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ABSTRACT 
 
 
 
Remotely sensed data produced by hyperspectral imagers contains hundreds of 

contiguous narrow spectral bands at each spatial pixel. The substantial dimensionality 

and unique character of hyperspectral imagery requires display techniques that differ 

from those provided by traditional image analysis tools. This study investigated 

techniques enabling the display of hyperspectral images without the interference of in-

scene characteristics that lead to biased representations depending on the content of every 

image under analysis. Utilizing the Principal Components Analysis transformation it is 

possible to simplify the representation requirements while maintaining the info rmation 

contained in the scene. The introduction of an external eigenvector, containing few 

spectral characteristics, into the original scene data removes most of the spectral bias 

allowing for an accurate detection of the constituent elements. The subsequent shift of the 

resulting data to match the respective hue directions in the dataspace allows for image 

color fidelity based on the true composition of the image while all the environmental 

influence has been removed and the final outcome is readily perceived by the human 

vision. 
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EXECUTIVE SUMMARY 
 
 
 
An invariant methodology has been developed in response to the need for 

coherent and consistent display of the hundreds of contiguous narrow spectral bands 

present within hyperspectral imagery. This methodology builds upon existing 

hyperspectral imagery processing techniques and introduces a more robust first look 

capability for unsupervised classification.   

This study investigated techniques enabling the display of hyperspectral images 

without the interference of in-scene characteristics that lead to biased representations 

depending on the content of every image under analysis. The execution of this work was 

accomplished by utilizing ENVI software and the related IDL programming language. 

A selection of particular scenes was done based on their content in a way that 

would provide generalized results for later application of the technique to a broad suite of 

images. The scene processed in this study depicts an area in Lake Tahoe where water and 

vegetation are the predominant elements. These particular elements result in strong 

fluctuations on the eigenvectors generated by the Principal Components Analysis (PCA) 

described in the study. With such variability in the collected imagery it becomes difficult 

to develop a strategy capable of performing unsupervised analysis and detection of 

certain features and materials on the surface. 

The introduction of an eigenvector irrelevant to the particular scene and produced 

externally through the PCA transformation of a different scene provided the means to 

remove much of the variability of the original image and suppress it to elements that have 

negligible influence on the final outcome. The external eigenvector was derived from a 

Davis-Monthan AFB scene that contained mainly pixels depicting desert sand. 

Consequently the spectral profile of this scene contained almost intact the solar radiance 

mostly unaffected by ground element- or atmosphere- induced absorption. This external 

eigenvector was “forced” into the Lake Tahoe scene data through a Gramm-Schmidt 

transformation resulting in a new Principal Component orthogonal set comprised of the 

new 1st, 2nd, and 210th eigenvectors. Utilizing this set of eigenvectors, a 3-dimensional 
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colorspace was generated where the 210th eigenvector comprised the brightness value 

direction mostly unaffected by any particularities of the processed image.  

The shifting of the cone-shaped colorspace performed in this study in a way that 

its vertex coincides with the origin of the dataspace, allowed an accurate determination of 

the various image components hue differences since these components corresponded to 

distinct pixel groups radiating outwards from the colorspace vertex as evidenced in the 

scatterplots generated by ENVI. 

The resulting processed image displayed a certain amount of color consistency 

enabling the analyst to recognize particular patterns and elements without any prior 

knowledge of the scene content. The presented technique demonstrates the usefulness of 

the strategy pursued while the development of a completely automated unsupervised 

technique may become possible in the near future as soon as some of the steps followed 

in this study can be accomplished by software only instead of the analyst’s intervention. 
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I. INTRODUCTION 

Hyperspectral data, a particular type of spectral imagery, is produced when solar 

electromagnetic energy reflected from the earth’s surface is dispersed into many 

contiguous narrow spectral bands by an airborne spectrometer (Vane and Goetz, 1988, p. 

3). 

Each picture element (pixel) of a hyperspectral image can be thought of as a high 

resolution trace of radiation versus wavelength, or a spectrum (Rinker, 1990, p. 6). 

The characteristic wavelength dependent changes in the emissivity and 

reflectivity of a given material can be related to the chemical composition and types of 

atomic and molecular bonds present in that material (Gorman, et. al., 1995, p. 2805). 

The basic goal of this study is to develop an invariant display strategy for 

presenting a wide variety of high-dimensional images in a way consistent to the human 

eye perception, highlighting important scene properties. This study follows an 

incremental approach in presenting the constituents of hyperspectral imagery and the 

methodology followed in developing an invariant display strategy. Chapter II provides 

the background of this study by stating the problem of invariant display strategy, by 

providing an overview of hyperspectral imagery in general and by outlining important 

concepts such as the fundamentals of human vision, Principal Components Analysis and 

the statistical background of spectral imagery. Chapter III details the mapping strategy 

followed in this study providing simultaneously the outline of the already existing 

Principal Components strategy, which forms the basis for further variations. Chapter IV 

discusses the results of the display strategy after its application to a variety of 

hyperspectral scenes. Chapter V concludes the study providing with the connections and 

possible directions to display strategies that will lead to more invariant and universal 

methods for representing hyperspectral scenes. 
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II. BACKGROUND 

A. PROBLEM STATEMENT 

During the past century, several strategies were developed to analyze the 

information carried by the number of spectral samples contained at each pixel in a 

particular scene. Such strategies have been used for target identification, material 

classification, terrain mapping, etc. Once a classification algorithm or image processing 

tool has been applied to a spectral image, the resulting processed data is invariably 

mapped into a pseudocolor image. While many display methodologies are quite 

powerful, as of today there is no standard tool devised to present spectral imagery in 

false-color representations. 

Currently, the use of false color displays is generally reserved as a tool for 

presenting data after processing. A specifically tailored colormap is created to emphasize 

the performance of the classification system, after a particular algorithm has classified a 

scene. Displaying the data is commonly used as an initial processing step, in an attempt 

to distinguish scene elements. However, visualization by itself is rarely used as a tool that 

could allow a spectral analyst to perform identification before implementing more 

powerful processing strategies. Most colormaps in use today have been developed based 

on the mathematics of spectral images without considering the workings of the human 

vision system. It has been demonstrated that failure to consider how the observer 

processes data visually can make information difficult to find in an image, even when the 

data are clearly available (Tyo, et. al., 1998). 

B. HYPERSPECTRAL IMAGERY OVERVIEW 

A review of the historical perspective and the various stages in the analysis of 

hyperspectral images follows so that the need of an invariant false-color mapping strategy 

is acknowledged. Figure 2.1 illustrates the major image analysis paradigms over the past 

seventy years (Stefanou, 1997, p. 13). This is a brief overview of the major ideas behind 

hyperspectral imagery analysis, not including the whole history of it, however. It is  

interesting to point out that there is no visual representation strategy within any of the 

paradigms. 
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Photointerpretation (1930s) 
:  2-D Images 
:  good qualitative analysis (human) 
:  poor quantitative analysis 

 
Digital Imagery (1960s) 
:  2-D Images 
:  Pattern Recognition, Computer Vision 
:  Emphasis on Classification Techniques 

 
Multispectral Imagery (1970s) 
:  3-D Images 
:  Principal Components Analysis 
:  Land Usage Classification 

 
Hyperspectral imagery (1980s) 
:  3-D 
:  Need to reduce data dimensionality 
:  Software Packages with Spectral Libraries 
:  Need efficient processing techniques 

 
Figure 2.1. Major Imagery Analysis Paradigms. 

 

Photointerpretation constituted the beginning of imagery analysis in the early part 

of the past century. A human operator was necessary to extract information of interest 

while analyzing aerial photography. The strength of the human element in interpretation 

was the ability to recognize large-scale patterns (Richards, 1993, p. 75) and make 

inferences based on these patterns. The inherent inability to accurately quantify the 

results in a consistent manner however is the weakness of human image interpretation. 

The computing power that began to become available in the 1960’s and the ability 

to represent data in a digital fashion provided impetus for automation of the 

photointerpretation task into digital imagery analysis. Here, the computer was 

programmed to work within narrow parameters, such as counting the number of 

occurrences of certain brightness values, a task where it outperformed any human analyst 

without any deterioration in accuracy. The fields of pattern recognition and computer 

vision became important, while a statistical description of the data was needed to form 

the basis of classification schemes that could accurately determine the number of pixels 
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in the scene belonging to a certain class. Linear prediction and principal components 

analysis (PCA) were tools that assisted in the automated detection of a target in the two-

dimensional digital images. 

The introduction of multispectral imagery with Landsat-obtained data in the 

1970’s added a spectral dimension to the problem of imagery analysis. That meant that if 

the number of spectral samples at each pixel was N, the multispectral images posed N 

times the amount of data for analysis. A significant role in reducing the dimensionality of 

the data was played by PCA by decreasing from N number of samples to M<N linear 

combinations. This was achieved by exploiting redundancy within the data and assisted 

in the classification of large land areas. The relationship between PCA techniques and 

classification techniques was a sequential operation in that PCA was first applied to an 

image to remove the redundant information or create a better class separation before 

application of a classifier. This preprocessing application of PCA still continues today. 

The 1980’s and hyperspectral imagery presented a new challenge to the existing 

methods of analyzing data. Hyperspectral imagery increased the number of spectral bands 

from less than 10 to more than 200, increasing the volume of data by a factor of 20-50. 

Therefore, the need for data compression emerged and became an important concern. The 

search for new techniques to deal with the large amount of information and the 

corresponding amount of redundancy dictated new views of the analysis paradigm. Ideas 

from the signal processing community provided a means of handling the large amount of 

data and confronting the mixed pixel problem. Software packages dedicated to the 

analysis of hyperspectral imagery incorporated spectral libraries and found particular 

interest in the geological remote sensing community. One of these packages is ENVI, 

which is primarily used in this study providing with powerful image processing tools in 

an IDL language environment. 

C. DEFINITIONS 

Understanding the fundamental ideas behind the various spectral imagery analysis 

techniques is important because all imagery analysis and image display methodologies 

are based on it. The fundamental ideas borrow concepts from statistics, linear algebra, 

and signal processing theory. Presenting these ideas in the context of spectral imagery 

allows the detailed discussion of display strategies that follow. 
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In this section multispectral and hyperspectral images are presented as a means 

for further elaborating on certain properties of the spectral concept. The images are also 

studied from a statistics standpoint that further assists in better understanding the image 

content and the statistical principles used in spectral imagery analysis. Some linear 

algebra and signal processing concepts are defined to provide a framework through which 

certain spectral imagery analysis techniques and display methodologies are presented. 

These guidelines offer a means of defining key concepts that appear throughout this 

study. Due to the nature of this study there is an extensive use of illustrated examples that 

also helps making the above mentioned definitions simple and comprehensive. 

1. Spectral Imagery 

The acquisition of images at multiple wavelengths by spectrometers onboard 

aircraft or spacecraft is defined as spectral imagery. Two major classes of such 

measurements can be distinguished: the traditional multispectral images, such as those 

acquired by the Thematic Mapper (TM) radiometer on the Landsat satellites, and the 

hyperspectral imagery, produced by imaging spectrometers such as in the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) and the Hyperspectral Digital Imaging 

Collection Experiment (HYDICE) systems. Typical Landsat TM and HYDICE images 

will be used in this section to introduce some of the concepts needed for this study. 

Hyperspectral data sets from HYDICE only will be used to illustrate display strategies in 

later sections. The Landsat TM scene in Figure 2.2 is a six-band, 640-pixel 400-pixel 

image of Canon City, Colorado that is provided with ENVI software on the ENVI-DATA 

CD-ROM. The scene is an image of a city surrounded by mountains. The six distinct 

image planes present in Figure 2.2 represent the various wavelength ranges sensed by 

Landsat TM. Notice how objects that appear bright in one band may appear dark in 

another band. The mountain ridgeline, found on the left side of the image, illustrate this 

effect. Through this sort of contrasting, Landsat imagery offers a very basic means of 

discerning the spectral character of a particular class of material. 
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=0.485µmλ =0.560µmλ

=0.660µmλ =0.830µmλ

=1.650µmλ =2.215µmλ  

Figure 2.2. A Typical 6-Band Multispectral Image Produced by Landsat TM.  
(Note different shadings between bands.) 

 

A representative HYDICE scene of Lake Tahoe was chosen for comparison. The 

scene shows a part of the lake itself bordering to a portion of the forest with a shoreline 

between them. Figure 2.3 shows three representations of the hyperspectral image 

consisting of 210 bands, 320 lines, and 320 samples each. The first image is a grayscale 

representation of band 37, the second image is a red, green, blue composite formed using 

bands 176, 91, and 31, and the third image is a red, green, blue composite formed using 

bands 25, 120, and 200. The Lake Tahoe representation in Figure 2.3 shows only a small 

subset of the wide range of color mappings available to an analyst. 
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Figure 2.3. Lake Tahoe Representations (left to right): Grayscale (Band 37), RGB 
(Bands 176, 91, 31), RGB (Bands 25, 120, 200). 

 

One way of visualizing data that has two spatial and one spectral dimension is as 

a cube. Due to ‘finer’ resolution of spectral frequencies, the ability to identify materials 

based on spectral detail is more effective with hyperspectral imagery as opposed to 

multispectral imagery (Goetz, 1995). Figure 2.4 emphasizes the high spectral resolution 

of hyperspectral data by extracting information in the spectral dimension, or downward in 

the axes of the cube. It shows the construction of an observed spectrum associated with a 

particular spatial location, called a pixel vector. 
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Figure 2.4. The Concept of a Pixel Vector. From Vane and Goetz, 1988. 
 
2. Statistical Interpretation 

In order to assist in the quantitative discussion of characterizing the data 

statistically, we need to formally define the concept of the observed pixel vector. Assume 

that the observed pixel vector x is a real valued random vector 

                                       










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
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=

L

1

x

x

x M                                                            (2.1) 

where the components {x1,…,xL} correspond to measured brightness values in each of L 

spectral bands. Since a stochastic view of the data assumes that these vectors are random 

entities, they can be characterized by describing their behavior using statistical concepts. 

Exact statistical descriptions of their behavior are unavailable in real applications, so we 

must rely on methods that estimate the statistics of the observed random vectors. 

There are three major statistical definitions of interest in this respect. The first is 

the concept of expectation. The expectation of a random vector is called the mean or the 

average value that the random vector assumes and is denoted as E{x}. The mean is also 

called the first moment since it involves only the random vector itself and not products of 

the components of the vector x (Therrien, 1992, p. 33). In using the observed data, it is 

often desirable that the statistical expectation of the estimated mean equal the actual 

mean. This is called an unbiased estimate of the mean. The framework for this estimation 

is to view the spectral image or scene as a collection of N random pixel vectors. This 
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implies that the scene is comprised of N pixel vectors, each consisting of an L-band 

spectrum. The unbiased estimate of the mean spectrum for the scene is given by: 

                               ∑
= 
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where xj represents the spectrum of the jth pixel of the scene. The mean spectrum vector, 

m, of Equation 2.2 can also be interpreted as a L-dimensional vector with each 

component representing the average brightness value over the entire image for one 

particular band. 

The second definition of importance in characterizing random vectors is that of 

the covariance matrix. The covariance matrix is defined in vector and expanded 

component form as: 
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where m is the mean vector of the entire image defined in equation 2.2. The covariance 

matrix is symmetric, and the elements of the main diagonal represent the variances 

associated with each of the component variables of the random vector x. In the case of 

spectral imagery, the variance is a measure of how the brightness value of a particular 

band varies over all spatial image pixels and the covariance describes the scatter of pixel 

points in the principal components vector space. 

The covariance matrix is the set of second central moments of the distribution, 

which are also referred to as moments about the mean since the mean component is 

subtracted from each random variable. The unbiased estimate of the covariance matrix is 

generated by: 

                      ( )( )∑ ∑
=

−−
−

=
x

N
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1

                                       (2.4) 
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where xj is again the pixel vector associated with the jth spatial location (Richards, 1993, 

p. 134). When the covariance of two random variables is zero, then the random variables 

are said to be uncorrelated, which implies that these random variables were generated by 

separate random processes (Leon-Garcia, 1994, p. 337). In the calculation of the unbiased 

estimates of statistical quantities, the computational expense of the covariance matrix for 

a large number of samples, N, must be balanced with the desired degree of accuracy for 

the estimate. More samples imply better estimates, and in order to ensure sufficient 

accuracy, the number of samples must be sufficiently large (Fukunaga, 1972, p. 242). 

The third statistical definition involves an issue that requires clarification 

regarding the term “correlation” matrix. In signal processing terminology, the correlation 

matrix stated as E{xxT} is formed exactly as the covariance matrix, except that the mean 

vector is not subtracted from the random vector x (Therrien, 1992, p. 33). 

While the correlation matrix is more frequently used in signal processing where 

zero mean signals are the norm, remote sensing uses the covariance matrix since negative 

radiance values do not have a clear physical significance. 

In statistical and remote sensing applications, the correlation matrix is usually 

defined in terms of the covariance matrix. The ijth element of the statistical version of the 

correlation matrix is: 

                                     
jjii

ij
ij

σσ

σ
=ρ                                                       (2.5) 

where s i j is an element of the covariance matrix and the covariance between bands i and j 

in Sx, s ii represents the variance of the ith band of data, and the square root of variance is 

defined as the standard deviation (Richards, 1993, p. 135). 

The statistical and signal processing versions of correlation do not produce the 

same matrix. The statistical definition produces a matrix that has a unit main diagonal 

and can be represented as: 
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(Searle, 1982, p. 348). Apparently, dividing the covariance matrix elements by 

their standard deviations has the effect of reducing all the variables to an equal 

importance since all have unit variance. The signal processing definition does not 

produce a unit diagonal matrix, though it is symmetric. The off-diagonal elements of Rx, 

represented by ?i j are called correlation coefficients. They range between –1 and +1 in 

value, and provide a measure of how well two random variables vary jointly by 

quantifying the degree of fit to a linear model (Research Systems, Inc., 1995, p. 20-6). A 

value near +1 or –1 represents a high degree of fit between the random variables to a 

positive or negative model, whereas a value near zero implies that the random variables 

exhibit a poor fit to the linear model. The conclusion that may be drawn is that a high 

degree of fit implies well-correlated random variables, whereas a correlation coefficient 

of zero is indicative of statistically orthogonal random variables. We will assume that we 

are dealing with the statistical definition of the correlation matrix, though a more 

descriptive term for the “correlation” matrix might be the “normalized” or “standardized” 

covariance matrix. 

The definitions of statistical properties become clearer when they are linked to a 

physically observable phenomenon. The next few illustrations attempt to show the large 

amount of information revealed by the statistics of the data. Table 2.1 shows the 

covariance and correlation matrices for the Landsat data of Canon City (Diersen, 2000, p. 

19). 
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Covariance Matrix for Canon City TM Data 
     Band        Band 1        Band 2         Band 3         Band 4         Band 5        Band 6 
       1         45.391430   
       2         54.157121   69.760492    
       3         62.472157   79.432844   96.376932                      
       4         48.824654   64.610172   77.863810   100.500970      
       5         48.318837   64.421129   79.247686   74.711596    87.056432    
       6         43.826169   57.616349   70.393457   57.981971    70.991722    63.739045 

 
Correlation Matrix for Canon City TM Data 

      Band       Band 1        Band 2         Band 3         Band 4         Band 5        Band 6 
1 1.000000   
2 0.962418        1.000000   

       3        0.944524        0.968744      1.000000   
       4        0.722881        0.771633      0.791159     1.000000   
       5        0.768651        0.826653      0.865166     0.798735     1.000000   
       6        0.814786        0.864049      0.898138     0.724444     0.953025     1.000000 
 

Table 2.1. Covariance and Correlation Matrices of Landsat TM Data. 
 

In examining the Landsat covariance matrix, we see that the highest variance 

results from band four, the lowest covariance is between bands one and six, and the 

highest covariance is between bands two and three. The correlation coefficient is highest 

between bands two and three and is lowest between bands one and four. These statistics 

can lead to some conclusions. First, band four has more variance, or contrast over the 

scene, than any other band. Although it can be assumed that this means that band four can 

detect some sort of unique information better than the other bands, first a point has to be 

clarified: whether this variance was caused by signal coming from the ground or it was 

only noise introduced by the sensor or the atmosphere in the particular band. If the signal-

to-noise ratio of the sensor in band four is known then the question can be answered. 

Signal- to-noise ratio (SNR) is the ratio of signal power to noise power, and can be 

obtained using the variances instead of the power itself. Second, band one exhibits the 

lowest correlation coefficient when compared to all other bands. Similarly, before an 

assumption is made that band one detects unique information, the signal-to-noise 

characteristics of band one must be investigated. For example, if band one consisted 

purely of noise, then it would exhibit an even lower correlation with other bands, close to 

zero if not zero proper. This is independent of the other bands, not because it carries any 

information. 
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Another means of characterizing the statistics of the data is the scatter plot. The 

scatter plot visually represents the two-dimensional distribution of pixels selecting two of 

the available bands. Two band combinations are shown in Figure 2.5. The scatter plot is a 

representation of all the two-dimensional random pixel vectors formed by the two bands 

of interest. By plotting the data of one band against that of another, information regarding 

the statistical similarity of bands may be inferred. The scatter plots for the Landsat image 

show a definite linear feature when a high correlation coefficient exists, as between bands 

two and three. Thus, bands two and three are statistically similar, to the extent that there 

appears to be a near linear relationship between their random variables. The correlation 

coefficient of 0.9687 substantiates this observation. This is in contrast to the more 

distributed shape for the scatter plot of band one data versus band four where the 

correlation coefficient is 0.7229. 
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Figure 2.5. Scatter Plots of Canon City Landsat TM Data Showing Highly Correlated 

(2nd & 3rd) and Less Correlated (1st & 4th) Band Combinations. 
 

This graphically depicts the more independent and less correlated nature of the 

data in band four, as evidenced by the lower correlation coefficient of 0.7229. Groupings 

of pixels that have the most variance and will form the basis for the studied false-color 

mapping strategy are clearly shown in the scatter plot. 

Another technique used to extract information about the scene is analyzing the 

plots of various pixel vectors as seen in Figure 2.6 It becomes apparent how the spectrum 

of the vegetation in a Lake Tahoe scene sharply spikes up at wavelength 700nm whereas 



16 

the spectrum of the road in a Davis-Monthan AFB scene remains relatively unchanged. 

This corresponds to the chlorophyll absorption band edge that occurs at a wavelength of 

about 700nm. This feature indicates that there are significant differences in the spectral 

shapes of the observed pixel vectors that start at the particular wavelength. The 

interpretation lies on the fact that the scene consists of both vegetation and non-

vegetation pixel vectors. If the pixel vectors did not possess significantly different shapes, 

then this feature would not have manifested itself. 

Davis-Monthan AFB Scene Pixel Spectrum Lake Tahoe Scene Pixel Spectrum

 

Figure 2.6. Typical Pixel Vectors From Hyperspectral Images. 
 

Although these observations are superficial, they demonstrate how a certain 

amount of useful information can be derived from the statistics of the scene. A more 

refined study of scene statistics, such as that pursued by Brower, et. al., (1996), finds that 

the scene statistics can be used to differentiate urban and rural areas. This idea can be 

carried further to the problem of differentiating small man-made objects in a natural 

background but it is beyond the scope of this study. Considered independently, the scene 

statistics are interesting in that they provide further perspective and understanding into 

the nature of the scene. It is also important that by preparing the ground for an 
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understanding of the techniques that use statistics to describe the background, the 

invariant display problem can be handled more efficiently. 

3. Related Signal Processing and Linear Algebra Concepts 

a. Linear Transformations of Random Variables 

Linear transformations will be used throughout this study as the 

fundamental basis of the hyperspectral image analysis technique. The statistical 

definitions of the data using the covariance matrix and its standardized form, the 

correlation matrix, form the basis for an invariant display strategy. Understanding the 

effect of a linear transformation on these matrices is also important and will be addressed. 

A linear transformation of a vector x into a vector y is accomplished by 

the matrix A in the relation y=Ax. Figure 2.7 illustrates this concept using two-

dimensional vectors. 

 

 

  

Figure 2.7. Linear Transformation of a Two-dimensional Vector. 
 

The transformation matrix A rotates and scales the vector x into the new 

vector y. Since second order moment matrices of random vectors are symmetric, we may 

assume that A is symmetric. The expectation operator is linear, which implies that the 

mean of the random vector x is transformed as: 

       E{y}=E{Ax}=AE{x}                                               (2.7) 

which can be restated as my=Amx, where the subscript on the mean vector denotes which 

random vector the mean vector represents. Similarly, using the definition of the second 
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order moment, the covariance matrix is transformed by the matrix A so that (Therrien, 

1992, p.45) 

               ∑ ∑=
y x

TAA                                                  (2.8) 

A particularly useful transformation is one which transforms a random 

vector x into another random vector y whose kth and lth components have the property of 

statistical orthogonality such that (Therrien, 1992, p.50): 

              E{yky1}=0     k≠1.                                             (2.9) 

The statistically orthogonal or uncorrelated random variables that result 

from such a transformation cause the transformed data covariance matrix to be diagonal. 

The means of achieving such a transformation that diagonalizes the covariance matrix is 

provided by the concept of eigenvectors and eigenvalues. 

b. Eigenvectors and Eigenvalues 

The eigenvalues of a L×L matrix A are the scalar roots of its characteristic 

equation, and are denoted as {? 1,…, ?L}. The nonzero vectors {e1,…, eL}, which satisfy 

the equation  

               Aek=?kek                                                                                      (2.10) 

are called the eigenvectors of A. An eigenvector defines a one-dimensional subspace that 

is invariant with respect to premultiplication by A (Golub and Van Loan, 1983, p. 190). 

In applying the above definitions of the eigenvalue and eigenvector to the L×L covariance 

matrix, we obtain 

            ∑ λ=
x kkk .ee                                                    (2.11) 

The covariance matrix in this relation may be viewed as a linear 

transformation that maps the eigenvector ek into a scaled version of itself (Therrien, 1992, 

p. 50). Because of the symmetry of the real covariance matrix, the L eigenvalues are 

guaranteed to be non-negative and real (Searle, 1982). It is also possible to find L 

orthonormal eigenvectors {e1,…, eL}, that correspond to the L eigenvalues (Therrien, 

1992, p. 50} that satisfy  
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i δ=                                                      (2.12) 

c. Unitary Transformations 

Suppose that the eigenvectors of the L×L covariance matrix Sx are packed 

into a matrix E as column vectors. Then, because of the orthonormality of the 

eigenvectors, the matrix E transforms the covariance matrix in the following manner:  
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following the rules of linear transformations (Therrien, 1992, p. 45). The transformation 

matrix ET  defines a linear transformation of a random vector x into a random vector y, by 

the relation 

                    y=ETx                                                         (2.14) 

in which the covariance matrix of y is a diagonal matrix represented by ? . This 

diagonalization of the covariance matrix Sx is another way of stating that the components 

of random vector y are now uncorrelated since all off-diagonal elements of ?  are zero. 

The orthonormal columns of E imply that the transformation matrix ET  represents a 

unitary transformation defined by (Therrien, 1992, p. 51) 

                   ETE=EET=I                                                 (2.15) 

d. A Geometric Interpretation of the Unitary Transform  

If we assume that the data has a Gaussian distribution, then we can 

describe its probability density function (pdf) with a family of ellipsoids as: 

( ) ( )∑−
=−−

1

x x
T

x ttanconsmxmx                               (2.16) 

Since the matrix E is orthonormal, the implication is that the eigenvectors 

of Sx are the same as those of its inverse, and the eigenvalues of Sx
-1 are simply the 

reciprocals of those of Sx (Jolliffe, 1986, p. 14). Thus, the inverse transformation may be 

written as 

                    x=ETy                                                        (2.17) 

and the equation defining the contours of constant density may be rewritten as: 
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which is the equation for an ellipse with the principal axes of the ellipse being aligned 

with the eigenvectors and the magnitudes proportional to ?k 
½ (Jollife, 1986, p. 19). This 

geometrically illustrates the role that eigenvalues and eigenvectors play in the unitary 

transform. Figure 2.8 shows that the unitary transformation is equivalent to a rotation of 

the coordinate axes. 

 

  

Figure 2.8. The Unitary Transformation as a Rotation of Axes. From Richards, 1993. 
 

The tilt of the ellipse with respect to the original coordinate system is 

indicative of the fact that correlation exists between the original vector components 

(Therrien, 1992, p. 59). In the new coordinate system defined by the unitary 

transformation, the axes of the ellipse are parallel to the new axes, showing that the 

vector components are indeed uncorrelated in the coordinate system. Although the 

assumption was made that the data was Gaussian, this concept of two-dimensional 

ellipsoids is a useful one in understanding the workings of the transformation even for 

non-Gaussian data. In this context, the scatter plots of the Landsat data are useful in 

portraying a rough idea of the distribution of the probability density function of the 

random vectors. 
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4. Principal Components Analysis 

a. General 

In spectral imagery high correlation is observed between adjacent bands. 

The spectral overlap of the sensors and the wide frequency range of the energy reflected 

from the ground account for this high correlation (Rao and Bhargava, 1996, p. 385). The 

resulting redundancy observed in the data, therefore, needs to be removed. In order to 

maximize the spectral variability in hyperspectral remote sensing, an analytical technique 

called Principal Component Analysis (PCA) is used. It is based on the linear 

transformation of the observed axes to a new coordinate system. This unitary 

transformation is graphically depicted in Figure 2.9 as operating on observed pixel 

vectors to produce new pixel vectors with uncorrelated components. The principal 

components transformation decorrelates the information in the original bands and allows 

the significant information content of the scene to be represented by a smaller number of 

linear combinations of the original bands called principal components. 

 

  

Figure 2.9. PC Transformation Depicted as a Linear Transformation. 
 

Since PCA methods are largely based on the statistics of the observed variables, requiring 

no a priori deterministic information about the variables in the image, they are of 

considerable interest in developing an invariant display strategy. Therefore a 

methodology can be developed where no preprocessing needs to be performed prior to 

displaying the data utilizing “global” a priori knowledge. 
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b. Background 

Statistics and linear algebra are the fields where the PCA idea originated. 

The mathematical underpinnings of PCA deal with the diagonalization of the covariance 

matrix via eigendecomposition of the data by unitary transform and serves as a bridge 

between matrix algebra and stochastic processes (Haykin, 1996). The wide applicability 

of PCA is due to the fact that it assumes a stochastic outlook of the data, which is 

fundamental to the analysis of data in many scientific disciplines. The views of two 

disciplines which employ PCA will be investigated in order to better visualize some of 

the mechanics of this seemingly simple transformation. The two views are those of 

multivariate data analysis and signal processing. The reason behind the preference for the 

use of this technique in remotely sensed imagery analysis, in general, and particularly in 

an invariant display strategy, will be better understood through the presentation of the 

ideas that motivate the PCA. 

(1) Multivariate Data Analysis View.  PCA was described by 

Pearson in 1901 and introduced as the Hotelling transform in 1933 by Hotelling for 

application in educationa l psychology (Singh and Harrison, 1985, p. 884). Hotelling’s 

goal was to find a fundamental set of independent variables of smaller dimensionality 

than the observations that could be used to determine the underlying nature of the 

observed variables (Hotelling, 1933, p. 417). In many scientific experiments, the large 

number of variables makes the problem of determining the relative importance of specific 

variables intractable. Hotelling’s method makes the problem manageable by discarding 

the linear combinations of variables with small variances, and studying only those linear 

combinations with large variances. Since the important information in the data is usually 

contained in the deviation of the variables from a mean value, it is logical to seek a 

transform which provides a convenient means of identifying the combinations of 

variables most responsible for the variances (Anderson, 1984, p. 451). The linear 

combinations of the original variables which behave sufficiently similarly are combined 

into new variables called principal components. In this context, principal components 

analysis studies the covariance relationships within a data set by investigating the number 

of independent variables, and identifies the natural associations of the variables. 



23 

Mathematically represented, each principal component is a scalar 

formed by a linear combination of the elements of the observed random vector x, where 

each vector component corresponds to a random variable. The principal components are 

constructed in such a manner as to be uncorrelated with all other principal components 

and ordered so that variance is maximized (Jolliffe, 1986, p. 2). The kth principal 

component is obtained by multiplying the transposed kth eigenvector of Sx by the data 

vector x, as depicted in the equation 

               yk=ek
Tx.                                                          (2.19) 

The kth principal component is also called a score, and the 

components of the eigenvector are called loadings because they determine the 

contribution of each original variable to the principal component. Generalizing the scalar 

result of Equation 2.19 to a vector result: 

              y=ETx                                                              (2.20) 

a vector of L principal components is obtained when the  product of all the transposed 

eigenvectors of Sx and the data vector, x are taken. 

While the property of the unitary transform to produce new 

uncorrelated variables has been previously discussed, the property of the unitary 

transform to maximize the variance, which is central to the PCA, will be discussed 

further. The best illustration of this property is the algebraic derivation of the PCA. The 

goal is to maximize the variance of the first principal component, denoted as VAR[y1] or 

VAR[e1
Tx]. By the definition of variance as a second order moment, this is equivalent to 

maximizing e1
TSxe1, where the eigenvectors are orthonormal, so that   e1

Te1=1. The 

method of Lagrange multipliers is employed so that the expression to be maximized is 

differentiated with respect to the eigenvector and set equal to zero as 
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In Equation 2.21, ? is a Lagrangian multiplier in the left hand expression 

and corresponds to the largest eigenvalue of Sx in the right hand expression, and e1 is the 

eigenvector corresponding to the largest eigenvalue (Jolliffe, 1986, p. 4). Thus, the 

eigenvalues of Sx represent the variances of the principal components, and are ordered 
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from largest to smallest magnitude. If the original variables have significant linear 

intercorrelations, as spectral imagery does, then the first few principal components 

account for a large part of the total variance. (Singh and Harrison, 1985, p. 883). 

(2) Signal Processing View.  In the analysis of random signals, the 

key is to have a set of basis functions that make the components of the signal statistically 

orthogonal or uncorrelated (Therrien, 1992, p.173). The Karhunen-Loeve Transform 

(KLT) was introduced in 1947 for the analysis of continuous random processes, and is 

developed here in its discrete form, the DKLT. It is the same unitary transform previously 

presented, but is posed to solve the problem from a different perspective. The motivation 

for the DKLT is actually an expansion, best seen in Figure 2.10, which shows a discrete 

observed signal as a weighted sum of basis functions, which are in fact the eigenvectors 

of the covariance matrix. The observed pixel vector spectrum may be thought of as a 

discrete signal, indicated by the square brackets in the notation of Figure 2.10. 

 

  

Figure 2.10. The Karhunen-Loeve Expansion in Terms of Discrete Signals. After 
Therrien, 1992. 

 
Whereas in the PCA approach the original variables are weighted 

by eigenvector components to form principal components, in the DKLT the eigenvector 

basis functions, {e1,…,eN}, are weighted by the principal component scores, {y1,…,yN}, 
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to form a representation of the observation. The DKLT has an optimal representation 

property in that it is the most efficient representation of the observed random process if 

the expansion is truncated to use fewer than N orthonormal basis functions. This makes it 

very attractive from a compression perspective, and explains the popularity of DKLT as a 

compression scheme. 

Another important property associated with the DKLT is the 

equivalence between the total variance in the vector x and the sum of the associated 

eigenvalues. This property is mathematically stated by the equation 

            ∑ ∑
= =

λ=σ
L

1i

L

1i
i

2
i                                                     (2.22) 

In equation 2.22, s 2
i is the variance of the original variables and ?i 

is the eigenvalue representing the variances of the transformed variables and the index i 

ranges over all L bands. This property only holds for the orthonormal vectors that are 

eigenvectors of Sx and not for other orthonormal basis sets of vectors (Kapur, 1989, p. 

501).  

When a representation of a signal is formed by using fewer than L 

basis functions, the mean square error (MSE) is a means of quantifying how well the 

representation corresponds to the original signal by measuring the power of the difference 

between the representation and original signals. The MSE incurred by truncating the 

representation is equal to the sum of the eigenvalues of the covariance matrix that were 

left out of the representation (Therrien, 1992, p. 179). Conversely, the largest eigenvalues 

and their corresponding eigenvectors can be used to represent the inherent dimensionality 

of the signal. This corresponds to the number of dimensions that would be needed to 

represent the signal to some predetermined MSE. 

In signal processing applications, the DKLT is a means of 

compressing data by representing it with a truncated number of eigenvectors. It is also an 

optimum way of detecting a signal in noise and works particularly well for the detection 

of narrowband signals. Since a significant portion of the signal energy lies in the 

direction of the first few eigenvectors, those eigenvectors can be said to define a subspace 

for the signal and all other eigenvectors define the subspace for the noise. This simple 
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example is the basis for several high resolution methods of spectral estimation used to 

detect sinusoids in noise (Scharf, 1991, p. 483). 

c. Operation 

PCA uses the eigenvectors of Sx to assemble a unitary transformation 

matrix which, when applied to each pixel vector, transforms the original pixel vector into 

a new vector with uncorrelated components ordered by variance. The eigenvector 

components act as weights in the linear combination of the original band brightness 

values that form the principal components (Richards, 1993). The new image associated 

with each eigenvector is referred to as the principal component image. The principal 

component images are ordered from largest to smallest in terms of variance, and are 

revealing in their composition. It must be kept in mind that the PCA is an exploratory 

technique that constructs new variables called the principal components (PCs) (Singh and 

Harrison, 1985). These new variables are artificial and do not necessarily have a physical 

meaning, as they represent linear combinations of the observed variables and cannot 

themselves be observed directly, but they should be related because the first eigenvector 

in spectral imaging is a representation of the mean solar energy of the scene and the next 

few eigenvectors deviate as the variance changes.  

In traditional application of PCA, the hope is that the transformation will 

enhance the contrast of the image by grouping like areas together to such an extent that 

objects or areas of interest can be more readily discriminated in the principal component 

images. Jenson and Waltz (1979) give an analogy that clearly explains the role of PCA in 

the traditional application. They imagine a tube filled with ping-pong balls. Looking at 

the tube directly from an end, only one ball is apparent, the same way that the original 

spectral image is. Turning the tube sideways, all of the balls become visible (Jenson and 

Waltz, 1979, p. 341). PCA has the effect of decorrelating the data so that independent 

sources of spectral features can be discerned. 

Though PCA assumes no a priori knowledge of the scene, PCA as 

described here depends essentially on the scene because scene-specific features will 

determine the shape of the eigenvalues. Nevertheless, certain general observations can be 

made regarding the PCA and an associated physical meaning without any knowledge of 

the scene. The following figure highlights these observations. Figure 2.11 shows the first 
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20 PC images of the Lake Tahoe HYDICE scene. For a non-negative symmetric matrix, 

the first eigenvector is all positive. A weighted sum loosely corresponds to the average 

spectral radiance. All other eigenvectors must have at least one sign change to be 

orthogonal to the first eigenvector. This is due to the fact that in forming the first 

principal component image, the first eigenvector has heavily weighted the original bands 

possessing the most variance. Thus, the first principal component image will have a 

variance that is larger than that of any single original band image. It is the weighted sum 

of the overall response level in all original band images. The second principal component 

image is the difference between certain original band images. As the principal component 

image number increases, the PC image holds less of the data variance. This effect 

manifests itself as a rough decrease in image quality with increasing PC image number. 

 

Figure 2.11. First 20 PC Images of Lake Tahoe. 
 

In Figure 2.11, the fact that the first twelve PC images contain relatively 

clear details of the scene indicates that these PC images together account for the majority 

of the overall spectral variance in the scene. It is interesting to note that when using PCA, 

the higher numbered PC images sometimes contain a large amount of local detail. 

Though it is tempting to dismiss the higher numbered PC images as not containing any 
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useful information because they have low variance, one must keep in mind that the 

covariance matrix on which PCA is based is a global measure of the variability of the 

original image (Richards, 1986, p. 138). This implies that small areas of local detail will 

not appear until higher PC images since they do not make a statistically significant 

impact on the covariance matrix. Another point that is noteworthy is the issue of SNR. 

PCA orders PC images based on total variability. It does not differentiate between the 

variability representing desirable information and the variability representing undesirable 

noise (Jenson and Waltz, 1979, p. 338). Ready and Wintz (1973) argue that PCA 

improves the SNR of the spectral image. Their definition of noise is additive white 

Gaussian noise with a variance of s n
2. The SNR of the original image is  

              ( ) 2
n

2
x
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σ

σ
= max                                               (2.23) 

which is the maximum original band variance over the noise variance. The SNR of the 

PC images is 
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which is the largest eigenvalue (or new variance) over the noise variance. Since the first 

eigenvalue always has a greater variance than any of the original bands, the improvement 

in SNR is 
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and will be greater than one. The SNR improvement applies as long as the variance of the 

eigenvalue exceeds that of the original bands. The diminishing SNR manifests itself in 

Figure 2.11 as an increased fuzziness of the image that begins to appear around the ninth 

PC image. 
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Figure 2.12. Lake Tahoe False Color Image. 
 

A traditional means of presenting PCA images is to form a false color 

composite image consisting of the first, second, and third PC images as the red, green, 

and blue colors. Figure 2.12 presents such false color image for the Lake Tahoe scene. 

This mode of presentation captures the major sources of spectral variability in one image. 

The levels of detail and contrast apparent in the composite image are interesting to 

compare with the original image shown in Figure 2.13. 
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Figure 2.13. Original Lake Tahoe Image in Visible Spectrum. 
 

An aspect of PCA, rarely mentioned in the related on PCA literature, is the 

characterization of the original and PC images using the behavior of the eigenvalues and 

eigenvectors. These attributes form an important part of analyzing the scene information 

content. In spectral images, the typical trend in the eigenvalue magnitude is that a very 

small number of eigenvalues have a disproportionately large magnitude compared to the 

others. The obvious reason for this distinct grouping of eigenvalues is that the data in the 

original image exhibits a high degree of interband correlation and the magnitude of the 

eigenvalues reflects the degree of redundancy in the data (Richards, 1986, p. 137). 

Phrased another way, the inherent dimensionality, which is represented by the number of 

large eigenvalues of the data, is much smaller than the original number of dimensions. 

From a compression view this is good, since the image variance will be accounted for by 

a very small number of principal components. From a strict analysis viewpoint, it does 

not reveal as much information. If the problem were that of a narrowband signal 

embedded in noise, then the large eigenvalues would be associated with the signal. In the 

hyperspectral imagery analysis problem, the spectrum associated with a target is not 
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narrowband, and therefore it is not clearly delineated from the eigenvalues of the 

background and other interfering signatures. The eigenvalues can be divided into a 

primary and a secondary set, where the secondary set roughly corresponds to the effects 

of instrumentation noise (Smith, Johnson, and Adams, 1985, p. C798). The primary set 

corresponds to the linear combinations of original bands that cause the most variance in 

the scene. The quality of the first eight PC images noted in Figure 2.11 corresponds to the 

steeper initial slope of the detailed eigenvalue plot. The above results clearly indicate that 

the variance for the transformed data are concentrated in the first few PC bands, 

indicating that the dimensionality is on the order of 10 instead of 210. It is important to 

note that the variance of the original data is equal to that of the transformed data. This 

property shows that the PC transformation simply redistributes the concentration of 

variance in the bands of a spectral image so that the higher variances occur in the first PC 

bands (Stefanou, 1997). 

The eigenvector behavior is less clear than that of the eigenvalues. The 

eigenvectors form the bases of the principal components subspaces. Physically, the 

eigenvectors correspond to the principal independent sources of spectral variation. As 

such, the wavelengths at which the maxima and the minima of the eigenvectors occur 

account for the wavelengths that contribute the most to a particular independent axis of 

variation (Smith, Johnson, and Adams, 1985, p. C808). A signal processing interpretation 

of the eigenvectors is that the eigenvectors act as band pass filters that transform an input 

observed spectrum into a new spectrum that has fewer data points (Smith, Johnson, and 

Adams, 1985, p. C808). This interpretation is comparable to the optimum representation 

property of the DKLT. Further examination of eigenvector behavior emphasizes the 

correlation between the eigenvectors and variance occurring in the original image bands 

and it can be shown that the eigenvectors of the PC transform tend to emphasize those 

original bands that contain the most variance with larger weights and inclusion in the low 

numbered eigenvectors (Stefanou, 1997). 

The PCA technique has been examined from the perspective of its results 

and the significance of its inner workings. Key points in PCA analysis are: 
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-In general, PCA provides an analysis of the data, 
which guarantees an output set of images ordered by 
variance. 

-Assuming white noise, it improves the SNR in the 
transformation from the original image cube to the PC 
images. 

-The PC images highlight spectral regions of high 
variance. However, an area of local detail may not be 
highlighted by a PC image due to its statistical 
insignificance. 

-PCA does not differentiate between noise and 
signal variances because it operates strictly on the variance 
of the observed data. 

Concerning the implementation of PCA, it has to be noted that the 

computation of the eigenvectors and eigenvalues of Sx is an expensive operation. Specific 

methods from computational linear algebra such as inverse iteration, QR factorization, 

and singular value decomposition (SVD) are all applicable in their calculation (Watkins, 

1991).  

The previous discussion highlights three crucial issues in development of 

an invariant display strategy utilizing principal components. The first issue is the fact that 

PC band number one is typically a representation of the scene average brightness and is 

generally dominated by solar radiance, but major scene constituents such as water and 

vegetation in the Tahoe scene can affect it. The second issue is that the PC transformation 

outputs a set of images ordered by variance with the 2nd, 3rd, …, Nth PCs dependent on 

the specific contents of the image and the third issue is that PCA is sensitive to scaling of 

the data to which it applied. 

5. Color Vision 

a. Description 
An average human can perceive light radiated at wavelengths ranging 

between less than 400 nanometers for violet to more than 700 nanometers for red. The 

detected light bandwidth is perceived as a smoothly varying rainbow of colors, called 

visible spectrum.  

The structure of the human eye resembles that of a camera, featuring the 

lens and the iris diaphragm as well as the photosensitive layer of the retina covering the 
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inner wall at the backside of the eyeball. However, while a photographic film presents a 

relatively constant resolution and spectral sensitivity throughout its exposed surface, the 

human eye presents a wide variety of performance and capabilities. The human eye apart 

from its ability to perceive motion in a wide angle and in a wide variety of illumination 

levels, it has also the ability to detect variations of light and colors utilizing 

photoreceptive cells located at the retina. These nerve cells are called rods and cones and 

cover the majority of the eye’s interior surface, hence the very wide angle of the human 

peripheral vision. A cross section of the human eye is illustrated in Figure 2.14. 

 

  

Figure 2.14. Cross Section of the Human Eye. 
 

While the rods in the retina are long and slender and more sensitive to 

light, the cones are shorter and thicker exhibiting less sensitivity to the light. In Figure 

2.15 the relative sensitivity of rods and cones is shown as a function of illumination 

wavelength. 
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Figure 2.15. Sensitivity of Rods and Cones (Pratt, 1991). 

It has been experimentally determined that there are three basic types of 

cones in the retina (Wald, 1964). These cones have different absorption characteristics as 

a function of wavelength with peak absorptions in the red (580 nm), green (540 nm) and 

blue (450 nm) visible spectrum. The combination of the cones excited and the level of 

their excitation determine our perception of color. Figure 2.16 illustrates the spectral 

sensitivity of the typical human visual system. The RGB sensors are denoted with the 

Greek letters ? (rho for red), ? (gamma for green) and ß (beta for blue). Human vision is 

especially sensitive to low ambient illumination conditions. The contribution of the cones 

is little or none in low illumination conditions and primarily the rods accomplish light 

perception. 
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Figure 2.16. Spectral Absorption Curves (Scott, 1997). 
 

The sensitivity curves of the Rho, Gamma and Beta sensors in the human 

eye determine the intensity of the colors perceived for each wavelength in the visible  

spectrum. An approximate illustration of the visible spectrum adjusted for the sensitivity 

curves of all three kinds of sensors is depicted in Figure 2.17. 

  
Figure 2.17. Human Visual Spectrum (Scott, 1997). 

 

There are three perceptual definitions of light: brightness, hue, and 

saturation. If we observe two light sources with the same general spectral shape, the 

source with the greater intensity will generally appear to be perceptually brighter. Hue is 

the attribute that distinguishes a red color from a blue color or a violet color. Saturation is 

the attribute that distinguishes a spectral light from a pastel light within the same hue. 
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b. Comparison to Principal Components 

Processing of color within the human eye is accomplished through an 

achromatic channel and two opponent-color channels. The opponent-color channels are 

the red-green opponent and the blue-yellow opponent channel (Wyszecki and Stiles, 

1967; Buschbaum and Gottschalk, 1983). The A, R-G, and B-Y channels are formed 

from a principal components analysis, are statistically uncorrelated, and therefore make 

up orthogonal dimensions in a 3-D color space. Furthermore, it has been shown that there 

are two fundamental axes within color space comprised of a R-G plane where all colors 

have an absence of yellowness or blueness and a B-Y plane where all colors have an 

absence of redness or greenness. The intersection of these two planes is a line with 

absence of all color, or a gray line, which corresponds to the achromatic channel 

(Krauskopf, et al., 1982). 

We can use the concept of three orthogonal axes to develop the hue, 

saturation, and value (H-S-V) color representation system. From the previous section, hue 

indicates a particular color, e.g. the perceived colors of red, green, blue, etc., saturation 

indicates the purity of a particular hue, e.g. S=1 denotes a pure hue while S=0 denotes 

absence of color (gray), and value is related to the brightness or intensity of a particular 

color. The perceptual color space therefore makes up a cone, with the A axis as the axis 

of rotation of the cone and the R-G and B-Y axes transverse. Hue is determined by 

computing an angle in the R-G/B-Y plane, and saturation is determined by the angle 

between a particular point in color space and the gray axis. A graphic representation of 

this concept is shown in Figure 2.18. 
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Figure 2.18. Conical Colorspace. 
 

When mapping color space we encounter four distinct problems. The first 

is that color space is nonlinear. The non- linearity is related to the spectral response 

functions of the individual photoreceptors. The second problem is that we typically map 

red next to violet when they actually appear at opposite ends of the spectrum. The third 

problem consists of the fact that as intensity is increased, the hue is perceived to shift, and 

this is the issue of color constancy (Brainard, et al., 1993, pp. 165-170). The fourth 

problem is associated with the color planes. It has been demonstrated that while red-green 

and blue-yellow planes exist, other similar color-opponent planes do not seem to exist, 

hence the term “cardinal directions” used by Krauskopf, et al. This cardinal direction 

scheme will be utilized for the invariant mapping strategy in later sections. 
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III. MAPPING STRATEGY  

A. PSEUDOCOLOR AND OPPONENT COLORMAPPING STRATEGIES 

In the past, pseudocolor displays have utilized a mapping strategy whereby the 

principal components were directly depicted by mapping the PCs as follows: 

P1 ?  Red,                   P2 ?  Green,                    P3 ?  Blue , 

or 

P1 ?  Brightness,           P2 ?  Hue,            P3 ?  Saturation. 

Figure 3.1 is a mapping of the first three PCs into (R,G,B) from the Davis-

Monthan AFB scene. Although this method does depict some of the high spatial 

frequency information, much of it is suppressed and there is an apparent smearing, which 

is a result of how the observer views the data. These methods are not a good fit to human 

vision. 

 

Figure 3.1. Pseudocolor Representation of Davis-Monthan Scene Obtained by 
Mapping the First Three PCs into (R, G, B). 

 

It has been shown that for humans, the achromatic spectral channel accounts for 

approximately 97% of color vision, while the R-G and B-Y channels account for 

approximately 2% and 1% respectively (Buchsbaum and Gottschalk, 1983). From the 

previous discussion of the principal components transformation, it can be readily seen 

that the first principal component of a spatial image is roughly achromatic in that it 

samples the mean illumination distribution and can therefore be reviewed as the intensity 

or brightness of a hyperspectral image. Continuing along this reasoning, we note that the 
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second and third PCs contain significantly less scene variance and subsequently higher 

PCs contain even lower amounts. From this we may be able to conclude that we can map 

the second and third principal components into the R-G/B-Y plane. 

Mapping the first PC into the achromatic channel, the value of the second PC into 

the R-G channel and the value of the third PC into the B-Y channel yields 

( )HueH
P
P

tana
2

3 →





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=θ  

( )SaturationS
P
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2 →

+
                                           (3.1) 

( )ValueVP1 →  

where Pi is the ith PC (Tyo, et al., 2000). 

The mapping of the same Davis-Monthan scene with Equation 3.1 yields Figure 

3.2 and is visually a more pleasing representation because pixels that do not have a 

significant projection onto either P2 or P3 appear desaturated or gray. This makes the 

image easier to view because naturally occurring scenes tend to be largely desaturated 

with low dimensionalities in the visible portion of the spectrum (Buchsbaum and 

Gottschalk, 1983). 

  
Figure 3.2. Pseudocolor Representation of Davis-Monthan Scene Obtained with 

Equation 3.1. 
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The mapping strategy in Figure 3.2 was designed with the performance of the 

human visual system in mind and does not present images that contain large regions of 

highly saturated hues that vary rapidly. 

Utilizing the HYDICE bands of the original data corresponding approximately to 

the peak sensitivities of the ?, ?, and ß receptors, spectral bands 150, 38 and 10 

respectively, we can display a scene that depicts approximately how we would perceive 

that scene if viewed directly. Figure 3.3 is a Red-Green-Blue image corresponding to 

bands 150, 38 and 10, which accurately portrays the landscape, as it would appear to the 

human observer. 

 

Figure 3.3. RGB Image with Original Data Bands 150, 38 and 10. 
 

Utilizing the RGB mapping strategy of Figure 3.3 and knowledge of linear 

transformations and eigenvectors from chapter two, we can identify a 3×3 set of RGB 

eigenvectors for the individual scene. These statistics can then be applied to the RGB 

transformation of Equation 3.1 to produce an image that preserves the hue of the primary 

source of variance within the image (Figure 3.4). This mapping strategy retains the image 

display advantage achieved with Equation 3.1 and also allows for a straightforward 

method of mapping this scene into perceptual colorspace that preserves the expected hues 

for major scene constituents. 
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Figure 3.4. HSV Image Transformed with Scene RGB Data. 
 

Keeping human visual perception and the characteristics of PCs in mind, it is 

clear that if a general set of PCs can be identified, a color mapping strategy can be 

arranged so that materials are presented in a straightforward manner, i.e. water can 

always be mapped to blue, vegetation to green, etc. As a wider range of wavelengths is 

considered, it should be expected that more than 3 PCs might be necessary to capture an 

equivalent amount of the data (99% or more). The next sections will investigate this and 

develop a coherent method for an invariant display methodology. 

B. ORIGINAL PRINCIPAL COMPONENTS STRATEGY 

In the previous chapter the relationship between Hyperspectral Imaging and 

human color vision has been presented. Three statistically orthogonal channels can be 

produced by the PC analysis of the human photoreceptor spectral response. The first one 

is roughly achromatic representing luminosity, the second one being a difference between 

long- and mid-wavelength spectral content (red-green), and the third one being trimodal 

representing the difference between short- and mid-wavelength content (blue-yellow) 

(Buchsbaum and Gottschalk, 1983). 

The above-mentioned orthogonal dimensions can be used to define the orthogonal 

directions in a 3-dimensional, conical data space. The three coordinates are hue, 

saturation, and value and give the location within the cone. The hue is defined as the 

angle with the R-G/B-Y plane, saturation is the radius in the R-G/B-Y plane divided by 

total intensity, and value represents the total intensity. These coordinates known as the H-

S-V system can be used for constructing pseudocolor images. 
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The 1st PC usually related to the average scene illumination is derived by PC 

analysis of HSI data. Usually this channel has slow spectral variation and resembles 

closely the solar distribution convolved with the atmospheric response. An exception 

might appear to this general rule referring to the atmospheric absorption bands. However, 

when a particular material dominates an image, that spectral signature might also 

contribute significantly to the scene variance and may show up in the 1st PC as well.  

At this point the present study attempts to introduce an improvement over the 

work done so far by utilizing an external eigenvector that could remove the atmospheric 

effects mentioned above. The points at which the original strategy needs to be improved 

and were not part of the previous study (Diersen, 2000) also include the reorientation of 

the hues wheel and the offset of the colorspace origin which as will be discussed later are 

vital for the invariability and accuracy of the pursued strategy. 

C. MODIFICATION USING EXTERNAL FIRST PC  

The long-term goal of this project is the development of an invariant display 

strategy that can be generically applied to HSI data. The direct implementation of the 

method described in the previous section does not constitute an invariant strategy, since 

the Principal Components are calculated from in scene statistics. This results to a 

“biased” interpretation of the scene components that does not guarantee that materials are 

going to be presented in hues perceptive to the observer. 

As a step in developing an invariant strategy, a standard 1st eigenvector that is 

computed from known solar and atmospheric properties was forced into the data. This 

was accomplished by means of a Gramm-Schmid orthogonalization whereby the 

covariance matrix of 

                                        v̂v̂xxy 





 ⋅−=                                  (3.2) 

was orthogonalized. In Equation 3.2 x is the data vector and v̂  is a unit vector 

corresponding to the reference spectrum.  
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1. Scene Selection 

In order to implement the invariant display strategy that is pursued by this study, a 

HYDICE Lake Tahoe image was selected. It consists of 320 lines of 320 pixels each and 

spreads over 210 bands through the visible and infrared spectrum. A view of the scene as 

it would appear to the human eye is shown in Figure 3.5 and it involves bands 46, 30 and 

11. 

 

Figure 3.5. Lake Tahoe Scene. 
 

A certain part of the particular scene contains mainly pixels depicting water of the 

lake itself, while most of the rest of the scene contains pixels depicting vegetation. These 

two main parts are divided by narrow strips of bright sand and urban area. It is important 

to indicate that the water and vegetation parts of the scene are not homogeneous. Water 
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of varying depths can be seen gradually mixing with sand at shallower areas, while 

vegetation appears in various hues due to lighting conditions. 

The particular Lake Tahoe scene is based only on raw data, which means that 

solar radiance and atmospheric absorption are included in the scene spectrum. 

Additionally, the scene contains significant light absorption in the infrared portion of the 

spectrum since it contains a significant amount of water pixels, while the widely 

abundant vegetation contributes with considerable absorption due to the presence of 

chlorophyll. 

1st Eigenvector 2nd Eigenvector

3rd Eigenvector

 

Figure 3.6. 1st, 2nd, and 3rd Eigenvectors from Tahoe Scene. 
 

Implementing the PCA technique on the raw data of the above-mentioned Tahoe 

scene, using ENVI, the first three eigenvectors can be generated as shown in Figure 3.6. 

From the 1st eigenvector, which as aforementioned represents mainly the radiance of the 

scene, it becomes apparent that significant portions of radiance are missing due to the 

absorbent nature of the depicted elements. The above can be easier perceived after 

comparing the 1st eigenvector of the Tahoe scene to the respective eigenvector from the 

Davis-Monthan scene, as shown in Figure 3.7. The original Davis-Monthan scene, which 
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can be seen in Figure 3.8, as would appear to the human eye (bands 46, 30, and 11), 

contains mainly desert sand pixels and it can be hypothesized that the 1st eigenvector of 

this scene contains the solar radiance intact. 

 

Figure 3.7. 1st Eigenvector from Davis-Monthan AFB Scene. 
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Figure 3.8. Davis-Monthan AFB Scene. 
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2. External Eigenvector Selection 

As mentioned above, the scenes from the Davis-Monthan base area involve 

mainly desert sand pixels and therefore these scenes can be perceived as exhibiting 

negligible atmospheric and surface radiance absorption. Thus, a scene of this area can be 

utilized as the reference for solar radiance upon which all other scenes will be 

transformed in order to remove the absorption effects from them. The particular Davis-

Monthan scene selected has already been shown in Figure 3.8 and its first three PC’s are 

shown in Figure 3.9. It is interesting to note the similarities and differences of the 

respective sets of eigenvectors from the Tahoe scene and the Davis-Monthan scene. 

Comparing Figure 3.6 to Figure 3.9 it becomes apparent that the most important 

differences are concentrated in the 1st eigenvector, while the 2nd and 3rd eigenvectors 

exhibit minor differences mainly due to the dissimilar content of the two images. 

1st Eigenvector 2nd Eigenvector

3rd Eigenvector
 

Figure 3.9. 1st, 2nd, and 3rd Eigenvectors from Davis-Monthan AFB Scene. 
 

The broadband nature of the Davis-Monthan scene dictates its selection for the 

generation of the external eigenvector used in this study. In the long run the use of the 

output from a physics-based code, such as MODTRAN, would be preferred. That can 

provide an estimate of the mean solar radiance and atmospheric absorption spectra. Given 
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the environmental parameters at the time of collection, such as latitude, longitude day of 

the year time of the day, altitude, humidity, temperature, and look angle, MODTRAN can 

produce a spectrum based on the known solar spectrum and the predicted atmospheric 

composition and scattering. Such a spectrum would be optimally suited for generating an 

external eigenvector as described in this section. 

3. Gramm-Schmidt Transform 

The basis of this study is the removal of any in scene variable properties and the 

creation of a standard procedure that can lead to a true invariant display strategy. 

Therefore the 1st eigenvector from the Davis- Monthan scene presented above is going to 

be used as the standard vector bearing known solar and atmospheric properties, which is 

to be forced into the Lake Tahoe scene data. This is accomplished by means of Gramm-

Schmidt orthogonalization as follows: 

                                                 v̂v̂xxy 





 ⋅−=                                        (3.2) 

In Equation 3.2 x  represents the original Tahoe scene “cube” consisting of 

320×320×210 elements reshaped to a 102400×210 matrix form, while v̂  represents the 

210-element- long 1st eigenvector from the Davis-Monthan scene. The resulting y  is also 

a 102400×210 matrix and in a similar fashion as x  above, it can be reshaped into a 

320×320×210-element “cube”. 

Utilizing ENVI it is possible to extract the eigenvectors for the new “projected” 

data in the same way as performed for the original data. The resulting 1st, 2nd, 3rd, and 

210th eigenvectors are shown in Figure 3.10. Apparently the first two eigenvectors from 

the image yielded after the implementation of the projection technique are very similar to 

the 2nd and 3rd eigenvectors of the original scene as can be seen comparing Figures 3.6 

and 3.10. Simultaneously the resulting 210th eigenvector of the new “projected” scene 

bears more similarities to the 1st eigenvector from the Davis-Monthan scene as can be 

seen comparing Figures 3.9 and 3.10. 
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1st Eigenvector 2nd Eigenvector

3rd Eigenvector 210th Eigenvector

 

Figure 3.10. Resulting Eigenvectors from Gramm-Schmidt Transformation. 
 

More important it can be proved that the new eigenvector is orthogonal to all the 

original scene eigenvectors except for the first one to which it is parallel. That means that 

the projection technique removed the solar radiance and atmospheric absorption elements 

from the 1st eigenvector-which was “pushed” to the bottom of the “stack” and those 

unwanted elements were redistributed evenly to the rest eigenvectors that have 

significantly less variance anyway. 

4. Scatter Plots 

The resulting 1st, 2nd, and 210th are orthogonal to each other and thus can define a 

3-dimensional space that can be depicted in the form of a scatter-plot. Using ENVI each 

pair of the three vectors can be combined to generate 2-dimensional scatter-plots as 

shown in Figure 3.11. From these three views the conical shape of the data cloud can 

become obvious. 
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P1

P210

P2P1

P2

 

Figure 3.11. Scatterplots of the Resulting Eigenvectors. 
 

These scatter-plots actually “pin-point” in the 3-dimensional space the exact value 

of the radiance contained in every pixel revealing the true nature of the material class 

depicted. It is interesting to mention that in this scene there are no pixels with zero 

radiance. At the same time there are clear lines radiating outward from the vertex of the 

cone indicating common classes of varying intensities (Tyo, et al., 2001). 

Figure 3.11 contains three scatter plots generated by the eigenvector pairs P1-

P210, P2-P210, and P1-P2, respectively. It is obvious that the bottom plot depicts the 

cone-shaped colorspace, or data cloud as seen from the cone’s vertex while the other two 

depict the colorspace from two lateral sides. 

5. n-Dimensional Visualizer and Endmembers Selection 

A generalization of the concept of the 2-dimensional scatter plot is provided by 

ENVI in the form of an interactive tool called n-Dimensional Visualizer™. As the 

various spectra can be thought of as points in an n-dimensional scatterplot, where n is the 

number of bands, the coordinates of the points in n-space consist of “n” values that are 

the spectral radiance in each band for a given pixel. The distribution of these points in n-

space therefore can be used to estimate the number of spectral endmembers and their pure 
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spectral signatures. The n-Dimensional Visualizer allows for interactive rotation of data 

in n-dimensional space, selection of groups of pixels in classes, and collapsing of classes 

to make additional class selections easier. The selected classes can be exported to 

Regions of Interest (ROIs) and used as input into classification, unmixing or matched 

filtering techniques (Research Systems, ENVI Version 3.2 Manual, 1999). 

With this tool it is possible to utilize up to all 210 bands available after the 

implementation of PCA. In this study the above-mentioned interactive tool was utilized 

using only the first two and the last (210th) eigenvectors, yielding the same scatterplots as 

in the 2-dimensional case described earlier. However in this case it became possible to 

deliberately and continuously rotate the resulting scatterplot in three dimensions 

revealing the structure of the colorspace in detail and thus clarifying which point 

formations corresponded to pure endmembers. Furthermore, the tool not only allowed for 

better isolation of pure endmembers but also their highlighting in distinct colors and their 

projection onto ROIs on the original scene. Figure 3.12 depicts the 3-dimensional scatter 

plot generated by the Visualizer and the highlighted endmembers corresponding to deep 

water (red), shallow water (yellow), dark vegetation (green), light vegetation (blue), and 

bright sand (thistle). The resulting ROIs on the Lake Tahoe image used for this 

scatterplot are shown in Figure 3.13 where the same colors are used to highlight the 

corresponding endmembers while the underlying image is shown in natural color as 

perceived by the human vision. 
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Figure 3.12. Endmembers as Highlighted by n-D Visualizer. 
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Figure 3.13. ROIs Highlighted by the n-D Visualizer. 
 
6. Cone Vertex Coordinates Determination 

As can be seen in Figures 3.11 and 3.12 the scatterplots demonstrate classes of 

data radiating out from a common point along particular directions relative to the 

longitudal (P210 vector) axis. Furthermore, as the overall intensity (value of P210) 

increases, the distance from the P210 axis increases, but the angle with respect to that 

axis remains the same. This type of geometrical symmetry is suggestive of a cone. 

Upon further investigation of the PC transformation, such a conical nature of the 

data should be expected. The first eigenvector is guaranteed to be all positive, and as 

discussed previously is usually closely related to the mean atmospheric spectrum. When 

dealing with spectral imagery data, this eigenvector usually contains 90% or more of the 

scene variance. The successively higher eigenvectors represent axes that are transverse to 

the first. They correspond to significantly smaller eigenvalues, so the displacement along 

these axes is generally much smaller than the displacement in the P210 direction. Since 
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the P1 and P2 eigenvectors represent deviations from the approximate mean spectrum, 

the relative values of the projection of a particular material in these directions should be 

approximately constant as the intensity increases, i.e. 

                                                    ttancons
1P
2P

≅                                    (3.3) 

as the intensity increases. Furthermore, the linear nature of the PC transform 

suggests that 

                                                ttancons
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                        (3.4) 

as the intensity increases. It is clear that these relations are being mapped into the Hue 

and Saturation, respectively (as in Equation 3.1), so the mapping proposed in Equation 

3.1 is well suited to a dataspace that is conical. This should not be surprising, as the Hue, 

Saturation, and Value coordinate system is essentially a descriptor of the cone of 

allowable colors. 

Using the scatterplots method yields a very good perception of the colorspace 

defined by the data cloud and as previously mentioned the endmembers can be readily 

distinguished. However, conical-shaped data cloud is not always centered at the origin of 

the dataspace being used. As a matter of fact producing an “off-center” data cloud is 

rather common. The above results into the inability to correctly assign the color 

directions to the cloud patterns that correspond to the various endmembers. For example, 

if it is attempted to assign color directions to the data cloud shown in Figure 3.12 where 

the dataspace origin is different than the ve rtex of the data cloud cone, the resulting 

direction lines will cross more than one of the highlighted endmember patterns resulting 

in false assumptions about the hue representation of these endmembers. 

A method was devised and used in this study to determine, as accurately as 

possible, the coordinates of the conical colorspace vertex and from that define the 

directions needed to assign hue representations to the endmembers correctly. This method 

is rather semi-autonomous since it is needed to manually identify pixels with like spectral 

characteristics corresponding to the same endmember. The data cloud shown above in 

Figure 3.12 is now shown in Figure 3.14 in a “trimmed-down” fashion where the various 
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endmembers previously mentioned have been highlighted in the same colors while the 

cloud is viewed from a slightly different angle. 

 

Figure 3.14. Trimmed-down Data Cloud Indicating MSE Approximations. 
 

Three of these pixel groups, namely deep water (red), light vegetation (blue), and 

bright sand (thistle) that apparently lie in much separated directions can be utilized for the 

vertex determination approach. For each of the above-mentioned pixel groups, the least-

square regressions were computed automatically using IDL programming. The same 

routine was executed for all three projections resulting in a 3-dimensional approach. 

Figure 3.15 shows the resulting directions from the regressions in the three orthogonal 

planes. 
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P1-P2 P1-P210 P2-P210

 

Figure 3.15. Selected Directions Approximating Cone Vertex in 3-Dimensions. 
 

In a rather subjective manner and from these plots, the vertex of the cone was 

estimated to lie at the coordinates  

                             (x, y, z)=(2000, 5000, 6000)                                      (3.5) 

relative to the dataspace origin. 

7. Data Shifting 

Implementing the above technique resulted in the approximate determination of 

the colorspace cone vertex and thus the only step needed to be taken in order to 

“normalize” the data, is to literally shift the whole data cloud to the dataspace origin. This 

can be achieved either by shifting the original scene data altogether or by shifting only 

the resulting projected eigenvectors for as much as calculated above. The first method 

would be rather tedious the refore the shifting in three dimensions of the only three 

eigenvectors of interest-P1, P2, and P210-was executed. Since P1 and P2 define the 

“base” of the conical cloud, they were shifted by x=y=5000 units each, while P210 which 

represents the longitudinal axis of the cone was shifted by z=6000 units. Therefore, the 

new set of eigenvectors relates to the older one as follows: 
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       P1new=P1-2000,       P2new=P2-5000,       P210new=P210-6000        (3.6) 

The overall shape of the conical colorspace has been preserved while its vertex 

lies as close to the origin of the dataspace as possible. Also the orientation of the cloud 

has been preserved since no rotation took place. 

8. HSV System Determination 

The previously presented technique eventually yields an orthogonal set of three 

eigenvectors that define accurately the colorspace of the scene under study after the 

removal of radiance and atmospheric absorption from the original image and the 

consequent shift of the data relative to the origin of the dataspace. Utilizing this 

eigenvector set and Equation 3.1 a new HSV(Hue-Saturation-Value) system is produced 

that enables the invariant display of the Lake Tahoe scene. The system forms as follows: 
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At this point the resulting system would be adequate for human eye visualization 

since it corresponds to the way images are naturally perceived, as developed earlier in the 

corresponding section. However in an artificial environment like IDL and ENVI the HSV 

system cannot be utilized directly to produce an image. Therefore a transformation needs 

to be performed from the HSV into an ENVI-perceivable RGB system. 

9. HSV to RGB Transformation 

In order to make possible for the processed image to be effectively displayed by 

the ENVI software, a pixel-by-pixel transformation was implemented utilizing the 

previously presented HSV data in a normalized fashion. Therefore the data to be 

transformed consisted of the H, S, and V values of each pixel on domain [0, 1], while the 

output of the transformation consisted of the R, G, and B values on range [0, 1]. The 

transformation was implemented through the programming concept outlined in Table 3.1 

(Smith, A. R., 1978). In order to be consistent with rest of the execution of this study, the 
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transformation described in this section was implemented with IDL programming. 

MATLAB programming can be utilized for this purpose as well. 

H:=6*H 

I:=floor(H) 

F:=H-I 

M:=V*(1-S) 

N:=V*(1-(S*)) 

K:=V*(1-(S*(1-F))) 

Case 0: (R,G,B):=(V,K,M) 

Case 1: (R,G,B):=(N,V,M) 

Case 2: (R,G,B):=(M,V,K) 

Case 3: (R,G,B):=(M,N,V) 

Case 4: (R,G,B):=(K,M,V) 

Case 5: (R,G,B):=(V,M,N) 

 
Table 3.1. HSV to RGB Transformation. 

 
10. RGB Visualization 

The produced sets of (R,G,B) values using the above described transformation 

can be readily introduced into ENVI software as three distinctive grayscale images (R-

image, G-image, and B-image) consisting of 320×320 pixels each. The images can be 

seen in Figure 3.16, each highlighting slightly different aspects of the same scene. ENVI 

can combine these three images and yield the final color image shown in Figure 3.17. In 

fact, in order to obtain an image like this a minor “intervention” by the operator was 

needed adjusting the hue wheel orientation so that a human observer would easily 

perceive the resulting colors. 
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Figure 3.16. R, G, B Images. 
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Figure 3.17. Processed and Rotated Color Image. 
 

Although the image produced by the software had correctly assigned colors onto 

the various classified materials depicted, these colors did not correspond to the hues 

commonly associated to the particular materials. For example the body of the lake water 

was depicted as red although the particular color was correctly assigned to the entire body 

of water. Therefore, a shift of the hues was needed, in a rather humanly subjective 

manner, so that water would be presented in blue, for example, while the hue shift was 

performed in a constant angle throughout the hue wheel. A way of achieving such a hue 

shifting without the intervention of the operator could be the subject of future work. 
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IV. LIMITATIONS AND FUTURE WORK 

The technique developed and outlined by this study represents one further step 

towards the long-term goal of the parent project, which is the development of an invariant 

display strategy capable of being broadly applied to hyperspectral data of any kind. 

The present study continued from the point that previous studies had reached and 

the principal contribution compared to them is the research into the utilization of in-scene 

vs. non-in-scene eigenvectors. It has already been concluded that the derived 

eigenvectors are different for every selected scene even though among various scenes a 

great amount of spectral correlation might exist and therefore similar spectra would 

exhibit different representations from one image to another. Furthermore, comparison 

between dissimilar scenes yields severe differences. Ultimately the development of a set 

of orthogonal eigenvectors capable of capturing the most part of the spectral information 

in various scenes could be achieved and applied to a variety of research. A standard 

mapping could be developed, therefore, using these eigenvectors resembling the “tasseled 

cap” transformation frequently applied to multispectral imagery, namely LANDSAT data 

(Kauth and Thomas, 1976). However such a goal presents a great amount of effort and it 

does not seem to be a matter of the very near future mainly due to the enormous size of 

data to be processed and the higher dimensionality of hyperspectral vs. multispectral 

imagery. 

This study made clear that the introduction of eigenvectors not related to the 

scene under processing improved the invariability of the final display by removing 

features inherent to the target spectra deviating significantly from the mean solar 

spectrum, thereby biasing and smearing the overall color representation. A careful 

selection of the scene from which the external eigenvector is selected might be an 

important factor influencing the final outcome of the display strategy. The above 

statement was clearly demonstrated by selecting the Davis-Monthan scene external 

eigenvector, which exhibited fairly smooth and relatively homogeneous spectral 

characteristics. The Lake Tahoe scene that was processed in this study exhibited a 
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significant deviation from the mean spectrum, mainly because of the water absorption in 

the infrared region and because of the characteristic chlorophyll absorption line. 

The Gramm-Schmidt transformation that was implemented allowed the external 

eigenvector from the Davis-Monthan scene to force this scene-specific information into 

the second and third eigenvectors of the Tahoe scene and thus yield a new first 

eigenvector that exhibited very small, if any, deviation from the mean solar spectrum. 

Since the most part of the radiance contained in an image concentrates in its first 

eigenvector, the above-mentioned technique resulted in a practically unbiased 

representation emphasizing more on the various endmember spectra differences. 

Eventually this leads closer to the invariability sought by the parent project. 

The features available in the ENVI software package provided a significant 

amount of assistance towards the approach followed in this study. Use of the readily 

available scatterplots among the three principle eigenvectors generated as well as the n-

dimensional visualizer tool allowed quick and accurate determination of the constituent 

spectra within an image and their respective hue directions in the colorspace cone. These 

techniques simplified the task of the colorspace origin estimation relative to the general 

dataspace leading to a reconstruction of the original image color representation on a more 

invariant fashion. 

Figure 4.1 presents the overall outcome of the technique devised and followed 

comparing the original Lake Tahoe scene as would be perceived by the human vision 

(top) to the processed image (bottom). Apparently the various deviations of the water part 

of the image have been removed as well as most of the ambiguities in the shore part 

between vegetation shoreline and urban spots. In this case a human analyst would be able 

to perceive the real content of the scene without any further processing since the major 

constituents of the image are clearly distinguished from each other and color marked 

according to common sense. Therefore the lake water is depicted as blue in its entirety, 

the forest and the rest of the vegetation as green, and so forth. 
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Figure 4.1. Images Comparison: Top-Original Image, Bottom-Processed Image. 
 

However these results do not constitute the ultimate solution to the problem of the 

invariant strategy since some important steps had to be taken outside the “automated 

flow” of action. Originally the selection of the Davis-Monthan external eigenvector was 

arbitrary and based on totally subjective criteria. Ideally, a thorough study should have 

preceded the selection of the external eigenvector yielding one optimally resembling 

clear solar spectrum. It has already been mentioned that a promising approach would be 

utilizing physics-based software such as MODTRAN which determines mean solar 

radiance and atmospheric absorption figures based on the exploitation of environmental 
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parameters on the particular time of the particular scene exposure. Such an application 

would be the focus of future work on the topic. 

Additionally significant “manual” intervention occurred during the determination 

of the conical colorspace vertex and the subsequent hue wheel turn. As described in the 

previous section, the operator had to select the number and the kind of the endmember 

spectra whose approximation and projection determined the colorspace origin. Even 

minor ambiguities in this process might result in hue smearing affecting the judgment 

about the hue wheel turn as well. In the example described here the minimum number of 

endmember spectra was selected (namely, three) and their hues were as different as 

possible so that they would yield a fairly accurate result. However, in order to generalize 

the process for various scenes, a more thorough selection with a greater number of more 

accurately defined endmember spectra should be made. The ultimate external 

intervention in the whole display process was the hue wheel turn so that the naturally 

occurring colors would be matched. This adjustment is completely subjective to the 

human operator’s perception and could not be dup licated in a software-controlled 

fashion. 
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V. SUMMARY AND CONCLUSIONS 

The principal components-based mapping strategy discussed in this study 

constitutes a relatively simple technique to perform unsupervised classification for a wide 

variety of hyperspectral imagery. In this way the analyst can perceive the true content of 

a scene and direct attention to particular areas for further processing and analysis. The 

introduction of an external eigenvector into the analysis procedure results in further 

invariance of the process, removing the need for an interim analysis of the data dependent 

on the in-scene statistics. Furthermore the supervised shifting of the resulting data and the 

hue adjustments in the final image provided with a practical way of achieving an 

invariance of the display strategy indicating at the same time the directions on which the 

follow-on studies should move. 

As discussed in the previous sections there are still several topics to be addressed 

and resolved before a fully unsupervised and invariant display technique is operationally 

functional. Research ought to be conducted on the performance of the latest technique on 

a variety of scenes with diverse spectral content. Although the function of covariance was 

implemented in this study to generate the necessary statistics, it would be interesting to 

investigate the performance of a technique utilizing correlation or even based on the 

logarithm of the original data cubes. 

Another issue that needs to be refined is the selection of the external eigenvector, 

which should imitate the solar spectral characteristics as closely as possible and a 

reasonable approach to that would be the combination of data from various scenes into a 

synthetically generated eigenvector. 

Finally the goal of creating a truly unsupervised methodology would be attained 

among others by devising software-based ways of accurately pinpointing the origin of the 

colorspace by utilizing a fairly large number of carefully defined spectral endmembers. 

Ultimately the research trend followed should also tackle the demanding task of the 

rotation of the final image hues in a way that human perception would readily assume 

knowledge of the scene under analysis. At this point, although the current technique 

manages to yield images that are spectrally color-defined and distinguished, the analyst 
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definitely needs to predetermine the connection of the various hues to the materials 

represented. 
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