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Compounds including non-canonical amino acids (ncAAs) or
other artificially designed molecules can find a lot of
applications in medicine, industry and biotechnology. They can
be produced thanks to the modification or extension of the
standard genetic code (SGC). Such peptides or proteins
including the ncAAs can be constantly delivered in a stable way
by organisms with the customized genetic code. Among several
methods of engineering the code, using non-canonical base
pairs is especially promising, because it enables generating
many new codons, which can be used to encode any new
amino acid. Since even one pair of new bases can extend the
SGC up to 216 codons generated by a six-letter nucleotide
alphabet, the extension of the SGC can be achieved in many
ways. Here, we proposed a stepwise procedure of the SGC
extension with one pair of non-canonical bases to minimize the
consequences of point mutations. We reported relationships
between codons in the framework of graph theory. All 216
codons were represented as nodes of the graph, whereas its
edges were induced by all possible single nucleotide mutations
occurring between codons. Therefore, every set of canonical and
newly added codons induces a specific subgraph. We
characterized the properties of the induced subgraphs generated
by selected sets of codons. Thanks to that, we were able to
describe a procedure for incremental addition of the set of
meaningful codons up to the full coding system consisting of
three pairs of bases. The procedure of gradual extension of the
SGC makes the whole system robust to changing genetic
information due to mutations and is compatible with the views
assuming that codons and amino acids were added successively
to the primordial SGC, which evolved minimizing harmful
consequences ofmutations ormistranslations of encodedproteins.
1. Introduction
The basic diversity of proteins fulfilling a wide range of functions
within organisms is based on 20 naturally occurring amino acids.
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The proteins are also modified post-translationally, which extends their properties. However, it is

tempting to increase this variety with artificially designed amino acids or other molecules. They can
be introduced directly into proteins or modified in a given proteinaceous molecule, but a more
universal and stable solution is such modification of the standard genetic code (SGC) that the newly
created proteins including non-canonical amino acids (ncAAs) are constantly produced by a given
organism. Several approaches were invented to achieve this goal [1].

The first approach uses stop translation codons (e.g. rarely used UAG) to encode ncAAs [2–5]. This
method requires a modified aminoacyl-tRNA synthetase which charges a tRNA with an ncAA. This
suppressor tRNA must recognize the stop codon and then ncAA is incorporated into a protein during
its synthesis. However, this method enables utilization of up to two stop codons because one of the
three codons must be left as a termination signal of translation [6].

Another method applies quadruplet codons, which consist of an infrequently used triplet codon with
an additional base [7–9]. Such a quadruplet is decoded by a modified tRNA containing a complementary
quadruplet anticodon. Then, ncAA associated with this tRNA is added into a newly synthesized protein
due to frameshifted open reading frame. However, the typical triplet can be decoded by a typical tRNA
competitively, which decreases the efficiency of this procedure.

It is also possible to assign various sense codons to different ncAAs by withdrawing the cognate
amino acid and aminoacyl-tRNA synthetase, and adding pre-charged ncAA-tRNAs bearing the
corresponding anticodons [10–12]. This method, however, sacrifices a natural amino acid. A new
method overcomes this problem and frees sense codons for ncAAs without elimination of natural
ones [13]. This is achieved by utilization of appropriate synonymous codons, depletion of their
corresponding tRNAs and addition of tRNAs pre-charged with ncAAs. This method enables
expanding the repertoire to 23 potential ncAAs via division of multiple codon boxes [14] but can
influence the efficiency and speed of translation as well as protein folding due to altered codon
usage [15].

Aweakness of these methods is that they rely on the set of four canonical bases, which can generate a
limited set of codons, up to 64. Therefore, a promising approach is using unnatural base pairs, which can
generate a much larger number of genuinely new codons. This approach does not interfere with the
natural system because it does not involve the canonical codons, while the new ones are free of any
natural role. Such experiments with at least three pairs of the fifth and the sixth nucleotide were
already carried out and appeared promising [16–22]. Protein synthesis using this approach occurred
successfully in semi-synthetic bacteria [23].

The inclusion of one pair of unnatural nucleotides can extend the SGC even up to 216 codons, which
is nearly three times larger than the set of 64 canonical codons. The 152 new unassigned codons raise an
exciting possibility of adding many unnatural amino acids or similar compounds and creating a new
extended genetic code (EGC). Therefore, it is reasonable to pose a question about the rules according
to which we can extend the code. There are many possibilities to do this. Here, we propose a way
assuming that the genetic code should be a system resistant to point mutations, which can change the
encoded information. In other words, we present a formal description of the genetic code expansion
to minimize the cost of changing codons due to the mutations. The presented procedure of
incremental expansion of the genetic code ensures robustness of the extended code against losing
genetic information. This assumption seems attractive in the context of the hypothesis postulating that
the genetic code evolved to minimize harmful consequences of mutations or mistranslations of coded
proteins [24–33].
2. Methods
2.1. The extension of the standard genetic code
We start our investigation by applying a similar approach to that presented by [34], in which the SGC is
described as a graph G(V0, E0), where V0 is the set of vertices (nodes), whereas E0 is the set of edges. V0

corresponds to the set of 64 canonical codons using four natural nucleotides {A, T, G, C}, while the edges
are induced by all possible single nucleotide substitutions between the codons. Therefore, the graph
G(V0, E0) is a representation of all possible single-point mutations occurring between canonical codons.

In this work, we introduce a more general graph G(V, E), in which the set of vertices corresponds to
216 codons, using a six-letter alphabet, while the set of edges is defined in a similar way as E0.
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Definition 2.1. Let G(V, E) be a graph in which V is the set of vertices representing all possible 216

codons, whereas E is the set of edges connecting these vertices. All connections between the nodes fulfil
the property that two nodes, i.e. codons u, v∈V, are connected by the edge e(u, v)∈ E (u∼ v), if and only
if the codon u differs from the codon v in exactly one position.

In order to simplify our notation, we use further G instead of G(V, E). It is clear that the set of edges E
of the graph G represents all possible single nucleotide substitutions, which occur between codons
created by the set of natural nucleotides {A, T, G, C} as well as one pair of unnatural nucleotides
{X, Y}. Assuming that all changes are equally probable, we obtain that G is an undirected, unweighted
and regular graph with the vertices degree equal to 15. Moreover, the set of 64 canonical codons V0

used in the SGC is a subset of V. Therefore, V0 induces a subgraph G[V0] of the graph G(V, E)
according to the following definition.

Definition 2.2. If G(V, E) is a graph, and S, V is a subset of vertices of G, then the induced subgraph
G[S] is the graph whose set of vertices is S and whose set of edges consists of the edges in E, which have
both endpoints in S.

Following this definition, let us denote by Vn a subset of vertices (codons) involved in a given EGC
with exactly n≥ 1 non-canonical codons. This subset must fulfil the following property:

V0 , Vn # V,

i.e. Vn must be an extension of the set of canonical codons. As a result, we can define a graph G[Vn],
which is a subgraph of the graph G generated by Vn. Therefore, the main goal of this work is to test
the property of the graph G[Vn], which can be interpreted as a structural representation of the EGC.
Thus, we develop methodology to describe features of the graph G.
2.2. The properties of the graph G
Interesting features of G can appear, when the set of vertices V is divided into the partition of eight
disjoint and non-empty sets. It induces a specific connection between these vertices by edges. This
partition includes also V0, i.e. the set of natural codons.

Proposition 2.3. Let G(V, E) be a graph, where V represents the set of all possible 216 codons and E is the set
of edges generated by single nucleotide substitutions. Then, the set of vertices V can be split unambiguously into
eight disjoint subsets. These are V0, B1, B2, B3, B12, B13, B23 and B123, where

(a) V0 is the set of 64 canonical codons;
(b) B1 is the set of codons in which new nucleotides X or Y occur only in the first codon position;
(c) B2 is the set of codons in which new nucleotides X or Y occur only in the second codon position;
(d) B3 is the set of codons in which new nucleotides X or Y occur only in the third codon position;
(e) B12 is the set of codons in which new nucleotides X or Y occur in the first and the second codon position;
(f ) B13 is the set of codons in which new nucleotides X or Y occur in the first and the third codon position;
(g) B23 is the set of codons in which new nucleotides X or Y occur in the second and the third codon position;
(h) B123 is the set of codons in which new nucleotides X or Y occur in all codon positions.

The number of elements, i.e. codons in theses sets are: |B1| = |B2| = |B3| = 32, |B12| = |B23| = |B13| =
16 and |B123| = 8.

The graphical of relationships between these sets is presented in figure 1.
Based on such partition, we can investigate properties of the EGC. In order to do this, let us introduce

the following notation. We denote another three subsets of V

C1 ¼ V0 < B1 < B2 < B3, (2:1)

The sets C1 and B12 < B13 < B23 < B123 are disjoint and constitute also a partition of V. We call the set
B1 < B2 < B3 ‘close neighbourhood’ of V0 because it contains all codons that differ from the set V0 in
at most one position in a codon. In contrast to that, B12 < B13 < B23 < B123 is not directly connected
with V0. Moreover, we introduce also the set C2, defined as follows:

C2 ¼ C1 < B12 < B23 < B13: (2:2)

It is clear that C2 and B123 are disjoint and also constitute a partition of V.



SGC=V

NXX=B

NNX = B3

NXN = B2

XXX = B123

XNX = B13

SGC = V0

NXX = B23

XNN = B1

XXN = B12

Figure 1. The graphical of extended genetic code (EGC) based on the standard genetic code (SGC). The graph is induced by the
partition of the set of vertices V from the graph G into eight subsets V0, B1, B2, B3, B12, B13, B23 and B123, where the edges between
the groups are induced by edges connecting codons, which belong to different sets. The edges correspond to single-point mutations
between the codons. V0 corresponds to the SGC, N refers to a standard base and X a non-standard base.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191384
4

In the next proposition, we give several properties of edge connections between the selected sets of
nodes.

Proposition 2.4. Let us consider the codon sets introduced in proposition 2.3 and two subsets of nodes C1, C2.
Then we have the following properties:

(a) Each codon c∈ Bi, i = 1, 2, 3 has exactly four edges crossing from Bi to V0;
(b) Each codon c∈ Bi, i = 1, 2, 3 has exactly four edges crossing from Xi to B12 < B13 < B23 < B123;
(c) There does not exist any connection between B12 < B13 < B23 < B123 and V0;
(d) Each codon c∈ Bij, i≠ j, i, j = 1, 2, 3 has exactly eight edges crossing to C1;
(e) Each codon c∈ Bij, i = 1, 2, 3 has exactly two edges crossing from Bij to B123;
(f ) There does not exist any connection between Bij and V0;
(g) There does not exist any connection between B123 and C1.
It is also interesting to describe some properties of subgraphs generated by codon sets B1, B2, B3 and
B12, B13, B23, respectively. They are formulated in the following two lemmas:

Lemma 2.5. Graphs G[B1], G[B2] and G[B3] are isomorphic to each other.

Proof. According to the definition of the graph isomorphism, there must exist a bijection f between
G[Bi] and G[Bj], i≠ j, i.e. f : G[Bi]→G[Bj] such that two vertices u, v are adjacent in G[Bi], if and only if
f (u) and f (v) are adjacent in G[Bj]. In this case, such a bijection can be easily defined as a swap
between respective codon positions, where nucleotides X and Y occur. ▪

We observe the same property in the case of codon sets B12, B13 and B23. Thus, we can formulate a
similar lemma:

Lemma 2.6. Graphs G[B12], G[B13] and G[B23] are isomorphic to each other.
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Proof. The proof is analogous to the proof of lemma 2.5. ▪

What is more, in the construction of the optimal EGC, we also use the fact that the graphs G[Bn],
n∈ {1, 2, 3, 12, 13, 23, 123}, can be represented as Cartesian products of other graphs. This important
feature is presented in the following three propositions.

Proposition 2.7. The graph G[B1], can be represented as a Cartesian product of graphs:

G[B1] ¼ K2K4K4,

where K2 and K4 are complete graphs of sizes two and four with the set of vertices {X, Y} and {A, T, G, C},
respectively. In this case, two vertices (x, y, z), (x0, y0, z0) are connected by the edge e((x, y, z), (x0, y0, z0)), if
(x = x0 and y = y0 and z∼ z0 ) or (x = x0 and y∼ y0 and z = z0) or (x∼ x0 and y = y0 and z = z0).

Proposition 2.8. The graph G[B12], can be represented as a Cartesian product of graphs

G[B12] ¼ K2K2K4,

where K2 and K4 are complete graphs of sizes two and four with the set of vertices {X, Y} and {A, T, G, C},
respectively. In this case, two vertices (x, y, z), (x0, y0, z0) are connected by the edge e((x, y, z), (x0, y0, z0)), if
(x = x0 and y = y0 and z∼ z0 ) or (x = x0 and y∼ y0 and z = z0) or (x∼ x0 and y = y0 and z = z0).

Proposition 2.9. The graph G[B123] can be represented as a Cartesian product of graphs

G[B123] ¼ K2K2K2,

where K2 is a complete graph of size two with the set of vertices {X, Y}. In this case, two vertices (x, y, z), (x0, y0, z0)
are connected by the edge e((x, y, z), (x0, y0, z0)), if (x = x0 and y = y0 and z∼ z0) or (x = x0 and y∼ y0 and z = z0) or
(x∼ x0 and y = y0 and z = z0).
2.3. The optimality of codon group
Similarly to [34], we introduce two measures describing properties of codon groups. They are the set
conductance and the k-size conductance, which characterize the quality of a given codon sets in terms
of non-synonymous mutations which lead to a replacement of one amino acid by another.

Definition 2.10. For a given graph G, let S be a subset of V. The conductance of S is defined as

f(S) ¼ E(S, S)
vol(S)

,

where E(S, �S) is the number of edges of G crossing from S to its complement �S and vol(S) is the sum of all
degrees of the vertices belonging to S.

The measure ϕ(S) can be interpreted as a fraction of non-synonymous substitutions between S and �S,
if S is a group of codons encoding the same amino acid and �S includes codons bearing other genetic
information. It is interesting that the optimal codon group, in terms of its robustness to point
mutations, should be characterized by low values of the set conductance. Therefore, the number of
nucleotide substitutions that change a coded amino acid should be relatively small in comparison to
the total number of all possible nucleotide mutations involving all codons belonging to the given set.
In this context, it is also interesting to calculate the k-size-conductance ϕk(G), which is described as the
minimal set conductance over all subsets of V with the fixed size k.

Definition 2.11. The k-size-conductance of the graph G, for k≥ 1, is defined as:

fk(G) ¼ min
S#V,jSj¼k

f(S):

In consequence, k · ϕk(G) gives us a lower bound on the number of edges going outside the set nodes
of the size k and this characteristic is useful in describing the optimal codon structures.
3. Results
In this section, we present a step by step procedure which allows us to extend the SGC from 64 up to 216
meaningful codons. Codons are added to the code gradually in three stages. The first step extends the
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SGC to 160 codons, the second step to 208 codons and the third to all possible 216 codons. The EGC

created at each stage must be optimal in terms of minimization of point mutations.

3.1. The optimal extension of the standard genetic code to 160 meaningful codons
Following the properties of the graph G, we formulate some characteristics, which are useful in
describing the properties of the subgraph G[Vn], 1≤ n≤ 96 induced by the set of codons Vn and at the
same time in developing the optimal EGC. At the beginning, we propose some optimization criteria
in order to find the best possible solution.

Using the notation from the previous sections, let us define

Vn ¼ VnVn,

which is a set of unassigned codons. Moreover, let us denote by An a set of n new codons involved in a
given genetic code extension

An ¼ VnnV0,

where 1≤ |An|≤ 96. Thanks to that, we can define two measures describing the properties of G[Vn].
They are

E(V0, An) (3:1)

and

E(Vn, Vn), (3:2)

where E(V0, An) is the total number of edges, extracted from the graph G, crossing from the set of
canonical codons V0 to An, whereas E(Vn, Vn) is the total number of edges crossing from the set of
codons which constitute the EGC Vn to unassigned codons.

Interestingly, by applying (3.1) and (3.2), it is possible to characterize the properties of a given
subgraph G[Vn] and at the same time the EGC induced by the codons belonging to Vn. In the
definition below, we give some conditions which constitute the EGC optimality. Thanks to that, we
can find the best genetic code extended by 1≤ n≤ 96 new codons.

Definition 3.1. The set V�
n, V0 , V�

n with exactly 1≤ n≤ 96 non-canonical codons is an optimal
extension of SGC, if

V�
n ¼ argmin

{Vn: Vn¼V0<An}
E(Vn, Vn), (3:3)

where An possesses the feature

An ¼ argmax
{S: S#V0, jSj¼n}

E(V0, S): (3:4)

These two restrictions have a sensible interpretation. By minimizing the condition (3.3), we reduce the
possibility that a point mutation can generate a codon belonging to the ‘non-coding zone’ Vn, i.e. the set
of unassigned codons. On the other hand, maximizing the value of An according to (3.4), we claim that
the number of connections between two sets, namely, the canonical and newly assigned codons E(V0, An)
is as large as possible (figure 2).

These two assumptions maximize the number of connections between standard and newly
incorporated codons and simultaneously decrease the probability of losing genetic information from
the whole system due to point mutations. Therefore, we focus on the Vn sets, when An ¼ VnnV0 fulfils
the property (3.4). Then, let us denote by

Vn ¼ {Vn: Vn ¼ V0 < An}

a class of all sets Vn with exactly n non-canonical codons and let us assume that An ¼ VnnV0 fulfils the
property (3.4). It is clear that all optimal EGCs, in terms of (3.4) and (3.3), belong to Vn.

These features appear to be very useful for characterizing possible extensions of the SGC. In the next
theorem, we describe the optimal extension of the SGC up to 160 meaningful codons. Interestingly, this
extension can be described in terms of k-size conductance ϕk(G[Bi]), i = 1, 2, 3 calculated for induced
subgraphs G[Bi], i = 1, 2, 3. We begin our investigation with a lemma, which gives us some
characterizations of the optimal sets Vn.
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Figure 2. Examples of the optimal set of four new codons A4 involved in a genetic code extension up to 160 codons.
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Lemma 3.2. Let Vn [ Vn be a set of codons, where 1≤ n≤ 96 and An ¼ VnnV0, then

An # B1 < B2 < B3:

Proof. The proof of this lemma follows directly from proposition 2.4(a,c) and the definition of Vn. ▪
Thanks to that, we can formulate a theorem, which gives us a lower bound on the number of edges

crossing from Vn to its complement.

Theorem 3.3. Let Vn [ Vn be a set of codons, where 1≤ n≤ 96. Then the following inequality holds:

E(Vn, Vn) � E(V0, V0)þ
X3

i¼1

ni � fni (G[Bi]) ¼ 384þ
X3

i¼1

ni � fni (G[Bi]),

where G[Bi], i = 1, 2, 3 is the induced subgraph of G, and ni ¼ jAn > Bij, n1 + n2 + n3 = n.

Proof. We begin the proof with an observation

E(Vn, Vn) ¼ E(V0, V0)� E(V0, An)þ E(An, Vn): (3:5)

Interestingly, following the definition 2.10, we can calculate the set conductance of V0. In this case, we
have ϕ(V0) = 0.4. Hereby, we get immediately

E(V0, V0) ¼ 64 � 15 � f(V0) ¼ 384: (3:6)

In addition, using proposition 2.4(b) we get the following equality:

E(V0, An) ¼ 4n:

Therefore, we can rewrite the equality (3.5) in the following way:

E(Vn, Vn) ¼ 384� 4nþ E(An, Vn): (3:7)

In our next step, we observe

E(An, Vn) ¼
X3

i¼1

E(An > Bi, Vn > Bi)þ
X3

i¼1

E(An > Bi, B12 < B13 < B23 < B123),

where
P3

i¼1 E(An > Bi, B12 < B13 < B23 < B123) ¼ 4n according to proposition 2.4(b). As a consequence,
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we can reformulate equation (3.7) as follows:

E(Vn, Vn) ¼ 384� 4nþ
X3

i¼1

E(An > Xi, Vn > Bi)þ 4n:

Furthermore, taking into account that the set Vn > Bi ¼ Bin(An > Bi) and using definitions 2.10 and 2.11,
we have

X3

i¼1

E(An > Bi, Vn > Bi)

�
X3

i¼1

min
S#Bi ,jSj¼ni

E(S, S)
vol(S)

� vol(S)

�
X3

i¼1

fni (G[Bi]) � ni:

Finally, we obtain

E(Vn, Vn) � 384þ
X3

i¼1

ni � fni (G[Bi]): (3:8)

▪
Therefore, to extend the SGC using 1≤ n≤ 96 codons in the optimal way according to the definition

3.1, we have to choose codons only from the sets B1, B2 and B3. Interestingly, the lower bound on the
value of E(Vn, Vn) presented in this theorem depends on the n-size conductance of new codon groups.
What is more, the EGC being optimal in terms of the definition 3.1 and including 160 codons is
described by the set C1 because in this case we get

E(C1, C1) ¼ E(V0, V0) ¼ 384: (3:9)
3.2. The properties of the optimal genetic code including up to 160 meaningful codons
We pose a question about the properties of the optimal codon set for which the lower bound

E(Vn, Vn) ¼ 384þ
X3

i¼1

ni � fni (G[Bi])

is attained under the additional restriction 1≤ n1 + n2 + n3≤ 96, where ni, i = 1, 2, 3 is the number of new
codons introduced into EGC and belonging to Bi, i = 1, 2, 3, respectively. Moreover, it is also interesting to
find the best possible genetic code extension for every 1≤ n≤ 96.

We begin our consideration with presenting some features of induced graphs G[Bi], i = 1, 2, 3. These
properties allow us to describe the optimal codon group in terms of ϕk(G[Bi]). Following lemma 2.5, we
get that G[Bi], i = 1, 2, 3 are isomorphic to each other, hereby it is enough to consider the properties of the
graph G[B1] (figure 3) because all potential code structures and also their properties can be transmitted
unambiguously from B1 to B2 and B3. Since the graph G[B1] has a representation as a Cartesian product of
graphs (see proposition 2.7), in the light of theorem 2.3 from [35], we get that the collection of the first n
vertices of G[B1] taken in the lexicographic order is characterized by the set conductance values, which
are optimal in terms of k-size conductance. Therefore, for every Vn, we can find a lower bound, i.e. an
EGC which is composed of the subsets of lexicographically ordered codons belonging to B1 < B2 < B3.

In table 1, we present the list of all G[B1] nodes taken in the selected lexicographic order. What is
more, we evaluate also all possible k-size conductance values for the respective sets. Using these
results, we can propose a method for finding the best possible genetic code extension in the class
Vn, 1 � n � 96. Let us start with the following observation: if n1, n2 and n3 defined in theorem 3.3
fulfil the condition n1 + n2 + n3≤ 32, then we get the following inequality:

3 �min (fn1 (G[Bi]), fn2 (G[Bi]), fn3 (G[Bi])) � fn1þn2þn3 (G[Bi]):

This formula results from the fact that the calculated values of ϕn(G[B1]) decrease, in general, with the size
of codon groups n (table 1). Therefore, to create the optimal genetic code extension V�

n, it is enough to
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Figure 3. The graphical of the graph G[B1] which is an induced subgraph of the graph G(V, E). Each node is a codon belonging to
the set B1, B1 , V, whereas its edges are taken from the set E.
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choose new codons from the set Bi until the total number of codons n exceeds 32. Then, this procedure
should be continued and additional codons from the next Bi-type set should be selected until the total
number of codons reaches 64.

3.3. The optimal extension of the standard genetic code with more than 160 meaningful
codons

In order to extend the genetic code over 160 meaningful codons, we have to make some observations.
From (3.9), we get immediately that C1 is the best genetic code extension involving 96 additional
codons. In addition, applying proposition 2.4(c), we get that C1 includes all non-canonical codons that
are directly connected with V0. As a result, the condition (3.4) is non-restrictive in the case when we
try to extend V0 in consecutive steps using definition 3.1 for n > 96. Therefore, we propose to
reformulate the problem of optimal V0 extension into the question of optimal extension of the C1 set.

Let us denote by V0
n a set of codons such that C1⊆ V0

n with exactly n, 1≤ n≤ 48 new codons in
comparison to C1. Therefore, the optimal genetic code extension can be characterized in the followingway.

Definition 3.4. The set V
0�
n , C1 , V

0�
n with exactly n additional codons is optimal if

V
0�
n ¼ argmin{V0

n : V0
n¼C1<A0

n ,}
E(V0

n, V0
n), (3:10)

where A0
n possess the feature

A0
n ¼ argmax{S: S#C1, jSj¼n}E(C

1, S): (3:11)

Similarly to the method presented in the previous subsections, we introduce a definition which is
useful in describing the optimality of the EGC.

Definition 3.5. Let us define by V0
n a class of sets V0

n, whose 1≤ n≤ 48 additional codons and
A0

n ¼ V0
nnC1 fulfil the property (3.11). Then,

V0
n ¼ {V0

n: V
0
n ¼ C1 < A0

n},

is a class of all possible extensions of the C1 set with exactly n new codons.



Table 1. The sequence of codons composing the set B1. They are ordered according to a selected lexicographic order. The values
of the k-size conductance ϕk(G[B1]) calculated for the first k codons in order are also presented.

codon k ϕk(G[B1])

XAA 1 1

XAT 2 0.857

XAG 3 0.714

XAC 4 0.571

ATA 5 0.600

XTT 6 0.571

XTG 7 0.510

XTC 8 0.428

XGA 9 0.428

XGT 10 0.400

XGG 11 0.350

XGC 12 0.285

XCA 13 0.274

XCT 14 0.244

XCG 15 0.200

XCC 16 0.143

YAA 17 0.176

YAT 18 0.190

YAG 19 0.188

YAC 20 0.171

YTA 21 0.184

YTT 22 0.182

YTG 23 0.168

YTC 24 0.143

YGA 25 0.143

YGT 26 0.132

YGG 27 0.111

YGC 28 0.082

YCA 29 0.074

YCT 30 0.057

YCG 31 0.032

YCC 32 0
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Thanks to that, we are able to give the optimal C1 extension with a given size n. In order to increase
the SGC by over 160 codons in total, it is enough to extend the set C1 by incorporating new codons from
the set

B12 < B13 < B23 < B123,

in such a way that the number of connections between a new code and its complement is minimized
according to the condition (3.10), whereas the number of possible connections between the ‘basic’
coding system C1 and newly added codons is maximized at the same time according to the condition
(3.11).

Interestingly, we can find the optimal C1 extension for 1≤ n≤ 48 in a similar way to that presented in
§3.1. We begin by introducing the following lemma.
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Lemma 3.6. Let V0

n [ V0
n be a set of codons where 1≤ n≤ 48 and A0

n ¼ V0
nnC1. If A0

n fulfils the condition
(3.11), then

A0
n # B12 < B13 < B23 < B123:

Proof. The proof of this lemma follows directly from proposition 2.4(d,g). ▪
Then, we can formulate the following theorem.

Theorem 3.7. Let V0
n [ V0

n be a set of codons, where 1≤ n≤ 48 and A0
n ¼ V0

nnC1 fulfil the condition (3.11).
Then the following inequality holds:

E(V0
n, V0

n) � 384� 6nþ
X

ij

nij � fnij (G[Bij]),

where nij ¼ jA0
n > Xijj,

P
ij nij ¼ n and G[Bij] is the induced subgraph of G.

Proof. Similarly to the proof of theorem 3.3, we start with the equation:

E(V0
n, V0

n) ¼ E(C1, C1)� E(C1, A0
n)þ E(A0

n, V0
n): (3:12)

Using equation (3.9) and proposition 2.4(d,g), we get immediately two equalities

E(C1, C1) ¼ 384, E(C1, A0
n) ¼ 8n:

Therefore, we can rewrite equation (3.12) in the following way:

E(V0
n, V0

n) ¼ 384� 8nþ E(A0
n, V0

n):

In the next step, we make a simple observation

E(A0
n, V0

n) ¼
X

ij

E(A0
n > Bij, V0

n > Bij)þ
X

ij

E(A0
n > Bij, B123),

where
P

ij E(A
0
n > Bij, B123) ¼ 2n according to proposition 2.4(e). Then following the definitions 2.10 and

2.11, we get:
X

ij

E(A0
n > Xij, V0

n > Bij) �
X

ij

nij � fnij (G[Bij]):

In consequence, we can reformulate the inequality 3.12 as follows:

E(V0
n, V0

n) � 384� 6nþ
X

ij

nij � fnij (G[Bij]):

▪
As a result, we found the lower bound of the value of E(V0

n, V0
n), where the size n of the set V0

n is a
number between 1≤ n≤ 48. Similarly to theorem 3.3, the optimality of the EGC depends strongly on the
properties of newly created codon groups. Clearly, the best codon groups attain the n-size conductance
values fnij (G[Bij]) for their size nij. What is more, the optimal EGC, in terms of the definition 3.4 with 208
codons in total, is described by the set C2 because in this case we get

E(C2, C2) ¼ 384� 6 � 48 ¼ 96: (3:13)
3.4. The optimal codon block structures including up to 208 meaningful codons
As was mentioned in the previous section, the properties of the newly incorporated codons have a
decisive impact on the optimality of the EGC. Applying theorem 3.7, the lower limitation on the
value of E(V0

n, V0
n), under the condition (3.11), is determined by the codon blocks that are optimal

in terms of the k-size conductance. Following the results presented in §3.2, we have to consider
some properties of induced subgraphs G[Bij], ij = 12, 13, 23, because they allow us to describe the
optimal codon groups. Using lemma 2.6, we obtain that graphs G[Bij] are isomorphic to each
other. Thanks to that, it is sufficient to consider the properties of the graph G[B12] (figure 4).
Similarly to the previous results, G[B12] can be represented as a Cartesian product of
graphs(lemma 2.8). Therefore, using again theorem 2.3 from [35], we obtain that the set of the



XXA

XXT

XXG

XXC

XYA

XYT

XYG

XYC

YXA

YXT

YXG

YXC

YYA

YYT
YYG

YYC

Figure 4. The graphical of the graph G[B12] which is the induced subgraph of the graph G(V, E). Each node is a codon belonging to
the set B12, B12 , V, whereas the edges are incorporated from the set E.
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first n codons (nodes) of G[B12] ordered in the lexicographic order possess the optimal k-size
conductance ϕk(G[B12]). In table 2, we present the list of all G[B12] nodes ordered in the
lexicographic order. What is more, we evaluated also all possible values of ϕk(G[B12]) for the sets
composed of the first k nodes.

Similarly to the previous results, the best genetic code extensions, namely, V
0�
n , 1 � n � 48 have the

nested structure of the optimal codon blocks. It can be obtained by addition of the subsequent codons
according to their lexicographic order. The new codons are selected from the subsequent sets of type
Bij until the total number of included codons in a given set reaches 16.
3.5. The optimal extension of the standard genetic code up to 216 codons
The methodology presented in the previous section allows us to extend C1 up to the C2 set of codons
involving 208 out of 216 possible codons. In order to extend the genetic code by over 208 meaningful
codons, we must conduct a reasoning. From (3.13), we get that C2 is the best C1 extension involving
48 additional codons. What is more, applying proposition 2.4(g) we get that C2 includes all non-
standard codons, which are connected to C1. As a result, the property 3.11 is not restrictive in the case
when we try to extend C1 in consecutive steps using definition 3.4 for n > 48. Therefore, similarly to
the method presented in the previous section, we reformulate the problem of the optimal C1 extension
into the question of the optimal extension of the C2 set.

Definition 3.8. The set V
00�
n , C2 , V

00�
n with exactly 1≤ n≤ 8 additional codons is optimal if

V
00�
n ¼ argmin{V00

n : V00
n¼C2<A00

n ,}
E(V00

n , V00
n), (3:14)

where A00
n possess one additional feature

A00
n ¼ argmax{S: S#C2, jSj¼n}E(C

2, S): (3:15)

We introduce also a definition which is useful in describing the optimality of the genetic code
extension.



Table 2. The codons composing the set B12. They are arranged according to a selected lexicographic order. The values of the
k-size conductance ϕk(G[B12]) calculated for the first k codons in order are also presented.

codon k ϕk(G[B12])

XXA 1 1

XXT 2 0.1

XXG 3 0.6

XXC 4 0.4

AYA 5 0.440

XYT 6 0.4

XYG 7 0.314

XYC 8 0.2

YXA 9 0.244

YXT 10 0.240

YXG 11 0.2

YXC 12 0.133

YYA 13 0.138

YYT 14 0.114

YYG 15 0.067

YYC 16 0
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Definition 3.9. Let us denote by V00
n a class of sets C2 , V00

n with n≥ 1 additional codons and
A00

n ¼ V00
nnC2 fulfils the property (3.15). Then

V00
n ¼ {V00

n: V
00
n ¼ C2 < A00

n}

is a class of all possible extensions of the C2 set with exactly n, 1≤ n≤ 8 additional codons.

Using definition 3.8 of optimality, we get the following characterization of the set V
00�
n .

Theorem 3.10. For every 1≤ n≤ 8, the following equation holds

V
00�
n ¼ C2 < A00

n,

where V
00�
n [ V00

n and A00
n⊆ B123 is optimal in terms of ϕk(G[B123]).

Proof. The proof of this theorem is an immediate consequence of proposition 2.4(g) and definition
2.11. ▪

Furthermore, the induced subgraph G[B123] (figure 5) can be also represented as a Cartesian product
of graphs (proposition 2.9). Using again theorem 2.3 from [35], we obtain that the collection of the first n
codons of G[B123] taken in the lexicographic order possess the optimal k-size conductance ϕk(G[B123]). In
table 3, we present the list of all G[B123] nodes taken in the selected lexicographic order. We evaluated
also all possible values of the k-size conductance for the sets composed of the first k nodes.
4. Discussion
The huge number of combinations of non-canonical and canonical bases in the creation of new codon groups
means that the genetic code can be extended in various ways. Here, we propose the SGC extension in three
steps consisting of the addition of codons including an increasing number of non-canonical bases. These
steps extend the genetic code to 160 meaningful codons, then to 208 codons and finally to 216 codons.
The extension of the SGC proposed by us is a general approach, which does not take into account
properties of coded amino acids or other compounds associated with the newly added codons. We
focused on the global structure of the code including arrangement of codons in groups (blocks) coding a
given amino acid which differed usually in one codon position. The codons are added according to a
fixed lexicographic order, which makes the EGC robust to changes causing the loss of genetic information.



XXX
XXY

XYXXYY

YXXYXY

YYX

YYY

Figure 5. The graphical of the graph G[B123] which is the induced subgraph of the graph G(V, E). Each node is a codon belonging to
the set B123, B123 , V, whereas the edges are incorporated from the set E.

Table 3. The sequence of codons composing the set B123. They are ordered according to a selected lexicographic order. The
values of the k-size conductance ϕk(G[B123]) calculated for the first k codons in order are also presented.

codon k ϕk(G[B123])

XXX 1 1

XXY 2 0.667

XYX 3 0.556

XYY 4 0.333

YXX 5 0.333

YXY 6 0.222

YYX 7 0.143

YYY 8 0
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This approach conforms the assumption of the adaptation hypothesis,which postulates that the SGCevolved
to minimize harmful consequences of mutations or mistranslations of coded proteins [24,29,32,33]. The SGC
turned out to be quite well optimized in this respect when compared with a sample of randomly generated
codes [25,26,28,31,36] but the application of optimization algorithms revealed that the SGC is not perfectly
optimized in this respect and more robust codes can be found [34,37–44]. The minimization of mutation
errors is important from a biological point of view, because it protects organisms against losing genetic
information. Then, the reduction of the mutational load seems favoured by biological systems and can
occur directly at the level of the mutational pressure [45–49]. Nevertheless, in the global scale, the SGC
shows a general tendency to error minimization [37,44], which is more exhibited by its alternative
versions [50], evolved later. Therefore, the extension of the SGC according to this rule seems to be a
natural consequence of its evolution.

Our approach assumes a stepwise extension of the code similarly to the gradual addition of new
amino acids to the evolving primordial SGC, when they were produced by increasingly more complex
biosynthetic pathways evolving in parallel [51–60]. The addition of amino acids was also driven by
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the selection for the increasing diversity of amino acids [61–64] as well as decreasing disruption of

already coded proteins and their composition [65]. The similar assumptions are included in our
model, which assumes the minimization of differences between the newly added codons and those
already defined in the code. The codons added in the first step contain, besides two canonical bases
(N), only one non-canonical base (X), i.e. XNN, NXN and NNX, thus differing from the typical
codons (NNN) in only one position. The next added codons include already two non-canonical bases,
i.e. XXN, XNX and NXX. Finally, codons consisting exclusively of three non-canonical bases (XXX) can
be used to extend the code. This method of codon addition causes the newly added codons to differ
from the current ones in one point mutation.

Thanks to this gradual addition of new codons with assigned new amino acids, the whole system, i.e.
an organism with the extended code, can have a quite high probability of surviving. The inclusion of new
codons that differ in one mutation step between themselves and the canonical ones means that in the case
of such mutation there is a small probability of undefined codons being generated, which could cause
premature termination of translation of coded products and their non-functionality. Assuming that
reverse mutations are more frequent, i.e. substitutions of a non-canonical base by a canonical one, the
EGC can be reduced with time to the SGC. The stepwise addition can also give an organism time for
adaptation and tuning the molecular processes to the new products. Moreover, it enables better
monitoring and control of the organism’s modification.

However, from an experimentalist point of view, such reversions would not be desirable because the
modified system would revert to the original one. Therefore, we can imagine an alternative way of the
genetic code extension by adding codons that cannot be mutated in a single step to the already
defined codons in the code. To extend the SGC in this way, the first added codon sets should contain
at least two non-canonical bases, i.e. XXX or XXN, XNX and NXX. Then, any single mutation of these
codons would cause generation of undefined codons and organisms bearing such a mutation could be
naturally eliminated from the whole population if the mutation is deleterious. Our model of the SGC
extension can be upgraded to include properties of newly added amino acids or other compounds
which are introduced into the code.
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