophyceae are usually red or violet; sometimes, howerer, they hare a dark purple or redlish-brown colour. Their chromatophores, which are flat, discoid, oval, or irregular-shaped bodies and closely crowded together in large numbers in the cells, contain a red pigment, PHYCOERITHRIN, which completely masks the chlorophyll. True starch is never formed as a product of assimilation, its place being taken by other substances, very frequently, for example, by Floridean starch. The cells may contain one or several nuclei.

Reproduction is effected either asexually by means of spores, or sexually by the fertilisation of female organs by male cells.

The asexual spores are non-motile ; they have no cilia and are simply naked, spherical cells. They are produced, usually, in groups of four. by the division of a mother cell or sporangium, from which ther are in time set free by the transverse rupture of its walls. The sporangia themselves are nearly spherical or oval bodies seated on the thalloid filaments or embedded in the thallus. In consequence of their usual formation in fours. the spores of the Floridece are termed tetraspores. (Fig. 261). They are analogous to the swarm-spores of other Algae; similar spores are found also in the Dictyotaccac among the brown Algae.

In the development of the sexual organs, particularly the female, the Rhodophyceae differ widely from the other Algae. Batrachospermum monitiforme, a fresh-water form, may serve as an example to illustrate the mode of their formation.

This Alga possesses a brownish thallus, enveloped in mucilage, and consisting of verticillately branched filaments. The sexual organs appear in the autumn and

Fisi, 261.-C'allithamnion corymbosum. A, Closed sporangium ; B, empty sporangium with four extruded tetraspores. (After Thuret.) form on the branching whorls glomeruli or spherical bodies composed of short, radiating branches.

The antheridia, also known as spermatangia (Fïg. 262, A), are produced, usually in pairs, at the ends of the radiating branches of a glomerulus. Each antheridium consists of a single thin-walled eell, in which the whole of the protoplasm, as is the rule in all lihodoplayceuc, is consumed in the formation of one uninuclear arermatiom. The spermatia are nearly spherical, and immediately after their discharge from the antheridia (A, r, s) are naked, but afterwards become invested with a thin outer membrane or cell wall. They eontain a single nucleus, and are nonmotile, like the ciliated spermatozoids of the other Algae, and have therefore received a distinctive name. In consequence of their ineapacity for inderendent movement, they must be carried passively by the water to the female organs, which are situated near the antheridia at the ends of other branches. The female organ

Fic. 2tiz.-butruchospermum moniliform. A, Male branch with autheritia, isolated by jrewre: s, a spermatiun ; s, a spermatimu escaping from an antheridium ; an empty antheriblum.
 genimm. (r, female branch with fertilised varpogenimm; s, the spermatimu after the fusult of its eontents with the trichogyne; c, fortale filanents developing from the baxal porthon of the carpegonium. ($\times 540$.)
is called a cantonosum (Fig. 262, b), and consists of an elongated cell with a basal, Alask-shaped portion (c) prolonged into a tilament, termed the thithograe (ℓ). The basal portion contains the egg, which is provided with a large mucleus and chro-
matophores, while the trichogyne functions as a receptive organ for the spermatia, one or two of which fuse with it, and the contents, escaping through the spermatium wall, pass into the carpogonium. The sperm nucleus probably in this case, just as has been demonstrated by Wille for Nemalion, passes down the trichogyne and fuses with the nucleus of the egg-cell. The fertilised egg does not become converted directly into an oospore, but, as a result of fertilisation, numerous branching filaments termed gonimoblasts grow out from the sides of the ventral portion of the carpogonium. At the same time, by the development of outgrowths from cells at the base of the carpogonium an envelope is formed about the fertile gonimoblasts. The whole product of fertilisation, including the surrounding envelope, constitutes the fructification, and is termed a cystocarp. The profusely-branched gonimoblasts become swollen at the tips and give rise to spherical, uninuclear spores known as carpospores, which are eventually set free from the envelope. In the case of Batrachospernum the carpospores produce a filamentous protonema, the terminal cells of which give rise to asexual unicellular spores. These spores serve only for the multiplication of the protonema. Ultimately, however, one of the lateral branches of the protonema develops into the sexually differentiated filamentous thallus. The production of spores by the protonema is analogous to the formation of tetraspores by other F'lorideae.

The formation of the cystocarps and carpospores is much more complicated in the case of other genera, but they originate in a similar manner from carpogonia provided with trichogynes.

Choreocolax albus, a North Sea Floridean species, described by Kuckuck, is of special interest. It grows as a parasite on another red seaweed, Rhodomela subfusca, on which it appears in the form of a small white cushion-like growth. As a result of its parasitic mode of life the formation of chromatophores has been entirely suppressed, and thus in Choreocolax allus a true fungus-form is represented.

Economic Uses.-Gigartina mammillosa (Fig. 260), with cone-like cystocarıs $2-5 \mathrm{~mm}$. in lengtl, and Chondrus crispus, with oval cystocarps about 2 mm . long, sunk in the thallus tetraspores. Both forms occur in the North Sea as purplish-red or purplish-brown Algae; when dried they have a light-yellow colour, and furnish the official Carragheen, "Irish Moss," used in the preparation of jelly. Agair-Agar, which is used for a similar purpose, is obtained from various Florideae; Gracilaria lichenoides supplies the Agar of Ceylon (also called Fucus amylaceus), Eucheuma spinosum the Agar of Java and Madagascar. Muscus helminthochortuss, consisting of a mixture of different marine Algae, was formerly used as a specific for worms and goitre. Corallina officinalis, a calcareous species of Florideae, was at one time officinal.

Class IX

Characeae (Stoneworts)

The Characeae form a sharply-defined group of Thallophytes, distinctly characterised by the complicated structure of their sexual organs. They may originally have been derived from the Confervoideae; but the process of their evolution is uncertain, as all intermediate forms are lacking, while they show in their structural development a higher stage of organisation than any of the existing green Algae. The

Characeue, which include six genera and about 160 species, grow in fresh or brackish water, attached to the bottom and covering extended areas with a mass of vegetation. In some species their cylindrical main axes are over a foot in length, and are composed of long internodes alternating with short nodes, from which short, cylindrical branches are given off in regular whorls with a

Fic: 2t3.- Cherer firegilis. End of main shoot. (Nat. size.) similar structure but of limited growth (Fig. 263). The lateral axes are either umbranched or give rise at their nodes to verticillate outgrowths of a second order. From the axil of one of the side branches of each whorl a lateral axis resembling the main axis is produced. The attachment to the substratum is effected by means of branching rhizoid outgrowths from the nodes at the base of the axes.

Both the main and lateral axes grow in length by means of an apical cell, from which other cells are successively cut off by the formation of transverse walls. Each of these cells is again divided by a transverse wall into two cells, from the lower of which a long, internodal cell develops without further division ; while the upper, by continued division, gives rise to a disc of nodal cells, the lateral axes, and also, in the lower portion of the main axis, to the rhizoids. In the genus Sitellu the long internodes remain naked, but in the genus ('haria they become enveloped with a cortical layer consisting of longitudinal rows of cells which develop at the nodes from the hasal cells of the lateral axes.

As a result of the fragmentation of its original mucleus, each internotal cell is provided with a number of nuclei which lie embedded in an inner and actively moving layer of parietal protoplasm. Nimmerons oval chloroplasts devoil of pyrenoids are found in the internodal cells, disposed in longitudinal rows immediately beneath the cell walls.

Asexual reproduction by means of swarm-spores or other spores is unrepresented in the Churbeas. Sexual reproduction, on the other land, is providel for by the production of ege-cells and spermatozoids. The female organs are egr-shaped. They are visible to the naked eye, and, like the spherical red-coloured antheridia, are inserted on the nodes of the lateral axes. With the exception of a few diweions species, the churrereate are monorcious.

Chara fragilis, a very common species, may be taken as a type of the Charactue. In this instance the sexual organs are produced in pairs on the nodes of the short branches, the antheridium is directed downwards, and the oogonium upwards (Fig. $264, B)$. The antheridium has a complicated structure, and in this respect exhibits a higher stage of development than the similarly named organs of the Mosses and Vascular Cryptogams. The antheridium is attached to the node of the fertile branch by a stalk-cell (A, p) and a basal nodal cell ($n c)$. The antheridium has the form of a hollow sphere, the wall of which consists of eight flat cells termed shields. The

Fig. 264.-Chara fragilis. A, Median longitudinal section through a lateral axis r, and the sexual organs which it bears $(\times 90)$; a, antheridium borne on the basal nodal cell $n a$, by the stalkcell p; m, manubrium ; ob, an oogonium ; no, nodal cell ; po, the stalk-cell ; v, pivotal cell ; c, the crown. B, a lateral axis bearing axes of the third order $(\times 6)$; u, antheridium ; o, oogonium.
four uppermost shields are triangular ; the lower four, in consequence of their insertion on the stalk-cell, are trapeziform in shape. It is to the presence of red chromatophores in the shields that the red colour of the antheridia is due. In cross-section (Fig. 264, A, a) the walls of the antheridia seem to be composed of many cells in consequence of the apparent segmentation of the shields by the radial infolding of their walls. From the middle of the inner wall of each shield a cylindrical cell called the manubrium (m) projects inwards towards the centre of the antheridium. Each manubrium terminates in a knob-like cell or capittlun, from which a large number of long simple filaments composed of short cells grow out into the cavity of the antheridium. The spermatozoids are produced in the cells of these filaments; in each cell only one, but collectively conuprising an enormous number (as many as 40,000 in one antheridium). The spermatozoids make their
escape from the mother cells and are set free in the water by the separation of the shields. They have the appearance of spirally-coiled corkscrew-like threads, and hear two cilia at their anterior extremity (Fig. i0, $A, \mathrm{p}^{\prime} .67$). In the form of their spermatozoids the Characcue differ from the Algae and bear a closer resemblance to the Bryophytu and Ptcridophytu. The female organ, or oogonimm, has a brownish colour, is oval in shape, and somewhat larger than the antheridia. It is attached to the same cell $(n a)$ as the antheridium by means of a stalk-eell (Fig. 264, A, p). Between the egg-cell and the stalk-cell are interposed a nodal cell (no) and the so-called "Wendungszelle" (v). The large egg-cell, which is full of starch and oil globules, is completely enclosed by an envelope formed of five spirally-winding tubes which spring from the nodal cell. The enveloping tubes terminate in a crown (c) composed of five cells cut off from them by transverse walls. At the time of fertilisation the enveloping tubes separate a little from each other at the neck of the oogonium just below the crown-cell; through the fissures thus made, the spermatozoids enter the egg-cell. The egg, after fertilisation, now converted intu an oospore, becomes invested with a thick, colourless wall. The inner walls of the tubes become thickened and encrusted with a deposit of calcium carbonate. while the external walls of the tubes soon become disintegrated; the brown inner walls of the tubes, strengthened by their layer of calcium, continue as a protective covering after the oospore has fallen from the parent plant.

With few modifications, the structure of the sexual organs is the same in the other Characeac.

The oospore, on germination, gives rise first to a simple, filamentous row of cells, the proembryo. From the first node of the proembryo rhizoids are produced, while at the second note there arise, together with a few simple lateral axes, one or more main axes, which tinally develop, into a full-grown plant.

The formation of tuber-like bodies (bulbils, starch-stars) on the lower part of the axes is characteristic of some species of the Charuceac. These tubers, which are densely filled with starch and serve as hibernating organs of vegetative reproduction, are either modified nodes with much shortened branch whorls (e.!\% in Toly. pellopsis stelliyera, when they are star-shaped, or correspondingly modified rhizoil(r.y. the bulbils of C'uura aspera).

Cluard crinitu affords the only example of PARTHENOGENESIS (p. 68) known in the vegetable kingdom ; its egg-cells, without previous fusion with spermatozoids, are converted into spores capable of further development. In the Flora of Northern Europe female plants only are found.

Class X

Hyphomycetes (Fungi)

The IIyphumycetes or Einmycets were formerly classified collectively with the My.comyctes and siflisomycetes as Fungi. They are, howerer, quite distinct from each of these elasses, and should probably be viewed phylogenctically as representing saprophytic or parasitie forms of the C'hlorophycene, in which a complete absence of chlorophyll and chromatophores has resulted from their mamer of life. Their cells are provided with distinct but, in most cases, very thin walls
(p. 80), and contain numerous small nuclei dispersed throughout their colourless protoplasm (Fig. 61, p. 60). In the cell contents are frequently found flat globules and also glycogen, but never true starch. Of all the Hyphomycetes the group of the Phycomycetes-the Water or Algal Fungi-although occupying the lowest position, exhibit the most evident connection with the Chlorophyceae. Their resemblance to the Siphoneae, in particular, is especially pronounced, as their filamentous, vegetative thallus consists of a single, simple, or profusely branched multinuclear cell (e.g. Mucor, Fig. 269, p. 347). The thallus of the higher Hyphomycetes is similarly formed of much-branched filaments, but the filaments are septate, and so consist not of one cell but of a row of cells. The filaments, whether septate or unseptate, composing the thallus of the Fungi are termed нурнÆ; the whole vegetative portion of the thallus formed by them, the MYCELIUM. The hyphæ of a mycelium are, as a rule, either isolated or only loosely interwoven; they spread through the substratum in all directions in their search for organic nourishment. In many of the higher Fungi, however, the profusely and irregularly branching hyphæ become so inseparably knotted and interwoven, that they seem to form compact masses of tissue. Where the filaments in such cases are in intimate contact and divided into short cells, an apparently parenchymatous tissue or PSEUDO-PARENCHYMA is produced. Such compact masses of hyphal tissue are formed by some species of Fungi when their mycelia, in passing into a vegetative resting stage, become converted into Sclerotia, tuberous or strand-like, firm, pseudo-parenchymatous bodies, which germinate under certain conditions (Figs. 97, 98, p. 87). In the fructifications of the higher Fungi the hyphæ are also nearly always aggregated into a more or less compact tissue (Figs. 95, 96, p. 87). The walls of adjacent cells or filaments of the mycelium are frequently absorbed at their points of contact, and an open communication is thus established between them.

SEXUAL REPRODUCTION is positively known to occur only in the Phycomycetes or Algal Fungi. In this respect they approach on the one hand the Conjugatae, on the other the oogamous Confervoideae and Siphoneae, and have, accordingly, been divided into the two groups of the Zygomycetes and Oomycetes. In both groups a complete reduction of all sexual differentiation is sometimes manifested, while, in the higher Fungi, the existence either of sexual organs or sexual reproduction has not been certainly proved; whereas in the green, independently assimilating Algae exactly the reverse is true, and sexual differentiation not only becomes more evident but the sexual organs more complicated the more advanced the development.

The formation of ASEXUAL SPORES is, on the contrary, of general occurrence, and is effected in a great variety of ways. The production in sporangia of large numbers of ciliate swarm-spores is only
found to take place in the Phycomycetous group Omnycetes, which are classed on this account nearest the chlorophycene. In the Zygonycetes, the second group of the I'hycomycetes, and in all the higher Fungi, the asexual spores are non-motile, and invested with a cell wall. This difference is explained by the mode of life. Swarm-spores are produced only by such I'hycomycrtes as live either constantly or occasionally in water ; nonmotile walled spores, on the other hand, are adapted to dissemination by wind, and are accordingly peculiar to the terrestrial Fmigi.

The manner in which such asexual spores are formed shows great variation, and serves as the principal means of characterising the different groups of the higher Fungi. Two entirely distinct modes of spore-formation may be recognised.

1. The formation of exdospores within sporangia by the division of the contents of the sporangia and the production of numerous spores by subsequent contraction (Fig. 270, p. 34s). The sporangia are situated, as a rule, at the extremities of special mycelial branches termed sporangiophores.
2. The formation of coxida (exospores) by the abstriction of spore cells from the ends of elongated lyyphe, which are for the most part converted into special conmophones (Fig. 276, p. 353). Both modes of spore-formation occur in their most primitive form in the Zlyynmycetes, in some cases both methods are represented in the same genera. Transitions between both modes of spore-formation are also observed in certain Zygomycetes, and it would appear probable that a conidimm is a more recently developed form of sporangium, and eqnivalent to a sporangium with one spore. In classifying the higher Fungi which, unlike the Plycomycetes, have lost all indications of sexuality, they may be best treated as derived from the Zygomycetes and divided into two different series.

In the first series are inchuded the lower and smaller group of the Hemiusci and the higher, more variously modified group of the Ascomycetes. This series, like the sporangia-bearing Zugomyretes, has retained as its principal asexual fructification the sporangium, but elongated and modified into an Asclis or tubular spore-case. Spores, usually eight in number and arranged in a row, are produced within the asci by free cell-formation (Fig. 273, p. 351).

The second skiriss, comprising the Hemibusidii and the more highly developed liasidiomycetrs, has been derived from the conidiiferous Zyyomycetes. The groups in this series have retained the conidial fructifications, and developed them still further as Basidna, or conidiophores specialised in form and size and in the nmmber of their spores. There are various forms of basidia, the most usual being that of the Mushrooms and Toadstools, where four spores are cut off from the ends of a clnb-shaped support on four slender stalh:or sterigmata (Fig. 290 , p. 368).

In both the first and second series, in addition to the principal
fructifications in the form of asci or basidia, there occur also Accessory fructifications in which conidia of various forms are produced. Both series also exhibit an increasing complication in the arrangement of their respective asci or basidia. While in the simpler groups the asci or basidia arise free on the hyphee, in the more highly developed Ascomycetes and Busidimuncetes more or less complicated fructifications are produced, ascus fructifications in the former, basidia fructifications in the latter. In both of these last two groups fructifications, externally very similar and of a tuberous or toadstool-like shape, are often formed. The asci and also the basidia are disposed in a definite layer or hymancm, which is in part composed of sterile, club-shaped cells termed paraphyses (Fig. 290, p. 368). The hymenial layer covers the walls of the external cavities of the fructification or is exposed on its surface at definite points.

In addition to the sporangia and conidia there occurs also a third form of spore-formation, the so-called chlamyospores (encased spores). These spores may be produced by the Phycomycetes as well as by the higher Fungi. The chlamydospores are usually formed in rows on hyphe: they are regarded as rudiments of sporangia or of conidiophores which, interrupted in their development, have assumed the form of spores, and like them serve the purpose of asexual reproduction (Fig. ํ.-2, p. 350). On germination they usually develop into either sporangia or conidiophores. The Hyphomyretes may be classified according to the following system of Brefeld, established in conformity with the preceding principles.
A. Algul Fungi, Phycomycetes, with unicellular mycelium and sexual reproduction.

Sub-Class 1. Oomyctes.
With oogania and antheridia: asexual reproduction usually by means of swarm-spmes.

Sub-Class ‥ Zygomycetes.
Zrgospores formed : asexual reproduction by means of sporangia or conidia.
B. Higher Fungi, hyphae septate and without sexuality.

Series 1. Sporangla-bearing Fuser.

With sporangia, in addition to conidia.
Sub-Class 3. Hemiuseci. sporangia resembling asei.

> Sub-Class 4. Ascomycetes. sporangia developed as true asci.

Series ?. Conidia-bearing Fugg.
With conidia ; no sporangia.
Sub-Class 5. Hemibusidii. Conidiophores resembling basidia. Sub-Class 6. Busidiomycetes. Conidiophores developed as true basidia.

The Hemiasi and Hemibusidii were classified as Mesomylectes by Brefeln ; the Ascomyetes and Basidiomycetes as Mycomyetes.

Sub-Class 1. Oomycetes

To the Oumycetes belong a large number of genera which live either in water upon decaying organisms, or on land, parasitic on higher plants. In the formation of their sexual organs, oogonia, and antheridia, as well as of asexual swarm-spores, they often show a striking resemblance to certain of the green filamentous Algae. Within this gromp, however, a reduction of all sexual differentiation, even to its complete disappearance, may be observed.
©1. The Monollepharidineue may be placed first in a series illnstrating gradual reduction, - the only family of all the Hyphumycetes which still proxluce welldeveloper spermatozoids in antheridia. They comprise hut two genera, with altogether only three species, and have a unicellular, hranched mycelium. which

Fig. 265.-Monoblepharis sphueriet. End of filanent with terminal ongnium (1) and an antheridiun (11): 1, before the formalion of the earg-cells and spermatozoids ; :2, spermatozoids (s) escapinn and approaching the opening of the bogonium; 3 , nep, ripe oospore, and an empty antherndium. (After Corsv, \times s00.)
lives in water upon decaying organic matter. Asexual reprodnction is effected by means of uniciliate swarm-spores, formed in large numbers in terminal sporangis. The sexual organs have the form of teminal oogonia and antheridia bome at the tips of eertain hyphre ; the former contain one egg-cell, and the latter numerors uniciliate spermatozoids (Fig. ${ }^{2} 65$). The spermatozoids make their escape through an opening in the antheridium and fertilise the egg-ecll, which then becomes transformed into a spinous oospore. In the formation of their sexual organs there is an evident resemblance between the Monoblopharidinear and the algal gemis ondogoniues.
2. In the family of the Peromospuriae a rednetion of sexuality is observable in the antheridimm, in that its protoplasm, althongh multinuclear, does not divide into spermatozoids. All the mmerons species of the fanily are parasites. Their profnsely branehed micellular mycelium penetrates the tissues of the ligher plants, and is frequently the canse of death. In damp elimates, certain species oeasion epidemie diseases in cultivated plants, and are highly destructive. Thns, the mycelium of Phutophthora infiestans, the fungus which
causes the Potato disease, lives in the intercellular spaces of the leaves and tubers of the Potato plant, and by penetrating the cells with its short haustoria it leads to the discoloration and death of the foliage and tubers. Sexual reproductive organs have not as yet been observed in this species. Asexual, oval sporangia are formed on long branching sporangiophores which grow out of the stomata, particularly from those on the under side of the leaves (Fig. 266), and appear to the naked eye as a white mould. The sporangia, at first terminal, are cut off by transverse walls from the ends of the branches of the sporangiophore, by the subsequent growth of which they become pushed to one side, and so appear to be inserted laterally. Before any division of their contents has taken place, the sporangia (B) fall off and are disseminated by the wind; in this way the epidemic becomes widespread. The development of swarm-spores in sporangia is effected only in water, and is consequently possible only in wet weather. In this process the contents of the sporangium divide into several biciliate swarm-spores (C, D). Each of these spores after escaping from the sporangium gives rise to a mycelium, which penetrates the tissues of a leaf. The sporangium may also germinate directly without undergoing division and forming swarm-spores: it then has the value of a single spore cut off from a sporophore, and in that case may be regarded as a conidium. A similar transformation of sporangia into conidia is found in other of the Peronosporeae as a result of their transition from an aquatic to a ter-

Fig. 266. $-A$, Surface view of the epidermis of a potato leaf, with sporangiophores of Phytophthora infestans projecting from the stomata ($\times 90$); B, a ripe sporangium; C, another in process of division ; D, a swarm-spore. (B - $D \times 540$.) restrial mode of life.

Plasmoparca viticola, an extremely destructive parasite, also produces copiously branched sporangiophores and occasions the "False Mildew" of the leaves and fruit of the Grape-vine. Cystopus candidus, another very common species, occurs on Cruciferae, in particular on Capsella bursa pastoris, causing white swellings on the stems. In this species the sporangia are formed in long chains on the branches of the mycelium under the epidermis of the host-plant, and produce numerous swarm-spores.

The sexual organs of the Peronosporeae show, in the manner of their formation, a close resemblance to those of the genus Vaucheria (p. 327). They arise within the host-plant-the oogonia are either cut off by transrerse walls as spherical swellings
from the ends of the hyphx, or sometimes intercalated thronghont their length; the antheridia are developed as septate tubular outgrowths just below the oogonia. The contents of the oogonitum become differentiated into one large central oosphere, which is separated by a thin membrane from the peripleral periplasm. In the proeess of fertilisation the antheridium semds out a tule which

Fici, 26i:-Pythium gracile. A, Before, l, during, C, after fertilisation; o, oogoniun ; n, antheridimill. (After De Bary, > : son.) penctrates the orgonimun mil it reaches the oosphere. The tube then opens at the apex and the contents of the antheridium pass into the oosphere (Fig. 26iz). After the fertilisation of the oosphere has heen effected, the surrounding priplasm becomes transformed into an outer spure-wall or episporitum. The ouspore then gives rise either directly to a germ-tube promycelium or first develops swam-spores.
In the case of Peronospore perrasitice, commonly foum on members of the Cruciferee, the behaviour of the nuclei has been more elosely investigated. The young ongonium contains numerous muclei, but although their mumber is increased (cirea 112) by repeated division, only one nteleus is enelosed in the oosphere, the rest remaning in the periplasm. The antheridimm is also provided with several (6-12) nuclei, of which only one $p^{\text {nasses }}$ into the egg-cell and fuses with its nuclens.
3. The suppoleynicue, the third family of the Oomyeces, have also a profusely branched unieellular mycelium, but, mulike the l'ermonsprene. they live in water, upon the surface of decaying plants. insects, and even upon living fishes. For the purpose of asexnal reproluction they develop terminal club-shaped sporangia, which produce mmerous biciliate swarmspores, as in the genus Cladophora (p. 324. In the production of sexual organs, terminal cells of the myeelial liyphee are converted, as in the Peronosporeae, into spherical oogonia, which give rise to a larger (as many as 50) or smaller number of egg-cells, and less frequently only to one (Fig. 268). The antheridia of the suprolegnieue are also tubular, and spring from the hyphe, usually just below the oogonia. Applying themselves to the oogonia, they send out fertilising-tubes to the egg-cells (Fig. 26s), which then become eonverted into thick-walled oosperes. In some sampoleynicac no antheridia are firmed, and in others they only appear occasionally ; in sueh cases, therefore, all sexual differentiation has been entirely

Fig. 2is.-drhime polyelnilur.
An antheridimu with two fertilisitg tubes (h) peurtrat. ing the orgnimun $(-)$ the tw. egin-cells. (After Dr Bakt, $\times 3: 0$.) lost.
4. In the Domyetes are also included the Clyderificue, small parasitic Fongh whose unicellular myeelimm is only feebly developeot, and in some genera is reduced to a simple saccate cell, completely tilling the hest-cell. Sexial reproduction has been observed only in a few forms; they usually multiply by man mi asemal swarm-spres formed in sporangia.
5. The Entomophthereac, finally, take an intermediate position between the Gomyedes and Zyymmyedes. They live, as parasites, in the herlies of insects and caterpillars, ete., and ultimately catase their death. The best-known specio i

Empusa Mus:ac. which makes its appearance in the autumn on the common house Hy. The mycelial filaments of this Fungus break out of the abdomen of the infected fly, and give rise at their extremities to asexual conidia, which are finally discharged ; they surround the fly with a white halo and spread the infection still further. Sexual spores are not known to be formed by Empusa, but are found in other allied genera. Both oogonia and antheridia have a similar structure, and consist merely of simple tubes which swell at the ends and form resting-spores by conjugation.

Sub-Class 2. Zygomycetes

The Zygomycetes comprise a number of the most common Mould Fungi. They are saprophytic, and are found chiefly on decaying regetable and animal substances. The mycelium is unicellular in this group also, and consists of profusely-branched filaments. Swarm-spores are never produced, asexual reproduction being effected by non-motile walled spores, which either have the form of conidia or arise endogenously in sporangia. Sexual reproduction consists in the formation of zygospores, as a result of the conjugation of two isomorphous gametes, as in the Conjugntue among the Algae.

The best known and most widely distribnted species is Mucor Hucedo, frequently found forming white fur-like growths of mould on damp bread, preserved fruite,

Fig. 209.-Mucor Muedo. A unicellular mycelium with three sporangiophores, a, b, c, in different stages of development. (Slightly magnitied, after Kry's wall diagram.)
dung, etc. The finely-branched mycelium ramifying in the substratum produces a number of erect unbranched sporangiophores (Fig. 269). From the apex of each sporangiophore a single spherical sporangium is cut off by a transverse wall,
which protrudes into the eavity of the sporangium and forms a columella (Fig. $270,1, c)$. The contents of the sporangimm separate into numerous oval spores embedled in a mass of gelatinous matter capable of great expansion. The wall of the sporangimm is easily ruptured, and the spores are diseharged by the swelling of the interstitial mass, leaving the columella entirely exposed (Fig. 270, 1, 5, 2).

Under certain conditions, instead of asexual sporangia, organs of sexual reproduction are proluced. The hyphre of the myerlium then give rise to lateral, clubshapel gametophores. When the tips of two gametophores come into contact, a conjugating cell or gancte is ent off from cach by a transerese wall (Fig. 271, 1, 2, 3). The two cells thereup coalesce, and fuse into a zegorpore, the outer wall of which is covered with warty protuberances (4). After a preriod of rest the zygospore

Fig. 270.-1-4, Mucor Mucelo. 1, A sporanginu in optical longitudinal section; c. columella; w, wall of sporangium ; sp, spores ; 2, a ruptured sporanginm with only the columella (r) and a simall portion of the wall (m) remaining; 3 , two smaller sporangia, with only a few spores and nh colmuella; 4 , germinating spore ; 5 , rupturel sporanginu of Muoor mucilaginnts with dell.
 2.5×300.)
develops a germ-tube, which may at onee bear a sporangium (5). The conjugating hyphe take their rise in exactly the same way as sporangiophores, of which they may accordingly be regarded as sexually diflerentiated rudiments.

Within the gromp of the Zimgmyectes also, a reduction of eexuality is perecptible. Thus, in the case of certain Wheorincue, although the conjugating hyphee meet in pairs, no fusion takes place, and their terminal cells heoome converted direetly into spores, which are termed azrgosponse. In other forms again, hyphar producing azygospores are developed, but remain solitary, and do not, as in the preceding ease, come into contact with similar hyphar.

Both the size and number of spores pronlued in the sporangia of Moour Mucedo are subject to variation (ef. Fig. 270, 1, 3). The spurangia of the genera Themmidium are, on the other hand, regularly dimorphons, and a large sporanginta containing many spores is formed at the end of the main axis of the sporangiophore. while numerous small sporangia, having but few spores, are produced by itverticillately branching lateral axes. The sporangia may at times develop only
a single spore, as the result of certain conditions of food-supply, and in this way assume the character of conidia. This dimorphism is even more complete in the tropical genus Choanephora, found on the flowers of Hibiscus. In this case, in addition to large sporangia, conidia are produced on special conidiophores. There are, finally, Zygomycetes (e.g. Chatoclactium) whose only asexual spores are conidia. In this one groul of the Hyphomycetes, therefore, all transitional forms, from many-spored sporangia to unicellular conidia, are represented.

The genus Pilobolus, frequently found on dung, possesses a special contrivance for the dissemination of its spores, which are formed, like those of Bucor, in large terminal sporangia. The stalk of the sporangiophore, immediately below the sporangium, becomes swollen and pear-shaped: in consequence of the increased turgor resulting from the absorption of water, the columella finally bursts, and the liquid which is thus set free tears loose the sporangium and discharges it, with great force, to a considerable distance. The sporangiophores of Pilobolus, and also those of other Mucorincue, are distinctly positively heliotropic (p. 252). For physiological experiments Phyromyces nitens is also largely used. Its sporangiophores are constructed similarly to those of Mucor Mucedo, but attain a very much greater length ($10-30 \mathrm{~cm}$.).

Sub-Class 3. Hemiasci

Fig. 271. - Mucor Mucedo. Different stages in the formation and germination of the zygospore. 1, Two conjugating branches in contact; $\stackrel{2}{ }$, septation of the conjugating cells (a) from the suspensors (b); 3, more advanced stage in the development of the conjugating cells (a); 4 , ripe zygospore (b) between the suspensors (a); 5, germinating zygospore with a germ-tube bearing a sporangium. (After Brefeld, $1-4 \times$ $225,5 \times$ circa 60 .)

This group includes only a few small Fungi with a septate mycelium, which, as in all the higher Fungi, develops no sexual organs. Asexual reproduction is effected by means of ascus-like sporangia, which, although they show a certain resemblance to the asci of the Ascomycetes, do not produce a fixed number of spores of definite form and size.

Protomyces pachyderintes, parasitic upon Cichoraccae, may be cited as a typical Fungus of this class. In addition to sporangia it produces accessory fructifications in the form of conidia and chlamydospores (1. 343). The last named are formed from the mycelium ramifying in the tissue of the host-plant, by the spherical enlargement of chains of hyphal cells whose walls become thickened (Fig. 272, 1). The germ-tubes arising from the germinating chlamydospores become converted directly into saccate sporangia $(2,3)$ by the division of their proto-
plasm into numerous small spores, which are eventually discharged (t). Brought into a nutrient solution, the spores ger-

Fig. 272. - I'rotomyces petchyclormus: 1, Mycelial filament (m) with chlamydospores $(c l) ; 2,3$, germinating chlanydospores bearing sporangia; 4, the extrinded spores ; 5 , spores (1) germinated in a nutrient sohtion and alsstricting yeastlike conidia (b) by budding. (After Breffili, $1 \times 120,2,3 \times 200,4,5 \times 320$.) minate directly and produce, without previously forming a mycelium, oval conidia which ly a continuous process of budding give rise to new conidia (5). Such a methorl of multiplication of conidia by budding is termed yeast boming, and the conidia are termed yeast cosidia. The yeast-like conidia thus arising by the bulding of the conidia of Protomyces continue this mole of reprodnction until brought in contact with the host-plant, when they give rive to a myectium penetrating its tissue.

Many of the higher Fungi, in addition to their regular, asexnal fructifications, prodnce similar yeast-like conidia when the conditions for their nutrition are favomable. Such yeast. like conidia are in fact often found in nature freely growing in any sugary medimm. As regards many of them it is imporsible to say detinitely from what higher Fungus-form they have been terived.

Such yeast conidia are represented by the beer, alcohol, and wine yeast, and are inchuded in the genus siucchuromyces. These Fungi are especially remarkable on account of their power of exciting alcoholic fermentation in saccharine solutions. S. cererisiur is the beer yeast used in brewing, and is known only in its cultivated form. S. ellipsindeus, which causes the fermentation of grape-juice in the manufacture of wine, occurs regularly, on the other hand, in the soil of rineyards : it is therefore always present on the grapes and need not be added to the grape-juice. S. mycoulermu forms a whitish-gray scum (fleur de \sin) on the surface of wine and beer, which causes their decomposition.

The conidia of the Veast Fungi are oval in shape and contain a muelens. They increase in mumber lig a continuous process of hodling (Fig. 2, p. 11). When the substratmm has become exhansted hy repeated budding, the yeast eells an converted into sporangia which, while externally resembling conidia, give riwe to a number of spores. As the size and number of these speres are not always the same, the Siacherromyectes are elassified with the Hemiassi.

According to the reent investigations of Jomabasm, the yeast cells cansing the fermentation of grape-juice are produced by the brameled tilaments of Mould Fungi which vegetate on the surfice of the grapes and form numerons conilia (I)ematiue and C'Maluree stages).

Sub-Class 4. Ascomycetes

The Ascomycetes form a very large class of Fungi, chiefly parasitic, and with a septate mycelium. Probably without any sexual mode of reproduction, they produce spores asexually in special sporangia which have the form of asci or tubular spore-cases (Fig. 273), and give rise to a definite number of endogenous spores (usually eight in a row).

Many Ascomycetes are decidedly polymorphous, and the same Fungus in the course of its development frequently forms both conidia and chlamydospores as accessory fructifications. In many cases only the accessory fructifications represented by the conidia or chlamydospores are known, and not the corresponding ascus fruit. Such Fungi are in the meantime classified in systematic works as "Fungi imperfecti." Concerning the physiological cause of the polymorphism of the Ascomycetes, and of the successive production of asci, conidia, and chlamydospores, in the different stages of their development, but little as yet has been determined.

In the simplest forms of Ascomycetes,

Fig. 273.-Portion of the hymenium of Morchella esculenta. a, Asci; p, paraphyses; sh, sublymenial tissue. ($\times 240$.) the Exoossci, the asci are free and spring directly from the mycelium ; but in the case of the Carpoasci, which constitute the great majority of the Ascomycetes, the asci are produced in special fructifications of varying form which consist of sterile and fertile or ascogenous hyphæ. According to the structure of their fructifications, the Carpousci are divided into three orders.

1. Perisporiaceae.-The fertile ascogenous hyphæ are enclosed by a compact envelope of interwoven, sterile filaments. The ascospores become free only on the disintegration or rupture of this envelope, the perithecium (Fig. 275).
2. Pyrenomycetes.-The sterile filaments from a flask-shaped perithecium, within which is produced the hymenium, a basal layer of erect asci and paraphyses. The spores are discharged at maturity, through an opening at the apex of the perithecium (Fig. 278).
3. Discomycetes.-The sterile filaments form at maturity an open, cup-shaped receptacle or apothecium with the hymenium on its upper, concave surface (Fig. 228) ; or the hymenium is borne on the outer surface of fleshy, somewhat mushroom-shaped fructifications (Fig. 283).

Order 1. Exoasci

Of this order, which constitutes the simplest group of Ascomycetes, in which no specially distinctive fructifications are formed, the most important genus, is Exouscus. The various species of Ecouscus are parasitic on different trees, and as their mycelia hibernate in the tissue of the host-

Fig. 274.-Erocseus I'runi. Transverse section through the epidermis of an infected plum. Fom ripe asci, a_{1}, t_{2}, with eight spores, (${ }_{3}$, c_{4} with yeastlike conidia abstricted from the spores; st, stalk-cells of the asci; m, filaments of the mycelium cut transversely ; cut, enticle ; ep, epidermis. (After Sadebeck, $\times 600$.) plants, they cause a constant recurrence of the same disease. The presence of the mycelium in the tissues of the infected part causes the abnormally profuse development of branches known as Witches'-brooms. Exouscus Carpini produces the abnormal growth's vecurring on the Hornbeam ; Excuascus cpiphyllus, those of Almus incume. B.coascus deformans attacks the leaves of the Peach and causes them to curl. Exocascus Pruni is parasitic in the young ovaries of many species of Prunus, and produces the malformation of the fruit known as "Bladder Plums," containing a carity, the so-called "pocket," in the place of the stone. In the formation of asci, indivilual cells of the copi-ously-branched myeclium ramifying between the epidermis and cutiele of the infected part become greatly swollen. These grow into clubshaped tubes, which burst through the cuticle and, after cutting ofl a basal stalk-cell, are usually converted into asci with eight spores (Fig. 274). The numerous anci are closely crowded together, and united into a hymenial layer. In consequenec of their increased turgor, resultmg from an excessive absorption of water, the ascus-tubes become ruptured at their free extremities and eject the spores.

The spores frequently germinate while still cnclosed within the asci (Fig. 274, $\left({ }_{3},\left(I_{4}\right)\right.$, and give rise by budding to yeast like conidia, c.y. E.coascus I'runi.

The related genus Toplerine is parasitio on leaves, but its myecelium is not peremial. Leaves infected with this Fungus assume a spotted, diseased appearance.

Order 2. Perisporiaceae

This order, which includes only Ascomgetes with enelosed fructitieations, comprises three families : the Erysipheue or Mildew Fungi, the Perisporicac, and the Tubcraccue, Truttle Fungi.

1. The Erysiphene form a family of distinetive epiphytic paravites whose mycelimm, somewhat resembling a cobweb, and ramifying in all diretions over the surface, particularly the leaves, of higher plants, sends out haustoria which penetrate the epidermis of the host. The ripe aseus fructifications (Perithecia) are black when mature and visible to the maked cye. In the simplest forms (c.9. in the genus shpherrothecei) the sphereid perithecium encluses only a single aseus with eight spores. The ascus arises directly from the end of a fertile, aseogenous hyphal bramel after the septation of a stalk-cell. It is enveloped by a covering of sterile hyphar produced ly the mycelium at its base and forming a sheathing
larer, two to three cells deep, of pseudo-parenchyma. The genus Erysiphe, on the other hand, develops in each perithecium several asci which arise in branches from

Fig. 275.-Euroticis herberioran ($=$ E. Aspergillus glaucts). $-A$, Rulliment of the ascusfruit: \dot{f}, coiled, fertile hypha; st, sterile hyphe: : B, young fruit; p, wall of perithecium formed of sterile hyphe: C. a halfripe fruit with ripe asci (a_{2}) and a number of unripe asci $\left(a_{1}\right): D$, coniliophore borne on the miscelium : c, conidia. (After Kiry.)
2. The Perisporicae are closely related to the Erysipheac. but are saprophytic and live on decomposing organic matter. To this order belong two of the most common Mould Fungi, Eurotium herbariorum and Penicillium gleucem. the ascogenous hyphr. The perithecia are irregularly ruptured at their apices and the spores are thus set free. Before entering upon the formation of perithecia, the Mildew Fungi multiply by means of conidia abstricted in chains from special, erect hyphæ, from the tip downwards. The Mildew Fungus of the Grape-rine, Erysiphe Tuckeri, exhibits only such conidial fructifications; its aseus-fruit has not as yet been found in Europe. In its conidial form, known as Didium Tuckeri, it is a highly destructive parasite ; to stop its ravages it is customary to dust the rines with sulphur and copper sulphate or to sprinkle them with Bordeaux mixture (a solution of lime and copper sulphate).

Fig. 2-io.-Penellium cristiceum. Conidiophore with rerticillate branches $\left(s^{\prime}, s^{\prime \prime}\right) ; b$, st, sterisInata abstricting chains of conilia. (From an alcohol-hatmatoxylin specimen, $x: 5 \pm 0$.)

Both at first multiply extensively by means of conidia before they begin to form rerithecia.

In the case of Eurotium herbarioruii, the conidia are abstricted in chains from
a number of sterigmata arranged radially on the spherical, swollen ends of the conidiophores (Fig. 275, D). The conidiophores are closely crowded together, and constitute the white monld, afterwards turning to a blne-green. The Fungus is freqnently found on damp regetables, fruit, bread, ete.

Fig. 27ヶ.-Tuber rufum. 1, A fructification in vertical section $(\times 5)$; a, the cortex; d, air. passages; c, dark veins of compact hyphe; h, ascogenous tissue: 2 , a portion of the hymenium. (After Tilasie., from v. Tivel., x foil.)

Pencicilium crustactum also forms a very common blue-green mould, particularly on bread. The erect conidiophores constituting the mould are, in this care, vertieillately branched and bear at the extremities of each hranch flask-shal ped cells, from which the chains of conidia are abstricted (Fig. 276).

Spherical perithecia of Eurotium and Penicillium are produced later on the mycelium, but in the case of the latter gemus they are only rarely foumd. They
are of a much more complicated structure than in the Erysiphecue. They first appear as spirally-coiled fertile hyphæ, which soon become enveloped by other sterile hyphæe /Fig. 275, A, B. Entirely enclosed by a tissue of pseudoparenchyma, the ascogenous hypha gives rise to branches penetrating the perithecial envelope and producing numerous asci containing eight small round spores (C). In the ripe ascus-fruit the walls of the tubes become disorganised and also the investing pseudo-parenchyma, except the outermost layer, which, by suddenly bursting, releases the spores.
3. The Tuberaceue or Truffle Fungi are saprophytic Ascomycetes whose mycelium is entirely subterranean, ramifying in humus soil, particularly in woods under decaying leaves. They belong to the Fungi which give rise to the formations known as Mycorrhiza (p. 210). The ascus fructifications familiar under the name of truffles are underground tuberous bodies Fig. 27i), consisting of a thick, investing, cortical layer of pseudo-parenchyma enclosing an inner mass of looser hyphal tissue. The internal tissue is traversed by air-passages d and pervaded by anastomosing veins of more compactly united hyphæ (c) : in consequence of which it has a marbled or veined appearance in cros--section:.

The club-shaped asci are disposed in nest-like groups (Fig. 277, 2) throughout the interior of the tuberous fructifications, or ther form a hymenial layer coating the walls of narrow, winding chambers. The asci contain only a small number of spores; in the case of the true truffles (genus Tuber) they are usually only four in number, and generally have a spinous or reticulately-thickened epispore. When the fructifications are fully mature, the sterile tissue in the interior and also the walls of the asci disaplear, learing the ripe spores enveloped only by the outer cortical layer.

The fructifications of many of the Tuberaceae are edible, and have an aromatic odour and taste. They are, for the most part, obtained from France and Italy, and from the neighbourhood of the Phine, where ther are regularly collected on account of their commercial value as articles of food. Of the edible varieties, the most important are the so-called black truffles belonging to the genus Tuber, siz. Tuber brumule, melanosporum, uestivum, mesentericum. The fructifications of these species hare a warty cortex of a black, reddish-brown, or dark brown colour; the two first named frequently attain the size of a man's fist, and often weigh orer two pounds. The white truffle, chooromyees meandrijormis, which is also edible and resembles a potato in form and size, is light brown externally, but in the interior is white with yellowish veins. The fructifications of Tuber rutum, which are about as large as a walnut, and have a leathery cortex enclosing a hard internal sub-tance, are not edible, nor are those of Elaphomyces granulatus, the Stagtruffle, whose yellowi-h-brown cortical layer is hard and woody or corky.

Order 3. Pyrenomycetes

The Pyrenomycetes comprise an exceedingly varied group of Fungi, some of which are parasitic upon different prortions of plants, particularly on the cortex and leaves, and others are saprophytic upon decaying wood, dung, etc., while a few genera occur as jarasites upon the larre of insects. The flask-shaped fructifications or perithecia are characteristic of this order. The perithecia are open at the top, and are covered inside, at the base, with a hymenial layer of asci and hair-like paraphyses (Fig. 275). The lateral walls are coated with similar hyphal hairs, the paraphyses. The spores escape from the perithecia through the aperture. In this process one ascus after another elongates in consequence of the
water absorbed, and discharges its spores through the opening. or the spores are set free within the 1 erithecia. and are ejeeted, emberded in a swollen mans of slime.

The simplest Pyrenamyctes possess free

Fic. 27 s .-Perithecium of Porlosporce fimisede in longitulinal section. s, Asci; a, paraphyses; r, periphyses ; m, mycelial hypher. (Afterv. Tavei., $\times 90$.) prithecia growing singly on the ineonspicuous mycelium, having the appearance of small hlack dots irregularly disposed over the surface of the organic sulstratum. In other cases the formation of the fructifications is more complicated; they arise in groups embedded in a cushion-or club-shaped, sometimes branching, mass of compact mycelial hyphar having a dense preudy parenchymatous structure. Such a fructifics. tion is known as a stioma.

In the life-history of most Pyrenimylalis the formation of prerithecia is preceded by the production of various accessory fructifications, larticularly of conidia, which are abstricted in different ways, either directly from the hyphe or from special contili... phores, and are especially efficacious in diseminating the Fungi. The conidiophore are frequently united in a conidial stroma in the form of inerustations or wart- or cluls shaped mycelial masme; they then const tute distinct, conidial fructifications. A special form of such conidia-fruits are the prosined produced ly many genera. The! are small spherical or flask-shaped bendia which in structure resemble the ascogenous perithecia, hut, instead of asci, the! give rise to hranehed hyphal filaments from the apiee of which conidia, in the case termed presuspres or prosocosibla, are abstricted (Fig. 279, 1, 2. The different kinds of fructifieations in the Pigrenamyectes usually make their appearance in succession.

As representatives of the P!rinemyectes with free perithecia may be cited the mumerous speeies of the genus siphecriu, which appear as jet hack, spherical boties upon dry stems and leaves. An example of a species forming a stroma is afforded liy Nectrin cimnaburimu. This Fungus uceurs on the dried branches of deciduous trees and produces small, nearly roumd or somewhat elongated stromata of a cimmamon-red colour. At first the

 (Atter Brefeli, x 300.) 』, Pyemilum if Nom

 stromata give rise only to filamentous conidiophores from which conidia are abstrictel. but they aftorwath develep st mheo prrithecia. X!glarion h!nporemlun, common on rotten treestump, problues an ara
iranobei storma whish attains a height of several centimetres. On the tips of the franches the stroma sires rise only to conida. while emberludel in its eentral portim it beass numervas perithecia.

 silocertas: il a sclertuiam mith strmata: I. I ncitudinal secri a of a seleroti-nis showinz

Courixple paryeren, the Fungus ef Ergot. is impertant on acount of its officinal ralace It is parasitio in the young oraries of different members of the cromienere.
particularly of Ryc. The ovaries are infected in early summer by the ascospores; they become overgrown with the hyphal filaments, and in consequence are deformed and reduced to soft, furrowed bodies. The mycelium soon begins to form conidia, which are abstricted in small clusters from short lateral conidiophores (Fig. 280, A). At the same time copious exudations of sweet thuid are extruded. This so-called hoser-new is cagerly songht ly insects, and the conidia cmbedded in it are thus carried to the ovaries of other plants. The conidial form of this Fungus was formerly regarded as a distinct genus under the name of Sphacelia seyclum. After the completion of this form of fructification, and the absorption of the tissue of the ovary by the mycelium, a sclerotium is eventually formed in the place of the ovary from the hyphre of the mycelium by their intimate union, especially in the periphery, into a compact mass of pseudo-parenchyma (Figs. 97, 9S, p. 87). In the centre, the tissue of the sclerotium consists of more loosely disposed hyphe, and is of a lighter colour. These elongated dark-violet aclenotia, which project in the form of slightly curved bodies from the ears of corn, are known as Ergot, Secale cornutum (Fig. 280, B). The sclerotia, copiously supplied with reserve material (fat), eventually fall to the ground, where they pass the winter, and germinate in the following spring when the Rye is again in flower. They give rise to bundles of hyphe which produce long, stalked, rose-coloured globular heads (() . Over the surface of the latter are distributed numerous sunk perithecia (D, E). These stalked heads, several of which are formed from the same sclerotia, and elongate until they appear above the ground, are ascogenous fructifications, and are in reality stromata with perithecia. Each perithecium contains a number of asci with eight long, filiform ascospres, which are ejected and carried by the wind to the flowering ears of grain.

Cordycens, a genus closely related to Claricens, is parasitic in the larvie of insects and converts the whole body of the infected larva into a sclerotium, from which is eventually produced a long, club-shaped strona bearing numerous perithecia. In this case also, a formation of conidia takes place. Botrytis liassiunu canses a disease in silkworms known as Muscardine. Of this. Fungus only the conidial fructifications are known, which are similarly constructed to those of c'luriceps, and grow all over the dead silkworm as a snow-white mouhd.

Officinal. - Sccule cornutum (Pharm. germ.) or Ergot is the sclerotimm of Clavicops inerpurer.

Order 4. Discomycetes

Fic: 2sl. - I'ezizu "ruruntiri". (After Кпомвногz, nat. size.) distinguished from the other orders by their opeed gymnocarpous apothecia, which bear the hymenimm, consisting of asci and paraphyses, freely exposel on their urper surface. The dilterent gron sexhibit great diversity as regards the manner of development of their fructifications.

The great majority of the Discomycetes, of which the genus P esisu, with some humbed species, may serw as a type, grow on living or dead vegetable substancer, especially upon decaying wood, bint sometimes alan on humus swil. They produce salueer-, bowl-, fumel-, or dise-shaped fructifications of a fle - hy or leathery con sistency, and usmally of small dimemions. One of the
 bowl-shateed fructifications, which are of a bright orange-red colour, while in mo-t
of the other species they are gray or brown. Such cup-shaped fructifications are not terned perithecia but apothecia. In their early stages the apothecia are closed, but soon after the rudiments of the hymenium are developed, the thin, outer envelope ruptures and the fructification becomes gymnocarpous (Fig. 282). The hymenium is situated on the inside of the cup. The hypothecium, or that part of the fructification immediately beneath the inner hymenial layer, is composed of closely interwoven sterile hyphæ. These sterile hyphr give rise to the paraphyses, while the eight-spored asci growing in between the paraphyses are produced from special ascogenous hyphæ, which sooner or later become

Fig. 282.-Lachnea pulcherrima. Apothecium ruptured, showing old and young asci between the paraphyses. (After Woronin, from v. Tavel..) differentiated as thick branching filaments, in the hypothecium. The apothecia are gregarious, but each is distinct from the other.

Sclerotia of varying form are produced by different species of Sclerotinia. In the case of Sclerotinia tuberosa they have the appearance of black tuberous bodies and grow upon the dead, underground rhizomes of Anemone nemorosa. The sclerotia of other species are formed like those of Claviceps, in infected ovaries (e.g.

Fig. 283.-Morchella esculentr. (3 nat. size.) S. baccarum upon Vaccinium Nyrtillus). In the spring the sclerotia germinate and give rise to longstalked apothecia.

The Phacidiaceae, appearing on leaves or bark, form a special group of Discomycetes. Rhytisma acerinum, common on the leaves of the Maple, belongs to this family. In the course of the summer it forms large black incrustations of pseudo-parenchyma, from which at first only conidial fructifications arisc. In the autumn the rudiments of the apothecia are formed; they do not develop into mature apothecia until the succeeding spring, when they make their appearance in the form of irregular fissures, with a yellowish hymenium upon the crustaceous sclerotia, which have remained over winter upon the dead leaves.

The highest development is exhibited by the peculiar fructifications of the Helvellaceae or Morel Fungi, whose mycelium, like that of the Truffe Fungi, vegetates underground in the humus soil of woods, but produces soft wax-like aerial fructifications. In the genus Morchella, Morel (Fig. 283), the fructifications consist of a thick erect stalk, bearing a club-shaped or more or less spherical cap or pileus, which bears the hymenium, with its eight-spored asci, on
the reticulately indented exterior surface (Fig. 273, 1. 351). The Morchellas are edible, and have an agreeable taste and smell, in particular M. csententa and M. conica. Hilvella csiulcuta, which is also edible, has a whitish stalk and a darkbrown pileus; but Helvella suspecta, with a reddish-hrown pileus and a dirty flesh-coloured stalk, has a nauseous sweetish taste, and is regarded with suspicion. Verpur cligitaliformis, which has a long-stalked, bell-shapeed pileus, is also edible. In their external alpearance the fructifications of these highly-theveloped Discomyctes greatly resemble those of the Basidiomycetrs.

In the Helvellucece the production of conidia as an accessory form of fructification is not known to occur, but in the other Discomyedes the formation of conidia frequently takes place in the same manner as in the Pallenmmates.

Sub-Class 5. Hemibasidii

Just as the Hemiusci occupy an intermediate position between the sporangiferous $Z y$ yomycetes and the Asompertes, the Hemulusidii connect the conidia-bearing $Z y g m m y$ etes and the binsiliomycetes. Their conidiophores bear a close resemblance to the basidia of the Busidiommetes, but differ from the latter in producing spores less definite in form and number. Both the Memihusitii and the succeeding subb-class, Basidiomycetes, are highly organised Fungi with septate mycelia. They are devoid of any sexual mode of reproduction : the asexual formation of spores is never effected in sporangia or asci.

The Hemitusidii comprise but one order, the Bramd Funni. They are parasites, and their mycelium is found ramifying in higher plants, usually in definite organs, either in the leaves and stems, or in the fruit or stamens. The Grumineue in particular serve as hostplants for the Brand Fungi, certain species of which are in a high degree injurious to cereals, and produce in the inflorescences of Oats, Barley, Wheat, Millet, and Maize the disease known as smut.

At the end of its period of vegetation the mycelium of the Brand Fungi produces in or upon the host-plant the so-called brand spores by the formation of additional transverse walls, and by the division of its profusely branched hyphe into short swollen cells (Fig. 2st, A). The cells lecome rounded off and converted into spores, while their cell walls undergo a mucilaginous modification. The spores thus surromded by gelatinous envelopes, which, how ever, eventually disappear, then hecome invested with a new, thick. double wall, consisting of a thin colourless endosporium and a thick dark-coloured exosporium. In this way the mycelium is transformed into a dark-brown or black mass of spores. A. regards the manner of their formation, the brand spores may be regarded as chlanydospores, similar to those formed in the case of the Homiusci by Protomynes (Fig. $\because 7-$, 1, 350), and occurring also in certain of the Zy!!omycrtes and in many of the higher Fungi. In the formation of chlanydospores by the septation of the hyphax, an essentially different mode of spre-formation is exhibited than that
employed in producing conidia, which are abstricted by a process of budding from the extremities of hyphal branches. In Protomyces the chlamydospores form an ascus-like sporangium on germination; in the Smut Fungi, on the other hand, they give rise to a basidium-like conidiophore. The brand spores are resting spores, they are scattered by the wind, and germinate only after an interval of rest, producing conidiophores in the succeeding spring, the formation of which is characteristically different in the two families of the Brand Fungi, the Ustilaginaceae and the Tilletiaceae.

Of the Ustilaginacae, the most important genus is Ustilago. U. segetum $(=U$. Carbo) eauses the mildew and blasting of the infloreseence of Oats, Barley, Wheat. The mycelium penetrates the ovary enelosed by the palex, and forms darkbrown dust-like masses of eseaping brand spores in the place of the seeds. U. Maydis produces on the stalks, leaves and inflorescences of the Maize tumour - like swellings filled with brand spores in the form of a black powder. Other species live on the leaves of different grasses; while U. violacea ($=U$. antherarum) oceurs in the anthers of various Carophyllaceae (e.g. Lychnis), and fills the pollensacs with brand spores.

The brand spores of Ustilago fall to the ground, and after a period of rest give rise, on germinating, to a short tube which beeomes septated by

Fig. 284.-A, Ustilago olivacer. Mycelial hypha in process of forming brand spores $(\times 400)$. B-D, Ustilago segetum: B, germinating brand spore; cl, cultivated in nutrient solution $(\times 450)$; t, transversely septate conidiophores with ${ }_{1}$ lateral and terminal conidia $(c): C$, germinating brand spore lying in the nutrient solution surrounded by abstricted conidia, which are multiplying by budding ($\times 200$): D, an aggregation of budding conidia ($\times 350$). (After Brefeld, from V . Tayel.)
three or four transverse walls (Fig. 284, B), and functioning as a conidiophore, produces egg-shaped conidia, both laterally from the upper ends of the intermediate cells, and also from the tips of the terminal cell. When abundantly supplied with nourishment, and also on eultivation in a nutrient solution, conidia are continuously abstrieted in large numbers (Fig. 284, C^{\prime}), and then multiply further by budding in the manner of yeast cells (C, D). After the food-supply of the substratum is exhausted, the conidia grow out into mycelial hyphr. The germination of the conidia in the damp manured soil of the grain fields is accomplished during a saprophytic mode of existence, but the hyphal filaments whieh are eventually produced become parasitie, and penetrate the young seedlings as far as the vegetative cone, where the infloreseence takes its origin. Then the mycelium continues its development, and ultimately terminates its existence by the production of brand spores. No conidia are formed on the host-plant itself.

The life-history of the Tilletiaccae is similar to that of the Ustilaginaceac. The best known speeies are Tilletia Tritici $(=$ T. Caries) and Tilletia lacris, the Fungi
of the stink-brand of wheat. The brand spores of these species are also produced in the ovaries, from which, however, they do not escape, but remain enclosed within them, filling the apparently healthy grains with black brand spores, smelling like decayed fish. In the first-named species the brand spores are provided with a reticulately thickened epispore ; those of T'. larris, on the other hand, are smoothwalled. Unlike the C'stilagin.

Fig. 285.-Tillotia Tritici. 1, Germinating brand spore, witlı unseptate conidiophore (t) and apical filiform conidia (c) ($\times 300$) ; 2, a germinating filiform coniclium bearing a sickle-shaped conitliun $(\times 400) ; 3$, portion of myceliun with sickle-shaped eonitlia ($\times 350$). (After Brefelin, from v. TAvel.) acear, the germ-tube gives rise only at its apex to filiform conidia, which are disposed in a whorl, and consist of four to twelve spores (Fig. 285, 1. The conidia aloo exhibit the peculiarity that they coalesce with one another in pairs in an H-form. In this process two conidia come into open communication by means of a bridge-like commection extending from the middle of the two cells, a form of coalescence which frequently takes place between the mycelial lyyphe of the higher Fungi. The tiliform conidia germinate readily, and produce sickle-shaped conidia at the apex of the gernstubes. When abundantly sul. phed with food material, the germ-tubes grow into large mycelia, from which such sickle-shaped conidia are sil abundantly abstricted thent they have the apparanee of a growth of mould. Thus Tilletia, unlike ('stilum, prodnces conidia of two formes: but in other particnlars the development of both gronls is the same.

To the Tillctiaceac belongs also Vrocy/st is wceultu, Rye-stem blight, whon brand spores are formed in Rye haulms.

The transwersely septate conidiophores of the tistilaginacac, and the unsiptate conidiophores of the Tifletiacoue, proluce an indefinite number of conidia. In the gronp of the Besidiomycets, although both types of conidiophores enomr the number of spores produced is definite, and the eonidiophores are then temed basidia.

The formation of conidia in the Ifemibasidii represents an original fond of asexual spore-formation, while the development of brand spores is to he regarded as an interpolated, more recently acpuired mode of spore-prodnetion.

Sub-Class 6. Basidiomycetes

Like the Asromyetes the liesidiomycetes form an extremely variable group of Hyphomycetes, with septated mycelimm and devoid of sexual reproduction. They are specially characterised by the form-
tion of basidia or conidiophores of definite shape and size, and bearing a fixed number of spores, usually four (in exceptional cases two, six, or eight). The basidia appear in two chief forms: (1) as ProtobASIDIA, the conidiophores of which are multicellular, having either the upper portion divided by transverse septa (Fig. 286, A) into four cells, each of which gives rise to a spore from a laterally inserted sterigma, or the basidia are divided longitudinally into four cells (Fig. $286, B$) by walls intersecting at right angles; each cell terminates in a long tubular sterigma; (2) as AUTOBASIDIA, with unseptated conidiophores (Fig. 286, C), which give rise at their apices to four slender sterigmata, each bearing a spore.

Fig. 286.-Basidia of Endphyllum Euphorbiae silvaticae (A), Tremella lutescens (B), and Tomentella granulata (C), belonging respectively to the orders Uredineae, Tremellineae, and IIymenomycetes. (A after Tulasne; B, C after Brefeld, from V . Tavel; $A, B \times 450 ; C \times$ 350.) The transversely divided protobasidia have their prototype in the conidiophores of the Ustiluginaceae; the autobasidia in those of the Tilletiaceae.

In addition to conidiophores differentiated as basidia, the Busidiomycetes produce other forms of conidia as accessory fructifications, also chlamydospores. They thus possess a polymorphism in the formation of asexual spores in place of a sexual reproduction, which is absent.

According to the form of their basidia, the Basirliomycetes are classified into two groups, with the following European orders.

A. Protobusidiomycetes

Order 1. Uredinecue, basidia transversely septate; gymnocarpous.
2. Auricularieae,
3. Pilacreae,
4. Tralline " " " anglocarpous.
" 4. Tremellineae

B. Autobasidiomycetes

5. Hymenomycetes, basidia unseptate; gymnocarpous or hemiangiocarpous.
6. Gasteromycetes, basidia unseptate ; angiocarpous.

Of these orders, the Uiedinaae, Hymenomycetes, and Gasteromycetes
are the most important, and have the greatest number of species, while the second, third, and fourth orders include only a few forms.

Order 1. Uredineae (Rust Fungi)

The Fungi of this order are all injurious prarasites. Their mycelium lives in the intereellular spaces in the tissues of the higher plants, particularly in the leaves, which then acquire a spotted, rusty appearance. The Rust Fungi are closely allied to the Brand Fungi. Like them, they produce chlamydospores which break through the tissue of the host and form the rust spots characteristic of these Fungi. The gem-tube resulting from the germination of a chlamydospore gives rise directly to a transversely septate basidium (Fig. 286, A), from which four sterigmata, each with a spore, are successively developed. Formerly it was customary to designate the transversely divided hasidium a promycelium, and the basidiospores sporidia. The process of chlamydospore-formation, as exhibited by the Credinerue, undergoes extensive and complicated modifications; very frequently

Fuc. 257.- P'ucinia fusce on Anemome nemoroso. Section through an weidinm; h, tissule of interwoven, sterile hyphie ; s, chatins of spores, P , peridinm. (Afterv. Taven., $\times 150$.)
three distinct forms of chlamydospores are produced hy the same Fungus, at the same time or in succession.

1. The teleutospones (winter spores) which, as typical ehlamydospores, prohably constitute the original form of spores peculiar to all the species, are invental with a thick wall. They are formed at the ends of mumerous, closely-elusterd mycelial hyphe which rupture the epidermis in small, usually more or less romed spots. They are frequently joined together in rows of two or more (Fig. 2ns, 1, i, th, and are produced in late summer, toward the close of the vegetative period. The? function generally as resting spores, and after hibernating, germinate in the sprimg and develop, at once basidia, hearing four spores.
2. The thenospores (summer spores) arise in the same or similar positions to the telentorpores, but precede them in development. They germinate immediately after their dissemination, producing a vegetative myedium, and provide for the multiplieation of the Fungns during the summer. They are micelhar and enveloped only with a thin wall (Fig . 258,5 and 6).
3. The exmbospores, which are produced, prior to either of the other twe
forms, in special fructifications or ecidis, germinate, like the uredospores, directly after they have been set free. The æcidia (Fig. 287) are small, at first closed, but afterwards open and cup-shaped bodies; they rupture the epidermis of the host-plant, and contain a hymenium of closely-crowded mycelial branches from which chains of round or polyhedral spores are produced by a process of septa-

Fig. 288.-Puccinia graminis. 1, Transverse section through a grass-haulm with group of teleutospores; 2, germinating teleutospore with two basidia; 3, vegetative, 4, fructifying germinating basidiospore; 5 , a portion of a group of uredospores (u) and teleutospores $(t) ; p$, the germpores ; 6, germinating uredospore. (1, 2, 3, 4, after Tulasne; 5, 6, after De Bary, from 5 . Tavel; $1 \times 150,2 \times$ circa $230,3,4 \times 370,5 \times 300,6 \times 390$.)
tion. The enveloping layer or peridium of the æcidia is formed of the peripheral hyphæ, which remain sterile.

Uredospores and æcidiospores differ from the teleutospores only in their manner of germinating vegetatively ; in the mode of their formation they are to be regarded as chlamydospores, which serve a distinct biological purpose in the dissemination of the Fungus. They have probably been evolved from teleutospores ; occasionally transitional forms between teleutospores and uredospores are found.

In the life-history of the Lredincae provided with such trimorphous chlamydospores still another asexual sporiferous frnctification oecurs, resulting in the production of conidia. In this case the conidia are formed in PYCNiblid similar in form and structure to those exhibited by many of the higher Ascomycets. The pyenidia produce internally minute conidia on filamentous conidiophores, the so-called pYcsospones or puciocosima. The pyenidia were formerly called spermogonia, and the spores, which were thought to be sexual cells, were then termed spermatia. The pyenoconidia are discharged from the mouth of the spherical or flask-shaped receptacle (Fig. 259) ; their further development on the host-plant is still unknown, but they may be induced to germinate in a nutrient solution. The pyenidia appear in spring with the æcidia, but somewhat carlier, and on the upper side of the leaf, while the aceidia develop on the under side.

The C'relincue thus exhibit a great variety of asexual spores, as in addition to the three chlamydospore forms they produce two other kinds of conidia, viz. those formed in the pyenidia and on the basidia. The different spores usually succeed each other, according to the seasons; acidiospores and pyenoconidia in the spring. uredospores in summer, and teleutospores in autumb, which in the following slring develop basidiospores. The latter germinate at onee, and the myeelium renetrates the host-plant and produces in turn æecidia, pyenidia, etc. Ecidiospores and uredospores provide for the dissemination of the Fungus during the veretative period.

All the different forms of spores arise in the course of the year, either on the same host-plant, or the penidia and aecidia may ocemr on one host-plant, and the
 ureelospores and teleutospores on another, often unrelated plant. In the first case the parent Fungi are termed Atreetors (e:g. P'uciniu Porri on species of Allium and P. Asparam, the Rust Fungils of Asparayus ; in the latter instance they are hethisellous, and an alternation of hosts oceurs.

An example of an heterwcious Rutst Fungris is afforded by Puccinia graminis, the rust of wheat. It develop its urelosperes and teleutospores on all the green parts of Ciramincon, especially of liye, Wheat, Barley, Oats, to which its prasatic mycelium is extremely injurious. The revidia ant pyenidia of this species are found on the leaves of the Barbemy (Berteris vulyaris: In the spring the hibernating double teleutospres give rise to transt ersely septate basidia, from which the four basidiospores are abstricted (Fig. 26s, 2. These are seattered by the wind, and if they fall on the leaves of the barberyy they germinate at onee. The germ-tube penetrates the cuticle, and there forms a myerlium which gives rise to pyenidia on the nIper side of the leaf (Fig. こ̌an, amt to eceitia on the unter side. This form of the Fungus is known as - Ficidium licrlierdis; the aredinm resembles essentially that of Pucinio fusca previonsly figned (Fig. 2si). On the rupture of the peridiun the reddish-yellow ardiosiores are conveged by the
wind to the haulms of grasses, upon which alone they can germinate. The mycelium thus developed produces, particularly on the leaf-sheaths, primarily uredospores (Fig. 288, 5). They are unicellular, studded with warty protuberances, and provided with four equatorially disposed germ-pores. In consequence, the reddish.yellow fat globules contained in the protoplasm of the spores form red markings (formerly termed Urcdo lincaris) on the epidermis of the host-plant. The uredospores are capable of germinating at once on the same or other cereals, and thus the rust disease is quickly spread. Towards the end of the summer the same mycelium produces the black, thick-walled teleutospores, which in this species are always double, being united in pairs. Each teleutospore is provided with one germ-pore, and on germination in the succeeding year the cycle is begun afresh.

The mycelium of the Uredo form may hibernate in winter wheat, and thus the rust may appear in the spring without the previous formation of basidiospores or of æcidia.

Other Rust Fungi, like Puccinia graminis, common on Giramincae, and having a similar development, are P. Rubigovera ($=P$. straminis), with the æcidium form, Evidium Asperifolium on the Boragincae, and P. coronata, with the corresponding form, Aicidium Rhamni, on Rhammus.

All Uredineae do not exhibit so complicated a course of development as Puccinia yraminis. Certain species produce only basidia from germinating teleutospores (e.g. Puccinia Malvaccarum, now very common on the Malvaceae, but originally introduced from Chili). Puccinia bistortae on Polygonum bistorta gives rise, in addition to teleutospores, only to uredospores which are developed on the same host. Puccinia fusca produces pycnidia and æcidia (Fig. 287), and afterwards teleutospores on the leaves of Anemone nemorosa, but no uredospores. In the development of various forms of chlamydospores, either a different degree of advancement is thus manifested in the different groups, or by a process of degeneration one or other spore-form has been lost. There are, moreover, species whose reproduction is effected chiefly or exclusively by uredospores or by æcidia. In such cases it must be inferred that as the result of the environment the production of teleutospores has been almost wholly or altogether suppressed. For example, it is stated that in the tropical climate of Ecuador, Uromyces Fabae on Vicia Faba multiplies solely by means of uredospores.

In the case of the heterœcious species, it is only possible to demonstrate the connection between the different spore-forms by means of culture experiments. So long as the relation of the different forms was not known, it was customary to designate each by a special generic name ; the Uredo forms as Urcdo ; the Æcidia, according to their structure, as AEcidium, Roestelia, Pcridcrmium, etc. The generic name is now determined by that of the teleutospores, as they exhibit the most characteristic distinetions.

Many of the Uredineac are injurious parasites, c.g. Gymnosporangium Sabinae, whose teleutospores develop on Junipcrus Sabina, while the æcidia and pycnidia occur on Pirus Communis. The æcidium produces the so-called lattice rust on the leaves of the pear tree, and has been termed Roestelia cancellata. The Rust Fungus found on the needles and bark of various species of pines, and formerly known as Pcridcrmium, is due to sac-shaped æcidia, which belong either to the genus Colcosporium, whose uredo- and teleuto-forms occur on the Compositae and Rhinanthaceae, or to the genus Cronartium, with uredo- and teleuto-forms on Vincetoxium and liibes. Especially destructive to the tropical coffee culture is Hemilcia vastatrix, which produces both its uredospores and teleutospores on the leaves of coffee plants.

Order 2. Auricularieae

The basidia, as in the case of the Cienlincue, are transversely septate, with four long sporiferous sterigmata ; they spring directly from the mycelium without any previous formation of chlamydospores. But few forms are included in this onler. Among the most familiar is Auricuturiu sembucimu (Judas' ear', found on old Ehler stems. It has gelatinous, dark-hrown fructifications, which are shell-shaped and bear on their inner sides the hasidial hymenium.

Order 3. Pilacreae

This order comprises only the genus l'ilacir, oceurring on the bark of teciduons trees. The transversely septate basidia with four sessile spores arise within stalkerl, capitate fructifications which attain only a small size.

Order 4. Tremellineae

The basidia are longitudinally divided Fig. 2S6, B. The hymenium is situated on the surface of the fructifications, which are generally gelatinous and irregularly lobed or folded. The few genera included in this order are saprophytic on deeaying wood and tree-trunks, from whose surface the fructifications are producel.

Order 5. Hymenomycetes

The basidia are undivided, and bear four spores at the apices of slender sterig. mata (Fig. 290, $l, s p$). In the simplest forms these autohasidia spring directly from the mycelium, but in the majority of eases stalked fructifieations surmounted

 hymenial layer ; \quad, hasidia: st, sterigmata ; s speres ; I, paraphysess: c, a cystid. (x г.tu.) by a cur-like expansion, the pilet's, are produced, which bear definite lyymenial layers. composed in addition to the basidia of paraphyses Fi_{5}. $290, \mathrm{p}$, and also of sterile eysticls (c) or club-shapel tules characterised by their larger diameter and more strongly thickened wall. In this order, in contrast to the Cirdinace, the formation of chlamydonores is of rare occurrence, and is corre-pont ingly of suborlinate import ance.

Most of the Myminamer ates develop, their profusely lrancherl, white mycelimu is the humus soil of forest- of in dectying wood, and $1^{\text {th }}$ duce fructifications, wften of considerable size, protruding from the sulnstratum. The myeclium of the forms regrtating in the soil spreads further and further, and dying in the centre as if exhausts the fonl material of the sulstratum, ocenpies contintally widening evi centric zones. In conserguence of this thede of growth, where the development in
been undisturbed, the fructifications which appear in autumn form the so-called fairy rings. These rings may attain a diameter of several metres; they are formed not only by Hymenomycetes (e.g. Amanita muscaria, Boletus edulis), but also by the Morchellas among the Ascomycetes. A few Hymenomycetes are parasitic, and vegetate in the bark or wood of trees. Of such parasitic forms Armillaria mellea, whose mycelium vegetates between the bark and wood of Conifers, is a familiar example. The profusely branching mycelial hyphæ undergo a remarkable modification (Fig. 291), and become interwoven into flat, black strands from which fine, hair-like hyphæ are sent out and penetrate the wood for the absorption of nourishment. It is from these strands, known as Rhizomorpha, that the stalked, capitate fructifications are eventually produced. In addition to the subcortical strands,

Fig. 291.-Armillaria mellea. Portion of a rhizomorpha strand (r) with mature (a) and young (b) fructifications. (After Hartig, from v. Tavel ; $\frac{1}{8}$ nat. size.)

Fig. 292. - Exobasidium Vaccinii. Transverse section through the periphery of a stem of Vaccinium ; ep, epidermis; p, cortical parenchyma; m, mycelial hyphæ; b^{\prime}, protruding basidia without sterigmata; $b^{\prime \prime}$, with rudimentary sterigmata; $b^{\prime \prime \prime}$, with four spores. (After Woronin, $\times 620$.)
subtcrranean mycelial strands are developed which pervade the soil and infect the roots of other trees. The rhizomorphs may also be regarded as a form of sclerotia. Coprinus stercorarius, another Fungus of this same family growing in cow and horse dung, forms also small, round, black sclerotia.

The Hymenomycetes are further classified according to the increasing complexity exhibited in the structure of their basidial fructifications.

1. In a few genera no distinctive fructifications are formed, and the autobasidia spring in irregular groups directly from the mycelium. Exobasidium Vaccinii may be taken as a type of this form. The mycelium of this Fungus, which is widely spread in Europe, is parasitic in the Ericaceae, especially on species of Vaccinium; it causes hypertrophy of the infected parts. The basidia are formed in groups under the epidermis, which they finally rupture (Fig. 292). In this genus, as in many others, accessory fructifications are developed, and as spindle-shaped conidia are abstricted before the formation of the basidia from the mycelium on the surface of the host-plant.
2. In the group of the Thelephoreae, distinctive fructitications of a simple type are found. They are composed of closely interwoven hyphæ, and form on the trunks of trees either flat, leathery incrustations bearing the liymenium on their smooth upper surfaces; or the flat fructifications become raised above the substratum and form bracket-like projections, which frequently show an imbricated arrangement, and bear the hymenium on the under side (e.g. Stereum hirsutum, common on the stems of deciduous trees).
3. The fructifications of the C'lavarieae are also gymnocarpous, having the hymenium on their upper surfaces. They form erect whitish or yellow-coloured

Fig. 293.-Cluceria aurtetiaca. (Nat. size.) bodies, either fleshy and club-shaped or more or less branched, resembling coral (Clararia, Fig. 293). The larger profusely branched forms of this group are highly esteemed for their edible qualities; in particular, c'lucuria flura, whose fleshy, yellow-coloured fructifications are often ten eentimetres high, also c'lacuria coralloides and s'parussis crispa, which grows in sandy soil in Pine woods, having fructifications half a metre thick, with compressed leaf-like branches.
4. The Mydneae have fruetifieations with spinous projections over which the hymenium extends. In the simpler forms the fructifieations liave the appearance of inerustations, with spinous outgrowths projecting from the upper surface; in other cases they have a! stalk termed the stipe, bearing an mbrella-like expansion, the pilfis, from the under side of whieh the outgrowths depend. The latter form is exhibited by the edible Fungi Hydnum imbricutun, whieh has a pileus $15 \mathrm{cm1}$. wide, and Hydrum repandum (Fig. 294), with a yellowish flesh-coloured pileus.
5. In the Polyporcae the stalked or sessile and bracket-shaped fructitications are indented on the under side with pit-like depressions, or deep winding passayes, or covered with a layer of tubes, closely fitted together and lined by the hymenium. To this family belongs the genus Bulctus, which has a large, thiek-stalked pileus, covered on the under side with a layer of narrow dependent tubes. Although many speeies of this genus are edible ($c . \%$. B. luteus, B. chulis, D. scaber), others are exceedingly poisonous, in particular B. Satunas (Fig 295). This latter Fungus has a yellow to reddish-purple stalk, with red reticulate markings above, while the pileus, which may be 20 em . wide, is yel-lowish-brown on its upper surface, but on the under side is at first blood-red, beeoming later orange-red. Of the numerous speeies of the genus P^{\prime} olyporus, P. fomentarius, Touch-wood, is officinal (Fewers ('hnemanem). Its myedimm is parasitic in deciduous trees, especially the Beech,

Fig. 294.- Iyıinum repundum. (Reducel.) and produces large, bracket or hoof-shaped peremial fruetifieations, 30 cm . wide and 15 cm . thick. They have a hand, grey external surface, but inside are composed of softer, more loosely woven hypha, and were formerly nsed for tinder. The narrow tubes of the hymenium are disposed oll
the under side of the fructifications in successive annual layers. P. igniarius (Fig. 296), which is often found on Willows, and has a similar structure, has a rustybrown colour, and furnishes, as it is much harder, a poorer quality of tinder.

Fig. 295.-Boletus Satences. (After li rombholz, $\frac{1}{2}$ nat. size. Poisowocs.)
Many parasitic Polyporeae are highly injurious to the trees attacked by them; thus Heterobasidion annosum often causes the death of whole forests of Pines and Spruce Firs. Merulius lacrymans is an exceedingly dangerous saprophytic species, attacking and destroying the timber of damp houses. The mycelium of this Fungus forms large, white, felted masses, giving rise to cutspread, irregularly-shaped, pitted fructifications of an ochre or rusty-brown colour, and covered with a hymeuial layer. As remedial measures, good ventilation should be secured, and the wood soaked with carbolic acid or petroleum.
6. The Agaricineca, which include the greatest number of species, have stalked fructifications, commonly known as Mushrooms and Toadstools. The under side of the pileus bears a number of radially disposed lamellæ or gills which are covered with the basidia-producing hymenium. In the early stages of their formation the fructifications consist of nearly spherical masses of interwoven hyphæ, in which the stalk and pileus soon become differentiated. The rudiments of the stalk and pileus are at first enclosed in a loosely woven envelope,

Fig. 296.-l'olyporus igniurius. Section through an old fructification, showing annual zones of growth; α, point of attachment. ($\frac{1}{2}$ nat. size.) the volva. In the course of the further development and elongation of the stalk the volva is ruptured, and its torn remnants form a ring or sheath at the base of the stalk, but in many cases its development remains rudimentary. The fructifications are accordingly hemi-
angiocarpous, and enclosed during their early stages. In the "Fly Mushroom," Amanita muscaria, the volva is well developed, and after its rupture it is still traceable in the white scales conspicuous

Fig. 297.-Amanita muscaria. ($\frac{1}{2}$ nat. size. Polsonoc's.) on the red surface of the pileus, and also on the swollen base of the stalk (Fig. 297).

In addition to the rolva many Agaricincae develop a so-called velum, consisting of a thin membrane of hyphal tissue which extends in young fructifications from the stalk to the margin of the pileus, and encloses the hymenial lamellæ. This covering is afterwards ruptured, and remains as a pendulous ring of tissue or anNulds inferds encircling the stalk. This ring is very perceptible on the stalks of Armillarice mellea (Fig. 291) and the cultivated mushroom or champignon Psalliota campestris (Fig. 298).

In the majority of Agaricincue the lamellæ are developed as free outgrowths from the under side of the pileus. In the case of Amanita muscaria the manner of their development is different, and they arise by the differentiation of a homogeneous hyphal tissue in the interior of the dome-shaped rudiment of the pileus resulting in the separation of the hyphre into radial plates. The lamellæ thus formed are merged at the margin of the rudimentary pileus into a neutral layer of united hyphe connected with the stalk. As the pileus expands, this layer becomes loosened from the lamellæ and remains hanging to the stalk as an upper ring, annulus superus (Fig. 297).

Many of the Mushrooms found growing in the woods and fields are highly esteemed as articles of food. Of edible species the following may be named: the common Field-Mushroom, now extensively cultivated, Psalliote campestris (Fig. 298), with whitish pilens and lamellæ at first white, then turning fleshcolour, and finally becoming chocolate-coloured ; Cantharellus cibarius, having an orange-coloured pileus; Lactarius deliciosus, which has a red-dish-yellow pileus, and contains a similarly coloured milky juice in special lyyphal tubes ;

Fig. 298.-Psalliota campestris ($=$ Aguricus campestris). To the right, a young fructification. (Reduced.) Lepiota procera, whose white pileus is flecked with brown scales; Amanitu caesarea, in the south of Europe, related to the poisonous species Amanitu
muscaria, but having only a few large patches of the volva remaining attached to its red pileus.

Of the poisonous Agaricineac the following are best known : Amanita muscaria (Fig. 297) ; Amanita pantherina, which has a brown-coloured pileus studded with white protuberances ; Russula emetica, with a red pileus and white lamellæ; Lactarius torminosus, having a shaggy yellow or reddish-brown pileus and white milky juice.

Rozites gongylophora, found in South Brazil, is of especial biological interest. According to A. Möller, this species is regularly cultivated in the nests of the leafcutting ants. Its mycelium produces spherical swellings at the ends of the hyphæ, which become filled with protoplasm, the so-called Kohl-rabi beads, and serve the ants as food material. The ants prevent the development of the accessory conidial fructifications peculiar to this Fungus, and thus continually maintain the myceliums in their nests in its vegetative condition. The fructifications, which rarely occur on the nests, resemble those of Amanita muscaria, with which Rozites is nearly allied.

Officinal. - Polyporus fomentarius (Fungus chirurgorum), the only officinal species of the Hymenomycetes.

Order 6. Gasteromycetes

The Gasteromycetes are distinguished from the Hymenomycetes by their angiocarpous or enclosed fructifications, which open only after the spores are ripe, by the rupture of the outer hyphal cortex or peridium. The spores are formed within the fructifications in an immer mass of tissue termed the gleba; it contains numerous chambers, which are either filled with loosely interwoven hyphr with lateral branches terminating in basidia, or whose walls, designated the trama, are lined with a basidial hymenium.

The Gasteromycetes are saprophytes, and develop their mycelium in the humus soil of woods and meadows. Their fructifications, like those of the Hymenomycetes, are raised above the surface of the substratum, except in the group of the Hymenogastrear, which possess subterranean, tuberous fructifications resembling

Fig. 299.-Scleroderma vulgare. 1, A young fructification in longitudinal section, showing the chambers ; 2, portion of the interwoven hyphe with basidia, which fill the chambers. (After Tulasne, from v. Tavel.) those of the Tuberaceae.

The fructifications of the different genera exhibit great diversity in their structure and mode of formation.

The fructifications of Scleroderma vulgave (Fig. 299) have a comparatively simple
structure. They are nearly spherical, usually about 5 cm . thick, and have a thick, light brown, leathery peridium which finally becomes cracked and ruptured at the

Fig. 300. - Crucibulum vulgare. Longitudinal section of a closed fructification. (\times circa 3 , from v. Tavel's Fungi.) apex. The gleba is black when ripe, and contains numerous chambers filled with interwoven hyphe which produce lateral, pear-shaped basidia with four sessile spores (Fig. 299, 2). This species, which is considered poisonous, is sometimes mistaken for one of the Truffle Fungi.

The genera Bovista and Lycoperdon (Puff-balls) have also spherical fructifications, which are at first white, and later of a brown colour. In the last-named genus they are also stalked, and in the case of Lycoperdon Borista may even become half a metre in diameter. The peridium is formed of two layers; the outer disappears at maturity, while the inner dehisces at the summit. The hymenial layer of basidia, in the Fungi of this group, line the chambers of the gleba. The chambers are also provided with a fibrous capillitium consisting of brown, thick-walled, branched hyphæ which spring from the walls, and in ripe fructifications fill the whole internal cavity with a brown, fibrous, felted mass containing the spores. The fibres correspond biologically to the capillitia of Myxomycetes, although different morphologically. The fructifications are edible while still young and white, and have an agreeable taste, but when ripe they are dry, and were formerly used for stopping the flow of blood.

In the related genus Geaster (Earth-star) the peridia of the nearly spherical fructifications are also composed of two envelopes. When the dry fruit dehisces, the outer envelope splits into several stellate segments and the inner layer of the peridium becomes perforated by an apical opening.

The fructifications of Crucibulum and of other related genera have an altogether different structure. They develop on rotten wood or on the ground as small white or brown, cup-shaped bodies (Fig. 300), containing a number of stalked or sessile, thick-walled peridiola. The peridiola are produced by the differentiation of the internal tissue of the gleba, unused portions of which become dissolved. They are lenticular in shape, and enclose an inner cavity lined with the hymenium. The fructifications are at first closed ; when ruptured, the peridium forms a crucible-shaped receptacle containing the peridiola.

The highest development of the fructifications is

Fig. 301.-Phallus impudicus. (After Krombholz, $\frac{1}{2}$ nat. size.) exhibited by the Phalloideae, of which Phallus impudicus (Stink-horn) is a well-known example. This Fungus is usually regarded as poisonous,
but no poisonous effects have been proved. It was formerly employed in a salve as a remedy for grout. Its fructification recalls that of the Discomycetous Morchella, but it has quite a different manner of development. A fructification of this species of Phallus is about 15 cm . high. It has a thick, hollow stalk of a white colour and is perforated with pores or chambers. Surmounting the stalk is a bell-shaped pileus covered with a brownish-green gleba which, when ripe, is converted into a slimy mass (Fig. 301). When young the fructification forms a white, egg-shaped body, and is wholly enveloped by a double-walled peridium with an intermedial gelatinous layer. Within the peridicm (also termed volva) the hyphal tissue becomes differentiated into the axial stalk and the bellshaped pileus, carrying the gleba in the form of a mass of hyphal tissue, which contains the chambers and basidial hymenium. At maturity the stalk becomes enormously elongated, and pushing through the ruptured peridium raises the pileus with the adhering gleba high above it. The gleba then deliquesces into a dropping, slimy mass, which emits a carrion-like stench serving to attract flies, by whose agency the spores embedded in it are disseminated.

Class XI

Lichenes (Lichens)

The Lichens are symbiotic organisms (p. 213) ; they consist of higher Fungi, chiefly the Ascomycetes, more rarely Basidiomycetes, and unicellular or filamentous Algae, Schizophyceae or Chlorophyceae, living in intimate connection, and together forming a compound thallus or consortium. Strictly speaking, both Fungi and Algae should be classified in their respective orders; but the Lichens exhibit among themselves such an agreement in their structure and mode of life, that it is more convenient to treat them as a separate class.

In the formation of the thallus the algal cells become enveloped by the mycelium of the Fungi in a felted tissue of hyphr (Fig. 302). The Fungus derives its nourishment saprophytically from the organic matter produced by the assimilating Alga, without at the same time behaving as a parasite and injuriously interfering with its vegetative activity. The Alga, on the contrary, derives a definite advantage from its consortism with the Fungus, receiving from it inorganic substances and water. From the symbiosis entered into by a Lichen Fungus with an Alga, a dual organism results with a distinctive thallus, of which the form, which is influenced by the mode of nutrition of the independently assimilating Alga, differs greatly from that of other non-symbiotic Hyphomycetes with thalli consisting solely of profusely branched hyphæ.

In their adaptation to the requirements of the two constituent members, the thalli of the Lichens exhibit a variety of forms which, although sometimes made use of as a means of classification, are of no value in indicating natural relationships.

The simplest Lichens are the filamentots, with a filiform branched thallus consisting of algal filaments interworen with Fungus hyphre. An example of such a filamentous form is presented by Liphebe pubescens. This Lichen is found growing on damp rocks in short, delicately branched tufts, and consists of thick, multicellular filaments of the blue-green Alga Sirosiphon, whose gelatinous cell walls are pervaded by the hyphre of a Pyrenomycetons Fungus.

F1G. S 02 .-Xanthoriu puritinc. 1 , Germinating ascospore ($s p$) with branching germ-tube applied to the Cystococus cells ((1); 2 , thallus in process of formation, $s p$, two ascospores; p, Cystococeus cells. By the fusion of the lyplia in the middle of the mycelimm, a piseldo-parenchymatons, cortical layer has begun to form. (After Bossier, fromv. Tavel., Xioo.)

Another group is formed by the gelatinous Lichens, whose thallus, usually foliaceous, is of a gelatinous nature (e.g. Collema). The Algae inhabiting the thalli of the gelatinous Lichens helong to the families of the Chroococracene and Mostocucene. As is characteristic of the Nostocs, their cell walls are swollen, forming a gelatinous mass traversed by the hyphae of the fungus. The genus C'ollema is an example of this group.

In both the filamentous and gelatinous Lichens the Algae and Fungus hyphe are uniformly distributed through the thallus, which is then said to be unstratified or homombrots. The form of the
thallus of the homoiomerous Lichens, particularly of the filamentous forms, is determined by the Algae.

In other cases the Lichens have stratified or heteronerous thalli ; their form is then determined essentially by the Fungus. The enclosed Algae are usually termed gonidia. They are arranged in a definite gonidial layer covered, externally, by a cortical layer, devoid of algal cells and consisting of a pseudo-parenchyma of closelywoven hyphæ. It is customary to distinguish the three following forms of heteromerous Lichens.

1. Crustaceous Lichens, in which the thallus has the form of an incrustation adhering closely to a substratum of rocks or to the soil, which the hyphæ to a certain extent penetrate.
2. Foliaceous Lichens (Fig. 303), whose flattened, leaf-like lobed or deeply-cleft thallus is attached more loosely to the substratum by means of rhizoid hyphæ, springing either from the middle only or irregularly from the whole under surface.
3. Fruticose Lichens (Fig. 304), with a filamentous or band-like thallus branched in a shrub-like manner and attached only at the base. They are either erect or pendulous, or may sometimes lie on the surface of the substratum.

The manner in which the Fungus unites

Fig. 303.-Xanthoria parietina on a piece of bark. (Nat. size.) with the Alga may be seen from the adjoining figure (Fig. 302) showing the mode of formation of the orange-yellow thallus of Xanthoria parietina, a foliaceous Lichen frequently occurring on tree-trunks and walls. The branching germ-tube produced by the germinating ascospore (Fig. 302, 1, sp) of a Fungus belonging to the order Discomycetes has already formed an intimate union with two algal cells of the Protococcoideous genus Cystococcus, which furnishes the gonidia of this Lichen. By the repeated branching of the hyphæ they entwine more completely round the group of Cystococcus cells and form the thalloid rudiment (Fig. 302, 2), from whose continued growth, accompanied by the division of the algal cells, the closely-woven hyphal tissue of the thallus of the mature Lichen is produced.

In their natural condition the germinating spores of the Lichen Fungi appear to be capable of continuing their further development only when they are enabled to enter into symbiosis with the proper gonidia. For a few genera of Lichens, however, it has been determined that the Fungi sometimes exist in nature without the presence of the Algae ; it has been shown that the tropical Lichen, Cora paronia, whose Fungus belongs to the order Hymenomycetes, may produce fructifications even when deprived of its Alga, which have a form resembling those of the Fungus genus Thelephora. Small thalli have also been successfully grown from the spores of certain Lichen-forming

Ascomycetes, cultivated without Algae and supplied with a proper nutrient solution.

In the formation of a fully-developed Lichen from the rudimentary thallus (Fig. 302, 2) the hyphal tissue usually becomes differentiated into a thick cortical layer of pseudo-parenchyma and into a more loosely woven medullary layer, with the zone of gonidia entwined by hyplæ between the two. These different zones are most plainly seen in the fruticose Lichens, among which the Beard Lichen, Usnea barbuta (Fig. 304), has developed in the medulla a mechanical system consisting of a firm hyphal strand. Both the upper and under surfaces of the foliaceous Lichens are usually covered with a cortical layer. The medullary layer lies in the middle, between the two cortical layers, while the gonidia form a layer between the upper cortex and medulla. A cortical layer is present only on the upper side of most foliaceous and crustaceous Lichens, or if present also on the under side, it is developed merely on the margins; the medullary layer then lies directly upon the substratum. The thalli of the Lichens are attached to the substratum by rhizoid hold-fasts, RHIzines, which consist of hyphee resembling root-hairs.

Many Lichens are able to multiply in a purely vegetative manner, by means of loosened pieces of the thallus, which continue their growth and attach themselves to the substratum with new rhizines. The majority of the heteromerous Lichens possess in the gonidial layer another means of vegetative multiplication by forming soredia. In this process, small groups of dividing gonidia become closely entwined with mycelial hyphr, and form small isolated bodies which, on the rupture of the thallus, are scattered in great numbers by the wind and give rise to new Lichens.

The fructifications of the Lichens are produced by the consorting Fungi, not by the vegetating Algae. The Fungi belong chiefly to the Discomycetes; a few genera to the Pyrenomycetes; and only a single genus to the Iymmenomyctes. In conformity with the nature of their constituent Fungi, the first two groups are classified as Ascolichenes, the third as Hymenolichenes.

1. Ascolichenes

(a) The Discolichencs or Lichenes gymmocarpi produce, as the aseus-fruit of their Fungus, chiefly cupular or discoid a pothecia, sessile or somewhat depressed on the thallus. In structure they resemble those of the Pesizeac (Fig. 2s2), and bear on their upper side an hymenium of asci and paraphyses. One of the commonest species of fruticose Lichens belonging to this group is I'snea barbata, the leard Lichen, frequently occurring on trees and having large, fringed apothecia (Fig. 304). Roccella tinctoria, another member of the liscolichenes, found widely distributed on the rocks of the African coast and East Indies, has an erect, vermiform, forked thallus from which litmus and orchil (orseille) are obtained. Cetraria islandica, Iceland Moss (Fig. 305), occupies an intermediate position between the fruticose and foliaceous Lichens. It has a divided, foliaceous but fartially erect
thallus, which is of a light bluish green or brown colour, whitish on the under side, and bears the apothecia obliquely on its margin. This Lichen is found in mountainous regions in the northern part of the Northern Hemisphere, and also at Cape Horn; it has an officinal value as a demulcent. Xanthoria parietina (Fig. 303) may be taken as an example of one of the commonest of the foliaceous Lichens. The thallus is orange-yellow in colour, and bears numerous apothecia on its central portions. Graphis scripta may be cited as a well-known example of the

Fig. 304.-Usnea barbata. ap, A pothecium. (Nat. size.)

Fig. 305.-Cetraria islandica. ap, Apothecium. (Nat. size. OFFICINAL.)
crustaceous Lichens; its grayish white thallus occurs on the bark of trees, particularly of the Beech, on whose surface the apothecia are disposed as narrow, black furrows resembling writing. To the crustaceous Lichens belongs also S'phaerothallia esculenta, growing on rocks in the steppes and deserts of North Africa and Asia. The thallus falls into small pieces the size of a pea; scattered by the wind they are utilised by the Tartars in the preparation of earth-bread. The North European crustaceous Lichen Ochrolechia tartarea affords, like Roccella, litmus and red indigo.

A peculiar mode of development is exhibited by the genus Cladonia, whose primary thallus consists of small horizontal scales attached directly to the ground, from which rises an erect portion, the podetium, of varying form and structure in the different species. In some cases the podetia are stalked and funnel-shaped, bearing on the margin or on outgrowths from it knob-like apothecia, which in C. pyxidata are brown, in C. coccifera (Fig. 306) bright red. In other species the erect podetia are slender and cylindrical, simple or forked ; in C. rangiferina, Reindeer Moss, which has a world-wide distribution, particularly in the tundras of the North, the podetia are finely branched (Fig. 307), and bear the

Fig. 306.-Cladonia coccifera. t, Scales of primary thallus. (Nat. size.) small brown apothecia at the ends of the branches. Frequently the podetia of this species and often also of the others remain sterile,
and the ascogenous hyphre, although differentiated in the interior, do not sueceed in prolucing asci.

In addition to the ascogenous fructifications, the Discomycetous Lichens produce accessory fructifications in the form of ryesmin, which abstrict and eject small conidia. Fig. 308 shows such a pyenidium of the common foliaceous Lichen Anaptychin ciliaris. The pyenidia arise on the surface of the thallus

Fig. 30\%.-Cludoniu rangiferinct. A, Sterile; B, with ascus-fruit at the ensls of the branches. (Nat. size.)

Fig. 305.-section through a pyenidium (sr) in the thallus of Anaptychier cilitris; c, cortical layer; m, medullary layer; g, gonidial layer. ($\times 90$.)
(Fig. 308), or, as in Cetraria islandica, they may be produced on the margin in small wart-like protuberances. In the Cladonias they occur on the same fructifications as the ascogenous hymenium or on others similar to them. The pyenospore, were formerly called spermatia, and erroneously regarded as male sexual cells ; the pyenidia were then termed spermogonia.
(b) The Pyrenolichenes or Lichenes anyiocarpi have flask-shaped perithecia, similar to those of the Pyrenomyectes, and also develop prenidia. To this group belong only a few, for the most part crustaceous Lichens (c.g. the Verrucarias, the foliaceous grenus Endocurpme ete.).

2. Hymenolichenes

The Hymenolichenes are represented only by the tropical C'ora paronia, of which the genera Dictyonemu and Letudutco are only ilecially differentiated forms. The Fingus of this Lichen belongs to the family Thelephoreac (p. 370) : its flat. lobect, and often imbricated fructifications are also foumd entirely devoid of Algae. In symbiosis with the unicellular Alga c'irrococous, it forms the fructifications of Coru paronia (Fig. 309), resembling those of the Thelephoras with a chanelled, basidial hymenium on the under side. Associated symbiotically, on the other hand, with filaments of the hlue-green Alga seyfencme, if the Fungus proponderate, it produces the bracket-like Lichens of the lictyonemu form, found projecting from the limbs of trees with a semicirenlar or nearly spherical thallus composed of radiating hyphal threads, and having the hymenium on the under side. When the shape of the thallus is determinel by the Alga, a Lichen of the Lavedatea form
occurs as felted patches of fine filaments on the bark of trees, with the hymenium on the parts of the thallus which are turned away from the light.

The Lichens are everywhere widely distributed, growing on the ground, on rocks, and on tree-trunks. They occur in localities unfavourable for every other kind of regetation, and can endure the greatest heat or cold or prolonged drought without injury. On the recurrence of sufficient moisture and the proper temperature, their vital activity asserts itself anew : they are thus enabled to inhabit even the peaks of the highest mountains. In conjunction with the Mosses, they characterise by their abundant development the regetation of the polar regions, particularly that of the so-called tundras, the chief regetation of which is represented

Fig. 309.-Cora paronia. A, Viewed from above; B, from below; hym, hymenium. (Nat. size.) by Cladonia rangiferina.

Officisal.-The only representative of the Lichens is Cetraria islandica (Lichea islandicts).

II. BRYOPHYTA (MOSSES)

The Bryophyta or Muscineae comprise two classes, the Hepaticae

Fig. 310.-Marchantia polymorpha. A, Nearly ripe antheridium in optical section; p, paraphyses. B, Spermatozoids fixed with 1 per cent perosmic acid. $(A \times 90, B \times 600$. $)$ or Liverworts, and the Musci or Mosses. They are distinguished from the Thallophyta by the characteristic structure of their sexual organs, ANTHERIDIA and ARCHEGONIA, which are similar to those of the Pteridophyta, the most highly developed of the Cryptogams. The Bryophytu and Pteridophyta are accordingly regarded as having been derived from a common ancestor, and, in contrast to the Thallophyta, they are referred to collectively as Archegoniatae.

The antheridia or male sexual organs are stalked, ellipsoidal, spherical, or club-shaped, with thin walls formed of one layer of cells
and enclosing numerous small cells, each one of which is the mothercell of a spermatozoid (Fig. 310). At maturity the spermatozoid mother-cells separate and are ejected from the antheridium, which ruptures at the apex. By the eventual dissolution of the enveloping walls of the mother-cells the spermatozoids are set free as short, slightly twisted filaments, terminating anteriorly in two long cilia. Spermatozoids of similar

Fig. 311.-Murchentia polymurpha. A, Voung, B, mature archegoniun ; C, fertilised archegonium, with dividing egg-cell; k^{\prime}, neck-canal-cell ; $k^{\prime \prime \prime}$, ventral canal-cell ; o, egco-cell ; pr, pseudo-perianth. $(\times 540$. form are found among the Thallophytes only in the group of the Chetrucece. The archegonid are Hask-shaped bodies with walls formed of but one layer of cells ; they are sessile or shortly stalked, sometimes also somewhat sunk in the tissue, and consist of a dilated ventral portion and a long, slender neck. The ventral portion encloses a large central cell, the contents of which shortly before maturity divide into the egg-cell (Fig. 311, A, 1) and into an overlying ventral canalcell ($k^{\prime \prime}$). The latter is situated at the base of the neck, just below a central row of neek-canal-cells (k^{\prime}). On the maturity of the archegonium, the ventral and neck-canal-cells become mucilaginous and disorganised. If water is present, the cells at the apex of the neck separate (B) and the mucilaginous matter is discharged, and exerts through the diffusion of certain of its constituents in the water (canesugar in the case of Mosses) an attractive stimulus on the spermatozoids. The spermatozoids, thus directed toward the neek of the archegonium, traverse it as far as the egg, into which one spermatozoid penetrates. The water necessary for the process of fertilisation is sufficiently supplied by rain or dew. After fertilisation has been accomplished, the egg-cell divides and gives rise directly to an embryo (c), without first, as is usually the case in the oogamous Thallophyla, undergoing a period of rest.

The Mosses as well as the Pteridophytes multiply also asexually by means of walled spores adapted for dissemination through the air. These two modes of reproduction, sexual and asexual, occur in regular alternation, and are confined each to a sharply distinct generation; a sexual, provided with sexual organs, and an asexual, which produces spores. The sexual generation arises from the spore; the asexual from the fertilised egg. This alternation of generations is characteristic of all Archegoniatae.

In the development of the sexual generation, the unicellular spore

Fig. 312.-Funaria hygrometrica. A, Germinating spore ; $c x$, exine ; B, protonema; $k n$, buds; r, rhizoids ; s, spore. (After Müller-Thurgau ; magnified.)
on germinating ruptures its outer coat or exine, and gives rise to a germ-tube. In the case of the Hepaticae, the formation of the plant at once commences, but in most of the Musci a protonema is first produced, which resembles in structure the filaments of Confervoid Algae, and is composed of cells containing chlorophyll (Fig. $312, A, B)$. The green, filamentous protonema gives rise to branched, colourless rhizoids (r), which penetrate the substratum. .The Mossplants arise from buds developed on the protonema at the base of the branches. Protonema and Moss-plant together represent the sexual generation. Many Liverworts possess a thallus consisting of dichotomously branching lobes, which is attached to the substratum at its base or on the under side by means of rhizoids, thus repeating the vegetative structure of many Algae (cf. Fig. 8 with Fig. 9, p. 13). In other Hepaticae, on the other hand, and in all the Musci, there exists a distinct differentiation into stem and leaves (Fig. 323). In no instance, however, are true roots formed or a tissue of cells
developed, but in their stead rhizoids, consisting of colourless branching filaments. The Pryophytes, in this respect, differ essentially from the Pteridophytes, which are provided with true roots. The stems and leaves of Mosses are also anatomically of a simple structure ; if conducting strands are present, they are composed merely of simple. elongated cells. The sexual organs are produced on the adult, sexual generation ; in the thalloid forms, on the dorsal side of the thallus: in the cormophytic forms, at the apex of the stem or its branches (Fig. 31:).

By the division of the fertilised egg, a multicellular embryo is formed, which, by its further derelopment, gives rise to the second or ASEAUAL GENERATIUN, represented by

Fig.313.-I'huscum cuspidutum. an, Antheritlia; ar, archegonia at the apees of the bifureated moss stem; b, leaves; p, paraphyses. (After Hofmeister, $\times 45$.) the sporogoonium or the stalked Moss Capscar The sporogonium, in most cases, consists of a round or oval capsular receptacle, in whose internal tissue numerous unicellular spores are produced. At maturity the capsule opens and sets free the spores. In both the Bryophytes and Pteridophytes the spores are formed in thtRADs by the twice-repeated division of the spore-mother-cell, which previonsly hecome disumited, representing the actual point of commencement of the sexual generation. The spore capsule has usually a shorter or longer stalk, of which the basal portion, or foot, remains in the distended renter of the archeronimm, and, in consequence of the overgrowth of the underlying tissme, has the appearance of being sumk in it. Although the sporogonium constitutes a distinct asexual generation, it contmues throughout its existence united with the sexual generation, and draws from it the nourishment necessary for its development.

The two classes comprising the Bryophytes may be brietly characterised as follows:-

1. Hepreticar (Liverworts).-The sexnal generation, with poorly developed and generally not distinctly diflerentiatel protonema, has either a dichotomonsly divided thallus or is developed as a lealy, amb, with one exception, dorsiventral shoot. In tho majonity of Miputicue, in addition to spores, the capsule pronluces also claters, sterile cells which, in their typical development, become greatly chongated and provided with spiral thickenings (Fig. 317, 1). They combet nouri-hnent to the dewhoping sporgenous cells, and at maturity, after the opening of the eapsule, serve to separate and seatter the spores. Only in one order. Anthucrotacrae, does the calisule lave a columella, or an axial mass of sterile cells, which also conduct the metabolic products to the developing spores.
2. Musci (Mosses).-The protonema of the sexual generation is usually well developed and distinctly defined, and the moss-plant is always segmented into stem and leaves. The leaves are arranged spirally in polysymmetrical, less frequently in bisymmetrical, rows. The capsule is always without elaters, but, except in one genus, it always possess a columella.

Class I

Hepaticae (Liverworts)

The Hepaticae are divided, according to the structure of the sporogonium and the segmentation exhibited by the sexual generation, into four orders: the Picciaceae, Marchantiaceae, and Anthocerotaceae, comprising exclusively thalloid forms; and the Jungermanniaceue, including both thalloid and foliose forms.

Order 1. Ricciaceae

Of all the Hepaticae, this order has the simplest structure. The genus Riccia belongs to this order ; its dichotomously-lobed or cleft thallus forms small rosettes, and grows on damp or marshy soil (Fig. 314, A). Riccia natans is found floating, like Duckweed, on the surface of stagnant water. Riccia fluitans, on the other hand, lives wholly submerged, and has narrow, more profusely branching, thalloid segments (Fig. 10, p. 14); it can, however, grow on marshy soil, and then forms flat rosettes. The Riccias are provided with fine rhizoids springing from the under side of the thallus (Fig. 314, B), and possess, in addition, a double row of transversely disposed rentral scales, consisting of a single layer of cells, which also function in the absorption of nourishment. Both organs are wanting in the submerged species, Riccia fluitans, which may accordingly be regarded as representing the simplest form of Liverworts. The thallus has a distinct peripheral cell-layer, or epidermis, and underlying it a green assimilating cellular tissue, with air-cavities formed by the more rapid growth and overarching of the ad-

Fig. 314.-Riccia minima. A, Thallus with sporogonia sunk in the tissue at the base of the lobes (nat. size) ; B, slightly magnified section through a thallus lobe. (After Bischoff.) jacent tissue. The thallus is also traversed lengthwise by a central strand of elongated cells, devoid of chlorophyll, but containing starch.

The antheridia and archegonia are sunk in the surface of the upper side of the thallus. From the fertilised egg-cell is dereloped a spherical sporogonium, filled with large tetrahedral spores. The wall of the sporogonium consists of a single layer of cells; it becomes disorganised during the ripening of the spores, which are eventually set free by the rupture and disintegration of the renter and the surrounding cells of the thallus. Each spore on germination produces an inconspicuous protonema, consisting of an unbranched germ-tube, provided with rhizoids and terminating in a multicellular germ-disc, from which the new thallus is produced.

Order 2. Marchantiaceae

The Liverworts included in this order are much more highly organised, and in many gencra they have a decidedly complicated structure. Marchuntia polymorpha, found growing on damp soil, may serve as an example. It forms a tlat, deeply-lohed, dichotomously-hranchel thallus, about two centimetres wide, and having an inconspieuous midrib (Fig. 316, A; Fig. 317, A). From the under side of the thallus spring unicellular rhizoids, of whieh some have suionth walls, others conical thickenings projecting into the imer cavity. The thallus is provided also with ventral scales, consisting of a single layer of cells. In its internal development a dorsiventral structure is also apparent. With the naked eye it may he seen that the uper surface of the thallus is divided into small rhombic areas. Each area is perforated by a central air-pore leading into a corresponding air-chamber immediately

Fig. 315. - Marchentia polymorlihe. A-l, Successive stages in the formation of a gemma; st, stalk-cell ; D, surface view; E, transverse section of a gemma; x, point of attachment to stalk; o, oil cells; r, colourless cells with granular contents, from which the rhizoids will develop. (After Kist, A-C $\times 2-5 ; D-E \times(5$.

Fig. 31c. - Murchentin pol/minther. A, A male plant, with antheridiophores and cupules b (nat. size) ; D, section of young ant heridiophore; ", antheridia; t, thallus; s, ventral siales: r. thizoids. (Somewhat magnifienl.)
below (Fig. $158, A, B$). The lateral walls of the air-chambers determine the configuration of the rhombic areas. The air-pore in the rooting wall of each chamber is in the form of a short camal, bomuled by a wall formed of several tiers of cells, each tier comprising four cells. Nimerous short filaments, consisting of rows of nearly spherical cells containing chlorophyll grains, project from the tlow of the air-chambers and prerm the functions of assimilating tissue. Chlorophyll grains are found also in the walls of the chambers, hut only in small mumbers. The air-chamber merely represent depressions in the outer surface which have become roufel ower by the more rapid growth of the adjacent epidermal cells. The intensity of the illumination exereises a great influence on the formation of the air-chambers: when the illumination is very weak they may not oecur at all. The epilermis on the under side of the thallus is formed of one layer of cells. The tissue below the airchamber layer is devoid of chlorophyll, and consists of large parenchymatous eells, which function as accumulatory or reservoir cells, small cup-shajech outgrowths with toothed margins, the gemmiferous receptacles or cupules, are generally found situated on the midrits on the upler surface of the thallus (Fig. 316, h. These
contain a number of stalked gemmæ, Hat, biscuit-shaped bodies of a green colour. The gemme arise by the protrusion and repeated division of a single epidermal cell (Fig. 315) ; at maturity they become detached from the stalk (at x, Fig. 315, D).

Fig. 317.-Marchantia polymorpha. A, A female plant, with four archegoniophores of different ages; b, cupules (nat. size) ; B, under side of receptacle ; st, rays ; h, sheath ; sp, a sporogonium ($\times 3$); C, half of a receptacle, divided longitudinally $(\times 5) ; D$, longitudinal section of a young sporogonium ; spf, the foot; sp, sporogenous tissue ; $k w$, wall of capsule ; $u v$ wall, and h neck, of archegonium ; p, pseudo-perianth ($\times 70$) ; E, ruptured sporogonium ; k, capsule ; s, spores and elaters ; p, pseudo-perianth ; c, archegonial wall $(\times 10) ; F$, an elater ; G, ripe spores $(\times 315) ; H$, germinating spore $(s) ; v k$, protonema ; k, germ-dise, with the apical cell v and rhizoid $r h(\times 100)$. (C, E after Bischoff ; $B, D, F \cdot H$ after Kny.)

They are provided with two growing points, one at each of the marginal constrictions, from which their further development into new plants proceeds. On crosssection (E) they are seen to be composed of several layers of cells; some of the cells
are fillech with oil globnles (I, o), while from other colourless cells rhizoids develop. Cells containing oil are also present in the mature thallus, and are of frequent occurrence in all the Hrpaticuc. By means of the abundantly developed gemmax Marchantic is enabled to multiply vegetatively to an enormous extent.

The sexual organs, antheridia and archegonia, are borne on special erect branches of the thallus. The reproductive branches, which are rolled together at the lower end into a stalk, expand above into a profusely-branched upper portion. In this species, which is diocious, the antheridia and archegonia develop on different plants. The branches producing the male organs terminate in lubed dises, which bear the antheridia on their mper sides in flask-shaped depressions, each containing an antheridium (Fig. 316, L). The depressions, into each of which a narrow canal leads, are separated from each other by tissue filled with air-chambers. (The structure of the antheridia and spermatozoids is illustrated by Fig. 310 and the accompanying description, p. 381.)

The female branches terminate each in a nine-rayed disc (Fig. 317, A). The upper side of the disc, between the rays, is turned underneath in the process of growth, and, as the archegonia are bornc on these portions, they seem to arise from the under side. The archegonia are disposed in radial rows between the rays. each row being enveloped in a toothed lamella or sheath (Fig. 317, B, C, h; for structure of the archegonia, sec Fig. 311, and description, p. 382).

The fertilised egg-cell gives rise to a multicellular embryo (Fig. 311, ($)$, and this, by further division and progressive differentiation, develops into a stalked oval sporogosicm. The capsule of the sporogoninm is provided with a wall consisting of one layer of cells, and ruptures at the apex to let free the spherical spwres. The elaters, or elongated, spirally thickened, fibre-cells formed in the cajsules, between the spores, by the prolongation of definite cells, are characteristic of the Marchantias and most of the Liverworts. The elaters are discharged from the ruptured capsule, together with the spores, and serve for their dispersion in the same way as the capillitium of the Myxomycetes (Fig. 317, E, F, G^{\prime}). The ripe cap)sule, before the elongation of the stalk, remains enclosed in the archegonium wall $(I),(w w)$, which, for a time, keeps pace in its growth with that of the capsule. As the stalk elongates, the archegonium wall or calyptra is broken through and remains behind, as a sheath, at the base of the sporogonium (E, c). The capsule is surrounded also by the psendo-prerianth, an open sac-iike envelope which grows, before fertilisation, out of the short stalk of the archegonium (Fig. 311, C', pr; Fig. 317, I), E, p). Similar cuveloles occur in the higher Mcpaticae, in which they constitute a truc perianth, and are formed of leaves.

Order 3. Anthocerotaceae

The few forms included in this order have an irregular, dise-shaleel thalhs, which is firmly anchored to the soil by means of rhizoids. The antheridia arise, in grou ${ }^{m}$ of two to four, by the division of a cell lying below the epidermis; they remain enclosed in cavities in the upper side of the thallus until maturity. The archegonin are at first merely sunk in the upper surface of the thallus, but after fertilisation they become covered over by a many-layered wall formed by the overareling growth of the adjoining tissuc. This enveloping wall is afterwards ruptured by the elongating eapsule, and forms a sheath at its liase. The sporogonimm consists of a swollen foret and a long, pod-shaped capsule ; it has no stalk. The capsule splits longitudinally into two valves, and has a central hair-like cohmella formed of a few rows of sterile cells (Fig. 318). The columella does not extend to the apex of the capsule, but is
sturmounted by a narrow layer of sporogenous cells. Elaters also occur ; they are multicellular, variously shaped, and often forked. The sporogonia, unlike those of all other Hepaticae, do not ripen simultaneously throughout their whole length, but from the tips downwards, and continue to clongate by basal growth after emerging from the archegonia.

On the under side of the thallus, fissure-like openings, formed by the separation of the cells, lead into cavities filled with mucilage. Nostoc filaments penetrate into these cavities, and develop into endophytic colonies.

Order 4. Jungermanniaceae

In the simplest forms of this order the thallus is broadly lobed, similar to that of Marchantia (e.g. Pellia cpiphylla, frequently found on damp ground); or, like that of Riccia fluitans, it is narrow and ribbon-shaped, and at the same time profusely branched (e.g. Metzgeria

Fig. 318. - Anthocerọs laevis. $s p$, Sporogonium ; c, columella. (Nat. size.) furcata, Fig. 161, p. 149). In other forms, again, the broad, deeply-lobed thallus has an evident midrib, and its margins, as in the case of Blasia pusilla (Fig. 11, p. 14), exhibit an incipient segmentation into leaf-like members. The majority of Junyermanniaceae, however, show a distinct segmentation into stem and leaflets. The latter consist of one layer of cells without a midrib, and are inserted with obliquely directed laminæ in two rows on each flank of the stem. Some species (e.g. Frullania Tamarisci, a delicately branched Liverwort of a brownish colour occurring on rocks and tree-trunks) have also a ventral row of small scale-like leaves, amphigastria (Fig. 319, a). The dorsal

Fig. 319.-Part of a shoot of Frullania Tamarisci, seen from below. r, Dorsal leaves with the lower lobes ($w s$) modified as water-sacs; a, amphigastrium. ($\times 36$.) leaves are frequently divided into an upper and lower lobe. In species growing in dry places, like the previously cited Frullania, the lower lobe is modified into a sac, and serves as a capillary waterreservoir. The leaves regularly overlap each other ; they are then said to be succubous, when the posterior edges of the leaves are overlapped by the anterior edges of those next below (Frullania, Fig. 319), or incubous, if the posterior edges of the leaves overlap the anterior edges of the leaves next above (Plagiochila, Fig. 12, p. 14).

The branching stems of the foliose Jungermanniaccae are either prostrate or partially erect, and in consequence of the manner in which the leaves develop, present a distinctly dorsiventral appearance.

The long-stalked sporogonium is also characteristic of this order ; it is already fully developed before it is pushed through the apex of the archegonial wall by the elongating stalk. It has a spherical capsule which on rupturing splits into four valves (Figs. 11, 12). No columella is formed in the capsule ; but in addition to spores it always produces elaters, which by their movements while drying scatter the spores.

According to the position of the sporogonia, two sub-orders are distinguished.
(a) Anacrogynous Jungermanniaceae.-The sporogonia arise laterally, and are situated on the dorsal side of the thallus or stem. They are encircled at the base
by an involucre, a slieath-like ontgrowth of the thallus or stem c. $\%$. Blasia pusilla, Fig. 11).
(b) Acroyynons Jungermanniacua.-This group includes only foliose forms [c.\%. Magiochilu asplenivides. The sporogonia arise apically from the extremities of the stem or its branches, and are surrounded by a perianth formed of special, characteristically-shaped leaves (Fig. 12. The majority of the Jungermanniucrue resemhle the true Mosses; they are small and grow on the ground or on tree-trunks, and in the tropies also on the leaves of forest plants.

Clatis II

Musci (Mosses)

The profusely-branched protonema of the Mosses appears to the naked eye as a felted growth of fine, green filaments (Fig. 312). Buds are developed on the protonema, which grow by means of a three-sided apical cell, and give rise to Moss-plants, which always exhibit segmentation into stem and leaves. The leafy Mosses may be readily distinguished from the foliose Jungermanniaceat by the spiral arrangement of their small leaves, which are rarely arranged in two rows. In Mosses which have prostrate stems, the leaves, although arranged spirally, frequently assume a somewhat outspread position, and all face one way, so that in such cases a distinction between an upper and a lower side is manifested, but in a mamer different from that of the Liverworts.

The stem of the Moss-plant is formed of cells which become gradually smaller and thicker-walled towards the periphery. In the stems of many genera ($(9.9$. Mnium, Fig. 159, p. 147) there is found a central, axial strand consisting either of elongated, conducting cells with narrow lumina and devoid of protoplasm, or of such empty cells together with others filled with protoplasmic contents. These strands, which are not always present, may be regarded as incipient vascular bundles. They do not occur, for instance, in the genus sphugnum, which grows in swampy places. The stems of this Moss show a peculiar development of the outer cortical layers (Fig. 320 , ('). The cells in these layers are devoid of protoplasm, and are in communication with each other and the atmosphere by means of large, open pores; to secure rigidity, they are also provided with spirally thickened walls. They have a remarkable power of capillary absorption, and serve as reservoirs for storing and conducting water.

The Lefles of the true Mosses have, as a rule, a very simple structure. They consist usually of a single layer of prolygonal cells containing chloroplasts (Fig. 55, p. 56; Fig. 72, p. 68), and are generally provided with a conducting bundle of elongated cells. The leaves of the Bog Mosses (sphotmacme) have no bundles, and instead are supplied with capillary cells for the absorption and storage of
water. These cells are devoid of protoplasm, and are similar to those in the periphery of the stem, but larger and more elongated ; their walls, which are perforated, are strengthened by transverse thickening bands (Fig. 320, A, B). Between them are other elongated, reticulately united cells containing chloroplasts. A similar differentiation of the leaf cells occurs in a few other Mosses (e.g. Leucobryum rulgare).

A more complicated structure of the leaves resulting from their adaptation to the absorption of water is exhibited by Polytrichum commune. In this Moss the leaves develop on their upper surface numerous, crowded, vertical lamellæ, one cell thick; these contain chlorophyll and function as assimilatory tissue, while the spaces be-

Fig. 320.-A, Surface view of a portion of a leaf of sphagnum cymbifolium ($\times 300$) ; B, part of a transverse section of a leaf of Sphagnum fimbriatum ; a, cell containing chlorophyll; v, capillary cell ; v, thickening bands; l, pore ; C, part of a transverse section of the stem of Sphagnum cymbifolium; c, central cells ; sk, sclerenchymatous cortical cells; v; capillary cells with pores (l); e, epidermis. ($\times 120$.)
tween the lamellæ serve as reservoirs for the storage of water. In a dry atmosphere the leaves fold together, and thus protect the delicate lamellæ from excessive transpiration.

The rhizoids (Fig. 321, B), each of which consists of a single row of cells, spring from the base of the stem. In structure they resemble the protonemata, into which they sometimes become converted, and then give rise to new Moss-plants.

The sexual organs are always borne in groups at the apices either of the main axes or of small, lateral branches, surrounded by their upper leaves; each group with its involucral leaves constituting a receptacle. The antheridial and archegonial receptacles are sometimes inappropriately referred to as Moss flowers, but they have nothing in common with the true flowers of rascular plants ; the involucral leaves, which frequently have a distinctive structure, are also known as the
perichetia. Between the sexual organs there are usually present a number of multicellular hairs or paraphyses. The Moss-plants may be monocious, in which case both kinds of sexual organs are borne on the same plant either in the same or different receptacles; or diocious, and then the antheridia and archegonia arise on different plants.

The sporogosium of the Mosses develops a capsule with an axial columblea consisting of sterile tissue. The spore-sac surrounds the columella, which accumulates food material and water for the developing spores. Elaters are never formed. Distinctive variations in the mode of development and structure of the capsules are exhibited by the four orders of the Mnsci : Sphuqnacene, Andreneuceae, Phustucrue, and Biryinue.

Order 1. Bryinae

In this order (termed also Steyucarpac), which includes the majority of all the true Mosses, the Moss fruit attains its most complicated structure. The ripe sponocionim, developed from the fertilised agg, consists of a long stalk, the seta (Fig. 321, f^{\prime}, s), with a Foot at it.s base, sunk in the tissue of the mother plant, and of a carsule (k), which in its young stages is surmounted by a hool or caliptRA (A, c). The calyptra is thrown off before the spress are ripe. It consists of one or two layers of elongated cells, and originally formed part of the wall of the archegonium which, at first, enclosed the embryo, growing in size as it grew, until, finally ruptured by the clongation of the seta, it was carried up as a cap, cosering the capsule. In the Liverworts the calyptra is, on the contrary, always pierend hy the elongating sporogonium, and forms a sheath at its hase. The npler part of the seta, where it joins the capsule, sometimes hecomes distinctly cularged and is then termed the Apopirsis. In Mnium it is scarcely distinguishable, but in Polytrichum commun it has the form of a swollen ring-like protuberance (Fig. 323, (ap), while in species of Splachum it dilates into a large cushion-like strueture of a yellow or red colour, upon which the capsule appears only as a small protuberance. The upper part of the capsule becomes converted into a lid or opereulnm (Fig. 321, d), which is sometimes drawn out into a projecting tip. At the margin of the operculum a narrow zone of epidernal cells termed the ring or Anstlts becomes specially differentiated. The cells of the ammlus contain mucilage, and by their expansion at maturity assist greatly in throwing off the lid. In mont stegocarpous Mosses the mouth of the dehisced capsule bears a tringe, the prisstome, consisting usually of tooth-like appendages.

The peristome of Anium hornum (Fig. 321, C, p) is double ; the outer peristome is formed of 16 pointed, transsersely striped teeth (I) inserted on the immer margin of the wall of the capsule. They are strongly hygroseopic: opening in dry weather, they allow of the disprision of the spores, while in wet weather the! close again and shat in the spore masses. The immer peristome lies just within the onter, and consists of cilia-like apmembages, whieh are ribhed on the inner side and thus apmear transersily striped ; they coalesce at their hase into a continuobmembrane (E^{\prime}). Two cilia of the inner peristome are always sitnated betwern each two teeth of the outer row. The cilia facilitate the dissmination of the spmes by their hygroseopic mowments.

The teethand cilia of the pristome are formed in this intance of thickenel
portions of the opposite walls of a single layer of cells next to the operculum Fig. 322), the teeth from portions of the external wall, and the cilia from portions of the internal walls of the same layer. On the opening of the capsule the unthickened portions of this layer break away and the teeth and cilia split apart. The transrersely ribbed markings on their surface indicate the position of the former transrerse walls.

The structure of the peristome varies greatly in different species of Eryinac.

Fig. 321.-Mnium hornum. A, A plant with sporogonium still bearing a calyptra (c); B, a plant with ripe sporogonium ; s, seta; k; capsule ; d, operculum; rh, rhizoids; C, mature capsule with operculuin (d) removed; p, peristome; D, two peristome teeth of the outer row; E, part of inner peristome. (A, B, nat. size; $C \times 3 ; D, E$ $\times 58$.)

Fig. 322.-Mnium hornum. Transverse section throngh the wall of the capsule in the region of the ring; a, cells of the ring; 1-4, successive cell layers with the thickened masses of the inner and outer peristome; $d^{\prime}, d^{\prime \prime \prime}, d^{\prime \prime \prime}$, transverse projecting ribs of the coalesced cilia c. ($\times 2$ 240.)

By its peculiar form and hygroscopic morements the peristome causes a gradual dissemination of the spores from the capsule.

The central axial portion of the capsule is occupied by the large-celled coltmella. It is completely surrounded by the sporogenous tissue, the so-called sporesac, which is separated from the wall of the capsule and sometimes also from the columella by loose assimilatory tissue. Stomata occur in the epidermis of the capsule. The Moss fruit, in conformity with its anatomical structure, takes part in assimilation. It ripens slowly outside the archegonium, while the sporogonium of the Liverworts remains enclosed within it until maturits.

Variations in the form of the capsule, pristome, operculum, and calyptra afford the most important means of distinguishing the different genera. The Bryinue are first divided into two sub-orders, according to the position of the archegonia or of the sporgonia develoned from them.
(e1) Bryinae acrocarpas. - The archegonia, and consequently the sporogonia, are terminal on the main axis. Mnimm hormem, the species referred to above (Fig. 321, helongs to this group ; it grows in damp places, in woods and at the base of rocky cliffs. Polytrichum commene, a common acrocarpous Moss, which is found abundantly in high latitudes, has a stem often several decimetres long (Fig. 323). The fonr-sided grooved capsule is borne on a long stalk, with a ring-like apophysis, and is almost completely encased by the hrown felted calyptra. The peristome is single and consists of 32 teeth. F'unuria hyyrometricu, another very familiar example of the Acrocarpac, is found growing on the ground and on walls. The leafy stems of this species are very small ; the oblique capsules are pear-shaped and raised upon a long lyygroscopic seta, which becomes spirally twisted when dry, but straightens again if moistened. Schistusteya usmunducen, a moss living in caves, has fertile shoots, which have spirally arranged leaves and hear stalked capisules devoid of peristomes, and also other shoots that are sterile, with two rows of leaves (Fig. 324, A, B). The protonema of this species gives out an emerahd light (1. 223). Its branched filaments place themselves in a plane per pendieular to the incident rays of light, so that the cells, which are dise-shaped, projecting conically on the under side, reflect the light in the same way as a reflecting mirror (Fig. 325).
(b) Bryinac pleurocarpac.- The growth of the main axis is unlimited, and the archegonia with their sporogonia arise on short, lateral branches (Fig. 326). In this group are included numerous, usually profusely branched speeies of large Wood Mosses belonging to the genera Hylucomium, Nickera, and Hypmum, and also the submerged Water Moss, Fontinalis antipyretica.

Order 2. Phascaceae

To the Phascaccue (Cleistocurpuc) belong small Mosses with few leaves growing on the soil ; they retain their filamentons protonemata until the capules are ripe, and have the simplest structure of all the Mosses (Fig. 327). The hooded capsule is terminal and has only a short stalk. It does not open with a lid, but the spores are set free by the decay of its wall.s.

Order 3. Andreaeaceae

The Andracacac (S'hisucarpac) comprise only the one genus. Andreaca, small, brownish cespitose Mosses growing on rocks. The sporgonium is also termimal in this order. The cap'sule, at first provided with a calyptra, splits into four longitndinal valves, which remain united at the base and apex (Fig. 328). The stalk is short, and is expanded at the base into a foot ($S_{p j}$), which in turn is borne on a pseudopodium ($p s$), a stalk-like prolongation of the stem resulting from its elongation after the fertilisation of the archegonium.

Order 4. Sphagnaceae

The order of the sphaynuccac, or Bog Musses, includes only a simgle genus, sphaynum. The Bog Mosses grow in swampy places, which they cover with a thick carpet saturated with water. The upper extremities of the stems continue

Fig. 324. - schistostegie osmundacec. A, sterile; B, fertile plant. (\times 5.)

Fig. 3:6.-Hyриит purum. (Nat. size.)

Fig. 32\%.-Ephemerum serratum. p, Protonema; b, foliage-leaf; s, sporogonium; c, calyptra; rh, rhizoids. (After P. W. Schimper, $\times 200$.)

Fig. 3:3.-Polytrichum commune. rh, Rhizoids; s, seta; c, calyptra; ap, apophysis; d, operculum. (Nat. size.)

Fig. 325.-Protonema of Schistostega osmundacec. $(\times 90$.)

Fig. 3:s.-Andreaea petrophila. $p s$, Pseudopodium; $s p j$, foot; k, capsule ; c, calyp. tra. $(\times 12$.
their growth from year to year, while the lower prortions die away and become eventually converted into peat. Of the numerous lateral brauches arising from each of the shoots, some grow upwards and form the apical tufts or heads at the summits of the stems: others, which are more elongated and flagelliform in shape, turn downwards and envelop the luwer portions of the stem (Fig. 329. A). Every year one brancli below the apex develops as strongly as the mother shoot, so that the stem thus becomes falsely bifureated. By the gradual death of the stem from below upwards the danghter shoots become separated from it, and form independent plants. Special branches of the tufted heads, either

 B, Archegonium with the multieellular embryo of the spomgniun i= $; C$, a young sperogonium in longitudinal section : $\overline{s y}, ~$ pseudopodinm $; m$, archegonial wall or calyptra: ak, prek inf
 E, ruptured antheridium with escaping sprmatizoids: F, simgle sprostinzil, bughs
 ruptured calyptra; d, operculum. (After W. P. ACHMPER; A, nat. siz: the cther firure magniliesl.)
on the same plants (monercious) or on different stocks (diencions), are distinguishable by their different structure and colour; on these the stexusl organs are prinduced. The male branches give rise, near the leaves, to spherical stalked antherilis. which open at the apices by means of retrotlexing valves, and let free the spirally twisted spermatozoids (Fig. 329, E^{\prime}, F^{\prime}. The archegonia are borne at the tije of the female branches. After fertilisation, the multicellular embryo of a sporgonium $\left(L^{\prime}\right)$ is produced from the egg-cell. The sporogonium develops a short stalk with an expanded foot ($⿳ 八$) , but remains for a time encloned by the archegonial wall or calyptra. C fon the rupture of the archegonium, the calyptra proists just as in the Ifiputicue at the base of the sporgonium. The capsule is splerical and has
a dome-shaped columella, which in turn is overarched by a hemispherical spore-sac (spo) ; it possesses an operculum, but no peristome. The ripe sporogonium, like that of Andreaea, is borne upon a prolongation of the stem axis, the pseudopodium, which is expanded at the top to receive the foot of the stalk. Of the peculiar structure of the leaves and stem cortex a description has already been given (p.390).

III. PTERIDOPHYTA (VASCULAR CRYPTOGAMS)

The Pteridophytes include the Ferns, Water-Ferns, Horse-tails, and Club Mosses, and represent the most highly developed Cryptogams. In the development of the plants forming this group, as in the Bryophyta, a distinct alternation of generations is exhibited. The first generation, the sexual, bears the antheridia and archegonia; the second, the asexual, develops from the fertilised egg and produces asexual, unicellular spores. On germination the spores in turn give rise to a sexual generation. Both the sexual and asexual generations of the Pteridophytu present marked variations in the mode of their development.

The sexual generation is termed the prothallium or gameторнуте. In some forms it never reaches any great size, being at most a few centimetres in diameter ; it resembles in appearance a simple, thalloid Liverwort ; it then consists of a small green thallus, attached to the soil by rhizoids springing from the under side (Fig. 330, A). At other times the prothallium is branched and filamentous ; sometimes it is a tuberous, colourless mass of tissue, and partially or wholly buried in the ground, leading a saprophytic existence, while in certain other divisions of the Pteridophyta it undergoes reduction and remains more or less completely enclosed

Fig. 330.-Aspidium filix mas. A, Prothallium seen from below; ar, archegonia; an, antheridia; rh, rhizoids; B, prothallium with young Fern attached to it by its foot; b, the first leaf ; w, the primary root. (\times circa 8.) within the spore. On the prothallia arise the sexual organs, antheridia producing numerous ciliate, usually spiral spermatozoids, and archegonia, in each of which is a single egg-cell. As in the Mosses the presence of water is necessary for fertilisation.

After fertilisation the egg-cell develops into a multicellular embryo,
which becomes the asexual generation, as in the Bryopluytu. The Bryophyta and I'toridophytu have accordingly been classed together as Embryophyte by Exgler, and termed Eintiryonhtutu zoidiognme, because the male cells are developed as spermatozoids.

The asexual generation or sporophyte is represented by a plant possessing a highly differentiated internal structure, and externally segmented into stem, leaves, and roots. In the majority of Pteridophytes, the fertilised egg-cell, while still in the archegonium (Fig. 339), surrounds itself with a cell wall and undergoes division, first into two cells, by the formation of a transverse or basal wall, and then into octants by two walls at right angles to each other and to the basal wall. By the further division of these eight cells the half aloove the basal wall gives rise to the tissues of the stem apex and the first leaf, while from the

Fig. 331.-A, Itrris serrulthe, embryo freel from the arehegonium, in longitudinal section (after Kiesitz-Gerlofy): 1, Lasal wall ; II, transversp wall dividing the exg-cell into qualrants, rullment of the foot f, of the stem s, of the first leaf b, of the root $u ; B$, section of a further-developed embryo of I'teris uquilinu (after Hormenster); f. font still embelded in the enlarged ventes of the archegonium chr ; pr, prothallimm. (Marnitien.) half below the basal wall is produced the primary root, and an organ peculiar to the Pteridophytes, the socalled Foot (Fig. 331. $A, B)$. The foot is a mass of tissule, by means of which the young embryo remains attached to the parent prothallium and absorbs nourishment from it, until, by the development of its own roots and leaves, it is able to nourish itself independently. The prothallium then usually dies. The stem developed from the embryonic rudiment may be either simple or bifurcated, crect or prostrate ; it brathches without reference to the leaves, which are arranged spirally or in whorls, or oecupy a dorsiventral position. Instead of rhizoids, trine roots are produced, as in the Planerogams. The leaves also correspond in structure with those of the Phanerogams. Stems, leaves, and root are traversed by well-differentiated vascular bundles, and the Pteridophytes are, in consequence, designated Vascular Cryptogams. The bundles, which as a rule have the same structure throughout the whole group, are constructed after a special type (cf. pp. 104, 114, and Figs. 121, 127, 12s). Secondary growth in thickness, resulting from the activity of a special cambium, oecurs only occasionally in existing forms, but it was characteristic of the stems of certain extinct groups of Pteridophytes.

The spores are produced vegetatively in special receptacles termed SPORANGIA, which occur on the asexual generation, either on the leaves, or less frequently on the stems in the axils of the leaves. The sporiferous leaves are termed sporophylLs. The sporangium consists of a wall composed of several layers of cells enclosing the sporogenous tissue, the cells of which, becoming rounded off and separated from each other as spore mother-cells, give rise each to four tetrahedral spores(spore-tetrads). The cells of the innermost layer of the sporangial wall are rich in protoplasm, and constitute the TAPETUM. In the course of the development of a sporangium the walls of the tapetal layer become dissolved. The tapetal cells then wander in between the spore mother cells, so that the spores eventually lie embedded in a mucilaginous protoplasmic mass, the PERIPLASM, from which they derive nourishment. Only the outermost layer of the wall is retained by the mature sporangium. The spores are all unicellular. Each spore has a wall composed of two coats, an ExINE, which is cutinised, and an intine, consisting of cellulose. The spores of certain Pteridophytes are invested by a second specially differentiated outer coat, the PERInIUM, which is divided from the protoplasm of the tapetal cells.

The spores of the majority of the Pteridophytes have all the same structure, and give rise on germination to a prothallium, which produces both antheridia and archegonia. In certain cases, however, the prothallia are diœcious. This separation of the sexes extends in some groups even to the spores, which, as Macrospores, developed in macrosporangia, give rise only to female prothallia; or as meroSPORES, which are produced in MICROSPORANGIA, develop similarly only male prothallia. In accordance with this difference in the spores, a distinction may be made between the homosporous and heteroSPOROUS forms of the same group; but this distinction has no systematic value in defining the different groups themselves, as it is manifested to an equal degree in groups in other respects quite distinct.

Compared with the Bryophyta, the asexual cormophytic generation of the Pteridophytes corresponds to the sporogonium, the prothallium, on the other hand, to the Moss-plants with its protonema ; although both groups may have originated phylogenetically from a common ancestor, they have followed altogether different directions in the course of their further development. The correspondence in the structure of their sexual organs, in particular, points to the existence of a relationship between them; on the other hand, their asexual generations exhibit the greatest disagreement, so that it would not seem admissible to regard the asexual generation of the Pteridophytes as derived from the sporogonium of the Mosses, although it is manifestly homologous with it.

The existing Pteridophyta are classified as follows :-

1. Filicinae.-Ferns, stem simple or branched, with well-developed,
alternate, often deeply divided or compound leaves. Sporangia either on the under side of the sporophylls, united in sori or free, or enclosed in special segments of the leaves.

Order 1. Filices.-Ferns, in the narrower sense. Homosporous. Order 2. Hydropiteridene. - Water-Ferns. Heterosporous.
2. Équisetinue.-Horse-tails, stem simple or verticillately branched, with whorled, scale-like leaves forming a united sheath at each node. Sporophylls shield-shaped, hearing the sporangia on the under side, and aggregated into a cone at the apex of each fertile shoot.

Order 3. Équisetucue.-Horse-tails. Humosporous.
3. Lycopodinae.-Club Mosses. Stems elongated, dichotomonsly branched, either forked or forming a sympodium, with leaves, in many cases greatly reduced, or shortened and tuberons with awlshaped leaves. Sporangia arising singly in the form of firm-walled capsules either from the stem, in the leaf-axils, or from the leaf-base.

> Order 4. Lyycoporliuceue.-Club, Mosses. Homosporous.
> Order 5. Seluginellaceul.-Heterosporous.

There are also various fossil groups, some of which are inchuded in the above divisions, while some form independent orders.

Class I

Filicinae (Ferns)

Order 1. Filices

The Filices (True Ferns) constitute the larger part of the Vascular Cryptogams. They comprise a large number of genera with mumerons species, being widely distriduted in all parts of the world. They attain their highest development in the tropics. The Tree-Ferns (Cymothen, Alsophilu, etc.), which include the largest representatives of the order, occur in tropical countries, and characterise the special family of the C'yotheacene. The stem of a Tree-Fern is woody and unbranched; it bears at the apex a rosette of pimnately compomed leaves or fronds, which are produced in succession from the terminal bud, and leave, when dead, a large leaf scar on the trunk. The stem resembling that of a Palm in habit, it is attached to the soil by means of numerons adventitions roots.

The majority of Ferns, however, are herbaceons, and possess a creeping rhizome, terminating usually in a rosette of pimnate or deeply divided leaves. Such a habit and growth are illustrated by the common Eern Ispidium filix mas, the rhizome of which is officinal.

When young, the leaves (fronds) of this Fern are coiled at the tips (Fig. $33.2,1, a$) a peculiarity common to the Ferns as a whole, and to the

Fig. 332.-Aspidium filix mas. 1, Illustration exhibiting general habit ; a, young leaves : 2, transverse section of rhizome showing the conducting bundles $a: 3$, portion of leaf with sori ; a, indusium b, sporangia: 4, longitudinal: 5 , transverse section of a sorus; a, leaf; b, indusium ; c, sporangia: 6, a single sporangium ; a, stalk; c, annulus; u, spores. 'After Wossidlo. Officinal.)

Water-Ferns. L'nlike the leaves of Phanerogams, Fern leaves continue to grow at the apex until their full size is attained. The leaves of the common Polyporlinm tulyere are pinmate, and spring singly from the upper side of the branched rhizome, which creeps amongst Moss or on rocks. In other cases the leaves may be

F16: 333.-soblupemilikit rulgurt. (\} nat. size.) simple and undivided, as in the Hart's-Tongue Fern, sonlopendrium culpure, at one time officinal and designated Herlne linguee corcinue (Fig. 333).

In the tropics many herbaceons Ferns grow as epiphytes on forest trees. Peculiar brownish scales (pulcur, rumintu), often fringed and consist ing of a single layer of cells, invest the stems, petioles, and sometimes also the leaves of most Ferns (Fig. 113, p. 98).

The sporangia are generally produced in large numbers, on the under side of the leaves. The sporophylls, as a rule, resemble the sterile, foliage leaves. In a few genera a pronounced heterophyll is exhibited: thus, in the Ostrich Fern, struthiopteris !/rmanica, the dark-hrown sporophylls are smaller and less profusely hranched, standing in groups in the centre of a rosette of large foliage leaves.

In the different families, differences in the mode of development, as well as in the form. position, and structure of the sporasias, are manifested.

The sporangia of the Pulvpobatzaf, in which family the most familiar and largest number of species are comprised, are mited in groups or sin the under side of the leaves, at the ends of or hetween the brancher Whe nerves. They are borne on a cushion-
like projection of tissue termed the receptacies (Fig. 332, 5), and in many species are covered by a protective membrane, the indtam, which is an overgrowth of the tissue of the leaf (Fig. 3.3.2. 3-5 ; Fig. 331, 1, i). Fach sporangium arises by the division of a single opidermal cell, and consists, when ripe (Fig. 334, P-E) , of a capsule attached to the receptacle hey a slender multicellular stalk, containiug a large number of spores with a ribbed or warty thickened exine (Fig. 334, F^{\prime}). The wall of the capsule is formed of a single layer of cells. A row of cells with strongly thickened radial and imner walls, extending from the stalk over the dorsal side and top to the middle of the ventral side of the capsule, are specially developed as a ring on anvtlus, by means of which the dehiscence of the sporangium is effected. Through the contraction, on loss of water, of the thin outer walls of the cells composing the ring, it springs backwards, and
produces a transverse rupture of the capsule between the broad cells at its extremity (Fig. 33+.E). It then returns suddenly to its original position, only once more to uncoil until it assumes a nearly vertical position.

The form and insertion of the sori, the shape of the indusium when present, or its absence, all constitute important criteria for

Fis. 334 .-scolopendrium rulyare. A, Part of a section through the fertile portion of a leaf; i, indusium ; $s 7$, sporansia. $B-E$, sporancia, in lateral (B, E), dorsal (D), and ventral (C) view; F, a spore. $(.4 \times 50 ; B-E \times 145 ; F \times 5 \neq 0$.
distinguishing the different genera. The sori of ぶolopendrium (Fig. 333) are linear, and covered with a lip-shaped indusium consisting of one cell-layer. They are so disposed in pairs, on different sides of every two successive nerves, that they appear to have a double indusium opening in the middle (Fig. 334, A). In structure the indusium resembles the epidermis, but the stomata are absent, and the chromatophores are colourless. In the genus Aspilium, on the other hand, each sorus is orbicular in form and covered by a peltate or reniform indusium attached to the apex of the placenta. The sori
of Polypodium rulgare are also orbicular, but they have no indusia. In the common Brake, Pteris uquilina, the sporangia form a continuous line along the entire margin of the leaf, which folds over and covers them with a false indusimm.

The sprangia of the C'yatheaceae, to which family belong Irincipally the treelike Fems, are characterised by a complete ammus extending obliquely over the apex of the capsule (Fig. 335, l '). The Hymenophyllaccue, often growing as

Fig. 33j.-Sporangia (magnified). A, Of Usmundet regel's, dursal view (after LetussEs); Ih, if Alsophila comptre ; 1 ; of Aneimia rutaefolia. (After Marties.)
epiphytes on Tree-Ferns, have also sporangia, with a complete, oblique, or horizontal amulus. The sporangia of the Schizucucue, on the other hand, have an apical annulus (Fig. 335, C'), while in the Osmundaccac, of which the Royal Fers, Osmunda reyalis, is a familiar example, the amulus is represented merely ly a group of thickwalled cells just below the apex of the sporangium (Fig. 335, A).

Ferns, like those just referred to, in which each sporangium is developed from a single epidermal cell, are classed together as Filices leptosporangiutue, in distinction to the Eusporanyintue, in which the sporangia take their origin from a group of epidermal and underlying cells. The Eisisporengmiutue comprise the two families Murattiactue and Ophior glossucear.

The Maralliuceac are tropical Fierns, with thick, tuherous stems and gigantic fromls, each with two stipules at the base. Their mature sporangia are provided with a stiff and firme many-layered wall, and are cither free (Ampiopitris), or atl the sporangia of a sorus are united in an oval, capsule-like booly, divided into a corresponding number of clambers (Fig. 336 .

The Ophivglassaciac include but few species. Examples of this family are afforded by ophes !/lossum vulyatum, Adder's Tongue, and Eotrychium, Monnwort (Fig. 33i). Both have a short stem, from which ouly a single leaf unfolds each year. The have in both casess are provided with leaf-sheaths, and peculiarly divided into fertile
and sterile segments. In Ophioglossum the sterile leaf-like segment is tongueshaped, the fertile segment narrow and cylindrical, bearing the sporangia in two rows sunk in the tissue. The sterile portion of the leaf of Botrychium is pinnate, while the fertile segment is pinnately branched, and thickly beset on the inner side with large nearly spherical sporangia.

All the members of the Filices are homosporous. The PROTHALLIUM has usually the form of a flat, heart-shaped thallus (Fig. 330), bearing the antheridia and archegonia on the under side ; but in Botrychium it is represented, on the contrary, by a small subterranean tuberous body which is saprophytic, and produces the sexual organs on the upper side. In certain Hymenophyllaceae (Trichomanes), on the other hand, the prothallium is filiform and branched, resembling in structure the protonema of the Mosses, and producing the antheridia and archegonia on lateral branches.

The ANTHERIDIA and ARCHEGONIA are similarly constructed in nearly all Ferns ; those of Polypodium vulgare (Figs. 338, 339) may serve as a type. The antheridia are spherical projecting bodies (Fig. 338, A, p), arising on young prothallia by the septation and further division of papillæ-like protrusions from single superficial

Fig. 338. - Polypodium vulgare. A, Mature, B, discharged antheridium ; p, prothallium cell ; 1 and 2 , ring-shaped cells ; 3, lid-cell ; C, a spermatozoid in motion ; D, one fixed with iodine solution. $(A, B$ $\times 240 ; C, D \times 540$.) cells. When mature, each antheridium consists of a central cellular cavity, filled with spermatozoid mother-cells, and enclosed by a wall

FiG. 337.-Botrychium Lunaria. ($\frac{1}{2}$ nat. size.) formed of two ringshaped cells ($A, 1,2$) and a lid-cell (3). The spermatozoid mother-cells are produced by the division of the central cells. They are discharged from the antheridium by the pressure exerted by the swollen ring-cells, and the consequent rupturing of the lid-cell. Each mother-cell thus ejected liberates a spirally coiled spermatozoid. The anterior extremity of the spermatozoid is beset with numerous cilia, while attached to its posterior end is a small vesicle which contains a number of granules, and represents the unused remnant of the contents of the mother-cell (Fig. 338, D, C; Fig. 70, B, p. 67).

The archegonia arise from the many-layered median portion of older prothallia. They are developed from a single superficial cell, and consist of a ventral portion, embedded in the prothallium, and a neek portion. The neck, which projects above the surface of the prothallimm, consists of a wall composed of a single layer of cells made up, of fonr cell rows (Fig. 339, A, B) : it encloses a central row of cells, the neck-canal-cells.

Fig. 339.-Polypodium vulgure. A, Young archegonium not yet open ; K, neck-canal-cell : $K^{\prime \prime \prime}$, ventral canal-cell ; o, egg-cell ; P, mature archegolum, open. ($\times 240$.)

The ventral portion comprises the large egg-cell and ventral canalcell immerliately above it. As the archegonium matures, the camal-cells, become disorganised, and fill the canal with a strongly refractive mucilaginous substance. This swells on the admission of water, and rupturing the neck at the apex is discharged from the archegonium, which is now ready for fertilisation. By means of an acid excretion (malic acid) diffused in the surrounding water the spermatozoids are attracted to the archegonium, and penetrate to the egg-cell. After fertilisation of the egg by one of the spermatozoids, the egg-cell surrounds itself with a cell wall, and without entering upon a condition of rest develops into the embryo of the asexual generation, as already described (p. 398, Fig. 331).

Officinal.-The only representative of the Ferns is Aspidium filior mas (Rhizoma filicis).

Order 2. Hydropterideae (Water-Ferns)

The Water-Ferns include only a few genera, which are more or less aquatic in habit, growing either in water or marshy places. The macroand microsporangia do not develop, like those of the Filices, on the under side of the leaves, but are enclosed in special receptacles at their base, constituting sporangial fructifications or sporvearps. To designate this order lilhisucurpue, as was formerly the custom, is not appropriate, as the sporocarps do not arise on the roots, but always on the leaves.

The Water-Ferns are divided into two families, Marsiliaceae and Sulviniaceue, each of which includes two genera.

Marsiliaceae.-Of the two genera belonging to this family the more important is the genus Marsilia, comprising about fifty species, of which M. quadrifoliuta (Fig. 340) may be taken as an example. This species grows in marshy meadows, and has a slender, creeping, branched axis, bearing at intervals single leaves. The young leaves are coiled at the tip (circinate) ; in this respect the leaves of the Marsiliaceae exhibit the same mode of growth as those of the Ferns. Each leaf has a long erect petiole, surmounted by a compound lamina composed of two pair of leaflets inserted in close proximity. The stalked oval sporocarps (s) are formed in pairs above the base of the leaf-stalk, or in other species they are more numerous; they represent a fertile leaf-segment corresponding to the biju-

Fig. 341.-Pilularia globulifera. s, sporocarp. (After Bischoff, reduced.)

Fı. 340. - Marsilia quadrifoliata. a, Young leaf; s, sporocarps. (After Bischoff, reduced.) in two rows in correspondingly arranged cavities; in the young fruit each chamber opens outwards on the ventral side by means of a narrow canal, which eventually becomes closed. The sporangia are developed originally, as in the Fern, from superficial cells, but become arched over by the surrounding tissue, and thus subsequently appear as if formed in internal chambers.

Pilularia, the second genus included in this family, grows also in bogs and marshes. It differs from Marsilia in its simple linear leaves, at the base of which occur the spherical sporocarps, which arise singly from the base of each sterile leaf-segment (Fig. 341).

Salviniaceae. - This family contains only free - floating aquatic plants belonging to the two genera Salvinia and Azolla. In Salvinia
nutuns, as representative of the first genus, the sparingly branched ftem gives rise to three leaves at each node. The two upper leaves of each whorl are oval in shape, and developed as tloating foliage leaves; the third, on the other hand, is submerged, and consists of a number of pendent filamentous segments which are densely covered with hairs, and assume the functions of the missing roots. The sporocarps have an entirely different mode of development from that of the Mursiluceue; they are spherical, and are borne in small groups on the submerged leaves at the base of the filamentous segments (Fig. 342). The sporangia are produced within the sporocarp from a column-like receptacle, which corresponds in origin to a modified leaf-segment. The envelope of the sporocarp is equivalent to an indusium ; it arises as a new growth in the form of an amular wall,

 aH embryonic plant: msp, macrospore; p, prothallimm; e_{1} stem; l_{1}, lag, bs the fint threm leaves; b_{1}, the so-called seutiform leaf. (After Pringanem, 7 1.)
which is at first cup-shaped, but ultimately cluses over the receptacle and its sorus of sporangia.

The second genus, Azollu, is chiefly tropical, represented by small floating plants profusely branched, and beset with two-ranked closely crowded leaves. Each leaf consists of two lobes, of which the upper floats on the surface of the water, while the lower is submerged. A small cavity enclosed within the upper lobe, with a narrow orifice opening outwards, is always inlabhited by filaments of an Alga (Anubelenu). From the fact that hairs grow out of the walls of the cavity between the algal filaments, the existence of a symbiotic relation between the two plants would seem to he indicated. Unlike Sillimia, Acollu possesses true roots developed from the under side of the stem. The sporocarps are nearly spherieal, and produced usually in pairs on the under side of the first leaf of some of the lateral branches.

In the structure of the sporangia and spores, and in the development of the prothallia, the Hydropterideae differ in many respects from the Filices. These differences may be best understood on reference to Salciniu natans as an example. The sporocarps contain either numerous microsporangia or a smaller number of macrosporangia (Fig. 343, A, $m u, m i)$. In structure both forms of sporangia resemble the sporangia of the leptosporangiate Ferns; they are stalked, and have, when

Fig. 343.-Salvinia natans. A, Three sporocarps in median, longitudinal section ; ma, macrosporocarp, mi, microsporocarp $(\times S) ; B$, a microsporangium ($\times 55$); C, portion of the contents of a microsporangium, showing four microspores embedded in the frothy interstitial substance $(\times 250) ; D$, a macrosporangium and macrospore in medium longitudinal section (\times $55) ; E$, apex of a macrospore ; p, perinium ; e, exinium ; a, proteid grains ; n, nucleus ($\times 240$).
mature, a thin wall of one cell-layer but no annulus (B, D). The microsporangla enclose a large number of microspores, which, as a result of their development in tetrads from the mother-cells, are disposed in groups of four (C), and embedded in a hardened frothy mass filling the cavity of the sporangium. This frothy interstitial substance is derived from the tapetal cells, which gradually lose their individuality and wander in between the spore mother-cells.

The microspores are not discharged, but while still enclosed within
the umruptured microsporangium, each germinating mierospore puts out a short tubular male prothallium, which pierces the sporangial wall. In this process the microspore first divides into three cells (Fig. 314, $1, I-I I I)$; the lowest (I) then cuts off a small lenticularshaped cell (B, p), which may be re-

Fis: 34t.-simbinia natans. Development of the male prothallium. A, Division of the microspore into three cells $I-I I I(\times$ mio) ; D, lateral view ; $;$, wentral view of mature prothallium (x (if0). Cell I has divided into the prothallium cells (tand p; cell $I I$, into the sturile colls b, c, and the two cells s_{1} each of which has formed two spurmatozonil mother-cells : cell $I I I$, into the sterile cells d, e, and the two cells s.o. The cells $s_{1} s_{1}$ and $s_{2} s_{2}$ represent two antherillia; the cells b, c, d, e their wall-cells. (After Beladerf.) garded as the rudiment of an undeveloped root-hair cut off from the larger cell a. The latter (11) thereupon elongates and pushes the other two cells (II, $I I I$) out of the microsporangium. These two cells each give rise, by further division, to two sterile cells and two spermatogenous cells, representing two antheridia with their respective sterile wall-cells. Each antheridium produces four spermatozoids, which are set free by the rupture of the cell walls. Although the whole male prothallimm is thus greatly reducerl, it nevertheless exhibits in its stmeture a monounced resemblance to the prothallia of the Filices.

The mannosponingin are larger than the microsporangia, but their walls consist similarly of one cell-layer (Fig. $343,1)$. Each macrosporanginm produces only a single large macrospore, which develops at the expense of the numerous spores originally formed. The macrospore is densely filled with large angular proteid grains (D, E, a, oil globules, and starch grains; at its apex the protoplasm is denser and contains the melens (E, n); the membrane of the spore is covered by a dense brown exinium (ℓ, \not, c, which in turn is enclosed in a thick frothy envelope, the perinimm, investing the whole spore and corresponding to the interstitial substance of the microsores, and also formed from the dissolution of the tapetal cells. The macrospore remains within the sporangimm, which is eventually. set free from the mother plant. On the germination of the macrospore, a small-celled female prothallimen is formed by the division of the denser protoplasm at the apex, while the large underlying cell does not take part in the division, but from its reserve material provides the developing prothallium with nomrishment. The spore wall splits into three valves, the sporangia are ruptured, and the grecn prothallinm protrudes as a small saddle-shaped body. On it three archegonia are produced, but only the fertilised egg-cell of one of
them develops into an embryo, whose foot, remaining for a time sunk in the venter of the archegonia, finally ruptures it (Fig. 345). The first leaf of the germ-plant is shield-shaped (Fig. 342, C').

The development of Azolla proceeds in a similar manner, but the sporangia and spores exhibit a number of distinctive peculiarities. The numerous spores of the niicrosporangia are aggregated into several nearly spherical balls or massulæ, formed from the interstitial substance derived from the protoplasm of the tapetal cells. Each massula, enclosing a number of spores, is beset externally with barbed, hook-like outgrowths of the interstitial substance. On the rupture of the sporangia the massulæ are set free in the water, and are carried to the macrospores, to which they hook themselves fast. A sporocarp contains one macrosporangium, in which only a single macrospore conies to maturity ; in the course of its development it supplants all the other spore-rudiments, and finally the sporangial wall itself becomes flattened against the inner wall of the sporocarp, frequently undergoing at the same time partial dissolution. The macrospore is enveloped by a spongy perinium whose outer surface exhibits numerous depressions and protuberances prolonged into filaments. At the apex of the spore the perinium expands into three pear-shaped appendages, while the upper part of the ruptured

Fig. 345.-Salvinia natans. Embryo in longitudinal section ; pr, prothalliun ; S, spore-cell ; e, exinium ; p, perinium; spw, sporangial wall; ar, archegoniuu; embr, embryo; f, foot; $b l_{1}, b l_{2}, b l_{3}$, the first three leaves ; $s t$, apex of stem. (After Pringsheim, $\times 100$.) sporangium remains attached to the spore in the form of an umbrella-like expansion. The formation of the prothallia is effected in essentially the same way as in Salvinia, except that only one antheridium with eight spermatozoids arises on each of the small male prothallia protruding from a massula.

In the case of the Marsiliaceac the prothallia are even more reduced, but otherwise their mode of development is very similar. Each of the minute female prothallia formed at the apices of the macrospores produce a single archegonium.

The sporocarps of the Marsiliaceae have a more complicated structure : those of Pilularia globulifera are divided into four chambers, each with a single sorus; in Marsilia they enclose numerous sori (14-18) disposed in two rows. The sori in both genera contain both micro- and macrosporangia, while those of the Salviniaceae are always unisexual.

Chass II

Equisetinae (Horse-tails

The Equisctime, which form an entirely independent class, include only the one genus Equistum, comprising 2.5 species, found widely distributed over the whole world. Developed partly as land- partly as swamp-plants, they may always be distinguished ly the characteristic structure and habit of the asexual generation. They have a branching, underground rhiome on which arise erect, aerial hanlms, usually of annual growth. The

Fir. $34 t i$ - Equisel 1 m artense. Transterse sec. tion through the stem. m, Lysipenic merlullary cavity ; e, todolermis ; cl, cariual canals in the biesllateral bundles; $r l$, vallecular cavities; $h p$, sclerenchymatous strancls in the furrows and rilges: ch, tissue of the primary cortex containmen chlorophyll ; st, rows of stomati. $(\times 11$.) rhizome of the common Horse-tail, Eiquiselum driense, develops also short tuber-like branches which function as reservoirs of reserve material and hibernating organs (Fig. $34 \bar{i}, \stackrel{2}{2}$,). The aerial hanlms remain either simple, or they give rise to branch whorls, and these in turn to whorls of a higher order. Each axis consists of a series of elongated internodes; extermally, it is chamelled by longitudinal furrows, while internally it is traversed by a central air-passage and by a number of smaller peripheral passages, vallecular canals, one opposite each of the furrows (Fig. 346). Between the central and vallecular canals, and alternating with the latter, is a circle of bicollateral vaseular hundles, each of which is thus in a line with a surface ridge. Each vascular bundle is alsu traversed by a longitudinal water-passage, the carinal camal.

The leaves of the Equisetinur, both in their structure and in the mamer of their arrangement on the stem, are also characteristically developed. At each node is borne a whorl of scale leaves pointed at the tips, and united below into a sheath closely enveloping the baser of each intemode. The leaves of the suceessive whorls alternate regularly with each other, and as each leaf is in direct continuation with a surface ridge of the next lower internode, the same alternating arrangement is apmant in the rilges of two suecessive internodes. The lateral branches are developed in the axils of the scale leaves, but not having space to grow upwards they pierce the narrow sheath. As a result of the reduction of the leaf lamina,
the haulms themselves assume the function of assimilation, and for that purpose their cortical tissue under the epidermis is provided with chlorophyll.

The sporangia are formed of specially shaped leaves or sporophylls. Like the scale leaves the sporophylls are developed in whorls, but are closely aggregated at the tips of the erect fertile shoots into a cone (Fig. 347, 1, a), which is sometimes spoken of as a flower, from the correspondence in its structure to the male flower of the Conifers. The lowest whorl is sterile, and forms a collar-like protuberance, which may be regarded as a modified form of perianth. The sporophylls (Fig. 347, 3, 4) are stalked and have a shield-shaped lamina, on the under side of which are borne the sac-like sporangia (5 10). In the young sporangium the sporogenous tissue is surrounded by a wall consisting of several cell layers, but eventually the so-called tapetal cells of the inner layers become disorganised, and their protoplasm penetrates between the developing spores. At maturity, the wall of the sporangium consists only of the outermost of the original layers whose cells are provided with annular and spiral thickenings; the sporangia thus resemble the homologous pollen-sacs of Phanerogams. The sporangia split longitudinally, and set free a large number of green spores, which are nearly spherical in shape, and have peculiarly constructed walls. In addition to the intine and exine, the spores are overlaid with a perinium formed from the protoplasm of the tapetal cells, and consisting of two intersecting spiral bands which are attached to the spores only at their point of intersection (Fig. 347, 5-7). On drying, the spiral bands loosen and become uncoiled; when moistened they close again around the spore. By means of their hygroscopic movements they serve to hook together the spores, and in this way is assured the close proximity of the unisexual prothallia which they produce.

In certain species some of the aerial haulms always remain sterile, branching profusely, while others which produce the terminal cones either do not branch at all, or only at a later stage, and then sparingly. This distinction between the sterile and fertile haulms is most marked in Equisetum arvense and Equisetum Telmateja, in both of which the fertile shoots are entirely unbranched, and terminate in a single cone (Fig. 347, 1). Resembling in their mode of life a parasite upon the rhizome, they are otherwise distinguished from the regetative haulms by their lack of chlorophyll and their light yellow colour.

The spores are all of one kind, and on germination give rise to thalloid prothallia, which are generally diœecious. In the adjoining figure (Fig. 348) a male prothallium of Equisetum arvense is represented, showing the first formed antheridia (a) somewhat sunk in the tissue. The female prothallia attain a large size, and branching profusely, are prolonged into erect, ruffled lobes at whose base the archegonia are produced. In structure the archegonia resemble those of the Ferns (cf. Fig. 339, p. 406), but the upper cells of the four longitudinal
rows of cells constituting the neck are more elongated and, on opening,

 vegetative haulur ; n, rhizome tulers; 8 , sporophyll with sporaugia; 4 , sprophyll wih rupturey spurangia; $5,6,7$, spores with the spiral bathes of the pertinum. (Aner Wi:nthe.)
curve strongly outwards. The development of the embryo corresponds,
also, essentially with that of the Fern-embryo, except that the first leaves are arranged in a whorl and encircle the apex of the stem. The growth of the embryo is effected by the division of a three-sided apical cell (Figs. 162, 163, pp. 149, 150).

The outer epidermal walls of the stem are more or less strongly impregnated with silica. In Equisetum hiemale, and to a less degree in Equisetum arvense, the silicification of the external walls is carried to such an extent that they are used for scouring metal utensils and for polishing wood.

Equisetum giganteum, growing in South America, is the tallest species of the genus; its branched haulms, half supported by neighbouring plants, attain a height of over ten metres.

The extinct Calamarieae, which form a special class of Pteridophyta, and resemble most nearly the Equisetinae, attained their highest development in the Carboniferous period. Their jointed stems, similar to those of the Horse-tails, the so-called Calamites, attained the dimensions of a tree and bore at the nodes verticillately-leaved branches. These branches, which have also been described as

Fig. 348.-Equisetum arvense. Male prothallium with three antheridia, α. (After Hofmeister, $\times 200$.) special genera, Annularia and Asterophyllites, may in part have belonged to smaller herbaceous forms. It has been determined with certainty that the sporophylls of the cones of some species bore both macro- and microsporangia; while other species were homosporous. In the primary structure of the stems the Calamites correspond essentially witl the Equisetinae, but differ from them in possessing secondary growth in thickness, similar to that of Gymnosperms.

Class III

Lycopodinae (Club Mosses)

To the Lycopodinue belong, as their most important and widely distributed genera, Ly̆copodium, Selaginella, and Isoetes. They are distinguished from the other Pteridophytu, of which they resemble most nearly the eusporangiate Filices, by their generăl habit and the mode of their sporangial dedelopment.

Unlike the fertile leaves of the Filicinae and Equisetinue, which always bear numerous sporangia, the sporophylls of the Lycopodinae produce the sporangia singly, at the base of the leaves or in their axils. Although in many cases scarcely distinguishable from the sterile leaves, the sporophylls are frequently distinctively shaped, and, like those of Equisetum, aggregated at the ends of the fertile shoots into
terminal cone-like flowers. Compared with the leaves, the sporangia are relatively large. They are developed in the same way as those of the eusporangiate Filicts and Equisetinue, from a projecting group of cells derived from the epidermis and the underlying tissue; while in all other Pteridophyta the sporangia are developed from a single cpidermal cell. The immermost layer of the sporangial wall, the tapetal layer, is absorbed. The sporangia have no ammlus. Except in the case of Isoeles, whose spores become free by the decay of the sporangial wall, they dehisce by longitudinal slits, which divide the sporangia into two or more valves ; the slits occur where the walls of rows of cells have remained thin. The sporangia of Lycoputiun are homosporous; those of other Lyporpualinae heterosporous. The heterosporons forms produce only greatly modified and reduced prothallia: in the genns Lycopodium, on the other hand, the prothallia are essentiatly the same as those of the Fillices and Equiseturate. In the development of their asexual generation the heterosporous Iyycopodinar resemble in many respects the heterosporous IIydropteridene.

The dichotomons branching of the stems and roots is characteristic of this class (Fiys. 1s, 19, p. 19) ; in the genus Isoeles, however, the stem is not only umbranched but also tuberons.

Order 1. Lycopodiaceae

The numerons, widely distributed species of the genus Lycoporlinm (Club Moss) are for the most part terrestrial plants ; in the tropics epiphytic forms also occur. In Lycoporlium clutatum, one of the commonest species, the stem, which is thickly covered with small, awlshaped leaves, creeps along the ground ; it branches dichotomously, and gives rise to ascending lateral branches, while from the under side spring the dichotomonsly branched ronts (Fig. 349). The flowercones, consisting of the closely aggregated sporophylls, are situated in groups of two or more at the ends of the forked, erect shoots. The sporophyils are not like the sterile leaves in shape; they are broader and more prolonged at the tip; each bears a large reniform sporangium on the upper side at the hase. The sporangium opens into two valves by a transterse slit, and lets free numerous minute spores (Fig. 349, 2).

Lyyompolium selayo differs in habit from the other species: its bifurcately-hranched stems are all erect, and the flower-cones are not distinct from the vegetative region of the fertile shoots.

The spores of the Lycopodiums are all of one kind, and in consequence of their formation in tetrads are of a tetrahedral though somewhat rounded shape. The exine is covered with a reticulate thickening.

The mode of germination and development of the sexual generation have as yet been determined ouly for a few species. The prothallia of Lycopodium unnotinum, a species nearly related to l. clauatum, were
the first to be discovered. They live as saprophytes and have the form of whitish, subterranean tubers which bear the sexual organs on their upper surface. In the case of L. inundatum they are found on damp peaty soil, and in the tropical L. cermuum, with erect profusely-branched shoots, the prothallia are almost devoid of chlorophyll and are attached to the soil by rhizoids ; they have the form of small, half-buried, cushion-like

Fig. 349.-Lycopodium claratum. 1, Plant with fertile shonts; 2, scale-like sporophyll with sporangium; 3, spores, highly magnified. (After Wossidlo. Officinal.)
masses of tissue which give rise to green aerial thalloid lobes. The archegonia occur at the base of these lobes, the antheridia on their surface. The antheridia are somewhat sunk in the tissue (Fig. $350, C^{\prime}$), and enclose numerous spermatozoid mother-cells, in which small biciliate spermatozoids are formed. The archegonia (Fig. $350, D)$ are constructed like those of the Ferns, but have a shorter
neck, whose upper cells become disorganised on opening. The prothallium of L. l'hleymuria, found on trees in the tropics, is also saprophytic. It consists of branching strands growing under the bark of trees, and is characterised by the possession of a vegetative mode of propagation by means of brood-tubers. The prothallia of the

Fig. 350. - Lycopodium cermum. A, Prothallium with two archegonia ar, and an antheriliuth an $(\times 70) ; B$, ohler prothallium, p, with embryonic plants $(\times 15) ; c$, s, tion throuzh an antheridium ($\times 250$) ; I, archegonium; o, egrocell ; bc, ventral canal-cell : h, disiggansed reck-canal-cell. (After Treteb, $\times 250$.)

Lycopodiums are monocions. The embryonic development, which is effected differently from that in the Ferns, agrees closely with that of Selaginella (Fig. 355). A suspensor or mimpo-bearer is developed ; it is not, however, laterally inserted, but occurs on the contrary at the foot end of the embryo.

Officisal.-(Lytoroditm), the spores of Lycepradium cluratum and other species.

Order 2. Selaginellaceae

To this order belongs the genus sichagin llu, represented by numerous and for the most part tropical species. They have, as a rule, profnsely forked, creeping, and sympodially branched stems, but occasionally erect, branched stems ; some form moss-like beds of vegetation ; others, climbing on adjacent plants, possess stems several metres long. In general the Selaginellas are similar in halit to the Lycopodimms. They have small, seale-like leaves which usually exhibit a dorsiventral arrangement, such as is slown, for example, in the Alpine

Selaginella helvetica (Fig. 351), whose stem is covered with two rows of small dorsal or upper leaves, and opposite to them two rows of larger, ventral or under leaves. The development of a small, membranous ligule at the base of the leaves, on their dorsal side, is characteristic of the Selaginellas.

As in Lycopodium, the cones or flowerspikes are terminal. Each sporophyll subtends only one sporangium, which springs from the stem above the leafaxil. The same spike bears both kinds of sporangia; the macrosporangia occur in smaller numbers in the axils of the lower sporophylls. The two kinds of sporangia do not differ so much in size as in form. Each microsporangium (Fig. 352, b) has the form of a flattened capsule, and opening in two valves discharges numerous microspores. The macrosporangia (Fig. $352, a$), on the contrary, are spherical, and each contains only four macrospores, which are produced by the growth and division of a single spore-mother-cell ; all the other mother-cells originally developed ultimately disappear. On account of the increasing size of the spores the macrosporangia become inflated and nodular. At

Fig. 351.-A, Selaginella helvetica (from nature, nat. size). B, Selaginella denticulata, embryonic plant with macrospore still attached. (After Bischoff, magnified.) maturity they split into several valves.

The microspores begin their development while still enclosed

Fig. 352.- Selaginella helvetica. a, Open macrosporangium showing three macrospores (the fourth hidden from view); b, microsporangium with escaping microspores. (\times circa 10.) within the sporangium. The spore first divides into a small lenticular vegetative cell representing the prothallium, and into a large cell which represents the rudiment of an antheridium ; the latter divides successively into eight sterile peripheral cells and two or four central spermatogenous cells (Fig. 353, A). By the further division of the central cells numerous spermatozoid mother-cells are formed $(B-D)$. The peripheral cells then break down and give rise to a mucilaginous substance, in which is embedded the central mass of spermatozoid mother-cells (E). The small prothallium-cell, however, persists. Eventually the wall ruptures, and
the mother-cells, thus liberated, set free the club-shaped biciliate spermatozoids (F). The reduction here exhibited in the formation of the male prothallium resembles that shown by the Mylropteridene (p. 410).

The macrospores similarly begin their development within the sporangia. Internally, the spore is filled with numerons proteid grains, while the nuclens lies in the peripheral cytoplasm at the apex. After the division of the nucleus into daughter-muclei and their distribution in the apieal cytoplasm, the formation of cell walls begins. In this way, progressing from apex to base, the spore becomes filled by a process of multicellular formation, with large prothallium-cells. At the same time, and proceeding in the same direction, there begins a further division of these cells into smaller cells. In the tissue at the

 prothallium-cell; x, wall-cells of antheridinm; s, spermatosenous celis ; A, I, D, lat ral: \mathcal{C}_{4}

 fito, F 令 $-八$)
apex, consisting of small cells, the rudiments of a few archegonia appear, often even before the formation of the prothallium has been completed. The archegonia are usually not formed until the spores have been discharged from the sporangium.

The formation of prothallia, in the case of seluyinelln, as also in the related gemns I sortse, is thus effeeted in a different manner from that in the other l'triduldyth, and it approaches more nearly the corresponding process in the Conifers.

The wall of the spore eventually hursts at the apex, and the prothallinm hecomes partially protuded. The fertilisation of one or two archegonia, which then takes place, is followed directly by the segmentation of the fertilised egg-cells in the formation of the embryos (lig. 354).

The embryogeny of silugindla is very similar to that of Lynoperium.

The ege-cell is divided by the formation of a transverse wall into two cells; the upper and larger cell increases considerably in size, and gives rise, by the division of its lower portion, to a suspensor (Fig. 35.5, (t), while the lower epibasal cell, by repeated division, develops into an embryo, prorided with two primary leares and further segmented into stem, root, and foot (Bl , st , $v, f)$. The foot, in this instance, has another position and origin than in Lycopodium. Each primary leaf has, even at this stage, a ligule (lig) formed by the outgrowth of the leaf-base.
 dicular to the axis of the embryo ; its function is to push the embryo into the tissue of the prothallium, with which
 protruding fum the arex of the ruptorel macrospore: apa, wall of mawnetore; ar, an anfer-
 with snopenars ct. sunk in the tisste of the pros thaliium (After Pferfige ila)

Fig. 355.- Shagimalla Martensif. Longitudinal section of an embryo before its separation from the spore; ct, suspensor; w, root; f, foot ; ll, leaves; lig, ligulss; st, apex of stern. (After Pteffer, $\times 165$.)
stem apex, with the first pair of leaves, eventuall grows upwards, and the root also extends beyond the macrospore. As the foot still
remains in the prothallium the young plant continues united to the spore, and presents the appearance of a phanerogamic seedling with the seed still attached (Fig. 351, D').

The second genus of this order, Isurtes, the Quillwort, comprises prennial plant-, growing either on damp soil or submerged in water. The stem is short and tuberous, terminating below in a tuft of dichotomously branching roots, and above in a thick rosette of long, stiff awl-shaped

Fic. 356. - Iswetrs lucustris. (支 nat. size.) leaves (Fig. 356). The leaves are penetrated longitudinally by four air-passafes, and expand at the base into a broad sheath. On the immer side of the leaves. above the ir pint of insertion, is an elongated pit, the fovea, containing a large serile sperangium. A ligule, in the form of a triangular membrame, is inserted above the fovea. Is etes thus differgreatly in habit from the other genera, but resembles Selaginclla in the develupment of a ligule.

The macrorporangia are situated on the outer leaves of the rosette ; the micro-prangia on the immer. Both are traversed ly tranaverse plates of tisule or trabectlie, and are in this way imperfectly diviled into a series of chambers. The spores are set frew by the decay of the sprangial walls.

The development of the sexual generation is accomplished in the same way as in Shagnellu. The reduced male prothallinm arisrs similarly within the spore, by the formtition of a small, lenticular, vegetative cell, and a larger cell, the rudiment of a single antherillium. The largor cell divides further into four sterile peripheral cells, which completely enclove two central sprmathgenous cells. From each of the latter arise, in turn, two spermatozoid wothereetls, four in all, each of which, when liberated by the rupture of the spore wall, gives rise to a single, spirally coiled, multiciliate spermatozoid. The female prothallium, just as in Selayinella, also remains enclosed within the maerospore, and is intsple of independent growth. It shows similarly an approach to the Conifers, in that the nucleus first divides into numerons parietal danghter-nuclei betore the gradnal formation of the cell walls, which takes place from the apex of the spmere to the base. As a result of this precess the whole spore becomes filled with anc endorecmlike prothallium, at the apex of which the archegonia are derelaped. The embryo has no suspensor, and is similar in bany reapects to the embryo of the Monocotyledons, to which the mature phant also bears a strong resemblanee.

The Lepidolendreac, an extinct lamily of arhoresont Pteridophytes otourrifg clicfly in the Carboniferous period, belong also to the Lycupeminal. They were usually sparingly branehed, either dichotomously or sympanlially, and provided with linear or lanecolate leaves, thus resembling, to a certain extent, gigantically developed Club Mosses. Their stums increased in thickness by secondery growth, and were corered with cushion-like areas, showing the sears of the fallen laves.

Their flowers (Lcpidostrotus) had the form of scalr-leared cones: each sporophrll bore a large sporangium. Many forms were heterosporous.

To the Lycopodinas may probably be assigned also the Sigillarisae, arborescent plants resembling the Lcpidodendrcae. Their stems were either rery sparingly dichotomously branched or entirely unbranched, and were characterised also by secondary growth. The Sigillaricae were probably also heterosporous. They differed from the Lepidodendrcae in the form and arrangement of the leaf-scars, and in their long-stalked, cone-like flowers with basally expanded sporophylls.

The fossil remains of the Carboniferous plants known under the name of Stigmaria correspond to the roots of Sigillarieac and Lepididendreas.

PART II
 spECIAL BOTANY

SECTION II
PHANEROGAMIA

SECTION II

PHANEROGAMIA

General Character. - The Phanerogams follow the Pteridophytes without any sharply-defined barrier, representing phylogenetically more highly-developed plant forms. Their more advanced development is limited to the sporophyte, or asexual generation, which, while still retaining a distinct segmentation into root and shoot, exhibits more extensive differentiation and a greater variety of form, especially in the formation and disposition of the sporophylls, than in the Pteridophytes. On the other hand, this has been accompanied by a reduction of the sexual generation, resulting in the complete loss of its separate individuality. The sexual plant has been reduced to a few cells, which are dependent upon the sporophyte for their existence. Their recognition as the degenerate remnant of a once independent generation was the result of a comparative investigation of their mode of development.

The Spore-forming Generation.-The vegetative segmentation of the Phanerogams has been already sufficiently described in the section on General Morphology. Attention will only be given here to the organs functioning in the service of reproduction and dissemination of the spores, as they alone are specially characteristic of the Phanerogams as a distinct class.

The Phanerogams are all, without exception, heterosporous. As in the Selaginellaceae, macrospores and microspores are always produced by different sporophylls, which, for the most part, are borne on the same shoot, although sometimes they arise on separate axes or even on distinct male or female plants. The spores are also formed in sporangia, which, just as in the Pteridophytes, represent organs sui generis.

The male sporophylls of the Phanerogams are known as stamfens ; the female sporophylls as carpels. Notwithstanding their different designation, the staminal and carpellary leaves are in every respect homologous with the sporophylls of the Pteridophytes, and are to be
regarded phylogenetically as metamorphosed foliage-leaves, althongh in most cases they in no wise resemble them, and, like the sporophylls of the Equiselucpur and most of the Lydomodiacme, they serve merely to produce and bear the spores. STAMINAL AND CARPELLARY LFAVES APRAGG FROM THE SUMMIT OF AN AXIS, THE FURTHER GROWTH OF WHCH, EXCEPT NO THE FEMALE FLOWERS OF CYCAS, IS TERMINATFH HY THER PRODCOLON; they are closely aggregated, mstally in whorls, but less frequently they assume a spiral arrangement.

In the majority of eases the reproductive axis gives rise immediately below the stamens and carpels to other special leaves, wheh, although themselves sterile,

Fu: 3:\%.-Flower of Puemín peregrinu, in longitulinal section. k and r, Perianth (", androciun o, \&2nrecium. (Nit. size.) are functionally connected with the sporophylls, and similarly exhibit an essential dissimilarity to foliage-leavelike the sporophylls, which at times become motified into similar sterile leaves, these leaves almost always spring from the axis in whorls, and in other respects thoy show a closer relation to the sporophylls than to the foliageleaves. Collectively they form the perhasth (Fig. 357, k, c).

The shoot on part of a shoot comprising the periANTH, THE SPOROPHYLLS, AND THE PORTION OF THE AXIS FROM WHIH THEY SPRING, IS TERMED A FLoWER. If the perianth is lacking, the Hower is naked. The stamens of a flower are designated collectively the ANIRGCIUM, the carpels constitute the Grioccuem. When both androcium and gynocium are represented in the same flower, the flower is HERMAPHRODTE; in that case the gynoceinm occupies the centre of the flower. When either the andrecimm alone or the grnocium alone is present, the flower is UNISEXUAL or HCLINOUS. If diclinons Howers of both sexes occm on the same plant, it is said to he sontenlots. If, however, a plant produces flowers of one sex only it is termed nitecols; on the other hand, if it develops at the same time both unisexual and hemaphodite flowers, it is termed ponsG.anous.

From the constant ocemrence of flowers, it is often customary to refer to the Phanerogams as the Fhowbinini Plants. It mist not, however, be concluded that this is characteristic of the Phanerogams alone, for the aggregated sporophylls of the cones of the Eipuiseluciar or of the spikes of the Lycupmenticui also exhibit all the essential characteristics of flowers, although in a less adranced degree of development
(f. pp. 412,416). The flowers of the Gymnosperms in fact show but a small advance from the Hower-cones of the Pteridophytes, while those of the Angiosperms differ from them only in the more pronounced metamorphosis of their various parts. A rose, or the complicated Hower of an Orchid, represents the more highly developed forms of an ascending but continually diverging series, which originated in the Pteridophytes. The first indication of a tendence to form a flower is manifested by some of the Ferns, e.g. Blechnum, in which the fertile leaves, separated from the sterile, are united in a rosette crowning the apex of the axis.

The microsporangia of Phanerogams are termed pollen-stcs ; the microspores, pollen-grairs, or collectively polles. The development of the pollen-sacs and pollen-grains (Fig. 358) is effected in the same way as the homologous reproductive organs of the Pteridophytes. A

Fi3. 35s- Femenomblis fan. A. Transverse section of an almest ripe anther. showing the loculi ruptured in cuttinz: 1 . partiti n wall between the loculi : a. goove in connective: f. vascular bundle $\left(x 1 \frac{f}{f}\right): B$, transrerse section of roung anther $(x-2): \ell$. part of transrerse section of a pollen-sac : f. mallen mother-cell: : f. tapwal layer. later underyoing dissolution: : intermediate pariptal layer, betwoming ultimately compressed and ilsorsansed; f, parietal layer of eventally tibnus cells e, epidermis $(\times-240): D$ and E. pollen mother-cells after division ($\times 2$ 教)
cell layer. directly under the epidermis of the sporophylls, becomes divided by tangential walls into two layers, the outer of which constitutes the wall of the sporangium, the inner the spore mothercells. The latter, by repeated division, give rise to the pollen mother-cells, which further divide each into four pollen-grains. Although the pollen-grains sometimes remain united in tetrads (Fig. $359,-4$), they are generally isolated, and have the appearance of round or elongated bodies, which are at first unicellular (Fig. 359, B. 360), but eventually, in consequence of the formation of a reduced male prothallium, become multicellular.

Each pollen-grain is provided with a delicate wall, which is differentiated into a cuticularised exine, and an intine consisting chiefly of pectase. The surface of the pollen-grain is frequently studded with projecting points or warts, or beset with delicate and regularly disposed outgrowths (Fig. 359, B). In addition, thimer spots (Fig. 3.59, $B_{\text {) }}$) or areas defined by a lid-like covering (Fig. 360, l^{\prime})

Fig. 35!.- - P, Pollon-grains of the Heather (folluna vul!uris), cohering in tetrads : F, simple pullen-grains of the lime (Tiles). ($\times 350$.)
 I, section of 1 eollen-grain of Cu-vertita ververien showing one of the liel-1 he areas through whet h the pellen-tubers protrude ($\times 540$).
often occur in the walls of the pollen-grains, they fulfil an important office as cerm-pores in facilitating the processes of fertilisation.

The macrosporangia of Phanerogams constitute the seed-rudiments, and are called ovules. They usually arise on the margins of the carpels, and are either free or entirely enclosed by them. The first case is characteristic of the class of the Gymnosperms ; the second of the Angiosperms.

An ovule (Fig. 361), when ready for fertilisation, is represented

 i, integuments; n, nucellus ; h, chalaza ; f, funiculus: 7 , mph.
by an ellipsoidal body attached to the carpel, usually by a stalk, the ficiculds (f). The central portion of the ovule is occupied by a
club-shaped mass of tissue termed the nucellus (n). Enveloping the nucellus are one or two sheathing coats, the integunents (i), which spring from its basal portion, the so-called chalaza (ch). The integuments are prolonged beyond the nucellus as a short neck traversed by a canal known as the micropyle (m).

Sometimes the axis of the ovules forms a continuous line with the funiculus, the nucellus is then straight (Fig. 361, A), and is said to be atropous (orthotropous). If the funiculus curves sharply, immediately below the ovule, so that both lie side by side, the ovule is inverted or anatropous (B). In this, the most frequent case, the funiculus is in part adherent to the outer integument, and forms a suture or Raphe on the seed along the line of contact (r). Less frequently the ovule is campylotropous (C), and is itself so curved that the chalaza and microphyle do not lie in the same straight line.

As a rule, only one macrospore, the so-called embryo-sac, is formed in each nucellus. Unlike the macrospore of the Pteridophytes, the embryo-sac always remains enclosed in the macrosporangium, and is organically united with it. In a few cases several embryo-sacs are produced in the same nucellus.

The Sexual Generation-Fertilisation and its Results.-The germinating pollen-grain usually undergoes but one division, from which results the formation of two cells of unequal size. The small cell corresponds to the antheridium of the Pteridophytes, and eventually gives rise to two generative cells homologous to the spermatozoa, and serving the same purpose. They are devoid of cilia and non-motile. The larger cell represents the whole vegetative portion of the prothallium and undergoes no further division.

The pollen-sacs by this time have attained maturity, and dehiscing by fissures, less frequently by pores, liberate the pollen, which are then dispersed by wind, or carried away by water, or distributed by means of insects. Although a greater part of the pollen is lost, some of the grains are in this way carried to the special portion of the gynœecium adapted for their reception (p. 281). In the Gymnosperms the micropyle is the receptive portion ; in the Angiosperms it is the stigma or certain areas of the carpels which are specially adapted, by the excretion of a viscid fluid, for the reception of the pollen. In either case, by the protrusion of the intine of the vegetative cell through the germpores, tubular outgrowths, the pollen-TUBes, are formed which, often after traversing a considerable distance, conduct the two generative cells to the egg-cell. The Phanerogams have accordingly been termed by Engler, Siphonogans (Embryophyta siphonogama). Pollen-grains will also develop pollen-tubes in a sugary solution or fruit juice. The direction taken by the growing tubes is probably determined, like the movement of the spermatozoa, by chemotactic stimuli.

A fenale prothallium with one or more egg-cells is produced in the embryo-sac. The process is not the same in Angiosperms
as in Gymmosperms. Fertilisation is effected, as throughout the whole vegetable kingdom, by the fusion of the protoplast of a male generative cell with an eyg-cell (if. p, 6T).

The fertilised egg-cell gives rise to the embryo, which, while still enclosed within the embryo-sac, acquires a considerable size and differentiation. After the embryo has attained a definite stage of development, rarying in different species, its further growth ceases, and parting with its constituent water, it passes into a dormant condition, from which, after the lapse of a longer or shorter period, it emerges only when abundantly supplied with water. The other parts of the ovnle also increase in size, after fertilisation has been effected, and undergo extensive internal modifieation. As a result of the changes incident upon fertilisation, the ovule becomes converted into a sFisi.
'THE DEVELOPMENT OF SEELA, OR KN(LOSEL MACROAPORANGIA CONTAININ゙: EMBRYUS, IS A DISTINCTIVE CHARACTERISTIC UF THE Phaneronams. In conformity with this distinction, they are also termed SEFD-PLANTS or SBERMAPIETES.

The essential parts of the seed, which are always present, are the seed-coats developed from the integuments of the ovule and the embryo (Fig. 362, li). In many cases there also arises, from the

 c, cotyledons: r, vascolatr lumelle of the
 the seerl-coat, after treatmetht with water: r, the swollenf(piclermis: c, brown, st rongly thickerned layer; *, comprossad layer of cells; a, aleur) matus ($\times: 240$).

 the bientyledonous enlorye entieldeed in the
 ouvelopatil lis a thin anil: the white, weab
 bletginems coulownerm (shacleyl), in which the

chalaza of the fertilised ovole, a theshy envelope, the seed-mantle or Aralus. Frequently a parenchyma rich in mutritive material is formed between the enhryo and the seed-coats. When this nutritive tissue, or so-called Abbimin. is derived from the meellus, it is termed the perisperm (Fig. $363, \mathrm{l}$) ; when developed within the embryo-sac, the exdosperm (. 1). If the seed is provided with neither endosperm nor perisperm (Fiy. $362, .9$), the cells of the embryo itself are filled with accumulated reserve material.

The influence exerted by fertilisation is not restricted solely to the formation of the seed. Other parts of the flower also undergo modification and are adapted to new functions, such as the protection and dissemination of the seeds; while those parts which, after pollination, are no longer of service, ultimately wither.

The product of the changes induced by fertilisation in the persistent parts of the flower is termed a fruit. The formation of fruit, as well as the development of seeds, is an essential characteristic of phanerogamic plants. Like the flower from which it is produced, the fruit may also have a more or less complicated structure. In the simplest cases it consists solely of the carpels (e.g. Cruciferae), which, with the seeds, always constitute the essential part of the fruit. Sometimes the flower-axis performs an important part in the formation of the flower, particularly in perigynous and epigynous flowers (e.g. Rose, Apple). Less frequently, the leaves of the perianth are transformed into part of the fruit, as in Spinach, when they form a hard, spinous envelope about the gynoecium. The andrecium, on the other hand, always disappears after pollination has been accomplished.

The once prevalent custom of considering the fertilised gyneecium alone as the fruit is productive of great confusion. According to this view, only the central portion of an Apple, for example, constitutes the fruit; while the larger, peripheral portion, derived from the modified axis, would not be regarded as belonging to i. The definition of a fruit given above is that adopted by Eichler.

The seed, as a rule, falls to the ground, where, after a longer or shorter interval, it changes from its dormant state into an active condition of life. This process is termed germination. The seed-coats are ruptured and the embryo develops, without other interruption than that occasioned by climatic changes, into the seed-producing plant (Fig. 364).

General Classification. -

The Phanerogams are divided into the two unequally large classes, Gymnosperms and Angiosperms. The Gymnosperms are the older class and occupied a more important position in earlier geological ages than at the present time; they now include

Fig. 364.-Thuje occidentalis. A, Seed in langitudinal section; c, cotyledons; v, plumule; h, hypocotyl; r, radicle: $B-E$, different stages of germination. only a few hundred species. In accordance with their greater age, they exhibit a closer alliance to the Pteridophytes than do the Angiosperms,
which comprise the most highly developed of all plants and, predominating both in the number of species and individuals, have produced the chief part of all the vegetation since the Tertiary Period.

Class I

GYMNOSPERMAE

The flowers of the Gymnosperms are always unisexual and naked, or in rare cases (Gnetuceue) provided with a small, insignificant perianth.

The male flowers consist most frequently of long shoots with a larger or smatler number of spiral or whorled scale-like staminal leaves (Fig. $365, A, c^{\prime}$), bearing on the under side two or more pollen-sacs.

Fig. 365.- P'inus P'umilis. A, Longitudtual section of a nearly mature male flower ($\times 10$) : F longitudinal section ($\times 20$), itransverse section $(x: 2)$ of a staminal leaf; I, pllen-gran in Pinus siliestris $(\times 400)$.

The pollen-grains are generally spherical, and, in some genera, are provided with two bladder-like protrusions of the exine, which are filled with air and facilitate their dispersal by the wind (D).

The germinating pollengrain undergoes division and forms two or more prothallium-cells invested with cellulose walls. One of these cells assumes an antheridial character and divides into two generative cells, corresponding functionally to spermatozoa.

The female flowers resemble the male in general structure. The carpels are generally scale-like, outspread,
and never united; they bear a varying number of ovules, most frequently two (Fig. 366).

The embryo-sac enclosed in the basal portion of the nucellus (Fig. 367, $n c$) gives rise by a process of multicellular formation, preceded by free nuclear division, to a parietal cell-layer, and by the increase of this layer to a female prothalliun, which completely fills the embryo-sac (e). Special cells of the prothallium, situated at the apex of the embryo-sac, then become converted into

Fig. 367.-Median longitudinal section of an ovule of Picea vulgaris. e, Embryo-sac filled with endosperm; α, archegonium showing ventral (0) and neck portion (c) ; n, nucleus of egg-cell ; nc, nucellus; p, pollen-grains ; t, pollen-tube; i, integument; s, seedwing.

Fig. 366.-Pinus silvestris. fr, Fertile scale with two ovules (s); m, prolongations of the integument of the ovules; c, mucro; b, cover-scale. (\times i.)
archegonia. Each archegonium consists, as in the Pteridophytes, of a ventral portion containing the eggcell, of a neck, in this case composed of fewer cells, and of a ventral canal-cell (Fig. 367).

Fertilisation is effected in the manner common to all Phanerogams, by the entrance into the archegonium of a male cell from the pollen-tube and its union with the egg-cell (Fig. 368, $B, C)$.

The nucleus of the embryo, arising from the fusion of the male and female nuclei, twice undergoes bipartition, usually in the end of the egg-cell opposite the neck of the archegonium, and thus four cells are produced lying in the same plane ; these by transverse divisions give rise to several tiers of cells.

The four cells of one of the uppermost tiers elongate into four long tubes, and push the cells destined to become the rudiments of an embryo deep into the tissue of the prothallium. From these, by further division, either a single embryo arises or, by the longitudinal division of the embryonic rudiment, four embryos are formed, only

 fullen-tube (11) intu the eagg-cell; C, later stage, showiug the two uuclej in grioess of fistian: I), lower part of "gg, showing two of the four nuclei : F, F, successive stages, resulting fits formation of four rows of cells (two only visible) arranges in tiers: (f, the cells of the dilill tior have elongated and pushed the luwer tier of cells, which have umbergone div ann, inth the endosperin. (\times 90.)
one of which, however, attains its full development. Even when several archegonia are fertilised, as is usually the case, the mature seed contains only one embryo, by which, in the course of its growth, the rudiments of all the other embryos have been supplanted.

The embrion of the ripe seed is provided with two or several
cotyledons. The prothallium, sometimes called the endosperm, envelops the embryo, and serving during germination as a nutritive tissue, contains a large amount of reserve material, such as albuminous substances, starch, and fat. The periphery of the seed is occupied by a hard or, in its outer portions, succulent sheath, which in some cases is surrounded by a cupular fleshy aril.

The fruit resembles the female flower, but it is much larger. The carpellary scales become woody after fertilisation, rarely fleshy and juicy.

The Gymnosperms are all woody plants, with secondary growth in thickness. Their leaves are either simple, and then for the most part needle or scale-like, or they may be pinnate.

Order 1. Cycadinae

This order includes the single family Cycadaceae.-Flowers diœecious, without a perianth, consisting of many spirally-arranged leaves ; staminal leaves with many pollen-sacs ; carpellary leaves usually with two ovules. For the most part, unbranched, evergreen woody plants, devoid of true vessels and having mucilage ducts in all organs. Leaves Large and pinnate (Fig. 369).

Many Cycadaceae resemble the Tree-Ferns not only in their column-like, unbranchedstem and apical rosette of large, pinnate leaves, but also in their dimensions, attaining sometimes a height of 12 m. ; in other cases the stems are shorter, resembling the Marattiaceae more in habit; they are tuberous and partially buried in the ground. The branching is limited to the flowering

Fig. 369.-Cycas revoluta. 1, Female tree ; 2, carpellary leaf with orules; 3, staminal leaf; 4, seed. (After Wossidlo.) region, although sometimes adventitious shonts spring from the stem. In most species (e.g. Cycas) the stem is invested with a thick armour of woody scales, which are in part the basal portions of dead and fallen foliage-leaves, and in part scale-leaves (cataphylls), the development of which alternates periodically with that of the foliage-leaves.

The flowers of the Cycadaceae are always terminal ; the stem,
except in the female Cyras plants, is prolongel sympodially by a lateral branch, which crowds the Hower to one side. The male flowers are cone-like, with numerous scale- or shield-shaped staminal leaves (Fig. 369,3), which bear an indefinite number of pollen-sacs on their under side. The species of C'ycas produce a single, apical, female flower, of which the carpellary leaves are similar to the foliage-leaves, but on a reduced scale (Fig. 369, 2). In other members of this family the apex of the stem terminates in several cone-like female flowers with scale-like leaves. Two or more ovules, larger than a cherry, are borne on each carpel. They are atropous, and provided at the apex of the nucellus with a cavity, the pollfa-chamber, in which the pollen-grains, which have been carried thither by the wind, accumulate preparatory to fertilisation. The seed (Fig. 369, 4) resembles a drupe or stonefruit in that the seed-coats are differentiated as an outer fleshy layer and a hard inner coat. The mealy endosperm envelops a two-leaved embryo attached to a coiled suspensor.

The Cyculaceac are all tropical or sub-tropical plants, and are found in both hemispheres, but with a limited area of distribution of the individual species. At the present time they occur only in small numbers; but in earlier geological periods up, to the Cretaceous, as is proved by the extensive occurrence of fossil remains, they formed a considerable proportion of the vegetation of all zones.

Order 2. Coniferae

Flowers Nakell; the male catkin-like with scale-like staminal leaves, bearing the pollen-sacs on the under side; the female flowers and the fruit of varying and sometimes complicated structure. What is here designated, for the sake of simplicity, a single female flower is also spoken of as an inflorescence. Frefly branching, woody plants hestitute of trie vessels, generally traversed in all parts by resis caval. Leaves simple, usually needle- or scale-shaped.

Many Conifers are tall forest trees of a pyramidal shape, with mastlike, tapering stems, from which spring apparent whorls of horizontal and much-branched lateral shoots. Frequently, when growing thickly crowded together, the lower branches fall off after a time, so that the stem becomes naked for the greater part of its height, and bears only a pyramid-shaped crown of upper branches. These may become finally nore widely ontspread, like the Mediterranean Pines (Pinus Pinea), or spread out horizontally, as in the Brazilian Araucarias (Araucuriu Lrusiliensis.). Comparatively few of the arborescent species deviate from the pyramidal form ; for example, the Cypress (Cunnesus sempervirens.), with its erect branches. The shrub-like species, such as the Junipers, on the contrary, are frequently irrogularly branched and bushy.

The male flowers are either solitary or aggregated in clusters ; they fall after attaining matmrity like the catkins of the Willow and other Amentucear, which they also resemble somewhat in structure withont
morphologically being equivalent to them, since catkins are inflorescences. The stamens, which as a rule are numerous, are scale- or shield-shaped, with two or more, rarely many (as many as twenty in Araucaria), pollen-sacs on their under sides.

The wide variations in the structure of the female flowers and the fruit constitute the distinctive characteristics of the different families into which the order is divided.

Family Pinaceae.-Female flowers, in the form of cones; the ovules arising in scale-like carpels, and ripening to seeds while still enclosed in them ; seed-coats dry, without an aril (Figs. 370-373).

The male flowers are capitate or cylindrical, frequently united in clusters. The female flowers consist generally of a spindle-shaped axis

Fig. 370.-Juniperus communis. a, Male flower; b, fortile shoot with female flower; c, female fower with one scale bent out of place; d, fruit.-OFFICINAL. (After BERG and SCHMidt, all magnified.)
with numerous, spirally arranged, imbricated scales. In the Juniper and its allies the flower is composed of only a few verticillate carpels. In many genera the carpels are simple (Juniperus, Agathis); in others they have a scale-like outgrowth on the upper side; in other cases, again (Abietuideae), two scales are present, lying one above the other, the uppermost of which, the fertile sCale, bears the ovules and is situated in the axil of the other, the cover-SCale (Fig. 366).

According to this description, both seales of the Abietoideae are regarded as parts of a deeply-divided leaf, resembling somewhat a fertile leaf of Ophioglossum. In conformity with this view, the original condition would be represented by the carpels of Agathis. The first beginning of the division is represented by the outgrowths of the scales in the case of the Taxodioideae and Araucarias, and the complete division is represented by the two scales of the Abietoideae. On the other hand, it has also been held that the fertile scale is a flattened branch or cladode, in the axil of a subtending bract, both of which have become fused together in the Taxodioideae and Araucarias.

Two ovules, less frequently only one or a larger number, spring
from the basal portion of the fertile scale, on the upper side; but in the Cupressoideue they are axillary, arising from a cushion-like swelling.

During the modification of the flower in the formation of the seeds, the seales in most cases become lignified, and the fruit, familiarly known as a cone, is thus produced. In some less frequent cases the fruit resembles a berry in form.

Sub-Famiries. - (1) C'upressoilcuc. Leaves opposite or in whorls; carpels simple; ovules axillary, erect. Junipcrus (Juniper), C'upressus (Cypress), Thuja (Arbor Vitae). (2) Taxolioilcac: Taxorlium (American Cypress), Sequoia. (3) Araucarionlcue: Araucaria, Agathis. (4) Abictonilcuc. Leaves spiral; carpels divided into cover- and fertile scale; ovules attacherl to the fertile scale, inverted. Alics (Silver Firs), Picca (Spruce Firs), Larix (Larches), Pinus (Pines).

Representatine Species.-Juniperus communis (Common Juniper, Fig. 3ī0). Shrubs with needle-shaped leaves arranged in whorls of three, and having a resinons

Fig. 371 .-Abies ullut. a, Male flower ; fand h, sinıroplyylls; b, cune; c, carpel, vieweal from lwhow (dorsal surface), showing the fertile and coverseale; d, the same viewed from abouv (ventral surface). (After lBeme and Scumut ; u, c, d, wat. size: l, reducerl.) bloom; female flowers consisting of three scales, each with an axillary ovule; scales of the ripe fruit sucenlent and united, forming a berry: Abics ulba, the silver Fir (Fig. 3i1). Lofty forest trees upwarls of 65 m . in height, with a silver-grey bark when old; crown pyramid-shapeed, with horizontally extending, elongated branches ; leaves needte-shapred, flattened on the under side, with two bluish-white longitudinal lines in addition to the middle nerve, displaced on the lateral lirancles in two comb-like rows on each side of the axis. The flowers are axillary and appear in May at the tips of the branches; the male flowers are cylindrical, some 20 mm . long, and bear numerous spirally-arranged staminal leaves, each having on the under site two pollen-sacs opening by a longitudinal slit (Fig. 371, a) ; the female flowers are oblong-cylintrical, alwut 6 cm . long, and consist of closely aggregated cover, and fertile soales arranged spirally on a spindle-shaped axis. The cones (b) are erect, their pointed cover-seales are much narrower but longer than the fertile scales (c, d), and, in consequence, they are visible externally. At maturity the seales, together with the sects (c, d), become detachel from the axis and fall to the ground. P'ica cxeclst, the Norway spruce, resembles the silver Fir in size and apparance. The neelles are four-sided, of a uniform colour, and point in all directions. hut frequently hending to the right and
left, appear as if arranged in comb-like rows. The cones are terminal and pendent ; at maturity the seeds drop out and the cones then fall off entire, retaining their scales. The cover-scales are very small, and not visible externally. Pinus silvestris, the Scotch Fir, a forest tree upwards of 40 m . high with a dome-shaped crown. The needles are borne in pairs on greatly shortened lateral axes, or dwarf-shoots (spurs), provided with scale-like leaves. The male flowers (Fig. 372, 1, a), externally like those of Abies, spring closely crowded together from the summit of elongated shoots which, by continued growth, become prolonged beyond them, producing leafy dwarf-shoots. The female flowers are at first spherical and of a reddish

Fig. 37..-Pinus silcestris. 1, Branch with male ($($) and female (b) inflorescences ; c, cone ; cl, needles: 2, staminal leaf; a, viewed from the side; b, from below: 3 , carpel; a, viewed from above; b, from below: 4 , fertile scale with the two seeds (a), seed-wing (b), seed (c):5, seed in longitudinal section.-OFFICINil. (After Wossidlo.)
colour $(1, b)$. The cones $(1, c)$ have very small cover-scales, but long woody fertile scales, thickened at the ends in rhombic areas, the apophyses. As in Picea cxcelsa, the cones fall off entire, after the seeds have fallen. Larix europaea, the European Larch, is particularly distinguished by its deciduous leaves, which are borne in clusters on short spurs.

Geographical Distribution.-The Pinaceacinhabit chiefly the North Temperate Zone, where many species form by themselves widely extended forests. In countries bordering on the Northern Pacific, particularly in China, Japan, and California, they exhibit their most raried development. With the exception of the Australian Eucalyptus, the giant trees of California, Sequoia gigantea, with stems over 100 m .
high and 1:2m. in diameter, attain the greatest height of any trees in the work. Germany possmses only a few species of Conifers, some of which, however (c.g. l'inus silvestris, l'ica cxalsu), oceur so abundantly that they constitute a large part of all the vegetation. The Silver Fir forms large woods in the Vosges and the Black Forest, but otherwise is rare. The common Juniper is also everywhere common on sandy soil. I'inus mumtunu, l'inus C'mbra (with three or live needleon each spur), Lurix curopura, and Junipirns satinu are also found in Germany. but except I^{\prime}. montana, they oceur only in the Bavarian Alps.

Many l'inaceuc are cultivated in Germany onaccount of their beauty or economic value. In addition to the indig'nous species, the following examples may be mentioned : Pinus Strobus, Weymouth Pine (North America): Thuju occulentalis, American Arbor Vitae; Colrus Libent, Cedar of Lebanon; various species of Aruncaria, from the temperate zone of the sonthern hemisphere.

Ponsosots.-Juniperus Subina, a monacious shrub with hroom-like loranching and scale, not needle-shaped. leaves. It grows wild in the $\mathrm{Alp}_{\text {p }}$ and is frequently cultivated in gardens (Fig. 373).

 1.12TID.A. From different species of pines, as I^{\prime}. siliestris. I^{\prime}. anstralis, I. Lariaig

Colophonilis, Ol. terebinthinae, Pix liquida : from Pinus Pumilio, Ol. Pini pemilionis.

Family Taxaceae.-Formation of cones imperfect ; the ortles project beyond the carpels, or the latter may be absent ; the ripe seed possesses an aril, and sometimes also a succulent seed-coat (Figs. 374, 375).

Tanus baccata, the Yew (Figs. 374, 375), is an evergreen tree devoid of resin, sometimes attaining a height of 10 m . The shoots are all elongated and bear flat needles, arranged right and left, in two ranks. The male flower is axillary and consists of ten shield-shaped staminal leares united in a spherical head surmounting the apex of a short stalk beset with scales below. The female flower also terminates the apex of a scaly, axillary stalk. The stalk, howerer, in this case is composed of a lower portion ending blindly, the primary shoot, and an upper lateral secondary shoot, which terminates in a single erect ovule. Carpels are wanting. The ripe seed is enclosed in a red cupular aril (Fig. 274).

Fig. 374.-Tuxus baccutu: branch with ripe seeds

Geographical Distribetion:The Taxaccae grow for the most part in the southern hemisphere. Ginkgo biloba (Salisburya adiantifolia), sometimes found in cultivation, is indigenous to Easterı Asia. In appearance it resembles a foliage tree, and is characterised by its fanshaped, deciduous leares, which are cleft dichotomously. The seeds are about the size of a plum and have a succulent coat.

Porsonots.-The young shoots and the seeds of Taxus baccata; the red enveloping aril, howerer, is harmless, and often eaten by children.

Order 3. Gnetineae

One family : Gnetaceae.-Flowers with Perigone ; woody plants, without resin, and with TRUE vessels.

In the presence of a perigone, which, however, is rery small and insignificant; in the indication of a union of the sexes, in an inflorescence in the case of Gnetum, in a female flower of W Teluitschict: in the possession of true ressels in the wood and sometimes of reticulately-reined leaves (Gnetum), the Gnetuceae show a resemblance to the Dicotyledons, and may accordingly be regarded as the most highly developed of all the Gymnosperms.

The three genera included in this family differ considerably from each other.

The species Epheclra, found in the Mediterranean region, are shrubby plants with slender branches devoid of foliage-leaves. The genus Ginetum (Tropical Asia and America) comprises trees and lianes with large reticulately-veined leaves. The

 size) ; 1 , leaf with axillary, fertile show ($\times 2$) ; C, metian longitudinal sectom of a priam and secondary shoot; r, veretative cone of the primary shoot ; a, rudiments of the aril: , rudiment of the embryo-sac ; n, mecellins ; i, integument ; a, micropyle ($x+5$) - I'olsovols.
only species of the third genus, Weluitschia mirabilis (South-west Afriaa, one of the most wonderful of all plants, has a thick, short, ovoid stem, which gives rise to only two band-shaped leaves over a metre long; as they continue to grow at the base, the leaves gradually die at the apex, and are torn into segments.

Clasis II

ANGIOSPERMAE

The Angiosperms constitute by far the greatest part of the vegetation of the earth. All grasses, herbaceous plants and shrubs, and,
with the exception of the Ferns, Horse-tails, and Club Mosses, all our foliage trees belong to this class. Varying in size from plants like Wolffia arrhiza, no larger than the head of a pin, to the Eucalyptus trees of Australia with a height of $140-150 \mathrm{~m}$., they exhibit a great diversity of external form, greater than in any other class of the vegetable kingdom.

The greatest variety of form appears, however, in the structure of the flowers. It is the flowers that distinguish the Angiosperms so markedly from the Gymnosperms, and, together with the fruit and seeds to which they give rise, they furnish the most available means of classification.

Little of general application can be said concerning the vegetative organs; they will be considered more in detail in treating of the separate sub-classes, orders, and families. Decided differences between the external differentiation of the Angiosperms and the Gymnosperms are not apparent. As regards their internal structure, the Angiosperms, in contrast to the Pteridophytes and almost all Gymnosperms, possess true vessels, except in the case of certain Magnoliaceae, which in their secondary growth resemble the Conifers (cf. p. 128).

The Flower

While the Gymnosperms have only simple, inconspicuous flowers; in which a perianth is either entirely absent or only represented by scale-like cataphylls, the flowers of the Angiosperms have a more complicated and varying structure, and in most cases are provided with a well-developed, coloured perianth. This difference in the character of the flowers of the two classes is due, in great measure, to the modifications which have arisen in the flowers of the Angiosperms during their transition from wind- to insect-pollination (cf. p. 281). The involuntary intervention of insects in transferring the pollen from flower to flower disturbed the formative force of the flowering region, and called forth that wonderful degree of adaptation displayed by the flowers of so many Angiosperms, rendering them the most remarkable structures in the vegetable kingdom.

Although the influence of the insect-world upon the formation of the flowers is perceptible in the great majority of Angiosperms, the pollination of a few of the lower groups is still effected by the wind ; others again have returned to that condition, or have, although rarely, resorted to self-pollination. In such cases the flowers are inconspicuous and odourless, for both colour and perfume are only of use to plants as a means of enticing insects. While the possession of conspicuous or sweet-smelling flowers is a sure indication of the Angiospermic nature of a flower, it must not be concluded, conversely, that plants with insignificant flowers do not belong to the Angiosperms.

Morphology of the Flower.-In contrast to the Gymnosperms,
the Angiosperms have for the nost part hermaphrodite, cyclic flowers provided with a perianth. The perianth generally consists of two whorls of floral leaves unlike in appearance, and distinguishable as calyx and corolla. The calyx, the outer whorl of the perianth (Fig. $357, k$), functions, as a rule, as a protective organ to the imner parts of the young flower while still in process of development. The leaves of the calyx, or sepals, accordingly appear early ; they resemble foliage-leaves in colour and structure, as it wonld be of no advantage to the young flower, sometimes, on the contrary, a detriment, if they were too conspicuous.

The corolla (Fig. 357, c), on the other hand, is often brightly coloured, so that, even from a distance, it is clearly distinguished from the green foliage. At first concealed in the bud, either enclosed by the calyx or of a green colour, the corolla only attains its full purpose and development when the sexual organs have arrived at maturity and require the co-operation of insects. This condition is indicated by the opening, or ANTHESis, of the flower. The corolla functions not only by means of its colour, but also frequently by its shape and position (rf. p. 283), in the service of pollination. The leaves of the corolla are termed petals; the mode of their arrangement in the bud (estivation, see p. 3i) is of systematic value.

While in most flowers of Angiosperms the perianth is double, consisting of a green calyx and a corolla of another colour (heterochlumyleons), there are exceptions to this rule. Sometimes the flowers have only a simple perianth (monochlumydeous), or both whorls of a double perianth may be similar (homochlumydeous). In such cases it is customary to speak of a perigone, designating it as calycoid (sepaloid) when, as in the Nettle, it is green or insignificant, corollaceous (petaloid) if it is conspicuous and coloured like the simple floral envelope of Clematis or the double one of C'oldicum or C'rechs. The separate leaves of the perigone are termed petals.

As an additional exception to the usual structure, the less frequent case may be mentioned in which, as in Aconitum, the calyx is highly coloured while the corolla is inconspicuous.

The leaves composing the whorls of the perianth may be free or united. In the former case the perianth is spoken of as polyphyllous (also chorisepalous, choripetalous, dialysepalous, dialypetalous); in the latter case as gamophyllous (also gamosepalons, gamopetalons, sympetalous). The upper margin of a whorl of united perianth-leaves is, as a rule, divided into as many teeth or lobes as the number of leaves which enter into its formation.

The use of the term gamophyllous does not imply that the leaves were originally separate and have subsequently become coherent in the course of their ontogenetic development. On the contrary, the leaves forming such united perianthwhorls have all arisen from one undivided wall-like protuberance of the floral axis.

Flowers unprovided with an enveloping perianth are termed NAKED (achlamylleous); such are of rare occurrence among the Angiosperms (e.g. the Grasses, and Piperacene).

The andrgecius of most Angiosperms consists of filiform, staminal leaves, the stamens, which bear no resemblance to ordinary foliage-leaves. In each stamen there may usually be distinguished a slender stalk-like portion, the filament, surmounted by an anther containing four pollen-sacs. The anther generally consists of two swollen halves termed the тHEC.玉, parallel to the axis of the filament, and each containing two pollen-sacs (Fig. 376).

Each theca usually dehisces by a longitudinal slit so situated along the partition walls between the two pollen-sacs that it is common to both (Fig. 358, A). In less frequent cases the dehiscence of the anthers is effected by means of pores or by openings with valves. According to the position of the thece, whether on the inner (ventral) or outer (dorsal) side, the anthers are designated respectively INTRORSE or extrorse.

The part of the anther uniting its two theca is termed the consective. It usually

Fig. 3-i.- A and B, anterior and posterior view of a stamen of Hyoscyamus niger; f, the filament; p, anther; c, connective (magnified). consists merely of a thin plate of tissue (Fig. $376, C^{\prime}$) ; sometimes, howerer, it is more distinctively developed, as in Salvia (see Fig. 219), where it is rod-shaped, projecting obliquely from the apex of the filament, or as in the Violet and some of the Ericaceae, in which it forms horn-like spurs.

The pollen-grains are variously shaped, dry and smooth where pollination is effected by the wind, but more or less sticky or spinous when adapted for entomophilous pollination. In some cases they cohere in tetrads or in larger groups (Fig. 359).

The stamens, although generally quite free from each other, are sometimes coherent into several bundles, as in Hypericum; or, as in Ononis, into a tube, or into a column, as in the case of Cucurbitu. The cohesion may extend throughout their whole length (e.g. Cucurbita), or it may be restricted to the filaments (e.g. Malrace(ce).

By the branching of the stamens an appearance is produced similar to that resulting from their fusion. It is often only possible to determine which may be the case by a comparative study of their mode of development in allied forms. Sometimes the branched character of the stamens is indicated by the fact that the anthers each contain only one theca, and appear to be halved. Undoubted examples of branching are afforded, for instance, by the Howers of Picinus, with tree-like, branching stamens, or by those of the Malracene, in which the stamens are coherent below and branched above (Fig. 3iT).

The androcium springs directly from the floral axis, or it is adnate to other portions of the flower, in particular to the perianth.

Great weight was formerly attached by systematists to the mexte of insertion of the androcium. It was then eustomary to distinguish Thalamifurae, Corolh.

Fli. 37\%.-Althere officinalis, flower cut through longitudinally ; ", ppicalyx ; b, ealyx ; c, corolla: d, aulroceiun. (After 13eza; and schmat, magniticel.) Hurue, or Culycifturue, atcorling as the stamen: were inserted on the receptacle, the corolla, or the calyx. Colyciflorue, as a matter of fact, do not occur, as in such cases the supposed calyx is in reality the expanded floral axis.

The term stama(n) Ch is applied to sterile members of the androcium which produce no pollen, and are either abortive and functionless ($5 . \%$ Limum) or are petaloid in appearanee, and serve as organs of attraction (e.!. Zineriberaceal). Phylogenetically they are to be regarded as derived from normal stamens.

The griocection is always the terminal structure of the flower, occupying the apex of the floral axis. It is either composed of separate members, Apocarpou's (Fig. 3 i , A), or the members are united, sricarpous ((B, I)). In the first case the margins of each carpel are so joined together that each forms a distinct ovary or closed cavity containing the ovules. The carpels of a syncarpous gyn-

 (Aftor BE:t, aul Sommint, tuagnitient.)
weium, on the other hand, are coherent and form collectively a single ovary, which may be either plurilocular when the coherent margins of the carpels extend to the axis, or unilocular if the carpels cohere simply by their edges, and do not turn inward, or only slightly:

The double walls or dssepmests of a phurilocular ovary, formed by the inwardly projecting margins of the coherent carpels, are dis-
tinguished as TRUE, in contrast to the FALSE DISSEPIMENTS which, in rare cases (e.g. Latiatae), are produced by ingrowths from the internal surface of the carpels.

The ovary is prolonged upwards as a neck-like STYLE, expanded at the apex into a STIGMA, which may be of various shapes. The whole organ, consisting of ovary, style, and stigma, is termed the PISTIL.

A completely syncarpous gyncecium possesses but one orary and one stigma (Fig. $378, C^{\prime}$). The cohesion of the carpels may, however, be restricted to the basal portions in such a way that the orary bears as many separate styles, or a style as many stigmas, as the number of carpels united in the orary (\dot{B}, D). The reverse case, in which only the upper portions of the carpels cohere, and not the lower, occurs only in the Apocynaceae and Asclepiadaceue.

The style exhibits great variation in length and thickness. It is, for example, long and filiform in Crocus, short and thick in Tulipa. It

A

l

C

Fig. 379.- A, parietal ; B, axile; C, free-central placentation. A and B in transrerse section, C in longitudinal section. (Diagrammatic.)
is either traversed by an axial canal or filled with a loose parenchyma. The stigma may be disc-shaped, ellipsoidal, capitate, bifurcate, or more rarely, as in Iris, corollaceous. Its surface is generally relvet-like, covered with papillæ, and is moist and sticky.

The orules are always enclosed in the cavity of the orary. They are developed, as a rule, from the margin of the carpels, and are therefore in unilocular oraries parietal (Fig. 379, A); in plurilocular, axile or axillary (B).

Sometimes a departure from this mode of development of the orules is exhibited, and the placentation instead of being marginal is superficial; the ovules are distributed, as in Butomus, over the whole inner surface of the carpels. In other cases, again, the placentation is free-central and the ovules appear to be produced from the floral axis itself, as in the orders Centrospermae, so called on account of this peculiarity, and in Primulinae (Fig. 3i9, C). In the last case, the anomalous position of the orules is attributed to the disappearance of the dissepiments, or to their coalescence and displacement.

The position assumed by the ovules themselves in the cavity of the ovary may be erect (e.!. I'olygomum, Fig. 388), hanging (e.?. C'mbelliferue, Fig. 380), (r Hobizostal (ヶ.!. Ilelphinium, Fig. 381). The

Fig. 3:0.-Ovary of Fiwniculum offrinule in longitudinal section. (After Brerf; and sicumut, magnitiel.)

Fig. 3-1.- Tranwierme aection f fan ovary of Ielphiefers Ajais, showing ovule placed horizontally: s, ovule; μ, placenta: 0 , wall of ovary: r, vamcular bumlles. ($\times 1$ 1s.)
raphe is ventral when it is turned towards the placenta, dorsal when turned away from it.

The flower-AXis (recertacle, torus) is usually thicker than the flower-stalk, of which it occupies the apex. It frequently expands by intercalary growth between the androcium and gyncecium, into a disc, cupular, or urn-shaped body, which affects essentially the general appearance of the flower. In the simplest cases the flower-axis is club-shaped, and the floral whorls succeed each other in tiers. Such flowers are said to be inferior or Hypoginous ; their ovaries, superion (Fig. 38.2). When the axis is developed as a concave receptacle, so

 upon a club-shaped receptache. (Atter Baillos, ragoithet.)
that the gynocium is inserted at the same height as the androcium or lower, but free and not coalescing with the axis, the flower is
 is atherent to the axis, it is described as infletors; the flower as superior or eplisivots (Fig. 383, 3). Only the internal portion of an inferior ovary formed by the carpels is accordingly homologous, with a superior or half-inferior ovary. Transitional forms between these
different modes of insertion of the ovary frequently occur ; thus a flower may be slightly perigynous (many Leguminosae) or imperfectly epigynous.

The flower-axis can, in addition, by the formation of outgrowths of

1

Fig. 383.-Different flowers belonging to the family Rosaceae, cut through longitudinally. 1, Potentilla palustris, hypogynous; 2, Alchemilla alpina, perigynous; 3, Pirus Malus, epigynous. (After Focke in Nat. Pflanzen-familien, magnified.)
different natures, essentially modify the structure of the flower. These accessory structures are sometimes large and corollaceous, as in Passiflora (Fig. 489), but they are usually inconspicuous and confined to the DISc. The latter constitutes either a continuous ring or a circle of glands or scales, occupying generally a position between the andrœecium and gynœecium (Fig. 384). The disc usually secretes a sweetish fluid, and is then termed a nectary, in consequence of its biological function. Other parts of the flower, the petals for instance, may be developed as nectaries (Aconitum, Fig. 4(2).

Arpangement and Number of the Floral Leaves. - In some Angiosperms, as in most Gymnosperms, the floral leaves are all or in part arranged spirally. Flowers in which the spiral arrangement of the leaves prevails, as, for example, is generally the case in the Ramunculaceae, are termed ACYCLIC.

In a large majority of Angiosperms the flowers

Fig. 384.-Flower of Vinus vinifera. a, Calyx ; b, corolla; c, disc-glands between the stamens; d, e, gynœcium. (After Berg and Schmidt, magnified.) are CYCLIC, and have their leaves arranged in whorls. Most frequently five successive whorls are present, alternating regularly with each other. Of these, two belong to the perianth, two to the andrœecium, and one to the gynœcium. Flowers constructed after this type are described as Pentacyclic (Fig. 385).

The number of parts in a whorl is usually the same in the perianth and androcium - in Monocotyledons generally three, in Dicotyledons five. This uniformity in the number of members in the whorls may also extend to the gynœecium ; but, as a rule, particularly
in Dicotyledons, the number of carpels is smaller. The number of members in the whorls of the perianth, androcium, and gynocium is indicated by the terms di, tri, tetra, pentamerous, ete.

A TYPICAL ANGIOAPERMOUS FLOWER IS CUNSTRUCTED OF FIVE ALTERNATING ISOMEROUS WHORLS, OF WHICH TWO BELONG TO THE PERIANTH, TWU TO THE ANIRRは:CIUM, AND ONE

Fig. 38.5, - Itiagram of a pentacyelic flower (Lilium). TO THE GYNECIUM. Flowers varying from this type have either continued in an undeveloped stage, as those of the amentaceous plants, or, like the acyclic flowers, they belong to a family which has been separated from the main line of descent, or they have been subsequently modified from the normal type in the course of phylogentic evolution, like the flowers of the Oichidacen and Labintue.

Only such rariations from typical Angiosperm flowers are mentioned in this general summary as may have arisen by subsequent modification. To avoid repetition the other special cases will be considered later in the detailed description of the single flowers.

A simple and not infrequent variation from the normal structure is presented in flowers in which the stamens of the onter whorl are opposite the petals, and those of the imer whorl opposite the sepals. An andrecium of this character is termed obDIPLostramonots, as distinct from the typical mplestrmosotis arangement of the stamens.

Another of the more common variations from the original type is due to the MULTIPLICATHN OFTHE WHORLA (pleiotaxy), often occurring in the androcium (Kose), less freguently in the perianth (Berleris), very rarely in the gynecium (I'unica Grunatum).

A variation of even more frequent oceurrence results from the hamition of the number of whorls (uligotaxy). This is often shown in misexual flowers, although by no means in all cases, as the missing organs may be represented by reduced and functionless parts, as in the similar case of the mammary glands of male mammals. Thus in the female flowers the place of the stamens is not uncommonly oceupied hy sterile staminodia. In hermaphrodite Howers also a reduction of the mmber of whorls is often shown. The ocenrence of flowers with a simple perianth has already been mentioned; Howers with a simple androcinm are still commoner.

Such examples camot, in all cases, he attributed to a reduction from the normal pentacyelic type. On the contrary, they often represent a primitive, more simple type ($\% \%$ the flowers of the Nettle and its allies). The absence of a whorl may only be referred to its suppression, when such a conchsion is corroborated by other evidence, such as, for example, may he derised from a comparison of allied forms, as in the case of the Orchiductur, in which the androcium is
represented sometimes by an outer, sometimes by an inner whorl, while the perianth and gynœcium at the same time exhibit the highest stage of development.

Flowers in which the andrœecium is formed by a single complete whorl are said to be haplostemonous.

In addition to the number of the whorls, the number of the members composing the single whorls is subject to variation, and is due similarly, in many if not in all cases, to their subsequent diminution by reduction or to their multiplication by splitting.

A decrease in the number of the floral leaves of a single whorl (oligomery) is most frequently met with in the gynœecium, which, in flowers with a pentamerous perianth and androecium, has usually but three or even two carpels. Next to the gynœcium a suppression of one or more members of a whorl is most frequent in the androecium, while the perianth rarely consists of incomplete whorls (Polygala). Multiplication of the members of a whorl (pleiomery) occurs most often in the andræcium, less frequently in the gynœecium (Malva), still less frequently in the perianth (Dryas octopetala). Flowers with incomplete whorls, resulting unquestionably from suppression, are met with, for example, in the family Scrophulariaceae, in which the genus Verbascum possesses five fertile stamens, while in Scrophularia the posterior stamen is represented only by a staminodium, and in most of the other genera it is altogether absent. The origin of a pleiomerous whorl from one consisting of fewer members is equally well shown in the flowers of Tilia, where the numerous stamens are arranged in five groups, which occupy a corresponding position to the five simple stamens of allied forms.

The Symmetry of the Flower.-The flowers of Angiosperms are sometimes ACTINOMORPHIC (RADIAL), sometimes ZYGOMORPHIC (MONOSYMMETRICAL), or, more rarely, asymametrical.

Radial flowers exhibit probably the more primitive structure, since in them the arrangement of the members varies less from that of the vegetative region. The derivative origin of zygomorphic flowers is apparent in their more complicated structure, metamorphosis, and reduction. Zygomorphism is always indicative of a high degree of adaptation to insect-pollination.

A flower is longitudinally zygonorphic when the plane of symmetry coincides with the median plane of the flower, viz. the plane passing through its axis and the axis of the main stem (e.g. Orchidaceae, Labiatae) ; ObliQUely zygonorphic when it cuts the median plane at an acute angle (Aesculus) ; transversely zygonorphic when it cuts the median plane at right angles (Fumariaceae). The first is by far the commonest. Occasionally a plant which otherwise possesses only zygomorphic flowers produces others of a radial structure. Such exceptional radial flowers are termed peloria, and are regarded as the result of reversion to the primitive type.

Floral Diagrams and Formulæ.-The number and arrangement
of the floral leaves are most clearly represented by means of diagrams or formule. The manner in which such diagrams may be constructed has previously been explained (p. 39). In a floral formula the single whorls are indicated by letters, the number of their members by corresponding fignes, or, when their number is large or indefinite, by α. The mion of parts is expressed by (), superior and inferior ovaries by a line above or below the corresponding figure, zygomorphism by \uparrow.

Of the letters employed in such formulie, $\mathrm{K}=$ calyx, $\mathrm{C}=$ corolla, $\mathrm{P}=$ perigone, $\mathrm{A}=$ androcium, G -gywcium. The following are examples of floral formule.

Lily	$\mathrm{P} 3+3, \mathrm{~A} 3+3, \mathrm{G}(3)$.
Buttercup	K \%, C 5, A κ, G \%.
Apple Blossom	K 5, C $5, \mathrm{~A} x_{\sim}^{\text {, (}}$ (5).
Irigitalis:	

Fertilisation and its Results

The Sexual Generation.-The male prothallium of the Angiosperms, like that of the Gymmosperms, consists of a small antheridial and a large regetative cell, not separated, however, by a partition wall (Fig. 3s6). The antheridial cell divides ultimately into two maked generative cells.

The ovule contains one embryosac, rery racely more. Within the embryo-sac only six cells are produced, and not, as

Fle: 3sti, - Truleseantin riryinicu. Pollongrain aftor division into an antheridial and vergetative ewll. ($\times 5.51 \%$) in the Gymmosperms, an enclosed tissue consisting of numerous cells. These six cells, which remain naked mutil fertilisation takes place, arrange themselves in two groups at the poles of the embryosac, each group consisting of three cells.

The group of three cells at the micropylar end of the embryo-sac constitutes the ficio-Aprabatis (F゙ig. 387). It comprises the EGG-ctill and two scoserimise, so designated hecause, although remaining sterile, they are apparently of assistance in the fertilisation of the egg-eell. The colls at the other pole of the embryo-sac fultil no apparent function. They are termed Antironal celdis.

Derg-apparatus and antipolal cells are together regarded, probably correctly, as a very reduced prothallimm, homologous with the undenbed prothalium developel in the emhryosac of Gymmosimerms. In suppert of this view, howerer, there is at yet in phylogenetic evilence. The development of the cells takes phace somewhat as follows.

The nucleus of the embryo-sac divides into two. Of these, one moves towards the upper micropylar pole, the other towards the lower or chalazal pole. Each nucleus then gives rise by repeated division to four nuclei, around three of which protoplasm becomes aggregated, while the remaining two nuclei, withdrawing towards the centre of the embryo-sac, meet and fuse into the definitive or secondary nucleus of the embryo-sac.

The three naked cells at the micropylar end develop into the egg-apparatus, the three at the chalazal end into the antipodal cells.

Fertilisation.-From the pollen-grains conveyed to the stigma by the wind or by means of insects, pollen-tubes are developed which

Fig. 387.-Orchis pallens, ovnle. f, Funiculus; $i i, i c$, integuments; m, micropyle; r, raphe; l, air-cavity; os, egg-apparatus; a, antipodal cells; c, embryo-sac with nucleus, n. (Magnified.)

Fig. 3ss.-Ovary of Polygonum Convolvelus during fertilisation. $f s$, Stalk-like base of ovary; $f u$, funiculus ; che, chalaza; $n u$, nucellus; mi, micropyle; $i i$, inner, $i e$, outer integument; e, embryo-sac; $c k$, nucleus of embryo-sac ; ci, egg-apparatus; an, antipodal cells; g, style; n, stigma; p, pollen-grains; $p s$, pollen-tubes. ($\times 48$.)
penetrate the canal or loose parenchyma of the style (Fig. 388). The tubes increase in length until one comes in contact with the synergidæ (Fig. 389). One of the generative cells is then transferred through the synergidæ into the egg-cell, whereupon fertilisation is effected, as in all cases, by the fusion of the two cells. After fertilisation has taken place, the synergidæ undergo dissolution, apparently being absorbed by the fertilised egg. The egg itself becomes invested with
a cell-wall, and ultimately elongates into a tube, the proembryo, which divides transversely into one or more cells.

Development and Structure of the Seed

The embryo is developed, for the most part, from the lowest cell of the proembryo derived from the fertilised egg (Fig. 390). It

Fig. 389.-Funkia ovata. Apex of meellus, showing part of embryo-sac and egg-apparatus. A, Before, B, dming fertilisation; 0 , egg-cell ; s, synergide ; t, pollen-tube ; n, nucellus. ($\times 600$.)

Fig. 390.-Stages in the development of the embryo of Capsella bursa pastoris (A-D). h, Hypophysis ; et, snspensor ; c, cotyleclons; p, phmule. (After Manstein, magnified.)
is represented at first by a multicellular sphere terminating the filiform suspensor, and becomes differentiated, generally before the seed is ripe, into a radicle, hypocotyl, and one or two cotyledons. There are
cases, however, where the embryo retains in the ripe seed the form of an undifferentiated sphere (e.g. Orobranche, Orchidaceae).

The number of cotyledons developed is, as a rule, constant and furnishes the most characteristic, although by no means the only method of distinguishing the two divisions of the Angiosperms, which are accordingly termed Monocotyledons and Dicotyledons.

The embryo shows so much rariation, not only in both divisions of the Angiosperms, but within the different families, that no general scheme of embryonic development can be given. In many Dicotyledons, for example in Capsella bursa pastoris (Fig. 390), where the development of the embryo is particularly easy to follow, the end of the proembryo farthest removed from the micropyle is converted into a row of cells by the formation of transrerse walls. The terminal cell expands into a sphere, and, undergoing division, becomes divided into octants. Each octant cell is further divided by periclinal walls into an outer and an inner cell. The outer cells form the epidermis; the inner, by continued division, give rise to the fundamental tissue and the rascular bundles. The upper half of the sphere develops into the cotyledons and plumule, the lower half into the lypocotyl and root. The root is derived in part also from the hypophrsis, a cell resulting from the transverse division of the next adjoining cell of the suspensor.

The cotyledons first appear as protuberances from the upper half of the sphere. The plumule does not become differentiated until later.

In Monocotyledons the single cotyledon is usually developed at the apex of the embryo (Fig. 391) ; but in some cases (Dioscoreaceae) it arises laterally, as in the Dicotyledons.

Advestitiots embrios are sometimes produced by both Dicotyledons and Monocotyledons (e.g. Funkia orata) by the budding of cells of the nucellus in the neighbourhood of the egg-apparatus. The fertilised egg, as a rule, does not then continue its development (Fig. 216). In the case of Coelcbogync, ad rentitious embryos are formed

Fig. 391.-Young embryo of Alisme Ilantayo. C, Cotyledon ; r, growing point. (After Hanstein, magnified.) even when no fertilisation of the egg has taken place. Seeds in a ripe condition, which contain several such adventitious embryos, afford examples of poliembriony. Orules provided with several embryosacs do not exhibit polyembryony, as in that case only one embryo attains full development.

During the development of the embryo a parenchymatous tissue, termed the endosperin, is formed within the embryo-sac, usually completely filling its remaining free space; this arises by a process of multicellular formation preceded by free nuclear division (p. 66), or by repeated cell-division. In some species of plants the endosperm is completely disorganised and supplanted by the growing embryo ; in other cases it occupies a larger or smaller part of the ripe seed.

Seeds, when ripe, consist of the seed-coat (testa and tegumen), embryo, and nutritive tissue. The nutritive tissue is not, however, found in all cases.

The sefd-coat is variously constructed, usually hard and dry ; it is sometimes invested by a fleshy aril developed from the chalaza. The nutritive tissue, or so-called albumen, either takes the form of a perisperm derived from the nucellus (Fig. 363), or, as is more frequent, it is represented by the endosperm. A seed may at the same time be provided with both a perisperm and an endosperm. Both tissues usually consist of a thin-walled parenchyma, the cells of which are packed with reserve material, aleurone grains, starch, fat, etc., to serve for the nourishment of the embryo (Fig. 392). In the

Fig. 392. - Part of section throngh one of the cotyledons of the Pea, showing cells with reserve material. am, Starch grains; al, aleurone grains ; p, protoplasm ; n, nucleus; m, cell-wall ; i, intercellular space.

Fig. 393.-Cell from the endosperm of Phytelephas macrocarpa, with reserve cellulose. (x 340.)
absence of special nutritive tissues this function is performed by the cotyledons, which then exhibit a similar structure. Sometimes, as in the endosperm of Phytelephas macrocarpa (Fig. 393), valuable technicallyas vegetable ivory, the cell-walls of the mutritive tissue are enormously thickened ; they consist of nearly pure cellulose, and are converted during germination into soluble fool materials.

On germination the cotyledons may remain within the seeds in the ground (hypogean, e.y. in the Pea), or, appearing above the surface of the soil, they may unfold and turn green (erigfan, e.g. the Lupine). In the latter case they are frequently more or less leaf-like in character, but they always differ in form and structure from the ordinary foliage-leaves.

The Fruit

The fruit of Angiosperms has a more varied and complicated structure than in the case of Gymnosperms, whose flowers suffer but slight modification in formation of the fruit.

The fruit possesses a different structure according as it is derived from an apocarpous or a syncarpous gynoecium. In the first case the ripe carpels are separate and are termed fruits ; in the second the carpels continue united, at least until the maturity of the fruit. A fruit of a more complicated structure occurs when other members of the flower than the gynœcium take part in its formation. Aggregated fruits of this nature have been already described (p. 433).

That part of the fruit enveloping the seeds, consisting sometimes of the carpels alone, sometimes of the carpels and the adherent receptacle, is termed the Pericarp or frutt-wall. The pericarp frequently appears to be differentiated into zone-like layers of tissue. The outer layer is then termed the EXOCARP, the innermost the ENDOCARP, and the layer sometimes lying between them the mesocarp.

According to the character of the pericarp and its condition at maturity, several varieties of fruit have been distinguished, of which the following are the most important.
I. The Capsule.-Fruit with a dry pericarp, dehiscing at maturity. Most frequently the carpels separate from one another by longitudinal slits (septicidal dehiscence), or each carpel is split in half longitudinally (Loculicidal dehiscence, Fig. 394). In more rare cases the seeds escape through pores (PORIcidal dehiscence, e.g. Papaver).

The following distinctive forms

Fig. 394.-Diagrammatic sections of capsules, showing septicidal (A) and loculicidal (B) dehiscence. of capsules have been recognised.
(a) The follicle, consisting of a single carpel, which dehisces along the ventral suture (Paeonia, Aconitum).
(b) The legume or POD, consisting of a single carpel, which, however, dehisces along both the ventral and dorsal suture (Pea, Bean, and many other Leguminosae).
(c) The siliqua, consisting of two carpels, which separate at maturity, leaving a persistent partition wall (the majority of the Cruciferae, e.g. Capsella bursa pastoris).
(d) The pyxidiun, opening at maturity with a lid-like valve (Anagallis, Hyoscyamus).
II. Dry Indehiscent Fruit.-This type comprises fruits with a dry pericarp, which neither dehisce at maturity nor break up into separate carpels. Indehiscent fruits with a hard dry pericarp are termed nuts. An indehiscent fruit containing one seed and having a leathery pericarp
is distinguished as a Caryopsis (Grasses) if the pericarp is adherent to the seed, if not it is termed an Achene (Compositae).
III. The Schizocarp is a dry, many-chambered fruit, in which the carpels separate from one another at maturity without deliscing (Umbelliferue, Malva).
IV. The Berry has both a juicy endocarp and mesocarp (Grape, Apple). In a few cases fruits of this type dehisce at maturity by slits (Myristicu), or become irregularly ruptured (Echullium).
V. The Stone-fruit or Drupe.-The pericarp is differentiated into a soft, generally juicy, exocarp and a hard endocarp (Cherry, Walnut). A single stone-fruit may contain several stones (Ihammus cathurtica). The exocarp is sometimes dry and spongy (Coco-mut).

Just as the great variety of form displayed in flowers has been a result of their adaptation to a particular mode of pollination, so in fruit it has been intimately connected with the manner of seed dissemination (see Dissemination of Seeds, p. 291).

The Inflorescence

The flowering shoot frequently bears only a single flower, which may then be either axillary or terminal. In many cases, however, the metamorphosis of the generative region, which results in the production of flowers, has led to the formation of a special system of fertile shoots termed an inflorescence or, after the fruit is formed, an infructesCENCE.

The modifications exhibited by the fertile shoots of such an inflorescence are due, partly to a difference in their mode of branching, partly to the reduction or the metamorphosis of their leaves. These changes are the result of an adaptation to pollination, in the endeavour to aggregate the flowers and at the same time render them more conspicuous by the reduction of the foliage-leares. Sometimes the whole system of fertile shoots is converted into an attractive apparatus, as in the Aruceae, where the axil and the subtending leaf of the inflorescence have assumed the function, usually exercised by the periantlh, of euticing insects.

Viewed from a purely morphological standpoint, two types of inflorescences may be distinguished, the botryose (racemosf, movipodial) and the cymose (smpodial).
I. Botryose Inflorescences. - The main axis branches more vigorously than the lateral axis.

A. LATERAL ANES UNBRANCHED

(a) The Racbab.-The main axis is elongated and bears stalked Howers (Fig. 395, l').
(b) The Splkf.-The main axis is elongated and bears sessile Howers (Fig. 395, (').

A spadix is a spike with a fleshy axis ; a catkin a spike which, after flowering or when the fruit is ripe, falls as a whole from the plant.
(c) The Unbel.-The main axis is contracted and bears stalked flowers (Fig. 395, D).

Fig. 395.-Diagrams of racemose inflorescences. A, Panicle ; B, raceme ; C, spike ; D, umbel ; E, capitulum.
(d) The Capitulum.-The main axis is contracted and bears sessile flowers (Fig. 395, E).

B. LATERAL AXES BRANCHED

(e) The Panicle.-In the panicle, as the term is generally used, the main axis is longer than the lateral axis, the whole inflorescence being correspondingly elongated (Fig. 395, A).

A corymb is a flattened panicle ; an anthela a panicle in which the lateral axes overtop the central axis.
II. Cymose Inflorescences.-The lateral axes grow more vigorously than the main axis for the time being, and form a pseudaxis.
(a) The Monochasium.-Each relative main axis produces only one branch.

A monochasium is termed a helicoid cyme or bostryx when the lateral branches always arise on the same side of the pseudaxis (Fig. 396, C), a scorpioid cyme or cincinnus when they occur alternately on opposite sides (Fig. 396, B).
(b) The Dichasiun.-Each relative main axis produces two branches (Fig. 396, A).
(c) The Pleiochasiun.-Each relative main axis produces more than two branches.

Cymose frequently resemble racemose inflorescences, and are then termed cymose panicles, cymose spikes, cymose racemes, etc.

By the further branching of an inflorescence, compound inflorescences may occur which are constructed after the same type (e.g. the compound umbel of the Umbelliferae), or consist of a union of several
types (e.g. the corymbs of Achillaea formed by an aggregation of capitula).

An inflorescence is also usually provided with more or less

Fig. 390.-Diagrams of cymose inflorescences. A, Dichasium ; B, bostryx, or helicoid cyme ; C, cincinnus, or scorpioid cyme.
reduced bracteal leaves or hypsophylls ; those from the axil of which a flower or flowering shoot springs are called subtending leates or bracts, while the leaves borne on the stalks of the flowers are designated bracteoles or prophylla.

Sub-Class I

Monocotyledones

Flowers constructed for the most part after the trimerous, penta-

Fig. 397.-Transverse section of the stem of Zea Mais. cr, Vascular bundle. (For further description see p. 109 and Fig. 124.) cyclic type ; seeds usually abundantly provided with nutritive tissue ; embryo with one cotyledon. Herbs and woody plants with Closed and usually scattered vascular bundles (Fig. 397), nearly always without cambium; when a cambium is present, it lies outside the vascular bundles. Leaves commonly with parallel nervation.

The embryo, in the majority of Monocotyledons, is small in comparison with the albumen (endosperm, rarely perisperm). It consists, as a rule, of a short hypocotyl, with a still shorter root and a relatively large cotyledon, which on germination remains wholly or in part enclosed within the seed, and exhausts the albumen of its food material.

The primary root dies prematurely and is replaced by adventitious roots, which usually live but a short time, and are in turn superseded by others developing successively higher and higher on the stem. The roots are generally unbranched, and exhibit secondary growth in thickness only in the few cases when a cambium is present in the stem.

The stem of most Monocotyledons is simple; when branching does occur, it rarely results in the formation of a profusely-branched crown (with respect to the disposition and structure of the vascular bundles of the stem, see p. 102 ; for occurrence and description of secondary growth, p. 138). The leaves are always devoid of stipules, and, in the majority of cases, alternate, arranged

Fig. 398.-Diagram of a typical Monocotyledonous flower. in two or three ranks. They generally have a well-developed sheathing leaf-base, are without stalks, and are lineal or elliptical in shape and parallel-nerved, although leaves otherwise constructed not unfrequently occur (Fig. 399).

The structure of Monocotyledonous flowers may be traced back, in almost every case, to the trimerous pentacyclic type (Fig. 398). It may accordingly be inferred that the flower of the ancestral form was actinomorphic, and composed of five alternating trimerous whorls, each whorl consisting of similar members.

This type has been retained unchanged in many Monocotyledons; in others, modifications have occurred in the course

Fig. 399.-Polygonatum multiflorum, leaf with parallel venation. (Nat. size.) of their phylogenetic development, resulting sometimes in a transition from an actinomorphic to a zygomorphic or asymmetrical structure, sometimes in a reduction in the number of members in the whorls, less frequently in an increase. The more important of these deviations from the usual type will be noticed in detail in the descriptions of the single families.

The perianth is not usually differentiated into a calyx and corolla ; it is small and inconspicuous or large and highly coloured according to the mode of pollination, whether effected by the wind or insects. In a few cases of entomophilous pollination the perianth remains insignificant, and other parts of the plant assume the function of an attractive apparatus.

The Monocotyledons are divided into the following orders : Liliifforae, Enantioblastae, Spadiciflorae, Glumiflorae, Helobiae, Scitamineae, Gynandrae. These orders do not constitute a continuous series, beginning with the most primitive forms and successively ascending to those more highly developed, but represent
rather a group of isolated branches, of which the common stock has become extinct.

The scitumineue and Giynumbrue, the most highly developed of the Monocotyledons, have probably arisen, however, from the Lilifflorue. Many things seem to indicate that the primitive Monocotyledons were grass-like and adapted to wind-pollination ; in particular, the circumstance that the simplest representatives of several of the orders possess such a form, while the orders Scitamineae and Giynamdrae, in which this is not the case, are manifestly of later origin.

Order 1. Liliiflorae

Type.-Flower hypo- or epigynous, Actinomorphic, rarely slightly zygomorphic, always with a PERLANTH consisting of complete, fully-developed whorls: P3 + 3,

Fig. 400.-Diagram of the flowers of most Liliiflorae. $\mathrm{A} 3+3$ or A $3, \mathrm{G}(3)$. Ovary three-locular. Orules anatropous or campylotropous, rarely atropous. Endosperm always present, enclosing the embryo.

In the majority of the Liliiflorae, the flowers exhibit the typical Monocotyledonous form (Fig. 400), and are actinomorphic, with five trimerous whorls, the members of each whorl being similar. The slight zygomorphism displayed by some of the forms is occasioned by the one-sided curvature of the stamens. The only essential deviation from the Monocotyledonous type is restricted to a few families, and consists in the suppression of a whorl of the andrœcium. The suppression of single members of the whorls does not occur.

In some genera the whorls are composed, instead of three, of two, four, or five members. These variations are due neither to reduction nor to splitting, and are attributable to differences existing in the very rudiments of the organs. The number of members in the whorls may vary even in the same species, c.y. in Paris quadrifolia, which, in addition to the usual tetramerons flowers, not unfrequently produces others constructed on the plan of five or sis.

The Liliifforce are, with few exceptions, herbs, in which the subterranean parts often take the form of peremial rhizomes or bulbs, while the aerial shoots usually die after the ripening of the seeds. In only the simplest, apparently oldest, grass-like forms are the flowers inconspicuous and adapted to wind-pollination; otherwise they are large, beautifully coloured, solitary or aggregated into loose inflorescences.

The differences between the families are not miformly constant ; on the contrary, in some of the species of almost every family, characteristics distinctive of other families ocenr, cog. three stamens in families in which six is the normal
number. Similarly, in nearly every family transitional forms are found which link the different alliances together.

Of all the families of the Liliiflorae, the Juncaceae probably resemble most clearly the primitive type. From primitive forms, similar to this family, have arisen on the one side the Liliaceae (some of the representatives of which still possess a grass-like character), and on the other side the Glumiflorae. Most of the other Liliiflorae, e.g. the Amaryllidaceae and Iridaceae, are probably descended from the Liliaceae, as well as the orders Gynandrae and Scitamineae, but in these metamorphosis and reduction have advanced further.

Family Juncaceae.-Flowers hypogynous, hermaphrodite, with glumaceous perigone; pollen in tetrads; ovary three- or four-locular ; three long papillose stigmas, endosperm mealy ; grass-Like plants (Fig. 401).

On account of their similarity to Grasses, the Juncaceae are often classified with the Glumiflorae, although in the structure of their flowers they agree essentially with the Liliuceae, their points of disagreement being for the most part due to their different mode of pollination. In the Juncaceae pollination is effected by the wind; their flowers are correspondingly inconspicuous and provided with dry pollen and large papillose stigmas. The inflorescences are variously constructed and of different types. The fruit is a capsule. In the genus Juncus (Bog-Rush) the capsules are many-seeded ; in Luzula (WoodRush), three-seeded.

Geographical Distribution.-The Juncaceue grow in the temperate and cooler zones of both hemispheres.

Family Liliaceae.-Flowers hypogynous; perigone corollaceous ; six stamens ; seed with endosperm, which is either oily or consists largely of cellulose (Figs. 402-405).

Most of the Liliaceae are succulent herbs with perennial bulbs or rhizomes ; the species of Aloe and Dracaena, however, are in part

Fig. 401.-Juncus lamproccipus. a, Part of an inflorescence ; single flower (b) and gynœecium (c) more highly magnified. shrubs or small trees. The leaves are not segmented into stalk and lamina, and are usually narrow in proportion to their length, undivided and rarely toothed (e.g. some species of Aloe). The flowers, which are often large and conspicuous, are solitary and terminal, as in the Tulip, or are aggregated in clusters, like the Hyacinth, less frequently in pro-fusely-branched and complicated inflorescences. They are adapted to insect-pollination and are provided with means of enticement, such as white or highly-coloured perigone leaves, sweet perfume, nectaries, etc. The fruit is a capsule or berry.

Sub-Families and Representative Genera. - (1) Melanthoideac. Tìree styles, septicidal capsules; Veratrum; Colchicum; Sabadilla. (2) Lilioidea. One style, loculicidal capsules ; Tulipa, Liliuin (with a nectary groove in each perianth. leaf) ; Hyacinthus; Muscari; Ornithogalum (Fig. 402) ; Scilla ; C'rginea ; Allium, bulbous plants with radical leaves and compound bostrychoid inflorescences: Aloc. (3) Aspara!oideue, without bulbs; frnit a berry ; Polygonatum; Majanthemum,

Fig. 402.-u-e, ornithorulum umbellutum; ", entire plant (reduced); b, flower (nat. size); c, flowei. part of perigone and androcimm removed; d, fruit; e, fruit in transverse section; $f-a$. Colchicum cutumnule ; f, fruit in transverse section; g, section through seed showing endosperm (f). ($r-$-! magnified.)
with dimerous flower ; Contullariu; I'uris; Asparayus, with needle-shaped, leatlesbranches; Similax; Dracaena, dichotomously branching trees with secondary growth.

Geographical Dintribetion.- Members of the large family Litiaceac are found widely distributed in all zones, yet a preference seems to be shown for the dry warmer parts of the Temperate Zone. Numerous species are found in fields and meadows of the Mediterranean countries. Members of this family occur in profusion in South Africa, where during the short spring, in company with other bulbous and tuberous plants (Irilacae, Amaryllidaceae, Orchiduceae), they cover
the earth with a carpet of purple, red, yellow and orange flowers only to disappear on the first approach of the dry season, the underground portions alone remaining alive. Many Litiaceare are cultivated as regetables-Asparagus oficinalis, asparagus: Alliwm Cepa, onion: A. sativwm. English garlic: A. Schomoprasum, chives ; A. asoulomicum, shallots. Other Liliaceae are familiar as ornamental plants: the rarious species of Tulip, Hracinths. Lilium, Seilla,

Fig. fle-Colemicum onsmanilc. a. Flowering plans ($\frac{1}{8}$ nat. side): h. leaty shout with truit (f nat. sire). -Porsonots and OFFTCHILL.

Fritillaria, Fucca, Dracaena, Aloe, ete.
Porsosors-Celchicum aufumnate, Meadow Satfron Fig. 1031. It possesees a subterrabean tuber. which gires rise to the rose-coloured, funnel-shaped flowers in

 Poleovees. Poreovers

August or September, followed in the succeeding spring by the leares and fruit : at other seasons of the year the plant exists only in the form of a tuber. The
fruit is a trilocular, many-seeded capsule. The whole plant, particularly the

Fig. 405.-Alve socotrinc. 1, Entire plant (reduced) ; 2, a flower.-Officisil. (After Wossidlo.) tubers and seeds, contains a large percentage of the poisonous alkaloid colchicin. Veratrum album is a profusely leaved, tall herb growing in meadows in mountainous regions, with a fleshy, peremnial rhizome; the numerous green, choripetalous flowers are aggregated into a terminal, pyramid-shaped panicle. The poisonous properties of the plant are due to the presence of veratroidin and jervin. Paris quadrifolia, Herb Paris (Fig. 404), is an herb with a single whorl of four leaves. Each plant produces one terminal tetramerous flower of a greenish colour, from which the fruit, a black berry, develops. The toxic principle in this case is paridin. The Lily of the Valley (Comeallaria majalis), the bulbs of the Tulip (Tulipa) and of the Crown Imperial (Fritillariue imperialis) are also more or less joisonous.

Officinal. - C'olchicum autumnale yields Semen Colchici; Veratrum albuin, R H I Z o м A Veritlit ; Sicubadilla officinaruin (grass like, smallleaved bulbous plauts of Central America and Venezuela) ; Veratrinum. Aloe is derived from the evaporated sap of the leaves of South African Aloe splecies (herbs, shrubs or small trees with fleshy, often serrate leaves; inflorescence a loose raceme with leafless or scaly axis; perigone leaves united into a tube, Fig. 405). L'rginea maritima (Mediterranean bulbous plants. with leafy stalk, terminating in a raceme of white flowers) yields Bulbus Scillae (Squill). Radix Saisisae or Sabsapabilla is procured from Central American species of Smilax (for the most part prickly plants climbing by tendrils; flowers diecious, greenish; orules atropous).

Family Amaryllidaceae.-As in the Liliucene, except that the flowers are filigwous (Fig. 406).

Herbs, usually bulbous; very similar to the Liluccue in appearance and mode of life.

Representative Genera. - Narcissus, with a corona or inner corolla arising from the andrœeium ; Galanthus; Leucojum; Agave, resembling the Aloe in appearance.

Geographical Distribution.-The same as the Liliaceae. The Agave Americana from Mexico has grown wild in the neighbourhood of the Mediterranean, and has now become a characteristic plant of that region. Galanthus nivalis, Snowdrop; Leucojum vernum, Snowflake; Narcissus poeticus and N. pseudonarcissus, etc., are familiar cultivated plants.

Family Iridaceae. - The inner circle of STAMENS IS SUPPRESSED, otherwise similar to the Amaryllidaceae (Figs. 407, 408).

The Iridaceae are herbaceous plants with rhiz-

Fig. 407.-Floral diagram of the Iridaceae (Iris). omes, rarely with bulbs; they are very similar to the two preced-

Fig. 408.-Iris florentina. A, Rhizome with stem and leaves (reduced); B, inflorescence (reduced); C, stigmatic branch and stamen ; D, ovary in longitudinal section; E, ovary in transverse section.-Officinal.
ing families, but frequently have narrow, two-ranked, equitant leaves. The flowers are usually large and showy ; the fruit is a loculicidal capsule.

Representative Genera.-Iris, with rhizome, and equitant, sword-shaped leaves and petaloid stigmas ; Crocus, with tuberous rhizome, and linear leaves (not equitant) ; Gladiolus, with zygomorphic flowers.

Geographical Distribution.-Like the Liliaccac, the Iridaccae are particularly abundant in Southern Africa. Various species of Iris, Crocus, Gladiolus are cultivated as ornamental plants.

Officinal.-Iris yermaniea, I. pallida, and I. Alorentina, all Mediterranean species, supply Orris Root, Rhizoma Iridis. The stigmas of Crocus sativus (cultivated in different localities in the East) yield Saffron or Chocus.

To the Liliiftorue belong also the following families:-Diescoreaccae, lam family, diœecious, small-flowered, twining plants which differ only in habit from the Amaryllidaceac. Hacmoloraccae, Bloodwort family, differing from the Amaryllidaceac in the suppression of the outer whorl of the andrecium. Bromcliaceae, Pine-Apple family, for the most part epiphytic herbs with stiff, sword-shaped leaves forming a rosette, from the centre of which springs a flowerstalk, in most instances, with red bracteal leaves and flowers aggregated into compact racemes. The perianth is differentiated into calyx and corolla. The Bromeliaceae all grow in America, chiefly in the Tropics, where they live partly as epiphytes on trees, and partly terrestrial in the clefts of rocks. To the latter class belongs Ananassa satira, whose inflorescence constitutes the fruit familiarly known as Pine-apple.

Order 2. Enantioblastae

Flowers hypogynous, often redtced ; ovules atropots ; embryo lying outside of the mealy albumen.

The Enantioblastac are grass-like or herbaceous plants, with small inconspicuous flowers, constructed according to the regular Monocotyledonous type or more or less reduced, and usually aggregated in compact inflorescences.

This order inhabits principally the Tropics and the Southern Hemisphere. It comprises chiefly the families Centrolcpidaceac, Restiaceae, Eriveauluceac, Xyriutaceac, and Commelinaceac. Some Commelinaccae, especially rarious species of Tradescantia, are cultivated as ornamental plants.

Order 3. Spadiciflorae

Flowers hypogynous, usually DICLINous, actinomorphic, frequently reduced. Inflorescence, a spadia or compound spike, With one or more spathes (large sheathing bracts) at the base.

The Spadiciftorae comprise herbaceous and woody plants of dissimilar appearance but with inflorescences of uniform structure. While in the Liliiflorae the flowers are either solitary or loosely aggregated in small numbers, so that each flower retains its individual prominence, in the Spadiciflorae they are only subordinate members of a compact, highly organised inflorescence which, when the spathe is corollaceous, is commonly mistaken for a single flower (e.g. Cullu, lichurdiu aethiopicu). In accordance with the inconspicuous part
plared br the individual fiowers, they are irequently reduced, particularly as regards the perianth, whose function is assumed by the axis and sheathing bracts: sometimes a reduction also occurs in the androcium and grnoecium.

Many species are pollinated by the wind, and these possess inconspicuously coloured, though often emormous inflorescences. In most species, however, the inflorescences are adapted to insect-pollination. The spathes and iree parte of the axes. but not the individual flowers, are in such cases equipped with enticing colours, and serve as organs of attraction.

Family Palmae. -Flowers of the regular Monocotyledonous type or with reduced gyncecium ; aggregated in PP.OFTSELY BRANCHED INFLORESENCES, which are prorided with sevepal spathes. Woody platy with unbranched stems and pinnate or palmately DIVIDED leaves (Figs. $409-411$).

The regetative organs afforl the most characteristic means of distinguishing the members of the familr. The simple (branched only in Hyphaene illebrica) crlindrical sterns bear a rosette of large pinnate or palmately divided leaves at the summit, which gives them a distinctive appearance (Fig. 410). easily recognisable and characteristic of only a few other plants (Tree-Ferms, and Cyondacrate). A few species are lianelike in form and mode of growth

Fics fit.-a. I-foresertios of torypor aryes. Freatly
 nuciter=, mith a female tower betow, and mate
 forminem. $\frac{1}{3}$ nas. sizt.) (e.g. Calamus) The leaves are not, like true compound leares, divided in their early stages; they are, on the contrary, first developed as entire plicate leaves, which ultimately become slit into segments by the subsequent death and rupture of the tissue at the edges of the folds. The inflorescences (Fig. 409) are generally axillary and hang down below the leares; in the cases
where they are terminal the tree dies after the seeds ripen. In their early stages the inflorescences are entirely enveloped by the spathes, but the flowering

Fig. $\downarrow 10$.-Group of Date Palms, Ihernix ductylifera, in Algiers. (From a photograph.) spikes eventually protrude and bear numerous small flowers of an inconspicuous, usually yellowish, colour. Pollination is effected by the wind or by insects. The fruit is apocarpous or syncarpous; sometimes a berry, as in the case of the date; sometimes an indehiscent fruit or, like the cocoanut, a drupe. From one to three seeds are produced in an ovary. The endosperm is often hard and bony in consequence of its. strongly-thickened cellwalls.

Geggraphical Distribution. - The Palms grow chiefly in the Tropics.

Fig. 411.-Cocoa-nut with part of the fibrous exocarp r. moved.-OFFICINAL. (After Warming, telucel.)

Only a few species thrive in the warmer countries of the temperate zones, c.g. the Dwarf Palm, Chamacrops humilis, of South Europe, and the Date Palm, Phoenix dactylifera (Fig. 410), cultivated to a large extent in the oases of the Sahara. On
the other hand, Palms in a wild or uncultivated state, and displaying a great variety of form and size, constitute the most characteristic feature of nearly all tropical countries. There the Coco-nut Palm, Cocos nucifera, the most important economic plant of the Palm family, is found growing everywhere in the neighbourhood of the coast, either solitary or gregariously, in forests. The cocoa-nut (Fig. 411) is a gigantic drupe with a spongy, fibrous exocarp and a hard endocarp; the single seed consists of a thin seed-coat and a large, hollow fatty endosperm, in which the small embryo is embedded. Areca Catechu, the Betel Palm, towers above all the villages of the Eastindies, with its slender, usually straight, lofty stem surmounted by a small crown of emerald-green leaves. Other Palms are cultivated for the sugar or wine they yield, or as ornamental trees. In the open Savannas, Palms growing singly or in small woods are of frequent occurrence. In the primeval forests, the species with tall stems grow apart from each other, in the midst of au undergrowth of smaller forms, while thorny Palm-lianes twining from tree to tree form an impenetrable jungle. Very few Palnis are of special value commercially. In addition to the Coco and Date Palms may be mentioned Elacis guineensis, the African Oil Palm, the oily mesocarp of whose fruit yields palm-oil ; Phytelephas macrocarpa, of which the hard endosperm is known as vegetable ivory (Fig. 393); and Calamus, the stems of which are used as cane or rattan.

Officinal. - Areca Catechu (East Indies) yields Semen Arecae; Cocos nucifera, Oleum Cocos.

Family Araceae.-Flowers often greatly reduced ; inflorescence a simple spadix with a SINGLE usually corol-

Fig. 412.-Arum maculatum ($\frac{1}{3}$ nat. size). Poisonous. laceous spathe. Herbs, rarely woody plants, with simple or compound leaves (Figs. 412-414).

The leaves of the Araceue are usually divided into stalk and lamina; they are frequently hastate in shape and generally reticulately veined. The inflorescence, which is characteristic of the family, consists of a fleshy spadix, the axis of which frequently terminates in a naked coloured prolongation such as occurs, for example, in Arum maculatum (Figs. 412, 413), where it has the form of a purple club. The enveloping spathe is also often showily coloured ; sometimes
snow-white (e.q. Pichardiu acthiopica), but more frequently purple or brown, and in that case the inflorescence often emits a carrion-like stench attractive to the insects by whose aid pollination is effected. The fruit, with few exceptions, is a berry.

Geocieaphical Dintribitios.-The Araciac are fome almost exelunively in the Tropics, where they include numerous, often extremely grotesque, forms, which have, not unfrequently, a gigantic size and constitute a very large part of the herhaceous Flora of the primitive forests. Many species are terrestrial, growing gregariously in the deep shade of the woods, while others climb by means of aerial ronts to the tops of the trees, or, as epiphytes, form large nest-like growths on their

Fig. 413.-spadix of Armem mueulutun. (After Wossidlo.)

Fir. 4l4.-Aceras Cheemts. 1. Khizome: 2 , intlores. cence ; 3, flower; 4. ovary in tran-verse section.(1FFICIN.IL. (After Wossidlo.)
branches. The most remarkable of all the Araseae is Amerphophallus titenum, an herl found in Western Sumatra; it attains a height greater than that of a man, developing enormons tubers, aml a purplespadix nearly $1 \frac{1}{2}$ m. high. Several species of Aracen are cultivated as ornamental plants, c.!. Pichardial athieprica, the socalled Calla Lily, and the root-climber Monstera delicioser.
lonsonots.-Most of the Araceac are poisonous. Irum maculatum (Figs. 412, 413), a tuberous herb growing in woods, has a few hastate leaves, frequently with brown spots, a greenish spathe and a lle:hy spadix terminating in a naked, purple club-shaped prolongation. The flowers are monecious; the female, at the base of the spadix: the male, forming a smaller, separate group ahove; while still higher ul' on the spadix are a few sterile flowers. In c'alla pellustris, Water Arum, a rare
plant growing in bogs and swampy places, the spathe is white on the upper surface and envelops a spadix completely beset with hermaphrodite flowers.

Officinal. -From Acorus Calamus, Sweet Flag (Fig. 414), a marsh plant with creeping rhizome, narrow leares, and greenish inflorescences of hermaphrodite flowers, Rhizoma Calimi is obtained.

Family Lemnaceae.-Greatly Reduced $A_{i}(a-$ ceal. Flowers monœcious, NAKED; the male consisting merely of one stamen; the female, similarly, of a single carpel. Inflorescence, a

Fig. 410. - Wolfin cirrhiza. (After Hegelmaier, $\times 10$.)
spadix formed of three flowers, two male and one female, invested with a spathe. Small, FreesWimming, disc-LIKE, LEAFLESS WATER-PLANTS (Figs. 415, 416).

The green vegetative body of the Duckweed has usually been regarded as a system of naked leaf-like axes; more recently it has been asserted that it consists essentially of leaves.
Genera.-Spirarlela, Lemia, Wolfina (without roots).
Geographical Distribttion. - Duckweed is found everywhere in quiet or stagnant water.

The following families are also included in the order Spadiciflorac:-Pandanaceae. Tropical trees borne on stilt-like roots; leaves sword-shaped, inflorescence a large spadix. Ciclanthacece ; tropical lianes and shrubs, often resenıbling Palms but bearing many-seeded berries. Sparganiaceae and Typhaceue; glass-like marshplants, the latter possessing thick brown cylindrical inflorescences. Sparganium and Tirpha are represented in Germany.

Order 4. Glumiflorae

Flowers hypogynous, hermaphrodite or unisexual, Naked or With redtced perigone : ovary unilocular, containing one ovele; inflorescence with many smal flowers, and numerots glumaceous bracts. For the most part herbs with linfar parallel-Nerted leaves.

All the Glumiflorae have a grass-like appearance, i.e. they are herbaceous, rarely woody plants, with narrow pointed leaves, and have inconspicuous inflorescences bearing small flowers and numerous scalelike bracts. The bracts are dry, green or brownish hypsophylls, in part sterile and to some extent serving as subtending leaves
to the lateral axes and flowers. They usually constitute the most noticeable part of the inflorescence, particularly when, as in many true Grasses, they are prolonged into an awn (arista). The inconspicuous colour of the inflorescence, the gentle swaying movements of the anthers pendent from the long filaments hanging down between the bracts, the abundant dry pollen, and the well-developed papillæ on the large stigmas are all directly correlated with the wind-pollination common to all Gilumiflorue (Fig. 421).

As in most thick small-flowered inflorescences, the individual flowers of the Gilumifforae are simply constructed, evidently in this case in consequence of reduction. In none of the flowers of this order is the regular Monocotyledonous type presented in an unmodified form ; in all, at least one or the other of the whorls is entirely suppressed. The perigone, no longer exercising its protective office, now assumed by the bracts, consists only of bristles, or is altogether absent. The andreecium has sometimes all the six stamens, but usually, by the suppression of the inner whorl, it is reduced to three ; the gyncecium may also possess the full number of three carpels, although generally only two are present. In most cases a dry, indehiscent fruit (caryopsis) is produced, with one seed containing a mealy albumen.

Abstract

A similar grass-like habit is shown by other Monocotyledons, especially by the Juncaceac, Typhaceae, Sparganiaceas, which were on that account formerly regarded as the nearest allies to the Grasses ; the structure of their flowers, however, has assigned them to another position in the system of classification. Of the two families now forming this order, the Cyperaceac have suffered less reduction in the structure of their flowers than the Gramineac. The latter do not appear to have been derived from the Cyperaceac by a continued process of reduction : on the contrary, both Cyperaceae and Gramineac constitute independent branches of a no longer existing ancestral stock.

Family Cyperaceae.-Flowers usually melinous, naked or with reduced perigone; ovary di- or trimerous with anatropots orules. Pericarp aot adherent to the seed; embryo witholt scltellum, and exclosed in endosperm. Herbs with triangular axes, and Not hollow, rarely segmented into internoles; leaves often threeranked, with closed leaf-sheaths, and either with or without a reduced ligule. Inflorescences of varying character, usually without bracteoles (Fig. 417).

The C'yperacene are, for the most part, perennial herbs with profusely branched rhizomes and stiff or hard, sharp-edged leaves. The rhizome gives rise to tufts of sterile leaves, together with fertile shoots, which. according as the hranches of the rhizome are long or short, cover extended areas or form isolated groups. At the base of the fertile shoots the internodes are short, while the whole upper portion of the shoot consists of but one internode, which is greatly. elongated and bears the inflorescence. The inflorescences are variously constructed, sometimes a simple spike, sometimes compound, consisting
of spikelets united into spikes, heads or panicles. Subtending bracts (glumes) are present in all inflorescences ; sterile bracteoles only in a few genera. The flowers are in most cases moncecious, both sexes being united in the same spike or occurring on different spikes.

Fig. 415. -Carex arenaria. 1, Flowering plant; 2, male flower with bract (glume); 3, female flower ; t. pistil ; 5, bract of female flower ; B, i, male and female flower of Carex hirta. (After Wossidlo.)

Representative Sub-Families and Genera.-(1) Scirpoideae. Flowers hermaphrodite, often with perigone. Scirpus, Cyperus, Eriophomum, with a perigone consisting of bristles which, after the maturity of the flower, grow out into long
hairs. (2) Caricoideac. Flowers misexual, always naked; the female with an enveloping, tubular subtending bract (ntriculus). C'urex.

Geographical Distimbution. - The C'ypermeae or Sedge Family are represented throughout the world, growing frequently in damp meadows, in marshes, and along the margins of streams. They are worthless as fodder plants on account of their hard leaves. The genus Carex is the most common and comprises the greatest number of species. The family contains no plants of economic value. The papyrus used by the ancient Egyptians was made of thin strips of the firm pith of Cuperus Papyrus.

Family Gramineae.-Flowers usually hermaphrodite, naked; ovary monomerons, with a slightly CAMPYLOTROPOUS ovule ; pericarp ADHERENT to the seed; embryo with sCltelLUM, Laterally in contact with the endosperm. Herbs, rarely shrubs or trees ; axes with hollow internodes. Leaves tworranked, having usually a ligule and an OPEN sheath with a node-like thickening at the base. Inflorescences compound, consisting of spikelets aggregated in spikes or panicles ; bracteoles PRESENT (Figs. 418-425).

The Gramineae or true Grasses are for the most part perennial herbs, with a profusely branched rhizome creeping horizontally in the soil, and giving rise to sterile shoots in the form of tufts of leares, and also to fertile shoots, which are usually unbranched but provided with leaves, and divided throughout their whole length into internodes. The annual species of Gramineue are not so numerous ; they do not have rhizomes nor form the sterile tufts; shrub- or tree-like forms are still less frequent. A membranous ligule is always developed at the junction of the lamina with the leaf-sheath (Fig. $420, l$). The inflorescences of the Gramineae in their entirety are spike-, raceme-, or panicle-like in character, and are always composed of an aggregation of secondary inflorescences or spikelets (Fig. 419). Each spikelet usually bears several flowers, and also a number of bracts arranged in two rows. The two lower bracts, less frequently the three lower of each spikelet, are sterile, and are known as chumis. These are followed by a varying number of fertile bracts subtending flowers, and termed INFERIOR PALEE, sometimes also called flowering glumes. The inferior or outer palea are often pro-

Fig. 4lo.-Dingrammatic represmitation of a cirass spikelet. 9. The glumes ; p_{1} and $/ \mathrm{m}$, the inferior and superior palea ; e, loxlicules; fi, flower. longed into awns. Immediately below the flower the short flower-
stalk bears a bracteole or sUPERIOR PALEA, which is always devoid of an awn (Fig. 421, B), and two scales, the Lodicule (C). The lodicules are sometimes regarded as a reduced perigone, but are more probably two halves of another deeply divided hypsophyll. At the time of flowering the lodicule become swollen, and by forcing apart

Fig. 420. -Part of a Grass stem and leaf. h, Haulm ; s, part of leafblade; l, ligula; r, leaf-sheath; k, node-like swelling at the base of the leaf-sheath.

Fig. 42l.-Festuce pratensis. A, Spikelet with two open flowers ($\times 3$) ; B, flower showing the two lodicules in front and the superior plea behind ($\times 12$) ; C, a lodicute, isolated ($\times 12$) ; D, ovary viewed from the side, with the severed stalk of one stigma ($\times 12$).
the paleæ and glumes they bring about the opening of the flowers. All the axial portions of the spikelets are short, so that the bracts, packed one immediately over the other, are only partially visible.

The androecium consists usually of three stamens, each with a large elongated anther attached below the middle to the apex of the slender
filament. The ovary has two, rarely three, branching stigmas situated either directly upon the ovary itself, or borne on a short style (Fig. $421, B)$. The pericarp is traversed by a longitudinal groove ; it is leathery, and assumes the functions usually performed by the seedcoat, which is thin and adherent to it. In many cases (e.g. in most species of Barley) the pericarp and paler also adhere. On germination a shield-like appendage of the cotyledon, the scutellum, remains within the seed and absorbs the endosperm (Fig. 422).

Sub-Families (after Hackel) and Represestative Gener.i.-(1) Maydeae, Zea. (2) Andropoyoncac, Saccharum. (3) Paniccae, Panicum, Sctaria. (4) Oryzeac,

Fig. 422.- Part of median longitudinal section of a grais of wheat, showing embryo and scutellum (sc); vs, vascular bundle of sentellum; ce, its cylinder epithelium; l^{\prime}, its ligule; c, sheathing part of the cotylerlon ; pv, vegetative cone of stem ; $h p$, liypocotyl; l, ligule ; r, radicle ; $c l$, root-sheath; m, micropyle ; p, funiculus ; $r p$, its vascular bundle; f, lateral wall of groove. $(\times 14$. Oryza. (5) Phalarileae, Anthoxanthum. (6) Agrostidcae, spikelets stalked, bearing one flower and two glumes; Phlcum and Alopecurus, with spikelets aggregated in spikelike infloreseences; Agrostis, with panieulate infloreseenees, inferior paleæ, usually prolonged into an awn; C'alamagrostis, with inferior palere, hairy and awned. (i) Avencac, spikelets two-flowered, inferior palere shorter than the glumes ; awn kneed. Avena, spikelets in panieles, fruit hairy; Aira; Holcus. Chloridcac, Cynodon. (9) Festuccac, spikelets two- to four-flowered, in panicles or racemes; inferior palex longer than the glumes, with or without awns; Phraymitcs, Melia, Briza, Dactylis, Poa, Bromus. (10) Hordeac, spikelets one or several flowered, situated in two rows, in depressions of the main floral axis, and forming a compound spike. Lolium, Sccale, spikelets solitary in the depressions of the axis, glumes awl-shaped and uninerved; Triticum, similar to Sccale, but with orate, three- to many-nerved glumes. Horlcum bears several spikelets on eaeh segment of the axis, spikelets single-flowered. (11) Bambuseac, shrubs and trees; Bambusa.

Geographical Distribution--Like the Cyperaccac, the Gramineae are widely distributed over the whole world. They appear in the most varied situations, in partieular in meadows and fields, of which they form the prineipal vegetation. Among the most important meadow-grasses the following may be mentioned : Por pratensis, Common Meadow Grass or Kentucky Blue Grass ; Agrostis rulgaris, Redtop; Alopccurus pratensis, Meadow Foxtail ; Phlcum pratense, Timothy; Dactylis glomerata, Orehard Grass ; Briza mellia, Quaking Grass; Anthoxanthum odoratum, Sweet Vernal ; Lolium percme, IYye Grass; Holcus lanatus, Velvet Grass; Arrhenatherum clatius, False Oat Grass; Avenu mubescens and A. flavescens, the Yellow Oat Grass, etc. The arboreseent grasses of the genus Bambusa and its allies form extensive groves in the Tropics, or the smaller forms grow in the shade of the primitive
forests. The most important of the cereal grasses grow in the Temperate Zone : Wheat, Triticum vulgare, with numerous varieties and races, e.g. T. turgidum, T. durum, T. polonicum; Spelt or German Wheat, T. Spelta; Amel corn or French rice, T. dicoccum ; One-grained Wheat, T. monococcum ; Rye, Secale cereale; Barley, Hordeum vulgare, in several varieties and races, as H. hexastichum, H. distichum, etc. ; Oats, Avena satira; Maize, Zea Mais; and numerous fodder-plants. The native condition of the cereals is unknown, except in the case of Hordeum distichum, the

Fig. 423.-Oryza sativa. 1, Inflorescence; 2, spikelet. (After Wossidlo.)

Fig. 424.-Saccharum officinarum (greatly reduced). 2, Flower after removal of the paleæ.officinal. (After Wossidlo.)
two-rowed Barley, which is found in Asia, and Maize which is of American origin. The other cereals were probably indigenous to Asia or Eastern Europe. Rice, Oryza sativa (Fig. 423), originally derived from the East Indies, and Saccharum officinarum, Sugar-cane (Fig. 424), are cultivated in the Tropics and sub-tropical zones. The latter is a perennial plant with solid internodes filled with parenchyma, from the cell-sap of which part of the cane-sugar of commerce is obtained by a process of evaporation and subsequent refining (cf. Beta vulgaris). The Sugar-cane is not found growing wild ; its native home was undoubtedly tropical Eastern Asia. The Indian Millet, Andropogon Sorghum, and the different species of Bambusa, whose stems not only furnish a convenient building material, but their hollow internodes serve also for household utensils, are also chiefly tropical.

Poisonous.-Lolium temulentum, Bearded Darnel (Fig. 425), an annual grass
with narrow, elongated inflorescences of a green colour. The seeds are poisonous, as are also those of L. linicola, a weed only found growing in Flax fields. Both may be distinguished from the other

Fig. 425.-Lolium temulentum.-Porsosors. harmless species of Lolium, c.g. L. perenne, Rye Grass, by the absence of tufts of sterile leaf.

Officinal.-Saccharum ofiocinarum (Fig. 424) yields SAc. chative ; the germinating grain of Hurdeum vulgare, Maltum; - Igropyrum repens, Couch Grass, Rhizoma or Radix gramisis. The starch derived from the seed of Triticum vulgare is the officinal Amylum Thitici.

Order 5. Helobiae

Flowers hypogynous, less frequently epigynous, actinomorphic, with perianth; STAMEAS USUULLE MORE THAN SIN ; CARPELS U'SUALLY MORE THAN THREF, in hypogynous Howers FREE ; sceds WITHOUT ENDOSPERM ; embryo with LabGe hYpocotyl.

The Helubue are marshor water-plants, sometimes of a grass-like appearance, sometimes with broad leaves. According to the mode of pollination, whether effected by the wind, water, or insects, the perianth is either small and of a greenish colour, or large and differentiated into a calyx and corolla. The structure of the flowers may be regarded as a modification of the Monocotyledonous type, resulting phylorenetically from the splitting of the stamens and carpels. Flowers exhibiting reduction also occur in this order.

Family Alismaceae - Flowers hypogious, hermapmiodite, with perianth differentiated into C.ALYX and corolld: stamens 9 $(6+3)$ or more; carpels free, numerous, sometimes arranged in spirals. Fruit dry and indehiscent, rarely a capsule (Fig. 426).

Members of this family are found in all zones growing in marshes or shallow
water. As representative species may be mentioned Alisma Plantago, Water Plantain, Sagittaria sagittifolia, Arrow-head, and Butomus umbellatus, Flowering Rush.

The small family Juncaginaceae may be distinguished from the preceding by its grass-like habit and calycoid perigone. It probably represents the oldest group of the order. Triglochin palustris, Arrow-Grass, is a familiar example of this family.

Family Hydrocharitaceae.

 -Flowers epigynous, usually UNISEXUAL; perianth consisting of both calyx and corolla, or the latter may be suppressed ; stamens three to many ; ovary of three or

Fig. 426.-Sagittaria sagittifolia. a, Flower; b, fruit after removal of part of the carpeis. (Magnified.) more carpels. Fruit with irregular dehiscence, commonly many-seeded.

The Hydrocharitaceae are water-plants occurring in fresh water in all zones, and in the tropical seas. They are usually submerged, or at the most projecting their inflorescences above the water, rarely freely floating on its surface. The German Flora possesses only two native species-Hydrocharis morsus ranae, Frog's-Bit, floating on the surface of pouds, with roundly cordate leaves, and Stratiotes aloides, Water-Soldier, whose sword-
shaped, spiny leaves, together with the female inflorescences, appear above the surface of the water only to become again submerged after fertilisation. Elodea canadensis, the widely distributed Water-Pest introduced into Europe from North America about fifty years ago, is represented only by female plants.

Family Potamogetonaceae. -Flowers hypoGYNOUS, unisexual, or hermaphrodite, usually NAKED or with REDUCED, CALYCOID PERIGONE; andræecium and the apocarpous gynœcium

Fig. 427.-Potamogeton natans. 1, Apex of flowering shoot; 2 , flower viewed from above; 3 , flower viewed from the side; 4, diagram of flower. (After Wossidlo.)
 ONE- TO FOUR-MEROUS. Ripe carpels drupaceous, one-seeded (Fig. 427).

On account of the great reduction and simple structure exhibited by the flowers,
the systematic position of the Potamogetonaceae is difficult to determine. The family consists of water-plants whose leaves are usually narrow and submerged, while the inflorescences sometimes rise above the surface of the water, sometimes remain continually submerged. The flowers, always small and inconspicuous, are pollinated by the wind or water. The members of this family constitute a chief part of the fresh-water flora of all zones. Potamogeton, Pond-weed, and Zannichellia, Horned Pond-weed, are familiar fresh-water genera. Some species are found in salt water, where they cover extended areas in the neighbourhood of the coast with a submerged vegetation, e.y. Zostera marina, Grass-Wrack or Eelgrass, found in salt water throughout all zones. It is used for stuffing cushions, etc., and is the only plant of economic value in the whole order.

The small family Najadaceac (flowers diclinous, one stamen, one ovary) is closely related to the preceding, which it resembles in appearance and habit. Najas major may serve as an example.

The Triuridaceue are a small tropical family of terrestrial plants, all of which are saprophytes and devoid of chlorophyll. In structure their flowers resemble those of the Alismaceac.

Order 6. Scitamineae

Flowers efigynous, ZYGOMORPHIC or ASYMMETRICAL ; andracium REDUCED, often PARTLY PETALOID ; ovary usually TRILOCULAR; seeds with perisperm.

The Scitamineae are herbs, usually with perennial rhizomes and with large pinnately-veined leaves, which may be narrow or elliptical. The flowers are adapted to insect-pollination; the perianth is in some cases differentiated into a calyx and corolla, or developed as a corollaceous perigone. The structure of the androcium is especially characteristic. Although in certain cases (e.g. in the flowers of the Banana) it differs from the regular type merely in the absence or staminodial development of the posterior stamen, in the majority of the Scitumineae only one fertile stamen is present. The other members of the androcium are then either suppressed or they assume the form of Petaloid staminodia, which give the flowers a distinctive shape and appearance (Figs. 429 C ,

Fis. 428. - Zingiberaceac. Floral diagram (Zingiler). 430). The fruit is variously developed and furnishes no characteristic features.

Family Musaccae.-Flowers zygomorphic, with five fertile stamens. Tropical herbs, arborescent in appearance, rarely true trees, with enormously large leaves.

The Banana (Musa sapientum and Musa paradisiaca) is largely cultivated in all tropical countries for the sake of its edible baccate fruit.

Family Zingiberaceae.-Flowers ZYGomorphe ; the posterior STAMEN OF THE INNER WHORL ALONE FERTLLE, AND THE TWO LATERAL, INNER STAMENS CONNATE AND TRANSFORMED NTO A

TONGUE-SHAPED LEAF, THE LABELLUM; the outer whorl of stamens staminodial or absent (Figs. 428, 429).

The members of this family are herbs, with rhizomes which contain an ethereal oil in special oil-cells, giving them a penetrating aroma. The flowers are aggregated in inflorescences of various types, and

Fig. 429.-Zingiber officinale. A, Entire plant ($\frac{1}{2}$ nat. size) ; B, flower ; C, labellum ; D, transverse section of ovary.-OfFicisial. (After Berg and Schmidt.)
are usually large and highly coloured. The splendour of their appearance is due to the prominent position taken by the labellum (Fig. 429, B, C), which is considerably larger than the leaves of the perianth. Although the stamens of the outer whorl are usually wanting or have the form of inconspicuous staminodia, in less frequent cases they are also represented by petaloid staminodia.

The fruit is a three－valved capsule，rarely a berry．The seeds are provided with an aril．

Geggraphical Distribution．－The members of the Zingiberaceae are all tropical．They are represented by mumerous species and individuals in the forests of South Asia，which they beautify by their magnificent flowers and foliage．Frequently（Alpinia species）the inflorescences spring directly from the rhizome and spread like radiating stars over the ground，or are poised in fiery－ red clusters between the two－ranked leaves of the vegetative shoots．In other cases the inflorescences are spikes terminating the vegetative shoots．Many species are cultivated in hot－houses as decorative plants，others are valuable for their aromatic properties，c．g．ginger，cardamom．

Officinal．－Zingiber afficinale（East Indies，Fig．429）supplies Rhizoma Zingiberis；Curcuma Zcloaria（East Indies），Rihz．Zedoariae；Alpinia officinarum（from the island of Hainan，China），Rhiz．Galasgae；Elettaria C＇arlamomum（East Indies），Frectus Cardamomi．

Family Cannaceae．－Flowers asmamethical；the fostehior，inder stamen alone fertile，bearing on one side a half（monotheciols）asther，the

Fis：430．－Flower of C＇anna irieliflora．f ， （Nary ；k ，calyx ；c，corolla；l，labellum ； st 1_{1-3} ，the other staminodia；a ，fertile stamen；g ，style．（ $\frac{1}{2}$ nat．size．） OTHER SIDE PETALOID ；THE TWO LATERAL， IN゙N゙ER STAMEN゙s IUEVELOPED IISSIMILARLY， As stamiNodia（wing and large reflexed labellum）；the outer stamens staminodial or absent．Fruit a MANI－sEEDED capisule． Embryo atropous（Fig．430）．

Perennial herbs produced from rhizomes， with large lanceolate leaves and terminal spiked intlorescences．The asymmetry of the flower is due to the peculiar development of the andreecium，and in particular to the label－ lum．In this family the labellum consists of a single staminodium，and not，as in the Zinyiberaccac，of two connate staminodia．

Geographical Distribltion．－The species of Canna，the only genus，grow wild in the fields of tropical America；many are cultivated as ornamental plants．

Fanily Marantaceae．－Flowers AsYMMET－ RIC」L；THEINざEH，PUSTERIORSTAMEN ALONE FERTILE，BEARING UN ONE SIIE A HALF （MONOTHECIOUS）АNTHFR，THE OTHER SHIE ATAMINODIAL；THE TWO LATERAL，INNER ※TAMENS HEVELOPED HISSIMILAKLY，As STAMI－ NoniA；the outer stamens staminodial or absent．Fruit with UNE TU THI：EE seeds in each loculus．Embryo campylotropous．
The Marentaccue are medium－sized，or more frequently small herbs with peremial rhizones．They always have stalked leaves，which are distinguished from those of other Scillamincac by a joint－like swelling of the stalk below the lamina．The flowers，in contrast to those of the other families of this alliance， are often small and insignificant，usually white．In structure they differ from the Howers of the various species of Canna only in the form of the inner staminolia，
of which the one corresponding to the labellum is dereloped as a small misshapen hood. Many species are cultivated in conservatories, chiefly for the sake of their bright-coloured foliage.

Geographical Distribetion. - The Marantaceae grow principally in the tropical regions of America.

Officisal.-The rhizome of Maranta arundinacea (West Indies) yields arrowroot, Amylem Marantae.

Order 7. Gynandrae

Flowers EPIGYNOUS, hermaphrodite, ZYGOMORPHIC; perigone corollaceous; andrœcium REDCCED TO THE THREE ANTERIOR MEMBERS, consisting usually of one fertile stamen and two staminodia, ADHERENT TO THE STYLE AND FORMING A COLUMN ; ovary usually UNILOCULAR, with parietal placentation; fruit, a capsule; seeds EXCEEDINGLY NUMEROUS AND SMLALL, without albumen; embryo L゙NSEGMENTED.

Family Orchidaceae. -Characteristics the same as for the order (Figs. 431-436).

The Orchids are all herbs; they vary greatly in external appearance and have racemose, usually spike-like inflorescences. The flowers are almost always pollinated by insects, and to this end have developed the most complicated contrivances. The corollaceous perigone exhibits endless variation. The posterior leaf of the inner whorl is often especially characterised by its size, form, and colour; like the similar but not homologous staminodial organ of the Zingiberaceae, it is termed a LABELLCM ; it is frequently drawn out below into a sac-shaped cavity or spur (Fig. 432 ,

Fig. 431.-Orchidaceas. Floral diagram (0rehis). a, f). In its rudimentary condition the labellum is uppermost, but, as a rule, it acquires ultimately an anterior position in consequence of the torsion of 180° suffered by the inferior ovary, or as a result of the tilting over of the whole flower. In the andrœcium only the anterior stamen of the outer whorl and the two lateral members of the inner whorl are developed; these two lateral members are usually transformed into sterile, lobed, or tooth-like prominences (b, p), while the central stamen alone is fertile and bears an anther (e.g. Oichis); less frequently, the central of the three staminal members of the andrœcium is sterile, while the two lateral are fertile (C'ypripedium, Lady's Slipper). The GYNostemium (b) formed by the union of the stamens with the tips of the carpels is sometimes developed as a column ; sometimes, as in Orchis, it is short and barely elevated above the receptacle. It bears at its apex the stigma and the anther, or a pair of anthers as the case may be. The pollen is rarely powders, consisting of separate grains (e.g. Cypripedium).

All the pollen-grains of each theca are usually united by a viscid substance into a club-shaped mass or pollinium (c), attached above or below to a mucilaginous filament

Fig. 432.-Orchis mititaris. a, Flower: a, bract; b, ovary ; c, the onter, and d, the two anterior imer perigone leaves ; e, labellim with the spur $f ; g$, gynosteminm. \mathbf{b}, Flower after removal of all of the perigone leaves with exception of the npper part of the labellum: h, stigna; l, rostellım; k, tooth-like prolongation of the rostellum; m, anther; n, connective ; 0 , pollinium ; 1 , glandula; p, staminodiun. \mathbf{c}, A pollinium: r, candicle ; s, pollen. d, Ovary in transverse section. (After Berg and Schmidt.) termed the caudicle (e, r). In a few cases several pollinia are present. The three-lobed stigma (b, h) is situated directly below the anther. The two lateral lobes are always normally developed and destined to receive the pollen, while the anterior lobe has frequently the form of a pouch-shaped beak or rostellum (b, l), in which one or two small masses of sticky mucilage (q), the glandulee (retinacula), are formed by the disorganisation of the tissue. To these sticky glandulæ are attached the caudicles with their pollinia. The whole structural development of the flower represents an adaptation to insect-pollination. When an insect inserts its proboscis in the nectaries of the labellum, the glandulæ with their stalked pollinia become glued to it, and the pollen is thus applied to the rext flower visited by the insect. Similarly, by inserting a pointed instrument in the spur, a lead-pencil for example, the pollinia will be found attached to it on its withdrawal.
The capsule is often leathery, and in dehiscing splits into six valves. The embryo is usually spherical and exhibits no differentiation into hypocotyl and cotyledon.

Many of the indigenous species lave underground tubers (e.g. Orchis). As a rule, two tubers are present, formed by the union of several roots; according as the coalescence is more or less complete, they are ovate and smooth (Fig. 434), or palmately divided (Fig. 433). One of the tubers, the older mother-tuber, is darkcoloured and flaceid ; it bears the floral shoot and afterward dies. The other, the daughter-tuber, is firmer, lighter-coloured, and provided with an apical bud. It remains dormant in the soil over winter, and in the succeeding spring gives rise to an aerial shoot, and then, after producing a new daughter-tuber, acquires in turn the structure and appearance of a mother-tuber in consequence of the exhaustion of the accumulated reserve material of its cells.

Sub-Families and Represextatife Genera.-(1) Diandrac. Two (rarely three) fertile stamens. All three stigmatic lobes susceptible of pollination. Cypripedium. (2) Monandrac. One fertile stamen. Of the three stigmatic lobes,
one continues rudimentary or develops as a rostellum. Orchis, with spurred labellum; Ophrys, without spur, the flower resembling an insect; both genera,

Fig. 433.-Root-system of Orchis latifolia. b, Base of stem; s, cataphyllary leaf; t^{\prime} old, $t^{\prime \prime}$ young tubers ; k, bud ; r, roots.

Fig. 434.-Root-system of Orchis morio.Officinal. (After Wossidlo, nat. size.)
and similarly Gymnadenia, Platanthera, and others, with tubers; Cephalanthera and Epipactis, with creeping rhizome. Neottia, Epipogon, and Coralliorrhiza are

Fig. 435.-Gongora galeata, an epiphytic orchid. (After Pfitzer in Nat. Pflanzenfamilien, $\frac{1}{5}$ nat. size.)

Fig. 436.-Vanilla planifolia. 1, Inflorescence; 2, fruit.-Officinal. (After Berg and Wossidlo.)
humus plants, either poor in chlorophyll or wholly devoid of it. Vanilla. (see under Officinal).

Geographical Distribution.-This family inhabits chiefly the Tropics, where thousands of its species are found growing as epiphytes upon trees. The roots of such epiphytes (Fig. 435) attach themselves to the bark and are enveloped by a
velamen (p . 42), which greedily absorbs water; while, in many cases, the stems are tuberously swollen and serve as water-reservoins, accumulating water in their cells and transmitting it to the leaves in dry weather. Terrestrial Orchids, on the other hand, are more numerous outside of the tropical zone, particularly in the drier regions of Southern Africa and the countries adjoining the Mediterranean, which are especially characterised by the profusion of their tuberous and bulbous plants (cf. Liliaceac).

Officisal.-The unripe fruit of Tenilla planifolia (Fig. 436) is the otticinal Frectu's Vasilaf. The Vanilla is indigenous to Mexico, but is now eultirated in all tropical countries. It climbs by means of its aerial roots, like the Iry. The orate, not the divided, tubers of several species of urchis and allied plants found in Europe and Asia Minor are used as Salep, Tubera Salep.

The small, wholly tropical family Burmannaceae forms a connecting link between the 'rynandrue and the Amaryllinaceae and other epigynous Lilieftorar. In common with the latter, its flowers have usually an actinomorphic perianth and a free andrecium with both whorls present or with one whorl suppressed. The zygomorphism of many forms, the often unilocular ovary, the very numerous and small seeds with unsegmented embryos, indicate on the other hand a relationship with the Orchids.

Sub-Clas: II

Dicotyledones

Flowers generally constructed after the pEATAMEROUA, pentacyclic type. Seeds with or without albumen ; embryo with Two cotyledosis. Herbs and woody

Fig. 437.-Transwerse section of a young stem of Arist olwh in viphn (ff. 1. 10:3). plants with OPEN vascular bundles exhibiting, in cross-sections of the stems, a circelind arrangement, and also almost always with a cambium which intersects the bundles (Fig. 437). Leaves usually with reticulate: lenation (Fig. 438).

The seeds are varionsly constructed, sometimes with, sometimes without albumen. The embryo may be large or small ; in some parasites and saprophytes it is unsegmented, but otherwise it is differentiated into radicle, hypocotyl, and two cotyledons. On germination, the cotyledons remain in some cases enclosed within the seed, in others they become green and unfold above the surface of the soil.

The primary root is usually retained, and may be distinguished from the lateral roots by its larger size and more rertical growth.

The stem of most Dicotyledons is more or less profusely branched. (For an account of the arrangement (Fig. 437) of the vascular bundles and of their structure, $c f$. pp. 117 and 102 . The secondary thickening is described on p. 120.)

The leaves are alternate or whorled, in the former case assuming various arrangements. They often have stipules, but rarely leafsheaths. The lamina is simple or compound, entire or more or less irregular in outline.

In the majority of cases the structure of the flowers may be referred to the pentacyclic, pentamerous type, although flowers with whorls, consisting of two to six or more members, also occur. When more than five members are present in a whorl the modification of the normal structure is usually due to splitting; when less than five, to suppression. There are also some flowers which normally have less than five members in the floral whorls. The median sepal, with few exceptions (Papilionacene, Lobeliacene), occupies a posterior position. In the most simply constructed Dicotyledonous flowers (Amentaceal) the number of members composing the whorls is subject to variation. Such a condition does not result from a modification of flowers of the pentamerous type occurring in the course of phylogenetic development ; but it must be assumed rather that the numerical relations existing between the parts are not yet thoroughly

Fig. 433.-Leaf with reticulate renation (3 nat. size). fixed.

In the oldest forms a corolla is typically absent ; in the more highly developed the perianth is usually differentiated into a calyx and corolla. More rarely, by the suppression of one whorl, the perianth is simple or developed as a double calycoid or corollaceous perigone.

The Dicotyledons are divided into the two groups, Choripetalae and Sympetalae.

A. Choripetalae

Perianth single or double, and then usually polyphyllous.
The group contains the following orders: Amentaceae, Uiticinae, Polygoninae, Centrospermae, Polycarpicae, Rhoeadinae, Cistiflorae, Passi-

Abstract

florinae, Opuntinae, C'olumniferae, Gruinales, Terebinthinae, Sapindinae: Frangulinae, Thymelaeinae, Tricoccae, Umbelliflorae, Saxifiaginae, Rosiflorae, Legaminosae, Myrtiflorae, and the provisional group of the Hysterophyta. The first three orders comprise plants with simply constructed apetalous flowers, often typically unisexual, and probably representing less highly developed types; while the group of the Hysterophyta, as is evident from the parasitism of most of its members, is of more recent origin. The sequence in which the orders are here given does not constitute an ascending series, and it has no reference to their position in the scale of development.

Order 1. Amentaceae

Flowers hypogynous or epigynous, UNisExtal, SMALL, NAKED, or with CALYCOID PERIGONE ; the male in CATKiNs (amenta); the female in inflorescences of a different character. Number of stamens variable, rarely the same as that of the perigone leaves. Gynœcium two- to sIxmerous. Seeds without endosperm.

The Amentaceae are all woody plants with alternate leares. The male inflorescences are characteristic of this order ; they lave the form of catkins, bearing the small flowers in the axils of scale-like bracts. The female flowers are sometimes aggregated into catkins, as in the Willow ; in other cases into capitate or spike-like inflorescences. The fruit is usually a one-seeded nut, rarely a capsule or drupe.

The diclinous flowers, the absence or imperfect development of the perianth, the variable number and often irregular arrangement of the parts of the flower in the same or in allied species, the almost uniform wind-pollination, and the small degree of modification exhibited by the flowers adapted to pollination by insects, make it probable that of all the Dicotyledons the Amentaceae differ less widely from the primitive form, and represent phylogenetically the lowest stage of development. That the primitive character of the flowers is not a result of reduction, but of a low degree of development, is apparent not only from the fact that all indications of such a reduction are lacking, but also because the male and female flowers have so evidently not arisen, like the unisexual flowers of the more highly developed types, from others that were originally hermaphrodite.

The close relation of the Amentaceac to older, now extinct, types may be assumed with certainty, if it should prove that the Casuarinaccac also belong or are allied to this order. The last-named family, as Trietr has shown, possesses peculiarities which distinguish it from the Angiosperms and place it nearer the Gymnosperms, or even the Pteridoplyytes (c.g. a multiplicity of embryo-sacs with egg-apparatus, the presence of a cell-wall investing the still unfertilised eggcells, begimning of the endosperm formation before fertilisation). The Casuarinaccue exhibit the additional peculiarity that the pollen-tubes do not approach the embryo-sac through the micropyle, but by penetrating the chalaza (Chalazogamy). According to recent investigations some undoubted Amentaccacare also chalazogamic, a fact which would favour the inclusion of the Casuarinaccae within this order.

The essential variations exhibited within the order are limited to the female flowers, which are sometimes hypogynous, sometimes epigynous, and possess a septated or unseptated ovary, a single ovule or a number of ovules in different positions. These distinctions are utilised in classifying the different families.

Fig. 439.-Salix viminalis. A, Flowering male-shoot (nat. size); B, male flower with subtending bract (magnified); C, female inflorescence ; $D-E, \quad$ female flowers (magnified); F, fruit (nat. size); G, the same magnified ; H, seed (magnified).

Fig. 440.-Populus tremulc. 1, Male inflorescence; 2, female inflorescence; 3 , male flower; 4 , female flower; 5 , the same in longitudinal section; 6 , fruit; 7 , the same after dehiscence; s, seeds; 9 , diagram of male flower. (After Wossidlo.)

Family Salicaceae-Flowers hypogynous, diœecious; perianth absent; DISC cupular or consisting of scales; ovary dimerous, unilocular with numerous parietal ovules ; fruit a capsule ; seeds numerous, furnished with a tuft of silky hairs. Trees and shrubs, bearing simple leaves without stipules, and amentaceous inflorescences (Figs. 439, 440).

The family contains only the two genera, salix, Willow, and Populus, Poplar.
The flowers of the Willow (Fig. 439), unlike those of all the other Amentaceac, are pollinated by insects, not by the wind. They are accordingly provided with nectaries (the disc-scales) as a means of enticement, and the male flowers have an attractive odour, bright-coloured anthers, and a sticky pollen. Male and female catkins have essentially the same structure; they are beset with scale-like, entire bracts, in the axils of which the flowers are borne singly. Each male flower possesses usually two stamens (Salix alba), rarely three or more (Salix triandra, s'. pentandra). The fruit is a two-valved capsule. The numerous seeds are disseminated ly the

Fig. 441.-Fagus sildaticu. 1, Flowering branch ; 2, a male flower; 3, a female fluwer cut through longitudinally ; 4, transverse section of ovary ; 5, cupule and fruits; fi, fruit. (After Wossidbo.)
wind ; by means of their hairy appendages they are able to float for a long time in the air.

The Poplars (Fig. 440) are anemophilous. The flowers, accordingly, are destitute of nectaries, which are represented by a cup-shaped disc. The catkins are similar to those of the Willow; but with toothed or lobed bracts. The fruit and seeds are like those of the Willow.

Geographical Distmbution.-The Salicacae inhabit almost exclusively the temperate and colder zones, where they are often abundantly represented, constituting an important part of the regetation. They are especially characteristie of the low ground along the banks of streams, where the more shrubby Willows (S. murpurcu, triandra, viminalis, etc.) form thicket-like growths, often overtopped by arborescent species (S. alba, frayilis). The Weeping Wiliow (S. babylonica) is indigenous to the East.

To the genus Populus belong, among others, the White Poplar (P. alba), the Black Poplar (P. nigra), the Aspen (P. tremula), all natives of Europe, and the Lombardy Poplar (P. pyramidalis), originally indigenous to the East.

Officinal. - Salix alba and other species yield Cortex salicis.
Family Cupuliferae.-Flowers EPIGYnOUs, monœcious, with or without perigone ; DISC ABSENT ; ovary TWO- TO THREE-LOCULAR, WITH

Fig. 442.-Quercus pedunculata. A, Flowering branch; B, a male flower (magnified); C, stamens (magnified) ; D, a female flower (magnified); E, infructescence ; F, cupule ; G - H, seed. officinal.

ONE TO TWO SUSPENDED OVULES IN EACH LOCULUS ; fruit, a one-seeded nut. Woody plants with sIMPLE, stipulate leaves ; female inflorescences of different types (Figs. 441-447).

The Cupuliferae are deciduous, or, in the warmer zones, evergreen woody plants, with variously shaped, usually toothed or lobed leaves.

These flowers are small and inconspicuous; they are adapted to wind-pollination, and are accordingly destitute of any special means of
attracting insects. The male flowers are either naked or have a perigone consisting of four to six members ; the female flowers are variously constructed. The presence of a woody CLPE"LE is characteristic of many Cupuliferae : it consists of an involucre formed of coherent bracts investing the whole female inflorescence or only the single flowers, and completely enclosing the whole infructescence or the separate fruits, or only enveloping them at the base.

Sub-Families and Rephesentative Genera.-(1) Betuloileac. Ovary bilocular; no woody cupule. Betula, Birch; Almus, Alder ; Corylus, Hazel-nut ; Carpinus, Hornbeam. (2) Fagoidcae. Ovary with three, rarely with more loculi ; cupule present. Fayus, Beech; Qucrcus, Oak; Castanca, Chestnut.

In the Bcech (Fig. 441) the male flowers are borne in small, globose catkins; they have a bell-shaped fringed perigone and mumerous stamens. The female inflorescence is composed of two flowers with a six-leaved perigone and trimerous gynocium. Each inflorescence gives rise to two three-sided nuts, which are invested by a woody cupule. The cupule is covered with hard bristles, and when ripe splits into four valves.

In the Chestnut (Castania resca) the fruit is also completely enclosed in a cupule until maturity; this is thickly covered with prickles, and splits into four valves when ripe.

The Oak (Figs. 442, 443) possesses long, slender male catkins with flowers disposed at intervals, and capitate or spike-like female inflorescences. Each female

Fig. 443.-Qurreus pedunculute, longitudinal section of the fenale tudinal section of the fenale
Hower. b, The young cupule; e, ovule ; d, ovary; c, perigone ; f,
style; g, stigna. (After l3frag and ovule; d, ovary; c, perigone ; f,
style; g, stigna. (After l3zirg and SCHMIDT, magnified.) flower is provided with a scaly cupule, which ultimately invests the base of the solitary mut ("acorn"). Only two slecies are indigenous to Germany, Q. pedunculata and Q. sessilittora, both of which are often regarded as varieties of the one species, Q. robur. In the first named the leaves have short stalks, and the female inflorescences are spicate; in Q. sessiliffora the stalks of the leaves are long, while the female inflorescences are capitate.

The inflorescences of the Hazel (c.g. Corylus Avellana, the common Hazel-nut, unlike those of the genera just described, are developed in the preceding year; the male last over the winter, naked: the female inflorescence is enclosed in a bud (Fig. 444). In early spring the male catkins elongate and produce an abundance of dry pollen, while the female inflorescences are distinguishable from the leaf-buls only by their larger size and projecting red stigmas. The nut is enveloped at the base by a sheath of succulent bracts.

In the Hornbeam, Carpinus Betulus (Fig. 445), the cylindrical loose inflorescences make their first appearance in the spring. The nut is provided with a three-lobed sheath.

The inflorescences of the Alder (e.y. Alnus glutinosa, Black Alder ; A. incana, Speekled or Hoary Alder), like those of the Hazel, are developed on the shoots of the previous year. The male are long and cylindrical ; the female are much smaller, ovoid in shape, and form cone-like infructescences with two nuts at the base of each scale (Fig. 446).

Fig. 444.-Corylus Avellana. 1, A flowering branch; 2, a male flower; 3 , a stamen; 4 , a female flower cut through longitudinally; 5, fruit with cupule ; 6 , fruit without cupule ; i, a foliage-leaf. (After Wossidlo.)

ic. 446.-Alnus glutinosa. 1, Branch with male (() and female (b) inflorescences ; 2 , male flowers ; 3 , female inflorescence ; 4 , two female flowers ; 5 , infructescence ; 6, fruit. (After Wossidlo.)

Fig. 445.-Carpinus Betulus. 1, Flowering branch ; 2, a male flower; 3, stamens ; 4, female flowers; 5, a female flower isolated. (After Wossidlo.)

Fig. 44 i.-Betula alba. 1, Branch with male (a) and female (b) inflorescences ; 2, bract with three male flowers ; 3, bract with three lemale flowers; 4, infructescence ; 5, fruit. (After Wossidlo.)

In the Birch (Betula alba) the male inflorescences appear in autumn, the female not until the following spring; both are cylindrical and many-flowered. The fruit is winged, and is borne in groups of three in the axil of each bracteal scale ; the scales become detached from the axis and fall off together with the fruit (Fig. 447).

Geographical Distribution. - The Cupuliferae constitute the most important deciduous trees of the forests of the whole northern hemisphere, but only occur in the Tropics in the cooler mountainous regions.

Fig. 445.-Juglans regia. Branch with male (a) and female (b) inflorescences; 2 , a group of male flowers; a, stamen seen from the inner side; b, the same seen from the side; 3 , a female flower; 4, the sane in longitudinal section; 5, fruit, with pericarp partly removed; b, the same in longitudinal section.-OFFICINAL. (After Wossidlo.)

This fanily supplies many plants of economic value. The wood of the Oak is particularly valuable on account of its hardness and density; while the bark is used for taming, and the fruit as a cheap substitute for coffee. Cork is obtained from the Cork-Oak (Quercus Suber and Q. occidentalis) of Southern Europe. The wood of the Beech is largely used for firewood, and from the seeds, Beech-nuts, oil is derived. The seeds of the Chestnut are edible, and form in the sonth of Europe an important article of food.

Officinal.- The bark of some species of Oak, Cortex Querots, and the acorns,

Semes Quercts, are used medicinally. Quercus lusitanica Webb. var. infectoria, indigenous to the East, produces, when stung by the Gall-fly, Cynips gallae tinctoriae, the officinal Gallae.

Family Juglandaceae.-Flowers epigynous, moncecious, naked or with tetramerous perigone ; number of stamens indefinite ; ovary with two incomplete loculi, enclosing one erect ovule. Aromatic trees, usually having imparipinnate leaves without stipules.

In Juglans regia, the Walnut (Fig. 448), the thick, crlindrical male catkins are borne in the axils of the fallen leaves of the shoots of the prerious year; the two bracteoles and the gamophyllous, tetramerous perigone are adherent and envelop a rarying number of stamens. The female flowers are aggregated in few-flowered spikes at the apices of the leafy shoots of the same year. In the female flowers, as in the male, the leares of the perigone are coherent and united with the bracteoles. The large, white papillose stigmas constitute the most conspicuous part of the flowers. The fruit is a drupe, and when ripe it has a brown, irregularly splitting exocarp and a hard endocarp. The seed, which is deeply lobed in consequence of the incomplete septation of the carity of the orary, consists of a thin seed-coat and two large, oils cotrledons attached to a short hypocotyl.

Geographical Distribetion.-The Walnut (J. regia) grows wild in Greece and Asia Minor. The other members of this small family are forest trees of North America and Eastern Asia. The wood of several species of Juglandaceac, particularly of the Walnut, is much used for furniture and in cabinet work.

Officisil.-From Juglans regia is obtained Folia Juglasdis.
Allied to the Juglandaceac is the small family Myricaceac, of which the BogMyrtle or Sweet Gale, Myrica Gale, growing on moors and along the wet borders of ponds, is a familiar example.

It has already been pointed out that the Casuarinaceae are probably related to the members of this alliance. This family comprises a number of Australian and East Indian trees which somewhat resemble the Equisctaccac in appearance.

Order 2. Urticinae

Flowers hypogynous, usually unisexual, small, with simple, CALYCOID PERIGONE; stamens opposite the leaves of the perigone, and of the same number ; gyncecium one- to two-merous, in the last case one of the carpels usually REDUCED ; ovary unilocular, with one ovule: seeds usually with endosperm. Herbs and woody plants with thick inflorescences.

There are no rery essential differences between the Amentaccae and Citicinae. Inflorescences resembling the catkins of the Amentaciae sometimes occur in the Urticinae. The reduction of the gynœecium to a single fertile carpel does not always take place in the Cirticinae, nor is an endosperm always present in the seeds without exception. In such cases, howerer, other characteristics and a comparison with allied forms leave no doubt of their proper position within this order.

Some members of this family are herbs, others are shrubs or trees. They have variously shaped, but always stipulate leaves, and frequently they contain a latex. The flowers, as a rule, are windpollinated and inconspicuous; they are aggregated into thick inflor-
escences and produce great quantities of dry pollen, and have large, brush-like stigmas. Entomophilous forms adapted to insect-pollination occur in the Moraceae (e.g. the Fig). While in the Amentaceae the structure of the flower's is subject to great variation, in the Urticinue it is more uniform and constant. The almost invariable presence of a perigone, the haplostemonous stamens, the hermaphrodite or, by reduction, unisexual flowers are indicative of the high stage of development

Fig. 449.- U'mus compestris. 1, Flowering branch; 2, branch with leaves ; 3, a flower; 4, the same, cut through longitudinally; 5 , fruit. (After Wossidlo.) attained by this family. The fruit is either dry and nut-like or drupaceous.

Family Ulmaceae. -Flowers hermaphrodite or, as a result of suppression, unisexual, with four to six perigone leaves; stamens straight in the bud; ovary dimerous, unilocular, with one stspended, anatropous ovule. Woody plants Without milky juice, with pinnately veined leaves and cadecous stipules (Fig. 449).

This family comprises tall trees with tworanked unsymmetrical, hairy leaves. The flowers are hermaphrodite and clustered in the axils of the leaves of the preceding year. The fruit is a winged nut.

Geographical Distribition.-The Ulmaceae are forest trees of the temperate and tropical zones. As examples of the genus Ulmus may be cited, Ulmus campestris, the Common Elm, and U. effiusa, also the Witch-Hazel or Wych-Elm, Ulmus montana, all native of Europe. Celtis australis, from Southern Europe, and the Hackberry (Celtis occidentalis) from North America, both of which have drupaceous fruits, are frequently cultivated as ornamental trees.

Family Moraceae.-Flowers unisexual, usually with four perigone leaves; stamens straight or inflexed in the bud; ovary dimerous, unilocular, with one suspended, Axatropous ovule. Mostly trees or shrubs, rarely herbs, with milky juice and caducous stipules (Fig. 450).

The Moraceae are easily distinguishable from the Ulmaceae by their
latex tubes, and also by their peculiar inflorescences, frequently consisting of numerous axes which have become more or less coherent. Especially remarkable in this respect are the flowers and fruit of the Fig-tree, Ficus carica (Fig. 450). The fruit known as the Fig is the aggregated product of the complete union of the axes of a cymose inflorescence. The succulent part of the ripe fruit consists in its outer portions of the coherent axes, and internally of the perigones of the flowers comprising the inflorescence. The peri-

Fig. 450.-Ficus carica. 1, Flowering branch ; 2, a female flower cut through longitudinally; 3, a male flower; 4, a fig in longitudinal section. (After Wossidlo.) gone of each flower encloses a hard nutlet, the whole representing a single fruit.

The Moraceae are represented in Germany only by cultivated species, the Mulberry tree, Morus nigra, which is of Asiatic origin, and by the Fig tree, Ficus carica.

Fig. 451.-C'annabis sativa. 1, Part of a flowering shoot of a male plant; 2, the same of a female plant ; 3, a male flower ; 4, a female flower ; 5, fruit. (After Wossidlo.)

The genus Ficus is the largest of the family, and is especially remarkable on account of the great variety of forms it assumes, the size and beauty of many of its species, and its economic value. The seed of the East Indian Banyan, Ficus bengalensis, germinates on the branches of other trees, to which it is carried by birds. Growing first as an epiphyte, it sends down slender roots to the ground, which develop
ultimately into thick columns; the branching crown in the meantime becomes enormously expanded horizontally, and there is formed a large hall of columns, in the shade of which there is sufficient space for a village. The tree upon which the seed first germinated disappears entirely. The species of Ficus and the majority of the Moraceae occur in the virgin forests of tropical countries. Caoutchouc is obtained from the

Fig. 452.-Humulus Lupulus. 1, Branch of male inflorescence; 2, branch with female inflorescences; 3, a female inflorescence; 4, two female flowers with bract; 5, infructescence; 6, fruit. (After Wossidlo.) latex of many species of Moraceae; other species have edible fruit, e.g. the Mulberry, Fig, and the Bread tree, Artocarpus incisa.

Officinal.-From Morus nigra is derived Syrupus mori.

Family Cannabinaceae.Flowers typically diecious; the male with five perigone leaves, and as many stamens with straight filaments in the bud ; the female flower has an entire, cup-like perigone. Ovary dimerous, with one SUSPENDED, ANATROPOUS ovule. Herbs without Latex, with palmately-nerved leaves and Persistent stipules (Figs. 451, 452).

Genera.-Camnabis, Humulus. Cannabis sativa, Hemp, is a native of the East Indies. It is an annual herb with palmately divided leaves beset with stiff hairs. The male flowers form a large, profusely branched panicle with leaves only at the base. The female flowers are aggregated into small spikes, and are concealed by numerous leaves ; as in most cases of wind-pollination, the stigmas are characteristically large and papillose (Fig. 451). The female plants are larger and possess thicker foliage than the male. The subtending leaves of the female flowers of the variety indica are covered with glandular hairs, which excrete resin. The fruit is a nut with a seed containing much oil.

The Hop, Humulus Lupulus (Fig. 452), is both cultivated and found wild. It is a twining, perennial herb with hispid, palmately-lobed leaves. The male flowers are united in profusely branched, axillary panicles devoid of leaves; the female are clustered into cone-like inflorescences, whose scales represent, in part, the stipules of undeveloped hypsophylls, in part the subtending leaves of the flowers. When ripe, the scales are covered with yellow glandular hairs which secrete lupulin. It is to the presence of this lupulin that the value of hops in brewing is due.

Officinal.-From Cannabis sativa var. indica is obtained Herba Cannabis indicae. The glands of the cone-scales of Humulus Lupulus have an officinal value as Lupulinum.

Family Urticaceae.-Flowers unisexual through reduction, usually with four-leaved perigone and with stamens InFLEXED in the bud; ovary monomerous, with an erect, atropous ovule. Herbs and shrubs without latex, with stipulate leaves.

The Urticaceae are mostly herbs and shrubs with simple leaves, which are often armed with stinging hairs. The flowers are restricted to wind-pollination, and are clustered in thick, greenish or whitish inflorescences. The fruit is a nut or a drupe.

Geographical Distribution.-The Stinging Nettles, Urtica urens and dioica, occur everywhere as common weeds. The majority of the representatives of this family, however, inhabit the warmer zones, where they constitute a considerable proportion of the herbaceous and shrubby vegetation of the primitive forests.

Order 3. Polygoninae

Flowers hypogynous, HERMAPHRODITE, sometimes unisexual by suppression, generally Trimerous ; perianth AbSENT or DEVELOPED AS A PERIGONE ; ovary UNILOCULAR, WITH A SINGLE BASAL ATROPOUS OVULE.

The Polygoninae occupy an intermediate position between the Urticinae and the following order, Centrospermae. Resembling the Urticinae in their small, usually greenish, thickly clustered flowers and in the construction of the ovary, they may always be distinguished from them by their trimerous flowers. They differ from the Centrospermae in having atropous ovules and in the trimerous structure of their flowers.

The members of this order are mostly herbs, rarely small woody plants. They generally have axes swollen at the nodes, simple, usually entire leaves, and spike-like inflorescences with closely-crowded small flowers. The flowers themselves vary greatly in structure ; sometimes naked, and of the simplest structure ; sometimes, by the dissimilarity of the outer and inner leaves of the perigone, and by the possession of two whorls of stamens, they exhibit a higher stage of development than is attained by the Urticinae. The fruit is either a nut or drupaceous in character ; the seeds contain a mealy albumen.

Family Piperaceae.-Flowers NAKED, typically trimerous, but usually reduced ; fruit drupaceous ; seeds with perisperm. Herbs and shrubs with stipulate or exstipulate leaves (Figs. 453, 454).

The Piperaceae are found exclusively in tropical countries, where, as herbs and shrubs, often climbing by means of roots or living as epiphytes with inconspicuous, densely clustered, green flower-spikes, they constitute an essential though not particularly prominent part of the Flora. Piper nigrum L., the Black Pepper (Fig. 453), is a shrubby root-climber native of the East Indies, and is now cultivated in all tropical countries. The unripe drupes of this species are familiarly known as black pepper; white pepper consists of the kernels of the fruit of the same plant, freed from the exocarp. The perisperm is large and mealy.

Officinal.-The dried, unripe fruit of Piper Cubeba, a climbing shrub of the Sunda Islands, is the officinal Cubeba. It is distinguishable from pepler-corns by the presence of a stalk-like appendage (Fig. 454).

Family Polygonaceae.-Flowers with single or double perigone, typically trimerous, but the number of stamens is frequently increased by division; fruit almost always a nut; seeds without perisperm.

Fig. 453.-Pipbr nigrum. 1, Part of shoot with young infructescences; 2 , tip of fruitspike. (After Wossidlo.)

Fig. 454. - Piper Cubeba. a, Infructescence; b, a male flower; c, a female flower in longitudinal section ; d, fruit in longitudinal section.-OFFI('INAL. (After Berg and Schmidt. a, Nat. size ; b, c, d, magnified.)

Herbs, rarely woody plants, especially characterised by alternate leaves and connate stipules in the form of tubular sheaths.

The wild or cultivated Polygonaceae are herbs with hollow stems and simple, rarely lobed, alternate leaves.

The ochrea, formed by the coherent stipules, is very characteristic ; it first encloses the apex of the shoot, and afterwards surrounds the base of the internode and axillary bud as a scaly tube. The flowers are small and aggregated into compound spikes, racemes, or panicles; they have a calycoid or corollaceous, reddish perigone, according as they are anemophilous or entomophilous. The inner circle of stamens is often suppressed (Rumex). The fruit is in most cases a three-sided, thin-walled nut with a mealy endosperm.

Polygonum, Knot-Grass, has a corollaceous, five-leaved perigone and five to eight stamens. Rumex, the Dock or Sorrel, possesses a six-leaved $(3+3)$ calycoid perigone
and six $(6+0)$ stamens. Rheum, Rhubarb, has also a calycoid perigone and nine $(6+3)$ stamens.

Fig. 455.-Rheum officinale, greatly reduced. (After Baillon.)
Geographical Distribution. - The Polygonaceae are chiefly found in the North Temperate Zone. Rumex acetosa, Sorrel, contains a large amount of potassium oxalate, and is on that account esteemed as a vegetable and often cultivated
for that purpose. Other frequently cultivated plants belonging to this family are the Buckwheat, Fagopyrum esculentum, and the different species of garden Rhubarbs.

Fig. 456.-Rheum officinale. A, Flower ; B, the same cut through longitudinally; C, gynœecium with dise ; Rheum compactum, D, fruit. (After Lürssen, magnified.)

Officinal.-The rhizome of Rheum officinale (Figs. 455, 456) and R. palmatum var. tanguticum is the officinal Radix Rhei.

Order 4. Centrospermae

Flowers hermaphrodite, usually hypogynous, PENTAMEROUS with CALYCOID PERIGONE, OR WITH CALYX AND COROLLA, rarely naked; andrœcium haplostemonous or diplostemonous; ovary commonly UNILOCULAR, WITH A SINGLE, BASAL OVULE, or with a Free-central PLACENTA and numerous CAMPYLOTROPOUS ovules ; seeds with perisperm and a CURVED embryo.

The Centrospermae are for the most part herbaceous, rarely woody plants with simple, exstipulate leaves. The flowers are either inconspicuous, white or highly coloured, according to the method of pollination. As regards their structure, the flowers of the different members of this order may be arranged in an ascending series, beginning with the simplest forms, resembling those of the Urticaceae and gradually advancing to the more highly developed, constructed after the pentacyclic, pentamerous type, characteristic of the Dicotyledons, and having a perianth differentiated into calyx and corolla. The Centrospermae thus link together the apetalous and corollate Dicotyledons. The unilocular character of the ovaries in most members of this order is due, no doubt, to the disappearance of the dissepiments, as in some cases they are partly retained (Fig. 458).

In the simplest cases the flowers consist typically of three whorls (e.g. Chenopodiaceae) ; the number of the whorls is in other instances increased to five (e.g. most Caryophyllaceae), but in other cases it is reduced again, by suppression, to three (e.g. the Caryophyllaceous Paronychioideae). At the end of the series, accordingly, flowers occur with a structure apparently similar to those at the beginning; but
in the reduced flowers one may often distinguish traces of the suppressed whorls, which are not in any way represented in the more simple, tricyclic types.

Family Chenopodiaceae.-Flowers usually withott bracteoles, with a single calycoid PERIGONE ; andrœcium haplostemonous, EPIPETALOUS ; ovary two- to five-merous, with ONE ovele. Fruit generally a nut (Fig. 457).

The Chenopodiaceae are herbs and small woody plants, with scattered, often fleshy, leaves, and greenish inflorescences of small, clustered flowers. The flowers are often unisexual in consequence of suppression. The nutlets are filled with a mealy albumen.

Chenopodium, Goosefont or Pigweed, hermaphrodite, with greenish, and after flowering, dry perianth; Blitum, with succulent perianth when the fruit is ripe ; Atriplex, Orache, monœecious, with naked female flowers; Beta, Beet, epigynous; Spinacia, Spinach, diœecious, the perianth hardening during the ripening of the fruit and adhering

Fig. 45i.-el, Flower of Beta vulgaris : b, gynœcium of Chenopodium multifidum, with part of wall of ovary removed; c, seed of Beta vulgaris. (After Volckexs in Natürl. Pflanzenfamilien, magnitied.) to the nut.

Geggraphical Distribution.-The Chenopodiaceae are for the most part saline plants, and chiefly occur near the ocean or in deserts and steppes. In such situations they are usually developed as succulent and not infrequently prickly herbs or woody plants. The most important cultirated species of this family are the Spinach, Spinacia oleracca, and the different varieties of the common Beet, Beta vulgaris, of which the most important is the Sugar-Beet, B. altissima. Beta vulgaris has itself probably been derived by culture from B. maritima, growing wild on the coast of the Mediterranean.

Officinal.-Beta vulgaris yields cane-sugar, Sacchardm.
Family Amarantaceae.-Flowers with two large bracteoles, and dry, often highly coloured, perigone ; in other respects resembling the preceding family.

Geographical Distribution. -The plants of this order are mostly tropical ; but several have found their way northward, growing as weeds and resembling the Chenopodiaceae in habit.

Family Caryophyllaceae. -Flowers with calyx and

Fig. 458. - Diagrams of the Caryophyllaceae. A, Viscaria, lateral walls present in the lower part of the ovary ; B, Silene, lateral walls absent. (After Eichler.) COROLLA, the latter sometimes suppressed ; androecium diplostenonous or, by reduction, haplostemonous. Ovary rarely with only one ovule, more frequently

With numerous oveles. Fruit usually a capsule (Figs. 458, 460).

The Caryophyllaceae are herbs, rarely shrubs, of varied appearance. They have opposite, entire, frequently narrow leaves and dichasial inflorescences. The flowers in some genera are small and of a greenish colour, but are usually provided with a white or brightly-coloured corolla, and are frequently large and conspicuous. In many cases all the floral whorls are pentamerous, but commonly the gynocium is two- to three-merous. The capsules split at the apex into valves or teeth (Fig. 459) ; in a few cases the fruit is a nut or berry.

Sub-Families and Representative Genera.-(1) Alsinoideae: calyx poly-

Fig. 459.-Melanulryum cilbum. 1, Inflorescence ; 2, a male flower ; 3, a female flower ; 4, fruit; 5 , seed. (After Wossidlo.)
sepalous; petals with short claws; fruit a capsule. Cerastium, Chickweed, flowers entirely pentamerous. Spergula, Spurrey, and Stellaria, Starwort or Stickwort, with trimerous ovaries and cleft petals. Arenaria, Sandwort, distinguished from Stellaria by its entire petals. (2) Paronychioidcae: calyx polysepalous; corolla wanting or reduced; ovary with one ovule; fruit a nut. Scleranthus, Knawel ; Herniaria. (3) Silenoideac: calyx gamosepalous; petals with long claws; fruit a capsule. Lychnis, Campion, with pentamerous ovary ; Silene, with trimerous ovary and six-toothed capsule. Dianthus, Pink, with trimerous ovary and fourtoothed capsule. The flowers of this group often have ligular appendages to the petals at the throat of the corolla.

Geographical Distribution.-The Caryophyllaceae are cosmopolitan in their geographical range, but they prefer the temperate and colder zones, where they are represented by numerous species growing in the most varied situations.

Porsonous. - Agrostemma (Lychnis) Githago, Corn-Cockle (Fig. 460), a hairy weed, reaching a height of 80 cm ., common in grain-fields, with narrow leaves, violet-coloured flowers, and many-seeded capsules. The seeds when abundantly mixed with the grain give the flour toxic properties. Saponaria officinalis, the common Soapwort or Bouncing Bet, a stout perennial with clustered, rose-coloured flowers. The saponin contained in ali parts of the plant renders it somewhat poisonous.

The following less important families are also included in the order Centrospermae.

Nyctaginaceae.-Perigone single, often corollaceous, persistent after flowering and investing the fruit. Mostly tropical plants. Species of the genus Mirabilis belonging to this family are often cultivated in gardens.

Aizoaceac.-Flowers typically consisting of three whorls; stamens often doubled and in part petaloid; ovary multilocular. Succulent plants, chiefly occurring in South Africa. Many species of Mesembryanthemum are cultivated as ornamental plants.

Fig. 460.-Agrostemma Githago (2 $\frac{2}{3}$ nat. size).-Poisonots.
Phytolaccaccae.-A representative species of this family is the common Pokeweed or Pigeon Berry, Phytolacca decandra, of North America; fruit a berry with strongly purgative properties.

Portulacaceac.-Calyx dimerous. Succulent herbs, of which the common Purslane, Portulaca oleracea, is a familiar example.

Order 5. Polycarpicae

Flowers hypogynous or perigynous, hermaphrodite, partly or wholly spiral, with numerous stamens and Free carpels ; seeds with endosperm.

This order comprises herbs and woody plants of very different appearance, their relationship being only revealed by the structure of the flowers. The type is most accurately represented in such forms as have at least an acyclic andrœcium and gynœcium, with numerous stamens and carpels inserted on a convex axis (Fig. 461). Flowers constructed in this manner are the rule in the Ranunculaceae, Magnoliaceae,
and Anonaceae. These three large families form a central group about which the families with flowers less typically developed may be arranged. The most uniform characteristic of the whole order is the apocarpous gynœcium, although in the Nymphacaceae, in some Ranunculaceae, and also in the Lauraceae, the systematic position of which is somewhat uncertain, the carpels are more or less united. The convex flower-axis, the spiral arrangement of the parts, the numerous stamens, are usual, if less constant, characteristics of this order. There are included in the Polycarpicae, as is frequently the case in other orders, isolated groups which do not exhibit a single one of the distinctive characteristics of the order, but which, nevertheless, show such marked affinity to other undoubtedly typical groups, that they must be regarded as belonging to the same general alliance.

The order in which the different families are named is not intended to be indicative of their relative position with regard to each other, in an ascending series. Linked to the Ranunculaceae, on the one side, are the Nymphaeaceae

Fig. 461.-Flower of Panunculus sceleratus; b, the same, cut through longitudinally; magnified.
(After Baillon.)
and Ceratophylluceae, and on the other the Maynoliaceae and allied families; while the Berberidaceae, Nenispermaceae, and perhaps also the Lauraceae, form a separate subordinate alliance within the order.

Family Ranunculaceae.-Flowers hypogynots, usually actinomorphic ; very rarely cyclic, usually ACYCLIC throughout or so at least in the andrœecium and gynœecium ; perianth single or double, in the last case frequently with corollaceous calyx and petals abnormally developed, most commonly as nectaries ; stamens indefinite, ustally numerous ; pollen-grains with two to three pores; carpels in indefinite, often large, numbers, usually free; seeds with albumen. Herbs, rarely woody plants, with alternate leaves without oil-glands (Figs. 461-470).

Most Ranunculaceae are medium-sized herbs, frequently with a radical rosette of deeply-lobed leaves and sparingly-leaved fertile shoots. The flowers are usually conspicuous, often solitary, and then terminal or axillary, or sometimes aggregated, in loose, and more rarely compact, racemose or cymose inflorescences. Insect-pollination is universal, and has produced corresponding adaptations to it in the flowers, such as
the bright colour of the perianth, or when it is reduced as in the species of Thalictrum, of the andrecium, and the development of nectaries (Fig. 462). The nectaries are developed either as small depressions at the base of the petals (Ramunculus), or the whole petal is transformed into a cupshaped nectary (Helleborus, Aconitum).

According to views at one time largely held, such "honey-leaves" and also the petals of Ranunculus were regarded as staminodia.

The carpels of the Ranunculaceue are converted at maturity into capsules (Helleborus,

Fig. 462.-1, Flower of Aconitum Napellus; 2, nectaries, andrœcium and gynœcium of the same. (After Wossidlo.) Aconitum, Fig. 463), or as in Ranunculus (Fig. 464) and Anemone, into nutlets or achenes, frequently having long, feathery appendages (Clematis, Pulsatilla, Fig. 470), or, less frequently, into berries (Actuea, Hydrastis).

Representative Genera.-With Capsules: Nigella, carpels syncarpous; Paeonia, Caltha, with corollaceous calyx and no corolla; Aquilegia (Columbine), flowers cyclic, with spurred petals; Aconitum (see under Poisonous) ; Delphinium (Larkspur), flowers zygomorphic, one sepal with long spur. With Nutlets : Ranunculus (Crowfoot, Buttercup), with green calyx and usually with yellow

Fig. 463.--Aconitum Napellus. a, Fruit (nat. size) ; b, seed ($\times 2$).

Fig. 464.- 1 , Apocarpous fruit of Ranunculus acer $\left(\times 2 \frac{1}{2}\right) ; b$, a carpel ; c, the same in longitudinal section ($b, c, \times 4$).
corolla, petals with nectaries ; Adonis, Anemone, with single corollaceous perigone ; Thalictrum (Meadow-Rue), with small, greenish perigone and long stamens; Clematis, climbing plants with opposite leaves, flowers with single, corollaceous perigone.

Geographical Distribution.-The Ranunculaceae are represented chiefly in the North Temperate Zoue. Many are favourite ornamental plants, especially different species of Paeonia, Clematis, Aquilegia, Nigella, Adonis, and the ChristmasRose, Helleborus niger.

Fig. 465.-Helleborus foetidus (3 $\frac{3}{8}$ nat. size).Poisonocs.

Fig. 466.-Caltha palustris.-Porsonoc's.

Fig. 467.-Aconitum Lycoctonum ($\frac{1}{2}$ nat. size).-Potsonocs.

Fig. 468.-Aconitum Napellus ($\frac{1}{2}$ nat. size).-Poisonoc's and officisil.

Poisonous.-The whole family is extraordinarily rich in toxic principles, which are so abundant in many species as to render them dangerously poisonous. The following may be cited as the most poisonous plants of the Ranunculaceac.

Fig. 469.-Remunculus sceleratus ($\frac{1}{2}$ nat. size.)Polsonous.

Fig. 470.-Anemone Pulsutilla ($\frac{1}{2}$ nat. size.)Poisonols.

All the species of Aconitum, in particular A. Napellus and A. Lycoctonum. The former (Fig. 468) is a perennial plant with tubers, one of which dies in the autumn, while the other, as in the Orchidaceae, gives rise to a new plant in the succeeding spring. The leaves are palmately divided, dark green on the upper surface,
and, like the whole plant, they are entirely devoid of hairs. The flowers are clustered in simple or sparingly branched, terminal racemes, and are distinctly zygomorphic (Fig. 462). One of the five dark violet sepals is helmet-shaped; two of the petals are transformed into hood-shaped nectaries raised on long claws, while the others are reduced to filamentous rudiments; the numerous stamens surround three apocarpous carpels, each of which produces a follicle at maturity. Aconitum Lyeoetonum (Fig. 467) has smaller yellow flowers, and, instead of tubers, a slender rhizome. A. variegatum and A. Stocrcheanum, allied to A. Napellus, are also extremely poisonous.

All the species of Ranunculus are also more or less poisonous. R. sceleratus, Celery-leaved Crowfoot, probably one of the most noxious species, is a glabrous herb with three-lobed, somewhat fleshy leaves and small light yellow flowers (Fig. 469). The Tall Crowfoot or Buttercup, R. acris, is the frequent cause of poisoning in cattle. It has a hairy stem, palmately divided leaves and bright yellow flowers. The Marsh Marigold, Caltha paiustris (Fig. 466), though less poisonous, is a source of danger to children on account of its frequency and attractive flowers. Helleborus foetidus, Bear's Foot (Fig. 465), a large glabrous perennial, has palmately divided leaves and yellowish green, somewhat bell-shaped, flowers with numerous stamens and few carpels. The perianth consists of a large-leaved calyx and conical honey-leaves; the carpels when ripe become follicles. Both the Green Hellebore, H. viridis, and the Christmas-Rose or Black Hellebore, H. niger (with reddish white flowers), are also poisonous. Species of Adonis (e.g. A. vernalis), Anemone (in particular A. nemorosa, and even more so A. Pulsatilla, Fig. 470), Clematis and Delphinium (especially D. Staphysagria) are also poisonous, but in a less degree.

Officinal.-The tubers of Aconitum Napellus, also the root and rhizome of the Orange Root, Hyllrastis canadensis (North America), are officinạl.

Family Nymphaeaceae.-Flowers hermaphrodite, hypogynous or epigynous, actinomorphic, with calyx and corolla, cyclic, or exclusive of the perianth, acyclic ; andrecium and gynœcium usually POLYMEROU's; carpels apocarpous or syncarpous. Water-plants, usually with large floating leates (Figs. 4i1, 4i2).

In the fruits and flowers of this family but little uniformity is exhibited. Some forms closely resemble the Ranunculaccae, while others (Aymphaea, Vietoria) differ essentially from them and represent a much higher stage of development. Some species are very similar to the Papareraceae in the structure of their fruit, and some, again, show a great similarity to other families, so that the Nymphacaceac must be regarded as forming a transitional group connected in many respects with other orders.

Familiar examples of this family are afforded by the Yellow Pond-Lily, Truphai (hypogynous, with five sepals), and the Water-Lily, Aymphaca (epigynous, with four sepals, Fig. 472) ; both have multilocular ovaries and spongy berry-like fruits (Fig. 472, 4). No definite line of demarcation can be drawn between petals and stamens, as the petals pass into the stamens by a gradual transition (Fig. 472, 3).

Geographical Distribution.-The Aymphacaecac inhabit chiefly the Tropics. To this family belong the Sacred Lotus, Nelumbium speciosum, and Vietoria regia from the Amazon, noted on account of the enormous size of its leaves and the beauty of its flowers.

Family Ceratophyllaceae.-Flowers small and greenish, with polymerous perigone, numerous stamens inserted upon a convex receptacle, and one carpel. A

Fig. 4i-2.-Nymphace alla. 1, Flower; 2, flower-bud, cut through longitudinally; 3, successive stages in the transition from petals to stamens ; 4, fruit. (After Wossidlo.)
small family of submerged water-plants (e.y. the Hornwort, Ceratophyllum demersum), allied to the Nymphaeaceae.

Family Magnoliaceae.-Flowers as in the Ranunculaceae, but the pollen-grains have only one geri-Pore. Woody plants with ollCELLS.

The Magnoliaceae are forest trees of the tropical and temperate zones of Asia and America, usually bearing large and beautiful flowers. Several species are cultivated as ornamental trees (Magnolia, Liriodendron).

The fruit of Illicium religiosum, indigenous to Japan, is poisonous, and also that of I. anisatum, the Star Anise, native of China.

The Magnoliaceae are closely related to the Anonaceac, a large and purely tropical family, characterised especially by a ruminated endosperm; they are also allied to the Calycanthaceae (North America, North Asia) and Monimiaceae (Southern Tropical Zone). Perigynous flowers are the distinguishing characteristic of the two last-named families.

Family Myristicaceae.-Flowers diecrous, cyclic ; perianth simple, gamophyllous; stamens united ; ovary monomerous, with one ovule; fruit resembling a berry, but dehiscing at maturity; seeds with branched aril (mace) and ruminated endosperm (Fig. 473). Tropical forest trees of the Old and New Worlds, characterised by the occurrence of oil-cells.

Officinal.- The seed freed from its outer integument (Semen Myristicae), and also the aril (Mace; Ol. Macidis) of the Nutmeg, Myristica fragrans, are officinal.

Family Menispermaceae.-Flowers hypogynous, DIECIors, crclic, consisting

Fig. 4i3.-a, Fruit of Myristice moschata after removal of the front valve ; f, pericarp; g, aril ; h, seed ; i, chalaza ($\frac{2}{3}$ nat. size) ; \mathbf{b}, seed, cut through longitudinally ; g, aril ; h, outer integument, interrupted at r by the raphe; m, albumen ; n, embryo (nat. size). Officinil. (After Berg and Schmidt.) throughout of trinerots whorls; perianth of more than two whorls. Three free carpels. Climbing tropical plants.

Officinal. - Jateorhiza Calumba affords Radix Calumbae.

Family Berberidaceae.-

 Flowers hermaphrodite, with one carpel, otherwise as in the preceding family; anthers usually dehiscing by ralves. Herbs and woody plants.A familiar representative of this small family is the Barberry, Berberis vulgaris (Fig. 474). Species of Ma honia and Epimedium are cultivated as garden plants.

Officinal.-Podophyllum peltatum, Mandrake (N. America), yields Rhizoma Podophylli.

Family Lauraceae.-Flowers PErigynous, cyclic, consisting

Fig. 474.-Berberis vulgaris. 1, Flowering branch; 2, a flower cut through longitudinally ; 3, a petal ; 4 , a stamen with valves of anther open ; 5 , the same with valves closed ; 6 , fruit. (After Wossidlo.)

Fig. 475.-Flower of Cinnamomum zeylanicum, cut through longitudinally. a, Receptacle ; b, outer, and c, inner leaves of perigone ; $d-g$, stamens; i, pistil ; k, orule. (After Berg and SchMidt, magnified.)
throughout usually of trimerous whorls; perianth calycoid, small; stamens generally in FOUR WHORLS; ANTHERS WITH VALVES; gynœcium SYNCARPOUS ; ovary unilocular, with a single suspended ovule; seeds without albumen. Aronatic, woody plants (Fig. 475).

The majority of Lauraceae are trees with elliptical, entire leaves and small inconspicuous flowers aggregated in heads or panicles. The fruit is a berry or drupe, and is often surrounded at the base by the persistent receptacle. All parts of the plant contain, as a rule, ethereal oil accumulated in special cells.

Geographical Distribution.-To the Lauraceae belong many of the most important trees of the warmer countries of both hemispheres; the order is almost wholly unrepresented in the Temperate Zone. Europe possesses but one species, Laurus nubilis, Sweet Bay (Mediterranean), a small evergreen tree with white flowers clustered in axillary, capitate inflorescences. The flowers, which are dimerous, and have bilocular anthers, produce a drupaceous fruit. The only herbaceous genus is Cassytha, a widely distributed tropical group of parasites, resembling the Dodder in appearance and habit.

Officinal.-The fruit, Fructus Lauri, of Laurus nobilis; the bark and wood, Sassafras, of Sassafras officinale (a diœcious, deciduous tree of North America); the gum, Camphora, obtained from Cinnamomum Camphora (an evergreen tree, native of China and Japan) ; the bark, Cortex Cinnamomi, of Cinnamomum Cassia (a shrub of Southern China), and of the Cinnamon-tree, Cinnamomum zeylanicum (Ceylon). The latter is no longer officinal in Germany.

Order 6. Rhoeadinae

Flowers hypogynous, hermaphrodite, predominantly dinerous. Perianth consisting of three two- or four-merous whorls; andreecium of two two-merous whorls; gynœecium dimerous, syncarpous; ovary unilocular, with parietal placente. Herbs with alternate, simple leaves without stipules.

The Phoeadinae constitute in themselves a natural, sharply defined order, and apart from the slight resemblance displayed in some instances to the Nymphaeaceae they exhibit no marked affinity to other groups. The type of the order is best represented by the genus Hypecoum, in which the flowers are constructed throughout of simple dimerous whorls. In the largest families of the order, the Cruciferae and Capparidaceae, the corolla is tetramerous, alternating with the two decussate whorls of the calyx. It is often assumed, but without confirmatory evidence, that in such cases the four petails are derived by duplication from a dimerous corolla. The greatest variation is shown by the andræcium, which, in consequence of the multiplication of its members, or more rarely of the whorls, frequently consists of more than four stamens. Even in such cases the derivation from the typical structure is generally recognisable. In the Capparidaceae, the successive processes in the evolution of the androecium are particularly apparent; in this family, all transitions occur from a $2+2$-merous andrecium to one that has become polymerous by repeated splitting; a reduction of the androcium to one whorl is also exhibited by some members of the family. The gynoecium usually remains dimerous;
a multiplication of its carpels has taken place only in a few cases (Papaver).

Family Cpuciferae.-Flowers actinomorphic ; caliy of two TWO-MEROUS WHORLS ; corolla TETRANEROUS ; androecium consisting of

Fig. 476.-Cruciferae. Floral diagran (Brassica). AN OUTER WHORL OF TWO SHORT STAMENS AND AN INNER OF FOUR LONG STAMENS DISPOSED IN PAIRS ; gynœecium always dimerous; ovary DIVIDED BY FALSE DISSEPIMENTS INTO TWO LOCULI. Fruit rarely indehiscent, usually a capsule; SEEDS WITHOUT ENDOsPERM ; embryo curved (Figs. 476-479).

The Cruciferae are glabrous or hispid herbs (rarely small shrubs) with entire, toothed or lobed leaves. The white or yellow flowers, rarely red or violet, are generally small and aggregated into racemes, usually without bracts and bracteoles. The flowers of the inflorescences develop so gradually in acropetal succession, that frequently the ripe fruit is already produced at the base of the raceme while the apex of the axis with its undeveloped buds is still in process of elongation (e.g. Capsella bursa pastoris). Although the colour of the petals, and also the nectaries at the base of the stamens, undoubtedly represent an attractive apparatus for insects, selfpollination is of frequent occurrence in this order. The capsules are either much longer than broad, and are then distinguished as Silique, or they have the form of short and broad silicule (Fig. 478). Indehiscent fruits (Fig. 479) occur less frequently. They are often lomentaceous in character and septated transversely by false partition - walls, breaking when ripe into a corresponding number of segments. A fruit of this nature is termed a Jointed siliqua. The two forms

Fig. 47斤.-Raphanus satirus. a, Flower (nat size); b, petal; c, andrœcium and gynœcium ($\times 2$); d, pistil with discglands ($\times 2$); e, fruit (nat. size) ; f, transverse section of fruit; g and h, embryo. (Magnified.) of fruit, dehiscent and indehiscent, do not differ essentially in structure : both are sometimes borne by the same plant. Many Cruciferae contain a pungent, nitrogenous or sulphurous ethereal oil, which exists in an uncombined state in the vegetative organs (e.g. Horse-Kadish), but in the seeds (e.g.

Mustard seeds) it is combined, occurring in combination with other substances, from which it is freed in the presence of water.

The division of the Cruciferae into sub-families presents great difficulties. The old classification proposed by Linneus is now regarded as too artificial. According to the nature of the fruit, Linnæus first distinguished the two groups Siliquosae and Siliculosae: these he further divided into Siliquosae nucamentaceae, with jointed siliquæ, and Siliculosae nucamentaceae, with indehiscent fruits. The Siliculosae dehiscentes were afterwards divided by A. P. de Candole into S. latiseptae, with broad, and S. angustiseptae, with narrow dissepiments.

Another classification frequently employed at the present time is that of de Candolle based on the position assumed by the embryo within the seeds-(1) Notorhizeare: cotyledons flat, with the radicle lying on the surface of one of them ; diagram, $\bigcirc \|$. (2) Orthoploceae: cotyledons folded, the radicle lying in the groove of one of them; diagram, $\bigcirc \gg$. (3) Pleurorhizeae: radicle lateral to the two cotyledons; diagram, $\bigcirc=$.

Fig. 478.-Fruit of a Siliculosa angustisepta (Thlaspi arvense). (After Wossidlo.) (4) Spirolobeae: cotyledons spirally rolled; diagram, $\bigcirc\|\|$. (5) Diplecolobeae: cotyledons doubly folded; diagram, $\bigcirc\|\|\|\|$. Prantl has lately adopted a more natural classification, in which different organs (stigma, nectaries, dissepiments, hairs) are taken into consideration. The old classification of Linneus and de Candolle has been used on account of its greater convenience.

Representative Genera. - (1) Siliquosae dehiscentes: Cardamine (Bitter Cress), with elastic valves; Arabis (Rock Cress) ; Barbarea (Winter Cress) ; Nasturtium, in some cases with short siliquæ ; Cheiranthus (Wall-flower) ; Matthiola (Stock) ; Sisymbrium (Hedge-Mustard) ; Erysimum (Treacle-Mustard) ; Brassica ; Sinapis (Mustard). (2) Siliquosae lomentaceae: Crambe (Kale), Cakile (Sea Rocket), both strand plants; Raphanus, the siliqua of the Garden Radish, R. sativus, is

Fig. 479.-1, Fruit of a Siliculosa lomentacea (Neslia paniculata) ; 2 , the same in median, longitudinal section. (After Wossidlo.) spongy, not dividing into segments when ripe (Fig. 477). (3) Siliculosae dehiscentes latiseptae: Cochlearia; Draba (Whitlow Grass), siliculæ lanceolate, somewhat compressed ; Alyssum; Lunaria (Honesty), siliculæ very broad and flat, with long stalks ; Camelina (False Flax). (4) Siliculosae dehiscentes angustiseptae: Thlaspi (Penny Cress), siliculæ flat, circular or cordate ; Iberis (Candytuft), the racemes are corymbose, with marginal flowers slightly zygomorphic ; C'apsella (Shepherd's Purse), siliculæ triangular ; Lepidium (Pepperwort). (5) Siliculosae nucamentaceat: Isatis (Woad).

Geographical Distribution.-The Cruciferae are chiefly found in the Nerth Temperate Zone, growing in the most varied situations. Cultivated species of this order are : Brassica oleracea, the Cabbage, in numerous varieties ; the primitive form grows wild along the coast of Western Europe ; Brassica Napus var. oleifera, Rape; var. Napobrassica, Turnip Cabbage ; Brassica Rapa, Turnip ; var. oleifera, Colza ; B. nigra, Black Mustard; Sinapis alba, White Mustard; Lepidium sativum, Garden Cress ; Nasturtium officinale, Water

Cress; Cochlearia Armoracia, Horse-Radish; Raphanus sativus, Garden Radish; Camelina sativa, Oil-seed or False Flax.

Fig. 480.-Capparis spinosa. 1, Flowering branch; 2, fruit; 3 , the same in transverse section. (After Wossidlo.)

Officinal. - Brassica nigra, the Black Mustard, yields Semen Sinapis. Herba Cochleariae is obtained from the herbaceous parts of Cochlearia officinalis, Scurvy Grass, a glabrous herb growing wild on the sea-coast, bearing white flowers and globose siliculæ.

Family Capparidaceae. - Flowers usually zYGOMORPHIC ; perianth as in the Cruciforae; andrœecium 4- ; gynocium $2-\infty$; ovary stalked; seeds without endosperm. Herbs and shrubs of the warmer zones. The flower-buds of Capparis spinosa, a Mediterranean shrub, are familiar as capers (Fig. 480).

Family Fumariaceae. Flowers transversely zygonorPHIC ; calyx dimerous; corolla of Two dimerous whorls ; andrecium usually consisting of two TRIPARTITE STAMENS ; gynœcium dimerous ; SEeds with endosperm (Fig. 481).

The plants included in this family are glabrous, often glaucous herbs with divided leaves. The flowers are disposed in racemose inflorescences with both subtending bracts and bracteoles, or in some cases with bracts only. One of the two outer petals and sometimes both are prolonged into a spur (e.g. Fumaria, Corydalis). The andrecium of Hypecoum consists of $2+2$ stamens. The other genera have two tripartite stamens inserted opposite the outer petals ; the central filament of each group bears a perfect anther, the two lateral filaments only half an anther each (Fig. 481, b). The modification from the normal type exhibited in such andrœecia is due to splitting and displacement of the stamens. The two lateral filaments, with their bilocular anthers, represent distinct halves of the inner stamens, that have become adherent to the stamens of the outer whorl.

Fig. 4S1. - Corydalis aurea. a, Part of axis of raceme with a flower; b, style and stamens. ($\times 2$.)

The majority of this small family are natives of the North Temperate Zone.

Dicentra spectabilis, with a two-spurred corolla, is a well-known ornamental plant.

Family Papaveraceae.-Flowers Actinonorphic ; calyx dimerous; COROLLA CONSISTING OF TWO DIMEROUS WHORLS: andrecium POLYmerous ; pistil two- to sixteen-merous ; Seeds with endosperm. Herbaceous plants with stiff hairs and latex vessels containing a white, more rarely a yellow, orange or red latex.

The flowers are usually large and beautifully coloured, either

Fig. 482.-Eschscholtzic californica. a, Flower; b, fruit before, and c, after dehiscence. (Nat. size.)

Fig. 483.-Papaver somniferum (3 $\frac{3}{8}$ nat. size). -Poisonocs and offictival.
solitary or clustered. The fruit is always a many-seeded capsule, sometimes resembling the pods of the Cruciferae, but without false dissepiments (Fig. 482).

As examples of this family may be cited Chetidonium (Celandine), with orangecoloured latex and siliquose fruit; Papaver (Poppy), with white latex. In this last-named genus the fruit is an incompletely septated, polymerous capsule, opening at maturity by valves just below the rayed stigma.

Geographical Distribution. - The Papareraceae constitute a small family restricted almost entirely to the North Temperate Zone.

Porsonous. - Papaver somniferum (Opium Poppy) contains in all its organs a poisonous, milky latex. It is an annual herb with glabrous, somewhat glaucous stems and leaves, and is cultivated for the sake of the oil accumulated in the seeds, also for the latex obtained from the unripe capsules; the latex, on hardening, constitutes opium. The leaves are sessile, irregularly incised and toothed. The flowers are solitary, borne upon a long stalk with bristly hairs (Fig. 483). They are nodding while in the bud, but become afterwards erect; they have a fugacious calyx and white or violet petals with crumpled æstivation. The fruit is a broad capsule more than 6 cm . in length, enclosing numerous reniform seeds of a white or violet colour. Other species of Papareraceae are also toxic, but in a less degree.

Officinal. - Papaver somniferum, yielding Fructus Papaveris mmaturi, Semex Papateris, and Opiem.

Family Resedaceae. -Flowers zYGomorphic, perianth consisting of two- to eightmerous whorls; petals deeply fringed. Sexual organs usually borne tros a GYNOPhore ; stamens three to forty ; carpels two to six, free or united, forming a unilocular ovary open at the apex. Herbaceous or shrubby plants, chiefly Mediterranean, with small flowers, c.g. Reseda luteola (Dyer's Weed), R. lutea (Base Rocket), R. odorata (Mignonette).

There is considerable uncertainty as regards the systematic position of the plants included in the family Resedaceae; they are considered to be allied to the Capparidaccae.

Order 7. Cistiflorae

Flowers hypogynous, generally actinomorphic and hermaphrodite. Calyx imbricated in the bud; the whorl of the perianth and androcium typically pentamerous, but the andrœecium often POLYMEROUS by the division of the stamens; gynœcium usually three- to five-merous, and syncarpous ; OVARY UNILOCULAR, with parietal placentæ, less frequently multilocular ; ovules for the most part anatronous; embryo usually straight.

The Cistiflorae form a somewhat artificial order; they comprise families which, in most cases, have been previously assigned to different systematic positions. The flowers exhibit the regular Dicotyledonous type or a modification of it, resulting from the division or suppression of some of their parts, but without at the same time showing any uniformly occurring characteristics of general significance. There is moreover in this order no predominant type about which the less distinctive forms may be grouped. Many of the Cistiflorae show an affinity to the Resedaceae, and through them to the Rhoeadinae; others, in particular the Ternstroomiaceae, to the Columniferae ; and some are allied to the Passiflorinae.

Family Cistaceae. - Flowers actinomorphic, with numerous STAMENS ; gynœcium three- to five-merous; ovary usually unilocular, with parietal placente; STYLE SMMPLE; OVULE ATROPOUS; fruit a capsule ; seeds with endosperm ; embryo curved.

The Cistaceae constitute a small, chiefly Mediterranean family of woody, or more rarely herbaceous plants, with simple leaves ; e.g. the European Rock Rose, Helianthemum vulgare, a small undershrub with yellow flowers, found growing, like other Cistaceae, in dry, sunny situations (Fig. 484).

Family Droseraceae.-Flowers actinomorphic, with five stamens; ovary usually unilocular, with parietal placentæ, STYLE DIVIDED. Fruit a capsule; seeds with endosperm. Herbs, with irritable, GLANDULAR CILIATED LEAVES.

Fig. 484.-Helianthemum vulgare (nat. size). (After Wossidlo.)

Fig. 485.-Floral diagram of Viola.

Fig. 486. - Viola tricolor. A, Entire plant (reduced); B, a stamen, enlarged ; C, gynœcium, enlarged ; D, transverse section of ovary ; E, fruit (nat. size).-OFFICINAL.

The Droseraceae are widely distributed, and are all carnivorous plants, e.g. Drosera rotundifolia, Sundew, growing in boggy ground (cf. p. 215).

The families Nepenthaceae and Sarraceniaceae are regarded as allied to the Droseraceae, and comprise likewise carnivorous plants ; their leaves are wholly or in part modified into pitchers (cf. p. 216).

Family Violaceae.-Flowers actinomorphic, or more frequently

ZYGONORPHIC ; stamens five ; ovary unilocular, with parietal placentre, STYLE SIMPLE; seeds albuminous, with straight embryo (Figs. 485, 486).

The family includes herbs, shrubs, and trees, frequently with leaves having large stipules; it is represented,

Fig. 48\%.-Hypericum tetiopterum. a, Flower, somewhat magnified; b, fruit; p, the dried, persistent petals. ($\times 2$.) though not by a large number of genera, in all zones. Viola, the Violet, Pansy or Heart's-ease, has always axillary, zygomorphic flowers with the anterior petal prolonged into a hollow spur enclosing spur-like nectarial appendages of the two lower stamens (Fig. 486, B, nt). Many species of Viola, in addition to the conspicuous flowers provided with nectaries and adapted to insect-pollination, bear cleistogamous flowers which contain no honey and are self-pollinated (cf. p. 285). The entomophilous flowers, although so well equipped, are very often sterile.

Officinal. - Herba Tiolae tricoloris is obtained from Viola tricolor.

Family Hypericaceae. Flowers actinomorphic, stamens three or five, DEEPLY divided into numerous branches ; ovary unilocular or multilocular, with parietal placentæ and free styles: seeds without endosperm. Leaves opposite, dotted with oil-glands (Fig. 487).

Nembers of this family are found widely distributed in both the temperate and warmer zones. Many species of Hypericum (e.g. the common St. John's-wort, H. perforatum) are common wayside weeds.

Family Clusiaceae. - Flowers dieciocs, with numerous stamens. Ovary multicarpellary ; stigma rayed. Woody plants with resin CR GUM-RESIN CANALS.

The Clusiaceae are represented

Fig. 48s.-Thect chinensis. 1, Flowering branch; 2, flower cut through longitudinally; 3, fruit; 4, seed. (After Wossidlo.) in the tropical forests by numerous arborescent forms, of which some (Clusia) are epiphytic. The fruit (mangosteen) of Garcinia Mangostana, found in Further India, is highly prized.

Poisonous.-The gum-resins of several species of this family are very poisonous.
Officinal.-The dried gum-resin of Garcinia Morella (East Indies) yields Gutti.

Family Ternstroemiaceae.-In Camellia and Thea, perianth acyclic, bracteoles gradually becoming indistinguishable from sepals; andrecium and gynœecium polymerous, ovary multilocular. Woody plants without resin-canals (Fig. 488).

This family, which is allied to the preceding, consists chiefly of tropical evergreen trees and shrubs (e.g. Camellia japonica).

Officinal. - Thea chinensis, the leaves of which when dried constitute tea, Folia Theae, is a shrub with leathery leaves and white flowers (Fig. 488). It is indigenous to China, where it is largely cultivated, as also in the East Indies.

The order C'istiflorae contains also, in addition to others, the following families : Elatinaceae, small water-plants with inconspicuous flowers ; e.g. Elatine hexandra, Water-wort. Tamaricaceae, shrubs with scale-like leaves and small flowers aggregated in racemes ; e.g. Myricaria, Tamarix. Dipterocarpaceae; this family, which has taken its name from the large wings attached to the truit, consists wholly of tropical plants. From the species of Hopea the officinal Resina Dammar is to some extent obtained.

Order 8. Passiflorinae
Flowers actinomorphic, mostly perigynots or epigysous; perianth and andrœecium with varying number of parts; gynœcium trimerous ; styles generally free and bifid ; ovary unilocular, with parietal placente.

It is difficult to point to characteristics separating this order from the preceding; both are frequently united in the same group.

Family Passifloraceae.-Flowers perigynous, with OUTGROWTHS OF THE FLOWER-AXIS (corona and disc) between the perianth and andrecium. Calyx, corolla, and andrecium consisting each of five members; gynocium FREQUENTLY BORNE ON A GYNOPHORE, an elongation of the axis (Fig. 489).

The majority of the Passifloraceae are tendrilclimbers, with large beautifully-coloured flowers. Especially characteristic of the flowers of many species of Passiflora is the presence of a filamentous corona accompanied by successive rings of filaments representing a disc. The members of this family are for the most part indigenous to the Tropics, where many species are prized for their edible berries.

The tropical family Caricaceae is closely allied to the Passifloraceae. The latex of Carica Papaya, the Papaw, contains a proteolytic ferment, papain.

Family Begoniaceae.-Flowers epigravous, uniSEXUAL; the male with perianth consisting of two

Fig. 489.- Passiflora Engleriana. Part of a flower. k, Sepals; c, a petal; u, corona; d, disc; gy, gynophore; a, anthers; $g r$, stigmas, nat. size. (After Harms in Natürl. Pfanzenfamilien.) dimerous whorls; the female with simple pentamerous perianth; stameas indefinite, often united ; ovary three-sided, trilocular.

The Begoniaceae are succulent tropical herbs or climbing plants, with oblique, usually somewhat heart-shaped leaves. The flowers, which are commonly white
or red, are clustered in loose, dichasial inflorescences. Many species are familiar as ornamental plants.

To the Passiflorinae belong also the Loasaceae, a tropical American family consisting for the most part of herbaceous climbers, often having stinging hairs. A few species are cultivated.

Order 9. Opuntinae

With the single family Cactaceae.-Flowers epigynous, actinomorphic, hermaphrodite; perianth and andrœcium ACYCLLIC; gynœcium consisting of a LARGE, INDEFINITE NUMBER OF CARPELS ; ovary UNIlocular, with many Parietal placente ; ovules with long funiculi; fruit a berry. Herbaceous and woody plants, with fleshy axes and usually REDUCED, THORN-LIKE LEAVES (Figs. 490, 491).

Fig. 490.-Epiphyllum truncatum. 2, Flower cut through longitudinally. (Nat. size, after Wossidlo.)

Fig. 491.-Opuntia monacantha, showing flower and fruit. (After SchisMans, $\frac{1}{3}$ nat. size.)

In many Cactaceae (Mramillaria) the assimilatory vegetative system is reduced to an angular, cylindrical, or spherical axis, entirely destitute of foliage-leaves; in other Cactaceae, again, the assimilatory organs are represented by a system of branching axes which may be prismatic (Cereus) or flattened, either band-shaped (Epiphyllum, Fig. 490) or ovate (Opuntia, Fig. 491). The clusters of spines occurring on the axes represent in most cases reduced leaves. Peirestia is the only genus possessing well-developed foliage-leaves.

Peculiar as the general appearance of the Cactaceae is, it is not
distinctively characteristic of this family alone, as some of the Euphorbiaceae and Asclepiadaceae possess a similar habit.

Geographical Distribltion.-The large family of the Cactaceae is restricted to the warmer countries of America. Like most succulents, the plants of this group are typically xerophilous, although they occasionally occur as epiphytes on the dry bark of trees in damp forests. They attain their greatest development in the dry regions in the south-western part of North America, where the columns of the Monument Cactus, Cereus giganteus, with their candelabra-like branches, tower 20 m . high above the naked, rocky soil. They are especially prevalent in the high table-lands of Mexico, and, extending almost to the snow-line, exhibit the most astonishing diversity of form. One species, Opuntia ficus indica, with edible berries, has escaped from cultivation in the neighbourhood of the Mediterranean, and, like the American Agave, has become so common that it is now a characteristic plant of that region. It is on this plant that the Cochineal insect is cultivated. The Cactaceue are largely cultivated as hot-house and window plants.

Order 10. Columniferae

Flowers hypogynous, hermaphrodite, actinomorphic, with valvate calyx and pentamerous perianth; stamens usually movadelphous, although typically five in number, becoming indefinite by division; carpels $2-\infty$; ovary syncarpous, SEPTATE, corresponding to the number of carpels.

The androecium, in particular, is characteristic of the Columniferae. In some forms it is constructed, according to the Dicotyledonous type, of two pentamerous whorls ; but in the majority of cases one whorl, usually the episepalous, is suppressed or replaced by staminodia, while the other, in consequence of the division of the staminal rudiments, consists of a larger number of members. In addition, the filaments of the stamens in most Columniferae are united into a longer or shorter column, or, more appropriately described, into a tube, whose derivation from the five or ten original rudiments is only recognisable after investigation of its mode of development and a comparison with allied forms. A division of the carpels, similar to that of the stamens, is also of frequent occurrence in the gyncecium.

Family Tiliaceae.-Sepals free ; petals valvate in the bud; stamens usually numerous, FREE; anthers INTRORSE, dithecious; pollen-grains Not spiny (Figs. 492, 493).

The Tiliaceae are for the most part woody

$\begin{array}{cc}\text { Fig. 492.-Tiliaceue. } & \text { Floral } \\ \text { diagramı (Tilia). } & \text { (After } \\ \text { Eichler.) }\end{array}$ plants, with toothed or lobed stipulate leaves. The flowers, which are adapted to insect-pollination, are united in clusters, and produce a dry capsule or an indehiscent fruit.

The andrecium consists in some species of two pentamerous whorls, thus representing the primitive type from which the more complicated andreecia of
other forms have developed. Sometimes by the suppression of one whorl, either the epipetalous or the episepalous, the number of stamens is reduced to five, or, in other instances, one whorl is re-

Fig. 493.-Tilie parvifolia. A, Inflorescence (a), with hypsophyll b (nat. size). B, Longitudinal section of fruit (magnified); o, pericarp; p, atrophied dissepiment and ovule ; q, seed; r, endosperm ; s, embryo ; t, its radicle.-OffictŇal. (After Berg and Schmidt.) presented by staminodia. In most cases, however, the number of stamens is indefinite in consequence of a division of the staminal rudiments extending to their very base, the stamens being grouped correspondingly in either five or ten bundles. In some forms they are united at the base, jnist as in the Malvaccae, but the andrœecia of the Tiliaceae are always distinguishable by their dithecious, introrse anthers and smoother pollen-grains. The stamens in some species, again, are in part transformed into petaloid staminodia (e.g. Tilia tomentosa).

This family, which is chiefly tropical, is represented in northern regions only by the genus Tilia, variously known under the name of Linden, Basswood, or Lime-tree. Lime-trees havetwo-ranked leaves with small stipules, and flowers aggregated in a cymose umbel. The slender stalk of each inflorescence is adnate to an elongated hypsophyll, differing from the foliageleaves (Fig. 493) both in its yellowish colour and shape. The numerous stamens are developed from five episepalous rudiments, and in older flowers are distinctly grouped in five bundles. The ovary is hairy, contains two ovules in each of the five loculi, and ripens into an indehiscent fruit with a single endospermous seed. Tilia parrifolia has five- to nine-flowered inflorescences and heart-shaped leaves, which are beset on the under side, in the angles of the nerves, with brown tufts of hair, but otherwise are glabrous; the large-leafed Linden, T. grandifolia (T. platyphyllos), has leaves, hairy on the under surface, and three- to five-flowered inflorescences. The flowers of T. tomentosa have five white staminodia resembling the petals.

Officinal.-Both Tilia parrifolia and grandifolia,

Fig. 494.--Sterculiaceae. Floral diagram (Theobroma). (After Eichler.) yielding Flores Tiliae.

Fanily Sterculiaceae.-Flowers often apetalous ; calyx gamosepalous ; petals contorted; stamens usually xot very numerous, monadelphous; anthers extrorse, dithecious ; pollen-grains not often spiny (Figs. 494-496).

The andrœecium of this family, unlike that of the Tiliaceae, is always monadelphous. It resembles in this respect the androeium of the Malvaceae, from which, although sometimes only distinguishable by the dithecious anthers, it differs in having, as a rule, a much smaller number of stamens. The episepalous stamens are never fertile, but are either staminodial or suppressed.

The Sterculiaceae are almost exclusively confined to the Tropics, where they are constantly met with either as herbaceous plants, shrubs, lianes, or trees, often bearing flowers of a peculiar and unusual form. The only plant in this group of value to man is the Cacao-tree, Theobroma C'acao (Figs. 495, 496), a small tree,

Fig. 495.-Theobroma Cacan. 1, Branch with flowers and fruit; 2, a flower cut through longitudinally; 3, seed.OFFICINAL. (After Wossidlo.)
originally native of Mexico, but now cultivated in all tropical countries. The small flowers are red in colour, and spring from the cortex of the stem and older branches. The fruit, which is about the size of a small cucumber, and of red or orange colour, has a hard longitudinally-ribbed wall, and contains numerous. disc-shaped seeds embedded within its juicy flesh. After fermentation, when roasted and ground, chocolate and cacao are obtained from the seeds.

Officinal.-The seeds of Theobroma Cacao, yielding Cocoa-butter, Oledm Cacao. Kola nuts, which have recently been recommended for their medicinal qualities, are derived from Kola acuminata (West Africa).

Family Malvaceae.-Calyx gamosepalous ; Petals Contorted in THE BUD; stamens numerous, MoNadelphous ; anthers extrorse, mONOTHECIOUS ; pollen-grains SPINY (Figs. 497-500).

The Malvaceae are herbaceous or woody plants, abounding in mucilage, and usually, at least in their early growth, covered with matted woolly hair (Fig. 497). The leaves are palmately nerved and frequently palmately lobed. The funnel or bell-

Fig. 497.-Malvaceue. Floral diagran (Malvo). shaped flowers are entomophilous, generally large and beautifully coloured. They are either solitary and axillary, or grouped in terminal inflorescences, and are often provided with an involucre or epicalyx, formed of three or more bracteoles (Fig. 498). The petals are slightly united at the base. The numerous monothecious stamens are formed as the result of a splitting of the epipetalous whorl, which in this case extends to the anthers, while the episepalous whorl is either entirely suppressed or represented by toothlike staminodia attached to the top of the staminal tube. The gynocium is often multicarpellary, and gives rise to a capsule or schizocarp (Fig. 499, c).

Representative Sub-Families.-(1) Malveae, with schizocarpous fruit, produced from numerous carpels arranged in a whorl ; c.g. Nalva, with epicalyx consisting of three free involucral bracteoles; Lavatera, with epicalyx of three united bracteoles; Althaea, with epicalyx of six to nine bracteoles united at the

Fig. 498.-Flower of Altheece officinalis, cut through longitudinally. a, Outer, b, inner calyx ; c, petals; d, androecium ; f, pistil ; e, orule (magnified). (After BERG and Schmidt.)

Fig. 499. - Malva silvestris. a, Flower; b, flower-bud; c, fruit (nat. size.)-OFFICINAL.
base. (2) Hibisceae, with fruit in the form of a capsule ; c.g. Hibiscus (RoseMallow), Gossypium (the Cotton-plant).

Geographical Distribution. - With the exception of the polar regions, members of the Mallow family are found distributed over the whole earth, although chiefly occurring in the warmer zones. Althaea rosea, the Hollyhock, and some of the bushy species of Hibiscus are favourite ornamental plants. The species of Gossypium, from which cotton is obtained, are mostly shrubs with lobed
leaves and bell-shaped yellow or red flowers (Fig. 500). The Cotton-plant, which still grows wild in tropical countries, is largely cultivated in all the warmer regions of Asia and America. The fruit (Fig. 500, 2) is a capsule packed with white, yellow, or brown hairs (cotton), which are attached to the seeds (3), and serve as an aid to wind-distribution (cf. p. 291).

Officinal.-Malva vulgaris and M. silvestris (High-Mallow) supply Folia Malvae, and M. silvestris (Fig. 499) also Flores Malvae. The leaves, Folia Althaeae, and the roots, Radix Althaeae, of Althaed officinalis (common

Fig. 500.-Gossypium herbaceum. 1, Flowering branch ; 2, fruit ; 3, seed (nat. size).Officinal. (After Wossidlo.)

Marsh-Mallow) are used medicinally, as are also the same parts of Gossypium (Fig. 500).

The Bombacaceae are very closely allied to Malvaceae; they are a family of tropical trees, whose stems of soft wood are often enormously thick, and swollen in the middle like a barrel. The flowers are unusually large, beautifully coloured, and frequently zygomorphic ; the seeds are sometimes enveloped in long, silky hairs.

Order 11. Gruinales

Flowers hypogynous, hermaphrodite, actinomorphic, and pentamerous throughout, or zygomorphic, and then often reduced, Never With polymerous whorls formed by splitting; stamens monadelphous at the base, obdiplostemonous; disc absent ; ovary syncarpous, SEPTATED ; micropyle DIRECTED UPWARDS.

The Gruinales are distinguished from the Columniferae by the partially monadelphous stamens, and by the absence of splitting in the andreecium. In both orders one whorl of stamens is often suppressed or replaced by staminodia. The absence of a disc and the position of the micropyle distinguish the Gruinales from the allied order Terebintlinae and the Aesculinae.

Family Geraniaceae.-Flowers actinomorphic, rarely zygomorphic, pentamerous throughout ; stamens five or ten ; ovary with Two ovules in each loculus; carpels prolonged into

Fig. 501.-Fruit of Pelargonium inquineths, $\times 3$. (After Baillon.) an AWN, and BECOMING DETACHED, WHEN RIPE, FROM A PERSISTENT CENtral Columin (Fig. 501).

The Geraniaceae are herbs, or, in warm climates, small shrubs, with simple leaves and usually with glandular hairs, which secrete an aromatic oil. The flowers are either axillary and solitary or clustered in inflorescences of various types, and have usually a carmine or crimson corolla. The carpels in many species remain closed, and are forced into the ground by the movements of the spirally-twisting hygroscopic awn (e.g. Erodium). In most of the large-flowered species of Geranium the awns, in coiling, contract with such suddenness that the seeds are shot out from the carpels, which rupture along the ventral suture. The two genera may readily be distinguished, as Erodium (Storksbill) has only five stamens, while in Geranium (Cranesbill) ten are present.

Geographical Distributios.- Members of this family are found widely scattered over all zones. The rarious species of Pelargonium (flowers zygomorphic), which are so largely cultivated, are indigenous to South Africa.

The Tropaeolaceae, a small South American family, occupy a systematic position not widely removed from the Geraniaceac. They have zygomorphic flowers, with eight stamens and three carpels. Varions species of Tropacolum, Indian Cress or so-called Garden Nasturtium, are frequently cultivated.

Family Oxalidaceae.-Flowers Actinomorphic, with ten fertile stamens; ovary with SEvERAL ovules in each loculus; fruit a capsule. Herbs and woody plants with COMPOUND LEAvEs; more rarely with phyllodia.

A chiefly tropical family, of which Oxalis acetosella, the common Wood-Sorrel, is a familiar representative ; its sour taste is due to the presence of acid potassium oxalate.

Eamily Linaceae.-Flowers Actinonorphic ; four- or five-merous ;
stamens monadelphous, the epipetalous whorl wanting or staminodial; each loculus of the ovary incompletely halved by a false dissepinent, and having one ovule in each chamber; fruit drupaceous or else a capsule. Herbs and shrubs with narrow, entire leaves (Fig. 502).

The only plant of economic value in this family is the Flax, Linum usitatissimum, an annual herb, native of Western Asia, and known in cultivation since the earliest historic ages. The flowers (Fig. 502) are blue, and borne in cymose infloreseences. Linen is woven from the strong bast-fibres of the stems, while the seeds are also of value on account of the oil (linseed oil) extracted from them.

Officinal. -Linum usitatissimum yields Semen Lini.

Family Balsaminaceae.-Flowers ZYGOMORPHIC, with five FREE stamens; fruit a capsule, bursting when ripe into valves. Herbs with simple leaves.

Fig. 502.-Linum usitatissimum. A, Flower ; B, androcium and gynœcium ; C, capsule after dehiscence (A, nat. size ; $B, C, \times 3$).officinal.

Beautifully flowering species of the genus Impatiens (Balsam, Jewel-weed) constitute a large part of the herbaceous vegetation of the forests of East India. Impatiens noli tangere and other species of the same genus are familiar under the name of "Touch-me-not" or Snapweed. I. parviflora and I. Balsamina are cultivated ornamental plants.

Family Erythroxylaceae.-Flowers actinomorphic ; petals with a ligular

Fig. 503.-Polygala Seneya. A, Flower; a, small, b, large sepals ; c, keel; e, lateral petals; d, andrœecium. B, andrœcium; h, anthers (magnified).-OFFICINAL. (After Berg and Schmidt.)
appendage ; stamens ten, united into a tUbe ; gynœecium most frequently moxomerous ; fruit a drupe. Tropical woody plants.

Officinal.-Erythroxylum Coca, a shrub growing in Bolivia and Peru. Its leaves (Folia Coca) contain the alkaloid cocaine.

Family Polygalaceae.-Flowers zygonorphic, with inconillete whorls, the corolla being reduced to three petals, and the andreecium
to eight stamens UNITED INTO A TUBE; gynœcium DIMEROUS ; fruit a capsule or drupe (Fig. 503).

The Polygalaceae include herbs, shrubs, and lianes, with simple leaves; they are widely distributed over the whole globe. Their flowers in general appearance somewhat resemble those of the Papilionaceac, but the wings belong to the calyx and not to the corona. The keel, however, is a petal. The anthers open by pores. The various species of Milkwort (Polygala) are familiar representatives of this family.

Officinal.-The North American Seneca, Snakeroot (Polygala Senega, Fig. 503), supplies the officinal root Serega.

Order 12. Terebinthinae

Flowers as in the preceding order, but with AN INTRA-STAMINAL Disc. For the most part woody plants, with ethereal oils which occur in canals or cells.

This order stands in close relation with the Gruinales, with which it is now sometimes united. The fact, however, that in the majority of cases members of this order exhibit special

Fig. 504.-Ruta grareolens. Flower after removal of the corolla; α, calyx ; c, stamens ; e, disc ; f, nectaries; d, ovary; h, style ; i, stigma (magnified). (After Berg and SchMidt.) characteristics which, although sometimes modified, are traceable throughout the varying forms of the order, would seem to indicate their common origin. Thus the majority of the Terebinthinae are aromatic woody plants, with pinnate, persistent glabrous leaves and small or at most medium-sized flowers, which possess a fleshy disc at the base of the ovary (Fig. 504, e), and are disposed in racemose or cymose inflorescences. They are found chiefly in warm countries, growing in dry and sumny situations.

Family Rutaceae.-Flowers usually actinomorphic and four- to five-merous throughout ; stamens in one or two whorls, sometimes as a result of division ; numerous. Woody plants, rarely herbs, usually with pinnate leaves and With ethereal oil in nearly spherical intercellular cavities (Figs. 504, 505).

This large family is almost exclusively restricted to the warm zones. The members of the Rutaceae of especial value to man belong to the genus Citrus, which differs in many respects from the family type. The Citrus species are small, evergreen, and often spinous trees. The leaves are apparently simple, but in reality they are compound leares reduced to a single leaflet, as is erident from the presence of a segmentation below the lamina, and from a comparison with allied forms. The white, fragrant flowers hare a gamosepalous calyx, four to eight thick petals, and numerous stamens united in bundles. The fruit is a multilocular berry with a leathery outer layer full of oil-cavities. The juicy pulp consists of the enlarged,
abnormally-developed partition-walls. The seeds contain several adventitious embryos. All the species of Citrus are native of tropical Asia, but most of them are now cultivated in all warm countries. The most important are-C. vulgaris, the Bitter or Seville Orange ; C. Aurantium, the Sweet Orange (Fig. 505) ; C'. Limonum, the Lemon ; C. medica, the Citron.

Porsonous.-An incautious use of the Rue (Ruta graveolens), a popular medicinal plant, has sometimes an injurious effect. The Rue is an aromatic undershrub, with twice or thrice pinnate, glaucous leaves, and dichasial cincinual inflorescences of yellow flowers (Fig. 504).

Officinal.-Citrus vulgaris yields Cortex fructus Aurintii and Fructus Aurantif mmaturi, Oleum Aurantil florum and Folia Aurantif; Citrus Limonum, Cortex Limonis; Pilocarpus pennatifolius (Brazil), Folia Jaborandi.

Fig. 505.-Citrus Aurantium. 1, Flowering branch ; 2, a flower cut through longitudinally; 3, fruit in longitudinal section ; 4, seed.-OfFICLAAL. (After Wossidlo.)

Family Burseraceae. - As in the preceding family, but with resin-canals. Tropical trees.

Officinal.-Myrrh, the resin of Commiphora Myrrha, a small East African and Arabian tree; Frankincense, from Boswellia Cartesii and Boswellia BhauDajiana (Arabia, East Africa); Elemi, from Canarium sp. (Philippine Islands).

Family Simarubaceae.-Like the Rutaceae, only without oil-cavities, but sometimes with oil-canals; the vegetative parts contain bitter principles. Tropical woody plants.

Officinal.-Lignum Quassiae, from Picraena excelsa (West Indies, chiefly Jamaica) and Quassia amara (Surinam).

The Anacardiaceae occupy a position between the Terebinthinae (especially the Burseraceae) and the Sapindinae. They resemble the first in appearance and in the possession of resin-canals and an intra-staminal disc, and the latter in the upwarddirected micropyle. Many members of this family are poisonous plants, e.g. the species of Rhus, Sumach.

Officinal.-Mastiche, a gum-resin, obtained from Pistacia Lenticus (Mediterranean).

Order 13. Sapindinae

Flowers hypogynous, actinomorphic, or more frequently obliquely ZYGOMORPHIC, with pentamerous perianth; andrecium usually reduced, having only eight stanexs; an extra-staminal disc commonly present ; ovary two- or three-merous, septated ; orules pendulous with micropyle directed upwards and inwards, or erect with micropyle directed dowawards and outwards. Woody plants.

This order comprises for the most part trees or lianes with deeply

Fig. 506.-A Aeer campestre. 1, Flowering branch; 2 , a flower cut through longitudinally; 3, a stamen ; 4, the fruit. (After Wossidlo.)
lobed or compound leaves and small flowers. The inflorescences are either strictly racemose or have cymose secondary axes. None of the species of this order contain aromatic oils ; all are apparently entomophiious.

Family Aceraceae.-Flowers Actinomorphic, usually with eight stamens ; ovary bilocular, haring two ovules in each loculus; fruit a winged schizocarp (samara); leaves opposite (Fig. 506).

This family consists principally of the genus Accr (Maple), whose numerous species inhabit chiefly the North Temperate Zone, particularly of Asia. Acer campestre (Fig. 506), a frequently cultivated European species, has palmately lobed leaves, and erect cymose umbels composed of small greenish-vellow flowers, whose fragrance, together with the nectar secreted by the dise, attracts insects. The fruit
is a samara with two-winged nut-like fruitlets. Acer platanoides, unlike the preceding species, has leaves with sharp-pointed lobes. Acer Pscudo-Platanus, the Sycamore, is easily recognised by its elongated pendulous racemes ; Acer Negundo, the Ash-leaved Maple (North America), is characterised by its pinnate leaves. Maplesugar is made from the ascending spring-sap of the Sugar-maple, Acer saccharinum.

Family Sapindaceae.-Flowers usually obliquely zygomorphic, with eight stamens ; ovary commonly TRILOCULAR, with one or two ovules in each loculus; leaves in most cases Alternate.

Between this family and the Aceraccae there are no very distinct differences. The majority of the Sapindaceae are tropical, having the form of tendril-climbing lianes with flexible and often comparatively thick stems. Several species of the genus Acsculus, which is often made the type of a distinct family, are frequently cultivated as ornamental trees. Of these, the common Horse-Chestnut, A. Hippocastanum, which is found growing wild from Greece to the Himalayas, is perhaps the most faniliar example. It has opposite, digitate leaves, and inflorescences of scorpioid racemes. The flowers are distinctly zygomorphic ; they have seven stamens, and two ovules in each of the three loculi of the ovary; the fruit is a spinous capsule.

Order 14. Frangulinae

Flowers hypogynous, sometimes perigynous or epigynous, ActinoMORPHIC, in the perianth and andrœcium three- to four-merous, HAPLOSTEMONOUS, usually with disc ; ovary two- to five-merous, septate, with one or two ovules in each loculus; micropyle DIRECTED DOWNWARDS.

The Frangulinae comprise, for the most part, shrubs, sometimes growing erect, sometimes climbing by means of tendrils. The leaves are generally simple, in some cases, however, pinnately compound. Although entomophilous, the flowers are characteristically small and inconspicuous, usually with reduced calyx and greenish or white corolla. They have only a single whorl of stamens, which may be placed opposite either the sepals or petals. The fruit is dry or juicy.

Family Celastraceae.-Flowers hypogynous; stamens EPISEPALous, inserted on a disc ; ovary two- to five-locular, with two ovules in each loculus; seeds with coloured ARIL (Fig. 507).

Chiefly tropical trees and lianes. Evonymus europaca, the Spindle-tree (Fig. 507), has poisonous fruits and seeds with a red aril.

Family Aquifoliaceae. - Flowers hypogynous ; stamens EPISEPALOUS ; DISC WANTING; ovary two- to five-locular, with one ovule in each loculus; seeds without aril.

The plants familiarly known as Holly are included in this family, belonging to the genus Ilex, e.g. I. Aquifolium, the English Holly. The leaves, known commercially as Paraguay tea (maté), are derived from several sub-tropical South American species of the genus Ilex.

Family Vitaceae.-Flowers hypogynous ; stamens epipetalous ;
disc incomplete, consisting of separate glands; ovary generally twolocular; fruit a berry. Climbing shrubs with tendrils opposite the leaves (Fig. 508).

The Vitaceae are chiefly indigenous to tropical countries, where many species, particularly of the genus Cissus, are common lianes, some of which, when cut, supply a large quantity of clear water. Many species of Vitis are natives of North America; c.g. V. Labrusca, the Northern Fox-Grape, now largely grown in Europe, and the Virginia Creeper, Ampelopsis hcderacea, so frequently cultivated as an ornamental climber. Vitis vinifera, the Vine, one of the oldest of cultirated

Fig. 507.-Evonymus europala. A, Flowering branch (reduced) ; B, a flower (magnified) ; C, D, the fruit (nat. size). -Poisonocs.

Fig. 50s.-Vitis vinifera. Flower during its anthesis. a, Calyx ; b, corolla ; c, dise ; d, stamens ; e, orary (magnified). (After Berg and Schmidt.)

Fig. 509.- Rhamnus Frangula. Flower cut through longitudinally. a, Receptacle; l, calyx ; c, petal; d, a stamen; e, pistil (magnified). (After Berg and Schmidt.)
plants, grows wild in the temperate regions of Western Asia, Southern Europe, and Northern Africa. The tendrils of the Grape-vine, as is shown by the presence of small leaves, are metamorphosed shoots. The inflorescence is a profusely branched panicle with pentamerous flowers. The corolla, becoming detached from the flower-axis during the anthesis or act of flowering, is thrown off in the form of a small star, and is, in consequence, apparently wanting in the opened flowers (Fig. 508). The Tine has given rise by cultivation to numerous improved varieties and races. Corinthian or dried currants are the small fruits of a seedless rariety.

Officinal.-Vinum.

Family Rhamnaceae. - Flowers perigynous or epigynous; petals usually small, often hood-shaped ; disc complete ; ovary commonly three-Locular; fruit a drupe or capsule. Mostly erect, rarely climbing shrubs, chiefly tropical (Fig. 509).

Rhamnus cathartica, the common Buckthorn, is a thorny diœecious shrub with opposite, finely serrate leaves, and unisexual tetramerous flowers producing fourlocular drupes. R. Frangula, the Alder Buckthorn, has scattered, elliptical, entire leaves, small hermaphrodite flowers (Fig. 509), united in clusters, and black two- to three-locular drupes. Charcoal made from the wood of this species is used in the manufacture of gunpowder.

Officinal.-Fructus Rhamni Catharticae, Cortex Frangulae, Cortex Rhamni Purshianae, from Rhamnus Purshiana, native of North America.

The family Buxaceae, formerly included in the same order with the Euphorbiaceae, has recently been given a systematic position near the Celastraceac. The Buxaceae differ from other families belonging to the Frangulinae, chiefly in having flowers that are either entirely naked or only provided with a simple, floral envelope. The most familiar representative is the Box, Buxus sempervirens, a poisonous evergreen-shrub frequently cultivated for ornamental borders, etc. To the same alliance belongs also the family Empetraceae. Empetrum niyrum, the Black Crowberry, is a small heather-like shrub of alpine habit, bearing trimerous flowers.

Order 15. Thymelaeinae

Flowers perigynous, actinomorphic ; perianth and andrœecium fourto five-merous ; COROLLA ReDUCED OR WANTING; one or two whorls of stamens ; ovary monomerous, with one ovule. Mostly woody plants.

The majority of the Thymelaeinae are shrubs with simple, entire leaves destitute of stipules; the flowers are usually small, with calyx and receptacle sometimes calycoid, sometimes corollaceous.

Family Thymelaeaceae. -Corolla absent or reduced to scales; ovules suspended; FRUIT FORMED SOLELY OF the ovary (Fig. 510).

Chiefly sub-tropical plants of the Southern Hemisphere, represented in Europe by Thymelaea

Fig. 510.-Daphne Mezereum ($\frac{1}{2}$ nat. size).-Porsonocss. and Daphne.

Poisonous.-All the German species of Daphne (D. Meaereum, D. Cneorum, D. striata, and D. Laureola) are poisonous. D. Mezereum, a deciduous orna-
mental shrub, familiar in cultivation, has fragrant, rose-coloured sessile flowers, which make their appearance in the early spring, before the foliage-leaves, on the shoots of the previous year. The fruit is a red berry about the size of a pea (Fig. 510).

Family Elaeagnaceae. - Corolla always suppressed ; ovules ERECT ; fruit surrounded by the persistent fleshy receptacle. Woody plants, WITH SCALY HAIRS.

Hippophaë rhamnoides is a thorny shrub, sometimes common on the banks of European streams, with leaves on the under side, covered with hairs, giving them a silvery appearance. Several species of Elacagnus and Shepherdia (North America) are frequently cultivated as gardeu shrubs.

The family Proteaceae, comprising a large number of Australian and South African plants, is included, with some uncertainty, in this order. Several species, on account of their large and beautiful flowers, are cultivated in conservatories.

Order 16. Tricoceae

Family Euphorbiaceae. - Flowers hypogynous, actinomorphic,

Fig. 511.-Diagram of a dichasial branch of Euphorbia, with three cyathia. (After Eichler.)
MOSTLY UNISEXUAL; perianth rarely double, USUALLY SIMPLE OR WANTING; androcium $1-\infty$ merous; ovary of three carpels, tri-

Fig. 512.-Euphorbia Lathyris. A, Cyathium $(\times 5)$; B, fruit after dehiscence ; c, central column ($\times 2$); C, seed cut throngh longitudinally, showing the embryo embedded in the endosperm; $c a$, caruncle (magnified). (After Batllon.)
locular, with one or two suspended ovules in each loculus ; micropyle directed upiwards and outwards, and covered with a fleshy out-
growth (Caruncle). Fruit commonly a capsule, whose carpels SEPARATE ELASTICALLY FROM A CENTRAL COLUMN (Figs. 511516).

The single constant characteristic of the Tricoccae is the manner of attachment and structure of the ovule. The Euphorbiaceae include plants of the most varied habit, embracing herbs, Cactus-like succulents, shrubs, lianes, and trees, whose leaves may be large, or small, or reduced to scales, or represented by phyllocladia.

Fig. 513.-Euphorbia resinifera.-Officinal. (After Berg and Schmidt, nat. size.)

Fig. 514.-Euphorbia cyparissias (2 $\frac{2}{3}$ nat. size).Poisonous.

The flowers, which individually are always small and inconspicuous, display the same variety in their structure as the vegetative parts. They are sometimes arranged in flower-like inflorescences enveloped by a corollaceous sheath (cf. Euphorbia). Although some few species produce dry indehiscent fruits, berries or drupes, the usually trilocular capsules whose carpels or cocci, in dehiscing, separate elastically from a central column (sometimes with great violence, c.g. Hura crepitans), and split almost to their base, constitute an easy and certain means of recognising the majority of the Euphorbiaceae. In
spite of the great variety displayed by the different members, they are so linked together by intermediate forms that this family forms one of the most natural of the vegetable kingdom.

Representative Genera.-Euphorbia, the Spurge (Figs. 511-514). Numerous stalked male flowers, each consisting of a single stamen, and one stalked female

Fig. 515.-Ricinus communis, greatly reduced.-Poisonocs and Offictinal. (After Baillon.)
flower, are together enveloped by a lobed, bell-shaped involucre, forming an inflorescence termed a cyathium. Such a cyathium resembles a single hermaphrodite flower, particularly when the sheathing involucre is corollaceous. That it, "in reality, represents an inflorescence, is apparent from the indication of a segmentation visible below each stamen, and also from a comparison with allied genera in which each flower, although otherwise similarly constructed, is provided with a perigone. All the species of Euphorbia have unseptated latex-tubes containing a milky juice. Mercurialis: flowers diœecious, with green perigone and
dimerous ovaries. Croton: all the species of this genus are tropical slirubs with monœecious, heterochlamydeous flowers. Ricinus (see under Officinal).

Geographical Distribution.-The plants of this family are native chiefly of tropical countries, where they occur usually in the form of shrubs, rarely as lianes or trees. Caoutchouc is derived from many of the tropical species, e.g. Hevea guyanensis and H. brasiliensis (South America). The roots of Manihot utilissima (Manioc, Cassava) form an important article of food in the Tropics; from them Tapioca is obtained.

Poisonous.-Both the latex and seeds of most Euphorbiaceae contain toxic principles. Some species belong to the most poisonous of plants, e.g. the tropical American Hippomane Mancinella, whose dangerous character, however, has been

Fig. 516.-Mercurialis annua. 1, Branch with male inflorescences; 2, a male flower; 3, a stamen; 4, a female flower ; 5 , fruit; 6 , seed ; 7 , diagram of female flower; 8 , diagram of male flower.Poisonol's. (After Wossidlo ; 2, 3, 4, 5, 6 magnified.)
considerably exaggerated. All the species of Euphorbia (Figs. 513, 514), and also, though to a less degree, the species of Mercurialis (Fig. 516), are poisonous. The seeds of Ricinus communis (the Castor-oil plant, Fig. 515), but not the oil pressed from them, contain a deadly poison.

Officinal. - Euphorbium, from Euphorbia resinifera, a Cactus-like shrub growing in Morocco (Fig. 513). Cortex Cascarillae, from Croton Eleuteria (Bahama Islands). Oleum Crotonis, from Croton Tiglium (East Indies). Kamala, the glandular hairs of the capsules of Mallotus philippinensis, a small tree widely distributed in East Asia and Australia. Oledm Ricini, obtained from the seeds of Ricinus communis. The Castor-oil plant, now so familiar in cultivation, in its native home in Africa is a tree-like plant with large palmately-lobed leaves. The male flowers have branched stamens and occupy the lower, the female the upper part of the axis of the inflorescence. Both kinds of flowers are provided with a simple envelope. The fruit is a three-seeded spinous capsule.

The small family Callitrichaceae is also considered, although not with certainty, to belong to the same alliance as the Euphorbiaceae. It comprises only small submerged water-plants with unisexual naked flowers ; each male flower consists of only one stamen, and each female flower of a single pistil.

Order 17. Umbelliflorae

Flowers actinomorphic, more rarely slightly zygomorphic, epigynous, with a four- to five-merous perianth, HAPLOSTEMONOUS ; calyx GREATLY REDUCED; an intra-staminal DISC present; gynœcium usually dimerous; ovary bilocular, with one ovule in each loculus; seeds with large endosperm. Herbs and shrubs, commonly with hollow axes ; leaves divided or Compound, usually with sheathing bases ; flowers small, aggregated in umbels or in umbellate inflorescences.

In the structure of their flowers and fruit the Umbelliflorae bear a close resemblance on the one side to the few epigynous Frangulinae, on the other, through the Caprifoliaceae, to the Rubiinae, from which they essentially differ in not having gamopetalous flowers. The union of the members of this group into a natural, systematic order is chiefly based on the similarity exhibited in the form of their inflorescences and on the resemblance

Fig. 517.-Cornus mas. 1, Flowering branch; 2, flower cut through longitudinally; 3, branch with fruit. (After Wossidlo.) existing between their vegetative parts. The designation of the whole order as Umbelliflorae has reference to the umbelliform manner of branching displayed in the floral region ; the inflorescences are usually compound umbels, rarely simple umbels or umbellate panicles or cymes. The flowers in most cases are white or yellow. There is a similar correspondence in the vegetative organs. The stems are generally hollow: the leaves are scattered, often very large, usually much divided or compound, and almost always with stalks broadened at the base into a sheath.

Family Cornaceae. - Perianth and androcium usually tetramerous; petals VALVATE or IMBRICATED in the bud; gynœcium most oftell dimerous WITH SIMPLE STYLE ; ovary one- to four-locular ; fruit a DRUPE or BERRY (Fig. 517).

This family forms a connecting link between the Rhamnaceue and the typical Umbelliflorae. It com-
prises but few herbs, and is usually represented by woody plants with flowers arranged in dichasial inflorescences, and with decussate leaves, which are generally undivided and without a sheath, e.g. Cornus, Dogwood, Cornel (Fig. 517).

Family Araliaceae.-Perianth and androecium usually pentmerous ; petals valvate in the bud; gynoecium generally more than dimerous ; styles most frequently free ; ovary one to many locular : fruit a drupe or berry (Fig. 518).

Fig. 518.-Hedera Helix. 1, Flowering branch; 2, leaf of a sterile branch; 3, flower cut through longitudinally ; 4, floral diagram ; 5, fruit ; 6 , seed.-Poisonous. (After Wossidlo.)

A family of small woody plants with stems either hollow or filled with a spongy pith; rarely solid and woody. The leaves, which are scattered and provided with sheathing bases, are lobed or compound. The flowers are arranged in umbellate or capitate inflorescences, which are frequently aggregated into panicles.

The Araliaceae are found chiefly in tropical Asia, where, in the form of small sparingly-branched trees with large divided leaves and enormous inflorescences of small yellow flowers, they constitute a characteristic part of the vegetation. To this family belongs the Ivy, Heder Helix (Fig. 518), a root-climbing, evergreen shrub, with differently shaped leaves on the fertile and sterile shoots. The berries are poisonous.

Family Umbelliferae.-Perianth and androecium generally pentamerous; petals valvate in the bud; gynecium dimerous, with

FREE STYLES ; fruit schizocarpic, usually with oil-DUCTS. Flowers, with few exceptions, in compound umbels (Figs. 519-525).

The Umbelliferae form one of the most

Fic. 519.-Umbelliferce. Floral diagram (Siler). natural and easily recognisable plant-families. They are, in the majority of cases, perennial herbs with hollow stems and divided leaves with sheathing bases. The inflorescences are usually compound, and consist of many umbels of small white or yellow, rarely reddish or violet, flowers, which give rise to brownish ribbed, aromatic schizocarps (Figs. 520, 521).

The umbels are often altogether devoid of subtending leaves; where such are present, they form an inconspicuous whorl of bracts, termed an involucre when at the base of the compound umbel, an involucel if subtending the umbellets or secondary umbels

Fig. 520.-- Carum Carvi. 1, Branch with ripe fruit ; 2 , a flower ; 3 , the same cut through longitudinally; 4, fruit; 5 , transverse section of fruit.-OFFICLVAL. (After Wossidlo.) (Figs. 523, 524). The presence or absence of involucral whorls is characteristic of different genera, and is, therefore, of great service in distinguishing them.

Fig. 521.- Fruit of rarious Umbelliferae in transverse section. 1, Foeniculum officinale; 2, Pimpinella Anisum; 3, Conium maculatum; 4, Coriandrum sativum.-Officisal. (After Berg and Schmidt.)

The following examples may be cited as illustrating deviations from the usual habit: simple entire leaves (e.g. Bupleurum) ; simple umbels (e.g. Astrantia); compound inflorescences, paniculate (e.g. Dorema) ; large corollaceous involucres (e.g. Astrantia, Eryngium). The most striking variation from the typical habit is the occurrence in temperate South America of Umbellifercue
with solitary flowers (Azorella). All the flowers of an umbel are usually actinomorphic and hermaphrodite. Sometimes, as in Coriandrum and Heracleum (CowParsnip), the peripheral flowers are zygomorphic ; or in some cases the umbel has a central terminal flower of a distinctive colour and size (e.g. Daucus), or it may consist in part of unisexual flowers. The calyx is usually barely distinguishable; the petals are provided with a short claw and are obcordate in shape or have incurved apices. The disc, which is sometimes termed a Gynophore, consists of two cushion-like swellings and secretes honey. The stamens are incurved in the bud. The styles are short and divergent, with their apices not distinctly differentiated.

An exact knowledge of the structure of the fruits is indispensable, as these exhibit the most important distinguishing characters of the

Fig. 522.-Cicuta virosa ($\frac{1}{2}$ nat. size).-Polsonols.
species, which in other respects are very much alike (especially poisonous species). The fruits of many species, moreover, are officinal, or are used as spices. The fruit, which is usually small and of varying shape, is a dry schizocarp, and splits when ripe into mericarps. It is most frequently somewhat elongated, and circular or elliptical in transverse section; in the latter case, with the major axis either perpendicular or at right angles to the plane of union of the two carpels. When an elliptical transverse section is very narrow, the fruit is disc-shaped (Heracleum). Fruits of a spherical (Coriandrum) or double-spherical form (Bifora) are more rare. After their separation, the two carpels or mericarps usually remain suspended from a forked stalk, the CARPOPHORE, until they are eventually detached by the wind. A carpophore is absent in only a few species (e.g. the formerly officinal Oenanthe

Phellandrium). Each mericarp bears on its free surface five longitudinal ridges, enclosing vascular bundles; these are known as the main ribs (juga prinaria). The furrows (vallecule) between the ridges are usually dark-coloured in consequence of the reddish-brown oilducts (vitte) which occur immediately below in the tissue of the pericarp (Fig. 521, 1). In many species each of the furrows is

Fig. 524.-Sium latifolium ($\frac{1}{2}$ nat. size).-Porsowors.

Fig. 523.-Conium maculatum ($\frac{1}{2}$ nat.
size).-PoISonots and OFFICLIAL.
traversed by a secondary ridge (jugum secundariun) ; the prickly fruit, for example, of the common Carrot, Daucus Carota, possesses prickly secondary ridges. In many genera (e.g. Pimpinella) several oil-ducts occur below each furrow (Fig. 521, 2) ; in others, the oilducts may be present in less than the usual number (Coriandrum, Fig. 521,4) or altogether absent (Conium, Fig. 521, 3). The seed completely fills the whole cavity of the mericarp, and is adherent to the
pericarp. It contains a large oleaginous endosperm, in the upper part of which the minute embryo lies embedded.

According to the form assumed by the endosperm, the following sub-families may be distinguished.

1. Orthospermeae.-The endosperm flat, or slightly convex on the ventral side, i.e. on the side turned towards the plane of junction of the two mericarps (Fig. 521, 1, 2), e.g. Hydrocotyle (Water-Pennywort), Sanicula (Sanicle), Eryngium (Eryngo), Cicuta (Water-Hemlock), Carum (Caraway), Petroselinum (Parsley), Pimpinella, Sium (Water-Parsnip), Bupleurum (Thorough-wax), Oenanthe (Drop-wort), Aethusa (Fool's Parsley), Foeniculum (Fennel), Levisticum

Fig. 525.-Aethusa Cynapium ($\frac{2}{3}$ nat. size).-Poisonous.
(Lovage), Angelica, Archangelica, Heracleum (Cow-Parsnip), Pastinaca (Parsnip), Daucus (Carrot), etc.
2. Campylospermeae. -The ventral side of the endosperm is traversed by a longitudinal groove (Fig. 521, 3) : e.g. Caucalis (Bur Parsley), Torilis (Hedge Parsley), Scandix(Shepherd's Needle), Anthriscus (Beaked Parsley), Chaerophyllum (Chervil), Conium, (Hemlock), etc.
3. Coelospermeae.-The ventral side of the endosperm is concave, e.g. Coriandrum, Coriander (Fig. 521, 4).

Geographical Distribution.-The numerous species of Umbelliferae are, for the most part, indigenous to the North Temperate Zone ; those occurring in the Tropics grow almost exclusively in the cooler mountainous regions, while the South Temperate Zone possesses some peculiar, abnormally-developed forms. Many members of this family are cultivated for culinary purposes, in most cases on account of their aromatic properties; e.g. the Common Carrot, Daucus Carota
var. sativa; Celery, Apium graveolens; Garden Chervil, Anthriscus Cerefolium ; Parsley, Petroselinum sativum ; Dill, Anethum graveolens; and also several of the officinal species.

Porsonous.-Conium maculatum, the Poison Hemlock (Fig. 523), a glabrou's herb, often more than a metre in height, with hollow stems and dull-green decompound leaves. The lower parts of the stems are very frequently, but not always, purple-spotted. The plant is easily recognised by the wavy, crenate ridges of its short, laterally compressed fruit, and also by its disagreeable odour when bruised (resembling that of mice). Cicuta virosa, the Water-Hemlock (Fig. 522), a large herb growing along the edges of ponds and ditches, is one of the most dangerous of poisonous plants. It has a turnip-like white rhizome full of internal cavities, and large tripinnate leaves with narrow lanceolate, serrate leaflets. The small white flowers are aggregated in compound umbels and produce subglobose fruits. Berula angustifolia and the different species of Sium and Oenanthe are less poisonous; they are all marsh or aquatic plants. The last-named genus is easily distinguishable by the absence of a carpophore. Sium latifolium (Fig. 524), which is frequently found in company with the Water-Hemlock, has simply pinnate leaves with lanceolate, sharply serrate leaflets. The Fool's Parsley, Aethusa Cynapium (Fig. 525), a common weed in gardens, produces an intoxicating effect when eaten. It differs from the true parsley in having white instead of yellow flowers, one-sided, three-leaved (instead of six- to eight-leaved) involucels, and an odour of garlic.

Officinal.-Archangelica officinalis yields Radix Angelicae; Levisticum officinale, Rad. Levistici ; Pimpinella magna and P. Saxifraga, Rad. Pimpinellae; Pimpinella Anisum (Anise), Frectus Anisi; Foeniculum capillaceum, Fructus Foeniclli ; Carum Carvi (Caraway), Fructus Carvi; Coriandrum sativum, Frectus Coriandri; Conium maculatum, Herba Conii; Dorema Ammoniacum (Persia), Ammoniacum ; Ferula galbaniflua and rubricaulis (Persia), Galbancm ; Fcrula Narthex (Persia), Asafoetida.

Order 18. Saxifraginae

Flowers hypogynous, perigynous or epigynous, actinomorphic, in perianth and androcium pentamerous; stamens usually obDIPLOSTEMONOUS ; gynœcium two-to five-merous, syncarpous or apocarpous ; seeds generally ALbuminous.

This order is somewhat artificial, and difficult to characterise, as it consists of members which exhibit a great diversity in the structure of their flowers. It cannot be sharply separated from the Rosiflorae ; and as it stands also in close affinity with the Cystiflorae, Myrtiflorae, and Ericinae, it may be regarded as constituting an intermediate group uniting all these different alliances.

Family Crassulaceae.-Flowers hypogynous or epigynous, hermaphrodite, with a variable number of members in the different whorls; perianth differentiated into calyx and corolla; andrecium obdiplostemonous or haplostemonous; carpels FREE or slightly united, with GLANDULAR SCALES (DISC), one at the base of each carpel ; capsules containing numerous small seeds with little or no endosperm. Succulent herbs and undershrubs (Fig. 526).

The members of this family are easily recognisable by their fleshy, entire leaves. Their flowers are usually bright yellow or red in colour, and are arranged in cymose inflorescences.

Geographical Distribution.-The Crassulaceae, like all succulents, thrive best in dry sunny situations. They are almost universally found on rocks, walls, and roofs. The genus Sedum has usually pentamerous flowers : Sedum acre, the Mossy

Fig. 520.-S'edum Telephium. a, Flower; b, flower in longitudinal section. ($\times 4$.)
Stonecrop, grows on walls and rocks, as does also S. Telephium, the Garden Orpine or Live-for-ever (Fig. 526). The flowers of the genus Sempervivum are $6-\infty$ merous. S. tectorum, the Houseleek, and other species, as also species of Crassula (haplostemonous), Sedum, Echeveria, etc., are frequently cultivated.

Family Saxifragaceae.-Flowers perigynous or epigynous, hermaphrodite, with calyx and corolla; stamens obdiplostemonous or haplostemonous; carpels, usually two, without scales, and UNITED, either wholly or only at the base. Fruit usually a capsule, containing numerous small seeds with abundant endosperm (Fig. 527).

The Saxifragaceae comprise a number of herbs and woody plants very unlike in appearance. The flowers are small, or at most only medium-sized and aggregated into inflorescences.

Geographical Distribution. -In Northern Europe the genus Saxifrage is widely represented by numerous species on the rocks and boulders of mountains. Most of the members of this family are found in the Temperate Zone,

Fig. 527.-Ribes Grossularia. 1, Flowering branch ; 2, flower cut through longitudinally ; 3, fruit in transverse section ; 4, longitudinal section of seed. (After Wossidlo.) although a relatively large number occur also in the Arctic regions ; Saxifraga granulata, S. tridactylites, and Parnassic polustris are representatives of the family in the plains. Several species of the genus Rives are cultivated for the sake of their fruit (e.g. R. rubrum, the

Red Currant ; R. nigrum, the Black Currant ; R. Grossularia, the Gooseberry) ; while other species of the same genus and other genera are frequently used as ornamental plants (S'axifraga, Hydrangea, Philadelphus, Deutzia).

Officinal.-Syrupts Ribium from Pibes rubrum.
The Hamamelidaceae, a sub-tropical family of woody plants with apetalous flowers, are very closely allied to the Saxifragaceae. - Officinal: Strpax liquides, obtained from the balsam-canals in the cortex of Liquidambar styraciflua.

Family Platanaceae.-Flowers mongelots, with pedimentary perianth; the male with redtced andrœecium ; the female perigynous, with free carpels. Seeds without endosperm. This family includes only the single genus Platanus, with but four species, all of which are trees with scaly bark, palmately lobed leaves, and sheathing connate stipules. The flowers, which are small and insignificant, are clustered into spherical heads with long stalks; the fruit is a nut. Platanus orientalis, from Western Asia, and P. occidentalis, the American Planetree, are frequently grown as shade-trees.

Order 19. Rosiflorae

Including the single family Rosaceae.-Flowers perigynous or epigynous, almost always actinomorphic ; perianth generally pentamerous; stamens usually more numerous than the perianth leaves ; gynœcium in perigynous flowers entirely apocarpous, in epigynous flowers with at least the upper part of the carpels free ; seeds without endosperm. Leaves alternate, stipulate (Figs. 528-532).

1

2

Fig. 52s.-Hagenúu abyssinica. 1, Flower ; e, epicalyx ; f, calyx ; g, corolla ($\times 4$): 2, fruit (nat. size), with enlarged epicalyx.-OfFiciN.AL. (After Berg and Schmidt.)

The flowers of the Rosaceae may in all cases be derived without difficulty from the typical Dicotyledonous type, although it is shown in an unmodified form in only a few genera, e.g. in Quillaja, whose flowers are constructed of five pentamerous whorls. The flowers of most of the species are characterised by the possession of an indefinite number of stamens, as a result of the splitting of the whorls and of the individual members of the andrecium. A similar multiplication of the parts is also of frequent occurrence in the gynocium. A rose with its numerous stamens and apocarpous gynocium consisting of numerous carpels may serve as the type of the flowers of the Rosacene. Similar polyandrous, apocarpous flowers are characteristic of the

Ranunculaceae, but, as they are hypogynous and have the parts arranged spirally, they differ greatly from those of the Rosaceae. On the other hand, although less frequently, the flowers of this family may suffer a reduction of their parts. Thus in the flowers of the genus Alchemilla the inner whorl of the perianth is wanting ; the andreecium is also not unfrequently reduced to a single whorl, in Alchemilla arvensis even to a single stamen, while in the Prunoideae the gynoecium consists similarly of but a single carpel. Such reduced and modified flowers are linked to those with the typical or greater number of parts by all possible transitional forms. The greater or less degree of expansion exhibited by the floral axis, to which in particular the perigynous and epigynous character of the flowers of the Rosaceue is due, has been in large measure the cause of the variability displayed by Rosaceous flowers (Fig. 529). In the simplest cases the receptacle is flat or cushion-shaped, as in many species of Potentilla, and bears the

1

Fig. 529.-Rosaceae. Three flowers cut through longitudinally to show different forms of receptacles. 1, Comarum palustre; 2, Alchemilla alpina; 3, Pirus malus. (After Focke in Natürl. Pflanzenfamilien.)
perianth-leaves and stamens on its margin, while the carpels are inserted on its surface. In other cases, as in the Strawberry and Raspberry, the central portion of the receptacle is prolonged into a clubshaped protuberance to which the carpels are attached (Fig. 529, 1). In other cases, again, the receptacle is extremely concave, cupular in Prunus and Alchemilla (Fig. 529, 2), urn-shaped in the genus Rosa. The epigynous flowers, such as those of the Apple (Fig. 529,3), differ from the perigynous flowers with concave receptacles, in that the carpels are adnate to the wall of the receptacle.

The fruit is sometimes dry, sometimes fleshy. If, in conformity with the more usual custom, only the product developed from the carpels after fertilisation is termed a fruit, a Strawberry must be regarded as a collection of numerous nutlets or achenes, and an Apple as a spurious fruit. According to the definition of a fruit which has been adopted in this book, in which the conception of the term fruit is made to correspond with that of the flower, the receptacle, as being part of the flower, may also take part in the formation of the fruit. The Strawberry may thus be regarded as a juicy fruit with dry, superficial
carpels ; while the Apple may be described as a berry. In other cases the fruit is capsular as in Spircea, nut-like as in Poterium, or drupaceous, e.g. the Cherry, Raspberry, and Medlar.

The Rosaceae are herbs or more frequently woody plants, usually with conspicuous flowers. Their leaves are very often pinnate, with toothed leaflets; when simple they are, as a rule, serrate or lobed, rarely entire. The stipules, which are scarcely ever absent, are sometimes herbaceous, sometimes scale-like.

Fig. 530.-Pirus communis. 1, Flowering branch ; 2, a flower cut through longitudinally ; 3 , longitudinal section of fruit ; 4, floral diagram. (After Wossidlo.)

Sub-Families.-1. Pomoideae (Fig. 530).-Flowers epigynous ; fruit a berry. (a) Carpels in the fruit parchment-like: Pirus (incl. Sorbus) with two ovules, Cydonia with numerous ovules in each carpel. (b) Carpels in the fruit hard and stone-like: Mespilus, Crataegus.
2. Rosoidcae.-Flowers perigynous; carpels enclosed in the fruit by the receptacle. (a) Receptacle becoming hard in the fruit; flowers tetramerous, small, destitute of corolla: Poterium, polygamous with anemophilous flowers in capitate inflorescences; Sanguisorba, resembling Poterium, but the flowers are entomophilous, and hermaphrodite ; Alchemilla, flowers with epicalyx. (b) Receptacle as in (a), flowers pentamerous, with corolla: Agrimonia, Hagenia. (c) Receptacle fleshy, flowers with corolla: Rosa.
3. Ruboideae (Fig. 531).-Flowers perigynous ; receptacle flat or convex, with numerous indehiscent carpels : Potentilla, with dry fruit; Fragaria, fruit when ripe consisting of a fleshy receptacle with dry carpels ; Rubus, carpels drupaceous.
4. Spiraeoideae.-Flowers perigynous ; receptacle concare; carpels few, when ripe capsular and many-seeded: Spiraea, Quillaja.
5. Prunoideae (Fig. 532). -Flowers perigynous, with one carpel ; fruita drupe : Prunus.
6. Chrysobalanoideae.-Flowers frequently zygomorphic.

Geographical Distribution. - The Rosaceae, althougli distributed over the whole globe, are chiefly represented in the Temperate Zone; in the Tropics, with the exception of the Chrysobalanoideae, they are confined almost entirely to the high mountainous regions. The Rosaceac have contributed largely to the list of culti-

Fig. 531.-Rubus fruticosus. 1, Flowering branch ; 2, longitudinal section of a flower ; 3, fruit; 4, floral diagram. (After Wossidlo.)
vated plants : the Pear, Pirus communis; the Apple, Pirus Malus; the Quince, Cydonia vulgaris; the Medlar, Mespilus germanica; the Strawberry, species of Fragaria; the Raspberry, Blackberry, etc., species of Rubus; the Wild Cherry, Prunus avium ; the Dwarf or Morello Cherry, Pr. Cerasus; the Wild Plum, Pr. domestiea; the Bullace Plum, Pr. insititia; the Apricot, Pr. armeniaca; the Peach, Pr. persica; the Almond, Pr. Amygdalus. The Rosaceae include also many ornamental plants, e.g. various species of Rosa, Crataegus, Potentilla, lubus, Spiraca, Kerria, Prunus, etc.

Porsonous.-The seeds of many species contain prussic acid, although usually not in dangerous quantities, if eaten when first ripe. The leaves of the CherryLaurel (Prunus Laurocerasus) also contain prussic acid, and when eaten they act as an intoxicant.

Officinal.-Cydonia vulgavis affords Semen Cidontae. Hagenia abyssinica (a diœecious tree native of Abyssinia, with greenish female flowers whose epicalyx and calyx turn red after fertilisation) yields Flores Koso (Fig. 52s). Rosae Ces-

Fig. 532.-Prunus Cerasus. 1, Flowering branch ; -, a flower cut through longitudinally ; 3, fruit in longitudinal section. (After Wossidlo.)
tifoliae Petala from Rosa centifolia; Oleum Rosae from Rosa centifolia and clamascena; Syrupes Ru'bi idaei from Rubus idaeus; Amygdalae dillees and Amygdalae amarae from Prunus Amygdalus ; Pelpa prexorim from Pr. domestica; Folia Latrocerasi from Pr. Laurocerasus. Quillaja Saponaria an evergreen diœecious tree indigenous to Chili and Peru) yields Cortex Quillajae.

Order 20. Leguminosae

Flowers HYPOGYNOUS or slightly PERIGYNOUS, actinomorphic, or more frequently zygomorphic ; perianth usually pentamerous; median sepal anterior ; andrecium diplostemonous, rarely consisting of an indefinite or reduced number of stamens; gynœcium of one carpel, generally WITH MANY OVULES ATTACHED, IN TWO ROW's, TO THE ventral suture; fruit usually a legume. Seeds mostly without albumen. Leaves generally compound, stipulate.

The Leguminosae, with actinomorphic flowers, resemble the monocarpellary Rosaceae, but they may be distinguished from them by their unexpanded or only slightly enlarged receptacles, and by their fruit.

The structure of the flower is also as varied in the Leguminosae as in the Rosiflorae. The Mimosaceae have actinomorphic flowers; those of the Caesalpiniaceae are sometimes only slightly irregular, sometimes more distinctly zygomorphic, leading by gradual transition to the highly zygomorphic flowers of the Papilionaceae. These differences in
the structure of the flowers are chiefly due to the various forms assumed by the corolla, in part also to the unequal development of the andrecium. The stamens are sometimes straight, sometimes curved, united or free, usually ten in number, but at times reduced by suppression or increased by division. On the other hand, the gynoecium and flower-axis, to the variability of which the diversity of form exhibited by the flowers of the Rosiflorae is so largely due,

Fig. 533.-Acacia Senegal. Flowering branch (nat. size). Officinal. (After A. Meyer and Schumann.)

Fig. 534.-Cassia acutifolic. Leaf and inflor-escence.-Officinal. (After Berg and Schmidt.)
are very uniformly developed in the Leguminosae, and take but small part in the various modifications met with in the structure of the flowers.

Unlike the flowers, the fruit of the Leguminosae almost always presents the same structure. In the majority of cases it is a manyseeded legume, rarely a dry indehiscent fruit, or it may be a berry or drupe. Even when thus modified, all the forms of the fruit bear a certain degree of resemblance to each other.

The inflorescences are most generally racemose ; racemes, spikes or capitula, with in all cases lateral flowers. The leaves are scattered, usually pinnate or bipinnate, with leaflets either entire or slightly
toothed, never deeply lobed or incised. Simple leaves are of rare occurrence in this order, and are usually small.

Just as in most of the more natural orders, the attempt to divide the Legreminosae into families is attended with difficulty, as the extreme forms are linked together by all possible intermediate stages. The

Fig. 535.-Tamarindus indica. Fruit in longitudinal section. M, The fleshy mesocarp.-OfFIciNal. (After Berg and Schmidt.) whole order is in consequence sometimes regarded as a single family, in which the main groups take the position of sub-families. In their typical representatives, however, these groups are so characteristically developed that it seems best to cousider them as distinct families.

Family Mimosaceae.-Flowers Actinomorphic ; corolla absent, or if present, with petals ralvate in the bud; andrecium haplostemonous, diplostemonous, or POLYstemonous, UsUally with free stamens ; embryo straight (Fig. 533).

This family consists for the most part of shrubs, lianes or small trees, with doubly pinnate leaves, or, as in many Australian species, with phyllodia (cf. 1). 46). The flowers are small, in dense heads or spikes, whose bright, usually yellow, colour is due to the long stamens which project beyond the inconspicuous perianth. The more important genera are Acacia and Mimosa. Both genera are largely represented in the Tropics. Mimosa pudica, the Sensitive Plant, belongs to this family ; it is sometimes cultivated in hot-houses, but in its native land it is a troublesome and worthless weed. In Australia the Mimosaceae occupy an important position, and together with Eucalyptus trees they form the chief part of all the woody regetation, while in the dry regions of South Africa, in the form of thorny shrubs (e.g. Acacia horrida), they often coustitute the only woody plants.

Officinal.-Acacia Senegal, a shrub native of the Nile countries and Senegal, yields Gummi arabicum. The gum, which is formed by the disorganisation of the stem-parenchyma, exudes as a thick fluid from wounds in the stems, and afterwards hardens. Cateche is an extract made from the heart-wood of Acacia Catechu and A. Suma (East Indian trees).

Family Caesalpiniaceae.-Flowers more or less zygomorphic ; corolla sometimes absent, when present, NOT AT ALL OR ONLY IMPERfectly papilionaceous, with ascending imbricate estivation (i.e. the posterior petal overlapped by the others) ; androcium with free stamens, often reduced. Embryo straight (Figs. 534, 535).

The Caesalpiniaceae are shrubs or trees, and, unlike the Papilionaceae, often have bipinnate leaves. The flowers may be large or small. Their corolla is variously constructed, sometimes actinomorphic (e.g. Cassia, the zygomorphic character of whose flowers is due to the andrœecium), sometimes strongly zygomorphic (Tamarindus), but very rarely somewhat papilionaceous (Cercis Siliquastrum). The members of this family, whose largest genus is Cassia, are almost exclusively tropical. The coloured heart-wood of many species gives them a great technical value (Logwood from Haematoxylon campechianum, Pernanıbuco or Brazil Wood from Caesalpinia brasiliensis). The Judas-tree (Cercis Siliquastrum) from Southern Europe (with flowers springing directly from the stem), and the Honey Locust (Gleditschia triacanthos) from North America, are often cultivated in parks and gardens.

Officinal.-Folia Senvae, the leaflets of Cassia acutifolia (F. S. Alexandrinae, from tropical East and Central Africa) and of Cassia angustifolia (from

Fig. 536.-Lotus corniculatus. 1, Flowering branch ; 2 , a flower; 3, andrecium and gynoecium ; 4, carpel ; 5, fruit; 6, corolla ; a, standard; b, wings ; c, keel; 7, floral diagram. (After Wossidlo.)
tropical East Africa and Arabia; Tinnevelly Senna, from plants of the same species cultivated in Southern India). The officinal species of Cassia are shrubs with yellow-flowered racemes (Fig. 534). The balsam-canals in the wood of Copaifera guianensis and C. officinalis (trees of tropical America) contain Balsamum copaivae. Rhatany Root, Rad. Ratanhiae, is obtained from Krameria triandra, a Peruvian shrub. Lignum Haematoxyli is the heart-wood of Haematoxylon campechianum (South America). Pulpa Tamarindorum is the preserved fleshy mesocarp of the fruit of the Tamarind-tree, Tamarindus indica (Fig. 535).

Family Papilionaceae.-Flowers strongly ZYGOMORPHIC, PAPILIONACEOUS ; corolla with DESCENDING IMBRICATE ESTIVATION (i.e. the posterior petal enclosing the others in the bud); androcium
always diplostemonous, monadelphous or more frequently DIADELPHOC:

Fig. 53-.-Pisum sotivum. ε, Stem: 6 , leaflets of the pinnate leaf; r, tendril; a, axis of floral shoot. n° stipules. the posterior stamen being free ; the embryo curved (Figs. 536-539).

The Papilionaceae comprise both herbs and woody plants; many are stem- or tendril-climbers. The leaves are generally oddly pinnate. The flowers are usually disposed in racemes, more rarely in heads ; except in some few genera which approach more nearly the Caesalpiniaceae (e.g. Toluifera), they are characterised by
papilionaceous corollas (Fig. 536). The posterior petal is much enlarged and is termed the STANDARD (Venillua); the two lateral petals represent the WINGS (ALE), while the two anterior are usually united by their lower margins, and together form the KEEL (CARINA). In the bud the wings are enclosed by the standard, the keel by the wings (DESCENDING, MABRICate estivation) ; in the Caesalpiniaceae the æstivation is in exactly the reverse order (ASCENDING). The stamens in most cases curve upwards. The cohesion of the filaments does not generally extend throughout their whole length, so that their upper ends are usually free. Stamens wholly free are found only in a few exceptional genera, such as Toluifera. The legumes

Fig. j3s.-Coronilla zaria (nat. size).-Porsorors. commonly have a parch-ment-like wall; dry indehiscent fruits rarely occur in this family: succulent fruits nerer.

Sub-Families.-1. Genistoideae.-Leaves entire, simple or pinnate, stanens usually united. Lupinus (Lupine), Cytisus (Laburnum), etc.
2. Trifolioideae.-Leaves usually pinnate with toothed leaflets, fruit indehiscent. Trifolium (Clover, Trefoil), with persistent perianth ; Medicago (Medick), with deciduous corolla and sickle-shaped or spirally-twisted legumes; Trigonella (Trigonel) ; Melilotus (Melilot, Sweet Clover), with flowers in loose racemes and

Fig. 539.-Cytisus Laburnum. Flowering branch and young legimes (3 nat. size).-PoIsowols.
small, elongated or globular legumes ; Ononis (Rest-Harrow), with monadelphous stamens.
3. Lotoideae.-Stamens diadelphous. Anthyllis (Kidney-Vetch) ; Lotus (Bird'sfoot Trefoil), etc.
4. Galegoideae.-Leaves imparipinnate. Astragalus (Milk-Vetch), with legumes imperfectly separated by a false dissepiment; Robinia (Locust-tree), etc.
5. Hedysaroideae.-Stamens diadelphous; fruit a jointed legume or loment. Coronilla, Hedysarum, Desmodium (Tick-Trefoil) ; Onobrychis (Sainfoin) ; Arachis (A. hypogaea, the Pea-nut), etc.
6. Vicioideae.-Leaves paripinnate, often terminating in tendrils (Fig. 537). Vicia (Vetch), leaves with many leaflets ; Lathyrus (Vetchling), usually with only two leaflets ; Pisum (Pea), etc.
7. Phaseoloideac.-Climbing plants ; leaves usually imparipinnate, frequently ternate. Physostigma (OfFICINAL) ; Phaseolus.

Geographical Distribution.-The large family of the Papilionaceae is not exclusively confined to any zone. The steppes of Western Asia are especially rich in Papilionaceous plants, represented in particular by shrubby species of Astragalus, from which gum-tragacanth is obtained. The leaflets of the pinnate leaves of the Tragacanth shrubs eventually fall off from the main stalks, which remain attached to the stems, and resemble long thorns. The gum is produced by the disorganisation of the stem-parenchyma, and exudes as a viscous fluid when incisions are made in the stems. The most important cultivated plants are-Pisum sativum, the Pea; Phaseolus vulgaris, the common Kidney or French Bean; Vicia Faba, the Broad Bean ; Ervum Lens, the Lentil ; Dolichos Soya, the Soja (Soy) Bean of Japan and China ; Indigofera species, Indigo (Tropics).

Poisonols.-The seeds of the Laburnum, Cytisus Laburnum (Fig. 539), a small tree indigenous to the Alps, sometimes cultivated in gardens. It is characterised by its ternate leaves, and by its racemes of large, yellow flowers and manyseeded legumes. The other species of the same genus, C. alpinus, C. purpureus, C. Weldini, C. bifforus, have also toxic properties. Coronilla varia (Fig. 538), an herbaceous plant with umbels of rose-coloured flowers, is also considered poisonous, and the familiar ornamental climber, Wistaria sinensis.

Officinal.-Astragalus species, from which Tragacantha is obtained. The stolons of Glycyrrhiza glabra, an herbaceous perennial of Southern Europe, constitute Licorice Root, Rad. Liquibitiae; from the roots of the variety glandulifera (Russia) Rad. Liquir. mundata is procured. From Melilotus altissimus and M. officinalis is obtained Herba Meliloti; from Ononis spinosa, Rad. Ononidis. From the seeds (Calabar beans) of Physostigma venenosum, a climbing plant of Western Africa, is derived the alkaloid Physostigminum. The stems of Andira Araroba, a tree native of Arazil, contain Chrysarobinum in the form of a powdery excretion. The heart-wood of Pterocarpus santalinus, an East Indian tree, yields Red Sandalwood, Lignum Santali rubrem (Pterocarpi Lignum). Toluifera Balsamum, a tree growing in South America, has cortical balsam-canals which yield the Balsam of Tolu, Balsamum tolutanum ; Balsamum perivianum, the Balsam of Peru, is supplied by Toluifera Percirae (San Salvador).

Order 21. Myrtiflorae

Flowers PERIGYNOUS or EPIGYNOUS, usually ACTINOMORPHIC ; perianth mostly Tetramerous ; andrœecium variable ; gynœcium ENTIRELY SYNCARPOUS ; ovary septated; seeds devoid of albumen. Leaves generally opposite and Exstipulate.

The flowers of the Myrtiflorae are very similar to those of the Rosiflorcle. Both orders are characterised by the variability displayed in the structure of their flowers. In both orders the flowers are actinomorphic, perigynous or epigynous, and have a tendency to increase the number of their parts by splitting, particularly in the androcium, which in consequence becomes polyandrous in the majority of the Myrtiflorae, just as in Rosiflorue. The main difference in the structure of the flowers of the two orders is exhibited in the gynœcium, which in the Posifforce consists, at least in the stigmatic region, of
free carpels, while in the Myrtiforae, with the exception of the group Haloragidaceae, the union of the carpels is complete, extending also to the stigmas.

The vegetative organs of this order in no wise resemble those of the Rosiflorae. The Myrtiflorae, on the contrary, have usually opposite, entire leaves, never compound ; the leaves also are either exstipulate, or the stipules are small and fugacious. In this order, unlike the Rosiflorae, many of the plants possess internal glands, which secrete ethereal oils.

Family Onagraceae.-Flowers Epigynous, actinomorphic, tetranerous throughout; stamens diplostemonous (Figs. 540, 541).

The Onagraceae include only herbs and shrubs. Their flowers are usually large and conspicuous, hav-

Fig. 540.-Floral diagram of Oenothera (Onagraceae). ing often an elongated, tubular receptacle. Their fruit is many-seeded, and may be either dry or juicy.

Representative Genera.-Epilobium (Willow-herb) has a capsular fruit with hairy seeds ; Circaea (Enchanter's Nightshade), with two-ranked leaves, fruit a nut ; Trapa (Horn-nut) ; Oenothera (Evening Primrose) ; Fuchsia (Fig. 541), with corollaceous calyx and tubular receptacle, cultivated. These are chiefly represented

Fig. 541.-F'uchsia globosu. Flowers (nat. size). in Northern Europe by the redflowered species of Epilobium, which grow in damp places and on riverbanks; and by two large yellowflowered species of Oenothera from North America.

Geographical Distribution. -The Onagraceae are native chiefly of the temperate zones of North and South America.

Family Haloragidaceae.Flowers very small and reduced, with free stigmas; seeds with endosperm: e.g. Myriophyllum (Water Milfoil) and Hippuris (Mare's-tail), aquatic plants growing partially or wholly submerged.

Family Lythraceae. -

 Flowers perigynous, regular or zygomorphic, in perianth and andrecium hexamerous, DIPLOSTEMONOUS ; gynœcium of two to six carpels.This family occurs for the most part in tropical America, and contains chiefly herbs, rarely shrubs or trees. The flowers are usually small, either apetalous or provided with a red or violet corolla; they produce a dry indehiscent fruit. The

Spiked Loosestrife, Lythrum Salicaria, a plant growing, like most of the family, in wet meadows and swamps, is an interesting representative of this family on account of its heterostyled (trimorphic) flowers.

Family Punicaceae.-Comprising only the genus Punica, with two species.
Punica Granatum, the Pomegranate, is a small tree with scattered, entire leaves; it grows wild in the East, but is frequently cultivated in Southern Europe. The flowers are epigynous; they have fleshy, red receptacles, five to eight, also red and fleshy sepals, and an equal number of bright red petals, which are crumpled in the bud; numerous stamens ; Numerous united carpels disposed in two whorls. The fruit is a berry ; it retains the persistent calyx, and is filled with numerous seeds, whose succulent testa represents the edible portion of the fruit.

Officinal.-Punica Granatum, from which is obtained Cortex Granati.
Family Melastomataceae.-Flowers like those of the Onagraceae, or perigynous; anthers usually with appendages and opening by pores; leares with curved, longitudinal nerves. A very large family of tropical plants, particularly abundant in South America, where they are represented by a number of beautiful flowering shrubs.

Family Myrtaceae.-Flowers EPIGYnous, actinomorphic, with fourto five-merous perianth and usually numerous stamens. Evergreen woody plants containing ethereal oils (Fig. 542).

The plants comprised

Fig. 542.-Eugenia caryophyllata. 1, Flowering branch; 2, flower cut through longitudinally; 3, fruit.-OFFICINAL. (After Wossidlo.) in this family are shrubs or trees, which are provided in all their organs with roundish glands containing ethereal oils, which give them an aromatic odour. The possession of ethereal oils is the most distinctive characteristic of the family. The leaves are opposite, entire, and of an elliptical shape. The flowers, which always have both a calyx and corolla, are solitary or clustered, and often very conspicuous. The corolla is usually white ; it is sometimes reduced, and its function as an organ of attraction is assumed by the andrœcium, which acquires for this purpose a bright, usually red colour. Some species have haplostemonous or obdiplostemonous androcia ; from such species, as is apparent from the transitional forms, those with polyandrous androcia have been developed by the division of the stamen-rudiments. The fruit is succulent or capsular, rarely nut-like.

The Myrtaceae are confined to warmer countries. Europe possesses the single species Myrtus communis, the Myrtle. This family is especially characteristic of the Flora of Australia, in which it forms the most striking feature as regards the number of species and individuals, including, in particular, the Eucalyptus tree, which often attains a greater size than even the giant Conifers of California. Of late years Eucalyptus trees have been largely planted in all warm, malarial countries. On account of their wonderful rapidity of growth, they absorb large quantities of water, and thus both drain the soil and purify the air. In the Tropics also, as forest trees, the Myrtaceae occupy an important position. Many produce delicious fruit, e.g. Guava, Psidium Guava. From other species spices are obtained. Cloves are the flower-buds of Eugenia caryophyllata, a small tree indigenous to the Moluccas, but cultivated in most tropical countries (Fig. 542) ; the stalk of the clove corresponds to the receptacle of the flower. The fruit of another tree of the same genus, E. Pimenta, is known as allspice.

Officinal.-Caryophylli (Cloves), from Eugenia caryophyllata.

Hysterophyta

This group, which is merely provisionally established, includes

Fig. 543.-Asarum europaeum. 1, Flowering shoot; 2, Hower cut through longitudinally ; 3, floral diagram. (After Wossidlo.)
chiefly plants that are PARASITIC, and which are on that account
regarded as of recent origin. Flowers epigynous, with simple or double perigone.

Family Aristolochiaceae.-Flowers actinomorphic or more frequently ZYGOMORPHIC ; with simple corollaceous perigone consisting of three coherent members; androcium usually of six or twelve stamens, which are either free or united to the style (gynostemium); orary fourto six-locular ; fruit a capsule. Herbs and lianes not parasitic.

This family comprises chiefly tropical plants with cordate or reniform leares, represented in Europe and North America by the genera Asarum (Asarabacca, Wild Ginger) and Aristolochia (Birthwort). The European species of Asarum, A. curopaea (Fig. 543), is a small

Fig. 544.-Tiscum album. 1, Part of shoot with female flowers and fruit; 2, group of flowers; 3, a male flower; 4, female flower cut through longitudinally ; 5 , longitudinal section of fruit.-POISONOLS. (After Wossidlo.) herb with brown flowers, having an actinomorphic perigone and free stamens. An example of the genus Aristolochia is afforded by A. Clematitis, a large perennial whose flowers have a zygomorphic perigone and a gynostemium. Aristolochia sipho, the Pipe-Yine of North America, is a frequently cultivated climber.

The two families, Rafflesiaceae and Balanophoraceae, are leafless, often Fungus-like, root parasites entirely devoid of chlorophyll. The first-named family has solitary flowers, often of an enormous size. The flowers of Rutiflesia Armoldi (Sumatra) are the largest of all flowers, attaining a diameter of 1 metre. The flowers of the Balanophoraccae, on the other hand, are small and aggregated into dense heads or spikes. Both families are almost exclusively confined to the Tropics.

Family Santalaceae.-Flowers Activonorphic ; with a small greenish simple, trimerous or pentamerous perigone; andrecium of a like number of stamens; orary unilocular, with three orules attached to a free central placenta. Seeds without seed-coats. Terrestrial parasites with leaves.

The plants included in this family are chiefly tropical, represented by herbs and shrubs with inconspicuous flowers. Provided with leaves and growing on the ground, they absorb a large part of their food; their roots, howerer, develop haustoria, which penetrate the roots of other plants, e.g. Thesium linophyllum, the Bastard Toad-flax.

Officinal.-Santalum album, a parasitic tree growing in East India, yields the raluable scented Sandal-wood, from which oil of sandal-wood, Oletm Santali, is obtained by distillation.

Family Lopanthaceae.-Flowers Activomorphic, with double, corollaceous or calycoid, two- to three-merous perigone ; andrœecium
diplostemonous ; ovary usually without distinctly differentiated ovules or placenta. Leafy shrubs parasitic on trees (Fig. 544).

The plants of this family are mostly tropical. Loranthus europaeus occurs upon Oaks in Eastern Europe. Viscum album, the European Mistletoe, is a small evergreen, dichotomously branching shrub, parasitic upon various species of trees. It absorbs its nourishment by means of haustoria consisting of root-like strands concealed between the cortex and wood of the host-branch. The white berries produced by the female plants are eaten by birds, which in freeing their bills of the sticky endocarp, by wiping them on the bark of trees, are at the same time instrumental in distributing the seeds.

Poisonous.--The berries of Viscum album when eaten by children have been known to produce symptoms of poisoning.

B. Sympetalae

Perianth consisting of a calyx and an almost always sympetalous corolla.

The flowers are always cyclic, and in the majority of cases constructed, actually or theoretically, according to the formula K5, $\mathrm{C}(5)$, A5, G(2). The stamens are generally inserted on the COROLLA. The fact that the gynœecium consists typically of only two carpels, must be regarded as the result of reduction, as flowers with five carpels sometimes occur. To the Sympetalae belong the following orders: Ericinae, Diospyrinae, Primulinae, Contortae, Tubiflorae, Personatae, Labiatiflorae, Rubiinae, Campanulinae, Aggregatae.

Order 1. Ericinae

Flowers usually hypogynous, actinomorphic ; formula, Kn, Cn , A2n, $G(n)$, in which n is usually 5 ; corolla sometimes choripetalous; androecium obdiplostemonous, not adnate to the corolla ; pollen usually in tetrads; ovary multilocular. Leaves needle-shaped or lanceolate.

Of all the Sympetalae the Ericinae approach most closely the Choripetalae, not unfrequently having free petals, while the stamens are inserted directly on the receptacle. They form a very natural group, whose close affinity is exhibited, not only in the structure of the flowers, but also in the vegetative organs. The axes are nearly always woody, usually comparatively short, and branching profusely close to the ground. The leaves are generally small and entire, in most cases leathery and evergreen. The flowers are always adapted to insect-pollination ; they are often quite small, but in that case are aggregated in conspicuous racemes, usually of a white or crimson colour. The seeds are small.

- Family Ericaceae.-Flowers hypogynous or epigynous; corolla usually sympetalous ; stamens free; anthers opening by pores or short slits; ovary WITH COMPLETELY SEPARATED LOCULI; placentæ not greatly thickened. Seeds with Segmented

Fig. 545.-Floral diagram of Vaccinium (Ericaceae). embryo (Figs. 545-547).

The anthers of many plants of this family have horn-like appendages (Fig. 547) ; the whole order is therefore sometimes inappropriately named Bicornes. At their upper extremities the thecæ are usually free and divergent. The pollen-grains adhere in tetrads. The fruit is a capsule, berry, or drupe, containing very small seeds with abundant endosperm. As regards the vegetative parts, the Ericaceae are typical of the order.

Sub-Families.-(1) Rhododendroideac. Flowers hypogynous; corolla fugacious; anthers without appendages; septicidal capsules. Ledum, Rhododendron, Azalea, etc. (2) Arbutoideac. Flowers hypo. gynous ; corolla fugacious; anthers mostly appendiculate ; locucidal capsules or succulent fruits. Andromeda, Aretostaphylos, etc. (3) Ericoideac. Flowers hypogynous ; corolla persistent ; anthers mostly appendiculate; fruit a capsule. Calluna, calyx longer than the corolla; capsules septicidal. Erica, calyx shorter than the corolla; capsules locucidal. (4) Vaccinioideae. Flowers epigynous; fruit a berry. Vaceinium, etc.

Geggraphical Distribution.-The plants included in this family are found widely distributed over the whole earth. Species of Ericoideae known as Heather, Calluna vulgaris (Fig. 546), and different species of Erica, cover wide stretches of dry ground (heaths) in Central and Western Europe with a thick bed of vegetation.

The various species of Erica, frequently cultivated as pot-plants, are mostly from Southern Africa, where this genus is very largely represented and exhibits a wonderful richness of colour.

Porsonous.-The species of Rhodo-

Fis. 546. - Calluna vulgaris. 1, Flowering branch; 2, flower; 3, flower cut through longitudinally ; 4, fruit after dehiscence; 5, floral diagram. (After Wossidlo.) dendron and Azalea contain toxic principles in all their organs. The incautious use of Ledum palustre (Herba Rosmarini silvestris) has often had fatal consequences. It is a small shrub with umbels of white flowers and linear leaves covered on the under side with rusty brown hairs.

Officinal.-Arctostaphylos Uva ursi, the Bearberry (Fig. 547), a small ever-
green shrub with bright red campanulate flowers and small red drupes, yields Folia Uvie Ursi.

Fig. 547.-Arctostaphylos U'va ursi. 1, Flowering branch; 2, flowers in longitudinal section; 3, pollen-grains; 4, fruit; 5, fruit in transverse section.-OfFICTNAL. (After Berg and Schmidt.)

Family Pyrolaceae.-As in the preceding family, except that the placente are very fleshy and the embryo not seginented. Humusplants with or without chlorophyll: e.g. Pyrola (Winter-green), evergreen perennials with racemes of white flowers; Monotropa (Indian Pipe), devoid of chlorophyll.

Order 2. Diospyrinae

Flowers actinomorphic; Kn, Cn, A2n, G(n), where n is usually 4 or 5 ; andrecium ADAATE TO THE corolla, diplostemonous, or, by suppression, haplostemonous; ovary multiloctlar, with only one or few orules in each loculus. Evergreen woody plants.

Family Sapotaceae. - Flowers hypogynous. Tropical trees with latex in secretory cells.

Offichal.-Gutta-percha, the dried latex of species of Palaquium (Malay Archipelago).

Family Styracaceae.-Flowers perigynous or epigynous. Without latex. Chiefly tropical.

Officinal-Benzontar, a resin procured by making deep incisions in the bark of Styrax Benzoin.

Order 3. Primulinae

Flowers hYPOGYNOU's, actinomorphic, K.5, C5, A5, G(5) ; andreecium adnate to the corolla, EPIPETALOUS ; ovary UNILOCULAR, with FREE CENTRAL PLACENTATION.

The Primulinae exhibit the greatest diversity in their vegetative structure. Constant characters appear only in the flowers, which, however differently shaped and grouped, always have an epipetalous

Fig. 54s.-Primulaceae. Floral diagram (Primula).

Fig. 549.-Anagallis arvensis. 1, Flowering branch ; 2, a flower cut through longitudinally, showing the central placenta; 3, capsule; 4, seed.Poisonots. (After Wossidlo.)

Fig. 550.-Cyclamen europaeum. A, entire plant ; B, fruit.-Poisonol's. (After Reichenbach.)
andrecium and a unilocular ovary with a central placenta. Of all the other Sympetalae, the Utriculariaceae alone have similar placentre.

Family Primulaceae.-Calyx herbaceous; style simple; ovules numerous ; fruit a capsule (Figs. 548-550).

The plants of this family are for the most part small herbs. The flowers are sometimes small and inconspicuous, sometimes large and beautifully coloured; they are either solitary or grouped in inflorescences. The capsules split at the apex into valves, or the whole top falls off like a lid.

Represextative Gexera.-Primula (Primrose, Cowslip), with rosette of radical leaves, and flowers in umbels ; corolla with long tube; capsule opening by valves. Androsace, like the preceding, except that the corolla has a shorter tube. Lysimachia (Loosestrife, Moneywort), stems with welldeveloped internodes and leaves. Anagallis (Pimpernel), fruit a pyxidium, dehiscing transversely by a lid (Fig. 549).

Geographical Distribltion.Most of the members of this family are indigenous to the Temperate and Arctic Zones of the Northern Hemisphere. Various species of Primula (P. acaulis, auricula, sinensis, etc.) and Cyclamen, etc., are cultivated as ornamental plants.

Porsonocs.-The tubers of Cyclamen europaeum, the Alpine Violet, which occurs wild in Bavaria (Fig. 550), are harmless and edible when cooked. Anagallis arvensis (Poorman's weather-glass) and A. coerulea are slightly toxic.

The Myrsinaceae are tropical woody plants closely allied to the Primulaceae. Fruit a drupe. Ardisia crenulata is a well-known ornamental plant belonging to this family.

Family Plumbaginaceae.

 Flowers with DRY AND MEMbranaceous calyx, divided style, and one ovule. Fruit a capsule (Fig. 551).

Fig. 551.-Armeria vulgaris. 1, Flowering plant; 2, a flower; 3, calyx with the projecting styles; 4, gynœcium with ovary cut through longitudinally, showing the single orule; 5, floral diagram. (After Wossidlo.)

To this family belong chiefly perennial herbs with rosettes of grasslike or lanceolate, entire leaves. The small rose-coloured or violet flowers are borne at the extremity of a long naked stem, usually in panicles or capitula of scorpioid cymes. The calyx, although dry and
membranaceous, is brightly coloured except in the genus Plumbago, whose flowers have an herbaceous calyx.

Geographical Distribution.-The Plumbaginaceae are for the most part native of the sea-coast ; they occur also in salt-steppes and deserts, e.g. Statice (Sea-Lavender), Armeria (Thrift).

Order 4. Contortae

Flowers hypogynous, actinomorphic, with the formula Kn, Cn. An, $G \mathcal{D}$, in which $n=4$ or 5 ; corolla frequently with contorted estivation ; andrecium adnate to the corolla. Leares opposite. ENTIRE.

The Contortae constitute a heterogeneous order of plants, which may be most readily distinguished from other Sympetalae with actino-

Fig. 552.-Oleaceac. Floral diagram (Syring().

Fig. 553.-Flower of Frax. inus Ornus. - OFFIcINAL. (After WosSIDLO.)

Fig. 554.-Olea europaca. 1, Flowering brauch; 2, a flower cut through longitudinally: 3 , transverse section of ovary; 4, fruit; 5, the same with pericarp partly removed.-OFFICLIAL. (After Wossidlo.)
morphic flowers by their opposite, entire leaves. The contorted restivation of the corolla, to which the name of the order has reference, although of frequent occurrence, is not a characteristic common to all the members of the order, nor is it restricted to the Contortae.

Family Oleaceae.-Corolla with inbricate or ralvate æstivation; androecium of two stamens; gynoecium sracarpots ; ovary bilocular. Woody plants without latex; leaves exstipulate (Figs. 552-554).

The plants comprised in this family are either shrubs or trees. The leares are
usually simple and entire, more rarely lobed or compound. The flowers are generally small and in paniculate inflorescences; they have a small calyx and sometimes a synpetalous, sometimes a choripetalous corolla; in a few species they are apetalous. The two stamens constitute the most easily recognised characteristic of the family. Each loculus of the ovary contains two ovules. The fruit is a capsule, a dry indehiscent fruit, a berry or a drupe. Many species contain mannite.

Representative Genera. - Fraxinus (Ash), with pinnate leaves; Ligustrum (Privet), Olea (Olive), Syringa (Lilac), Jasminum (Jessamine).

Geographical Distribution.-The family Oleaceae is chiefly represented in Asia. Several species are familiar as ornamental plants, e.g. the different species of Lilac (Syringa vulgaris, from South-Eastern Europe ; S. chinensis, S. persica), Jessamine

Fig. 555.-Gentianu lutea. $\quad 4$ and b, Flower-buds (nat. size), showing calyx (c) and twisted corolla (b) ; c, transverse section of ovary. - OFFICINAL. (After Berg and Schmidt.)

Fig. 556.-Erythrueu C'entuurium. 1, Apex of flowering shoot; 2 , a flower cut through longitudinally; 3 , anther; 4, fruit; 5 , transverse section of fruit.-OfFICINAL. (After Wossidlo.)

Fis. 557.-Vinca minor. 1, Apex of flowering shoot; 2, flower-bud cut through longitudinally; 3 , a stamen; 4 , pistil. (After Wossidlo.)
(Jasminum grandiforum, etc.), Forsythia viridissima, etc. The most important
economic plant of the family is the Olive-tree, Olea curopaea (Fig. 554), often cultivated in Southern Europe. The oil is extracted from the pulp of the ripe fruit, and also, although to a less extent, from the seeds. The wood (Olive-wood) is used for a variety of purposes.

Officinal.-Oleum Olivae (vide supra) ; Manna, the dried sap of the MannaAsh, Fraxinus Ornus (Mediterranean).

Family Loganiaceae. - Flowers always with a synpetalous corolla and an haplostemonots andræecium, in other respects essentially the same as those of the Oleaceae. Tropical woody plants without latex, rarely herbs with stipules.

Fig. 558.-Nerium Oleander (reduced).-Poisonocs.
Poisonous.-Curare, used by the South American Indians for poisoning arrows and also as a Nalayan arrow poison, is prepared from the bark of several species of Strychnos. The seeds of Strychnos nux vomica (vide infra) are extremely poisonous.

Officinal.-Strychnos nux romica, an East Indian tree whose fruit resembles an orange, but has a hard rind and usually only one seed, yields Semen Strichni or Nux vomica.

Family Gentianaceae.-Corolla with Contorted estivation ; andrœecium haplostemonous; gynœcium sYNCARPOUS ; ovary usually unilocular, with parietal placentæ. Herbs without latex, wholly restricted to the Temperate Zone (Figs. 555, 556).

The plants included in this family are large or small, glabrous herbs. Their leaves, which are almost always opposite and entire, are destitute of stipules. The flowers are often large and highly coloured, terminal and solitary, or more frequently they are arranged in dichasial inflorescences. The fruit is a two-valved, many-seeded capsule. Many species of Gentianaceae are rich in bitter principles.

Representative Gexera.-Gentiana (Gentian), with straight anthers; Erytheraea (Centaury), with anthers spirally twisted ; Chlora (Yellow-wort); Menyanthes (Buckbean), with scattered, ternate leaves.

Officinal.-Gentiana lutea (Fig. 555), and G. pannonica, punctata, purpurea, yield Radix Gentlanae ; Erythraeu Centaurium (Fig. 556), Herba Centaurit; Menyanthes trifoliata, Folia Trifolii fibrini.

Fig. 559.-Asclepias curassavica. A, Flower ; an, androcium ($\times 4$); B, calyx and gynocium ; $f n$, ovary ; k, corpuscula ($\times 6$); C, pollinia (magnified). (After Baillon.)

Family Apocynaceae.-Corolla with Contorted estivation; androecium haplostemonous; pollen granular or in tetrads; carpels usually free below ; ring-shaped stigna. Plants with latex (Figs. 557, 558).

In this family are represented perennial herbs, shrubs, lianes, and trees; all usually evergreen, with opposite, entire leaves. The rotate or funnel-shaped flowers, which are often large and conspicuous, are aggregated in cymose inflorescences; the fruit is usually a capsule, both of whose free carpels (follicles) dehisce along the ventral suture, setting free numerous and often hairy seeds to be disseminated by the wind.

Geographical Distribution.-The Apocynaceae are chiefly indigenous to the Tropics, where numerous species are found. Faniliar examples of this family are afforded by the Oleander, Nerium Oleander, and Periwinkle, Vinca minor (Fig. 557).

Porsonous.-Nerium Oleander (Fig. 558), an evergreen shrub of Southern Europe, with lanceolate leaves and large rose-coloured, more rarely white or light yellow, fragrant flowers. All parts of the Oleander are poisonous.

Officinal.-Various species of Strophanthus (e.g. S. hispidus), tropical lianes of Western Africa, yield Semen Strophanthi. From Aspidosperma Quebracho, a tree native of the Argentine Republic, is derived Cortex Quebracho.

Family Asclepiadaceae.-Corolla with contorted estivation ; andrecium haplostemonous; pollen-grains of each loculus of the anthers adhering together, in the form of a

Fig. 560.-Vincetoxicum officinale ($\frac{1}{2}$ nat. size).-PoIsonous. pollinium ; carpels with free ovaries, united above into a prismatic stigma. Plants with latex (Figs. 559, 560).

In their vegetative portions and frnit the A sclepiadaceae are like the Apocynaceae, but differ from them as from all other Dicotyledons in the stricture of their andrecia. The stamens are united, at least at the base ; each of them bears a large dorsal appendage (Fig. 559, A). These staminal appendages together form a corona. Especially characteristic, also, are the club-shaped pollen-masses or pollinia, resembling those of the Orchidaceae (cf. p. 488). For the purpose of pollination by inseets, the pollinia are attached in pairs (one pollinium from each pair of contiguous anthers) to a corprsculum or glandular outgrowth of the stigma (Fig. 559, $B, C)$.

Gegraphical Distribetion. - The Aselepiadaceae are chiefly native of the Tropics, where they are found as lianes or epiphytes. In the barren desert-regions of Southern Africa they are represented by leafless, Cactus-like succulents (Stapelia).

Poisonous.-The latex of most of the Asclepiaduceac, and also all parts of the species Vincetoxicum officinale (Fig. 560), possess toxic principles. The latter is a small, inconspicuous, white-flowered plant, with capsules and long-haired seeds.

Officinal.-The bark of Gonolobus Condurango and other lianes of Perin and Echador yield Cortex Coatucraxgo.

Order 5. Tubiflorae

Flowers hypogynous, actinonorphic, sometimes slightly zygomorphic, generally with the formula $\mathrm{K} 5, \mathrm{C} 5, \mathrm{~A} 5, \mathrm{G}(2)$; stamens Conplete in number, inserted on the corolla; ovary bilocular (rarely trilocular), with two ovules in each loculus; loculi frequently chambered by false dissepinents. Leaves alternate.

In spite of the great difference in appearance, the structure of the flowers proves the existence of a close affinity between the different members of the order. The families included in the Tubiftorue form the beginning of a series, which is further continued by the families of the two next succeeding orders, the Personatae and Labiatiflorue. That the families of the Tubiflorue, in particular the Conrolvulaceae, are the older, or have deviated less from the ancestral form, is rendered probable from a comparison of their actinomorphic flowers and pentamerous androcia with the zygomorphic flowers and reduced
androecia of the Personatae and Labiatiflorae. The varying number of carpels, their not infrequent separation, and the variability in the number, position, and structure of other parts of the flowers, while establishing the connection of the Tubiflorae with other orders, confirm the supposition of their greater age. In the Personatae and Laliatiflorae, on the other hand, the flowers appear to be constructed in accordance with a fixed type.

Family Convolvulaceae. - Corolla folded longitudinally in the bud, TWISTED, usually to the right ; ovary bilocular, with two erect ovules in each loculus; loculi often two-chambered; embryo curved. Mostly climbing herbs and shrubs, usually with latex (Fig. 561).

The majority of the plants in the family are sinistrorse herbaceous climbers, with heart-shaped leaves and conspicuous flowers, usually with a funnel-shaped, slightly lobed corolla. The fruit is a capsule

Fig. 561.-Convolvulus artensis. 1, Part of a stem with flowers; 2 a flower cut through longitudinally ; 3, fruit ; 4, seed ; 5, floral diagram. (After Wossidlo.) or berry. In addition to the normally assimilating leafy species, the family of the Convolvulaceae includes (species of the genus Cuscuta) a number of thread-like parasitic plants almost devoid of chlorophyll. The species of this genus twine about other plants and obtain nourishment by sending out haustoria into their stems (cf. p. 208, Fig. 185).

Representative Genera.- Convolvulus, with two-cleft style (e.g. C. arvensis, Bindweed, Fig. 561) ; Calystegia (Bracted Bindweed), like the preceding, but with two large bracteoles; Ipomoea, style four-cleft (e.g. I. purpurea, the common Morning Glory) ; Cuscuta (Dodder).

Geographical Distribution. - The Convolvulaceae are most extensively represented in tropical America. Several species of this family are well-known ornamental plants. Ipomoea Batatas is largely cultivated for the tuberous roots (Sweet Potatoes).

Officinal.-Ipomoea Purga, a Mexican climbing plant, yielding Jalap, Tubera Jalapae.

The Polemoniaceae differ from the Convolvulaceae in having three carpels and no latex. Various species of Polemonium, Cobaca and Phlox are ornamental plants.

Family Boraginaceae.-Corolla with imbricate æstivation : ovary
dimerous, but deeply FOUR-LOBED OR CHAMBERED, with one suspended ovule in each chamber. Style inserted in the depression between the four projecting lobes of the carpels. The fruit is a FOUR-PARTITE SCHIzoCARP, consisting of four nutlets. Seeds usually without endosperm. Inflorescences SCORPIOID (Figs. 562, 563).

The Boraginaceae are for the most part herbaceous plants, and con-

Fig. 562.-Borago officinalis. (, Flower; b and c, fruit (nat. size). stitute one of the most natural and easily recognisable families. The succulent stems, covered with harsh hairs, the entire leaves, the scorpioid inflorescences with spirally coiled branches, the usually blue flowers, and the distinctive structure of the fruit,

Fic. 563.-Echivm rulgare. 1, Inflorescence ; 2, a flower; 3, fruit; 4, a single nutlet; 5, floral diagram. (After Wossidlo.)
all serve to give the plants comprised in this family a highly characteristic appearance.

Representative Genera.-(a) Throat of the corolla with scales: Borago (Borage), stamens with horn-like appendages (Fig. 562) ; Symphytum (Comfrey) : Myosotis (Forget-me-not). (b) Throat of corolla without scales: Pulmonariu (Lungwort) ; Echium (Viper's Bugloss), with zygomorphic flowers (Fig. 563); Lithospermum (Gromwell), nutlets stony, owing to the presence of calcium carbonate. Anomalous: Heliotropium (Heliotrope), with undivided ovary prolonged into an apical style.

Geographical Distribution.-The members of this family abound in the North Temperate Zone, particularly in the Mediterranean countries.

To the Tubiflorae belong also the two families Hydrophyllaceae (chiefly indigenous to America) and Cordiacere (tropical woody plants, with drupaceous fruit).

These two families, neither of which is represented in Europe, stand in close relation to the Convolvulaceae as well as to the Boraginaceae, bridging over the gap between them. The Hydrophyllaceac also exhibit a near affinity to the following order.

Order 6. Personatae

Flowers hypogynous, mostly ZXGOMORPHIC ; typically with the formula $\mathrm{K} 5, \mathrm{C} 5$, $\mathrm{A} 5, \mathrm{G}(2)$, but usually with a Reduced andreeciuni. Stamens inserted on the corolla ; ovary dimerous, bilocular, rarely with false dissepiments, usually with numerous ovules. Leaves alternate or opposite.

Included in this order are herbs and woody plants, generally with conspicuous flowers. The corolla is commonly bilabiate. In most instances the andrœecium is reduced to four stamens, disposed in two pairs of unequal length ; more rarely only two stamens are present. The fruit is most frequently a capsule with albuminous, or sometimes exalbuminous seeds.

The Solanaccae are, phylogenetically, probably the oldest

Fig. 564.-Solanaceae. Floral diagram (Petunia).

Fig. 565. - Vicotiana Tabacum. a, Flower; b, corolla, cut open and spread out flat; c, ovary; d and e, young fruit. ($(1, d, c$, nat. size ; $e, d, \times 2$.)
family of the order, and in their generally actinomorphic flowers and pentamerous androecia they exhibit a close affinity to the Tubiflorac, particularly to the Hydrophyllaceac, in which the gynœecia have a similar oblique position. The Solanaceae are also allied to the Boraginaceac, with which they are connected by the small family Nolanaceac. (Plaited corolla, seeds and unequally paired leaves, as in the Solanaccae; fruit a schizocarp, as in the Boraginaceae.) Between the Solanaceae
and Scrophulariaceae, on the other hand, there are no uniformly constant distinctions, the Scrophulariaceae representing rather a continuation of the Solanaceae. The other families embraced by the Personatae, with the exception of the Acanthaceae, Globulariaceae, and Plantaginaceae, are all closely allied to the Scrophulariaceae.

Family Solanaceae.-Corolla Plaited in the bud, usually actinoMORPHIC ; andrœcium PENTAMEROUS ; carpels obliquely placed with

Fig. 566.-Nicotiana Tabacum ($\frac{1}{2}$ nat. size).Poisonols and officinal.

Fig. 567.-Atropa Belladonna ($\frac{1}{2}$ nat. size).Poisonols and Officinal.
reference to the median plane of the flower ; seeds with endosperm (Figs. 564, 569).

The majority of the Solanaceae are herbs (in the Tropics also represented by shrubs and small trees), with numerous, often glandular hairs, and not unfrequently with prickles. In the region of the inflorescence the leaves are often borne in pairs, consisting of one large and one smaller leaf. This peculiar disposition of the leaves is due to the displacement of the bracteoles and subtending bracts, which adhering to their growing axillary shoots are carried up a distance on them (Fig. 567). The flowers are either solitary or grouped in
inflorescences (Fig. 566) ; they are variously shaped and usually have a five-lobed corolla, often of a pale violet colour. The oblique position of the carpels (Fig. 564) is a distinctive characteristic of the flowers of this family. The fruit is a berry or capsule. The seeds are generally reniform, and contain a curved embryo embedded in an oily endosperm.

Representative Geveri. -(a) Fruit a capsule: Nicotiana; Datura, capsule fourvalved; Hyoscyamus, flowers zygomorphic, capsule dehis-
prise chiefly plants of the Tropical Zone. In addition to the officinal plants, this family contains a number of other economic plants, all of which are natives of South America: the Potato, Solanum tuberosum (p. 24, Fig. 24); the Tobacco-plant, Nicotiana Tabacum (Fig. 566), and N. rustica; the Tomato, Lycopersicum esculentum, etc. The Potato
 plant grows wild in the Andes mountains in Chili ; it was first introduced into Spain and thence into Europe in the latter half of the sixteenth century. The first introduction of Tobacco into Europe occurred about the same time. It is stated that Nicotiana Tabacum is still found growing wild in Periu and Ecuador.

Porsonous.-Almost all of the plants of this family are wholly or in part
poisonous, in most cases on account of the alkaloids they contain. All parts of Solanum tuberosum contain solanine ; on that account it is dangerous to eat potatoes that have turned green or such as have developed shoots. Solanum Dulcamara (Bitter-sweet) contains solanine in all its parts, with the exception of the harmless berries. Sola-

Fig. 570.-Scrophulariaceae. Floral diagrams. A, Verbascum; B, Veronica. (After Eichler.) nine occurs, on the other hand, in the black berries of Solanum nigrum (Common Nightshade), a weed frequently growing in fields. The unripe fruits of the Tomato have been known, when eaten, to produce symptoms of poisoning. Atropa Belladonna, the Deadly Nightshade (Fig. 567), is the most noxious plant of this group. It is an herbaceous plant with reddish brown campanulate flowers and very poisonous black berries enveloped by the persistent calyx. Datu:a Stramonium, the ThornApple (Fig. 568), is also a narcotic, poisonous, herbaceous plant, of common occurrence on waste ground. It branches dichotomously and bears white, funnel-shaped flowers producing large prickly capsules. Hyoscyamus niger, Black Henbane (Fig. 569), grows in situations similar to those in which the Thorn-Apple is found ; it also possesses dangerous narcotic properties. The flowers, which are disposed in one-sided inflorescences, have a funnel-shaped, five-lobed, yellow corolla marked with violet veins ; the fruit is a pyxidium. Nicotiana Tabacum (Fig. 566) contains toxic principles in all its parts.

Officinal.-Atropa Belladonna yields Folia et Radix Belladonisae; Datura Stramonium, Folia Stramonif ; Hyoscyamus niger, Herba Hyoscyami ; Capsicum annuum, Fructes Capsici ; Ticotiana Tabacum, Folla Tabaci ; Solanum Dulcamara, Caules Dulcamarae.

Family Scrophulariaceae.-Corolla most frequently ZYGOMORPHIC, NEIER PLAITED in the bud; andrecium usually REDUCED to FOUR OR tWo stamens ; carpels median (Figs. 570-573).

Of the plants comprising the Scrophulariaceae, the majority are herbs with simple, toothed, rarely lobed leaves, which may be opposite or alternate but never unequally paired, as in the Solanaceae. Many species, although provided with leaves, are root-parasites. The flowers, whether solitary and axillary or in racemes, always have a lateral origin. In some genera the flowers are nearly actinomorphic, with pentamerous androcium (Fig. $570, A$) ; but in most of the forms they are distinctly zygomorphic, while the androecia are also reduced. In cases where one stamen is rudimental (Scrophularia) or suppressed, it is usually the posterior one. Sometimes, in consequence of more extended suppression, only two stamens remain (e.g. Veronica, Fig. 570, $B)$. The fruit is a capsule, or less frequently a berry.

Sub-Families and Represextitive Genera.-(1) Antirrhinoideae. Corolla with descending æstivation (i.e. the two posterior petals overlap the lateral, which
in turn enclose the anterior stamen) ; autotrophic plants. Verbascum (Mullein), with five fertile stamens (Fig. 572) ; Scrophularia (Figwort) ; Antirrhinum (Snaldragon), corolla with short spur and two closed lips, capsule opening by pores ; Linaria (Toad-Flax), corolla with long spur, otherwise as in the preceding genus; Digitalis (Foxglove), corolla obliquely campanulate, capsule opening by valves (Fig. 571) ; Gratiola (Hedge-Hyssop) ; Veronica (Speedwell). (2) Rhinanthoideae. Corolla with ascending æstivation (i.e. the two posterior petals overlapped by the lateral); leafy plants, more rarely parasites devoid of chlorophyll, and with haustoria. Rhinanthus (Yellow-Rattle); Melampyrum (Cow-Wheat) ; Euphrasia (Eyebright); Pedicularis (Lousewort).

Geographical Distribu-tion.-The Scrophulariaceae are of frequent occurrence in the temperate zones of both hemispheres, growing in the most varied situations. Many are ornamental plants, e.g. Antirrhinum majus, various

Fig. 571.-Digitulis purpurea. u, Flower; b, corolla cut open and spread out; c, calyx and pistil; d, fruit after dehiscence ; e, transverse section of fruit (nat. size). species of Veronica, Paulownia imperialis (arborescent).

Poisonous.-Digitalis purpurea (Figs. 571, 573), an unbranched, thickly-leaved, hairy biennial bearing terminal, one-sided racemes of reddish campanulate flowers ; all parts exceedingly poisonous. Gratiola officinalis, a perennial, glabrous herb, growing in damp situations to a height of

Fig. 572.-Verbescum thepsiforme. a, Flower; b, calyx and style (nat. size).-(ifficinat. 30 cm ., with narrow, toothed leaves and axillary tubular flowers, of a whitish colour.

Officinal.-Digitalis purpurcu, the Purple Foxglove (Fig. 573), yields Folia Digitalis; Verbascum thapsiforme (Fig. 572) and V. phlomoides, Flores Veribasci.

Family Utriculariaceae.

 Flowers distinguishable from those of the preceding family by their unilocular ovaries with free central placente and exalbuminous seeds. Carniyorous, aquatic and marsh plants.The flowers have only two stamens, and are distinctly zygomorphic and long-
spurred, like those of Linaria. The fruit is a many-seeded capsule. The plants included in this family are, for the most part, tropical. The more familiar northern representatires belong to the genera Pinguicula, the Butterwort, and Utricularia, the Bladderwort (see P. 215 and Fig. 34).

Fig. 5̄4. - Plantago major. 1, Entire plant; 』, flower with subtending bract; 3 , fruit: 4 , seed; 5 , floral diagram. (After Wossidlo.)

Fig. 573.-Digitelis purpurea ($\frac{1}{2}$ nat. size).Potsonots and Offictial.

Family Gesneriaceae.-Flowers differing from those of the Scrophulariaceae chiefly in having unilocular ovaries with parietal Placente. Flowers sometimes epigynous.

The Gesneriaceae are for the most part tropical plants, some of which (Gloxinia) are well-known hot-house plants. To this family belong the Broom-rape and Toothwort, parasitic plants without chlorophyll, belonging respectively to the genera Orobanche and Lathraea.

Family Plantaginaceae.-Flowers Actinomorphic, in perianth and
androcium apparently tetramerous ; K4, C4, A4, $\mathrm{G}(2)$; corolla membranaceous ; ovary one- to four-locular. Herbs (Fig. 574).

The apparently tetramerous character of the flowers is due to the suppression of the posterior sepal and stamen, and the coalescence of the two posterior lobes of the corolla. Most of the species of this family have a radical rosette of entire leaves, from the centre of which rises a tall scape bearing a terminal spike of small flowers. The flowers are frequently distinctly protogynous; they are usually anemophilous (e.g. Plantago lanceolata), rarely insect-pollinated (e.g. Plantago media). The fruit is commonly a many-seeded pyxidium. The plants comprised in the few genera of this family are scattered over the whole world, without being in any one region particularly prominent. Various species of Plantago (Plantain) are common field and wayside weeds.

The order Personatae includes also the following families: Biynoniaceae. Trees and tendril-climbing lianes of warm climates, usually with compound leaves, and winged seeds without endosperm ; fruit a woody capsule. Acarthaceae. Tropical herbs and shrubs. Seeds few, without endosperm and attached to the projecting placentæ by strong funiculi, which frequently have characteristic appendages. Globulariaceae. Flowers in small heads; ovary unilocular with one ovule.

Order 7. Labiatiflorae

Flowers hypogynous, almost always zygomorphic, theoretically with the formula K5, C5, A5, G(2), but usually with REDUCED ANDrcecia ; stamens inserted on the corolla; ovary bilocular, with FOUR erect ovules, each loculus subdivided by a false dissepiment. Fruit commonly a schizocarp. Leaves generally opposite.

The plants constituting this order are herbs or shrubs, rarely trees ; their vegetative organs are usually hairy and often aromatic. The flowers are axillary, in most instances distinctly zygomorphic and aggregated in inflorescences. The fruit is commonly a four-partite schizocarp, more rarely a drupe or capsule.

The order Labiatiflorae does not represent a continuation of that of the Personatae, but rather a lateral offshoot from the branch of the Tubiflorae. The fruit of the Labiatae, it is true, corresponds with that of the Boraginaceae, but similar fruits occurs also in the Tubiflorae and Personatae. As there are no other points of resemblance between the Labiatae and Boraginaceae, it is manifestly unwarrantable to assume the existence of a near relationship between these two families, such as, for example, exists between the Solanaceae and Scrophulariaceae. The Labiatiflorae were apparently separated from the T'ubiflorae at an early stage; their nearest allies are probably found among the Convolvulaceae.

Family Verbenaceae.-Ovary one- to two-locular, more usually subdivided and four-chambered (not lobed), the style therefore terminal. Fruit a DRUPE, less frequently a capsule or schizocarp. Vegetative organs and inflorescences not uniform.

The Verbenaceae consist for the most part of tropical plants, represented in the Temperate Zone chiefly by the genus Verbena (Vervain). Tectona grandis, the

Teak-tree of the East Indies, yields a wood highly valued for shipbuilding and other purposes. Verbena Aubletia is a common garden plant.

Family Labiatae.-Ovary DEEPLY FOUR-LOBED, bicarpellary, fourchambered, with GYNOBASIC style (attached to the base instead of to the summit of the ovary) ; fruit a FOUR-PARTITE SCHIzocARP with four

Fig. 575.-Floral diagram of Lamium (Labiatac).
nutlets. Herbs and small shrubs with quadrangular stems and opposite leaves; inflorescences dichasial (Figs. 575-577).

The Labiatae constitute one of the most natural families of the vegetable kingdom. The quadrangular stems and decussate leaves give the plants of this family a distinctive character, which is enhanced by their odour and general hairiness. The aroma so characteristic of many species is due to the presence of an ethereal oil secreted by small glandular hairs scattered over the surface of the stems and leaves. Not less characteristic of this

Fig. 576.-Melissa officinalis.-Officinal. (After Berg and Scemidt, $\frac{1}{2}$ nat. size.)
family is the apparent disposition of the short-stalked flowers in whorls, but which in reality represent axillary scorpioid cymes, sometimes termed verticillasters. The separate inflorescences often become aggregated in terminal heads and spikes, as in the Thyme and Peppermint. The calyx (Fig. 577) is gamosepalous and five-toothed. The corolla is usually bilabiate, with two lobes in the upper lip and three
in the under ; it is variously coloured, but most frequently of a carmine or violet colour. The andrecium chiefly resembles that of the Scrophulariaceae, while the gynœecium is constructed as in the Borct ginaceae, consisting of an originally bilocular ovary whose carpels become deeply constricted longitudinally and thus subdivided, each into two chambers. The nutlets (Fig. 577, d, e) of the fruit always have a hard outer wall ; they are sometimes partially aborted.

Representative Genera.-Ajuga (Bugle), with short upper lip ; Teucrium (Germander), upper lip deeply cleft; Stachys (Betony, Hedge-Nettle), Galeopsis (Hemp-Nettle), and Lamium (Dead-Nettle), with helnet-shaped upper lip; Nepeta (Cat-Mint) and Glechoma (Ground-Ivy), unlike most of the other genera, with a long posterior stamen; Mentha (Mint), with almost actinomorphic corolla and stamens of about equal length; Thymus (Thyme); Origanum (Marjoram); Lavandula (Lavender) ; Salvia (Sage) and Rosmarinus (Rosemary), with two stamens, each of which has only a fertile half-anther.

Geographical Distribution.-Like most aromatic plants, the Labiatae thrive

Fig. 577.-Galeopsis ochroleuca. a, Flower; b, the same with calyx removed ; c, corolla cut open, showing stamens and style ; d, calyx and gynœecium; e, fruit.-Officinal. $\quad(a, b$ nat. size ; $c, d, e \times 2$.) best in a dry, sunny situation. They accordingly constitute an important part of the vegetation of the Mediterranean countries, where these conditions of growth are fulfilled, and where, for example, although not restricted alone to those countries, the officinal Rosemary, Sage, Thyme, and Lavender are found growing wild. Many aromatic species are cultivated as kitchen-herbs : Sweet Marjoram, Origanum Majorana; Summer Savory, Satureia hortensis; Sweet Basil, Ocimum Basilicum ; the Garden Thyme, Thymus vulgaris; Sage, Salvia officinalis.

Officinal.-Lavandula vera yields Flores Lavandulae; Salvia officinalis, Folia Salviae ; Melissa officinalis, the Common Balm (Fig. 576), Folia Melissae; Thymus Serpyllum, Herba Serpylli ; Thymus vulgaris, Herba Thymi; Rosmarinus officinalis, Folia et Oleum Rosmarini ; Mentha piperita (Peppermint), Folia et Oleum Menthae piperitae ; Mentha crispa, Folia Menthae crispae; Galeopsis ochroleuca, Herba Galeopsidis; Origanum vulgare, Herba Origani.

Order 8. Rubiinae

Flowers epigynous, actinomorphic or zygomorphic, with the formula $\mathrm{Kn}, \mathrm{Cn}, \mathrm{An},(\mathrm{G} \overline{2-3})$, in which $\mathrm{n}=4$ or 5 . Calyx greatly REDUCED ; andrecium inserted on the corolla ; ovary two- to threelocular. Leaves generally opposite.

The Pubiinue comprise herbaceous, shrubby, and, more rarely, arborescent plants, varying greatly in general appearance, and, with the exception of opposite leaves, having but little in common in their vegetative structure. The flowers are usually small and aggregated in profusely branched inflorescences, which often assume an umbellate character. The corolla is sometimes campanulate or cylindrical, but,

Fig. 5Ts.-Asprule ndoratu. 1, Apex of flowering shoot. The false whorls consisting of two leaves and four to six stipules ; 2, flower cut through longitudinally; 3 , longitudinal section of frnit; 4 , floral diagram. (After Wossidlo.)

Fici. 5-9.-Cofice arabice. 1, Flowering branch; 2, fruit; 3 , fruit in transverse section; 4 , seeds.-()FFICHNAL.
(After Wossidlo.)
most frequently, rotate or funnel-shaped, according as its lower portion forms a longer or shorter tube. The fruit assumes various forms, sometimes dry, sometimes juicy.

Family Rubiaceae.-Flowers Activonorphic, androcium with full yumber of stamens; ovary dimerous, both loculi fertile. Herbs and woody plants with simple, stipclate leaves (Figs. $578-580$).

The Rubiaccue form one of the largest and most varied families of the regetable world. The almost always entire and opposite leares and the invariable presence of stipules, either leafy or scale-like, con-
stitute the characteristics most distinctive of this family. The characteristics given for the order hold good as regards the structure of the fruit and flowers.

Sub-Fimilies and Representatite Gesera.- 1 . Stellatae. Stipules like the leares; loculi one-seeded : Gialiuin (Bedstraw, Cleavers), corolla rotate : Asperula (A. odlorata, Woodruff, Fig. $\overline{7} \boldsymbol{O}$), corolla funnel-shaped ; Sherardia |S. artensis. Field Madder) (2) Confeoideae. Stipules scaly ; loculi one-seeded: Coffea; C'ephaelis. (3) Cinchomoidecue. Stipules scaly ; locuii many-seeded: C'inchona; Cncaria.

Geggraphical Distribltion. - The Rubiaceae comprise numerous species of mostly tropical herbs and shrubs. The Coffee-plant, C'offea arabica (Fig. 579), is a small evergreen tree, indigenous to the tropical mountainous districts of Eastern Africa, but now cultivated in all warm countries. The white flowers disposed in axillary clusters prorluce red, cherry-like drupes, each containing two seeds or coffee-beans. Brazil supplies the largest part of all the coffee consumed, but the best comes from South-Western Arabia Mocha), the Sunda Islands (Jara, Celebes), and C'eylon. The various species of Gardenia cultirated as ornamental plants also belong to this family.

Fir. 580 .-r inchora hamif lio. 1. Fiowering branch; -2, flower ; 3, flower cut through longitudinally ; f. fruit: 5, seerl.—Officisil. (After Wowldlo.)

Officisal.-C'inchona succirubra, C. Ledgeriana, and other slecies of the same genus (Fig. 580) yield the cinchona-bark, Cortex Cischosie, from which Quinine is prepared. The Cinchonas grow wild in the Andes mountains and are largely cultivated in the mountainous regions of India. They are evergreen trees with lanceolate or roundish leaves and with flowers in pramid-shaperd panicles. The flowers are about 1 cm . long and have a yellowish or carmine-coioured, funnelshaped corolla with five fringed lobes. When the fruit is ripe the two carpelseparate at the base, but are held together at their apices br the calyx ; they open by a slit in the middle of the partition dissepiment. Cephceilis Ipecacuanher, a small under-shrub native of Brazil, yields Radix Ipecactashae. Čncarin Ciambir, an East Indian liane climbing by means of hooks, yields the leares and young shoots from which Cateche is extracted. The alkaloid Coffeistur is derived from the coffee-bean.

Family Caprifoliaceae.-Flowers Actinompr.phic or ŽGOMORPHIC; andreecium with full sumber of stayers; gynoecium usually trimerous ; loculi all fertile; mostly woody plants, as a rule with stiptlate leaves (Fig. 581).

There is, properly speaking, no characteristic feature which separates the Caprifoliaceae and Rubiaceae.

The majority of the members of this family are shrubs with simple or pinnate leaves and, most often, with cymose inflorescences. The corolla is rotate, campanulate or tubular, in the last case zygomorphic. The fruit is commonly a berry or drupe.

Subdivisions.-(1) Sambuceae. Corolla actinomorphic, rotate; style short; fruit a drupe. Sambucus, the Elder, has pinnate leaves and a drupaceous fruit with three stones. The leaves of Viburnum (Arrow-wood, Guelder-rose) are simple; the drupes have only one stone. (2) Lonicereae. Flowers with an actino-

Fig. $581 .-$ Sambucus nigra. 1, Flowering branch; 2, a flower cut through longitudinally ; 3, fruit; 4, floral diagram.-Ofricinal. (After Wossidlo.)
morphic or zygomorphic, tubular corolla and a correspondingly long style, e.g. Lonicera (Honeysuckle) with zygomorphic flowers, Linnaea (Twin-flower), etc.

Geographical Distribution.-The Caprifoliaceae are in large part represented by shrubs and small trees growing in woods and thickets in the Temperate Zone of the Northern Hemisphere. Several well-known ornamental plants are included in this family : the Snowball-tree or Guelder-rose, a variety of Viburnum Opulus, with sterile flowers only ; and the various species of Honeysuckle (Lonicera) and Bush-Honeysuckle or Weigelia.

Officinal.-Sambucus nigra (Fig. 581) and S. canadensis yield Flores SAmbleci.

Family Valerianaceae.-Flowers Asymametrical, with penta-
merous perianth ; andreecium REDUCED ; ovary trilocular, with only one fertile loculus (Figs. 582, 583).

The family comprises herbs and small under-shrubs, haring simple or pinnate leares without stipules. The flowers are small and aggregated in profusely branched, dichasial inflorescences. At the time of flowering the calyx is rudimental, but it eventually assumes the form of a feathery pappus (Fig. 583). The actinomorphic or spurred corolla is rotate or funnel-shaped, usually of a light rose-colour. The androecium, which was originally pentamerous, has suffered reduction, in which process either the median stamen alone or, in addition, one or three lateral stamens have been suppressed. Except in the first case the andrœecium is asymmetrical with respect to the median plane of the flower. The gynœcium, on the other hand, is always asymmetrical, one of the lateral loculi, nerer the median loculus, being alone fertile (Fig. 582). The fruit is indehiscent.

Fig. 5se.-Taleriane. Floral diagram.

a

b
Fig. 5s3.-Taleriana officinalis. (${ }^{\prime}$, Flower ($\times \S$); b, fruit ($\times 4$).-OFFICTNAL.

Represestative Gesera. - Valcrianclla, corolla rotate, three stamens. Taleriana, corolla funnel-shaped, short-spurred, three stamens (Fig. 583). Centranthus, corolla funnel-shaped and long-spurred, one stamen.

Geographical Distribetion.-The Talcrianaceue inhabit the countries of the Temperate and Arctic Zones, but never form an important part of the regetation. Valeriana officinalis and V. dioica are common field flowers. Centranthus ruber is a π ell-known garden plant.

Officinal.-Valeriano officinalis yields Rad. Valeriavae.

Order 9. Campanulinae

Flowers EPIGYNOUS, actinomorphic or zygomorphic, most frequently with the formula $\mathrm{K} 5, \mathrm{C}(5), A 5, \mathrm{G}(\overline{2-3})$. Calyx gamosepalous, with long sepals; stamens inserted on the flower-Axis, usually with anthers adhering together: ovary two- to three-locular, with numerous ovules. The possession of Latex is characteristic of most of the plants of this order.

The Campanulinae are for the most part herbs with simple, entire, alternate leares without stipules. Their inflorescences are racemose,
either racemes, spikes, or heads. The flowers, which are commonly large and conspicuous, are usually of a blue colour. Except that the corolla is in some instances actinomorphic, in others zygomorphic, the

Fig. 584.-Cumpenula rotundifolia. a, Flower; b, the same cut through longitudinally. (Nat. size.)

Fig. 585.-Ecballium (Cucurbitaceae). Diagram of a male (A) and of a female flower (B). (After Eichler)
flowers have essentially the same structure throughout the whole order. The anthers, though sometimes free and distinct, more frequently adhere together or are entirely coalescent. The fruit is a capsule, or more rarely a berry.

Fig. 586.-Cucubite Pepo. a, Male flower ; b, female flower ; c, transverse section of ovary ; r, epicarp; $g b$, rascular bundles; s, ovules. (a, b, reduced ; c, nat. size.)

Family Campanulaceae.-Flowers Actinonorphic ; anthers free or adherent; ovary usually trilocular ; fruit a capsule (Fig. 584).

Representative Genera. - Campanula (Bell-flower), corolla campanulate (Fig. 584). Phyteumu (Rampion) and Jesione (J. montana, Sheep's-bit), with
flowers having a tubular corolla and aggregated in small heads or spikes. Specularin (Venus's Looking-glass), with rotate corolla.

Geographical Distribution.-The members of this family are mostly native of the North Temperate Zone, where they occupy a very prominent position in the vegetation, rather as the result of the striking appearance of their flowers than because of the occurrence of a large number of individuals.

Family Lobeliaceae.-Flowers zygomorphic ; anthers adherent, forming a tube ; ovary bilocular; fruit a capsule or berry.

As in the Papilionaceare, the median sepal is anterior; but, before the flowers open, by the torsion of the flower-stalk, the parts of the flower ultimately appear to occupy the normal position. The Lobeliacene are chiefly tropical plants. Lobelia Dortmanna occur in the ponds of Northern Europe.

Officinal.-Herba Lobeliae is derived from Lobelia inflata (Indian Tobacco).

Family Cucurbitaceae, a group of doubtful relationship, annexed to the Campanulinae. Flowers epigynous, UNISEXUAL; calyx and corolla actinomorphic, adnate at the base; stamens five, but they frequently cohere either in pairs, so that there appear to be but three stamens, or, more rarely, they are all united into a column; anthers Monothecious ; ovary trilocular; fruit baccate, a pepo or succulent berry. Herbs without

Fig. 587.-Bryonic dioicu. A, Flowering branch (reduced) ; B, female ; C, male flower (nat. size) ; D, androcium (magnified) ; E, fruits ; F, fruit in section.-Porsonous. LATEX, commonly climbing by tendrils (Figs. 585-587).

The majority of the Cucurbitaceae, although only annual herbs, grow to a large size. They are usually covered with stiff hairs, and have long, often hollow stems with large heart-shaped or lobed leaves and corkscrew-like tendrils arising near the leaves. The flowers are axillary, either solitary or in groups. The corolla and calyx are united together at the base into a cup-shaped receptacle, from the margin of which are given off the delicate sepals. The gamopetalous corolla extends above the level of the stigma; it is rotate or campanulate, always deeply five-lobed, and of a yellow or whitish colour. The reduction and cohesion of the tortuous anthers (anther-halves) give the androecium a highly characteristic appearance (Fig. 587). The
three loculi of the ovary are almost completely filled by numerous ovules and projecting fleshy placentæ. The fruit is a spherical or elongated berry, not unfrequently of an enormous size. Its firm, sometimes hard exocarp (then termed a pepo) usually encloses a succulent mesocarp derived chiefly from the placentr. The seeds are large and flat, and without endosperm.

Geographical Distribution.-The Cucurbitaceae comprise for the most part plants of the Tropical Zone, thriving best in the dry open districts. Various species are cultivated for the sake of their fruit, e.g. the Pumpkin (Cucurbita Pepo), the Cucumber (Cucumis sativus), the Musk-melon (Cucumis Melo), the Watermelon (Citrullus vulgaris), etc.

Poisonous. - Bryonia dioica (Fig. 587) and B. alba, hirsute tendril-climbers with tuberous roots, lobed leaves, and comparatively small berries, which in the former species are red, in the latter white.

Officinal.-Citrullus Colocynthis, a herb somewhat resembling the cucumber, native of the African and Arabian deserts, yields Pulpa Colocynthidis.

Order 10. Aggregatae

Flowers EPIGYNOUS, actinomorphic or zygomorphic, constructed after the formula $\mathrm{K} 5, \mathrm{C}(5)$, $\mathrm{A} 5, \mathrm{G} \overline{(2)}$; calyx RUDimentary ; stamens inserted on the corolla; anthers usually ADHERENT (syngenesious) ; ovary unilocular, with one ovule. Fruit indehiscent. Inflorescence a CAPITULUM, surrounded by an INVOLUCRE.

The capitate inflorescence is the most distinctive characteristic of the Aggregatae. The margin of the expanded axis of the inflorescence is occupied by numerous hypsophylls, while its whole upper convex or concave surface is thickly beset with small flowers (florets), which are frequently given off from the axils of reduced subtending bracts or scales (paleæ). In its general appearance the whole inflorescence resembles a single flower, particularly when the marginal flowers are larger than the central, and form a sort of corolla about them.

In the united anthers and in the occurrence of septated latex tubes the Compositae show a relationship with the Campanulinae, whilst the Dipsacaceae, on the other hand, are apparently connected by intermediate forms with the Valerianaceae.

Family Dipsacaceae.-Flowers with Epicalyx, usually zygomorphic ; corolla four- to five-lobed, imbricate in the bud ; stamens four, with free anthers; style simple; ovules suspended ; seeds with endosperm. Leaves opposite (Fig. 588).

Herbs with simple or pinnate leaves and many-flowered, flat or convex capitula whose marginal flowers are frequently larger than the central. The possession of an epicalyx consisting of united bracteoles is characteristic of the flowers of this family. The true calyx is rudimental, represented only by teeth or bristles. By the cohesion of
the two posterior lobes of the corolla, it frequently becomes apparently tetramerous; when the androecium is tetramerous, it is in consequence of the suppression of the median stamen. The nut-like fruit is enveloped by the persistent epicalyx.

Representative Genera.- (a) With paleæ: Dipsucus (Teasel), thistle-like,

Fig. 5ss.-suceisa pratensis. a, Flower with epicalyx ; b, the same after removal of epicalyx : c, fruit in longitudinal section ; f, ovary ; $h k$, epicalyx.

Fig. 589.-Compositae. Floral diagram (Carduus).
with prickly, involucral bracts and scales, corolla four-lobed ; Scabiosa, involucre herbaceous, corolla five-lobed ; Succis(, corolla four-lobed (Fig. 588). (b) Without palce: Knautia.

Geographical Distribetios:-The Dipsucaceae are chiefly met with in sunny situations in the Mediterranean region. Some species occur in more northern

Fig. 590.-Longitudinal section of capitulum, a, of Lappa major with paleæ; b, of Matricaria Chamomilla without palee.-OFFICLNAL. (After BERG and SCHMIDT, magnified.)
latitudes. The heads of Dipsacus fullonum, the cultirated Fuller's Teasel, have hooked palere, and are used for raising a nap upon woollen cloth.

Family Calyceraceae.-Flowers withott epicalix ; corolla valyate ; stamens united; style simple; orules stspended; seeds with endosperm. A small

South American family, which is only of interest as establishing the connection between the Dipsacaceae and Compositac.

Family Compositae. - Flowers witholt EPICALYX; corolla VAlVATE; stamens Five, With syngenesiou's anthers ; style bifid ; ovules ERECT ; seeds WITHOUT ENDOSPERM. Leaves commonly alternate (Figs. 589-594).

The Compositce comprise mostly herbs, rarely, and then usually confined to the Tropics, shrubs, lianes, and trees. The vegetative organs vary so greatly in their external appearance that they furnish no features that are valuable as a means of distinguishing the family ; chemically, however, the Compositae are characterised by the presence of inulin in their subterranean parts. The flowers and inflorescences, on the other

Fig. 591.-Arnice montana. (1 , Ray-flower; b, disc-flower; c, the same cut through longitudinally. (After Berg and Schmidt, mag. nified.)

Fig. 592.-Arnice montonce. (!, Receptacle of capitulum after removal of fruit; b, fruit in longitudinal section, the pappus only partly shown. (After Berg and SChmidt, magnified.)
hand, although they also exhibit great diversity of form, are always easily recognisable. The heads (Fig. 590) are either solitary or combined in compound inflorescences, generally of a dichasial character. The involucral bracts are sometimes herbaceous and green; sometimes scarious and then often highly coloured, as in Helichrysum and other genera; sometimes, as in many species of Centaurea, they are provided with dry fringed margins, or, as in the Thistle, they may be prickly. The expanded floral axis, the receptacle of the capitulum, is concave or flat (Fig, 590, a), slightly elevated or prolonged conically. It is sometimes naked (a) or hairy, sometimes covered with small scales (b), always pitted like the surface of a thimble, with alveoli in which the separate flowers are inserted. The calyx is never green, and is only rarely represented by five colourless segments. It usually consists of a cushion-like ring which bears the PAPPUS, a tuft of bristles or hairs (Fig. 591). The corolla is often regular and five-lobed (Fig. 591, b), as in the Thistle. When zygomorphic, it may be Bilabiate, as in the South American Mutisieae: more frequently, by the suppression of the
upper lip, it becomes one-lipped or falsely ligulate (Fig. 591, «), as in the marginal flowers of the Chrysanthemum: or it is Ligulate and split for a considerable distance on one side, as in Turawinm (Fig. 593,2). The one-lipped and ligulate flowers are very similar in appearance, but in the one-lipped flowers the corolla has only three teeth, in the ligulate five. The margin of the receptacle is frequently occupied by one-lipped flowers, and the central portion or disc by actinomorphic tubular flowers. In such cases it is customary to distinguish between RAT-FLowERs and Disc-flowers. The former are frequently female (Arnicu, Inula, Matricariu) or neuter (Centauren C'ynnus) ; the disc-flowers are sometimes all male (Tussilugo). The style divides at the apex into two rariously shaped stigmas, and is surrounded at the base by a honey-secreting disc. The fruit (Fig. 592, b) is a one-seeded indehiscent fruit or achene; it is usually

Fig. 593.-Toraxacum officinele. 1, Two capitula and a leaf: :- a Hower; 3, fruit ; 4, receptacle with one fruit.-OfFICINAL. (After Hossidlo.)
crowned by a pappus which is of service in the dissemination of the seeds by the wind. The pericarp is leathery, and often adherent to the oily seed.

Flowers actinomorphic or the ray-flowers one-lipped, no latex. (A) Cynareae. Receptacle with setaceous paleæ, involucral leaves either prickly or with membranaceous margins, style swollen below the stigmas into a cushion-like ring, fruit with pappus. Carduus (Plumeless Thistle), involucre prickly, hairs of pappus naked; Cirsium (Common or Plumed Thistle), like the preceding, but with feathery pappus; Cnicus (Blessed Thistle); Lappa (Burdock), tips of involucral leaves hooked ; Centaurea, involucral leaves with bristles or membranous margins, ray-flowers, neuter. (B) Eupatoricae. Flowers

Fig. 594.-Lactuca virosa ($\frac{1}{2}$ nat. size).Poisonous and Officival. actinomorphic, involucre herbaceous, receptacle without paleæ, style not swollen below the stigmas; Petasites (P. vulgaris, the Butter-bur); Tussilago (Coltsfoot) ; Eupatorium (Thoroughwort). (C) Astereae. Marginal flowers female, usually zygomorphic. (a) Anthemideae, without pappus; Anthemis (Chamomile) and Achillea (Milfoil, Yarrow), with paleæ ; Matricaria (Wild Chamomile) and Chrysanthemum, without paleæ ; Artemisia (Wormwood), with tubular flowers only. (b) Heliantheae; Helianthus (Sunflower). (c) Calenduleae ; Calendula (Marigold). (d) Senecioneae, pappus hairy; Senecio (Groundsel); Arnica. I(e) Astereae, pappus bristle-like, frequently brown; Aster; Solidago (Golden-rod); Erigeron (Fleabane); Inula (Elecampane); Gnaphalium (Cudweed); Antennaria (Everlasting Cat's-foot) and Helichrysum, with scarious involucre. (f) Ambrosicae, anthers free; Xanthium (Cocklebur). (2) Labiatiflorae. Flowers bilabiate. The majority of the plants in this group are native of South America; none occur in Europe. (3) Liguliflorae. Flowers ligulate. Mostly herbs with septated latex-tubes. Taraxacum (Dandelion), with beaked fruit, pappus of unbranched hairs; Lactuca (Lettuce); Crepis (Hawk'sbeard) ; Hieracium (Hawkweed), with brownish pappus of unbranched hairs; Sonchus (SowThistle) ; Scorzonera and Tragopogon (T. porrifolius, Salsify), with feathery pappus; Leontodon (Hawkbit).
Geographical Distribution.-The Compositae form the largest family of the vegetable kingdom, comprising from 10,000 to 12,000 species, scattered orer the whole world. The following are important on account of their special economic value. Lactuca satira (Lettuce), Cichorium Endivia (Endive), C. Intybus (Chicory), Cynara Scolymus (Artichoke), Scorzonera hispanica (Viper's-grass), Artemisia Dracunculus (Tarragon). Ornamental plants : Dahlia variabilis (Dahlia), various species of Aster and Chrysanthemum, Helianthus annuus (Common Sunflower), Calendula officinalis (Pot-MIarigold).

Poisonous.-Lactuca virosa (Fig. 594), a tall glabrous herb over 1.50 metre high, with elongated amplexicaul leares and small yellow-flowered capitula in corymbs. The achenes are black and have a white pappus. The whole plant is
abundantly supplied with a white, ill-smelling latex, which, as Lacticaricss, is officinal in Austria. The plant is not dangerously poisonous. Lactuca Scariola (Prickly Lettuce) resembles the preceding species, but has almost rertical leaves, not horizontal as in L. virosa, and brownish achenes; it is not poisonous.

Officinal.-Arnica montana yields Radix et Flopes Apsicae; Artemisia Absinthium (Common Wormwood), Herba Absinthil ; Artemisia sp. (from Turkestan), Flores Cinae; Matricaria Chamomilla, Matricaria, the German Chamomile; Cnicus benedictus (Southern Europe), Herba Cardet benedicti; Inula Helenium (Common Elecampane), Radix Inclae ; Tussilago Farfara, Folia Farfarae ; Achillea Millefolium (Common Yarrow or Milfoil), Herba Millefolit ; Anthemis nobilis (Garden Chamomile), Flores Anthemidis; Spilanthes oleracea (South America), Herba Spilasthis; Lappa vulgaris, Radix Lappae; Anacyclus Pyrethrum (Southern Europe), Radix Pyrethri ; Taraxacum officinalis Common Dandelion), Radix et Folia Taraxaci ; Lactuca virosa, Lactccapium.

LIST OF OFFICINAL PLANTS

(Asterishs denote Illustrations.)

Abies AlbA, ${ }^{*} 440,442$
Acacia, Catechu, 558 ; Senegal, *557, 558 ; Suma, 558
Achillea Millefolium, 599
Aconitum Napellus, *511, *512-*514
Acorus Calamus, *474
Agathis loranthifolia, 442
Agropyrum repens, 482
Aloe socotrina, *468
Alpinia officinarum, 486
Althaea officinalis, *530
Anacyclus Pyrethrum, 599
Andira Araroba, 562
Anthemis nobilis, 599
A rchangelica officinalis, 550
Arctostaphylos Uva ursi, *569
Areca Catechu, 473
Arnica montana, *596, 599
Artemisia Absinthium, 599
sp. (Flores Cinae), 599
Aspidium filix mas, ${ }^{*} 397,400,{ }^{*} 401,406$
Aspidosperma Quebracho, 575
Astragalus, 562
Atropa Belladonna, *580, 582
Beta vulgaris var. Rapa, *507
Boswellia Bhau-Dajiana, 535 ; Cartesii, ib.
Brassica nigra, 520
Canarium, 535
Cannabis sativa, *501, 502, 503
Capsicum annuum, 582
Carum Carvi, *546, 550
Cassia acutifolia, *557, 559 ; angustifolia, 559
Cephaelis Ipecacuanha, 589
Cetraria islandica, *379, 381
Chondrus crispus, * 334,337
Cinchona lancifolia, *589; succirubra, ib. ; Ledgeriana, ib.
Cinnamomum zeylanicum, *516, 517; Campliora, 517 ; Cassia, 517
Citrullus Colocynthis, 594

Citrus Limonum, 535 ; vulgaris, 535
Claviceps purpurea, *357, 358 ; sclerotium of, *87
Cnicus benedictus, 599
Cochlearia officinalis, 520
Cocos uucifera, * $471,{ }^{*} 472,473$
Coffea arabica, *588
Colchicum antumnale, * 467,468
Cominiphora Myrrha, 535
Conium maculatum, *546
Copaifera guianensis, 559 ; officinalis, 559
Coriandrum sativum, *546,550
Crocus sativus, 470
Croton Eleuteria, 543 ; Tiglium, 543
Curcuma Zedoaria, 486
Cydonia vulgaris, 556
Datura Stramonium, *581, 582
Digitalis purpurea, *583, *584
Dorema Ammoniacum, 550
Elettaria Cardamomum, 486
Erythraea Centaurium, *573
Erythroxylum Coca, 533
Eugenia caryophyllata, *564, 565
Euphorbia resinifera, *541, 543
Ferula galbaniflua, 550 ; Narthex, 550 ; rubricaulis, 550
Foeniculum capillaceum, 550 ; officinale, *546
Fraxinus Ormms, *572,574
Galeopsis ochroleuca, *587
Garcinia Morella, 525
Gentiana lutea, *573, 575 ; pannonica, 575 ; punctata, 575 ; purpurea, 575
Gigartina mammillosa, *335, 337
Glycyrrhiza glabra, 562
Gonolobus Condurango, 576
Gossypium herbaceum, *531
Haematoxylon campechianum, 559

Hagenia abyssimica, *552, 556
Hopea, 525
Hordeum vulgare, 482
Humulus Lupulus, *502, 503
Hydrastis canadensis, 514
Hyoscyamus niger, *581, 582
Inula Helenium, 599
Ipomoea Purga, 577
Iris florentina, ${ }^{*} 469,470$; germanica, 470 ; pallida, 470

Jateorhiza Calumba, 516
Juglans regia, * 498,499
Juniperus communis, *439, 442 ; oxycedrus, 442 ; Sabina, *442

Krameria triandra, 559
Lactuca virosa, *598, 599
Laminaria digitata, forma Cloustoni, * 329 , 334
Lappa major, *595 ; vulgaris, 599
Larix europaea, 441, 442 ; sibirica, 442
Laurus nobilis, 517
Lavandula vera, 587
Levisticum officinale, 550
Linum usitatissimum, *533
Liquidambar styraciflua, 552
Lycopodium clavatum, $416,{ }^{*} 417,418$
Mallotus philippinensis, 543
Malva silvestris, *530, 531 ; vulgaris, 531
Maranta arumdinacea, 487
Matricaria Chamomilla, *595, 599
Melilotus altissimus, 562 ; officinalis, 562
Melissa officinalis, *586, 587
Mentha crispa, 587 ; piperita, 587
Menyanthes trifoliata, 575
Morus nigra, 502
Myristica fragrans, 515 ; moschata, *516
Nicotiana Tabacum, *579, *580,582
Olea europaea, ${ }^{*} 572,574$
Ononis spinosa, 562
Orchis, *487, *488, *489, 490
Origanum vulgare, 587
Palaquium, 569°
Papaver somniferum, *521, 522
Physostigma venenosum, 562
Picraena excelsa, 535
Pilocarpus pennatifolius, 535
Pimpinella Anisum, *546, 550 ; magna, 550 ; Saxifraga, 550
Pinus australis, 442 ; Laricio, 442 ; Pinaster, 442 ; Pumilio, * 434,443 ; silvestris, ${ }^{*} 434,{ }^{*} 435,{ }^{*} 441,442$; Taeda, 442
Piper Cubeba, *504

Pistacia Lenticus, 535
Podophyllum peltatum, 516
Polygala Senega, *533, 534
Polyporus fomentarius, 370,373
Prunus Amygdalus, 556 ; domestica, 556 ; Laurocerasns, 556
Pterocarpus santalinus, 562
Punica Granatum, 564
QUASSLA AMARA, 535
Quercus pedunculata, *495, *496; lusitanica var. infectoria, 499

Rheum officinale, ${ }^{*} 505$, ${ }^{*} 506$; palmatum var. tanguticum, 506
Ribes rubrum, 552
Ricinus communis, *542, 543
Rhamnus Frangula, *538, 539 ; cathartica, 539 ; Purshiana, 539
Rosa centifolia, 556 ; damascena, 556
Rosmarinus officinalis, 587
Rubus idaeus, 556
Sabadilla officinarum, 468
Saccharum officinarum, *481, 482
Salix alba, 494, 495
Salvia officinalis, 587
Sambucus canadensis, 590 ; nigra, 590
Santalum album, 566
Sassafras officinale, 517
Secale cornutum, *87, *357, 358
Smilax, 468
Solanum Dulcamara, 582
Spilanthes oleracea, * $87,{ }^{*} 357,358$
Strophanthus, 575
Strychnos nux vomica, 574
Styrax Benzoin, 569
Tamarindus indica, *558, 559
Taraxacum officinalis, *597, 599
Thea chinensis, *524, 525
Theobroma Cacao, *529
Thymus Serpyllum, 587 ; vulgaris, 587
Tilia grandifolia, 528 ; parvifolia, *528
Toluifera Balsamum, 562 ; Pereirae, 562
Triticum vulgare, *480-482
Tussilago Farfara, 599
Uncaria Gambir, 589
Urginea maritima, 468
Valeriana dioica, 591 ; officinalis, *591
Vanilla planifolia, * 489,490
Veratrum album, 468
Verbascum phlomoides, 583 ; thapsiforme. *583
Viola tricolor, *523, 524
Vitis vinifera, *538
Zingiber officinale, * 485,486

LIST OF POISONOUS PLANTS

(Asterisks denote Illustrations.)

Aconitum Napellus, ${ }^{*} 448, * 511, * 512-* 514$
Lycoctonum, *512-514
Stoerckeanum, 514
variegatum, 514
Adonis vernalis, 514
Aethusa Cynapium, *549, 550
Agrostemma Githago, *509
Amanita muscaria, *372, 373
pantherina, 373
Anagallis arvensis, *570,571
coerulea, 571
Anemone Pulsatilla, *513, 514
nemorosa, 514
Arum maculatum, *473, *474
Atropa Belladonna, *580, 582
Azalea, 568
Berdla angustifolia, 550
Boletus Satanas, $370,{ }^{*} 371$
Bryonia alba, 594
dioica, *593, 594
Buxus sempervirens, 539
Calla palustris, 474
Caltha palustris, *512, 514
Cicuta virosa, *547, 550
Claviceps purpurea, *87, *357, 358
Clematis, 514
Colchicum autumnale, *467
Conium maculatum, ${ }^{*} 546,{ }^{*} 548,550$
Convallaria majalis, 468
Coronilla varia, ${ }^{*} 560,562$
Cyclamen europaeum, ${ }^{*} 570,571$
Cytisus alpinus, 562
biflorus, 562
Laburnum, *561, 562
purpureus, 562
Weldini, 562
Daphne Cneordm, 539
Laureola, 539
Mezereum, *539
striata, 539

Datura Stramonium, *581, 582
Delphinium Staphysagria, 514
Digitalis purpurea, ${ }^{*} 583,584$
Ergot, 87, 357, 358
Euphorbia cyparissias, ${ }^{*} 541,543$
Evonymus europaea, ${ }^{*} 538$
Fritillaria imperlalis, 468
Gratiola officinalis, 583
Hedera Helix, *545
Helleborus foetidus, *512, 514
niger, 514
viridis, 514
Helvella suspecta, 360
Hippomane Mancinella, 543
Hyoscyamus niger, *447, *581, 582
Illicium anisatum, 515 ; religiosum, 515

Juniperus Sabina, *442
Lactarius torminosus, 373
Lactuca virosa, *598, 599
Ledum palustre, 568
Lolium linicola, 482
temulentum, 481, *482
Mercurialis annua, *543
Mushrooms, 371-373
Neridm Oleander, *574, 575
Nicotiana Tabacum, *579, *580, 582
Oenanthe, 550
Papater somilferdm, *521, 522
Paris quadrifolia, ${ }^{*} 467,468$
Prunus Laurocerasus, 555
R.anuxculus Acer, *511
acris, 514
sceleratus, *513, 514
Rhododendron, 568
Ricinus communis, *542, 543
Russula emetica, 373
Ruta graveolens, *534, 535
Saponaria officinalis, 509
Scleroderma vulgare, *373
Secale cornutum, * $87, * 357,358$
Sium latifolimm, *548, 550

Solanum Dnlcamara, 582
nigrum, 582
tuberosum, *24, 582
Strychnos, 574
Taxus baccata, * $443,{ }^{*} 444$
Tulipa, 468
Veratrum albem, 468
Vincetoxicum officinale, ${ }^{* 576}$
Viscum albun, * $17,{ }^{*} 566,567$
Wistaria sineasis, 562

INDEX

(Asterisks denote Illustrations.)

. 1 bIES, 439 ; albct, *440, 442
Abietoideae, 439
Absorptive power of soil, 176, 183
Absynthin, 206
Acacia, ${ }^{*} 557,558$; phyllodes, 36 ; pycnaиtha, *46; sphuerocephala, 213, *214
Acanthaceae, 585
Acanthorrhiza, root-thorns, 43
Acaulescent plants, 28
Accessory fructifications, 343
A cer, *536, 537
A ceracea, 536, 537
A cetabularia, *328
Achene, 460
Achillea, ${ }^{*} 448,598,599$
A chlya, *346
Acid from roots, on marble, 183, 184
Aconitin, 206
A conitum, ${ }^{*} 448,511,{ }^{*} 512-514$
Acorus, *474, 475; ethereal oils, 73 ; root, ${ }^{*} 105$
Acrasieae, 305
Acrocomia, germinal pore, 294
Acrogynous Jungermanniaceae, 390
Acropetal development, 12, 225
Actaer, 511
Actinomorphic plants, 16, 453
Acyclic flowers, 451
Adansonia, 239
Adder's Tongue Fern, Ophioglossum
Adonis, 511, 514
Adventitious shoots, 20, 225 ; roots, 41 ; buds, 144 ; bulbs, 278 ; germs, 278, *279, *457
Ecidiospores, 364, 365
Ecidium, *364, 365, 367; pathological effects of, 155
Aerating roots, 43
Aerobionts, 213
Aerotropism, 263 ; pollen grain, 281
Esculin, 74, 205
Aescutus, 537 ; bud-scales, 33 ; glandular colleters, 100

Estivation, 37, 446
Aethalium, 304
Aethusa, *549, 550
After-effects, 238, 256
Agar-agar, 337
Agaricineae, 371
Agaricus, hypha, *60; phosphorescence. 223
Agathis, 439, 442
Agave, 185, 204 ; stem, 28
Aggregatae, 594
Agrimonia, 554
Agropyrum repens, 482
Agrostemma, *509
Agrostideae, 480
Air stomata, 95, *190
in intercellular spaces, $87,{ }^{*} 108,221$
Aira, 480
Aizoaceae, 509
Ajuga, 587
Alaria, 334
Albuminates of the protoplasm, 54
Albuminous substances, formation of, 201
Alburnum, 124
Alchemilla, *451, *553, 554
Alcoholic fermentation, 211, 212
Alder, Almus
Aleurone, $70, * 71$; a reserve material, 205
Alexine, 212
Algae, Green, 318 ; forms of, 11 ; chlorophyll bodies, 57 ; albumen crystals, 71 ; apical cells, 148 ; symbiosis with lichens and animals, 213 ; phosphorescence, 223
Red, Rhodophyceue
Algal Fungi, 341, 343
Alisma, 483 ; plantago, shoot of, ${ }^{*} 457$
Alismacece, 482
Alkaloids, 54, 74, 206
Allantoin, 203
Allium, 466, 467; bud, 1 ; fats and oils, 72 ; Cepu, adventitious root of, *110 ; rotation of ovaries, 258

Almond, Prumus Amygelatus
Alnus, 496, *497; attacked by Exoascus, 352
Aloe socotrina, * 468 ; oils, 72
nigricans, *94
Aloin, 206
Alopecurиеs, 480
Alpine Violet, Cyclamen
Alpinia, 486
Alsage Orange, Maclura
Alsinoideae, 508
Alsophila, 400, *404
Alstroemeriae, 258
Alternation of generations, 44, 289
Althaer, *530, 531
Aluminium in plants, 172, 175
Alyssum, 519
Amanita, 369, *372, 373
Amarantaceae, 507 ; thickening, 137
Amarantus, 507 ; bundles, 117
Amaryllidaceae, 468
Amber, 88
Ambrosieae, 598
Amel corn, Triticum dicoccum
1 mentaceae, 492
Amicia, *271
Amide, 54, 203
Amitotic division, 62
Ammonia, 53, 173
Ammoniacum, 550
A moebae, 213 ; symbiosis with algae, 176
Amœboid movements, 52, 242
Amorphophallus, 474
Ampelopsis, *26, 249, *267, 538
Amphibious plants, 236
Amphigastrium, *389
Amyydalae, 228, 556
Amygdalin, 74, 205
Amylodextrin, 70
Amyloid, 70, 81
Amylum centres, ${ }^{*} 59,71$
Amylum tritici, 482; marantae, 487
1 nabaena, 213, 308, 408
Anacardiaceae, 535
Anacrogynous Jungermanniaceue, 389
Anacyclus, 599
Anaerobionts, 213, 220
Anagallis, *570,571
1 nenassa, 470
Anaphases, 62
Anaptychia, *380
Anatomy, 10, 47
Anatropous ovule, * 430,431
Andira Araroba, 562
Andreaea, 394, *395
Andreneaceae, 394
Andrœecium, *428, 447, *448
Anelromeda, 568
1indropogon, 481
Andropogoneae, 480
Androsace, 571

Aneima, *404
Anemone, 511**513, 514 ; fungus on. 359, 367
Anemophilous plants, 282
Anethum, 550
Aneura, 148
Angelica, 549
Angiopteris, 404
Angiospermae, 444 ; fertilisation, ${ }^{*} 67$, 454 ; bundles, 103 ; floral leaves, 114
Angrecum globulosum, 43
Anilin sulphate, 80
Animals, agents for dissemination of seeds, 292
Anise, Illicium
Anisotropy, 250
Annual rings, *123, *126, *130
Annuals, 27
Annularia, 415
Annulus, inferus and superus, 371; of sporangia, 248,402
Anonaceue, 515
Antennaria, 598
A nthela, 461
Anthemideue, 598
Anthemis, 598, 599
Anther, ${ }^{*} 447$
Antheridia, 319 ; of the Bryophyta, *381; of the Ferns, *405
Anthesis, 446
Anthoceros, *389
Anthocerotaceae, 384, 388
Anthocyanin, 74
A nthoxanthum, 480
Anthriscus, 549, 550
Anthyllis, 561
Anticlinal walls, 149
Antimony in plants, 172
Antipodal cells, 454
Antirrhinoidene, 582
Antirrhinum, 248, 583
Antitoxine, 212
Ant plants, 213, *214
Apex, 147
-1pium, 550
Aplanogametes, 326
A pocarpous gynocium, 448
1росуласесе, 83, 575
Apogamy, 279
Apoplysis, 392
Apospory, 291
Apothecium, 351, 359
Apple, Pirus malus
Apposition, growth by, 79, 231
A pricot, I'menus ameniaca
Aquifoliaceae, 537
Aquilegia, 511
Arabis, 519
Araceue, 473 ; roots, 43 ; velamen, 100 ; idioblasts, *108; heat by respiration, 221

Arachis, 561 ; germination, 293
Araliaceae, 545
Aralias, bundles, 119
Araucaria, 124, 132, 438, 440
A raucarioideae, 439
Arbor Vitae, Thujus
Arbutoideae, 568
Archangelica, 549, 550
Archegoniatae, 381, 383
Archegonium, of the Bryophyta, 381, *382; of Polypodium, 405, *406;
of the Gymnospermae, 435
Arctostaphylos, 568, *569
Arcyria, *304
Ardisia, 571
Areca, 473
Arenaria, 508
A villus, 432
Aristolochia, *490, 566 ; stem, 109, *121, *123
Aristolochiaceae, 566
Armeria, *571, 572
Armillaria, *369, 372
Arnica, 596-599
Arrow-grass, Triglochin
-head, Sagittaria
-root, 487
-wood, Viburnum
Arsenic in plants, 172
Artemisia, 598, 599
Arthrosporous bacteria, 309
Artichoke, Cynara scolymus
Jerusalem, Helianthus tuberosus
Artocarpus, 502
Arum, ${ }^{*} 473,{ }^{*} 474$
Asafoetida, 550
Asarabacca, Asarum
Asarum, ${ }^{*} 565,566$
Asclepiadaceae, 83, 576
A sclepias, *575, 576
Ascolichencue, 378
Ascomycetes, 213, 342, 351, 375 ; cells, 65
Ascus, 342, *351
Asexual generation, 384
reproduction, 275
spores, 341
Ash, 334
Asparagin, 74 ; protoplasm, 54 ; bleerling, 185 ; from carbohydrates, 202
Asparagoideae, 466
Asparagus, 466, 467 ; rust fungus of, 366
Aspergillus glaucus, ${ }^{*} 353$; fumigatus, 212
Asperula, *588, 589
Aspidium, 291, ${ }^{*} 397,400, * 401,406$
Aspidosperma, 575
Asplenium, 195, 227 ; scale-hairs, *98; buds, 279
Assimilation, 195
starch, 68
Aster, 598

Astereae, 598
Asterophyllites, 415
Astragalus, 561, 562 ; gum, 81 ; pilostyles, 209
Astrantia, 546
Asymmetrical flowers, 453
Atavism, 154, 277
Athyrium, 279, 291
Atmospheric pressure, 187
Atriplex, 507
Atropa, *580, 582
Atropin, 206
Atropous ovule, * 430,431
Attraction spheres, * 48
Attractive apparatus, 283
Auranticae, receptacles, 88
Auricularia, 111, 368
Auricularieae, 363, 368
Autobasidionycetes, 363
Autœecious Uredineae, 366
Autonomic movements, 248, 270
Autumn wood, 123
Auxanometer, 232, 233
Auxospores, 313, *314
Avena, 480, 481 ; starch, *69
Aveneae, 480
Axial wood, 138
Axillary shoots, 19
Axis, 21 ; of a shoot, 28 ; of a flower, 450 ; of attractive apparatus, 283
Azalea, 568
Azolla, 213, 407, 408, 411
Azorella, 547
Azygospores, 348
BACILLUS, 210, *309, *311, *312
Bacteria, 210, 305, 308, 309 ; nitrogen, 173 ; iron and sulphur, 220 ; phosphorescent, 223
Bacterioids, 210
Bacterium termo, 309, 311
Balanophoraceue, 566 ; reduction of leaves, 26
Balm, common, Melissa
Balsam, 533, 559, 562, see Impatiens
of Tolu, 562
of Peru, 562
Balsaminaceae, 533
Bamboo, Tabasheer, 175
Bambuseae, 480
Banana, Musa
Banyan, Ficus bengalensis, indicus
Barbarea, 519
Barberry, Berberis
Barium in plants, 172
Bark, 141
Barley, Hordeum
Base, 147
Base-rocket, Ressella lutea
Basidia, 342, *363
Basidiomycetes, 342, 362, 363, 375

Basswood, Tilie
Bast, 121, 133, *134, *137, *138
Bastards, see Hybridisation
Bastard toad-flax, Thesium linophyllum
Batrachospermum, 334-*336
Bearberry, Arctastaphylos
Bearded Darnel, Lolinm temulentum
Beard Lichen, Usnea burbate
Bear's-foot, Helleborus foeticlus
Bedstraw, Gíclium
Beech, Fagus
Beer-yeast, Succharomyeetes
Beet, Beta
Berggiatoa, 310 ; sulphur, 73
Begonia, 525 ; roots, 41 ; bundles. 119 : multiplication, 228
scomdens, 254
Begomiaceиe, 525
Belladonna, 582
Bell-flower, Cempamule
Benzoinum, 569
Berberiduceue, 516
Berberis, *516; leaves of, 36 ; attackerl by rust fungus, 366
Berry, structure of, 460
Bertholletic, 73
Berula, 550
Beta, 235, *507
Betain, 203
Betony, Stachys
Betula, 496, *497, 498; bark, 141: lenticels, 142
Betuloideca, 496
Bicollateral bundles, 104
Bicornes, 568
Biemnials, 27
Bifore, 547
Bifurcation, 17-20, *148
Bignonia, stem, *138 ; seed, *291
Bignoniaceue, 585; thickening, "138
Bilateral plants, 17
Biote, 46
Birch, Betula
Birthwort, Aristolochia
Bisymmetrical plants, 16
Bitter principles, 74, 206
Bitter-sweet, Solamum. InulComura
Blackberry, Rubus
Black Heubane, Hyoscyamus:
Blanlder-plums, Exucscus
Bladderwort. Utricularia
Blasia, 390 : development. *14
Blechnuin, $4: 29$
Bleeding, 185, 187
Blitum, 507
Bloorlworts, Huemolorucerre
Bhomenbechic, climbing, 261
Bolitus, 369-*371; tissue, *87
Bombacaceae. 531
Beraginaceae, 5й ; rust fungi on, 367
Bricy!n, *578

Boron in plants, $1 / 2$
Bostryx, 461, *462
Butrychium, 404, *405
Botrydimm, 325, *326
Botryose inflorescence, 460, *461
Botrytis, 358
Bouncing Bet, Soponaria
Burista, 374
Box, Bnxus
Bracken, Pteris aquilinu
Bracteal leares, 29-33
Bracts, 33, 462
Brake, see Bracken
Branch stems, 17
Brand fungi, Hemilasidii
spores, 360
Brasilin, 125
Brassica, 189, 305, 519
Brazil wood, Caesalpinia
Bread-tree, A itoccirmis
Bristles, 97
Brize, 480
Bromelicuccue, 470 ; aerial roots, 43 ; water reservoirs, 194
Bromine in plants, 172
Bromus, 480
Broom. Orobenche
Scotch, Spuitium scoperioum
Brucin, 206
Bryinae, 145, 392
Bryonia. *593, 594
Biy!ppleyte, 14, 38]
Bryopisis, 328 ; thallus. 2.27
Buckhean, Menyanthes
Buckthorn, Rhammus
Buckwheat. Foygopyrimm
Bud. *18, 21
variations, 154
Budding, 22.9, 278
Bugle, Ajuga
Bulbils, 22, 278. 279
Bullucluete, 324. *325
Bulbus, 23
S'illae, 468
Bundles, primary vascular, 101 ; conducting. 101 ; collateral, 103 ; concentric. 104 ; ternination of vascular, 106 , *107 ; flanges, 114 ; course of vascular. 116 ; common, cauline, and foliar, 118
Buplerrium, 546. 549: leaf. 30
Burdock, L(1) 1)"
Burmanmiucene, 490
Burrs, formation of, 144
Burseraceae. 535
Bush-Honeysuckle. Weigeliu
Butomus, 483
Butter-bur, Petasites veulyanis
Buttereup, Ramunculu:
Butterwort, Pingricule
Bu, асене, 539
Bu: 539

Cacao, 529
-tree, Theobroma Cacao
Cactaceae, 526 ; swollen stems, 25,194 ; growth, 235
Cactus, Cactaceae
Caesalpinaceae, 558
Caesalpinia, 125, 559
Cakile, 519
Calabar beans, 562
Calamagrostis, 480
Calamarieae, 415 ; thickening, 120
Calamites, 415
Calamus, 473
Calcium in plants, 172, 173
carbonate, 81,95
malate, 83
oxalate crystals, $71,72,108$
Culendula, 598
Calenduleae, 598
Calla, 474
Lily, Richardia
Callithamnion, 334, *336
Callitrichacecue, 544
Callose, 80
Calluna, *568; pollen-grains, *430
Callus, 144, 228
-plates, 84, " 85 , *86
Caloritropism, 263
Caltha, 511, *512, 514
Calycanthaceae, 515
Calyceraceae, 595
Calyciflorae, 448
Calyptra, 15, 41, 392
Calyptrogen, 151
Calystegia, 577
Calyx, 446, ${ }^{*} 448,{ }^{*} 451$
Cambium, 105, 120-125, *122
Camelina, 519
Camellia, 525
Campanula, *592
Campanulaceae, 592
Campanulinae, 591
Campeachy wood, Haematoxylon
Camphor, 73, 517
Campion, Lychnis
Campylospermeae, 549
Campylotropous ovule, * 430,431
Canarium, 535
Candytuft, Iberis
Cane-sugar, 74
Canna, ${ }^{*} 486$; seed, 294 ; starch, 69
Cannabinaceae, 502
Cannabis, *501-503
Cannaceae, 486
Cantharellus, 372
Canutchouc, 73, 206, 502, 543
Capillarity, 187
Capillitium, 248, 303, 304 ; of the Myxomycetes, 248, 293 ; of the Gasteromycetes, 374
Capitulum, 339, *461

Capparillaceae, 520
Capparis, *520
Caprifoliaceae, 589
Capsella, 519 ; bud * 432 ; embryo, ${ }^{*} 456$
Capsicum, 581, 582
Capsule, 392, *459
Caraway, Carum
Carbohydrate, 199, 201, 220
Carbon, 171-173 ; absorbed, 195
Cardamine, 519
Cardamom, 486
Cardinal points, 163, 234
Carduus, 598
Carex, ${ }^{*} 477,478$
Carica, peptonising ferments, $83,206,525$
Caricaceae, 525
Caricoideue, 478
Carinal canals, * 412
Carnivorous plants, *215, *216
Carob tree, Ceratonia
Carophyllaceae, attacked by Ustilago, 361
Carotin, 57, *58, 59
Carpels, 427
Carpinus, 496, ${ }^{*} 497$; cutting, ${ }^{*} 45,46$,
*182; abnormal growths, 352
Carpoasci, 351
Carpogon, 336
Carpophore, 547
Carpospores, 337
Carragheen, 337
Carrion flowers, 284
Carrot, Daucus
Carum, *546, 549, 550
Caruncle, *540
Caryophyllaceae, *507
Caryophylli, 565
Caryopsis, 460
Caryota, * 471
Cassava, Manihot
Cassia, *557, 559
Cassytha, 517
Castanea, 257, 496
Castor-oil, 543
plant, Ricinus
Casuarinuceae, 492, 499
Catechu, 558, 589
Catkin, 461
Cat-mint, Nepeta
Caucalis, 549
Caudicle, 488
Caulerpa, $327,{ }^{*} 328$; phylogeny of, 145 ; organs, 225 ; movement, 241
Caules Dulcamarae, 582
Cecidia, 155
Cecidomyia, 155
Cecropia, 213
Cedar of Lebanon, Cedrus Libani
Cedrus, 442
Celandine, Chelidonium
Celastraceae, 537
Celery, Apium graveolens

Cell, 47-50; nucleus, 5 5 ; multinuclear, 59 ; division, 63 ; formation, $65,{ }^{*} 66$, *67 ; budding, 66 ; sap, 73 ; wall, $75-83$; fusion, 83.86 ; companion, 102, 133 ; transition; 107 ; medullary rays, 135 ; complementary, 142 ; filaments, surfaces, and masses, 147 ; apical, 148 ; multiplication, 278
Cell-plasm, see Cytoplasm
Cellular plants, 147
Cellulose, 79, 203
Celtis, 500
Centaurea, 596-598; flower, *274
Centaury, Erythraea
Central body, 306
cylinder, ${ }^{*} 109,110$
Centranthus, 591
Centrolepidaceae, 470
Centrosome, 56
Centrospermae, 506
Centrospheres, * 48 , * $56,{ }^{*} 61,{ }^{*} 67$
C'ephuelis, 589
Cephalanthera, 489
Cephalotus, 216
Cerastium, 508
Ceratiomyxa, 303
Ceratonia, 81
Ceratophyllaceae, 515
Ceratophyllum, 515 ; rootless, 44
Cercis, 559
Ceropegia, latex tubes, *82, 83
Ceroxylon, wax, 91
Cetraria, 378, *379-381
Chuerophyllum, 549
Chaetocladium, 349
Chalara, 350
Chalaze, *430, 431
Chalazogamy, 492
Chamaerops, 472
Chamomile, Anthemis, 599
Wild, Matricaria
Chare, *338, *339, 340 ; spermatozoid, *67
crinita, parthenogenesis, 68, 280
Characeae, 319, 337 ; circulation of protoplasm, 53, 245; nuclear division. 62
Cheiranthus, 519 ; hairs, *97
Chelidonium, 521 ; sap, 84
Chemotactic movements, 243, 281
Chemotropism, 263, 281
Chenopodiaceue, 507; thickening, 137
Chenopodium, *507
Cherry, wild, Prouus avium
dwarf (Morello), Prumus cerasus
gum, 89
Laurel, Prumus laurocerasus
Chervil, Chuerophyllum Garden, Anthriscus cerepolium
Chestnut, Castanea
Chickweed, Cerastium

Chicory, Cichoria Intybus
Chitin, 80
Chives, Allium schoenoprasum
Chlamydospores, 343 ; of the Protomyces, 349 ; of the Brand Fungi, 360 ; of the CV'redineae, 363
Chlora, 573
C'hlorella, symbiosis, 320
Chlorideae, 4S0
Chlorine in plants, 172, 175
Chloroiodide of zinc, 79
Chlorophyceae, 315, 317, 319, 375
Chlorophyll, *57, 198
grains, 57, *58, 115, 196, 197, *246
Chlorophytum, 252
Chloroplasts, 56, 57, 68, 246
Chlorotic, 174
Choanephora, 349
Chocolate, see Cacao
Choiromyces, 355
Chondrioderma, 50, *51, 303, 305
Chondrus, *334, 337
Choreocolax, 337
Choripetalae, 446, 491
Chorisepalous, 446
Christmas Rose, Helleborus niger
Chromatin, 54, 56
Chromatophores, *48, 57, *58, *59; in cells, ${ }^{*} 67$; in epidermis, 92
Chromium in plants, 172
Chromoplasts, 56, *59
Chromosomes, 60, *61
Chrоососсасесе, 306, 376
Chroococcus, 306, 376
Chroolepideae, 322
Chroolepus, 322
Chrysanthemum, 597, 598
Chrysurobinum, 562
Chrysobalanoideae, 555
Chytrillieae, 346°
Cichorium, 349, 598
Cicuta, *547, 549, 550
Cilia, 52, *67, 242, 303
Ciliata, 213
Cinchona, *589
Cincinnus, $461,{ }^{*} 462$
Cinnamomum, *516, 517 ; ethereal oil, 73
Cinuamon, 517
Circaea, 563
Circulation of the protoplasm, 52,244
Circumnutations, 249
Cirsium, 598
Cissus, 538
Cistaceae, 522
Cistiflorue, 52:2
Citric acill, 205
Citron, Citrus medica
Citrullus, 594
Citrus, 534, ${ }^{*} 535$; receptacles, 88
Cladodes, 24, *25, 29
Claulonia, *379, *380, 381

Cladophora, *324; formation, *12; multinuclear, *59, 60 ; cells, *64; swarmspores, * 324
Claclostephus, 329, *331; formation, *12, 13, 148
Cladothrix, *310
Clavaria, *370
Clavarieae, 370
Claviceps, *357, 358 ; tissue, ${ }^{* 87}$
Cleavers, Gulium
Cleft leaves, 30
Cleistocarpae, 394
Clematis, 511, 514 ; pith cells, *75
Climbing roots, 42
Closing membrane, 76
Closterium, *317
Clover, Trifolium
Cloves, 565
Club Mosses, Lycopodincue
Clusiaceae, 524
Cnicus, 598, 599
Cobaea, 266, 577 ; seed, 293
Cobalt in plants, 172
Cocaine, 206, 533
Cocci, 309
Cucconema, *314
Cochlearia, 519, 520
Cocklebur, Xanthium
Cocoa, Cocos
-butter, 529
-nut, Cocos nucifera
Cocos, ${ }^{*} 471,{ }^{*} 472,473$
Cocus lapidea, germinal spores, 294
Codein, 206
Codium, 328
Coelcbogyne, 457 ; adventitious shoots, 279
Coelospermeae, 549
Cœonobia, 322
Coffea, ${ }^{*} 588,589$; attacked by Hemileic, 367
Coffeinum, 206, 589
Coffeoideae, 589
Colchicum, 466, *467, 468 ; tuber, 23
Coleosporium, 367
Collema, 376
Collenchyma, *78, 108, 111, 327 ; development of, *170, 237, 266
Colleters, 100
Colocasia, 193
Colophonium, 443
Colouring matter, 48, 74, 92, 187, 206
Coltsfoot, Tussilago
Columbine, Aquilegia
Columella, Myxomycetes
Bryophytes, 384, 392, 393
Columniferae, 527
Colza, Brassica Rapa (oleifera)
Comarum, *553
Comfrey, Symphytum
Commelinaceae, 470
Commiphora, 535

Companion cells, 102, 133
Compass plants, 254
Compositae, *595, 596; inulin, 74 ; succulent stems, 194 ; staminal leaves,
*274; attacked by Coleosporium, 367
Compound leaf, 30
Conceptacles, 332
Cone, vegetative, *18
Confervoideae, 322
Confocal parabolas, 150
Congo red, 80
Conidia, 342, 350 ; fructification, *356
Conidiophores, $342,{ }^{*} 353,{ }^{*} 356$
Coniferue, 438, *439, *440, *441, * 442 ; foliage, 29 ; roots, 41 ; young plants, 47 ; sieve-plates, 84 ; resin-ducts, 88 , 125, *126 ; bast, 132 ; cypress-like, 194; mycorrhiza, 210 ; germination, 294
Coniferin, 74, 205 ; wood, 80
Coniin, 206
Conium, ${ }^{*} 546,{ }^{*} 548-550$
Conjugatae, 281, 315, 317, 319
Conjugation, 315, 316
Connate leaves, 30
Comnective, *447
Consortium, of lichens, 375
Constituents of plant body, 171
Contact stimuli, 264
Continuity of embryonic substance, 237, 240
Contortae, 572
Contorted leaves, 37
Contractile vacuole, 50
Convallaria, 466, 468
Convolvulaceae, 577
Convolvulus, *577; coils, 261
Co-operation of living cells, 188
Copaifera, 559
Copper in plants, 172
Coprinus, 369
Cora, 377, 380, *381
Corallin, 80
Corallina, 337
Corallinaceae, 335
Coralliorrhiza, 489 ; rhizome, 23 ; rootless, 43 ; saprophytic, 210
Cordia, 214
Cordiaceae, 578
Cordyceps, 358
Cordyline, *139
Coriandrum, *546, 549, 550
Cork, * 48 , * $139,140,144$
oak, Quercus suber
Cormophytes, 14, 44, 59
Cormus, 14
Corn, ${ }^{*} 69-$ * 71,201 ; laid, 262 ; shower of, 278
Cornaceae, 544, 545
Corn-cockle, Agrostemma
Cornel, Cornus

Cormus, 23S, *544, 545
Corolla, $446,{ }^{*} 448, * 451$
Correlation of growth, 226
Cortex, 109 ; Cascarillae, 543 ; Cinchonae, 589 ; Cinnamomi, 517 ; Condurango, 576 ; Frangulae, 539 ; Fructus Aurantii, 535 ; Granati, 564 ; Limonis, 535 ; Quercus, 498 ; Quillajae, 556 ; Quebracho, 575 ; Rhamni Purshianae. 539 ; Salicis, 495
Cortical rays, 135 ; layers of hyphæ, 377 : pores, see Lenticels
Corydalis, *520
Corylus, 496, *497
Corymb, 461
Cosmarium, *317
Cotton, 531
-plant, Gossypium
Cotylerlons, * $45,46,295,{ }^{*} 456,{ }^{*} 457$
Cowslip, Primula
Cow-wheat, Melampyrum
Crambe, 519
Cranesbill, Geranium
C'rassula, 551
Cirussulaceae, 550
Crataegus, 554,555 ; thorns, 26 ; colouring matter, 58 ; leaves, 190, *191
Crenate leaves, 30
Crenothrix, 311
Crepis, 598
Cress, Bitter, Cardamine ; Garden, Lepidium sativum; Indian, Nasturtium; Pemy, Thlaspi; Rock, Arabis; Water, Nasturtium officinale; Winter, Barbarea
Cribraria, *30t
Crocus, 469, 470; tuber, 23
Cronartium, 367
Croton, 543
Crowberry, Black, Empetrum nigrum
Crowfoot, Ranuenculues
Crown Imperial, Cucumis saticus
Crucibulum, *374
Cruciferae, *518; mucilage, 81, 293
Cryptogams, 300, 301 ; vascular, 397
(ryptospores. *356
C'ubeba, 504
Cucumber, Cucumis
Cucumis, 594
Cucurbita, *592, 594; sieve-tubes, *85 ; light, 235 ; rupture of seed-coverings, 295 ; pollen-grains, ${ }^{*} 79,{ }^{*} 430$
Cucurbitaceae, 593 ; bundles, 104 ; tendrils, ${ }^{*} 266$
Cudweed, Ginaphatium
Cuphea, seed, 293
Cupressoideae, 132, 440
Cupressus, 438, 440
Cupuliferue, 495; Mycorhize, 210
Curare, 574
C'urcuma Zeloaria, 4S6

Currant, Ribes
Currature, 242, 246; growth-, 248; of grass-haulms, 262
Cuscuta, *208, 577 ; reduction in leaves. 25 ; roots, 41,43 ; haustoria, 225: movement, 241 ; telldrils, 267
Cuticle, 90, 9.2
Cutin, 80
Cutinisation, 80
Cutleria, 331
Cutleriaceue, 331
Cyanophycecue, 306, 30s
Cyathea, 400
Cyatheaceae, 400, 404
Cyathium, *540,542
Cycalaceae, 437 ; thickening, 137
Cycalinae, 213, 437
Cycas, 308, 437
Cyclamen, *570, 571; stem, 28
Cyclanthaceae, 475
Cycle, 40
Cyclic flowers, 451
Cydonia, 81, 554, 555
Cymose inflorescences, 461 , 462
Cynare Scolymus, 598
Cynareae, 598
Cynips galls, 155, 499
Cynodon, 480
Cyperccecue, 476 ; haulm 2S ; sheath, 32
Cyperus, $477,47 \mathrm{~S}$
Cypress, Cupressus
Cypripedium, 487, 488
Cystids, 368
Cy-stocarp, 33 İ
Cystococcus, 377
Cystoliths, ${ }^{*}$ T8 ; callose, 80 ; calcium carbonate, 81
Cystopus, 345
Cytisus, * 561,562
Cytoplasm, * $48,{ }^{*} 49,55,87$
I.ACTILLIN, 480

Inalia variabilis, 598: tubers. 42: inulin, 74
Dandelion, Taraxacum
Daphne, *539
Darlingtonia, 216
Date-palm, Phoenix
Deture, 193, *581, 58:
Daucus, 547, 549: colouring matter. *58. 59 ; cane-sugar, it
Dead-nettle, Lumium
Decurrent leaves, 30
Dehiscence, 459
Delesseria, 335
Delphinium, 511, 514; cotyledons, 295 : fructification, 450
Iemantium, 380
Dentate leares, 30
Derivative hybrids, 289
Dermatogen, 150

Desmidiaceae, 317 ; movements, 244
Desmodium, 561 ; movements, 270
Desiccation, 179
Deutzia, 552
Development, periodicity of, 237
Dextrin from starch, 70
Dextrorse stem-climber, *261
Diageotropism, 258
Dialypetalous, Dialysepalous, 446
Diandrae, 488
Dianthus, 508
Diastase, 203 ; in the protoplasm, 54 ; in fungi, 212
Diatomeae, 312 ; form, *11; silicon, 175; movements, 244
Diatomin, 313
Diatropic movements, 251
Dicentra, 521
Dichasium, *461, *462
Dichogamy, 285
Diclotomy, 17, 148
Diclinous flowers, see Unisexual
Dicotyledones, 490 ; nervature, 31 ; bundles, $104,105,111,112,117$
Dictamnus, 88, 100, *101
Dictyonema, 380
Dictyota, 329, 334 ; form, *13, 14 ; cells, *148
Dictyotaceae, 334
Differentiation, 159
Digenetic, see Sexual reproduction
Digitalin, 205
Digitalis, *583, *584
Dill, Anethum
Dimorphic heterostyly, *286, 287
Dinoflagellatae, 315
Diœcious plants, 285, 428
Dionaea, *215, 216
Dioscoreaceue, 470
Diospyrinae, 569
Diospyros, 124
Diplecolobeae, 519
Diplocaulescent plants, 27
Diplostemonous, 452
1)ipsacaceae, 594

Dipsacus, 595
Diptera, 155
Dipterocarpaceae, 525
Direct division, *63
Disc of flower, ${ }^{*} 451$
Dischidia Rafflesiana, 195
Discolichenes, 378
Discomycetes, 351, 358, 378
Dissemination of seeds, 291
Dissepiments, 448
Divergence, 39
Divided leaves, 30
Dock, Rumex
Dogwood, Cornus
Dolichos, 562
Dorema, 546, 550

Dorsiventral plants, 16, 114 ; shoots, 40 ; organs, 251, 264 ; geotropism, 258
Draba, 519
Dracaena, 466 ; raphides, *72; thickening, 139
Drimys, 128
Dropwort, Oenanthe
Drosera, 523 ; digestive glands, *99, *215
Droseraceae, 523
Drupe, 460
Duckweed, Lemnaccae
Duramen, 124
Duration of life, 237, 238
Dyer's weed, Resecla luteola

Earth-star, Geaster

Echeveria, 55]
Echium, *578
Ectocarpus, 329, *331
Eel-grass, Zostera
Egg, 66, ${ }^{*} 67,155$; apparatus, $454,{ }^{*} 456$; cells, $290,431,454,{ }^{*} 456$
Elaeagnaceae, 540
Elaeagnus, 540
Elaeis guineensis, 473
Elaphomyces, 355
Elasticity of plants, 165
Elaters, 248, 388
Elatinaceae, 525
Elatine, 525
Elder, Sambucus
Elecampane, Inula
Electrotropism, 263
Elemi, 535
Elettaria, *432, 486
Elm, Ulmus
Elodea, 245, 283, 483 ; assimilation, 200
Elongation, phase of, 229
Embryo, 44, 436 ; bearer, see Suspensor ; sac, ${ }^{*} 65,281,290,431,{ }^{*} 456$
Embryology, 44
Embryonic condition, 19, 44, 224
substance, continuity of, 237, 240
Embryophyta zoidiogama, 398 ; siphonogama, 431
Emergences, 36, 95, 99, 100
Empetraceae, 539
Empirical diagram, 39
Empusa, 347
Emulsin, 203
Enantioblastae, 470
Enchanter's Nightshade, Circuea
Endive, Cichorium Endivia
Endocarp, 459
Endocarpon, 380
Endochrome plates, 313
Endodermis, 109, *113
Endogenous shoots, 20
Endophlyllum, Basidia of, *363
Findosperm, *432, 457; Gymnospermous, 437

Endospores of the bacteria， 309 ；of the fungi， 342
Enhalus， 283
Entomophily， 283
Entomophthoreue， 346
Enzymes， 203
Epliebe，376
Ephedra， 444 ；cells， $65,{ }^{*} 66$ ；ressels， 125
Ephiemernin，＊395
Elidermis，90，＊92，＊93，${ }^{*} 94$ ，${ }^{*} 115$
Epigean， 458
Epigynous Howers，450，＊ 451
Épilułふirm， 563
Epimedium， 516
Epinasty，249， 264
Eipipuctis， 489 ：cell division，＊63
Epiphyllum，＊5：6
Epiphytes， 214 ；aerial roots， 43
Epiporgon，4s9
Epithemia，＊314
Equisetinae，400， 412 ；cuticle． 90
Equisetum，＊412，413，＊414，＊415 ；silica． 82,175 ；bundles， $105,111,{ }^{*} 117$ ； cells，${ }^{*} 149$ ，${ }^{*} 150$ ；spores， 225
Ergot，fungus of，claciceps purpurea
Erica， 568
Ericaceae，${ }^{*} 568$ ；attacked by Earubusielia， 369 ；Mycorthise， 210
Ericinae， 567
Ericoideae， 568
Erigeron， 598
Eriocanlaceae， 470
Eriophorum， 477
Erodium， 532 ；gruinum，fruit，＊247
Erysimum， 519
Eschscholtzie，＊521
Ethereal oil，73，S8． 206
Eucalyptus，565：heterophylly， 31 ； stahility， 165
Euchoume， 337
Euclorina， 319
E゙ugenia，＊564，565
Eumycetes， 340
Enmutorieae， 598
Eupatorium， 598
Euphorbie，＊540，＊541－543；succulent stems，＊ 195 ；swollen stems， 25
Euphorliaceae， 540 ；resin， 73 ；latex tubes， 83 ；succulent stems， $25,194,{ }^{*} 195$
Euphorliun， 543
E＇uphrasia．210，583
E：rolvium，＊353
Einsporangiutae， 404
Evening Primrose，Oenothere
Everlasting Cat＇s－foot，Autenuoria
E＇ronymus， $537,{ }^{*} 538$ ；regetative cone． 28
Exine，in mosses， 383 ；in Ptericlophytes， 399 ；in pollen grains， 430
Enocescus，351，＊ 352
E．colvasiclia．＊369
Exocarp，45？

Exodermis， 113
Exogenous shoots， 20
Exospores， 342
Exotropism， 258
Extra floral attractive apparatus， 283
Extrorse anthers， 447
Exulation of water， 193
Eyebright，Eiuhrasia
FAGOIDEAE， 496
Fayopyrum， 506
Fagus．＊494， 496 ；leaves，＊115， 116 ： wood， 124
False－Hax，Cormelina sative
Fascicular cambinm， 121
Fats，72，2：20
Fennel，Fiveniculum
Ferments，203，206，215：in the proto－ plasm， 54
Ferns，Filices；leaves，29． 143 ；sloots， 40 ： vessels， 85 ；epidermal cells， 91 ： scale－hairs．＊98；rascular bundles． 105 ；green pigments， 198 ：phos－ phorescence， 223 ；spermatozoids． 243 ： apogamy， 279 ；alternation of genera－ tion， 290
Fertilisation，44， 281 ；self and cross． 284 ；legitimate and illegitimate， 286 ： of Phanerogams，66，＊67，431；of Gymnosperms， 435 ；of Angiosperms， 454,455
Ferula， 550
Festuce，194，＊479
F＇estucerae，480
Fibres，82，126， 127
Fibrons cells，126．127，133．248：trach－ eids， 127
Fibro－vascular bundles，see Bundles
Ficus，＊501；rnot－supports，41：cystn－ lith，＊ 7 ，＊T®， 81 ；epidermis， 100 ： tissues， 128 ；stipulata． 254 ；clasticu． 32 ；inticus， 43 ；carica，S3，20t： benyalensis． 501
Field Madder，Shererdia
Fig．F゙icus
Figwort．šcrophulariu
Filament，＊ 47π
Filices， 400
Filicinae，399， 400
Fir，Norway，Picea eicelsis
scoteh，Pimus silvestris
Silver，thies
Spruce，Piceu
Fission－fungi，schizomycetes －plants，schisophyta
Flaycllu， 242
Flagellar movements，see Cilia
Flax，Linum
Fleabane，Erietrion
Floral leaves，29， 33
shoots， 26

Flores, Anthemidis, 599 ; Arnicae, 599 ; Cinae, 599 ; Koso, 556 ; Lavandulae, 587; Malvae, 531; Rosae, 556 ; Sambuci, 590 ; Tiliae, 528 ; Verbasci, 583
Florideae, 334
Flower, *33, 428 ; arrangement of, 37. 451 ; of the Gymnosperms, *434, * $435,{ }^{*} 436, * 439,{ }^{*} 440$; of the Angiosperms, 445 ; morphology of, 445 ; symmetry, 453
Flowering plants, Phanerogamia
Fluoresceuce of the chlorophylls, 57, 223
Fluorine in plants, 172
Fly Mushroom, Amanita
Foenič lum, *546, 549, 550; ovary, *450
Folds of epidermis, 92 , ${ }^{*} 170$
Folia Althaeae, 531; Aurantii, 535 ; Belladonnae, 582 ; Coca, 533 ; Digitalis, 583 ; Farfarae, 599 ; Jaborandi, 535 ; Juglaudis, 499 ; Laurocerasi, 556 ; Malvae, 531; Melissae, 587; Menthae crispae, 587 ; Menthae piperitae, 587 ; Rosmarini, 587 ; Salviae, 587; Senuae Alexandrinae, 559 ; Sennae Tinnevelly, 534 ; Stramonii, 582 ; Tabaci, 582 ; Taraxaci, 599 ; Theae, 525 ; Trifolii fibrini, 575 ; Uvae Ursi, 569
Foliage leaves, 29,34 ; shoots, 26
Follicle, 459
Fontinalis, 394
Food, plant, constituents of, 172
Foot of Pteridophytes, 398
Forget-me-not, Myosotis
Formic acid in insectivorous plants, 215
Formulæ, floral, 454
Forsythia, 573
Foxglove, Digitalis
Fox-Grape, Vitis Labrusca
Fragaria, 554 ; runners, 24,278
Fragmentation, 62
Frangulinae, 537
Frankinceuse, 535
Fraxinus, *572-574; lenticels, 142
Free cell-formation, 65
leaves, 37 ; movement, 260
Fritillaria, 468 ; leaves, 38 ; nucleus, *56
Frog's-bit, Hydrocharis
Frost, effect ou foliage, 238, 240
Fructus Anisi, 550; Aurantii immaturi, 535 ; Capsici, 582 ; Cardamomi, 486 ; Carvi, 550 ; Coriandri, 550 ; Foeniculi, 550 ; Juniperi, 442 ; Lauri, 517 ; Papaveris immaturi, 522 ; Rhamni Catharticae, 539 ; Vauillae, 490
Fruit, 459, 460 ; epidermis, 101 ; torsions, 248, 262 ; Geraniaceae, 293 ; definition of, 433 ; Gymnosperms, 437 ; formation of, 460
Frullania, 389 ; water-sacs, 195

Frustules, 312
Fucaceae, 281, 330, 334
Fuchsia, *563
Fucus, *330, "331, *332, 337
Fuligo, 304
Fumaria, 520
Fumariaceae, 520
Funuria, *383, 394 ; leaf-cells, *56; chlorophyll grains, *68
Fundamental tissue system, 107
Fungi, 341 sqq.: tissues, 86 ; phylogeny, 145 ; food, 172 ; exudatiou, 193 ; phosphorescence, 223 ; algal, 343 ; mould, 347
Fungus, of Ergot, Claviceps purpurea
animals, Myxomycetes
chirurgorum, 370, 373
Funiculus, *430
Funkia, adventitious shoot, ${ }^{2} 279$; eggapparatus, " 456
Fusion, cell-, 83
Galanthus, 469
Galbanum, 550
Galegoideae, 561
Galeopsis, *587
Galium, 589 ; stipules. 32 ; heliotropic, *252
Gallae, 499
Galls, 155,226
Galtonia, *190
Gametangia, 318, 319, 331
Gametes, 66, 281
Gametophyte, 3.97
Gamopetalous, Gamosepalous, 446
Gamostele, 111, "112
Garcinia, 524, 525
Garden Cress, see Cress
Orpine, Sedum Telephium
Gardenia, 589
Garlic, Allium sativum
Gases, movemeut of, in plants, 221
Gasteromycetes, 145, 363, 373
Geaster, 374
Gemmae, 22
Generations, alternation of, 44 ; of the Gymnospermae, 289 ; of the Bryophytes, 383 ; Pteridophytes, 397
Genetic spiral, 40
Genista, 194, 561
Gentiana, *573, 575
Gentianaceae, 574
Geotropism, 255 et supra, " 257
Geraniaceae, 532
Geranium, 532
Germ, see Embryo
-pores, 430
Germander, Teucrium
German wheat, Triticum Spelta
Germination, 44, 293, 433, 458
Gesneriacecie, 584

Giyastince，＊335， 337
Ginger， 486
Wild，A sarum
Gingko， 443
Gladiolus， 469
（rlands， 99
Glandular hairs，＊97
scale，＊97
colleter，${ }^{*} 98,100$
Gleba， 373
Mechomu， 587
Gilerlitschia， 559 ；burls， 19 ；thorns， ＊26
Globoids，70，＊71
Glubulariaceae， 585
Gloeocapsa，10，＊11，44，147
Gloeotrichia，＊307， 308
Glomerulus， 336
Gloxinia， 584
Glucose，74， 203
Glumes， 478
Glumiflorae， 475
Glutamin， 203 ；in the protoplasm，54
Glycogen， 73
Glycyrrhiza， 562
Ginaplealium， 598
（inetaccae，434， 443 ；vessels， 85
rinetince， 443
Ginetum，443，444；thickening， 137
（rolden－rod，solicluyg
Gongorce， 489
（ionidia，Lichens， 377
Gonimoblast， 337
Bonolubus condurango， 576
（iooseberry，Riles Grossuluria
（roosefoot，Chenoportinm
riossypi＂m，530，＊531；seel－hairs，＊96
Gracilaria， 337
Grafting，＊228， 229
Gircuminece． 478 ；growtl， 21 ；haulms， 28 ， 31,262 ；sheath，${ }^{*} 31,32$ ；silica， 82. 175 ；epidermis， 90,91 ；root， 152 ： growth， 231 ；germination， 293 ； attacked by fungi，360，366， 367
Grass，Arrow－，Triglachin
Knot－，Pelyyumu＂！
Scurvy－，Cochlearia officinalis
Viper＇s，Scorinonera hispanica
Whitlow－，Diaba
－Wrack，Zosterel
Grasses，see Gramineae
Gratiole， 583
（ ravity，effect of，on plants，161，25．）
Green Algae（spe Chlorimphyceap）
Gromwell，Lithospermum
Grouml－ivy，cilechoma
Groundsel，，Senceio
Growing point， 148
（irowth， 223 squ．：periols of，27，230； of cell－wall， $75,78,79$ ；hy intussus－ ception，79，231；inderembent， 159 ；
external influences on， 235 ；curva－ tures， 248
Gruinales， 531
Guard－cells， 93
Guava，I＇sidium
Guelder－rose，V＇iburnum
Gum， 81 ：in intercellulars， 88 ；arabic， $88,55 S$ ；resins， 125,206 ；traga－ canth， 562
Gummosis， 81
Gumnera，111， 308
Gutta－percha，73，206， 569
Gutti， $5: 25$
Giymnademia，4s9
（iymmocladus，accessory shoots， 19
Prymuodiniwm， 315
Gymnogramme， 91
Giymnuspermae，434；bundles，103，105， 114,117 ；alternation of gencrations， 259
Gymmospuranyium， 367
（iymmastomum， 239
Gynandrae，487
Gynœсіum，＊ 428 ，＊ 448 ，＊ 451
Gynophore，525，547
Gynostemium， 487
Habit of plants，27， 237
Hadrome，see Tracheal portion
Hæmatoxylin， 125
Haematnxylun，124， 559
IIacmuloraceae， 470
IIиуепia，＊552，554，55t
Hair－bell，Cumpanula
Hairs，see Trichomes
Hulimeda， 328
Halorayidaceue， 563
Humamelidaceue， 552
Haplocaulescent，see Uniaxial
Haplostemonous flowers， 453
Hart＇s－Tongue Fern，ふicolopenelrium
Haustoria，43，＊20s
Hawkbit，Lemutorlon
Hawk＇s－beard，C＇rpis
Hawkweed，Hieracium
Hazel－mut，C＇orylus
Heart＇s－case，Tiola
Heartwoorl， 124
Heat produced by respiration， 220
Heath，Eiricu
Hedera Helix，＊545：woorl， 129
Herlge－Hyssop，（irutiolu
－Mustarel，ぶisymbrium
－Nettle．N゙achys．
Iledysaroineure． 61
Heclysurum，¿61：movement of leaves， 236
Helienthear． 59 s
Ileliunthemum．＊523
Itelianthus．168，598；tulnerosus， 24
Helichrysum，596，59S

Helicoid Cyme, see Bostryx
Heliotactic movements, 243
Heliotropism, 251, 252
Heliotropium, 578
Hellebore, Black (Christmas Rose), Helleborus niger
Green, Helleborus viridis
Helleborus, 511, *512, 514 ; stoma, 190
Helobicu, 482
Helvella, 360
Helvellaceae, 359
Hemerocallis fulva, *429
Hemiasci, 342, 349
Hemibasidii, 342, 360
Hemileia, 367
Hemlock, Conium
Poison-, Conium maculatum
Water-, Cicuta virosa
Hemp, Cannabis
-nettle, Galeopsis
Hepaticae, 308, 381, 384, 385 ; form, 14 ; phylogeny, 145
Heracleum, 547, 549
Herba Absinthii, 599 ; Cannabis, 503 ; Cardui Benedicti, 599 ; Centaurii, 575 ; Cochleariae, 520 ; Conii, 550 ; Galeopsidis, 587 ; Hyoscyami, 582 ; linguae cervinae, 402 ; Lobeliae, 593 ; Meliloti, 562 ; Millefolii, 599 ; Origani, 587 ; Rosmarini, 568 ; Sabinae, 442 ; Serphylli, 587 ; Spilanthis, 599 ; Thymi, 587 ; Violae tricoloris, 524
Herb Paris, Paris quadrifolia
Hercogamy, 287
Hermaphrodite, 284, 428
Herniaria, 508
Hesperidin, 74
Heterobasidion, 371
Heterocysts, 307
Heterœcious Uredineae, 366
Heteromerous thalli, 377
Heterosporous Pteridophyta, 399
Phanerogams, 427
Heterostyly, 286
Hevea, 543
Hibbertia, 261
Hibisceae, 349, 530
Hieracium, 598
Hildebrandtia, 334
Himanthalia, 332
Himantidium, *314
Hippomane, 543
Hippophaë, 540
Hippuris, 236, 256, 563 ; vegetative point, *150
Holcus, 480
Holly, Ilex
Hollyhock, Althaea rosea
Homoiomerous thalli, 376
Homosporous Pteridophyta, 399

Honesty, Lunaria
Honeydew, Clariceps purpurea
Honey-locust, Gileditschia
Honeysuckle, Lonicera
Bush, Weigelia
Hop, Humulus
Hореа, 525
Hordeae, 480
Hordeum, 480, 481 ; roots, 152
Hormogonia, 307
Hornbeam, Carpinus
Horn-nut, Trapa
Hornwort, Ceratophyllum
Horse-chestnut, Aesculus
-radish, Cochlearia Armoracia
-tails, Equisitinae
Hosta, see Funkia
Houseleek, Sempervivum tectorum
Humming-birds, fertilisation by, 284
Hитиlus, *502, 503; glandular scales, *97, 99
Humus acids, 183
theory, 196
Hura crepitans, 293, 541
Hyacinthus, 466
Hyaloplasm, 51
Hybridisation, 287
Hydathodes, 91, 99
Hydneae, 370
Hydnum, *370
Hydra, 213, 320
Hydrangea, 552
Hydrastis, 514
Hydrocharis, 236, 245, 483
Hydrocharitaceae, 483
Hydrocotyle, 549!
Hydrogen, 171-173
Hydrolapathum, 145, 335; form, *13
Hydrophilous plants, 282
Hydrophyllaceae, 578
Hydropterideae, 400 ; alternation of generations, 406
Hydrotropism, 263, 281
Hygroscopic curvatures, *247, 293
Hylocomium, 394
Hymenium, 343
Hymenogastreae, 373
Hymenolichenes, 378, 380
Hymenomycetes, 145, 363, 364, 378
Hymenophyllaceae, 404
Hyoscyamus, *432, *447, *581, 582
Hyресоит, 517, 520
Нурегісасеа, 524
Hypericum, *524
Hyphae, 341 ; multinuclear, 60
Hyphomycetes, 340
Нуриит, 394, *395
Hypocotyl, *45, 46, 294
Hypoderma, 111, 170
Hypogean, 458
Hypogynous flowers, 450, *451

Hyponasty， 249
Hypopliysis，＊ 456,457
Hypothecium， 359
Hysteroprhyte， 565
I BERIL心， 519
Iceland Moss，Cetraria
Itlioblasts，83，＊108
Ile．r， 537
Illiciurn， 515 ；ethereal oil， 73
Imbibition，177，185，247
Imbricated leaves， 37
Immotiens， 533 ；collenchyma，＊TT；epi－ dermis，${ }^{*} 92$ ；vessels， $101,{ }^{*} 107$ ； stems， 187
Incised leaves， 30
Indeprenlent locomotion， 241
Intlia－rubber plant，Ficues elastica
Intigo， 562
Individual variations， 154
Indusimu，402
Intlorescence， 460
Infructescence， 460
Infiusoria， 320
Initial layer， 121
Insectivorous plants，206，213－216
Insects，fertilisation by， 284
Integuments， 431
Intercalary growth， 21
Intercellulars， 87 ：air space， 87 ，＊ 108 ， ＊221；lysigenic， 88 ；secretion， 100 ： metullary rays， 134 ；passages， 222
Interfascicnlar cambium， 121
Internal development of organs， 237
Internoiles， 20
Intine， 430 ；of the Pteridophytes， 399
Intramolecular respiration，219；in fer－ mentation，21：
Introrse anthers， 447
Intussusception，growth ly，79， 231
Inule，597－599
Innlin，it
Invertin， 203 ；in the protoplasm， 54
Iorline in plants，172，＊199， 334
Irecucuarila，228

Iriurter，root－thorns， 43
Iriducene，＊ 469 ；diagram，38，＊39， 469
Irirlescence， 223
Iris．＊ 469,470 ：epidermis．＊93．＊ 113
Iron in plants， $172.174,220$
Irritability，movements of，see Turgor， changes of
Isutis， 519
Isoeter， $415,416,{ }^{*} 422$ ：desiceation， 17.9
Isogany， 318
J．ボONE，59\％
Jル：minum， 573
．Jetcorkisu． 516
Jessamine，dusmimum

Jewel－weed，Imputie＇rs
Juilas＇－ear，Auriculariu
Judas－tree．Cercis
Juylandaceate， 499
Juglans．s，＊ $49 \mathrm{~s}, 499$
．Iuncucroe， 465 ：liaulm，2S
Juncaginaceae，4S3
Juncus，＊ 405 ：leatless， 25
．Inngermanniuceap． $3 \times 9,390$
Juniperus．＊439，＊ 442 ；leaves， 47 ；attackel by Giymnospuranyiam， 367

K．ile．C＇romive
Kamala， 543
Karyokinesis，60，＊61
Kelp， 334
Keriu，555
Kleinia aiticulata， 194
Klinostat， 263
Kinarvel，Sclerenthus：
R゙numtir， 595
Knot－（inass．Prily！！uum
Kohl－rabi bearls， 373
Kola mints，＊529
Kirameriu． 559
Labellecm，4S5，4s7
Labiutue， 585 ，＊586：nodes，21
Labiatitmae， $585,59 \mathrm{~s}$
Laburnum，Cytisus
Lechnea，apothecium，＊359
Lucturius，372，373

Lactncarimm， 599
Lamina， 29
Laminaria．145，＊ 329,334
Laminariaceare，329，334
Lamium。＊586，557
L＂リノ＇
Larch，Lari，
Lari．．． 440
Larkspur，Deldhinium
Lateral gentropism，255
ronts， $4: 2$
Latex cells，83．S4
Lathracu， 584 ；albmmen crystals， 71
Luthyrus， 561 ；leaf－tendrils．35．＊ 36
Lamulatea，380
Larracere． 516
Laurel，Leturus
Luurvs， 517 ；ethereal nil， 73
Larcenchuler． 587
Latrateru，530
Lavemder，Latumelula
Leal in plants， 172
Leat，development，＊16，＊1s，＊19，2～： －eushion（sce P＇ulvinus）；－scar－ 34 ： temblrils．35：tissue， 113 ；floral．114： foliage， 115 ：traces， 116
Leaves，armangement， 37 ：falling， 143 ： tram－piration， 190

Ledum, 568

Legume, 459
Leguminosae, 556 ; leaf-cushion, 30 ; wood, 128,130 ; symbiosis with bacteria, $173,200,210$; movements of, 269
Lemanea, 334
Lemna, 308, *475; roots, 41; movement, $245, * 246$
Lemnaceae, 475
Lemon, Citrus Limonum
Lenticels, * 142,222
Leocarрия, 304, *305
Leontodon, 598 ; flower, *268
Lepidium, 519
Lepidodendreae, 422 ; thickening, 120
Lepidosirobus, 423
Lepiota, 372
Leptome (see Sieve-tube portion)
Leptosporangiate Ferns, 404
Leptothrix, *11, *309, 312
Lessonia, 330
Lettuce, Lactuca
Leucadendron, 194
Leucin, 203
Leucobryum, 391
Leисојит, *468, 469
Leuconostoc, 309, 311, *312
Leucoplasts, 56, 59, *69
Levisticuin, 549, 550
Lianes, vessels, 85 ; medullary rays, 130 ; thickening, *137, *138
Libriform fibres, 127
Lichen islandicus, *379, 381
Lichenes, 375 ; callose in, 80 ; gymnocarpi, 378 ; angiocarpi, 380
Licorice, 562
Life, duration of, 237, 238
Light, influence on growth, 163, *199, *200, 234, 267 ; heliotropism, 252
Lignified cell-walls, 80
Liguum Haematoxyli, 559 ; Juniperi, 442 ; Quassiae, 535 ; Santali rubrum, 562 ; Sassafras, 517
Ligule, *31, 476 ; Selaginella, 419 ; of Isoetes, 422
Liguliflorae, 598
Ligustrum, 573
Lilac, Syringa
Litiaceae, 465 ; adventitious buds, 19 ; diagram, *38; raphides, * 72
Liliiflorae, *464
Lilioideae, 466
Lilium, * 452,466
Lily of the Valley, Convallariu
Lime-tree, Tilia
Lime scales on Saxifrages, 194
Linaceae, 532, 533
Linaria, 583 ; Cymbalaria, 254 ; germination, 293
Linden, Tilia
Linen, 533

Linin, 56
Lianaea, 590
Linum, 287, *448, *533
Liquidambar, 552
Liriodendron, 515
Lithospermum, 578
Lithium in plants, 172
Litmus, 378
Live-for-ever, Sedum Telephium
Liverworts, Hepaticae
Loasaceae, 526 ; stinging-hairs, 97
Lobed leaves, 30
Lobelia, 593
Lobeliaccae, 593 ; torsion, 258
Loculicidal dehiscence, 459
Locust, Robinia
Lodicules, 479
Lodoicea, 164
Loganiaceae, 574
Logwood, Haematoxylon
Lolium, 480, *482
Lonicere, 590 ; accessory shoots, 19 ; leaf, 30
Lonicereae, 590
Loosestrife, Lysimachia
Spiked, Lythrum
Lophospermum, *268
Loranthaceae, 210, 566
Loranthus, 567
Lotoideae, 561
Lotus, *559, 561
Sacred, Nelumbium
Lousewort, Pedicularis
Lovage, Levisticum
Lunaria, 519
Lungwort, Pulmonaria
Lupinues, 561
Lupulin, 99, 206
Lupulinum, 503
Luzula, 465
Lychnis, 508 ; Viscaria, 92
Lycoperdon, 292, 374
Lycopersicum, 581
Lycopodiaceae, 400, 416 ; branching, 19 ; roots, 41 ; bundles, 105 ; vegetative cone, 151,152 ; alternation of generation, 290
Lycopodinae, 150, 400, 415
Lycopodium, *19, 415, *417, *418; gamostele, 111, * 112,175
Lysigenic intercellulars, 88, 89
Lysimachia, 571
Lythraceae, 563
Lythrum, 564
Mace, 515
Maclura, 125
Macrocystis, 330
Macrosporangia, 399, 409
Macrospores, 290, 399 ; of Salvinia, *408,
*409; of Selaginella, *419, *421

Madder, Field, Sheraiclia
Magnesium in plants, $172,175,202$
Maynolia, 515
Mnhoniu, 516
Maize, Zea
Miijunthemum, 466
Majoram, Uriyant!nt
Malacophilous plants, 254
Malformations, 156
Malic acirl, 205; in Ferns, 243
Mullotus, 543
Mallow, High, Merice silvestris:
Marsh, - Itheara officeinat is
Rose, Hiliseus
Maltose, 203
Maltum, 482
M(1)
Mulcurene, 529, *530
M"ねreae, S1, ذ30
Mamillaria, 526
Manirayora, 5 Sl
Mandrake, I'ocluphyllum
Manganese in plants, 172
Mangosteen, Ciarcinia
Mangrove, roots, 43 ; transpiration, 195 : seedlings, 293
Mrnihut utilissimu, 5. 43
Manioc, Munikut
Manиа, і74
Mannite, 334
Manubrium of the Characeae, 339
Maple, A sei
Maranta, 456, 457
Marantacele. 486, 457
Marattia, *404
Muruttiucrae. 404
Mrichuntiv, *381, *352, *386, *387 : interwal structure, 145 ; respiration, 146,226
Murchantiucroe, 386
Mare's-tail, /Iipmuris
Marsh Marigold, Palthe pelustris
Mrasiliu. 225, *407, 411; movements. 269
Mursiliucue, 407,411
Marigold, Culendula
Massula of Azolla, 411
Mastiche, 535
Mutthiole, 519 ; hairs, *97
Mutricaria, *595, 597-599
Maximum temperature, 163. 234
Mayderri, tso
Heatow-rue, Thatictrum -satfron, Gulchicum
Mechanical cells, 82 ; tissue, 169, *170;

Maliayu. 292, 294,561
Mealick, Mechimgo
Medlar, Mespilus
Mcdulla, 10!, 110
Medullary rays, $110,121,{ }^{*} 126 .{ }^{*} 127$

Mellullary sheath, 123
Melumpyrum, 583: saprophytic, 210
Melanlryum, *505
Melanthoincue, 466°
Melustomatrcear. i bit
Melion, 480
Milissa, "586, 5s7
Melon, Water, C'itrullus
Musk, Gucum is Melo
Melosira, " 314
Membrane, protoplasmic, 51, 177 ; cellwall, 79 ; partition of, *s7; growth, 231
Menispermumue, 516
Mentha, 587
Menyunthes, 575
Mercuriulis, $542, * 543$; upidermis, * 92
Mercury in plants, 172
Merismopeclia, 307
Meristelı, 49. 90. 121
Merulius. 371
Mesembryanthemum, 195, 509
Mestome (se Bundles, primary vascular)
Metabolism, 171, 205
Metanorphosis, 10 : of the primitive forms, 15 ; of the sloot, 22 ; of the leaf, 25,34 ; through external influences, 155
Metaphaves, 62
Metaplasm, 55
Metzyeria, 389 ; cells, * 149
Micrasterias, *317
Micrococtus, *11, 30s, 309 ; combnstion. 212
Microcyst, 303
Micropyle, * 430,431
Microsomes, 55
Microsporangia, 399, 409
Mierospores, 290, 399; of 玉ilriniu, * 409. * 410 : of $\dot{\text { singinellu. * }} 420$

Midulle lamella, * $76,=0$, s?
Midrib, ?1
Midsummer growth, 22. 124
Mignonette, Resecla onlaruta
Mildew fungi, Erysiphucte
Milfoil, Ichilleu
Milkwort, Polygulu
Millet, Indian, Amlrupengon
Mimosu, 558 ; leaf, 30 : lesiccation. 17! ; movements, 270 , 272
Mimosacrue, 558
Mineral substances, 178
Minimum temperature, 163, 234
Mint, Menthe
Mirnhilis, 50?
Mistletoe. l"iscum ulhum
Mitotic division, 60
1/nium, 390, 39.2, *39:3: stem, * 147
Momumitrue, iss
Moneywort, I,ysimurhiu
Monimiurene, 515

Monoblepharidineae, 344
Monoblepharis, *344
Monochasium, 461
Monocotyledones, 462, *463 ; venation, 31 ; bundles, 105,117 ; thickening, 138
Monœecious plants, 285 ; flowers, 428
Monogenetic reproduction, 275
Monopodial system, 17 ; inflorescence, 460
Monopodium, 17
Monosymmetrical plants, 16, 453
Monotropa, 569
Monotropeae, saprophytic, 210
Monstera, 474 ; leaf, 31
Monstrosities, 154
Moonwort, Botrychium
Moraceae, 500
Morchella, *351, *359, 360
Morel fungus, Morchella
Morin, 125
Morphin, 206
Morphology, exterual, 9 ; internal, 47
Morus, 501, 502
Mosses, Musci
Bog-, Sphagnaceae
Moss-plants, 383 ; capsule, 384 ; stem, 390
Movement, power of, 159 ; phenomena of, 241 sqq.
Mucilage-ducts of Cycadinae, 437
Mucilaginous matter, 73, 88
sheath, 293
Mucor: *347, *348, *349
Mucuna, wood, *137
Mulberry, Morus
Mullein, Verbascum

- Multicellular formation, 64, *65 ; hairs, 98
Multiplication, 275, 280
Musa, 484 ; leaf, 31 ; seedless, 226
Musaceae, 484
Muscardine, 358
Muscari, 466 ; bifurcation, 19
Muscarin, 206
Musci, 381, 385, 390 ; form, 12, 13 ; cells, 148 ; vegetative period, 238 ; sexual organs, 391
Muscineae, 381
Muscus lielminthocortus, 337
Mushroom, Agaricineae
Musk-melon, Cucumis Melo
Mustard, 520
(plant), Sinapis
Black, Brassica nigra
Treacle, Erysimum
White, Sinapis alba
Mutilation of plants, 226
Mutisieae, 596
Mycelium, 341
Mycetozoa, 302
Mycomycetes, 343

Mycorrliza, 210
Mycosin, 80
Myosotis, 40, 578
Myrica, 499 ; wax, 91
Myricaceae, 499
Myricaria, 525
Myriophyllum, 563
Myristica, 515, *516; fat, 7.3
Myristicaceae, 515
Myrmecodia, 214
Myrmecophytae, 213
Myronic acid, 205
Myrosin, 203
Myrrh, 535
Myrsinaceae, 571
Myrsiphyllum, *261
Myrtaceae, 564
Myrtiflorae, 562
Myrtle, Myrtus
Myrtus, 565
Myхаmœba, *51, 303
Myxomycetes, 302, 305; plasmodia, 50, *51

I'AJADACEAE, 484
Najas, 484
Napobrassica, see Brassica
Narcissus, 469
Nasturtium, 193, 519, 532
Neckera, 394
Nectary, 451
Nectria, 356
Negative geotropism, 251-256
Nelumbium, 514
Nemalion, 337
Neottia, 227, 489 ; saprophytic, 210
Nepenthaceae, 523
Nepenthes, *34; trap, *216
Nepeta, 587
Verium, ${ }^{*} 574,575$; tissue, * 88 ; stomata, 95
Nervature of leaves, sec Venation
Neslia, fruit, *519
Netted veined leaves, 30
Nettle, Urtica
New formations, 226
Nickel in plants, 172
Nicotiana, *448, *579, *580, 582
Nicotin, 175
Nigella, 511
Nightshade, Solanum nigrum
Deadly, Atropa Belladonna
Nitella, 337 ; protoplasm, 53, 245 ; turgidity, ${ }^{*} 167$
Nitrogen in plants, 172, 173
Nodes, 20
Nolanaceae, 579
Nostoc, 307 , ${ }^{*} 308$; symbiotic. 213, 389, 408
Nostocaceae, 306, 308, 376
Notorhizeae, 519

Nourishnent, se N゙utrition
Nucellus, *.279, 430, 431, * 450°
Nuclear cavity, $\overline{6}$; division, 60
Nuclein, 54, 202
Nucleoli, 56, 62
Nucleus, *48
Nuphac; 514 ; illioblast, " 105
Nut, structure of, 459
Nutations, see Autonomic movements
Nutmeg, 515
Nutrition, 159,171 ; sprecial procesises, 206

- Vuc, 574
- Vyctayinucrue, 509; thickening, 137

Nyctitropic movement., 270

- Vympherél, 236, 514, *515

O.sk, (unetcus

Oats, Acenc
Obdiplostemonous andrecia, 452
Ochrea, 32
Ocheolechio, 379
Ocimuem betsilicuen, 597
Ordayoriuon, *324
Oeacenthe, 547, 550
Oenotheru, 563
Gieliem, 353
Oil, ethereal, 72,73 ; seed, Cumeline suticu -lucts, Ss
Oleaniler, Verium olecuder
Oleum Aurantii Horum, 535 ; Cacao, 529 ; calinum, 442 ; Cocos, 473 ; Crotonis, 543; Macidis, 515 ; Menthae Piperitae, is7; Olivae, 574; Pini pumilionis, 443; Ricini, 543; Rosae, 555 ; Rosmarini, 587 ; Santali, 566
Oligotaxy, 452
Olive, Uleu
(buyracece, *563
Onion, Allium (repa
Tholu'ychis, 294, 561
(1nonis, 561, 562
Ontogeny, 44, 147
Uogamy, 302, 318
Oogonis, 319
(Homycetes, 341, 347
Oospheres, 30^{*}, 318
Oosjore, 302
Ophinglessancene, 404, 405
(1phriys, 4s9
Opium, 206, 52:2
Optimum temperature, 163, 234
"pruatir. *526, 527; twig, *25

1) 1 uatisure, 526

Orache, Itriplee
Granke, Citros
ront, H!ylrust is chumleusis
Orhbluciele, ${ }^{*} 457$; roots, 42,43 ; tubers, * $43,113,195$; siliceous horlies, 72; mueilaginous matter, 73 ; idioblasts, S3; velanem, 100

Orchil, 375 ; saprophytic, 210 ; torsion, 255
Occhis, *45, * 459 ; ovule, * 455
Organic achls, 72,74
Organs, development of, 224,237
Orientation, movements of protoplasm, 244 ; torsion, 258
कriganum, 557

Omithophilous plants, 2-24
Orulntuille, 5 st; haustoria, 209
Orris-root, Iris
Orscille, see Orchit
Orthogonal trajectories, 150
Orthiniliceue, 519
Octhospermere, 549
Orthostichies, 39,40
Orthotropic, 250
Ory:u. 4s0, * 4 s] ; starch, 69, 70
Oryzrue, 450
Uscillariu, *307 : movement, 244
O:motic forces, 187
Osmumia, * 404
Ostrich Fern, sirulhiopteris
Ovary, * $44 \mathrm{~s},{ }^{*} 450$
Ovules, *430
Oxalate of potassium, 202; calcium, 81, 202
Oxalic aciul, 202
Orceliclucecue, 532 ; ronts, 195
O.calis, 532 ; acids. 74; movements, 269

Oxygen in plants, $171,173,200,237$
I'AEONLA, * 42ら, 511; Howers, 33; amyloid, 81
Paluquium, 569
I'alea, 402
Palisarle parenchyma, $14,{ }^{*}$-8 ; cells, 115
P'ulacue, 471 ; Howers, * 463 ; leaves 31 ; root-thorns, 43 ; siliceous borlies, 72 ; endosperm. \wedge_{1}^{1}; wax, 91 ; thickening. 120 : stalility, 164
Palmate leaves, 30. 31
Palmella stage, Alyue, 31 s
Paln wine, 185
Prendenctiree, 475
I'uncumus, leaf, 38 ; alventitious ronts, 43 ; seed, 294
I'unicerte, 450
P'anicle, * 461
I'emicum, 480
l’ansy, l'iula
 30 ; humlles, 117
I'upuctrucur; 521,520; latex vessels, \&1
Pajuaw, Curicı I'umyu
Pupilimuctur. 559 ; leaf temdrils, 35: wood, 137
Papilla, 95, *96
Papŋus, 596 ; hairs, 248
I'r!yrus, 478
Parallel veined leaves, 30

Para-nuts, Bertholletia
Paraphyses of Fucus, 332 ; of the Fungi, 343 ; Pyrenomycetes, 355 ; Discomycetes, 359 ; Hymenomycetes, 368
Parasites, 206 ; reduction of leaves, 25 ; roots, 43 ; influence on formation, 155
Parastichies, 39
Paratonic movements, 249, 270
Parenchyma, *78, 89, 102, *106, 115, 131
Paris quadrifolia, 154, 446, ${ }^{*} 467,468$
Parnassia, 251
Paronychioideae, 506
Parsley, Petroselinum
Beaked, Anthriscus
Bur, Caucalis
Fool's, Aethresa
Hedge, Torilis
Parsnips, Pastinaca
Cow, Heracleum
Water, Sium
Parthenogenesis, 68, 280, 340
Partite leaves, 30
Passiflora, *525
Pastinaca, 549
Paullinia, 137
Panlownia, 583
Pea, cotyledon, *458
Peach, Prnnus persica
Pear, Pirus communis
Pectose, 80
Pedate leaves, 30
Perliastrum, *320
Pedicularis, 583 ; haustoria, 260
Peireskia, 526
Pclargonium, *532
Pellia, 389
Peloria, 453
Penicillium, *353
Pennywort, Water, Hydrocotyle
Pentacyclic flowers, 451, *452
Pepper, Black, Piper nigrum, 503
Peppermint, Mentha piperita
Pepperwort, Lepidinm
Pepsine in the protoplasm, 54
Peptonising ferments, 83, 203, 205
Perennial plants, 27, 239
Perfoliate leaves, 30
Perianth, 38, *428
Periaxial wood, 138
Periblem, 150
Pericambium, see Pericycle
Pericarp, 459
Perichaetium, 392
Periclinal walls, 149
Pericycle, 110, *113
Periderm, 139, 140
Peridermium, 367
Peridineae, 315
I'eridinium, *315
Peridiola, 374

Peridium of the Uredineae, 365 ; Gasteromycetes, 373, 375 ; Myxomycetes, 303
Perigone, 446
Perigynous flowers, 450 , * 451
Perinium, 399 ; of the Equisetaceae, 248, *414; of Salvinia, * 411
Periodicity of development, 237, 238
Periods of growth, symbols for, 27
Periphyses, 355
Periplasm, 346, 399
Perisperm, *432
Perisporiaceae, 351, 353
Perisporicae, 352, 353
Peristome, 248, 392
Perithecium, 351, 352
Periwinkle, Vinca minor
Permeability, $166,167,177,178$
Pernambuco wood, Caesalpinia
Peronosporeae, 344, 346
Personatae, 579
Peruvian wax-palm, Ceroxylon
Petals, 446
Petasites, 598
Petiole, 29
Petroselinum, 549, 550
Pencedannm, 549
Peziza, *358
Phacidiaceae, 359
Phaeophyceae, 329
Phaeosporeae, 331
Phajns, starch, *69, 71
Phalarideae, 480
Phalloideae, 374
Phallus, *374, 375
I'hanerogamia, 45, 240, 374, 375, 427; fertilisation, *67; sexual generation, 431
Pharbitis, *261
Phascaceae, 394
Phascum, *384
Phaseoloideae, 562
Phaseolus, 562 ; coils, 261 ; starch, 68, *69
Phegopteris, spermatozoid, *67
Phelloderm, 141, *142
Phellogen, 140, ${ }^{*} 141$, *142
Philadelphus, 552
Phleum pratense, 480
Phloem, see Sieve-tube portion
Phloeoterma, 109
Phloroglucin, 74, 80
Phlox, 577
Phoenix, *472
Phormium, "170
Phosphorescence, 223
Phosphorus in plants, 54, 70, 171, 173, 202
Phototactic, see Heliotactic
Phragmites, 480
Phycocyanin, 58, 306
Phycoerythrin, 58, 335

I＇hycomyces， 349
I＇kycomycetes，341． 343
Phycophain，55，330
Phylloclades，24，＊25，＊261
Playllorkes，36，＊ $46,194,254$
Phylogeny，145， 154
I＇hysalis，5－1
Physical attributes，160， 167
Physiology，i， 159
Physodes， 55
I＇h！！sostigma，562
Physostigminum， 562
I＇hytrlephas．S1，205，473；endosperm， ＊ 458
Phyteuma， 592
I＇y！tulucru． 509 ；bundles， 117
I＇hytulaccucac， 509 ；thickening， 137
I＇hytophthorn．344，＊345
Phytoteratology， 154
Phytotomy， 10
liceu，＊ $435,{ }^{*} 436,440$ ；resin．S8
Picruenu，535
Pigeon Berry，I＇hytulucin
Pigweed，Chenopuliume
I＇ilacre，363， 368
Pileus，368，370
Pilobulus， 349 ；heliotropic，252
Pilocarpin， 206
Pilocarpus，535
I＇ilostyles， 209
I＇iluluria，＊ 407,411
Pimpernel，Anayallis
I＇impinellu．＊546，549， 550
Pinuceие， 439
Pine，I＇inus
Pine－apple，Bromeliacene
Pinguicula， 584 ；trap，215
Pink，IJiunthus
Pimmate leaves，30， 31
Pimmuleriu，＊11
I＇inus，43s，＊41；wood，＊ $76,{ }^{*} 123$ ，＊126． ＊127．＂128，＂ 129 ；sieve－tubes，＊77，
＊ 66 ；attacked by IIeterobusiliu， 371
Pipci，503，＂504；ethereal oil，73： bundles． 117
Piperaceue， 503
Pipe－Vine，Aristoluchia sipho
J＇irus，＊ 45 1，＊553，${ }^{*} 554.555$ ；periderm， ＊141；lenticles， 142 ；attacked hy （iymunsprorengium， 351
Pistuciu， 535
Pistil，＊ 449
I＇isum，＊560，562 ；leaf－tendrils，＊30
Pith，see Merlulla
Pits， 76,77
Pitted vessels，85
Pix liquilia， 442
Placentation，＊49
Pluginchile， 390 ；form，＂ 14
Plagiotropic， 250
Plankton， 314

I＇lanorgumete＇s， 318
Pluntaginareae， 584
I＇lontage，＂584，5s5；triaxial．27；bundles． 101；protogyuy，＊2ะ6
Plantain，Plantuigo
Plantain，Water，Alisma
Plasmolium，50，303．305；absorption． 176 ；movement． 242
Plasmolysis， 167
Plasmopara， 345
Palunacoue， 552
I＇lutunthera，459
I＇latycerium，2．27
Pleiochasium， 461
Pleiotaxy，45：2
Plerome， 150
I＇leur＂носus． 323
Meniorrhizem， 519
I＇leurosiyma． 314
Plum，Prumus
I＇lumbaginucere，I＇luminag＂， 5
Plumule，＊ 4.56
Pua，ごs，4S0
Porl，sce Legume
Podetimm，379
I＇induphyllimum， 516
P＇uchinhyllum，幺16
Podospara，＊350
Pokeweed，I＇hytolucca
Polarity，226，227
Polemoniaceue， 575
Pollem－grains，－sacs，－cells，＊429，＊ 430 ： －tuhes，66，431， 456 ；clambers， 438
Pollination，2ぐ
Pollinium Pollinariun）．＊ 488 ， 56
Polyarch， 118
I＇ulycarpicae， 509
I＇olycurpuem， 285
Polyembryony，279． 457
Poly！jalu，Puly！！alaccue，＊533． 534
Polygamous tlowers， 42 S
Poly！matacal． 504 ：stipules， 32
I＇nlingmnatum，＊463；rhizome，＊22；syın． podium， 15

I＇mly！gonum，504：ovary of，＊ 455 ；attackel by I＇uciniu， 367
Polyherlra， $3: 0$
Polyposliuccue． 402
Polyporlium，402．404．＊ 405 ，＊ 406
Polyporeac， 370
Polypurins，370．＊371，373
Polysymmetrical plants， 16
Polytomy， 17
Podytrichum，391，392，394，＂395
I＇ontwate，phellogen， 140
Pomegranate，Punicu
I＇omoidiae，228，554
Pond－weed，I＇ntamogetone
Poor－man＇s Weather－glass，I nagallis u－ rensis

Poplar, Populus
Poppy, Papaver
Populus, *493, 495 ; section of bud, *37
Poricidal dehiscence, 459
Portulaca oleracea, 509 ; seed, 294
Positive stimuli, 251 ; heliotropism, 252 ; geotropism, 257
Potamogeton, * 483,484 ; seed, 294
Potash plants, 176
Potassium in plants, 172, 173, 202
Potato, Solanum tuberosum
Potentilla, *451, 553, 555
Poterium, 554
Prickles, 99
Primordial leaf, 29 ; utricle, 49
Primrose, Primula
Primula, 571; glandular hairs, *97, 98 ; heterostyly, *286
Primulaceae, *570,571
Primulinae, 569
Privet, Ligustrum
Procambium strands, 105
Promeristem, 89
Promycelium, 364
Prophases, 62
Prophylla, see Bracteoles
Prosenchyma, 89
Protandry, 285, 286
Proteaceae, 194, 540
Prothallium, 290, 397, 398, 405, 413, 431
Protobasidia, *363
Protococcoideae, 319, 320
Protogyny, 285, 286
Protomyces, 349, *350
Protonema, *383
Protophloem, 105, *106
Protoplasm, 48, 50 ; active, 53, 54 ; inclusion of, 68 ; living, 177 ; movement, 241, 244
Protoplast, 52, 86, 242
Protoxylem, 105
Prunoideae, 553, 555
Prunus, 553, 555, *556; spinosa, thorns, 26 ; cerasus, gum, 81 ; lenticles, 142 ; growth, 226 ; persica, attacked by Exoascus, 352
Psalliota, *372
Pseudoparenchyma, 341
Pseudoperianth, 388
Pseudopodium, of Andraea, ${ }^{*} 395$; of Sphagnum, *396
Psidium, 565
Pterocarpi Lignum, 562
Pteridophyta, 397 ; roots, 15, 43 ; bundles, $101,105,119$; cells, 150,153
Pteris, ${ }^{*} 398,404$; vessels, $85,{ }^{*} 86$; bundles, *106, *111; petiole, 116 ; roots, * 151 ; cretica, 279
Pterocarpus santalimus, 125, 562
Puccinia, ${ }^{*} 364,{ }^{*} 365,{ }^{*} 366,367$
Puff-balls, Lycoperdon

Pulmonaria, 578

Pulque, 185
Pulpa prunorum, 556 ; Tamarindorum, 559 ; Colocynthidis, 594
Pulvinus, 30, 269
Pumpkin, Cucurbita Pepo, see also Glutamin
Pınica, Punicaceae, 564
Purslane, Portulaca
Pycnidia, of the Pyrenomycetes, 356 ; Credineae, *366; Lichens, *380
Pycnospores, Pycnoconidia, see Pyenidia
Pyrenoids, 71
Pyrenolichenes, 380
Pyrenomycetes, 351, 355, 378
Pyrocystis, 223
Pyrola, Pyrolaceae, 569
Pythium, *346
Pyxidium, 459
Qualitative reproduction, see Sexual
Quantitative reproduction, see Vegetative
Quassia, 535
Quercus, *495, *496, 499 ; bud-scales, 33 ; vessels, 85 ; midsummer growth, 124 ; suber, cork, 140 ; bark, 141, *143; galls, 155 ; growth, 226
Quillaja, 552, 555
Quillwort, Isoetes
Quince, Cydonia
Raceme, 460, *461
Racemose inflorescence, see Botryose
Radial plants, 16,453 ; walls, 149 , see also Actinomorphic
Radicle, 46
Radish, Raphanus
Garden, Raphanus sativus
Radix Althaeae, 531; Angelicae, 550 ; Arnicae, 599 ; Belladonnae, 582 ; Calumbae, 516 ; Gentianae, 575 ; Graminis, 482 ; Ipecacuanhae, 589 ; Lappae, 599 ; Levistici, 550 ; Liquiritiae, 562 ; Liquir. mundata, 562 ; Ononidis, 562 ; Pimpinellae, 550 ; Pyrethri, 599 ; Ratanhiae, 559 ; Rhei, 506 ; Sarsae, 468 ; Senegae, 534 ; Taraxaci, 599 ; Valerianae, 591
Raflesia, 566 ; A moldi, 26, 43
Rafflesiaceae, 566 ; reduction in leaves, 26 , 209
Ramenta, 402
Rampion, Phyterma
Ranunculaceae, 510
Ranunculus, *450, *510, *511-*513, 514; leaves, 31 ; bundles, 103, *104; cells, 92 ; Purshii, " 236
Rape, Brassica Napus (oleifera)
Raphamus, *518, 519
Raphe of the Diatomene, 313 ; of the ovules, * 430,431

I＇＂phice，lit
Raphides，＊2，139
Rasplerry，Iutus
lieceptacle，of－porangia，102；of the Hower， 450
Red sandalwood，Eve
lieduction of leales，35，43；of trati－pira－ tion， 194
Reindeer moss，C＇ludania
Rejurnescence．76，275
Reproduction， $159,27+s y^{2} \%$
Resedu， 520 ：cells，${ }^{*} 65$
Reseducene， 522
Reserve starch，6s ；material，81，204
Revin，21，73， $88,126,134,206$
Respiration，159，216：intramolecular． ＊219
Pespiratory roots， 43 ；cavity，95
Restiacere，470
Resting－spores， 309
Reticulate reisels， 85
Fevolving movement：， 259
Rhachis， 30
Rhumиисене， 539

Phatany root， 559
Rheotaxis， 243
Rheotropism，263
Rhмити，＊505，＊506
lihinenthoilece，is3；attacked hy Culen－ sluritum， 367
Rhlucullues， 553 ：hanstoria， 209
Rhizines， 375
Rhi＝abium，＊210，312
Rhizocarpue， 406
Rhizoids，15；of the Bryophatu， 3 s 3. 391；of the Pterieluphytu， 397
Rhizoma Calami， 475 ；Filicis， 407 ；（ial－ angae， 456 ；Graminis， 452 ；Iridis． 470 ：Podophylli， 516 ；Veratri，46－：
Zedoariae， 456 ：Zingiberis，tst
Rhizome，2．2， 33 ；multiplication， 2 －s
Rhismmorpher，＊369：phosphosercence． 223 ；helintropism， 253
IRルニッグいウ！， 293
Rhoululembinindece，EOS
Rhochmue la sulftinsce，3：37
Rhoulophlycerere，13， 334
Rlıemlimue， 517
Rhobart，Rlkum
Rlus．，535
Rhyt isme． 359
Rilies，＊551．552 ；attackerl hy O，mar－ lium，367
Riccia，3．5：form，＊14
lírciucore，3s．i
lice，（ry\％u
French，Tritimem dicocern
Ricluctilia，17：
Ricinus communis，＂542，543：alemrone， ＊1；palisale cell， 115

Rigour，colll，lieat，etc．， 273
Ringed hark，141
Rwhiniu， 561 ：leaf，30，＂36；tyloses， ＊ 125
lincullir． 378
Rock－Rose，European，IIelienthentiot veul． y／fre
Pimetelie，367
Routless plants， 17
Roots，15．40－17；cap，15，41．＊152； respiratory， 43 ：primary cortex， 112 ， 113 ：sheath， 113 ；central eylimeler， 113：hairs，＂182：pressure，＂14． 155 ；contraction of， 295
I！＂s⿲，5．93， 556 ；prickles， $36^{\circ}, 99$ ；ethereal ml． 73

Rosae centifoliae petala， 550
Rosemary，Inosmerinus
R＇mithome，552：wood， 129
Rommerillus，5s－
R＂sumitace 054
Rosolic acid，so
Rostellum， 455
lotation of the protopla $11,5,5,242,241$
slow，methoul of， $2 t 3$
Royal Fern，Usimunde reyulis
Rusitas，214，373
I！ntinctore，डss
Iubilium in plants， $1 / 2$
Ruh，inur．5s：
Rubuilech．S54
I＇ulms， 554 ，＂555：prickles， 36
Rue．I＇utu gruenolers：
R＂mmis，504． 505 ：acids．it
Rumner－，sie Stolons
Ruscus， 25
Rush，Bog，Juncus
Flowering，İulumus
Woml，Lusulu
I！＂जvill，36：．373
Rust fimgi，C＇relineue
Rいてい。＂534
R゙いturar． 534
liye，scule：attacked hy chenions，35s
$\therefore \therefore$ F．ADILLA， 466°
succemime，2－2
sacelfarine in sap，185
ज्cchurumyces，3501：form，10，＊11 50
simbluronvyceles， 350
Salehamene．it
玉．．ich rill．，450，＊151，452．507：wax． 91
Sacresl Lotus，NiCumbiun
\therefore ：aflem， $46!$
sage，sulviu
similtorio．＊ 153
st．Jhlms Wort，common，／／／／Niman peri ruturn
salep，wichis

Salicacene, 493
Salisbrrya, 443
Salix, * 493, 494
Salsify, Tragopogon porrifolins
Salvia, *287, 293, 407, 587
Salvinia, *408, *409, *410, *411; rootless, 44,181
Salviniaceae, 407
Sambucus, *590; phellogen, 141, *142; shoot of, *170
Samolres, axillary shoot and leaf, *21
Sandalwood, Santalum album
Red, 562
Sandwort, Arenaria
Sanguisorba, 554
Sanicnlu, 549
Santalaceae, 209, 566
Santalin, 125
Santalum, 566
Sap, 185 ; -cavities, 49
sapindaceae, 535 ; wood, 137
Sapindinae, 535
Saponaria, 509
Saponin, 74
Sapotaceae, 569 ; resin, 73
Saprolegnieae, 346
Saprophytes, 206
Sapwood, 124
Sarcina, *312
Sorgassum, 330
Surothamnurs, 194
Sarracenia, trap, 216
Sarraceniaceae, 523
Sarsaparilla, 468
Sassafras, 517
Satureia, 587
Saxifraga, 551; calcium-carbonate, 95, 194
Saxifragaceae, 551
Saxifraginae, 550
Scabiosa, 595
Scalariform vessels, $85,{ }^{*} 106,{ }^{*} 110,{ }^{*} 112$
Scale leaves, 29,32 ; hairs, ${ }^{*} 98,99$
Scaly bark, 141
Scandix, 549
Scape, 28
Scenedesmus, *319
Schistostega, 223, 394, *395
Schizaeaceae, 404
Schizocarp, 460
Schizomycetes, 305-308
Schizonema, 313
Schizophyceae, 58, 305, 306, 375
Schizophyta, 305, 306, 375
Schizosteles, *111
Schulze's macerating mixture, 89
Scilla, 466 ; mucilage, 73
Scirpoideae, 477
Scirpus, 477 ; shoot, 25
Scitamineae, 484
Scleranthus, 508

Sclerenchyma, 111 ; development of, *170. 237, 266
Sclerenchymatous fibres, *75, *82
Scleroderma vilgare, *373
Sclerotinia, 359
Sclerotium of the Myxomycetes, 53, 304 : of the fungi, 341 ; of Clariceps, 358 : of the Discomycetes, 359 ; of the Hymenomycetes, 368
Scolopendrinm, * $402,{ }^{*} 403$
Scorpioid cyme, see Cincinnns
Scorzonera, 598 ; latex vessels, *84
Scrophularia, 583
Scrophnlariaceae, 582
Scutellum, 295
Scyphantres, 261
Scytonema, 380
Sea-lavender, Statice
-rocket, Cakile
Secale, *480
cornuturm, 358
Secondary growth of Monocotyledons, 138
Sedge, Cyperaceae
Sedum, 195, *551
Seed, dissemination, 291; germination, 293 ; development of, 456
-leaves, 46 ; -mantle, 432; -plants, 432 ; -coat, 458
Seedlings, 294
Selaginella, 415, 418, *419, *420, * 421 ; monopodial, 17 ; desiccation, 179 ; phosphorescence, 223 ; movement, 247 ; alternation of generation, 290
Selaginellacere, 400, 418 ; bundles, 105
Selective power of cells, 177
Selenium in plants, 172
Semen Colchici, 468 ; Cydoniae, 556 ; Lini, 533 ; Myristicae, 515 ; Papaveris, 522 ; Quercus, 499 ; Sinapis, 520 ; Strophanthi, 595 ; Strychni, 574
Sempervivum, 195, 551
Seneca, Polygala Senega
Senecio, Senecioneae, 598
Senega, 534
Senna, 559
Sepal, 446
Separation, 275
Septate wood-fibres, 127
Septicidal dehiscence, 459
Sequoia, 239, 440 ; stability, 165
Serjania, 137, *138
Serrate leaves, 30
Sesleria, 194
Sessile leaves, 29
Seta, 392
Seturia, 480
Sexual reproduction, 275, 280
Shallots, Allium ascalonicum
Sheath, 32 ; conducting, 204
Sheep's-bit, Jasione

Nhepherliu， 540
Shepherd＇s Needle，Scandix
Purse，（＇I psellu
Sherutlia， 589
Shields of the Characeae， 339
Shoots， $18-28,153$ ；－apex，${ }^{*} 18$ ；adventi－ tious， $2 \cdot 25$ ；pole， 227
Shrubs， 27
siryos，＊266
Sieve－tnbes，＊77，＊85，＊102，＊ $103,{ }^{*} 106$ ， 131， 133 ；－plates，78， 84 ；－vessels， 83， 84 ；parenchyma， 103
sigillarieue， 423 ；thickening， 120
silene，silenoidecte， 92 ，＂507， 50 s
Silica， 82
Siliceous bodies， 72 ；earth， 314
Silicon in plants， 172,175
siliculosae，＊519
Siliqua， 459
viliquosar， 519
Silphium laciniatum， 254
Silver in plants， 172
Nimurubacerce， 535
Simple leaf， 30
Nimupis， 519 ；light，＊235
Sinistrorse stem－climber，＊261
Simuate leaves， 30
Siphoneue， 325 ；multinuclear， 60 ；tissmes， 86 ：polarity， 227 ；flow of protoplasm， 246
Siphonogams， 431
Nirosiphen， 376
Nisymbrium， 519
Sïm，＊548，549， 550
Sleep movements，see Nyctitropic
Slime fungi，Myxmmycetes：
smiluct，466， 468
simyrmium，cotyledons， 295
Suake－root，Polyyutu S＇enega
Snaplragon，Intirrhinum
Snapweed，Imputicns
Snowhall tree，Viburnum
Snowlrop，Gulenthus
snowflake，Leucojum
Soapwort，S＇epumaria
Sodium in plants，172， 175
Soil，absorptive power， 183
silunaceae，＊579，iso
Solanin，74， 205
 dermis of leaf，${ }^{*} 345$ ；luberusum， 5 S゙2
soliduto，598
Solomon＇s seal，I＇olyyonutum multiflorum
ふıuchus，59s
surluse， 554
Soredia， 378
Soryhum， 481 ；amylohlextrin， 70
Sorrel，Rumee
Sorus， 402
Sow－Thistle，Sourhus
Spuliciflorue，470

Spadix， 461
天perussis， 370
：丷ригуuniucue，ṡpuryanium， 475
spartium， 25
－ipetluelea， 193
Spectrum of chlorophyll，＊57
sipeculuria， 593
speedwell，V＇eronicu
Spelt，Triticum sjpeltu
ṡperyula， 50 S
Spermaphyte，301， 432
Spermatium， 336
Spermatia，of the Hictyolucele， $33 \pm$ ：Real Algae， 336 ；C＇reclineue， 366 ；F＇ungi． 380
Spermatozoid，66，2S1，302， 318
Sperm uncleus，＊67
Spermogonia，366， 380
sphacelia， 355
sphaerella，243，＊320， 321
sphaeria， 356
Sphuerothalliu，379
－Syhuernthecte， 352
＂乡hagraceue，2：39，390， 394
S＇phu！ıи＂m．＊391，＊396；cells， 140°
Spike，460，＊461
spikelets of Grumineae， 478
s＇pilanthes， 599
Spinach，Spinacia
Spinacia， 507 ；starch， 69
Spindle， 30 ；fibres，＊ 61 ；－tree，Eionyaus
špiruea，špiruevilleue，554， 555
spiral vessels， 85
s＂pirillum，＊11，309，312
śpirochute，309，＊312
špirodelu， 475
今̀pirogyru，＊316，317；cells，＂6t ；pyre－ noil， 71 ；movement， 241
－̇ıirolubeae， 519
xpirulinae， 244
जyluchmum， 392
＂yougillu，213，320
Spongy parenchyma， 115
sporangiun， 303,318 ；opening， 248 ；of the C＇yatheuceue．＊404：Equistinas． 413 ；Myrlrupteridue． 402 ；Mursili－ ucece， 407 ；P＇teridopliytes， 399
Sporangiophores， 342
Spores， $45,2 \leqslant 0,300$ ；of the My．comyietes． 50 ；thickening． 76. is ：desiccation． 179 ；dissemimation， 245
sporitia， $36^{\circ} 2$
Sporocarp， 406
Sporogonium， $354,3 \leq 5,: 92$
sporophyll，33，399，429
sporopliyte，39s
spring wood，123
spurge，E：uphorlice
spurrey，ṡpergula
Stability of the plant－hody， 164
v̌uchys，55\％

Stalked leaves, 29
Stamens, 427, 447
Staminodes, 448
Stapelia, 576 ; succulent stems, 94
Staphylococcus, 312
Star-Anise, Illicium
Starch, ${ }^{*} 68,{ }^{*} 69$; grains, 199 ; transitory, 204
Starwort, Stellaria
Statice, 572
Stegocarpae, 392
Stele, 109, 110
Stellaria, 508
Stellatae, 589
Stem, 109 ; climbers, 258, see also Axis
Stemonitis, *304
Sterculiaceae; *528
Stereome, ${ }^{*} 169,{ }^{*} 170$
Stereum, 370
Sterigmata, 342, *368
Sterile secds, 277
Stickwort, Stellaria
Stigma, * 448,449
Stigmaria, 423
Stigmatic fluid, 194
Stinging hairs, *96, 97
Stipa pennata, 247
Stipe, 194, 370
Stipules, 29, 32
Stock, Matthiola
Stolons, 24
Stomata, 94, 189, 222
Stonecrop, Mossy, Sedum acre
Stone-fruit, see Drupe
Stoneworts, Characeae
Storksbill, Erodium
Stratiotes, 483
Strawberry, Fragaria
Streptococcus, *312
Strickeria, *356
Stroma, 356
Strontium in plants, 172
Strophanthus, 575
Structural deviations, 154
Struthiopteris, 402
Strychnin, 206, 574
Strychnos, 574
Style, *448, 449
Styracaceae, 569
Styrax, 569 ; liquidus, 552
Suberin, 80
Suberised cell-walls, 80
Subsidiary cells, 94
Subtending leaf, 19
Succisa, *595
Suction roots, 43 ; of transpiring shoots, *192
Sugar, 73, 185, 199 ; -cane, Succharum
Sulphur in plants, $73,172,173,220$
Sulphuric acid, action in protoplasm, 63
Sumach, Rhus

Summer Savory, Sutureia; Spores, see
Uredospores
Sundew, Drosera
Sunflower, Helianthus
Suspensor of the embryo of Lycopodiaceae, 418
Swarm-spores, 50, *51, 243, 303, 318
Sweet Basil, Ocimum
Bay, Laurus nobilis
Flag, Acorus
Sycamore, Acer pseudo-Platanus
Symbionts, 206
Symbiosis, 173, 211, 320, 377, 408
Symbols for periods of growth, 27
Symmetry, relations of, 15, 16
S'ympetalae, 567
Sympetalous perianth, 446
Symphytrom, 578
Sympodial inflorescence, see Cymose
Sympodium, 17
Syncarpous gynœcium, 448
Synergidae, 454, *456
Syringa, 226, 573
Syrupus Mori, 502 ; Ribium, 552 ; Idaei, 556
Systems of classification, 299, see also Tissue

TAbaSHEER, 175
Tamaricaceae, Tamarix, 525
Tamarindus, *557, 559
Tamnin, 72, 74
Tapetum of the Pteridophyta, 399
Taphrina, 352]
Tapioca, 543
Tap-roots, 42
Taraxacum, 168, 248, *597
Tarragon, Artemisia Dracunculus
Tartaric acid, 205
Tахасеае, 443
Taxineae, 132
Taxodioideae, Taxodium, 439, 440
Taxus, * $443,{ }^{*} 444$; bundles, 117, *118, *119
Tea, 525 ; see Thca
Teak-tree, Tectona
Teasel, Dipsacus
Tectona, 585, 586
Tegumentary system, 90
Teleutospores, 364
Tellurium in plants, 172
Temperature, influence on growth, 234, 267
Tendrils, 26
Tentacles, 99, 215
Terebinthina, 442
Terebinthinae, 534
Ternstroemiaceae, 525
Tetragonia, seed, 294
'Tetraspores, 335, 384
Tencrium, 587
Thalamiflorae, 448

Thalictrum, 117, 511
Thallinm in plants, 172
Thulhopilytu, 301 ; form, 13, 59
Thallns, 10-14.375
Thamnilium. 345
Ther, " $524,52.5$
Thecæ, 447
'Thein, 206
Thelephoreue, 370
Thecolromm, " 529
'Theohromin, 206
Theoretical diagram, 39
'Thermatropism, 263
Thesium, 566 ; Haustoria, 209
Thickening of stem, 75, 120, 137
Thistle, Blessed, ''nicus:
Common, C'irsium
Plumeless, r'arduus
Thlulicenthue ilutia, 225
Thluspi, 172, 519
Thorn-apple, Inatura
Thorns, " 26
Thorough-wax, Bupleurum
Thoroughwort, E"uputorium
Thrift, Ameria
Thuja, * 433,440 ; budding, * 45 ; leaf, 46
Thyme, Thymus
Thymeluea, Thymelaeimue, 539
Thymus, 5S7
Tilia, "52S ; wood, 129, *130, *131, *132; pollen-grains, 430
Tilincere, " 527
Tillemedsia, 195
Tilletu, Tilletiaceue, 361, 362
Tin in plants, 172
Timmevelly Sema, 559
Tissues, 86 s $q 2$. ; systems. 90 ; distribution of, 108 ; secomlary, 120 : tension of, 167 ; mechanical, 169
Titaninm in plants, 172
Toad-flax, Limuria
-stools. Agericineme
Tobacco plant, Nïotiena
Tinlere ufricamu, 279
Tッhifera, 560. 562
Tolypellopsis. 340
Tomato, Lycompersicum
Tomentellu, basidia, 363
Tonoplast, 55:
'Toothwort, Lathraen
Torilis, 549
Torsion, 248. 258-262
'Torus, "76, "77 ; of Hower, 450
Touch-me-not, Impuliens
Tonch-woorl, Polypurus fomentarius:
Trachea, 84, 102, * $126,127, ~ * 128,18.5$
Tracheal portion of vascular buntles, 101 : tisisue, 126
Tracheids, 7\%, *52, $85,102,125,126, * 128$
Trulescuntiu, 470: hairs, ${ }^{* 53,} 98.244$: mulens, 62, *63: epiclermis, "94

Tragacautha, 562
Trug"mejon, 245, 59 S
Trama, 373
Transfusion strands, 111, 112
Transitory starch. 204
Transpiration. 180. 186, 188-192
Transversal geotropism. 256 ; heliotropism. 252 ; zygomorphism, 453
Trapa, 236, 563
Treacle-mustarl, Erysimum
Tree, 27 ; -ferns, C'yatheaceue
Trefoil, Trifolima
Tremella, hasidia, *363
Tremellinear. 363, 365
Trentrpwhliu. 322
Triunce. 245
Trichiu, *305
Trichogyne, 336
Trichomanes. 405
Trichomes, 95, *96. *97, *95
Tricoccu, 248. 540
Trifulioinleae, 561
Trifulum, 561
Trigluchin, 453
Trigomella. 561
Trimerous flowers, 462
Trimorphic leterostyly, 257
Triplocaulescent plants, 27
Triticum, 450, 452 ; starch, *69 ; aleurone. " 71 ; growth, 231
Triurilaceae, $4: 4$
Tropuenlacene, 532
Trouuenlum, 532 ; leaf. 34, * 199 : chromatophores, ${ }^{5} 5$; amyloid, 81 ; waterpore, ${ }^{*} 95$: exudation, 193 ; heliotropism, 254
Truttle Fungi, Tuberacene
Trypsin, 54
Tsugu conaulensis. leaf-bud of. *37
Tuber. 23, 33, *354, 355\%; multiplication of. 278
Tuberan 23: Aconiti, 512; Jalapae, 55T: Salep, 490
Tuberaceue, 352. 355
Tubercle fingus. Burillus Tuherculosis
Tuhiflora, 506
Tubulifturaw. 597
Tulipu, 468 : lmlb, *23
Turgidity, 165-167
Turgor, changes of, 162, 167, 269: tension. 231,247
Turnip, Irassicica Ralkt, see also Betain
-eabbage, Brussivit . Vapus (Inzudirussiar)
Tussilayu, 597-599
Twin-Hower, Limneen
Tyloses, 125
Typhu, 475 ; inflorescence, 225 ; semal. 294
Typhuceas: 475
Typhus hacillus, 309, *312
Tyrosin, 203

ULMACEAE, 500
Ulmus, *500 ; leaf, *29
Ulothrix, 323 ; swarm-spores, *67
Ulva, 322 ; form, ${ }^{*} 12$
Umbel, *461
Umbelliferue, 545, *546; oil-ducts, 88
Umbelliflorcue, 544
Uncaria, 589
Undulate leaves, 30
Unequal growth, 247
Uniaxial plants, 27
Unicellular hairs, *98
Unisexual flowers, 428
Uredineae, 363, 364
Uredo, : 67
Uredospores, 364
C'rginea, 466
Urocystis, 362
Uromyces, 367
Urtica, 503; hairs, *96, 97 ; movement, 244
Crticaceae, 503 ; resin, 73 ; latex tubes, 83
Urticinae, 499
Usnea, 378, *379
Ustilaginaceae, 361
Ustilago, *361
Utilisation of products of assimilation, 201
Utricularia, 584 ; leaves, *35 ; rootlets, 44, 181 ; glands, 215
Utriculariacecue, 583
Vaccinioideae, Vaccinium, 568 ; fungus on, 359
Vacuoles, *49, 55, 230
Vagina, 29
I'aleriana, *591
V'alerianaceae, 590, 591
Valerianella, 591
Trallisneria, 245, 283
Valvate leaves, 37
Valves, 313
Vanilla. *489, 490
Vanillin, 54 ; lignification, 80 ; coniferin, 206
Varec, 334
Varieties, new, 154
Vascular tracheids, 82 ; bundles, 101 ; cryptogams, 101 ; plants, 147
Vaucheria, 325, *326, *327
Vegetable ivory, Phytelephas
Vegetative cell, *67 ; point, 148 ; reproduction, 275, 277
Velamen, 42, 100, 194
Velum, 372
Venation of leaves, 30, *191, *463, * 491 .
Venus fly-trap, Dioncuea
Venus's looking-glass, Specularia
Veratrinum, 206, 468
Veratrum, 466, 468

I'erbascum, *583; leaf, 30
Verbena, T'erbenaceae, 585, 586
Termes, 213
Vernation, 37
Veronica, 583
Terpa, 360
Verrucaria, 380
Vervain, T'erbena
Vessels, see Tracheæ
Vetch, Lathyrus
Tibrio, 309, *312
Tiburnum, 590
Ticia, 561, 562 ; root, *211 ; respiration, 219 ; growth, *233; geotropic movements, *258; attacked by Uromyces, 367
Vicioideae, 561
Victoriu, 514 ; warmth by respiration, 221
Vinca, *573, 575 ; sclerenchymatous fibres, *75
Tincetoxicum officinale, *576; attackerl by Cronartium, 367
Vine, Vitis vinifera
Vinum, 538
Viola, 172, *523, 524 ; epidermis, *96, 99 ; stipule, *98
Violaceae, 523
Violet, Viola
Alpine, Cyclamen europaeum
Viper's Bugloss, Echium
Grass, Scorzonera hispanica
Virginia creeper, Ampelopsis
Viscum, *566, 567; false dichotomy, *17 ; epidermis, 139 ; nutrition, 210 ; hypocotyl, 254
V'itaceae, 537, 538
Vital attributes, 160,167
Titis, *538; wood, 129 ; tendrils, 26, *267
inconstans, *267
Vittæ, 88
Volva, 371, 375
Yolvocaceae, 320
Folvox, 319, *321, 322
Wallflower, Cheiranthus
Water-culture, 174 ; imbibed, 177, 178 ; distribution of, 184 ; exudation of, 188, 193 ; agency for dissemination of seerls, 292
Water-ferns, Hydropterideae
-lily, Iymphaea
-milfoil, Myriophyllum
-pest, Elodea
-soldier, Stratiotes
-stomata, 95
-wort, Elatine
Weigelia, 590
Welwitschia, 443
Wheat, Triticum

Wheat, "mumny," 179
Whorls, 451, 452
Willow, salic -herb, Eprilubium
Winter spores, see Telentospores bud. 21, 32, 96, 27S
Wisturia, 562
Witches'-brooms, Excoasens
Woad, Isatis:
Wiulfice, 475 ; rootless, 44
Wood, 121 : parencliyma, 102. 126, * 130 ; strands, 121 ; late, $123,126,{ }^{*} 127$. 129 : heart-, 124 ; sal-, 124 ; fibres, $127,{ }^{*} 132$
Woodbine, Lonicere
Woodruff, A sperula
Woorlsorrel, Acalis Acetusella
Wormwood, Artemisia
Wounds, 144
Xanthin, 75
「解thium, 598
Xanthophyll, 57, 59, 75
Xantheria, *376, *377, 379
Tylaria, 356
Xylem, see Tracheal portion
Nylochrome, 124
Myridaccae, 470

Yam, Visscoreaceae

Yarrow, Achillea
Yeast budding of the Hemicrsci, 350
Yellow Pond-lily, N"uher
-rattle, Rhinenthus
-wort, Chlura
Yew, Tasus
F"uccu, 249; thickening, 13s: -moth, 214
\%.A.IARDINA, 331
Zannichellia, 484
Zanonia. 292
Zec., *462, 450, 451; bundles, *102, *103: stein, *109
Zinc in plants, 172
Zingiter, *455, 486; ethereal oil, 73
Zingiberaceae, *484, *457
Zone, neutral, 244: interference, 244
Zooglea, 309
Zoospores, see Swarm-spores
Zinsterce. 484
Zyynema, Zyynemaceae, 316
Zygomorphic plants, 16.453 : flowers. 255, 264
Zygumycetes, 341-343, 347-349
Zygospores, 302 ; of the Cinjuyatue. 315 , *316: of Mucor, 345. *34!
Zygote, 302

THE END

"BRITANNIA" SCIENCE SERIES.

Edited by Rev. J. C. P. Aldous, M.A., Chief Instructor
H.M.S. Britannia, late Fellow of Jesus College, Cambridge.

BRITAIN'S NAVAL POWER. A Short History of

the growth of the British Navy from the earliest times to Trafalgar. By Hamilton Williams, M.A., Pembroke College, Oxford. Instructor in English Literature to Naval Cadets in H.M.S. Britannia. Part I. 4s. 6d. net.

This book has been received in such an altogether exceptionally favourable manner that selection is well nigh impossible.

OPINIONS OF THE PRESS.

TIMES.-"Written mainly for youthful readers and well calculated to instruct, enlighten, and interest them. It is a plain simple record, lucid, judicious, and impartial."

SATURDAY REVIEW.-"Precisely the book that was wanted. The story of patriotic spirit and heroic endurance inseparable from the history of the British Navy is admirably told in this volume."

SPECTATOR.-"We can praise the brightness of the narrative and the skill with which a difficult subject is made to assume a narrative form."

ACADEMY.-"An excellent abridgment of our Naval History."
GUARDIAN.-"We hardly know how the splendid Naval History of our country could be better treated on the scale laid down, and for such readers, young and old, as Mr. Williams avowedly addresses, than it is treated by Mr. Williams."

DAILY CHRONICLE.-" It is everything it should be, excellently arranged, clear, interesting from the first page to the last and thoroughly trustworthy."

ATHENAEUM.-"Forms a useful handbook for boys and for the general public."
PALL MALL GAZETTE.-"An admirable book for boys, accurate, full, and well written."

MORNING POST.-" Mr. Williams has carried out his undertaking in a highly satisfactory manner. . . . The concise account that is given of the chief naval events in our history, and of the glorious manner in which Britannia's rule was established, renders the work of great value for easy reference, besides providing a means of cultivating a wide conception of England's greatness and of the importance of maintaining her naval supremacy."

BROAD ARROW.-"No better compilation could have been put together for the purpose, and we would heartily rejoice to see it used in every school in England."

OPINIONS OF THE PRESS-Continued.

SPEAKER.-"Mr. Williams' book is welcome and well-timed. Every boy should read it. Every school should utilise it as an easy and a popular holiday task."

CAMBRIDGE REVIEW.-"Mr. Hamilton Williams has met a real want, and a get-at-able school history of our glorious Navy deserves every success."

LEEDS MERCURY.-"There is hardly a page in it which any intelligent boy will consider dull, and no boy will read it from cover to cover without feeling proud to belong to England."

MANCHESTER GUARDIAN.-" The value of this most interesting little book is increased by the addition of a chronological table, some illustrations from old prints, and a good index."

NOTTINGHAM GUARDIAN.-" Deserves a wide circle of readers amongst all classes of all ages."

SHEFFIELD DAILY TELEGRAPH.-"A capital book to put into the hands of our youths."

NORTH BRITISH ECONOMIST.-"Mr. Williams has produced a book which is calculated to stir the blood and kindle the imagination."

BRADFORD OBSERVER.-"A painstaking effort to record the most brilliant deeds of our Navy from the earliest times to Trafalgar. Mr. Williams has succeeded admirably in his purpose."

NEWCASTLE DAILY CHRONICLE.-"A spirited and graphic as well as carefully chronological record of the achievements of the English Navy."

PERTHSHIRE ADVERTISER.-"Does not need Lord Brassey's commendatory note to assure it of a welcome from a patriotic people."

HAMPSHIRE TELEGRAPH.-"The design of the book is excellent."
SUNDAY TIMES.-"Mr. Hamilton Williams has written a book which may well stir the blood of the most aged and jaded of Englishmen, but should fire that of the lads of Britain."

COMMERCE.-"Excellently picturesque and readable, without being slovenly, and made as brief and succinct as is compatible with usefulness. A highly valuable book of exactly the character which is needful at the present time."

SCOTSMAN.-"This very acceptable contribution to our Naval History."
YOR KSHIRE POST.—"Admirably written and as attractive as a novel. It should be a book of real use to the nation."

HASTINGS NEWS.-"The very best short Naval History that we possess."
CHESHIRE EVENING ECHO.-"A vivid picture of the glorious deeds of our noble fleet."

BRITAIN'S NAVAL POWER. Part II. is appearing immediately, containing the History and Development of the Royal Navy to the present day.

MACMILLAN AND CO., LTD., LONDON.

"BRITANNIA" SCIENCE SERIES.

STEAM AND STEAM MACHINERY. By Fleet-Engineer

J. Langmaid, R.N., and Engineer H. Gaisford, R.N. Profusely Illustrated with Wood Engravings. 6s. net.
STEAMSHIP.- "There can be no question that the information given in this book, accompanied as it is by over eighty illustrations of more than usual excellence, will prove highly useful in the subsequent study of the marine engine."

MACHINERY.-"That better authorities than the authors of this publication could have been found, no one would be prepared to state; and their experience has enabled them to produce a volune which is at once thorough and complete. The large number of illustrations which adorn its pages are exceptionally well produced, and every care seems to have been exercised in their selection and appropriateness."

EDUCATIONAL TIMES. - "Those who wish to study the construction of a marine engine . . . cannot do better than procure this volume. It is intelligible to the veriest tyro, and is half made up of illustrations all beautifully drawn and highly finished. We wonder how the book can be brought out at so low a price."

BROAD ARROW.-"The work is altogether a most valuable text-book, and its value is enhanced by the excellent, and in many instances elaborate, plates which it contains."

IRON, STEEL, AND COAL TIMES.-"The whole book is what an elementary text-book should be, simple in its language, precise in its information, and well illustrated. In fact the whole execution of the book cannot be too highly praised. It cannot fail to be of the greatest assistance to the student."

SCIENCE AND ART OF MINING.-" No marine engineer, and no engineering student, marine or otherwise, should be without it."

SCIENCE AND ART DRAWING. Complete Geometrical

Course consisting of Plane and Solid Geometry, Orthographic and Isometric Projection, Projection of Shadows, the Principles of Map Projection, Graphic Arithmetic, and Graphic Statics. By J. Humphrey Spanton. Gold Medallist of the Royal Academy. Instructor in Drawing to Naval Cadets. 8vo. Ios. net. JOURNAL OF THE ROYAL INSTITUTE OF BRITISH ARCHITECTS." Mr. Spanton's goodly volume, viewed as a treatise on Geometrical drawing, is excellent, and gives everything that a student would be expected to require for the examinations which it contemplates. It is no mere elementary introduction, but a good solid treatise on the subject, entering fully into its more abstruse branches, such as the projection of shadows and interpenetration."

NATURE. - "The figures, which must of necessity form a distinctive feature in work of this nature, are good throughout. The pages are remarkably free from error, an the book will no doubt fulfil a want felt by many for a practically complete course.'

PRACTICAL ENGINEER.-"The book altogether is one which we have pleasure and confidence in recommending, both to students and teachers alike."

OXFORD MAGAZINE.-" Mr. Spanton has produced a treatise which is at once completer and more scientific than any of its predecessors. He has not contented himself with giving the constructions for the various problems, but has indicated the reasons for the several steps. The most noteworthy chapters are those on Conic Sections and other Plane Curves, Skiography, Interpenetration of Solids, Graphic Arithmetic, and Statics."

EDUCATIONAL TIMES.-"We need only add that it is an excellent treatise, both in conception and in execution, and marks a new departure in text-books of geometrical drawing."

GLASGOW HERALD.-"The diagrams are excellently done; indeed, the whole book is got up in an almost sumptuous manner. . . . Certainly the book is worthy of praise in every respect."

SCOTSMA N.-"The requirements of the student who is working by himself have been specially considered. It is a capital text-book, the subject being admirably expounded."

"BRITANNIA" SCIENCE SERIES.

Just Published. Price j s.

A COMPLETE PERSPECTIVE COURSE. Including Projection of Shadow's and Reflections, Practical Hints for Sketching and Methods fos Correcting Photographic Distortion. By J. Hemphrey spanton, Gold Medallist of the Royal Academy. For the last thirty years Instructor in Perspective to Naval Cadets.
GL.ASGOH" HER.ALD.-"The author shows great judgment in detecting and meeting the difficulties that puzzle a student who approaches the subject for the fint time. ENGLISH MECHAWMC. -"To those who desire to learn how to draw in I'ensective the work nay be recommefided, as the subject is treated as clearly and successful y as it posibly can lue in a book.
SCOTS.M.1.V. - "There inalso an interesting chapter on the perspective of plist. oraphs and the methuds of correcting the dintortion produced by lenses of variou types.

AN ELEMENTARY COURSE OF PHYSICS. Edited by Rev.
J. C. P. Aldous, M A., Chief Instructor, H.M.S. Britannia, late Fellew if Joun College, Cambridge. Part 1. Mechanics-Propertien of Matter-Hydrastatic Helt, by Kev. J. C. P. Aldous, M..A. 420 pp. 4ヶ. ód. Part II. Wave Motion-5yund
 Part II1. Magnetism-Electricity, by Profesior F. K. Barkell, M.A., I.Sc, University College, Bristol, late Instructor in Natural Science, H..M.S. Fintannha. 230 pp . 2 s .6 d .

Complete in one volume. 7s. 6 al .
PHYSICS NOTE-BOOK. Descriptions and Laws in Letterpress, with space for Students' Drawings of Experinients. 4to. 2s. 6d. net.
K゙IOW'LEDGE:- "The plan of the book will, it strikes us, serve tw useful purp ces, namely, the elimination of a good deal of writung in the laboratory, the time saved lone available for actual experiment; and, second, the necewary firmula being fiven, time f again economised by obviating the irksome task of too-frequent reference tu touk.
$G L . A S G Q H^{\prime} H E R A L D$. -"The text of the crurse in Physics is printed in full, tut abundance of space is left for the student's own sket hes of the apparatus and drawis if experiments. All who have gone through a course of science teaching will at once percelse the exeellence of the plan of this book.

LECTURES MARITIMES. By Leon Delbos, M.A. French Stories and Conversations on Nautical Subjects. 25. net.
SATVRDAY REIIEH.-"The worst of technical handbookst a foreign language is exactly this, that expert and literary competcnce are very rarely; found ugether. Here, so far as we can judge, they are so found, and the renlt is excellent.

SCHOOL GLAN'D/AI.-"These lectures . . . will be found very iveful thans French student while not yet far advanced. The author has endeavoured to premerse throughout a conversational style and has added specimens of ufficial cirrey nelence wlith cannot but prove very suggestive."

SCOTSMAN. - "The language of the sea is as different from that of landsmen ill France as it is in England; and M1. Delbos' book is admirabie as a disciplave to the speerh of French mavigaturs. The readings are varied in style, are well equif ped with nites and a good vocabulary, and make an admirable book of instruction.

SEA STORIES for French Composition. Collected and annetated.
Hy Leos Delbos, M.A. 2s. net.
SCHOOL.MASTIRR. "These spirited stories of sea life will form useful and int revtic exercises for translation into French. At the foot of each page are wites on the reolroiof difficule passages, and the lant part of the book constet. of wome con rice and luat lanon French composition that add to the practical value of an already admiral le look
O.YFORI M.IG.1ZINE.-"This little volume is similar in character and workmat. ship to the collection of French stories by the same editor, of which we spoke favmatly on its appearance. She idea and the execution are alike excellent."

MACMILLAN AND CO., LTD., LONDON.

$$
\frac{E+l}{E \pi T_{1}}
$$

