
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2007-09

Improving automated lexical and discourse

analysis of online chat dialog

Forsyth, Eric N.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3281

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPROVING AUTOMATED LEXICAL AND DISCOURSE
ANALYSIS OF ONLINE CHAT DIALOG

by

Eric Nielsen Forsyth

September 2007

 Thesis Advisor: Craig H. Martell
 Second Reader: Kevin M. Squire

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Improving Automated Lexical and Discourse Analysis
of Online Chat Dialog
6. AUTHOR(S) Eric Nielsen Forsyth

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
One of the goals of natural language processing (NLP) systems is determining the meaning of what

is being transmitted. Although much work has been accomplished in traditional written and spoken
language domains, little has been performed in the newer computer-mediated communication domain
enabled by the Internet, to include text-based chat. This is due in part to the fact that there are no annotated
chat corpora available to the broader research community. The purpose of our research is to build a chat
corpus, initially tagged with lexical and discourse information. Such a corpus could be used to develop
stochastic NLP applications that perform tasks such as conversation thread topic detection, author
profiling, entity identification, and social network analysis.

During the course of our research, we preserved 477,835 chat posts and associated user profiles in
an XML format for future investigation. We privacy-masked 10,567 of those posts and part-of-speech
tagged a total of 45,068 tokens. Using the Penn Treebank and annotated chat data, we achieved part-of-
speech tagging accuracy of 90.8%. We also annotated each of the privacy-masked corpus’s 10,567 posts
with a chat dialog act. Using a neural network with 23 input features, we achieved 83.2% dialog act
classification accuracy.

15. NUMBER OF
PAGES

127

14. SUBJECT TERMS Computer-Mediated Communication, Chat, Natural Language Processing,
Part-of-Speech Tagging, Discourse, Dialog Act

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPROVING AUTOMATED LEXICAL AND DISCOURSE ANALYSIS OF
ONLINE CHAT DIALOG

Eric N. Forsyth

Major, United States Air Force
B.S., University of Michigan, 1991

M.S., Purdue University, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Eric N. Forsyth

Approved by: Craig H. Martell, PhD
Thesis Advisor

Kevin M. Squire, PhD
Second Reader

Peter J. Denning, PhD
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

One of the goals of natural language processing (NLP) systems is determining the

meaning of what is being transmitted. Although much work has been accomplished in

traditional written and spoken language domains, little has been performed in the newer

computer-mediated communication domain enabled by the Internet, to include text-based

chat. This is due in part to the fact that there are no annotated chat corpora available to

the broader research community. The purpose of our research is to build a chat corpus,

initially tagged with lexical and discourse information. Such a corpus could be used to

develop stochastic NLP applications that perform tasks such as conversation thread topic

detection, author profiling, entity identification, and social network analysis.

During the course of our research, we preserved 477,835 chat posts and associated

user profiles in an XML format for future investigation. We privacy-masked 10,567 of

those posts and part-of-speech tagged a total of 45,068 tokens. Using the Penn Treebank

and annotated chat data, we achieved part-of-speech tagging accuracy of 90.8%. We also

annotated each of the privacy-masked corpus’s 10,567 posts with a chat dialog act.

Using a neural network with 23 input features, we achieved 83.2% dialog act

classification accuracy.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. ORGANIZATION OF THESIS ...3

II. BACKGROUND ..5
A. LINGUISTIC STUDY OF CHAT..5

1. Zitzen and Stein’s Linguistic Theory for Chat6
2. Freiermuth’s Comparative Analysis of Chat, Written, and

Spoken Texts...10
B. CHAT USE TODAY..13

1. Tactical Military Chat ...14
2. Detecting Illegitimate Chat Use ..16

C. NATURAL LANGUAGE PROCESSING TECHNIQUES.......................18
1. Annotated Corpora..18
2. Part-of-Speech Tagging...20

a. Algorithmic Approaches ...21
b. Performance Factors ..21

3. Dialog Act Modeling ..23
a. Spoken Conversation ..24
b. Computer-Mediated Communication.....................................26

III. TECHNICAL APPROACH..29
A. BUILDING THE CORPUS ..29

1. Data Conversion to XML ..29
2. Privacy Masking...30
3. Part-of-Speech (POS) Tagging..31
4. Chat Dialog Act Classification..34
5. Bootstrapping Process ...36

B. CHAT PART-OF-SPEECH TAGGING METHODOLOGY37
1. Lexicalized N-Grams with Back off ...37
2. Hidden Markov Models...40
3. Brill Transformational-Based Learning Tagging...........................44
4. Part-of-speech Tagging Experimental Approach47

C. CHAT DIALOG ACT CLASSIFICATION METHODOLOGY..............47
1. Feature Selection..47
2. Back-Propagation Neural Networks ..49
3. Naïve Bayes Classifier..52
4. Chat Dialog Act Classification Experimental Approach54

IV. TESTING AND ANALYSIS...57
A. CORPUS STATISTICAL COMPARISON ..57

1. Corpora Sample Token/Type Ratios..58
2. Corpora Sample POS Tag Count/Type Ratios60

 viii

3. Tagger Self Domain Comparison ...62
B. CHAT PART-OF-SPEECH TAGGING RESULTS63

1. N-Gram Back Off Tagger Performance ..63
a. N-Gram Back Off Trained on Single Domain.......................64
b. N-Gram Back Off Tagger Performance Improvements........66

2. Hidden Markov Model Tagger Performance..................................68
3. Brill Tagger Performance ...70
4. Discussion..73

C. CHAT DIALOG ACT CLASSIFICATION RESULTS.............................75
1. 27 Feature Experiment Results...78

a. Back Propagation Neural Network ..78
b. Naïve Bayes Classifier ..83

2. 24 Feature Experiment Results...86
a. Back Propagation Neural Network ..87
b. Naïve Bayes Classifier ..89

3. Discussion..91

V. SUMMARY AND FUTURE WORK...95
A. SUMMARY ..95
B. FUTURE WORK...95

1. Part-of-Speech Tagging Improvements ...95
2. Chat Dialog Act Classification Improvements96
3. Syntax Analysis ..97
4. Other Semantic NLP Applications ...99
5. Expand Privacy-Masked Chat Corpus ..99

APPENDIX A: ACRONYMS..101

APPENDIX B: CHAT CONTRACTIONS ..103

APPENDIX C: CHAT EMOTICONS ..105

APPENDIX D: CHAT ABBREVIATIONS ...107

LIST OF REFERENCES..109

INITIAL DISTRIBUTION LIST ...111

 ix

LIST OF FIGURES

Figure 1. Bigram Back Off Tagger Approach...39
Figure 2. Multi-Domain Bigram Back Off Tagger Example ..40
Figure 3. Viterbi Algorithm for Hidden Markov Model Decoding (After [13]).............42
Figure 4. Transformation Learning Algorithm for Brill Tagging (After [15])46
Figure 5. Back-Propagation with Gradient Descent for Neural Network Training

(After [23])...51
Figure 6. N-Gram Back Off Tagger Performance on Chat Trained on a Single

Domain...64
Figure 7. N-Gram Back Off Tagger Performance Improvements...................................67
Figure 8. Hidden Markov Model Tagger Performance...69
Figure 9. Brill Tagger Performance for Single Chat Test Set ...71
Figure 10. Brill Tagger Performance Improvements ..73
Figure 11. Example Confusion Matrix for Chat Dialog Act Classification (Back

Propagation Neural Network, 24 Features, 100 iterations)..............................77
Figure 12. Example Confusion Matrix for Chat Dialog Act Classification (Back

Propagation Neural Network, 27 Features, 100 iterations)..............................80
Figure 13. Back Propagation Neural Network Training Set Error (3007 posts, 22

Features)...81
Figure 14. Back Propagation Neural Network Test Set Error (500 posts, 22 Features) ...81
Figure 15. Example Confusion Matrix for Chat Dialog Act Classification (Naïve

Bayes, 27 Features)..84
Figure 16. Example Confusion Matrix for Chat Dialog Act Classification (Naïve

Bayes, 27 Features, No Prior Probability Term)..86
Figure 17. Example Wall Street Journal Sentence Parse (From [20])98

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Turn Allocation Techniques in Spoken Language (From [7])...........................7
Table 2. Consolidated Functional Requirements for Tactical Military Chat (From

[2])..15
Table 3. Consolidated Information Assurance Requirements for Tactical Military

Chat (From [2]) ..16
Table 4. Brown Corpus Description (From [12]) ..19
Table 5. 42 Dialog Act Labels for Conversational Speech (From [17])........................25
Table 6. 15 Post Act Classifications for Chat (From [18]) ..27
Table 7. 12 Dialog Act Labels for Task-Oriented Instant Messaging (From [3])28
Table 8. Penn Treebank Tagset (From [20]) *Note: BES and HVS tags were not

used in WSJ, but were used in Switchboard ..32
Table 9. Post Dialog Act Classification Examples ..34
Table 10. Nonlexical Templates for Part-of-speech Tagging (From [15])45
Table 11. Initial Post Feature Set (27 Features)...48
Table 12. Corpora Lexical Statistics Summary ...58
Table 13. POS Tag Counts for Privacy-masked Chat Corpus Types and Tokens...........61
Table 14. Corpora POS Tag Count Ratio Summary..61
Table 15. Self Domain Tagger Performance Comparison...62
Table 16. N-Gram Back Off Tagger Performance on Chat Trained on a Single

Domain...64
Table 17. N-Gram Back Off Tagger Performance Improvements...................................66
Table 18. Hidden Markov Model Tagger Performance...69
Table 19. Brill Tagger Performance for Single Chat Test Set ...71
Table 20. Brill Tagger Performance Improvements ..72
Table 21. Chat Dialog Act Frequencies ...76
Table 22. Back Propagation Neural Network Classifier Performance (27 Features,

100 iterations) ..79
Table 23. Back Propagation Neural Network Classifier F-Score Comparison (27

Features, 100 vs. 300 iterations) ..82
Table 24. Naïve Bayes Classifier Performance (27 Features) ...83
Table 25. Naïve Bayes Classifier F-Score Comparison (27 Features, Prior Class

Probability Included/Not Included) ...85
Table 26. Back Propagation Neural Network Classifier Performance (24 Features,

300 iterations) ..87
Table 27. Back Propagation Neural Network Classifier F-Score Comparison (24

Features vs. 27 Features, 300 Iterations) ...88
Table 28. Naïve Bayes Classifier Performance (24 Features) ...89
Table 29. Naïve Bayes Classifier F-Score Comparison (24 Features vs. 27 Features) ...90
Table 30. Contractions Encountered in Privacy-Masked Chat Corpus103
Table 31. Chat Emoticons Encountered in Privacy-Masked Chat Corpus105
Table 32. Chat Abbreviations Encountered in Privacy-Masked Chat Corpus...............107

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 The research presented in this thesis is due to the varied contributions of many
people, so it is only proper that I recognize the significance of their support.

 Dr. Craig Martell, as my thesis advisor you gave me something that many in your
position do not afford to their students: the freedom to figure out that which truly
interested me. Thank you for providing me sage advice along the road to discovery.

 Dr. Kevin Squire, you gave me a great appreciation for a glamourless aspect of
computer science that I somehow missed in all my years of engineering programming:
the data structure. Much of my research relied on those linked lists, trees, and hash tables
that never seem to get their due.

 Ms. Jane Lin, if you hadn’t shared your interest in computer-mediated
communication, I would still be writing my thesis proposal. Sometimes the hardest part
of great research is getting the data. It is my hope that your data will form a foundation
for tomorrow’s discoveries in our field.

 To my fellow computer science students, I have been so impressed not only with
your intellect, but also your selfless service to country. Thank you for your words of
advice and encouragement. I wish you the very best in your military careers and beyond.

 Words are not adequate to express the love and support of my family. Mom and
Dad, you have been the prototypical cheerleaders that all great parents are for their kids.
Greg, as my brother and dear friend, your no-nonsense approach to life has always set an
example for me; I aspire to be in your league.

 Most important, though, are those who stand with me every day. Kate, I am so
excited that your formal journey of learning has begun with kindergarten this year; you
are such as bright, beautiful girl. Your dry sense of humor always lifts me up. Maxwell,
you are so wise beyond your years; I often forget that you are an eight-year old still
finding his way. Your love for music, friendship, and life inspire all those lucky enough
to know you. Finally, it is not easy to pack up your life every two years, leaving behind
home and friendships. Michelle, you get us through those moves; you provide the family
with stability while I am away; you encourage our children to be their very best; and
through your actions, you impress upon us that it is not what we say but rather what we
do that counts. Although I’ll never be a quilter of your stature, hopefully some tennis
lessons will help make me a worthy competitor someday! I love you dearly.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Computer-mediated communication (CMC), as defined by Herring, is

“communication that takes place between human beings via the instrumentality of

computers [1].” Per this definition, the CMC domain, which is distinct from traditional

written and spoken domains, includes genres such as e-mail, newsgroups, weblogs,

instant messaging (IM), and text-based chat.

Chat is distinguished from the other CMC genres based on the “near-

synchronous” participation of multiple users spatially separated from one another. This

seemingly simple concept, powered by the Internet, has permitted groups of people to not

only communicate with one another, but to collaborate real-time on problems they

collectively face. Indeed, a perfect example of this is military use of text-based chat,

which has supplanted traditional command and control (C2) systems as a primary way of

moving time-critical information around the tactical environment [2].

Orthogonal to written, spoken, and CMC domains is the development of natural

language processing (NLP) applications to enhance communication itself. Many

examples exist where NLP applications tailored for the written and spoken domains are

changing the way we live. These include spelling- and grammar-checking on our word

processing software; voice-recognition in our automobiles; and telephone-based

conversational agents that help us troubleshoot our personal and business account issues.

Even more sophisticated “semantic” applications are currently under development, such

as automated tools that assist in the identification of entities in written (electronic)

documents along with the associated social networks that tie those entities together.

Chat, as an example of the CMC domain, can also benefit from NLP support. For

instance, text-based conversational agents can help customers make purchases on-line

[3]. In addition, discourse analyzers can automatically separate multiple, interleaved

conversation threads from chat rooms either in real-time or after the fact in support of

 2

information retrieval applications. Finally, author-profiling tools can help detect

predatory behavior in a recreational chat setting, or even the illegitimate use of chat by

terrorist and other criminal organizations.

Most NLP applications are stochastic in nature, and are thus trained on corpora, or

very large samples of language usage, tagged with lexical, syntactic, and semantic

information. The Linguistic Data Consortium (LDC), an open organization consisting of

universities, companies, and government research laboratories, was founded in 1992 to

help create, collect, and distribute such databases, lexicons, and other resources for

computer-based linguistic research and development. As of August 2007, the LDC has

made available 381 text-, audio-, and video-based corpora to the larger research

community [4].

Not surprisingly, the effectiveness of an NLP application for a particular domain

is largely influenced by the information it learns during training. As noted by the LDC,

Different sorts of text have different statistical properties—a model trained
on the Wall Street Journal will not do a very good job on a radiologist's
dictation, a computer repair manual, or a pilot's requests for weather
updates…This variation according to style, topic and application means
that different applications benefit from models based on appropriately
different data—thus there is a need for large amounts of material in a
variety of styles on a variety of topics—and for research on how best to
adapt such models to a new domain with as little new data as possible [4].

However, of the 381 corpora provided by the LDC, only three contain samples

from the CMC domain and none from chat in particular. And yet, CMC and chat are not

going away anytime soon.

Thus, as noted earlier by LDC, if we seek to build NLP applications for chat, we

must accomplish two things: 1) Collect chat data and annotate it with lexical, syntactic,

and semantic information; and 2) Adapt existing resources (both corpora from other

domains and NLP algorithms) in conjunction with this annotated chat corpus to tailor

automated tools to support chat use. These two observations form the foundation of our

research presented in this thesis.

 3

B. ORGANIZATION OF THESIS

We have organized this thesis as follows. In Chapter I we provide a motivation

for the creation of an online chat corpus with tailored NLP techniques. In Chapter II we

provide a synopsis of previous work in the area, to include: 1) The linguistic study of chat

and comparison to traditional spoken and written communication domains; 2) How chat

is currently used today, and where it can benefit from NLP; and 3) A review of general

NLP techniques we will bring to bear on our research, to include annotated corpora, part-

of-speech tagging, and dialog act modeling. In Chapter III we detail our technical

approach, to include: 1) The approach we used to build the chat corpus; 2) The

supporting mathematical foundation for the algorithms we used in both automated part-

of-speech tagging and chat dialog act classification; and 3) The experimental set-up we

used to test the effectiveness of those algorithms. In Chapter IV we discuss our results, to

include: 1) The lexical statistics we collected from our chat corpus, along with a

comparison to similarly sized corpora samples from the spoken and written domains; 2)

Our part-of-speech tagger performance on the chat domain based on both the training

data we used as well as the algorithms we employed; and 3) Chat dialog act classification

results based on both the features we selected to measure as well as the algorithms we

employed. Finally, in Chapter V we provide a summary of our work along with

recommendations for future research.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

In this chapter we review a broad body of work related to chat and Natural

Language Processing (NLP) techniques. First, we will examine chat from a linguistic

perspective, and highlight its similarities and differences to written and spoken language

domains. Then, we will cover how chat is used today, and identify how NLP can be used

to address requirements of applications that support its legitimate use (or detect its

illegitimate use). Finally, we will provide a brief history of NLP techniques that we will

apply to our chat research, to include part-of-speech tagging and dialog act classification.

A. LINGUISTIC STUDY OF CHAT

Before we start our discussion on the linguistic study of chat, we must first

provide a common frame of reference with regards to chat itself. Although several chat

protocols and applications abound, all contain variants of the following three features.

First, there is a frame that displays all current participants in the particular session. This

frame is updated as participants log on/off to the chat “room”, and is publicly viewable to

all currently in the room. Second, there is a frame displaying all posts submitted by all

chat participants in the order that they arrived at the server. Thus, this main dialog frame

is a record of all the (often interlaced) conversation threads that have taken place since

the individual participant logged on to the room, and as such is also publicly viewable.

Finally, there is a frame that is used for editing each participant’s posts to the main dialog

frame. Unlike the other two frames, though, this editing area is not publicly viewable.

Only once the individual hits “Enter” do the contents of the editing frame become visible

to the other participants in the main dialog frame.

Note that these limits on how chat is technically implemented are what give chat

its near-synchronous quality. Often, one participant will respond to an earlier post at

nearly the same time as another participant (to include the original poster) is responding.

However, the application can only post those responses in the main dialog frame one at a

time. This results in an interlacing effect among posts, even within a single conversation

thread.

 6

With these observations in mind, we are now ready to provide a brief review of

the study of chat from a linguistic perspective. We first introduce a theoretical approach

to communication in the chat domain, to include how traditional language constructs are

modified for use in a domain enabled as well as restricted by technology. We then

present an empirical study that explicitly compares language features used in a specific

context (political discussion) across the written, spoken, and chat domains.

1. Zitzen and Stein’s Linguistic Theory for Chat

Zitzen and Stein present a linguistic theory for chat founded in its pragmatic,

social, and discourse communication properties [5]. As such, a primary objective of their

research was to ascertain whether chat is simply a combination of written and spoken

language, or if its properties are unique enough such that it constitutes a new genre within

the CMC domain. Their theory is based in part on part on observations taken from three

different chat sessions, which comprised a total of seven hours and eight minutes of

verbal interaction and 12,422 words (not including words from system-generated

messages).

One of the key features that can be used to distinguish chat from written and

spoken domains is Nystrand’s notion of Context of Production and Context of Use [6]. In

particular, how Context of Production and Context of Use relate to one another across

space and time help differentiate between the domains. As Zitzen and Stein observe,

In face-to-face [spoken] conversations where the participants are
physically co-present, Context of Production and Context of Use are
concurrent. In other words, co-present participants can monitor another
person’s speech [and other physical cues] as it develops. Traditional
written discourse is characterized by the spatiotemporal separation of
Context of Production and Context of Use [5].

For chat, the aforementioned private editing frame functions as Context of

Production, while the public main dialog frame functions as Context of Use. Since

typing and editing a message cannot be monitored by the other chat participants, Context

of Production is divorced from Context of Use. Thus, from a Context of Production

perspective, chat is closer to written language, since per Zitzen and Stein “…there is no

 7

incremental top-down, anticipatory processing of the auditory sound material…[as well

as] paralinguistic information [5].” That being said, Context of Use for chat is much

closer to that of spoken language as compared to written discourse such as letter writing

or even email.

Another concept that can be used to differentiate chat from the other domains is

the conversational concept known as turn-taking. Turn-taking is the process that

determines who gets to “hold the floor” in a conversation. Sacks et al proposes the

following “algorithm” (presented in Table 1) that is used by spoken conversation

participants to allocate turns. Further, Sacks et al asserts this algorithm generates two

driving forces in spoken conversation: avoidance of silence and avoidance of overlapping

talking [7].

1. The current floor holder may implicitly or explicitly select the next speaker, who is then
obliged to speak.

2. If the current floor holder does not select the next speaker, the next speakership may be
self-selected. The one who starts to talk first gets the floor.

3. If the current speaker does not select the next speaker, and no self-selected speakership
takes place, the last speaker may continue.

4. If the last (current) speaker continues, rules 1-3 reapply. If the last (current) speaker
does not continue, then the options recycle back to rule 2 until speaker change occurs.

Table 1. Turn Allocation Techniques in Spoken Language (From [7])

Zitzen and Stein assert that in chat conversations “a much more intricate and

complicated layering of partial [turn-taking] mechanisms” replace those of Sack’s et al

turn allocation algorithm for spoken conversations [5]. First, the speaker-selection

properties described in Table 1 are replaced with a “first message to server, first message

posted to dialog frame” concept. Thus, technology (and not personal relations and face

management) determines who obtains the floor in chat.

Second, Zitzen and Stein assert that the concept of being a “hearer” or “speaker”

in chat is much more complex than that in spoken conversation [5]. They note that

Garcia and Jacobs observed

 8

A [chat] participant can be a waiter and a reader at the same time, both
waiting for a response to a previous post and simultaneously reading or
scrolling through previous postings. A typing participant who is awaiting
a response to an earlier message is both a waiter and message constructor
[8].

Again, chat technology permits participants to play multiple roles at the same time.

Regarding silence, Zitzen and Stein note that lapses in conversation are socially

stigmatized in spoken conversation, with one of the effects being to cause participants to

engage in small talk just to keep conversation going. In chat, silence can be characterized

by two types: total silence, where there are no postings at all; and selective silence, where

a participant does not respond to a post addressed to him/her [5]. Zitzen and Stein assert

that, as in spoken conversation, silence in chat, although also not desirable, is not as

socially damaging [5]. Again, technology plays a role in the greater acceptance of (or

forgiveness for) silence in chat. Instead of responding to a post directed to him/her,

Zitzen and Stein state that a chat participant may be “reading [other] incoming messages,

scrolling through previous logfiles, waiting for a response, and even typing a message

[5].” That being said, they note that chat participants do make active attempts to

forewarn others of activities that may be misconstrued as silence.

Entering a chat is less obliging than entering a conversation in the sense
that the participants in a conversation have to stay until there is some
negotiated and agreed upon closing procedure. Contrary to face-to-face
situations where participants are rather hesitant to leave the room in the
middle of an ongoing conversation, in chats we find constant coming and
going, frequently accompanied by the use of the acronym BRB (be right
back) [also AFK, “away from keyboard”] which functions as a meta-
communicative attempt. [5]

Lurking, a feature that appears to be unique to chat and other forms of CMC, is

the concept of silence taken to the extreme, with the chat participant never contributing to

the ongoing dialog. Zitzen and Stein note that in spoken conversation, there is a strict

boundary between those that participate and those that do not [5]. Although

eavesdropping certainly occurs in conversations, the eavesdropper is not a ratified

conversation participant. In spoken conversation, participants must go through a process

of acceptance, where newcomers must first negotiate their entry. In chat, technology

 9

handles this negotiation process, with system messages indicating “User X has

entered/left the room” and the application’s participant frame indicating to all who is

currently in the room. That being said, Zitzen and Stein note that as the number of

participants increase, so does the potential for successful lurking, since the presence of

the lurker is forgotten due to their lack of dialog contribution as well as their

disappearance in the “sea” of participants in the application’s participant frame [5]. Once

lurking has been detected in chat, it is usually confronted and criticized. Indeed, chat

applications now have the ability for users with administrator-like privileges to “kick”

lurkers out of the room.

With these considerations in place, Zitzen and Stein define two states for chat

conversational presence: lurking (second order presence), and composing/appearing on

screen (first order presence) [5]. In other words, “not messaging a word means being

virtually absent, while more frequently messaging establishes a perception of presence

[5].” However, as in spoken conversation, there is an expected level of contribution

among participants. As mentioned earlier, silence is undesirable, yet too much

contribution is regarded as “hogging the conversation”. Thus, first order chat participants

feel the need to regulate both the number of posts they make as well as their length.

Zitzen and Stein elaborate

Longer messages do not only take a longer to type, but they also occupy
more space in the public dialog box, at the same time pushing away other
participant’s contributions, which in turn decreases the other one’s virtual
presence…Shorter messages are not only less time-consuming with regard
to production, waiting, and reception, they also help to place a message as
adjacent as possible to a previous message, a participant wishes or is asked
to respond to [5].

Thus, chat participants must balance their level of verbal activity to maintain

mutual presence within the ongoing conversation. Given chat’s technical considerations,

participants achieve this in part through what Zitzen and Stein have defined as the “split

turn,” where a single contribution “utterance” is broken up into two or more posts [5].

Based on their data, Zitzen and Stein categorize the split turn phenomenon into four

different types, with their construction employing different linguistic techniques. These

 10

techniques include (but are not limited to) continuation posts starting with transitional

relevance place words such as conjunctions and prepositions; the use of ellipses (…) at

the end of messages to indicate more to come; multiple successive posts by the same

participant, each addressing a different topic and/or participant; etc.

With this description of Zitzen and Stein’s theory of chat complete, we need to

address how their observations potentially impact an NLP application. We believe that

split turns have a definite impact on how NLP applications handle chat text at the lexical,

syntactic, and semantic levels, particularly if the application intends to use data from non-

chat domains to train on. From as lexical perspective, a word’s part-of speech tag is

dependent in part on its context; words near the boundaries of split turns lose part of that

context. Similarly, potential syntactic productions (e.g. noun phrases expanding to nouns

and prepositional phrases) are lost when those productions occur across split turn

boundaries. Finally, the full meaning of a single utterance requires access to all split

turns that it comprises. Thus, an NLP application for the chat domain must have a way to

both identify split turns and, as necessary, combine those that represent a single utterance.

With our discussion of Zitzen and Stein complete, we now turn Freiermuth’s

explicit comparison between chat and counterparts within the written and spoken

domains.

2. Freiermuth’s Comparative Analysis of Chat, Written, and Spoken
Texts

In his Ph.D. dissertation, Freiermuth explicitly compared chat with traditional

written and spoken language from the same content domain—political discussion [9]. To

maintain consistency, he selected 3000 words for each type of communication. For the

spoken domain, he used the first 500 transcribed words (excluding the monologue) from

six different episodes of Politically Incorrect, a late-night television program. For the

written domain, he used samples from the editorial section of the Standard-Times, a

newspaper which serves the south coast of Massachusetts. Finally, for chat Freiermuth

collected samples from one of the political chat channels on America Online, entitled

From the Left.

 11

Freiermuth used grammatical and functional features identified by Chafe and

Danielewicz’s cognitive approach to compare the three domains [10]. These features can

be grouped into five categories: 1) Vocabulary variety; 2) Vocabulary register; 3)

Syntactic integration; 4) Sentence-level conjoining; and 5) Involvement and detachment.

A description of these categories, the specific features used, and a summary of

Freiermuth’s findings for how chat compares with spoken and written domains follows.

Vocabulary variety refers to the size of the vocabulary used in the particular

domain [9]. Under this category, Freiermuth measured type/token ratios, or the total

number of words in the sample divided by the number of unique words in the sample;

hedging, reflecting when the participant is dissatisfied with the lexical choice (“sort of”

and “kind of”); and inexplicit third person use (“it”, “this”, and “that”) that have no

clearly identified antecedent. Based on these measurements, Freiermuth had the

following conclusions.

[First,] Chatters have more time to choose appropriate vocabulary when
compared to speakers. [Second,] Chatters increase variety by using
creative and innovative language forms, as well as addressivity. [Third,]
Chatters do not use hedges, indicating they are either satisfied with their
language choices or that they do not care if they are imprecise because
they cannot be held accountable for what they say [9].

Vocabulary register, or level, refers to the types of words that are common in

spoken versus written settings [9]. Under this category, Freiermuth specifically measured

literary language use, or the number of words that are not considered usual in typical

spoken language (e.g. “elaborate” and “introspection”); colloquial language use, or the

number of words that appear lexically fresh, i.e. change over time (e.g. “chill out”); and

contractions. Based on these measurements, Freiermuth had the following conclusions.

[First,] Chatters have less time than writers (much), but more time than
speakers. Their cognitive processing of language is not under the same
heavy demands that speakers face. [Second,] Chatters tend to mimic
spoken language, but because they are aided by time, they sometimes
elevate their language sophistication [9].

Syntactic integration refers to a strategy employed primarily by writers to

incorporate linguistic elements into clauses to be more concise and precise while

 12

expanding intonation [9]. Under this category, Freiermuth specifically measured

prepositions and stringed prepositions; complex causal conjoining; locative and temporal

adverbs; and preposed attributive adjectives and noun modifiers. Based on these

measurements, Freiermuth had the following comments and conclusions.

[First, depending on the chat application,] Chatters are limited by their
environment. AOL restricts the number of characters a participant may
type per turn, so integration is not a useful strategy. [Second,] Chatters
must cope with many simultaneous difficulties, while trying to be an
active member of the conversation. The complex dynamics of Internet
chat (e.g., the number of chatters, the problem of intervening turns from
multiple conversations, the difficulties of processing text embedded in the
midst of dialogic interaction, etc) do not warrant expanding units. [Third,]
Chatters are capable of more complex clausal interaction, but prefer speed
to precision [9].

Sentence level conjoining refers to using conjunctions to join smaller sentences

into larger ones. Freiermuth states that speakers primarily use this as a way to both

establish and maintain the floor in a conversation as well as to organize their thoughts [9].

For this category, Freiermuth’s data indicated that chat text was more like written text

based on the following rationale.

[First] Chatters have no need to establish or maintain the floor because
they construct dialog simultaneously with other chatters who are online.
In other words, the floor is always available to them. [Second,] Chatters
do not need to organize their thoughts within the framework of a
conversation. They can take as much time as they want without affecting
conversational dynamics [9].

The final category refers to the observation that written language is usually more

detached, while spoken language is usually more involved. Under this category,

Freiermuth specifically measured the number of “you/ya knows”; the number of first,

second, and third person pronouns; indicators of probability, such as “normally” and

“possibly”, which permit the communicate an escape from culpability; and the use of

passives and addressivity, which refer to degree with which the communicator indicates a

concrete “doer” for a particular action [9]. Based on these measurements, Freiermuth had

the following conclusions.

 13

[First,] Chatters have no need to cue interlocutors with classic discourse
markers. In fact, such markers would probably have little effect on the
participants online. [Second,] Chatters tend not to respond to questions.
They cannot be held accountable if they fail to answer questions, and it is
likely the problem of intervening turns causes them to forget to answer
questions. [Third,] Chatters use second person pronouns at about the same
frequency as [spoken] conversationalists, but they tend to use them in a
more confrontational way, while conversationalists use them in a generic
sense quite frequently. [Fourth,] Chatters must use addressivity to target a
particular chatter that is online; otherwise, it is quite difficult to identify
who is chatting to whom [9].

With Freiermuth’s observations in mind, we need to address how they potentially

impact an NLP application tailored for use with chat. Obviously, chat has features of

both spoken and written language. For example, chatters exhibit the vocabulary diversity

of written communicators. And yet, Freiermuth notes that they prefer not to expand

clausal units the way written authors do, instead favoring speed over precision [9]. As

such, if chat-specific training data is limited for an NLP application, it would seem to

make sense to make use of training data from both spoken and written domains. An

interesting question would be if there is a preferred ratio of spoken to written training

data that optimally mimics chat. Furthermore, depending on the NLP application, one

type of data might be preferred over the other. Using our examples above, since chat is

closer to written language in terms of vocabulary size, training data from the written

domain might be preferred for a part-of-speech tagging application. However, since

posts are less complex structurally in chat compared to the written domain (as evidenced

by lack of clausal unit expansion), then perhaps transcribed spoken text might be better

for syntax parsing.

With our brief overview of the linguistic study of chat complete, we now turn to

how chat is being used (and misused) today.

B. CHAT USE TODAY

In this section we introduce two uses of NLP in chat today: 1) Military use in

support of tactical command and control (C2) processes; and 2) Detecting illegitimate

 14

chat use. In both cases we provide examples of high level chat application requirements,

and identify how NLP can be used to meet those requirements.

1. Tactical Military Chat

In his master’s degree thesis, Eovito explored the impact of synchronous, text

based chat to fill gaps in military systems for tactical C2 [2]. Eovito notes that, as is the

case with many military systems, the use of chat for tactical C2 evolved in an ad hoc

fashion. As such, there has never been a formal requirements analysis of text-based chat

tools either from a top-down (“What C2 deficiencies are addressed by chat tools?”) or

bottom-up (“What capabilities do chat tools bring to the war fighter?”) perspective. A

primary objective of Eovito’s research was to develop such a set of requirements to help

guide the development of next-generation C2 systems.

To develop requirements for military tactical chat, Eovito first administered both

surveys and interviews to establish a set of use cases. Eovito solicited responses from

users spanning all four U.S. military services as well as Canadian, Australian, and New

Zealand coalition forces. The settings where those users employed tactical chat spanned

major combat such as Operations Enduring Freedom (OEF) and Iraqi Freedom (OIF) to

military operations other than war (MOOTW) such as Hurricane Katrina relief.

From these use cases, Eovito then extracted a framework for tactical chat

requirements. The framework consisted of four categories: Functionality, Information

Assurance, Scalability, and Interoperability. A complete list as well as description of

tactical chat requirements in all categories can be found in [2].

 15

NLP techniques are critical to fully address many of the functional requirements

depicted in Table 2. For example, thread population/repopulation, a core requirement,

consists of the ability for users to select a portion of the chat log (i.e., conversation

thread) to repopulate in the event of late entry into a chat session. Such an automated

feature requires the system to select only the subset of posts within the overall session

that comprise the specific thread. Semantic and discourse NLP techniques are vital in

accomplishing this task. Similarly, foreign language text translation requires NLP

techniques that can identify idioms across languages (e.g. “bogey moving like a bat out of

hell!”) and translate accordingly.

1. Participate in Multiple Concurrent Chat Sessions*
2. Display Each Chat Session as Separate Window
3. Persistent Rooms & Transitory Rooms*
4. Room Access Configurable by Users
5. Automatic Reconnect & Rejoin Rooms*
6. Thread Population/Repopulation*
7. Private Chat "Whisper"*
8. One-to-One IM (P2P)
9. Off-line Messaging
10. User Configured System Alerts
11. Suppress System Event Messages
12. Text Copying*
13. Text Entering*
14. Text Display*
15. Text Retention in Workspace*
16. Hyperlinks
17. Foreign Language Text Translation
18. File Transfer
19. Portal Capable
20. Web Client
21. Presence Awareness/Active Directory*
22. Naming Conventions Identify Functional Position*
23. Multiple Naming Conventions
24. Multiple User Types
25. Distribution Group Mgmt System for Users
26. Date/Time Stamp*
27. Chat Logging*
28. User Access to Chat Logs*
29. Interrupt Sessions
(* denotes a core requirement)

Table 2. Consolidated Functional Requirements for Tactical Military Chat (From [2])

Similarly, NLP can play a role in meeting information assurance requirements as

depicted in Table 3. For example, Eovito notes that many user IDs in the various

sessions are functional, making it difficult to know who is really in the chat room.

 16

However, NLP can be used to identify characteristics of an author’s language use, thus

supporting user authentication. In addition, NLP lexical and semantic techniques can

assist in permitting authorized transfer of information across domains within a security

level (e.g. Joint vs. Coalition information) as well as across levels (e.g., Secret vs. Top

Secret).

1. Login and User Authentication
2. Access Control
3. User Authentication by Active Directory
4. Unique ID for all users worldwide
5. PKI Enabled (DOD Common Access Card)
6. Provide Encryption
7. Network Security Tools
8. Cross Security Domain Functionality
9. Multi-Level Security Operation
10. Cross Security Domain Functionality

Table 3. Consolidated Information Assurance Requirements for Tactical Military Chat
(From [2])

Eovito concludes with recommendations for follow on research in the following

categories: 1) Chat data mining; 2) Net-Centric Enterprise Services; 3) Extensible

Markup Language (XML); 4) Human Factors; 5) Specific War Fighting Doctrine; and 6)

Information Assurance [2]. We have already discussed how NLP plays a role with

information assurance. That being said, NLP techniques can improve the performance of

data mining, where semantic and discourse clues can help narrow the search space for a

particular thread. Similarly, many human factor concerns must be addressed by NLP,

which can improve the human system interface by permitting humans to “command” the

chat system with natural language.

We have demonstrated how NLP techniques can play a role in improving the

legitimate use of chat in a military context. We now examine how they can be used by

law enforcement and intelligence analysts to detect illegitimate use of chat.

2. Detecting Illegitimate Chat Use

In her master’s thesis, Lin provides motivation for the study of chat and

associated behavior [11]. As with any new technology, there is potential both for the

 17

betterment of and detriment to society, and the Internet is no exception. Not only does

Internet-based chat permit people to communicate for both business and pleasure, it is

also a medium with great potential for misuse. Lin specifically notes how Internet-based

chat has exacerbated the problem of sex crimes committed against children. In addition,

she postulates how chat can be used by terrorists to communicate, thus enhancing

planning, command, and control for terrorist groups as well as other criminal

organizations.

In response to this, Lin proposed that authorship attribution techniques can be

used to automatically detect whether chat is being abused in a particular setting [11]. To

put her theory to test, she collected 475,000+ posts made by 3200+ users from five

different age-oriented chat rooms at an Internet chat site. The chat rooms were not

limited to a specific topic, i.e. were open to discussion of any topic. Lin’s goal was to

automatically determine the age and gender of the poster based on their chat “style” as

defined by features of their posts. Thus, if a particular user in a teen-oriented chat room

made posts with features associated with an adult male, this information could be used by

authorities to more closely scrutinize this user’s behavior.

The specific features Lin captured for each post were surface details, namely,

average number of words per post, size of vocabulary, use of emoticons, and punctuation

usage [11]. Lin relied on the user’s profile information to establish the “truth” of each

user’s age and gender. Lin then used the Naïve Bayes machine-learning method

(described in greater detail in Chapter III) to automatically classify the user’s age and

gender based on the aforementioned features of all the posts the user made.

Lin’s work represents a significant, albeit initial, effort to apply NLP techniques

specifically to chat to determine author characteristics. Although her results were mixed,

better surface features (e.g. distribution of all words used instead of just emoticons and

punctuation) as well as “hidden” features (e.g. syntactic structure of the posts) have the

potential to improve authorship classification accuracy.

With our brief description of how NLP can be used in chat applications, we now

turn to the linguistic study of the chat domain.

 18

C. NATURAL LANGUAGE PROCESSING TECHNIQUES

In this section we provide a brief review of the natural language processing

techniques we will use in our research on chat. We first introduce both the concept and

specific examples of corpora labeled with meta-information. We then discuss automated

part-of-speech tagging, to include specific techniques that have been developed, how it

supports higher level NLP applications, and factors that influence its performance.

Finally, we present automated dialog act classification, to include its use in NLP

applications, exhaustive results from a spoken domain, and initial results in the CMC

domain. Note that in this section we limit our targeted NLP review to a historical

perspective. We discuss the specific technical implementation of automated part-of-

speech tagging and dialog act classification methods in Chapter III.

1. Annotated Corpora

State-of-the-art natural language processing applications rely on labeled data for

training. Over the years, numerous corpora annotated with lexical, syntactic, and

semantic “meta-information” have been developed for such purposes. One of the first

corpora available to the larger NLP research community was developed in the 1960s by

Francis and Kucera at Brown University [12]. Commonly referred to today as the Brown

Corpus, it contained over one million words collected from 500 samples written by native

speakers of American English and first published in 1961. The samples from the 15

genres are shown in Table 4.

 19

1. Press: Reportage (44 texts: Political, Sports, Society, Spot News, Financial, Cultural)
2. Press: Editorial (27 texts: Institutional Daily, Personal, Letters to the Editor)
3. Press: Reviews (17 texts: Theatre, Books, Music, Dance)
4. Religion (17 texts: Books, Periodicals, Tracts)
5. Skill and Hobbies (36 texts: Books, Periodicals)
6. Popular Lore (48 texts: Books, Periodicals)
7. Belles-Lettres: Biography, Memoirs, etc (75 texts: Books, Periodicals)
8. Miscellaneous: US Government & House Organs (30 texts: Government Documents,

Foundation Reports, Industry Reports , College Catalog, Industry House organ)
9. Learned (80 texts: Natural Sciences, Medicine, Mathematics, Social and Behavioral

Sciences, Political Science, Law, Education, Humanities, Technology and
Engineering)

10. Fiction: General (29 texts: Novels, Short Stories)
11. Fiction: Mystery and Detective Fiction (24 texts: Novels, Short Stories)
12. Fiction: Science (6 texts: Novels, Short Stories)
13. Fiction: Adventure and Western (29 texts: Novels, Short Stories)
14. Fiction: Romance and Love Story (29 texts: Novels, Short Stories)
15. Humor (9 texts: Novels, Essays, etc.)

Table 4. Brown Corpus Description (From [12])

The original corpus contained only the words themselves. Later, 87 part-of-

speech tags were applied to the corpus, permitting a variety of statistical analysis on the

texts themselves as well as providing training data for NLP applications. Because of its

widespread availability to researchers, the Brown corpus became a de facto standard

model for the English language.

Seeking to institutionalize the availability of corpora such as Brown, the

Linguistic Data Consortium (LDC), first mentioned in Chapter I, was founded with a

grant from the Defense Advanced Research Projects Agency [4]. Such corpora are

expensive to create, maintain, and distribute; thus, the service provided by LDC enables

replication of published results, supports a fair comparison of algorithms, and permits

individual users to make corpora additions and corrections. Since many of the data

contributions are copyrighted, the LDC distributes them for the purposes of research,

development, and education through more than 50 separate Intellectual Property Rights

(IPR) contracts.

 20

It is interesting to note that LDC comments on the future requirements for

linguistic technology. Specifically,

We humans spend much of our lives speaking and listening, reading and
writing. Computers, which are more and more central to our society, are
already mediating an increasing proportion of our spoken and written
communication—in the telephone switching and transmission system, in
electronic mail, in word processing and electronic publishing, in full-text
information retrieval and computer bulletin boards, and so on [4].

However, as noted in Chapter I, of the 381 corpora provided by the LDC, only

three contain samples from the computer-mediated communication domain:

LDC2006T06 (ACE 2005 Multilingual Training Corpus, which contains newsgroup and

weblog samples); LDC2006T13 (Google’s Web 1T 5-gram Version 1); and

LDC2007T22 (2001 Topic Annotated Enron Email Data Set) [4]. If we seek to build

NLP applications that support CMC such as chat, we require a certain amount of data

from the domain itself.

With our brief discussion on the role corpora play in state-of-the-art NLP

applications in general, we now turn to an important component of such applications:

part-of-speech tagging.

2. Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech label (e.g.

verb, noun, preposition, etc) to a word in context based on its usage. Several higher order

NLP applications rely on part-of-speech tagging as a preprocessing step. For example,

both [13] and [14] note that information retrieval applications make use of part-of-speech

tagging, which often involves looking for nouns and other important words that can be

identified in part by their part-of-speech tag. Indeed, the dialog act classification

application that we developed for chat incorporated some features based on word part-of-

speech tags. As such, part-of-speech tagging is an important topic to discuss when

applying NLP techniques to a heretofore unexplored domain.

 21

a. Algorithmic Approaches

Jurafsky and Martin describe three classes of algorithms for part-of-speech

tagging [14]. The first class, commonly referred to as rule-based taggers, rely on a two

phase approach assign tags. In the first phase, a dictionary is used to assign each word a

set of potential parts-of-speech. The second phase uses large lists of hand-written rules

that are successively applied to reduce the set to a single tag. One rule-based tagging

approach, referred to as the English Constraint Grammar (EngCG), reports accuracies of

99%, although not all ambiguities are resolved, i.e. EngCG sometimes returns a set that

includes more than one tag.

The second class, referred to as stochastic taggers, use probabilities based

on counts of words and their tags from a training corpus [14]. Stochastic taggers include

n-gram-based tagging approaches as well as Hidden Markov Models (HMMs), which

differ based on the varying degrees of context considered by the algorithms. We present

a full description of the technical details for both stochastic tagging approaches in

Chapter III. HMM-based tagging approaches report accuracies of 95-96%.

The final class, known as Brill Transformational-Based Learning tagging,

is essentially a combination of the previous two classes [14]. As with rule-based tagging,

the algorithm uses rules successively applied to initially assign and later refine part-of-

speech tags. However, like stochastic taggers, the rules are learned based on the

frequency of their successful application within a training corpus. We present a full

description of the Brill rule templates and learning algorithm in Chapter III. Brill reports

tagging accuracies of 96-97% using this approach [15].

With our discussion of tagging approaches complete, we now look at how

they work in conjunction with annotated corpora to affect overall tagging performance.

b. Performance Factors

Manning and Schütze note that the performance of part-of-speech taggers

is greatly influenced by four factors [13]. We note these factors, along with their

potential effect on a part-of-speech tagger crafted specifically for the chat domain. The

 22

first, the amount of training data available, is straightforward: the more data available to

train on, the better the accuracy of the tagger. Since no publicly available tagged corpus

currently exists for the chat domain, one will have to be created. By its very nature, then,

this will be a resource-intensive activity, and as such will initially be much smaller than

those available for the more established written and spoken domains.

The second factor is the tag set used [13]. Although a larger tag set

permits a more fine-grained determination for a particular word in context, this very fact

leads to the potential for more ambiguity of the given word. Thus, if a corpus is tagged

with two tag sets, as is the case with the Brown corpus (original Brown 87 POS tag set

and later Penn Treebank 45 POS tag set), taggers using the same algorithm will generally

have a higher accuracy on the corpus tagged with the smaller tag set. Therefore, when

tagging a chat domain corpus, we would prefer to use a smaller, established tag set. That

being said, the chat domain contains features such as emoticons (e.g., “:-)”, a smiley face

on its side) that do not exist in other domains. As such, we would need to decide if an

existing tag appropriately describes emoticon usage, or if instead a new tag should be

created.

The third factor is the difference between the training corpus and the

corpus of application [13]. If the training and application text are drawn from the same

source, accuracy will be high. This is generally the case for the highest accuracy taggers

described in the literature. However, as alluded to in the LDC quote from Chapter I, if

training and application text are from a different domain, accuracy can be poor. Thus, the

task of building a highly accurate POS tagger for the chat domain is complicated by the

fact that currently tagged corpora are from significantly different domains. Experiments

that consider tagging accuracy on chat based on the training domain are presented in

Chapter IV.

 23

The final factor affecting tagging accuracy is the occurrence of unknown

words [13]. Obviously, the more words encountered in application that have not been

seen during training, the more tagging performance will suffer. This may play a

particularly important role in the chat domain, where misspellings as well as the use of

emphasis through character repetition (e.g., “riiiiiiggggghht” for “right”) are frequently

encountered.

With our overview of part-of-speech tagging tools complete, we now turn

our discussion to a higher-order NLP task—dialog act modeling.

3. Dialog Act Modeling

The dialog act, per Austin, represents the meaning of an utterance at the level of

illocutionary force [16]. In layman’s terms, dialog act classification categorizes a

conversational element into classes such as “statements”, “opinions”, “questions”, etc.

Thus, dialog acts provide a first level of analysis for discourse structure.

Dialog act modeling has a wide number of potential applications. As described

by Stolcke et al, a meeting summarization application needs to keep track of who said

what [17]. Similarly, a telephone-based conversational agent needs to know if it was

asked a question or tasked to do something. Indeed, Stolcke et al demonstrated that

dialog act labels could be used in a speech recognition system to improve word

recognition accuracy by constraining potential recognition hypotheses. Dialog acts might

also be used to infer the types of relationships (e.g. superior to subordinate versus peer to

peer) that occur within a social network. Finally, as applied to chat, dialog acts could be

used to help separate interleaved conversation threads.

With this definition of dialog acts and their potential applications introduced, we

now turn to a brief overview of Stolcke et al’s in-depth research concerning dialog act

modeling in conversational speech and its subsequent adaptation to two computer-

mediated communication genres.

 24

a. Spoken Conversation

Stolcke et al used dialog acts to model the utterances within

conversational speech [17]. The conversational speech domain was represented by 1,155

conversations (to include both sound waveforms and transcribed text) drawn from the

Switchboard corpus of spontaneous human-to-human telephone speech. The 42 dialog

acts along with an example and its frequency of occurrence within Switchboard are

presented in Table 5.

 25

Tag Example Percent

Statement Me, I’m in the legal department. 36%

Backchannel/Acknowledge Uh-huh. 19%

Opinion I think it’s great. 13%

Abandoned/Uninterpretable So, -/ 6%

Agreement/Accept That’s exactly it. 5%

Appreciation I can imagine. 2%

Yes-No-Question Do you have to have any special training? 2%

Non-Verbal <Laughter>,<Throat_clearing> 2%

Yes Answers Yes. 1%

Conventional-Closing Well, it’s been nice talking to you. 1%
Wh-Question What did you wear to work today? 1%
No Answers No. 1%

Response Acknowledgement Oh, okay. 1%
Hedge I don’t know if I am making any sense or not. 1%

Declarative Yes-No-Question So you can afford to get a house? 1%
Other Well give me a break, you know. 1%

Backchannel-Question Is that right? 1%
Quotation You can’t be pregnant and have cats. 0.5%

Summarize/Reformulate Oh, you mean you switched schools for the kids. 0.5%

Affirmative Non-Yes Answers It is. 0.4%

Action-Directive Why don’t you go first 0.4%

Collaborative Completion Who aren’t contributing. 0.4%

Repeat-Phrase Oh, fajitas 0.3%

Open-Question How about you? 0.3%

Rhetorical-Questions Who would steal a newspaper? 0.2%

Hold Before Answer/Agreement I’m drawing a blank. 0.3%

Reject Well, no 0.2%

Negative Non-No Answers Uh, not a whole lot. 0.1%

Signal-Non-Understanding Excuse me? 0.1%
Other Answers I don’t know. 0.1%

Conventional-Opening How are you? 0.1%
Or-Clause or is it more of a company? 0.1%

Dispreferred Answers Well, not so much that. 0.1%
3rd-Party-Talk My goodness, Diane, get down from there. 0.1%

Offers, Options, & Commits I’ll have to check that out 0.1%
Self-Talk What’s the word I am looking for 0.1%

Downplayer That’s all right. 0.1%
Maybe/Accept-Part Something like that < 0.1%

Tag-Question Right? < 0.1%

Declarative Wh-Question You are what kind of buff? < 0.1%

Apology I’m sorry. < 0.1%

Thanking Hey, thanks a lot < 0.1%

Table 5. 42 Dialog Act Labels for Conversational Speech (From [17])

 26

Stolcke et al’s model detects and predicts dialog acts based on lexical,

collocational, and prosodic (e.g. sound waveform pitch, duration, energy, etc) features of

the utterance as well as the overall discourse coherence of the sequence itself [17]. This

overall discourse structure was treated as a Hidden Markov Model, with the specific

utterances representing the observation sequence “emitted” from the dialog act state

sequence. Constraints for the likely dialog act sequence were modeled with dialog act n-

grams, which were combined with n-grams, decision trees, and neural networks modeling

lexical and prosodic features of the dialog act itself. Stolcke et al achieved accuracy of

results of 65% (based on automatic speech recognition of words combined with prosody

clues) and 71% (based on word transcripts), compared to a chance baseline accuracy of

35% and human accuracy of 84% [17].

b. Computer-Mediated Communication

Drawing from Stolcke et al, Wu et al used the dialog act methodology to

model the postings in online chat conversations [18]. For their research, the chat domain

was represented by nine different Internet Relay Chat (IRC) conversations containing a

total of 3,129 posts. The 15 dialog acts along with an example and its frequency of

occurrence within the data set are presented in Table 6.

 27

Tag Example Percent
Statement I’ll check after class 42.5%

Accept I agree 10.0%
System Tom [JADV@11.22.33.44] has left#sacbal 9.8%

Yes-No-Question Are you still there? 8.0%
Other ********** 6.7%

Wh-Question Where are you? 5.6%
Greet Hi, Tom 5.1%

Bye See you later 3.6%
Emotion lol 3.3%

Yes-Answer Yes, I am. 1.7%

Emphasis I do believe he is right. 1.5%
No Answer No, I’m not. 0.9%

Reject I don’t think so 0.6%

Continuer And … 0.4%
Clarify Wrong spelling 0.3%

Table 6. 15 Post Act Classifications for Chat (From [18])

Wu et al’s post act classifications were based on a set of rule templates

learned via Brill’s Transformational Based Learning algorithm [18]. Based on nine-fold

cross validation of all posts, Wu achieved an average accuracy of 77.56% (maximum =

80.89%, minimum = 71.20%). In Chapter III, we discuss how we used the Wu et al tag

set (with minor interpretation differences) to perform chat dialog act modeling on our

data set of chat posts.

Ivanovic also drew heavily from Stolcke et al’s work to assign dialog acts

to instant messaging (IM) sessions [3]. Unlike Stolcke and Wu’s domains, which were

conversational in nature, Ivanovic’s domain was task-oriented dialog represented by

online shopping assistance provided by the MSN Shopping web site. Specifically, the

data set consisted of nine chat sessions, totaling 550 utterances and 6,500 words. The 12

IM dialog acts along with an example and its frequency of occurrence within the data set

are presented in Table 7.

 28

Tag Example Percent
Statement I am sending you the page now 36.0%
Thanking Thank you for contacting us 14.7%

Yes-No-Question Did you receive the page? 13.9%
Response-Ack Sure 7.2%

Request Please let me know how I can assist 5.9%
Open-Question how do I use the international version? 5.3%

Yes-Answer yes, yeah 5.1%
Conventional-Closing Bye Bye 2.9%

No-Answer no, nope 2.5%
Conventional-Opening Hello Customer 2.3%

Expressive haha, :-), grr 2.3%
Downplayer my pleasure 1.9%

Table 7. 12 Dialog Act Labels for Task-Oriented Instant Messaging (From [3])

In contrast to Wu et al, who applied a single dialog act to each post,

Ivanovic segmented dialog acts at the utterance level [3]. As such, utterances and their

associated dialog act can either span multiple posts or reside next to zero or more

utterances within a single post. After utterance segmentation, Ivanovic resynchronized

the utterances since IM (like chat) exhibits a certain amount of asynchronicity due to the

technology associated with posting. Ivanovic’s machine-learning model combined the

Naïve Bayes classifier with n-grams (n= 1, 2 and 3). Based on nine-fold cross validation

of all utterances, Ivanovic achieved an average bigram (n = 2) model accuracy of 81.6%

(maximum = 92.4%, minimum = 75.0%) [3].

With our review of chat and associated NLP applications complete, we

now turn to the technical details associated with our research.

 29

III. TECHNICAL APPROACH

In this chapter we will cover the technical approach we used in building the

corpus as well as the technical details associated with both part-of-speech tagging and

chat dialog act classification methodologies.

A. BUILDING THE CORPUS

In this section we will cover the details associated with building the corpus, to

include its conversion to an Extensible Markup Language (XML) format; subsequent

masking of participant names for privacy considerations; part-of-speech and chat dialog

act labeling decisions; and the general bootstrapping process.

1. Data Conversion to XML

As mentioned earlier, Lin collected open topic chat dialog samples from five

different age-oriented chat rooms [11]. These samples, taken over the course of 26

sessions in the fall of 2006, included session log on information as well as 477,835 posts

made by the users as well as automated posts made by both the chat room system as well

as “chatbots”. Chatbots are automated user software independent of the chat room

system that assist human participants, provide entertainment to the chat room, etc.

In addition to the sessions, Lin collected the chat room profiles on each of the

approximately 3,200 users participating in the session dialog samples. The profiles often

(but not always) contained a variety of information on the individual user, including age,

gender, occupation, and location. The profile files were provided to us in an HTML

format.

 30

In order to enhance accessibility to this information for future researchers, we

converted both the sessions as well as the profiles to an XML format using the Python

ElementTree module [19]. In particular, we created two versions of the corpus. The first

version included the entirety of the 26 sessions as well as a single file containing all

users’ age, gender, occupation, and location information, as available. In both the

sessions and the profile file, the users were referred to by the original screen names

collected by Lin.

2. Privacy Masking

In the second version of the corpus, we took a contiguous sample of

approximately 700 posts from 15 of the 26 sessions each. In this version, however, we

altered the users’ names in each session such that they were referred to by a standard

mask with a key representing the order they joined the session. For example,

“killerBlonde51” would become “10-19-40sUser112” in the session collected from the

40s-oriented chat room on October 19; “11-08-40sUser23” in the session collected on

November 8; and so on. Similarly, we sanitized the profile file with a single mask as

well as a pointer to a list of masks that the particular user was referred to in the various

session files. Using the previous example, killerBlonde51 would be referred to as

“user57” in the profile file, referencing a list containing 10-19-40sUser112, 11-08-

40sUser23, and any other session masks that killerBlonde51 participated in. To date, we

have privacy-masked 10,567 of the 477,835 posts in this manner.

Why did we decide to perform privacy masking? If we are to make the corpus

available to the larger research community, this must be accomplished. It was

straightforward to replace the user’s screen name in both the session samples as well as

the profile file. However, more often than not, users were referred to by variations of

their screen names in other users’ posts. For example, other users would refer to

killerBlonde51 as “killer,” “Blondie,” “kb51,” etc. Although regular expressions can

assist in the masking task, ultimately 100% masking required us to hand-verify that the

appropriate masks had been applied in every post.

 31

We should note that although masking is essential to ensure privacy, it results in a

loss of information. For example, the way to which users are referred often conveys

additional information, for example, familiarity and emotion; this information is lost in

the masking process. In addition, we observed that a user’s screen name would become a

topic of conversation independent from the original user; again, the origin of this

conversation thread is lost in the masking process.

Once we complete the masking process, we then turned to tokenizing the posts of

the privacy-masked version of the corpus and annotating the tokens with part-of-speech

tags.

3. Part-of-Speech (POS) Tagging

As discussed in Chapter II, several POS-tagged corpora in many languages are

available to NLP researchers. The corpora we used to help train various versions of the

taggers are contained within the Linguistic Data Consortium’s Penn Treebank

distribution [20]. The first corpus, referred to as Wall Street Journal (WSJ), contains

over one million POS-tagged words collected in 1989 from the Dow Jones News Service.

The second, briefly introduced in Chapter II and referred to as Switchboard, was

originally collected in 1990 and contains 2,430 transcribed, POS-tagged, two-sided

telephone conversations among 543 speakers from all areas of the United States. Each

conversation averaged about six minutes in length, totaling 240 hours of speech and

about three million words total. The third, also discussed in Chapter II and referred to

from here on as Brown, consists of over one million POS-tagged words collected from 15

genres of written text originally published in 1961.

 32

BES “’s” contraction for “is” *
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
HVS “’s” contraction for “has” *
IN Preposition/subordinating
 conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NP Proper noun, singular
NPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle

SYM Symbol
TO “to”
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present
 participle
VBN Verb, past participle
VBP Verb, non-3rd person
 singular present
VBZ Verb, 3rd person singular
 present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb
$ Dollar Sign ($))
Pound sign (#)
“ Left quote (‘ or “)
” (Right quote (“ or “)
(Left parenthesis ([, (, {)
) Right parenthesis (],), })
, Comma
. Sentence final punc (. ! ?)

: Mid-sentence punc (: ; … -)

Table 8. Penn Treebank Tagset (From [20]) *Note: BES and HVS tags were not used in
WSJ, but were used in Switchboard

All corpora were tagged with the Penn Treebank tag set shown in Table 8.

Although the posts were also tagged using the Penn Treebank tag set and associated

tagging guidelines [20], we had to make several decisions during the process that were

unique to the chat domain. The first class of decisions regarded the tagging of

abbreviations such as “LOL” (Laughing Out Loud) and emoticons such as “:-)” (a

“smiley face” rotated on its side) frequently encountered in chat. Since these expressions

conveyed emotion, we treated them as individual tokens and tagged them as “UH”

(interjections).

 33

The second class of decisions involved the tagging of sequences of non-

alphanumeric characters that were not emoticons, but served a specific (formal or

informal) purpose within the domain. First, based on the way the sessions were

collected, user commands to both the chat room system and chatbots as well as

information provided by the system and chatbots were often preceded by either the token

“.” or “!”. Since these do not function as the Penn Treebank tag “.” (sentence final

punctuation), we instead tagged them as “SYM”. Second, we tagged variants of tokens

representing pointers such as “<--“ and “^” as “PRP” (personal pronoun), since they were

used to indicate a particular user (often, the user making the post itself). Finally, we

tagged the token “/” as “CC” (coordinating conjunction), since it was often used in place

of traditional conjunctions such as “and” and “or”.

The third class involved words that, although would be considered misspelled by

traditional written English standards, were so frequently encountered within the chat

domain that we treated them as correctly spelled words and tagged them according to the

closest corresponding word class. As an example, the token “hafta” (when referring to

“have to”), if treated as a misspelling, might be tagged as “^VBP^TO”, with the “^”

referring to a misspelling and “VBP” and “TO” referring to “verb, non-3rd person

singular present” and the word “to”, respectively. However, since it was so frequently

encountered in the chat domain, we often tagged it as “VBP” based on its usage.

Appendix B contains a list of such words encountered in the privacy-masked version of

the corpus along with their corresponding tag(s).

The final class of decisions involved words that were just plain misspelled. In

this case, we tagged those words with the misspelled version of the tag. As an example,

we tagged “intersting” (when referring to “interesting”) as “^JJ”, a misspelled adjective.

In conjunction with part-of-speech tagging, we classified each chat post in the

privacy-masked corpus with a dialog act. We now turn to the details associated with this

activity.

 34

4. Chat Dialog Act Classification

We labeled each of the 10,567 privacy-masked posts using Wu et al’s 15 post act

categories [18], many of which were derived in part from the Stolcke et al tag set [17].

The chat dialog act classification categories as well as an example of each taken from the

privacy-masked corpus are shown in Table 9.

Classification Example
Accept yeah it does, they all do

Bye night ya'all.
Clarify i meant to write the word may.....

Continuer and thought I'd share
Emotion lol

Emphasis Ok I'm gonna put it up ONE MORE TIME 10-19-30sUser37
Greet hiya 10-19-40sUser43 hug

No Answer no I had a roomate who did though
Other sdfjsdfjlf

Reject u r not on meds
Statement well i thought you and I will end up together :-(

System JOIN
Wh-Question 11-08-20sUser70 why do you feel that way?
Yes Answer why yes I do 10-19-40sUser24, lol

Yes/No Question cant we all just get along

Table 9. Post Dialog Act Classification Examples

These examples highlight the complexity of the task at hand. First, we should

note that we classified posts into only one of the 15 categories. At times, more than one

category might apply. In addition, the Wh-Question example does not start with a wh-

word, while the Yes Answer does start with a wh-word. Also, notice that the Yes/No

Question does not include a question mark. Finally, the Statement example contains a

token that conveys an emotion, “:-(”. Taken together, these examples highlight the fact

that more than just simple regular expression matching is required to classify these posts

accurately. The specific interpretations we used for each chat dialog act class now

follow.

 35

Statement chat dialog acts predominantly include descriptive, narrative, and

personal statements (Statements as defined by Stolcke et al) as well as other directed

opinion statements (Stolcke et al’s Opinion) [17]. In reality, though, Statement is a catch-

all category, and includes other dialog act forms not covered by the other 14 chat dialog

acts.

System chat dialog acts, as originally defined by Wu et al, referred to posts

generated by the chat room software [18]. We expanded the notion of the system dialog

act to include commands made by the user to both the chat room system as well as to

personal chatbots. Finally, we also classified chatbot responses as system dialog acts.

The Yes/No Question chat dialog act is simply a question that can have “yes” or

“no” as an answer. Similarly, the Wh-Question chat dialog act is a question that includes

a wh-word (who, what, where, when, why, how, which) as the argument of the verb.

Both correspond to Stolcke et al’s Yes-No Question and Wh-Question categories,

respectively [17]. However, both categories also include some dialog acts that Stolcke et

al would define as Declarative, Back Channel, Open, and Rhetorical Questions.

As in Stolcke et al’s definition for the category, Yes Answer chat dialog acts

include variations on the word “yes”, when acting as an answer to a Yes/No Question. No

Answers are similarly defined [17].

Accept and Reject chat dialog acts, as in Stolcke et al’s definition, all mark the

degree to which the poster accepts some previous statement or opinion [17].

Greet and Bye chat dialog acts are defined as their name implies, and conform to

Stolcke et al’s Conventional Opening and Closing categories [17].

We interpreted Clarify chat dialog acts as posts that refer to an earlier ambiguous

or unintelligible post made by the same user. As such, Clarify dialog acts serve to clarify

the earlier post’s meaning.

Continuer chat dialog acts serve to continue an earlier post of the current poster,

and as such often correspond to Zitzen and Stein’s split turn phenomena as described in

Chapter II [5].

 36

As the name implies, Wu et al’s Emotion chat dialog acts express the poster’s

feelings, and are often characterized by the words that make the chat domain unique from

tradition written domains, to include emoticons like “:-)” as well as chat abbreviations

like “LOL” [18].

Emphasis chat dialog acts are used by the poster when they want to emphasize a

particular point. As defined by Wu, they include the use of “really” to emphasize a verb,

but also include the use of all caps as well as exclamation points [18].

Finally, the Other chat dialog act was reserved for posts where we could make no

clear dialog act interpretation of any kind for the post.

We will now turn to the process we used to assign chat dialog act labels and part-

of-speech tags to the privacy-masked chat corpus.

5. Bootstrapping Process

With the labeling guidelines decided upon, we next labeled all 10,567 tokenized

posts with their corresponding part-of-speech tags and dialog act classes via a

bootstrapping process. Rather than hand-tagging each individual post, we crafted a POS

tagger trained on the Penn Treebank corpora, and combined with a regular expression

that identified privacy–masked user names and emoticons, automatically tagged 3,507

tokenized posts. We discuss the details on the tagger approach in Chapter III, Section C.

Similarly, we used simple regular expression matching to assign an initial chat dialog act

to each post. We then hand-verified each token’s tag within a post and as necessary

changed it to its “correct” tag. Similarly, we hand-verified each post’s dialog act

classification and as necessary changed it to its “correct” label.

We then used the newly hand-tagged chat data, along with the Treebank corpora,

to train a new tagger that automatically tagged the remaining 7,060 posts. Similarly, we

used a back-propagation neural network trained on 21 features of the dialog-act labeled

posts to automatically classify the remaining 7,060 posts. We discuss details of the

neural network approach in Chapter III, Section C. Again, we hand-verified and as

necessary corrected each token’s tag (or post’s dialog act label) in the new data set.

 37

Ultimately, we annotated a total of 10,567 privacy-masked posts, representing 45,068

tokens, with part-of-speech and dialog act information.

It is important to note that we did not perform an inter-annotator agreement

assessment on either the part-of-speech tags or chat dialog act classifications. This is

because only one person (the author) performed the hand-verification task described

earlier. As such, if the privacy-masked corpus is to be expanded further in the future, we

highly recommended multiple annotators participate so that an inter-annotator assessment

can be performed.

With our discussion of the corpus generation methodology complete, we now turn

to a description of the machine leaning methods we used to automatically assign part-of-

speech and dialog act information.

B. CHAT PART-OF-SPEECH TAGGING METHODOLOGY

Before discussing the specific part-of-speech tagger experiments we performed, it

is first necessary to provide a brief overview of their mathematical foundations. The

machine-learning approaches we investigated for part-of-speech tagging can be grouped

into three categories: 1) Lexical n-gram taggers employing back off; 2) Hidden Markov

Model taggers; and 3) Brill taggers. Our specific implementation of these approaches

made use of the corresponding modules provided in the Natural Language Toolkit

distribution for the Python programming language [21]. We now discuss each approach

in turn.

1. Lexicalized N-Grams with Back off

The foundation for all lexicalized n-gram tagging approaches is the Markov

assumption, i.e. we can predict the probability of the current event based on looking at

what has happened not too far in the past. As a simplified example, let us consider a

Major League Baseball player. One can make a fairly accurate prediction on the chance

he will get a hit at his current at bat based on his batting performance over the

immediately preceding few games. One does not necessarily make a better prediction

knowing his batting performance for the entire season, or even his entire career. Of

 38

course, there are many other variables involved in this example, e.g. the pitcher he is

facing, his current health, etc. Nevertheless, this is the essence of the Markov

assumption, and is used in lexical n-gram tagging models where n stands for how many

words (minus one) to look into the past to help make a tagging decision.

A general discussion of lexicalized n-gram taggers can be found in [14] and [22].

Lexicalized n-grams formed the foundation for our basic tagger configuration which

involved training a bigram (n = 2) tagger on a POS-tagged training set, backing off to a

similarly trained unigram (n = 1) tagger, backing off to the maximum likelihood estimate

(MLE) tag for the training set. Throughout the remainder of this thesis we will

subsequently refer to this approach as the bigram back off tagger.

Working backwards, the MLE tag is the most common tag within a training set,

and is given by

[]arg max count()MLE

t tagSet
t t

∈
=

A unigram tagger assigns the most probable POS tag to the ith word in a sequence based

on its occurrence in the training data.

 ()ˆ arg max | i
t tagSet

t P t w
∈

= ⎡ ⎤⎣ ⎦

Finally, a bigram tagger assigns the most probable POS tag to the ith word in a sequence

not only based on the current word, but also the previous word as well as the previous

word’s POS tag.

 ()1 1ˆ arg max | , ,i i i
t tagSet

t P t w t w− −
∈

= ⎡ ⎤⎣ ⎦

Thus, our tagging approach works as follows: The tagger will first attempt to use

bigram information from the training set. If no such bigram information exists, it will

then back off to unigram information from the training set. If no such unigram

information exists, it will finally back off to the MLE tag for the training set. The general

approach is illustrated in Figure 1.

 39

Bigram
tagger

Unigram
tagger

Regex
tagger

(optional)

MLE

If instance not
found in training
set, back off to…

If instance not
found in training
set, back off to…

Bigram
tagger

Unigram
tagger

Regex
tagger

(optional)

MLE

If instance not
found in training
set, back off to…

If instance not
found in training
set, back off to…

Figure 1. Bigram Back Off Tagger Approach

In addition to the basic bigram back off approach, we investigated a number of

variants. The first variant, also illustrated in the previous figure, is incorporating a

regular expression tagger to tag unseen instances of words via a set of regular expressions

prior to backing off to the training set’s MLE. For example, in the privacy-masked

version of the chat corpus, all users are referred to by a standard convention, specifically,

the name of the session file, followed by “User”, and finally followed by a number

representing when they joined the chat session. A simple regular expression can catch

this naming convention, and thus correctly tag a user’s privacy-masked name as “NNP”

(proper noun, singular) in the event it was never observed in the training set. Of course,

this can be expanded, e.g. using regular expressions to capture an unseen web address

(and tag it as “NNP”), an unseen word ending in “ing” (and tag it as “VBG”, or gerund

verb), and so on.

The second variant we implemented involved training a bigram back off tagger on

two different domains, for example, chat and the Penn Treebank. One way to accomplish

this is to train the various n-gram segments of the tagger on both domains at the same

time. However, if the training sets of the domains are of significantly different sizes

(which is certainly the case with chat and the Penn Treebank), then either the larger

domain must be sampled from to ensure it is the same size as the smaller (not preferred),

or the smaller domain must be “multiplied” so that it is the same size as the larger.

 40

Alternatively, one can “chain” two bigram back off taggers together, with each bigram

back off tagger trained on a single domain. This approach is illustrated in Figure 2. In

the end, we investigated both multi-domain training approaches.

Bigram tagger
trained on chat

Unigram
chat

Bigram
All Treebank

Unigram
All Treebank

Regex
tagger

Chat MLE
(‘UH’)

Bigram tagger
trained on chat

Unigram
chat

Bigram
All Treebank

Unigram
All Treebank

Regex
tagger

Chat MLE
(‘UH’)

Figure 2. Multi-Domain Bigram Back Off Tagger Example

With our discussion of the bigram back off tagger completer, we now turn to a

more sophisticated tagging approach, which uses a Hidden Markov Model to make its

tagging decisions.

2. Hidden Markov Models

As discussed in the previous section, bigram taggers take advantage of a word’s

context (the preceding word and its part-of-speech tag) to assign its part-of-speech tag.

Hidden Markov Model- (HMM-) based taggers take this notion of context one step

further by attempting to choose the best tags for an entire sequence of words. HMMs

have been applied to a number of natural language processing tasks, including speech

recognition, dialog act classification, and part-of-speech tagging. Nice overviews of

HMMs are provided in [13] and [14]. Our brief overview of HMMs and their application

to decoding follows that of Manning and Schütze [13].

An HMM is specified by a five-tuple (T, W, A, B, П), where T and W are a set of

states and output alphabet, and П, A, and B are the probabilities for the initial state, state

transitions, and symbol (from the output alphabet) emissions. As mentioned previously,

our task is, given an observation sequence of symbols O and a language model

(), ,A Bμ = Π (obtained from the training set), determine the most probable sequence of

states X that generated O. We can represent the space of potential state sequences with a

lattice, which in this case is a two dimensional array of states versus time. Thus, we can

 41

compute the probabilities of being at each state at each time in terms of the probabilities

for being in each state at a preceding time. The Viterbi algorithm uses dynamic

programming to calculate the most probable path through the lattice, and is presented in

Figure 3.

 42

()LGORITHM ITERBI , (, , , ,)A V O HMM T W A B= Π
Notation:
 Set of states: { }1 2, ,... NT t t t=

 Output alphabet: { }1 2, ,... NW w w w=

 Initial state probabilities: { },i i TπΠ = ∈

 State transition probabilities: { }, ,ijA a i j T= ∈

 Symbol emission probabilities: { }, , ,ijkB b i j T k W= ∈ ∈

 Language model: (), ,A Bμ = Π

 State sequence: () { }1 1,... : 1,...S sX X X X T N+= →

 Output sequence: ()1,... S sO o o o W= ∈

Find: The most probable state sequence, ()ˆ arg max | ,

X
X P X O μ=

To do this, it is sufficient to maximize over a fixed observation sequence
 ()ˆ arg max , |

X
X P X O μ=

Define: () ()
1 1

1 1 1 1...
max ... , ... , |

s
j s s sX X

s P X X o o X jδ μ
−

− −← =

()j sδ stores for each point in the lattice the probability of the most probable path that

leads to that node. The corresponding variable ()j sψ then records the node of the
incoming arc that led to this most probable path.

1. Initialization

 ()1 , 1j j j Nδ π← ≤ ≤
2. Induction

() ()()

1
1 max , 1

sj i ij ijoi N
s s a b j Nδ δ

≤ ≤
+ ← ≤ ≤

3. Termination and path readout (by backtracking). The most likely state sequence is

worked out from the right backwards

()1

1

ˆ arg max 1S i
i N

X Sδ+
≤ ≤

= +

()

1
ˆ

ˆ 1
ss XX sψ
+

= +

() ()
1

ˆ max 1ii N
P X Sδ

≤ ≤
= +

Return X̂

Figure 3. Viterbi Algorithm for Hidden Markov Model Decoding (After [13])

 43

For the part-of-speech tagging problem, the task is to determine the most probable

part-of-speech tag sequence (the state sequence X) based on the word sequence (the

observation sequence O). Our training set of tagged data permit us to determine he

language model’s initial state, transition state, and symbol emission probability

distributions. By working through the Viterbi algorithm, we can find the most probable

tag sequence given the word sequence.

Unlike our bigram back off tagger approach, where we ultimately handled an

unseen token by tagging it as the MLE for the corpus, for the Hidden Markov Model we

prefer not to deal with zero counts. Unseen tokens in the training set pose two issues.

First, it underestimates the actual probability, since it is always possible that our training

set did not include an example. Second, though, this term will come to dominate the

overall classification, since this one unseen feature value will require multiplying all

other conditional probability terms with zero.

To avoid this problem, we can smooth the probability distributions used in the

Hidden Markov Model tagger language model, assigning a fraction of the observed

words’ probability mass to the unseen words and thus providing a better estimate of the

true probability distributions. A variety of smoothing approaches are available;

descriptions, advantages, and disadvantages can be found in [14], [13], and [22]. For our

Hidden Markov Model tagger, we decided to use the most basic approach, Laplacian

smoothing, which is described next.

Laplacian smoothing, also known as Add-One smoothing, adds one to the count

for unseen instances (in our case, word tokens) in the training set, redistributing the

probability mass by dividing by both the total number of tokens N along with the total

number of word types, or “vocabulary size” V

 1() i
i

cp w
N V
+

=
+

With our discussion of the mathematical foundation for the HMM tagger

complete, we now turn to the final type of tagger evaluated, know as Brill’s

Transformational-Based Learning tagger.

 44

3. Brill Transformational-Based Learning Tagging

Brill’s Transformational-Based Learning tagger, here after referred to as the Brill

tagger, relies on rules to determine what tags should be assigned to what words. Those

rules are learned based on their usefulness when applied to a training set. Overviews of

this approach can be found in [13], [14], [15], and [22]. Our presentation follows that of

Brill [15].

The training set for a Brill tagger consists of a tagged corpus as well as baseline

tagger. The baseline tagger can be as simple as a unigram tagger, i.e. assigning a word its

most frequent tag from the tagged corpus. The Brill learning algorithm then constructs a

set of tagging transformations, or rules, and employs them in order. Specifically, it

employs the rule that applies to the most cases, then chooses a more specific rule that

updates a fewer number of tags, and so on. As the rules get more and more specific, they

may end up changing the tags of words that had already been changed by a previous rule.

In essence, the Brill tagger makes an initial set of educated guesses, and then goes back

and fixes any mistakes made earlier.

The possible transformations are based on a set of templates, which the Brill

tagger evaluates for every possible combination, and applies those that correct the most

errors. Learning stops when no more transformations can be found that can reduce the

error based on a given threshold. For the nonlexicalized version of Brill’s tagger, the

transformation templates depicted in Table 10 are available.

 45

Change tag a to b when:

1. The preceding (following) word is tagged z.

2. The word two before (after) is tagged z.

3. One of the two preceding (following) words is tagged z.

4. One of the three preceding (following) words is tagged z.

5. The preceding word is tagged z and the following word is tagged w.

6. The preceding (following) word is tagged z and the word two before

(after) is tagged w.

where a, b, z, and w are variables over the part-of-speech tag set.

Table 10. Nonlexical Templates for Part-of-speech Tagging (From [15])

With these templates, the transformation learning algorithm shown in Figure 4 is

as follows.

 46

()LGORITHM RANSFORMATION EARNING , ,A T L initialTagger templates trainingCorpus

1. Apply initialTagger to trainingCorpus
2. While transformations can still be found, Do
 For fromTag = 1tag to ntag

 For toTag = 1tag to ntag

 For trainingCorpus.position = 1 to trainingCorpus.size

 If correctTag(trainingCorpus.position)==toTag ∧
 currentTag(trainingCorpus.position)==fromTag
 numGoodTransformations(tag(trainingCorpus.position-1))++

 Else If correctTag(trainingCorpus.position)==fromTag ∧
 currentTag(trainingCorpus.position)==fromTag
 numBadTransformations(tag(trainingCorpus.position-1))++

 find maxT (=numGoodTransformations(T)- numBadTransformations(T))

 If this is the best scoring rule found yet Then store as best rule:
 Change tag from fromTag to toTag if previous tag is T

 Apply best rule to trainingCorpus

 Append best rule to ordered list of transformations

Figure 4. Transformation Learning Algorithm for Brill Tagging (After [15])

The Brill tagger can be extended to include lexicalized templates as well. In other

words, instead of just considering changing a tag from “a” to “b” based on the

surrounding tags, it can also consider the surrounding words as well. Using both lexical

and nonlexical templates, the transformation learning algorithm can exploit the complex

interdependencies that exist between words and tags.

Now that we have covered the various approaches we used in chat part-of-speech

tagging, we now describe how we set up the experiments to assess the effectiveness of

each approach.

 47

4. Part-of-speech Tagging Experimental Approach

We divided the privacy-masked chat corpus into 30 different training/test

configurations, randomly selecting 10% of the corpus (1,060 posts) to serve as the test

set, and the remaining 90% to serve as the training set. Collecting 30 different

training/test configuration samples from the corpus permits us to compare the

performance of the different taggers based on their overall accuracy, defined as

 Number of tokens tagged correctlyaccuracy
Total number of tokens

=

As described above, the various taggers we investigated can be grouped into the

following categories: 1) N-gram back off taggers trained on various combinations of chat

and/or Penn Treebank data; 2) HMM taggers trained on chat data and/or samples from

the Penn Treebank; and 3) Brill taggers with various taggers serving as input and

subsequently trained with chat data and/or samples from the Penn Treebank. With our

discussion of the experimental approach for part-of-speech tagging complete, we now

turn to our methodology for chat dialog act classification.

C. CHAT DIALOG ACT CLASSIFICATION METHODOLOGY

As with our part-of-speech tagging discussion, before we cover the chat dialog act

classification experiments, it is first necessary to provide a brief overview of their

mathematical foundations. First we cover the specific features we chose to measure for

each post as well as our rationale. Then we detail the two main learning approaches we

used in dialog act classification: 1) Back-propagation neural networks; and 2) The Naïve

Bayes classifier.

1. Feature Selection

The machine-learning algorithms we used to automatically label a post with a

dialog act class required a set of features on which to base classification. In Table 11 we

present the initial set of features, along with their definitions and a brief rationale on why

we selected them.

 48

Feature Definition Rationale
f0 Number of posts ago the poster last posted Indicator for a Continuer act
f1 Number of posts ago the poster made a spelling error Indicator for a Clarify act
f2 Number of posts ago that a post contained a '?' but no

WRB or WP POS tag
Indicator for a Yes / No Answer acts

f3 Number of posts in the future that contained a Yes or
No word

Indicator for a Yes/No Question act

f4 Number of posts ago that contained a Greet word Indicator for a Greet act
f5 Number of posts in the future that contained a Greet

word
Indicator for a Greet act

f6 Number of posts ago that a post contained a Bye word Indicator for a Bye act
f7 Number of posts in the future that contained a Bye

word
Indicator for a Bye act

f8 Number of posts ago that a post was a JOIN Indicator for a Greet act
f9 Number of posts in the future that a post is PART Indicator for a Bye act

f10 Total number of words in post Longer posts may be Statements and
Questions, shorter posts may be Emotions and
Greets/Byes, etc.

f11 First word is a conjunction, preposition, or ellipses
(POS tag of 'CC', 'IN', or ':')

Indicator for a Continuer act

f12 A word contains emotion variants such as lol, ;-), etc Indicator for an Emotion act
f13 A word contains hello or variants Indicator for a Greet act
f14 A word contains goodbye or variants Indicator for a Bye act
f15 A word contains yes or variants Indicator for Yes or Accept acts
f16 A word contains no or variants Indicator for No or Reject acts
f17 A word POS tag is WRB or WP Indicator for a Wh-Question act
f18 A word contains one or more '?' Indicator for Wh- or Yes/No Question acts
f19 A word contains one or more '!' (but not a '?') Indicator for an Emphasis act
f20 A word POS tag is 'X' Indicator for an Other act
f21 A word is a system command (. or ! with SYM POS

tag)
Indicator for a System act

f22 A word is a system word, e.g. JOIN, MODE,
ACTION, etc

Indicator for a System act

f23 A word is an 'any' variant, e.g. 'anyone', 'n e', etc Indicator for a Yes/No Question act
f24 A word is in all caps, but not a system word like JOIN Indicator for an Emphasis act
f25 A word is an 'even' or 'mean' variant Indicator for a Clarify act
f26 Total number of users currently in the chat room More users may stretch out distances between

adjacency pairs

Table 11. Initial Post Feature Set (27 Features)

 49

The first ten post features (f0-f9) in the table are based on the posts surrounding it,

specifically, the distance to posts with particular features, with the rationale that

surrounding posts should give a hint to the nature of the post itself. For example,

Continuer dialog acts might be more likely to follow fairly closely to when the user last

posted, and Yes/No Answers should follow fairly closely to posts with Yes/No Question

characteristics. Note, though, that if a particular post was not found in its vicinity, we

assigned it the maximum session length in the privacy-masked chat corpus, i.e., 706 posts

(all sessions ranged from 687 to 706 posts). For example, at the beginning of a session,

you would not be able to find the last time a poster posted (even though they may have

posted just before the session was recorded). Note that this would result in an “edge

effect” at the beginning and ending of the sessions, thus decreasing the validity of some

of these particular features of posts near the beginning and end of the session.

The next sixteen features (f10-f25) are based on the post itself, with many of them

looking for specific patterns which should give a clue on the nature of the post. For

example, Greet dialog acts should contain a token like “hello”, while Question dialog

acts might contain a “?” as a token.

We selected the final feature (f26, current number of users logged on) because it

might help normalize the distances associated with the first ten features. Specifically,

more users currently logged on might increase the distances between adjacency pairs

such as Yes/No Questions and Yes- or No Answers.

With the initial feature set having been defined, we now turn to the machine-

learning methods we implemented to support chat dialog act classification.

2. Back-Propagation Neural Networks

To test the effectiveness of classifying a post with a dialog act using the 27

features, we first investigated back-propagation neural networks. Both Mitchell [23] and

Luger [24] provide excellent descriptions of artificial neural networks. For brevity, we

will present a conceptual overview of neural networks as well as the back propagation

training algorithm as presented by Mitchell. The reader is invited to turn to Mitchell for a

derivation of the back-propagation rule itself.

 50

The fundamental building block for all artificial neural networks is the artificial

neuron, referred to hereafter as the unit. The unit takes a series of inputs (either from the

environment or other units), applies a weight to each input, and based on its internal

threshold function, emits an output signal. The threshold function used by the units, as

well as how they are combined together, define the variety of decision surfaces that the

neural network can perform. Thus the training task associated with artificial neural

networks is as follows: based on a set of inputs and target outputs, learn the weights for

each unit such that the total error between actual network outputs and the target outputs is

minimized.

Back-propagation neural networks combine multiple unit layers along with a

differentiable threshold function for each unit, permitting a rich variety of decision

surfaces. In particular, our implementation uses, in addition to the output layer, a single

hidden layer of units. Although there are a variety of sigmoid functions available to serve

as a threshold function, the one we choose is the inverse tangent function, arctan(x). This

particular function has the (computationally) useful property that its derivative is easily

expressed as the function itself, namely,

 () ()()2

2

arctan 1 1 arctan
1

d x
x

dx x
= = −

+

Thus, the output is a continuous function of a weighted sum of its inputs, or

arctan()o w x= ⋅ , where o is the output value, w is the weight vector, and x is the input

vector. With the sigmoid function now defined, we turn to its implementation in the

back-propagation neural network training algorithm, presented in Figure 5.

 51

()LGORITHM ACK- ROPAGATION , , , ,A B P in out hiddentrainingSet n n nη

 Each element of trainingSet is a pair of the form (),x t , where x is the vector
of network input values and t is the vector of target network output values.
 η is the learning rate, inn is the number of network inputs, hiddenn is the
number of hidden units, and outn is the number of output units.
 The input from unit i to unit j is denoted jix , and the weight from unit i to unit
j is denoted jiw .

1. Create a feed-forward network with inn inputs, hiddenn hidden units, and outn output

units.
2. Initialize all network weights jiw to small random numbers (e.g., between -0.5 and

0.5)
3. While termination condition not met, Do:

For each (),x t in trainingSet, Do:

Propagate the input forward through the network
a. Input the instance x to the network and compute the output uo of every unit u

in the network
 arctan()u u uo w x= ⋅

Propagate the errors backward through the network
b. For each network output unit k, calculate its error term kδ

 () ()21k k k ko t oδ ← − −

c. For each hidden unit h, calculate its error term hδ

 ()21h h kh k
k outputUnits

o wδ δ
∈

← − ∑

d. Update each network weight jiw
 ji ji jiw w w← +Δ
 where
 ji j jiw xηδΔ =

Figure 5. Back-Propagation with Gradient Descent for Neural Network Training (After
[23])

 52

In our case, the input vector representing a particular post is the set of its features,

and thus has 27 dimensions. The features themselves were normalized by their maximum

value seen for a particular feature, thus restricting their range to a real number between

zero and one. Similarly, the output for the neural network is a vector with a dimension

equal to 15, the number of chat dialog act classes. Thus, the training set for our back-

propagation neural network consists of the training posts’ feature vectors and their target

output vectors (with “1” assigned for the actual dialog act classification and “0” for all

other classes).

To build the back-propagation network, we used Schemenauer’s implementation

for the Python programming language [25]. In addition to the above parameters, we used

16 hidden nodes and a learning rate of 0.05. Note that we did not perform a formal

optimization to determine these values. Instead, we varied them around set values and

selected the configuration that reduced the global error on a training set the most after

twenty iterations on each configuration.

With the discussion of the neural network implementation complete, we now turn

to the second machine-learning method we investigated, the Naïve Bayes Classifier.

3. Naïve Bayes Classifier

Manning and Schütze [13], Jurafsky and Martin [14], Mitchell [23], and Luger

[24] provide nice overviews of the general Bayesian learning approach. Following

Mitchell, we will first describe the Bayesian approach, show how the Naïve Bayes

classifier follows from it, and then discuss how we used it with respect to the dialog act

classification.

Given a training set consisting of instances with features represented by a vector

F consisting of elements if Features∈ along with their associated classifications

C Classes∈ , we can calculate the probabilities of those features given their classification

as well as the prior probability of the class itself. From Bayes theorem, we have

 () ()
()

|
|

P F C
P C F

P F
=

 53

Since the denominator for each particular class is the same, we can assign the

most probable class for an unseen instance by

 () ()ˆ arg max |
i

i i
C Classes

C P F C P C
∈

=

The Naïve Bayes classifier makes the simplifying assumption that the feature

values are conditionally independent of the classification. Therefore, the probability of

observing 1 2 ... nf f f∧ ∧ ∧ given a class iC is just the product of the probabilities of the

individual features given the class, () () ()1 2| | ... |i i n iP f C P f C P f C . Substituting this in

the general Bayesian learning approach gives us the Naïve Bayes Classifier

 () ()ˆ arg max |
i

i j i
C Classes j

C P C P f C
∈

= ∏

As with the Hidden Markov models employed in part-of-speech tagging discussed

earlier, we must account for the possibility that our training set contains zero counts for a

particular feature. There, we smoothed using the Laplacian estimate of the probability.

However, we found for the Naïve Bayes classifier for chat dialog acts that the Witten-

Bell probability estimate worked well, and thus we briefly describe its use next.

The key behind many smoothing approaches is to estimate the counts of things

never seen by the counts of things seen once. For Witten-Bell (described in [14]), the

probability mass reserved for unseen events is equal to T N T+ where T is the number

of observed event types and N is the total number of observed events. This equates to the

maximum likelihood estimate of a new type event occurring. The remaining probability

mass is discounted such that all probability estimates sum to one, yielding

()

()
i

i

() if c 0

 if c 0
i

i

p f T Z N T

c N T

= + =

= + ≠

where if is a particular feature, ic is its count in the training set, and Z is the total
number of events with zero count, or

: 0

1
ii c

Z
=

= ∑

With the Naïve Bayes classifier and Witten-Bell smoothing discussion complete,

we can now describe how we used it to automatically assign the dialog act class for a

 54

particular post. Given a training set of posts, with each post containing 27 feature values

as well as a dialog act class, we calculated both the prior class probability distributions as

well as the conditional probability distributions for each feature given a class. We then

smoothed these distributions by the total possible values for each particular feature.

Finally, we used these smoothed distributions in the Naïve Bayes classifier to

automatically assign the class for an unseen instance in the test set of posts.

Now that we have covered both of the machine-learning approaches used in chat

dialog act classification, we now describe our experimental set-up to assess the

effectiveness of each approach.

4. Chat Dialog Act Classification Experimental Approach

As with the part-of-speech tagging experiments, we divided the privacy-masked

chat corpus into 30 different training/test configurations, randomly selecting 10% of the

corpus (1,060 posts) to serve as the test set, and the remaining 90% to serve as the

training set. Collecting 30 different training/test configuration samples from the corpus

permits us to compare the performance of the different learning approaches based on the

mean and standard deviation of several different performance scores.

The first performance score we measured for each training/test configuration was

the overall accuracy of the learning method. Similar to part-of-speech tagging, accuracy

is defined as

 Number of posts labeled correctlyaccuracy
Total number of posts

=

Unlike the part-of-speech tagging situation, the number of classification labels is

relatively small. As such, we found it particularly insightful to calculate both recall and

precision scores for each class in each training/test configuration. Their definitions are as

follows.

 Number in class labeled correctlyrecall
Actual number in the class

=

 Number in class labeled correctlyprecision
Total number labeled as the class

=

 55

Finally, although recall and precision enable us to assess each learning method’s

performance at the dialog act classification level, it is useful to have a single measure for

its performance. The harmonic mean of the precision and recall scores, known as the f-

score, is a good measurement because it does not permit improving one aspect of

performance at the expense of the other. As such, f-score is defined as

 2f-score
1 precision 1 recall

=
+

With our description of the experiment complete, we are ready to compare the

performance of the back-propagation neural network and Naïve Bayes machine-learning

approaches. The results of these experiments along with those of the part-of-speech

taggers are presented in Chapter IV.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

IV. TESTING AND ANALYSIS

In this chapter we present the results of our experiments as well as provide a

discussion on their significance. We will first cover some general statistics of the

privacy-masked corpus we collected, and provide comparisons to other language domains

of similar size. We will then review the performance of the various machine-learning

approaches we used for both part-of-speech tagging and chat dialog act classification.

A. CORPUS STATISTICAL COMPARISON

Before trying to build a highly accurate tagger for the chat domain, we first

needed to compare the chat domain to some baseline in order to assess the potential for

tagger performance. Since we had 10,567 tagged chat posts, we were initially inclined to

select training/test sets consisting of 10,567 sentences from the other domains. However,

the unit of concern is at the token-, and not sentence-level. Therefore, this would be

inappropriate, since both Wall Street Journal and Switchboard sentences were on average

much longer than chat posts. Since the 10,567 tagged chat posts contained 45,068

tokens, we randomly selected 30 different contiguous sections from both the Wall Street

Journal and Switchboard corpora, with each sample containing the same number of

tokens as the privacy-masked corpus (plus those necessary to complete the last sentence)

to serve as source data for those domains.

We then measured a number of lexical statistics on the chat privacy-masked

corpus as well as the Wall Street Journal and Switchboard corpora samples. In particular,

we measured the token/type, part-of-speech (POS) tag count/type, and POS tag

count/token ratios. The token/type ratio is defined as the total number of words (tokens)

in the corpus sample divided by the total number of unique words (types). The POS tag

count/type ratio is defined as the average of the number of part-of-speech tags for each

type in the sample. Finally, the POS tag count/token ratio is defined as the average of the

number of part-of-speech tags for all tokens in the sample.

 58

We also trained and tested unigram taggers (backing off to the domain’s MLE),

HMM taggers, and Brill taggers (with the aforementioned unigram taggers serving as the

initial tagger) for each of the domains, using a single representative sample from each of

the Wall Street Journal and Switchboard samples collected earlier. From those

selections, we then created 30 different training/test sets by randomly removing 10% of

the sentence-level units from each domain sample to serve as test data with the remainder

serving as training data.

With this brief overview of the baseline comparison methodology complete, we

can now discuss the corpora lexical statistics, summarized in Table 12.

Privacy-
masked

Chat

Wall Street
Journal

Switchboard

Sentence Level Units: Mean 10567 867.533 2866.000
Std Dev - 49.907 225.960

Tokens: Mean 45068 45094.167 45074.533
St Dev - 27.969 26.531

Types: Mean 5803 7094.033 3046.900
St Dev - 192.415 80.910

Misspelled Tokens: Mean 490 0 36.433
St Dev - 0 10.484

Misspelled Types: Mean 433 0 27.133
St Dev - 0 6.745

Token/Type: Mean 7.766 6.361 14.804
St Dev - 0.177 0.399

Table 12. Corpora Lexical Statistics Summary

1. Corpora Sample Token/Type Ratios

Since all the domain samples were roughly the same size (measured by number of

tokens), the token/type ratio represents the size of each domain’s vocabulary. In other

words, as the token/type ratio gets larger, the vocabulary of the domain sample (measured

by number of types) gets smaller, since all samples contained roughly the same number

of tokens. As can be seen in Table 12, the chat token/type ratio of 7.766 is much closer

 59

to the Wall Street Journal corpus than that of Switchboard as represented by the means

and standard deviations from 30 similarly sized samples from each domain.

These findings are consistent with Freiermuth’s comparative analysis of political

discussion in the written, spoken, and chat domains, although his samples were much

smaller (3000 tokens/domain) [9]. This finding bears further discussion. Based on the

fact that a conversation is taking place, online chat may seem like spoken language.

However, from a lexical perspective, it is much more diverse, and thus more closely

resembles traditional written language. Apparently, one’s ability to edit his/her post

before pressing “Enter” allows them to be more selective in the words they choose to use.

As described in Chapter II, the Contexts of Production and Use are synchronous for

spoken language, thus inhibiting the participants’ ability to find preferred words because

they are either trying to maintain the floor or avoid silence. By contrast, the Contexts of

Production and Use are asynchronous in traditional written language as well as chat, with

the token/type ratio being one piece of evidence for this asynchronicity.

There are some things unique to the privacy-masked chat domain, though, that

directly affect its token/type ratio, and are thus worth mentioning. First of all, the privacy

masking activity itself has the effect of increasing the token/type ratio. This is because

all direct references to chat participants were replaced with a single, unique name per

participant. In many cases, though, chat participants were referred to by more than one

name (from our example in Chapter III, “killerBlonde51”, “killer”, “Blondie”, “kb51”,

etc.).

Second, the privacy-masked chat corpus (and the chat domain in general) is

littered with misspellings, which will decrease the token/type ratio. Specifically, we

tagged 490 tokens in the privacy-masked chat corpus as misspellings. Of these, 433 were

unique misspellings. Thus, roughly one percent of the privacy-masked chat corpus

contained misspellings. This is in comparison to both Wall Street Journal articles and the

transcribed Switchboard spoken conversations, which contain virtually no misspellings

(see Table 12).

 60

Finally, several of the emoticons and chat abbreviations have the “property” that

they can contain repetition of characters within the word. These variants of the same

expression also decrease the token/type ratio for chat. For example, we observed a

number of variants for the emoticon “<3” (a heart shape on its side): “<333”,

“<33333333”, “<3’s”, etc. Each of these variants was counted as a separate type. We

did not treat these as misspellings, and instead tagged them as interjections. Note that the

same property occurred in traditional words, e.g. “reeeeeallllllly” for “really”, although in

these cases we did tag them as misspellings. Regardless of how they were tagged,

though, these unique types, albeit with the same “root”, add to the lexical diversity of the

chat domain per our definition.

What effect does the chat token/type ratio have on stochastic part-of-speech

tagging? As mentioned earlier, a smaller token/type ratio means a larger vocabulary for

the domain. As such, a corpus with a larger token/type will generally have more data to

train a part-of-speech tagger than a similarly sized corpus with a smaller token/type ratio.

Regarding the special case for misspellings, it will be difficult for a stochastic tagger to

correctly tag a misspelling, since its type may only occur in the corpora a few times at

most (depending on its size). Thus, the token/type ratio could be a significant factor in

stochastic tagger performance, but it is not the only one. In particular, the part-of-speech

ambiguity for a particular word, represented overall for a corpus by its POS tag count

ratios, will also play a role.

2. Corpora Sample POS Tag Count/Type Ratios

One of the measures of a word’s lexical ambiguity is the number of part-of-

speech tags it can have when in use. Words that have only one part-of-speech tag, for

example, “the” (tagged “DT” for determiner) are unambiguous. On the other hand, if a

word has more than one possible part-of-speech tag, e.g. the word “bear”, the machine-

learning algorithm has a decision to make. Thus, words with more than one part-of-

speech tag are ambiguous, and it is these words that determine the upper limit for overall

tagging accuracy. The part-of-speech tag counts for both tokens and types within the

privacy-masked chat corpora are presented in Table 13 below.

 61

Chat POS Tag
Count

Chat Type
Count

Chat Token
Count

1 5141 20867
2 489 10175
3 121 5988
4 30 3472
5 16 3577
6

(“s”, “a”, “of”, “there”) 4 947
7

(“n”, “‘”) 2 42

Total Counts 5803 45068
POS Tag Count

Ratios 1.158 2.151

Table 13. POS Tag Counts for Privacy-masked Chat Corpus Types and Tokens

As can be seen, even though the vast majority of the chat types have only one

part-of-speech tag, less than half of the tokens in the privacy-masked corpus are of this

variety. In particular, note that more than a quarter of the tokens have three or more part-

of-speech tags. In fact, many of the types with part-of-speech tags numbered five and

greater include a misspelling part-of-speech tag. Thus, since the tagger is concerned with

tagging words in use (tokens), the POS tag count/token ratio (as opposed to the

corresponding type ratio) will have the most impact on overall tagger performance. We

present a comparison between the samples from the three domains in Table 14.

Privacy-
masked

Chat

Wall Street
Journal

Switchboard

POS Tag Count/Type: Mean 1.158 1.141 1.186
St Dev - 0.006 0.008

POS Tag Count/Token: Mean 2.151 1.459 1.833
St Dev - 0.079 0.105

Table 14. Corpora POS Tag Count Ratio Summary

As can be seen, chat has the largest POS tag count/token ratio for the three

domains, with over two tags per token on average. Switchboard follows with a ratio of

1.833, with Wall Street Journal having the least part-of-speech ambiguity with a 1.459

 62

tags/token ratio. How does this ambiguity affect impact tagger performance? As

mentioned earlier, a stochastic tagger will in general have a more difficult task in

selecting the correct part-of-speech the more labels it has to choose from. However, this

will be offset by the amount of lexical data it has to train from, represented by the

corpus’s token/type ratio.

With these two measures in mind, we can now see how they might affect part-of-

speech taggers trained on the same amount of data from the same domain.

3. Tagger Self Domain Comparison

The various tagger accuracies, each trained on data only from their own domain,

are shown in Table 15.

Privacy
Masked

Chat

Wall Street
Journal
Sample

Switchboard
Sample

Sample Size (Tokens) 45068 45074 45085
Token/Type 7.766 6.387 14.777

POS Tag Count/Token 2.151 1.428 1.803

Unigram to MLE Accuracy: Mean 0.8123 0.8223 0.8577
Std Dev 0.0069 0.0066 0.0071

HMM Accuracy: Mean 0.8699 0.8869 0.9132
Std Dev 0.0062 0.0080 0.0049

Brill Accuracy: Mean 0.8601 0.8659 0.8998
Std Dev 0.0071 0.0069 0.0052

Table 15. Self Domain Tagger Performance Comparison

As can be seen, all part-of-speech taggers performed the best on the Switchboard

corpora sample, achieving over 91% accuracy with its Hidden Markov Model tagger. It

appears that, although its part-of-speech ambiguity is between the other two domains,

tagger performance is assisted by the fact that the Switchboard sample has nearly twice as

many tokens per type, providing more information to base its tagging decisions upon.

Indeed, its unigram-MLE tagger performs nearly as well as the best performing taggers

for the other domains.

 63

The next best performing domain was the Wall Street Journal, followed

surprisingly close by the privacy-masked chat corpus. Indeed, the chat domain’s Brill

tagger nearly equaled its counterpart for the Wall Street Journal sample. This is

interesting, since although chat usage may appear to be “wild”, it confirms the fact that

with all communication domains, there are both lexical and syntactic rules that govern

acceptable structure. This leads one to ask the question of why a domain with over one

percent of its tokens misspelled (as well as a much greater part-of-speech ambiguity) can

almost equal the tagging performance of a more structured (albeit complex) domain.

Certainly there are other factors that play a role, not the least of which is the syntactic

structure of the sentences in the domains themselves. Nevertheless, these results are

encouraging, and provide a level of confidence that state-of-the-art taggers employed on

chat should reach similar accuracy rates given similar amounts of training data.

With this baseline comparison complete, we now turn to presenting the results of

our efforts to maximize the performance of part-of-speech taggers for the chat domain.

B. CHAT PART-OF-SPEECH TAGGING RESULTS

In this section we present the results of our part-of-speech tagging experiments.

We will first present the accuracy of various N-gram back off taggers, followed by the

HMM taggers, and finally the Brill taggers. Throughout, we will provide comments on

both the effectiveness and significance of the various tagging approaches.

1. N-Gram Back Off Tagger Performance

In our discussion on the n-gram tagger performance, we will first review the

performance of the taggers each trained on the Wall Street Journal, Brown, Switchboard,

the entire Penn Treebank, and Chat domains. We then cover the n-gram taggers trained

on combinations of those domains, to include some performance enhancements over the

basic n-gram back off approach.

 64

a. N-Gram Back Off Trained on Single Domain

The mean accuracy and associated standard deviation for unigram and

bigram taggers trained on a single domain and tested on the chat domain are shown in

Table 16, and graphically in Figure 6. Note that error bars in all subsequent tagger

accuracy plots represent +/-1 standard deviation for the mean accuracy figure.

 Accuracy:
Mean

Accuracy:
St Dev

Switchboard Unigram 0.5329 0.0085

Bigram 0.5387 0.0082

WSJ Unigram 0.5396 0.0082

Bigram 0.5505 0.0080

Brown Unigram 0.5460 0.0089

Bigram 0.5587 0.0091

All Treebank Unigram 0.5877 0.0078

Bigram 0.6006 0.0078

Chat Unigram 0.8123 0.0069

Bigram 0.8242 0.0074

Table 16. N-Gram Back Off Tagger Performance on Chat Trained on a Single Domain

Unigram/Bigram Backoff Performance

0.533 0.540 0.546

0.588

0.812

0.539 0.551 0.559

0.601

0.824

0.500

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

Switchboard WSJ Brown All Treebank Chat

Training Data

A
cc

ur
ac

y

Unigram (Values Below)
Bigram (Values Above)

Figure 6. N-Gram Back Off Tagger Performance on Chat Trained on a Single Domain

 65

Recall that for the unigram taggers, a tag is assigned based on the word

type’s most prevalent tag in the training data. If no instance is found in the training data,

the tagger backs off to the most prevalent tag in the entire domain, referred to as the

maximum likelihood estimate (MLE). The MLE for the Wall Street Journal, Brown, and

the entire Treebank (which also includes Switchboard) is “NN”; the MLE for

Switchboard alone is “,”; finally, the MLE for the privacy-masked chat corpus is “UH”.

The approach is the same for the bigram tagger, except that they first use a bigram

instance (if the training data contains it) before backing off the unigram and ultimately

the domain MLE.

Several things are readily evident in Figure 6. Notice first that the

accuracies of the bigram taggers are only marginally better than their unigram

counterparts trained on a given domain. Also, notice that there is little difference

between the accuracies of taggers (54-55%) trained on only one corpus from the

Treebank. However, when all Treebank corpora are included in the training set, the

accuracy jumps up to 60.1% for the bigram back off tagger version.

Although not surprising, it is nonetheless striking to see the performance

improvement when the tagger is trained on chat data. Relatively few words are required

from the chat domain (~41,000 training set tokens) to get 82.4% accuracy using the

bigram back off tagging approach alone. This is compared to 60.1% when training on

millions of words from the written and spoken domains, as represented by the Penn

Treebank. This brings home a fundamental point of our work. At least from a

vocabulary perspective, the chat domain is fundamentally different than that of either

traditional written or spoken domains. That being said, we seek to understand whether

those domains are still of some benefit from both a lexical as well as syntactical

perspective to provide tagging performance improvements over methods using only a

small amount of training data (albeit exactly the right kind of training data). Our next

section will start to address this issue.

 66

b. N-Gram Back Off Tagger Performance Improvements

Performance improvements over the back off taggers discussed in the

previous are shown in Table 17, and graphically in Figure 7.

Accuracy:
Mean

Accuracy:
St Dev

Chat to Switchboard:
Chained Unigram 0.8464 0.0052

Chained Bigram 0.8612 0.0053
Chat to WSJ:

Chained Unigram 0.8508 0.0050

Chained Bigram 0.8647 0.0051
Chat to Brown:

Chained Unigram 0.8542 0.0054

Chained Bigram 0.8685 0.0054
Chat to All Treebank:

Chained Unigram 0.8604 0.0046

Chained Bigram 0.8761 0.0045
Chained Bigram w/ Regex

(Chat + Treebank) 0.8917 0.0043
Combined Corpora Bigram

w/ Regex (Chat + Treebank) 0.8984 0.0045

Table 17. N-Gram Back Off Tagger Performance Improvements

 67

Bigram Backoff Performance Improvements

0.8464 0.8508 0.8542
0.8604

0.8612 0.8647 0.8685
0.8761

0.8917
0.8984

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

Uni/Bigram
Chat to

Switchboard

Uni/Bigram
Chat to WSJ

Uni/Bigram
Chat to
Brown

Uni/Bigram
Chat to All
Treebank

Chained
Bigram w/

Regex

Combined
Corpora Bi
w/ Regex

Tagger Type

A
cc

ur
ac

y

Chained Unigram (Values Below)

Chained Bigram, Other
Improvements (Values Above)

Figure 7. N-Gram Back Off Tagger Performance Improvements

Recall that the chained unigram (bigram) back off tagger incorporates a

unigram (bigram) back off tagger trained first on chat. However, instead of backing off

immediately to the chat MLE, the tagger first backs off to another unigram (bigram) back

off tagger trained on another domain. Unlike the case for unigram / bigram back off

taggers trained on a single domain, however, there appears to be a significant

improvement in performance using the bigram information. Regardless, incorporating

multiple domains as part of the training set provide significant improvement to the

bigram back off tagger trained on chat alone.

The final two taggers bear some explanation. The first is a chained bigram

back off tagger trained on both chat and the entire Penn Treebank. However, before

backing off to the chat MLE, it first uses a regular expression that recognizes privacy-

masked names and tags them as “NNP”. More importantly, though, it uses standard

morphological rules (e.g., adverbs end in “ly”, plural nouns end in “s”, etc.) to assign a

likely tag. Incorporating this regular expression provides a significant 1.5%

improvement in total accuracy over the same tagger not using the regular expression.

 68

The final tagger also uses the same regular expression. However, instead

of using multiple domains via a chaining approach, it instead trains on all the corpora at

the same time, resulting in a single bigram back off tagger. Since the chat training data is

much smaller (thousands of words as opposed to millions of Treebank words), it must be

“multiplied” so that its effect is not drowned out by the larger Treebank data set.

Through an informal optimization, we determined that multiplying chat by 70 resulted in

the best accuracy improvement. Overall accuracy for this approach is 89.8%.

Although adding additional domains clearly improves the bigram back off

tagger performance, the tagging algorithm itself is relatively simple. As such,

performance improvement can largely be attributed to the additional vocabulary provided

by the Penn Treebank corpora. Of course, we want to use this additional information, in

conjunction with more sophisticated tagging approaches, to improve tagging accuracy

even more. With this in mind, we turn now to the Hidden Markov Model (HMM) tagger

results.

2. Hidden Markov Model Tagger Performance

Hidden Markov Model taggers, by the nature of the algorithms used, take

considerably longer than the n-gram back off tagger we investigated both to train as well

as to assign the most likely tag sequence given a string of tokens. As such, we took the

following testing approach. First, we ran 30 different training/test sets, with each tagger

trained only on the particular chat training data set. Second, we trained an HMM using

samples of size ~45,000 tokens from both the Wall Street Journal and Switchboard. In

the same fashion as before, we multiplied each chat training data set by seven to ensure it

did not get drowned out by the addition of the other non chat data. For both the chat only

and chat + WSJ/Switchboard sample configurations, we calculated the mean accuracies

and standard deviations. Finally, we selected the one training/test set pair (out of 30) that

had the closest accuracy to the mean accuracy of the HMM taggers trained only on chat.

For this training/test pair, we trained on chat data (multiplied by varying amounts)

combined with the entire Penn Treebank. The accuracies and standard deviations for the

HMM tagger experiments are shown in Table 18, and graphically in Figure 8.

 69

 Mean St Dev

HMM Chat 0.8699 0.0062
HMM Chat X 7 + WSJ,
Switchboard Samples 0.8853 0.0054
HMM Single Sample:

Chat X 150 + Treebank 0.903 -

Table 18. Hidden Markov Model Tagger Performance

Hidden Markov Model Performance

0.899 0.901 0.901 0.902 0.902 0.903 0.902 0.903 0.9020.902

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ChatX50 X70 X90 X110 X130 X150 X170 X190 X210 X230
Training Data

(Multiple Chat + All Penn Treebank)

A
cc

ur
ac

y

HMM Single Test Sample

HMM Mean (Chat-Only
Training Data): 0.8699

HMM Mean (Chat X 7 + WSJ,
Switch Samples): 0.8853

Figure 8. Hidden Markov Model Tagger Performance

First mentioned in Chapter IV Section A, the HMM tagger trained only on chat

data achieves a mean accuracy of 87.0% (Table 15), a significant increase over the best

bigram back off tagger trained only on chat (82.4%; see Table 16). The HMM tagger

trained on chat and samples from the WSJ and Switchboard performed significantly

better than an HMM tagger trained on chat alone, achieving a mean accuracy of 88.5%.

For the single training/test pair trained on both chat and the entire Treebank, we

achieved a maximum accuracy of 90.3% when the chat training set was multiplied by

150. This result suggests that an HMM tagger trained on both chat and the entire

Treebank might perform significantly better than the best performing tagger presented so

 70

far, the combined corpora bigram back off tagger, which had a mean accuracy of 89.8%.

Indeed, the HMM tagger could perform even better than the accuracy figures suggest,

since the bigram back off tagger incorporates a regular expression that automatically tags

privacy-masked user names. The HMM tagger does not rely on regular expression in

assigning its most likely tag sequence, giving it a better chance at correctly tagging non-

privacy-masked user names as “NNP”.

3. Brill Tagger Performance

As discussed in Chapter III, there are two aspects to Brill tagger training. First,

there is the training of the tagger that serves as input to the transformation learning

algorithm. For the input tagger, Brill suggests using a unigram approach that tags each

word with its most common part-of-speech tag [15]. Then, there is the implementation of

the algorithm itself, which learns a sequence of rules that, when iteratively applied to the

input tagger, improves upon its performance.

As with the other two tagging approaches, our goal is to combine chat training

data with corpora from both the written and spoken domains to maximize part-of-speech

tagging performance. However, it takes both a significant amount of time and memory

for Brill’s transformation learning algorithm to learn a reasonable number of rules (250)

based on a large training set. Thus, for our initial Brill tagging experiments, we took the

following approach. For the input tagger, we selected one training/test set pair (out of

30) that had the closest accuracy to the mean accuracy of the chained unigram tagger that

incorporates a regular expression (87.56%). For this training/test pair, we then used the

transformation learning algorithm to train on chat data (multiplied by varying amounts)

combined with 50% of the Wall Street Journal. The accuracies and associated standard

deviations for these Brill tagger experiments are shown in Table 19 and graphically in

Figure 9.

 71

 Mean St Dev
Chained Unigram: Chat to

All Treeebank to Regex 0.8756 0.0043
Brill Single Sample:

Chat X 30 + 50% WSJ 0.8988 -

Table 19. Brill Tagger Performance for Single Chat Test Set

Brill Performance for Single Chat Test Set

0.888 0.893 0.895 0.897 0.898 0.899 0.898 0.896

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

ChatX5 X10 X15 X20 X25 X30 X35 X40

Training Data
(Multiple Chat + 50% of WSJ Corpus)

A
cc

ur
ac

y

Brill Single Test Sample

Chained Unigram Mean--Chat to All Treeebank
to Regex (Brill Tagger Input): 0.8756

Figure 9. Brill Tagger Performance for Single Chat Test Set

For the single training/test pair using a chained unigram back off tagger

subsequently learning rules based on both chat and 50% of the Wall Street Journal, we

achieved a maximum accuracy of 89.9% when the chat training set was multiplied by 30.

Indeed, this is significantly better than the performance of the Brill tagger trained only on

chat data (first mentioned in Chapter IV Section A), with a mean accuracy of 86.0% (see

Table 15). This result suggests that a Brill tagger trained on both chat and the entire

Treebank might also perform significantly better than the best performing tagger

presented so far, the combined corpora bigram back off tagger, which had a mean

accuracy of 89.8% (see Table 17 and Figure 7).

 72

In addition to using a chained unigram back off tagger, we investigated using our

most accurate n-gram back off taggers as input into the Brill transformation learning

algorithm. First, we used our chained bigram back off tagger incorporating a regular

expression, with a mean accuracy of 89.2%. Second, we used the combined corpora

bigram back off tagger (which included the entire Treebank plus the chat training set

multiplied by 70), with a mean accuracy of 89.8%. For both of these input tagger sets,

we trained with the transformation learning algorithm only on chat data. Finally, we used

the combined corpora bigram back off tagger, but trained with the algorithm on both chat

data (multiplied by seven) as well as using samples of size ~45,000 tokens from both the

Wall Street Journal and Switchboard. The accuracies and associated standard deviations

for these Brill tagger experiments are shown in Table 20, and graphically in Figure 10.

Accuracy:
Mean

Accuracy:
St Dev

Chained Bigram w/ Regex (Chat
+ Treebank) 0.8917 0.0043

Brill Encapsulation of Chained
Bigram, Trained on Chat 0.9059 0.0047

Combined Corpora Bigram w/
Regex (Chat + Treebank) 0.8984 0.0045

Brill Encapsulation of Combined
Corpora Bigram, Trained on Chat 0.9069 0.0050

Brill Encapsulation of Combined
Corpora Bigram, Trained on

ChatX7 + WSJ, Switch samples 0.9077 0.0045

Table 20. Brill Tagger Performance Improvements

 73

Brill Tagger Performance Improvements

0.8917
0.8984

0.9059 0.9069 0.9077

0.88

0.9

0.92

0.94

0.96

0.98

1

Chained
Bigram

Combined
Corpora Bigram

Chained
Bigram Brill
Input (Chat)

Combined
Corpora Bigram

Brill Input
(Chat)

Combined
Corpora Bigram

Brill Input
(ChatX7 +

WSJ, Switch
Sample)Tagger Type

A
cc

ur
ac

y

Figure 10. Brill Tagger Performance Improvements

Encapsulating the chained bigram and combined corpora bigram back off taggers

with rules learned by the transformation learning algorithm result in a significant

improvement in accuracy. The best performing Brill tagger achieved a mean accuracy of

90.8%. However, based on the standard deviations, this is not a significant improvement

over the accuracy of any of the other Brill taggers, with accuracies of 90.6% and 90.7%.

Based on the earlier Brill results, the addition of more non-chat training data for the Brill

learning algorithm should improve performance. That being said, achieving Brill tagger

accuracies significantly greater than 91% appears unlikely within the current privacy-

masked chat corpus framework.

4. Discussion

As mentioned earlier, results from single training/test sample pairs suggest that

significant performance improvements are achievable with both HMM and Brill

approaches. What we did not investigate, however, was whether there was an optimal

ratio of the various Treebank corpora to use to improve tagger performance on chat.

Varying the amount of training data from each Treebank corpora, although it may

 74

degrade performance of the simpler n-gram back off taggers, may actually improve

performance for the more sophisticated tagging approaches (when compared to training

on the entire Treebank).

In addition to training more sophisticated taggers on larger, tailored subsets of the

Penn Treebank corpora, we should revisit our initial corpus construction decisions to see

how they impact tagger performance. For example, we tagged emoticons and chat

abbreviations as interjections. However, their distribution in chat is probably different

than that of traditional interjections in spoken or written language. The use of one or two

new tags to represent emoticons and chat abbreviations may provide a critical distinction

between those and the traditional interjections that also occur in chat, e.g., greetings,

yes/no responses to questions, fillers, etc. Recognizing these distinctions with a new

tag(s) could improve overall performance.

Another of our early decisions that should be reconsidered is the lack of

tokenization of contractions. Recall that based on their frequency of use, we treated

words like “doncha” as a single word, and assigned it a single part-of-speech tag that

most closely resembled its use. Thus, the post “doncha feel good?” would be tagged as

“doncha/VBP feel/VB good/JJ ?/.” That tag sequence would be the same as “do/VBP

feel/VB good/JJ ?/.”, and yet this is unlikely to be found in even the most informal

written or transcribed spoken domains. Tokenizing “doncha” as “do” and “ncha” would

lead to the following tagging sequence: “do/VBP ncha/PRP feel/VB good/JJ ?/.”, which

is a tag sequence much more likely to be found in the written and transcribed spoken

domains. Both HMM and Brill taggers should be able to take advantage of this closer

match to those domains. Of course, this would complicate the tokenizing task, requiring

a dictionary of these contractions so that they can be recognized and split appropriately

during the tokenization phase.

Finally, we should reconsider how we handle misspellings, both from a corpus

construction as well as a part-of-speech tagging system approach. Including misspelled

tokens in the corpus add additional labels to types, thus increasing the part-of-speech

ambiguity for word types such as “there” and “your”, which are both correct and

incorrect spellings depending on their context. During corpus construction, these

 75

misspellings could be corrected, but the part-of-speech tagger will certainly not actually

be used in such a pristine environment. A spelling module, which both detects and

attempts to correct misspelled tokens, could serve as an input to the part-of-speech

tagging system. Of course, such a module would also need to be trained, with more

sophisticated approaches potentially requiring part-of-speech labels as input! Thus,

automated spelling correctors would complicate the real-time use of natural language

processing applications that rely on part-of-speech tagging. Jurafsky and Martin provide

a nice overview of misspelling recognition and correction techniques [14].

With the presentation of our experiment results for part-of-speech tagging

complete, we now turn to the results of our chat dialog act classification experiments.

C. CHAT DIALOG ACT CLASSIFICATION RESULTS

Before presenting the chat dialog act classification results of the two machine-

learning approaches, we first present the dialog act class counts for the chat privacy-

masked corpus as well as the comparison methodology we used to assess whether the

difference in machine-learning approaches is significant.

 76

Class Count Percent
Statement 3163 29.93%

System 2630 24.89%

Greet 1438 13.61%

Emotion 1046 9.90%

Wh-Question 538 5.09%

Yes/No Question 538 5.09%

Accept 238 2.25%

Bye 195 1.85%

Emphasis 189 1.79%

Continuer 171 1.62%

Reject 160 1.51%

Yes Answer 109 1.03%

No Answer 73 0.69%

Other 41 0.39%

Clarify 38 0.36%

All Classes 10567 100.00%

Table 21. Chat Dialog Act Frequencies

As can be seen in Table 21, Statement is the most common class, followed closely

by System, and then dropping off quickly to Greet, Emotion, Wh- and Yes/No Question

classes. The remaining nine classes all occur with less than 2.25% frequency. That

means only 11.5% of the posts represent 60% of th e chat dialog act class categories.

This may present a problem for the machine-learning approaches, since both back

propagation neural networks and the Naïve Bayes classifier require training data to make

their classifications, and relatively little data is available for these categories. That being

said, if there are good features that clearly distinguish these categories from higher

percentage ones, there is the opportunity for the machine-learning method to make the

correct classification.

As mentioned at the end of Chapter III, we divided the privacy-masked chat

corpus into 30 different training/test configurations, randomly selecting 10% of the

corpus (1,060 posts) to serve as the test set, and the remaining 90% to serve as the

 77

training set. After testing each test set with the specific machine-learning approach, we

calculated precision, recall, and f-scores for each dialog act class as well as the overall

accuracy. A useful way to visualize the performance of the learning approach is through

a confusion matrix. A confusion matrix is an N × N matrix, where N is the number of

categories a test instance can be classified into. Thus, for chat dialog acts, N = 15. The

sums of each row represent the truth, i.e., the actual counts of the classes in the test set.

The sums of each column represent what the learning algorithm labeled as that class.

Thus, entries on the diagonal are the number of instances labeled correctly, and

recall/precision for each class can be calculated by dividing the diagonal entry by the

row/column sum, respectively. Although we will not present all confusion matrices for

all training/test sets, an example of one is shown in Figure 11.

A
cc

ep
t

B
ye

C
la

rif
y

C
on

tin
ue

r

E
m

ot
io

n

E
m

ph
as

is

G
re

et

nA
ns

w
er

O
th

er

R
ej

ec
t

S
ta

te
m

en
t

S
ys

te
m

w
hQ

ue
st

io
n

yA
ns

w
er

yn
Q

ue
st

io
n

To
ta

l A
ct

ua

P
re

ci
si

on

R
ec

al
l

F-
sc

or
e

Accept 13 0 0 0 2 1 0 0 0 0 6 0 0 0 0 22 0.722 0.591 0.65
Bye 0 12 0 0 0 1 0 0 0 0 2 0 1 0 0 16 0.923 0.75 0.828

Clarify 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 undef 0 undef
Continuer 0 0 0 0 0 2 0 0 0 0 14 0 0 0 0 16 undef 0 undef

Emotion 0 0 0 0 110 2 0 0 0 0 0 0 0 0 0 112 0.827 0.982 0.898
Emphasis 1 0 0 0 1 9 0 0 0 0 5 1 0 0 0 17 0.409 0.529 0.462

Greet 0 0 0 0 12 5 114 0 0 0 10 0 2 0 3 146 0.934 0.781 0.851
nAnswer 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 8 undef 0 undef

Other 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 5 0.8 0.8 0.8
Reject 0 0 0 0 0 0 1 0 0 0 15 0 0 0 0 16 undef 0 undef

Statement 2 1 0 0 8 2 6 0 0 0 292 2 5 0 3 321 0.785 0.91 0.843
System 0 0 0 0 0 0 0 0 0 0 4 252 0 0 0 256 0.988 0.984 0.986

whQuestion 0 0 0 0 0 0 0 0 0 0 5 0 41 0 6 52 0.804 0.788 0.796
yAnswer 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 4 undef 0 undef

ynQuestion 0 0 0 0 0 0 1 0 0 0 9 0 2 0 53 65 0.803 0.815 0.809

Total Labeled 18 13 0 0 133 22 122 0 5 0 372 255 51 0 66
Test Set Accuracy: 0.851

Figure 11. Example Confusion Matrix for Chat Dialog Act Classification (Back
Propagation Neural Network, 24 Features, 100 iterations)

Finally, we calculated the means and standard deviations for the recall, precision,

f-score, and overall accuracy of each experiment configuration. To ascertain if there was

a significant difference in the performance of two learning approaches, we performed

hypothesis (z) tests using the approaches mean and standard deviations. For 95%

confidence, we reject the null hypothesis that the means are equal if |z| > 1.96.

With our discussion of chat dialog act class frequencies and comparison

methodology complete, we now turn to the classification results. We will first look at the

 78

performance of the back propagation neural network and Naïve Bayes classifier using 27

features. We will then look at the performance of both learning approaches using a

smaller, 24 feature set.

1. 27 Feature Experiment Results

For the 27 feature set, we first present the results of the back propagation neural

network, to include the effect of varying the number of training iterations. We then

present the results of the Naïve Bayes classifier, to include the effect of ignoring the prior

probability for each class in the Naïve Bayes argmax equation.

a. Back Propagation Neural Network

The mean and standard deviation of each chat dialog act class’s precision,

recall, and f-scores as well as the overall accuracy for the back propagation neural

network trained for 100 iterations are shown below in Table 22.

 79

Precision Recall F-Score

Mean St Dev Mean St Dev Mean St Dev
Accept undef undef 0.237 0.111 undef undef

Bye 0.803 0.096 0.785 0.093 0.788 0.064

Clarify undef undef undef undef undef undef

Continuer undef undef 0.008 0.024 undef undef

Emotion 0.775 0.041 0.955 0.041 0.855 0.034

Emphasis 0.641 0.108 0.613 0.1 0.619 0.075

Greet 0.921 0.036 0.83 0.039 0.873 0.031

No Answer undef undef 0.014 0.078 undef undef

Other 0.891 0.174 0.86 0.169 0.857 0.136

Reject undef undef 0.059 0.1 undef undef

Statement 0.75 0.028 0.861 0.022 0.801 0.016

System 0.985 0.008 0.983 0.008 0.984 0.005

Wh-Question 0.809 0.047 0.796 0.059 0.801 0.042

Yes Answer undef undef 0 0 undef undef

Yes/No Question 0.747 0.049 0.801 0.036 0.772 0.03

Overall Accuracy 0.828 0.012 - - - -

Table 22. Back Propagation Neural Network Classifier Performance (27 Features, 100
iterations)

The overall accuracy of 82.8% is a significant improvement over both

choosing randomly (6.7% given 15 choices) and choosing the MLE (29.9% for

Statement). Classes performing particular well include System (f-score of 0.984) and

Emotion (f-score of 0.855). This is not surprising, since both classes have very strong

features associated with them. Overall, the six most frequent classes, representing nearly

90% of the posts, performed well, with average f-scores (over the 30 training/test sets) of

0.772 or greater. We were also able to detect the lower frequency Other (f-score of

0.857) and Emphasis (f-score of 0.619) classes.

However, for all other lower frequency classes we were unable to reliably

assign a classification. This is somewhat disappointing, because we believe we had good

features to detect Yes-/No- Answers (features f2, f15, and f16 from Table 11),

 80

Accepts/Rejects (features f15 and f16), Continuers (feature f11), and Clarifies (feature f1

and f25). It appears that the back propagation neural network mislabeled most of the

lower frequency class posts as Statements. This evidenced by the mean precision score

of 0.75 for the Statement class. This indicates that on average, one quarter of those posts

labeled as Statements were not. A specific example of this can be seen in one of the

confusion matrices we generated in the 27 feature back propagation neural network,

shown in Figure 12. Notice the large number of low frequency posts mislabeled as

Statements, as indicated in the Statement column.

A
cc

ep
t

B
ye

C
la

rif
y

C
on

tin
ue

r

E
m

ot
io

n

E
m

ph
as

is

G
re

et

nA
ns

w
er

O
th

er

R
ej

ec
t

S
ta

te
m

en
t

S
ys

te
m

w
hQ

ue
st

io
n

yA
ns

w
er

yn
Q

ue
st

io
n

To
ta

l A
ct

ua

P
re

ci
si

on

R
ec

al
l

F-
sc

or
e

Accept 4 2 0 0 1 0 0 0 0 0 8 1 0 0 0 16 0.4 0.25 0.308
Bye 0 17 0 0 0 0 0 0 0 0 6 0 0 0 0 23 0.85 0.739 0.791

Clarify 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 5 undef 0 undef
Continuer 0 0 0 0 0 0 1 0 0 0 14 0 0 0 3 18 undef 0 undef

Emotion 0 0 0 0 101 0 0 0 0 0 4 0 0 0 0 105 0.727 0.962 0.828
Emphasis 0 0 0 0 1 8 0 0 0 0 5 0 0 0 0 14 0.727 0.571 0.64

Greet 0 0 0 0 10 0 116 0 0 0 17 1 2 0 0 146 0.928 0.795 0.856
nAnswer 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 3 undef 0 undef

Other 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 6 1 0.667 0.8
Reject 0 0 0 0 2 0 0 0 0 0 6 1 0 0 0 9 0 0 undef

Statement 1 1 0 0 23 1 8 0 0 0 281 2 3 0 8 328 0.751 0.857 0.801
System 0 0 0 0 0 2 0 0 0 0 7 256 0 0 0 265 0.981 0.966 0.973

whQuestion 0 0 0 0 0 0 0 0 0 0 7 0 43 0 5 55 0.896 0.782 0.835
yAnswer 5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 9 undef 0 undef

ynQuestion 0 0 0 0 0 0 0 0 0 0 8 0 0 0 47 55 0.746 0.855 0.797

Total Labeled 10 20 0 0 139 11 125 0 4 2 374 261 48 0 63
Test Set Accuracy: 0.83

Figure 12. Example Confusion Matrix for Chat Dialog Act Classification (Back
Propagation Neural Network, 27 Features, 100 iterations)

Our first attempt to improve the performance of the back propagation

neural network with 27 features was to increase the number of training iterations for each

training/test set. The longer the neural network is allowed to train, the more the overall

error is reduced between the target output values and the output unit layer. However,

neural networks are susceptible to overtraining, such that they will continue to reduce the

training set error at the expense of the domain in general, as represented by the test set.

To ascertain when overtraining begins to occur, we ran a sample test on a smaller

training/test set (3,507 posts total) using only 22 features. The errors on the training/test

set as a function of the number of iterations are shown in Figures 13 and 14.

 81

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

Iterations

Er
ro

r

Figure 13. Back Propagation Neural Network Training Set Error (3007 posts, 22

Features)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

Iterations

Er
ro

r

Figure 14. Back Propagation Neural Network Test Set Error (500 posts, 22 Features)

 82

As can be seen, most of the error on the test set is reduced by roughly 250

iterations. Also, although the training data error rate continues to decrease as iterations

increase, at roughly 850 iterations, the test data error starts to increase. Although this is

not a formal assessment of when over-fitting begins to occur, it suggests that a large

number of training iterations are not required for back propagation neural networks of

this size to reach maximum expected error reduction.

With this in mind, we ran an excursion on our back propagation neural

network with 27 features, training for 300 iterations. We present the mean and standard

deviation performance (as represented by class f-scores and overall accuracy) of the 100

and 300 iteration versions in Table 23.

BPNN F-Score:
100 Iterations

BPNN F-Score:
300 Iterations

Mean Std Dev Mean Std Dev |z|
Accept undef undef undef undef undef

Bye 0.788 0.064 0.788 0.066 0.002

Clarify undef undef undef undef undef

Continuer undef undef undef undef undef

Emotion 0.855 0.034 0.863 0.033 0.947

Emphasis 0.619 0.075 0.631 0.069 0.682

Greet 0.873 0.031 0.874 0.030 0.178

No Answer undef undef undef undef undef

Other 0.857 0.136 0.857 0.136 0.000

Reject undef undef undef undef undef

Statement 0.801 0.016 0.806 0.016 1.139

System 0.984 0.005 0.984 0.005 0.508

Wh-Question 0.801 0.042 0.804 0.042 0.235

Yes Answer undef undef undef undef undef

Yes/No Question 0.772 0.030 0.770 0.033 0.165

Overall Accuracy 0.828 0.012 0.831 0.012 0.981

Table 23. Back Propagation Neural Network Classifier F-Score Comparison (27 Features,
100 vs. 300 iterations)

In 14 of the 15 categories, mean performance either stayed the same or

improved via training three times longer. Mean overall accuracy also improved by

 83

training longer. However, none of the performance measures improved to a degree that

we can confidently state that training for 300 iterations provides better results than

training for only 100. In addition, at a summary level, there was no indication that we are

picking up lower frequency classes any better. Thus, more work needs to be done to

improve this aspect of performance.

With our initial discussion on the performance of the back propagation

neural network complete, we now turn to the Naïve Bayes classifier experimental results.

b. Naïve Bayes Classifier

The mean and standard deviation of each chat dialog act class’s precision,

recall, and f-scores as well as the overall accuracy for the Naïve Bayes classifier are

shown below in Table 24.

Precision Recall F-Score

Mean St Dev Mean St Dev Mean St Dev
Accept 0.266 0.16 0.074 0.048 undef undef

Bye 0.82 0.116 0.56 0.1 0.658 0.081
Clarify undef undef undef undef undef undef

Continuer 0.394 0.229 0.115 0.072 undef undef
Emotion 0.838 0.035 0.765 0.043 0.799 0.03

Emphasis 0.631 0.226 0.216 0.077 0.314 0.104
Greet 0.824 0.036 0.852 0.032 0.837 0.028

No Answer undef undef 0.061 0.105 undef undef
Other undef undef 0.33 0.294 undef undef

Reject undef undef 0.062 0.066 undef undef
Statement 0.634 0.024 0.857 0.019 0.729 0.018

System 0.951 0.012 0.952 0.015 0.951 0.01
Wh-Question 0.738 0.061 0.577 0.067 0.645 0.056
Yes Answer undef undef 0.091 0.098 undef undef

Yes/No Question 0.72 0.065 0.477 0.069 0.571 0.061

Overall Accuracy 0.761 0.013 - - - -

Table 24. Naïve Bayes Classifier Performance (27 Features)

 84

As with the back propagation neural network, the overall accuracy of

76.1% is a significant improvement over both choosing randomly (6.7% given 15

choices) and choosing the MLE (29.9% for Statement). Classes performing particular

well include System (f-score of 0.951) and Greet (f-score of 0.837). However, only three

of the six most frequent classes had f-scores above 0.799. Overall, the Naïve Bayes

classifier performed significantly worse than the back propagation neural network trained

on the same features, And, as with the back propagation neural network, the Naïve Bayes

classifier was unable to reliably assign a classification to lower frequency classes.

Of note, the Naive Bayes classifier also mislabeled several classes as

Statement as is evident by its precision value of 0.634. The confusion matrix depicted in

Figure 15, representative of the Naïve Bayes classifier, highlights this fact. Again, note

the Statement column values.

A
cc

ep
t

B
ye

C
la

rif
y

C
on

tin
ue

r

E
m

ot
io

n

E
m

ph
as

is

G
re

et

nA
ns

w
er

O
th

er

R
ej

ec
t

S
ta

te
m

en
t

S
ys

te
m

w
hQ

ue
st

io
n

yA
ns

w
er

yn
Q

ue
st

io
n

To
ta

l A
ct

ua

P
re

ci
si

on

R
ec

al
l

F-
sc

or
e

Accept 1 0 0 0 1 0 1 0 0 0 13 0 0 0 0 16 0.2 0.063 0.095
Bye 0 11 0 0 0 0 1 0 0 0 11 0 0 0 0 23 1 0.478 0.647

Clarify 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 5 undef 0 undef
Continuer 0 0 0 2 0 0 0 0 0 0 13 1 2 0 0 18 0.667 0.111 0.19

Emotion 1 0 0 0 74 0 3 0 0 0 26 1 0 0 0 105 0.881 0.705 0.783
Emphasis 0 0 0 0 2 5 1 0 0 0 6 0 0 0 0 14 0.625 0.357 0.455

Greet 0 0 0 0 1 0 124 0 0 0 18 1 2 0 0 146 0.838 0.849 0.844
nAnswer 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 3 0.5 0.333 0.4

Other 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 6 1 0.333 0.5
Reject 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 9 undef 0 undef

Statement 1 0 0 1 5 0 16 0 0 0 289 3 5 0 8 328 0.652 0.881 0.75
System 0 0 0 0 0 2 0 0 0 0 11 251 0 0 1 265 0.969 0.947 0.958

whQuestion 0 0 0 0 0 0 2 0 0 0 17 0 32 0 4 55 0.681 0.582 0.627
yAnswer 2 0 0 0 0 1 0 0 0 0 6 0 0 0 0 9 undef 0 undef

ynQuestion 0 0 0 0 0 0 0 0 0 0 17 0 6 0 32 55 0.711 0.582 0.64

Total Labeled 5 11 0 3 84 8 148 2 2 0 443 259 47 0 45
Test Set Accuracy: 0.78

Figure 15. Example Confusion Matrix for Chat Dialog Act Classification (Naïve Bayes,
27 Features)

Although the Naïve Bayes classifier is mislabeling many classes as the

MLE (Statement), there is an explicit way to remove this effect. Specifically, the prior

probability term for each class, ()iP C can be removed from the Naïve Bayes classifier

equation, leaving

 85

 ()No Prior
ˆ arg max |

i
j i

C Classes j

C P f C
∈

= ∏

To ascertain the effect of this, we ran an excursion on our Naïve Bayes

classifier, this time removing the effect of the prior class probability. The mean and

standard deviation performance measures for both versions of Naïve Bayes classifier are

presented in the Table 25.

Naïve Bayes
F-Score:

Naïve Bayes
F-Score: No Prior

Mean Std Dev Mean Std Dev |z|
Accept undef undef undef undef undef

Bye 0.658 0.081 0.607 0.069 2.654
Clarify undef undef undef undef undef

Continuer undef undef 0.266 0.075 undef
Emotion 0.799 0.030 0.820 0.026 2.918

Emphasis 0.314 0.104 0.443 0.095 5.012
Greet 0.837 0.028 0.823 0.028 1.978

No Answer undef undef undef undef undef
Other undef undef undef undef undef

Reject undef undef undef undef undef
Statement 0.729 0.018 0.669 0.025 10.657

System 0.951 0.010 0.954 0.009 1.034
Wh-Question 0.645 0.056 0.676 0.049 2.302
Yes Answer undef undef undef undef undef

Yes/No Question 0.571 0.061 0.630 0.046 4.242

Overall Accuracy 0.761 0.013 0.729 0.013 9.702

Table 25. Naïve Bayes Classifier F-Score Comparison (27 Features, Prior Class Probability
Included/Not Included)

As can be seen, there are significant differences between nearly all the

classes f-scores. Performance improved in the Continuer, Emotion, Emphasis, Wh-

Question and Yes/No Question classes by removing the prior. However, performance

was degraded in the Bye, Greet, and Statement classes. In particular, Statement’s f-score

dropped from 0.729 to 0.669 by removing the prior probability term. Since this was the

largest class, it had the overall effect of offsetting the f-score improvements in the other

classes, significantly reducing overall accuracy from 76.1% to 72.9%.

 86

The actual effect of removing the prior can be visualized by looking at the

change in the confusion matrix in Figure 16, using the same training and test sets as

presented in Figure 15.

A
cc

ep
t

B
ye

C
la

rif
y

C
on

tin
ue

r

E
m

ot
io

n

E
m

ph
as

is

G
re

et

nA
ns

w
er

O
th

er

R
ej

ec
t

S
ta

te
m

en
t

S
ys

te
m

w
hQ

ue
st

io
n

yA
ns

w
er

yn
Q

ue
st

io
n

To
ta

l A
ct

ua

P
re

ci
si

on

R
ec

al
l

F-
sc

or
e

Accept 4 0 0 0 1 0 0 0 0 0 9 0 0 1 1 16 0.2 0.25 0.222
Bye 1 14 0 0 0 1 0 0 0 1 6 0 0 0 0 23 0.609 0.609 0.609

Clarify 0 0 2 1 0 0 0 0 0 0 2 0 0 0 0 5 0.667 0.4 0.5
Continuer 1 0 0 4 0 0 0 0 0 0 10 0 3 0 0 18 0.167 0.222 0.19

Emotion 2 1 0 0 85 0 4 0 1 0 11 1 0 0 0 105 0.833 0.81 0.821
Emphasis 0 0 0 1 1 8 1 0 0 0 3 0 0 0 0 14 0.5 0.571 0.533

Greet 1 1 1 1 5 1 125 0 1 0 7 0 2 1 0 146 0.772 0.856 0.812
nAnswer 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 3 0.333 0.667 0.444

Other 0 0 0 0 0 1 0 0 3 0 0 2 0 0 0 6 0.5 0.5 0.5
Reject 0 1 0 1 1 0 0 1 0 1 4 0 0 0 0 9 0.1 0.111 0.105

Statement 7 5 0 12 9 1 31 3 1 7 215 3 9 4 21 328 0.736 0.655 0.694
System 1 0 0 1 0 3 0 0 0 1 8 250 0 0 1 265 0.977 0.943 0.96

whQuestion 0 0 0 2 0 0 1 0 0 0 8 0 39 0 5 55 0.65 0.709 0.678
yAnswer 3 0 0 0 0 1 0 0 0 0 5 0 0 0 0 9 0 0 undef

ynQuestion 0 1 0 1 0 0 0 0 0 0 3 0 7 0 43 55 0.606 0.782 0.683

Total Labeled 20 23 3 24 102 16 162 6 6 10 292 256 60 6 71
Test Set Accuracy: 0.752

Figure 16. Example Confusion Matrix for Chat Dialog Act Classification (Naïve Bayes,
27 Features, No Prior Probability Term)

Removing the prior probability term permits other classes to be

recognized, yet significantly reduces the recall of the Statement class (from 289 actual

Statements labeled as such to 215 in this example).

With our initial discussion of the machine-learning approaches complete,

we now turn to the effect of reducing the number of features for the methods to consider.

2. 24 Feature Experiment Results

As we noted earlier, some features that were intended to pick up the lower

frequency classes did not appear to work. Before modifying the feature set to pick up

these classes, we first removed those ineffective features to see how it impacted the

overall performance of the learning approaches. Specifically, we removed feature f1

(number of posts ago the poster made a spelling error), f25 (a word is an “even” or

“mean” variant), and f26 (total number of users currently in the chat room).

 87

We first present the results of the back propagation neural network for this

smaller feature set. We then present the results of the Naïve Bayes classifier using the

smaller feature set.

a. Back Propagation Neural Network

The precision, recall, and f-scores for the 24 feature version of the back

propagation neural network trained for 300 iterations are presented in Table 26. A

comparison with 27 feature network trained for 300 iterations is presented in Table 27.

Precision Recall F-Score

Mean St Dev Mean St Dev Mean St Dev
Accept undef undef 0.289 0.153 undef undef

Bye 0.815 0.098 0.816 0.089 0.812 0.075
Clarify undef undef undef undef undef undef

Continuer undef undef 0.013 0.034 undef undef

Emotion 0.789 0.043 0.95 0.023 0.862 0.028
Emphasis 0.648 0.134 0.66 0.147 0.635 0.108

Greet 0.936 0.023 0.833 0.037 0.881 0.023
No Answer undef undef 0 0 undef undef

Other 0.887 0.185 0.834 0.208 0.832 0.161
Reject undef undef 0.068 0.107 undef undef

Statement 0.746 0.03 0.876 0.019 0.806 0.019
System 0.985 0.014 0.985 0.007 0.985 0.006

Wh-Question 0.823 0.054 0.801 0.066 0.811 0.052
Yes Answer undef undef 0 0 undef undef

Yes/No Question 0.777 0.05 0.809 0.046 0.791 0.037

Overall Accuracy 0.832 0.009 - - - -

Table 26. Back Propagation Neural Network Classifier Performance (24 Features, 300
iterations)

 88

BPNN F-Score:
300 Its, 24 Feats

BPNN F-Score:
300 Its, 27 Feats

Mean Std Dev Mean Std Dev |z|
Accept undef undef undef undef undef

Bye 0.812 0.075 0.788 0.066 1.291
Clarify undef undef undef undef undef

Continuer undef undef undef undef undef
Emotion 0.862 0.028 0.863 0.033 0.211

Emphasis 0.635 0.108 0.631 0.069 0.152
Greet 0.881 0.023 0.874 0.030 0.929

No Answer undef undef undef undef undef
Other 0.832 0.161 0.857 0.136 0.675

Reject undef undef undef undef undef
Statement 0.806 0.019 0.806 0.016 0.022

System 0.985 0.006 0.984 0.005 0.231
Wh-Question 0.811 0.052 0.804 0.042 0.550
Yes Answer undef undef undef undef undef

Yes/No Question 0.791 0.037 0.770 0.033 2.364

Overall Accuracy 0.832 0.009 0.831 0.012 0.482

Table 27. Back Propagation Neural Network Classifier F-Score Comparison (24 Features
vs. 27 Features, 300 Iterations)

As can be seen in the comparison table, for the most part there were no

significant changes in any of the f-scores. However, there was a significant improvement

in Yes/No Question classification (f-score of 0.791), an important chat dialog act

category. Moreover, the overall performance of the 24 feature, 300 iteration back

propagation neural network (83.2% accuracy) is significantly better than its 27 feature,

100 iteration counterpart (82.8% accuracy).

Thus, the removal of three features to the back propagation neural network

appears to have no impact on overall performance. This is an important finding, since we

have identified features that appear to be unnecessary in the classification decision

process. We now turn to the impact of removing those three features on the Naïve Bayes

classifier.

 89

b. Naïve Bayes Classifier

The precision, recall, and f-scores for the 24 feature version of the Naïve

Bayes classifier are presented in Table 28. A comparison with 27 feature version is

presented in Table 29.

Precision Recall F-Score

Mean St Dev Mean St Dev Mean St Dev
Accept 0.346 0.198 0.104 0.067 undef undef

Bye 0.864 0.084 0.573 0.12 0.681 0.1
Clarify undef undef undef undef undef undef

Continuer 0.345 0.291 0.084 0.071 undef undef

Emotion 0.827 0.045 0.833 0.038 0.829 0.033
Emphasis 0.558 0.216 0.244 0.105 0.33 0.125

Greet 0.848 0.027 0.847 0.036 0.847 0.027
No Answer undef undef 0.099 0.098 undef undef

Other undef undef 0.276 0.289 undef undef

Reject 0.344 0.357 0.058 0.058 undef undef

Statement 0.638 0.025 0.869 0.021 0.736 0.02
System 0.967 0.012 0.951 0.013 0.959 0.008

Wh-Question 0.735 0.074 0.618 0.08 0.668 0.061
Yes Answer undef undef 0.089 0.092 undef undef

Yes/No Question 0.762 0.074 0.526 0.068 0.62 0.06

Overall Accuracy 0.773 0.014 - - - -

Table 28. Naïve Bayes Classifier Performance (24 Features)

 90

Naïve Bayes

F-Score: 24 Feats
Naïve Bayes

F-Score: 27 Feats

Mean Std Dev Mean Std Dev |z|
Accept undef undef undef undef undef

Bye 0.681 0.100 0.658 0.081 0.982
Clarify undef undef undef undef undef

Continuer undef undef undef undef undef
Emotion 0.829 0.033 0.799 0.030 3.714

Emphasis 0.330 0.125 0.314 0.104 0.542
Greet 0.847 0.027 0.837 0.028 1.350

No Answer undef undef undef undef undef
Other undef undef undef undef undef

Reject undef undef undef undef undef
Statement 0.736 0.020 0.729 0.018 1.343

System 0.959 0.008 0.951 0.010 3.262
Wh-Question 0.668 0.061 0.645 0.056 1.522
Yes Answer undef undef undef undef undef

Yes/No Question 0.620 0.060 0.571 0.061 3.116

Overall Accuracy 0.773 0.014 0.761 0.013 3.352

Table 29. Naïve Bayes Classifier F-Score Comparison (24 Features vs. 27 Features)

As can be seen in the comparison table, there are f-score improvements in

the 24 feature Naïve Bayes classifier across the board. In particular, there are significant

improvements in Emotion (f-score of 0.829), System (f-score of 0.959), and Yes/No

Question (f-score of 0.620) categories. These improvements led to a significant

improvement in the Naïve Bayes classifier’s overall accuracy (77.3%, up from 76.1% for

the 27 feature version).

With our presentation of the chat dialog act classification results complete,

we now turn to a general discussion of the leaning task as well as potential improvements

to the classifier learning approaches.

 91

3. Discussion

Unfortunately, time did not permit us to formally examine the misclassified posts.

However, we noticed that for both learning methods, several of the “second-highest”

classification scores on the test set were in fact the “true” dialog act class label. In

addition, we noticed that some of the incorrect classification decisions that both learning

approaches made were arguably “correct”. By this we mean that a different human

annotator could easily arrive at the same conclusion that the machine-learning approach

reached. Thus, the chat dialog act experiment results, along with these informal findings,

lead to several avenues for improvement.

First, we could relax the condition that a post can only hold one chat dialog act

class label. Obviously, the original simplifying assumption of one dialog act class per

post is not a perfect fit for what actually occurs. For example, by its very nature a single

post can potentially contain a greeting to one person, followed by asking a question to

another, followed by rejecting a statement of a third person. Thus, permitting a post to

have multiple dialog act labels addresses this issue.

A better approach, however, would be to segment chat dialog acts at a finer level.

Segmenting at this “utterance” level would provide a less ambiguous decision for the

classifier to make, perhaps improving its performance. However, based on the split turn

phenomenon characterized by Zitzen and Stein, utterances are not necessarily limited to

the confines of a single post, and may in fact span two or more posts [5]. Thus, while

segmenting at the utterance level may improve the classifier’s performance when

considered alone, overall system performance may suffer due to the more difficult

utterance segmentation phase. There are methods to segment at the utterance level; as

discussed in Chapter II, Ivanovic developed an approach for dialog act classification of

instant messaging (IM) systems [26]. That being said, his task was somewhat easier,

since in IM there are only two participants with one thread of conversation going on at a

time. Segmentation at the utterance level for chat might require the separation of the

various conversation threads first, which is an area of active research in and of itself.

Nevertheless, Ivanovic’s and others’ utterance segmentation approaches better match

 92

actual discourse structure, and thus merit serious consideration for improving the

performance of the chat dialog act classification approaches.

Another avenue for classification improvement includes better selection of the

chat dialog classes themselves. As noted in Chapters 2 and 3, Stolcke et al defined 42

dialog act classes for spoken conversation. For Wu et al’s purposes (as well as ours),

many of Stolcke et al’s classes were collapsed into a single chat dialog act class,

Statement. Since Statement had a low precision and yet was the highest frequency class,

dividing it up into more specific classes (e.g. Opinion as well as Statement) should help

the classifiers in making decisions. This is because the resulting, more specific, class’s

prior probabilities will be lower. In addition, even though the high frequency System

dialog act classification was quite successful, it too should be divided up. This is because

it contained a number of phenomena that deserve better discrimination, e.g. commands to

the chat room system/chatbots versus system/chatbot responses. Of course, additional

classes require either additional or better features to help discriminate between them.

We took a supervised approach in our original selection of features to measure,

e.g., we knew that System posts contained specific words in all-capital letters that we

automatically identified during the training phase. That being said, it is worthwhile to

consider unsupervised feature learning. For example, simple unigram and/or bigram

frequencies alone might permit better discrimination. We in fact used this approach,

albeit in a targeted fashion. For example, features that identified words found in Greets,

Byes, Emotions, Yes/No Answers, and Accepts/Rejects (f3-f7 and f12-f16 from Table 11)

were actually collected by identifying words tagged as “UH” in the training sets within

those post categories. Permitting the Naïve Bayes classifier to identify and determine

probabilities for all unigrams/bigrams across a training set might enable better

discrimination of lower frequency chat dialog act classes in a test set.

Finally, combined with better classes and features, different machine-learning

approaches may permit better classification. For example, case-based reasoning, which

measures the “distances” of the instance to be classified from those in a labeled database,

could provide more accurate classification of low frequency classes. That being said, the

number of comparisons to make (e.g., distance to a single neighbor, k-nearest neighbors,

 93

class mean, etc.) as well as the distance measure definition itself (e.g. Euclidean, city-

block, etc) will have an impact on classification performance. A fuller description of

case-based reasoning approaches can be found in Mitchell [23] and Luger [24]. Another

learning method that bears consideration is the use of HMMs. Stolcke et al used HMMs

to identify the most likely sequence of dialog act classes in a conversation [17]. In that

case, the dialog acts were the hidden states, while features of the utterances were the

observed sequence. However, Stolcke et al were dealing with Switchboard conversations

in series; chat involves multiple, interleaved conversations in parallel. Thus, use of this

approach may require the separation of conversation threads first.

With the presentation of our experiment results complete, we conclude with

summary of our results and recommendations for future work.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

V. SUMMARY AND FUTURE WORK

A. SUMMARY

During the course of our research, we preserved 477,835 chat posts and associated

user profiles in an XML format for future investigation. We privacy-masked 10,567 of

those posts, permitting other researchers to replicate and improve upon our results. We

annotated each of the privacy-masked corpus’s 45,068 tokens with a part-of-speech tag.

Using the Penn Treebank, we improved part-of-speech tagging performance from 87.0%

mean accuracy (HMM tagger using only chat data) to 90.8%. This represents a reduction

in total error of over 29%. We also annotated each of the privacy-masked corpus’s

10,567 posts with a chat dialog act. Using a neural network with 23 input features, we

achieved 83.2% mean dialog act classification accuracy.

Although these results are notable based on the privacy-masked corpus’s size, we

believe there are a number of things that we can do to significantly improve on these

results as well as extend the usefulness of the corpus for other NLP tasks. We now

present this potential future work.

B. FUTURE WORK

Our recommendations for future work are broken into five tasks: 1) Improve part-

of-speech tagging on the existing privacy-masked corpus; 2) Improve chat dialog act

classification on the existing privacy-masked corpus; 3) Perform syntax analysis on the

existing privacy-masked chat corpus; 4) Use information from the previous three tasks to

perform semantic NLP tasks of entity identification/disambiguation, conversation thread

detection/separation, and author profiling; and 5) Increase the size of the privacy-masked

chat corpus.

1. Part-of-Speech Tagging Improvements

As discussed in Chapter IV, Section B.4, we recommend the following three

actions to improve part-of-speech tagging. First, we recommend tokenizing all

 96

contractions, including those that do not contain an apostrophe. We present a list of all

contractions in the privacy-masked chat corpus that do not contain apostrophes along

with an alternate tokenization in Appendix B. Tokenizing these contractions into

separate words, especially high frequency ones such as “ill” (for “I will”) should permit

sophisticated part-of-speech taggers to take advantage of more likely tag sequences found

in other domains.

Second, we recommend retagging many of the emoticons and chat abbreviations

with one or possibly two new tags, as opposed to the interjection tag, “UH”. Based on

our observations of the privacy-masked chat corpus, emoticons and chat abbreviations

generally have different distributions than interjections, and thus merit a new tag unique

to the chat domain. We present a list of all emoticons and chat abbreviations found in the

privacy-masked corpus in Appendices C and D, respectively. Any retagging of

emoticons and abbreviations should be approached carefully, however. For example,

chat abbreviations such as “wtf” and “brb” are often used as equivalents to “what”

(tagged “WP”) and “bye” (tagged “UH”), respectively. Thus, a simple find/replace will

not suffice when retagging these abbreviations.

Finally, we recommend optimizing the amount of data used from other domains

to support part-of-speech tagging. For example, if chat exhibits lexical properties more

in common with written as opposed spoken domains, it may make sense to use more

training data from the written domain itself. Our current best-performing taggers use all

of the data provided in the Brown (written), Wall Street Journal (written), and

Switchboard (transcribed spoken) corpora; adjusting these ratios could improve more

sophisticated tagger performance.

2. Chat Dialog Act Classification Improvements

As discussed in Chapter IV, Section C.3, we recommend the following three

actions to improve chat dialog act classification. First, we recommend the use of

additional and/or better classes for the dialog acts themselves. Statements of fact and

opinions are currently grouped into a single Statement class; we believe it makes sense to

differentiate between the two by labeling each a separate class. Similarly, we believe it

 97

makes sense to divide the System class up into user commands to the chat room system

(and/or chatbots) as well as responses from the system (and/or chatbots). Finally, the

need for a Continuer class is not necessary if the next action, utterance-level

segmentation, is implemented.

Segmentation at the utterance-level (instead of post-level) would permit a more

specific dialog act classification to be made, thus reducing the likelihood that more than

two classes might apply to a single utterance. Utterance-level segmentation has been

performed in both spoken and CMC domains, for example, [17] and [26], respectively.

An additional benefit of utterance-level segmentation is that it might also improve part-

of-speech tagging performance when training data includes non-chat domains. This is

because the context associated with part-of-speech tagging should not cross sentence

boundaries. And yet, a chat post can include multiple sentences. Under utterance-level

segmentation, each individual sentence in a post would be a separate utterance, and could

thus take better advantage of training data from non-chat domains such as the various

Penn Treebank corpora.

As discussed in Chapter IV Section C, we found that some of the dialog act

features we used were ineffective, and that overall accuracy actually improved once we

removed them. As such, we recommend a complete review of the features used to

support chat dialog act classification. In particular, we believe that there is great potential

for n-gram distributions, used in conjunction with the Naïve Bayes classifier, to

significantly increase classification accuracy.

3. Syntax Analysis

Throughout this research we have referred to the syntax, or structure, of language

in general and chat in particular. The ability to automatically parse a sentence (or

post/utterance) into a tree structure is an important step in determining its meaning. An

example parse of a Wall Street Journal sentence is shown in Figure 17. Natural language

syntax can be approximated by probabilistic context free grammars (PCFGs), which are

simply context free grammars with probabilities attached to the production rules. As with

stochastic part-of-speech taggers, these probabilities are learned during a training phase

 98

with labeled corpora. In fact, the Penn Treebank gets its name because (in addition to

part-of-speech tags) it contains parses, or trees, for each of the sentences from its various

corpora. A description of how PCFGs can be applied to parsing can be found in [13] and

[14].

S

VP

NP

NP

ADJP

ADVP

DT NN NN VBD RB RBR JJ NNS .
The real-estate market suffered even more severe setbacks .

Figure 17. Example Wall Street Journal Sentence Parse (From [20])

Because of its importance to other NLP tasks, we highly recommend the addition

of parses at the post and/or utterance level for the privacy-masked chat corpus. Using the

same bootstrapping approach discussed in Chapter III, Section A.5, an initial parser could

be trained on data from the Penn Treebank. This parser would then be used to assign

initial parses to a subset of the privacy-masked corpus. These parses would then be hand-

verified. Finally, a new parser would be built, trained on both Penn Treebank and chat

data to bootstrap the parsing to the full privacy-masked corpus data set. Once the full

data set had been parsed, a parser would then be built to optimize performance on chat

based on data from chat as well as non-chat domains. Indeed, Hwa demonstrated in [27]

that grammars from sparsely labeled training data (e.g., only higher-level constituent

 99

labels for chat data) can use an adaptation strategy which produces grammars that parse

almost as well as grammars induced from fully-labeled corpora.

4. Other Semantic NLP Applications

There are several other NLP tasks that can be investigated immediately with the

current version of the privacy-masked chat corpus. For example, the corpus’s part-of-

speech and dialog act classification information can be used in conjunction with other

features to improve upon Lin’s author profiling work [11].

Also, there is the great potential to investigate entity disambiguation algorithms

using the privacy-masked corpus as well as the corresponding original sessions that

contain actual user names. As noted in Chapter III Section A.2, users are referred to both

with their screen names as well as many variants of those names. This is perhaps another

unique phenomenon that separates chat from both written and spoken domains. These

experiments could be initiated fairly quickly, since the already-accomplished privacy-

masking activity covers most of the hand-annotation effort required for entity

disambiguation (with pronominal disambiguation still to do).

Finally, knowledge of both the post’s author as well as its dialog act classification

could be used to detect and separate the multiple conversation threads within a session in

the privacy-masked corpus. These experiments, however, would first require the

investigator to identify and separate the threads for reference, which could be time-

consuming.

5. Expand Privacy-Masked Chat Corpus

Our final recommendation for future work in this area is to increase the size of the

privacy-masked corpus using the bootstrapping process described in Chapter III, Section

A.5. The more data we have from the chat domain, the better any stochastic NLP

technique used in a chat application should work. As noted in Chapter III, we highly

recommend multiple annotators participate during the hand-verification step, using an

established framework to guide them in their annotation decisions, whether they involve

part-of-speech tagging, dialog act classification, syntax parsing, etc. Multiple annotators

 100

serve two functions. First, they help provide a better corpus, since simple annotation

mistakes can be caught through multiple eyes watching the process. More importantly,

though having multiple annotators permits one to establish the inter-annotator agreement

along with the associated Kappa statistic, which normalizes agreement to account for

chance. Inter-annotator agreement can then be used to establish the “gold standard,” or

upper bound best possible performance, for a particular machine-learning method.

 101

APPENDIX A: ACRONYMS

C2 Command and control

CMC Computer-mediated communication

HMM Hidden Markov Model

IM Instant messaging

LDC Linguistic Data Consortium

PCFG Probabilistic context-free grammar

POS Part-of-speech

MLE Maximum likelihood estimate

NLP Natural language processing

WSJ Wall Street Journal

XML Extensible Markup Language

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

APPENDIX B: CHAT CONTRACTIONS

Word Count Alternate
Tokenization Word Count Alternate

Tokenization
alot 7 a lot itz 1 it z

alotta 1 a lot of ive 1 I ve

arent 2 are nt lotsa 1 lots a

couldnt 3 could nt lotta 1 lott a

didnt 28 did nt offa 1 off a

dint 1 di nt shes 4 she s

doesnt 5 does nt shouldnt 1 should nt

donno 3 don no shouldve 1 should ve

dont 77 do nt thats 45 that s

dontcha 1 do nt cha tryina 1 tryin a

dunno 7 dun no ur 21 u r

hafta 2 haf ta wana 8 wan a

havent 3 have nt whatcha 2 what cha

hes 4 he s whats 41 what s

hows 8 how s whys 1 why s

howz 2 how z wonna 1 wonn a

ill 9 i ll wouldnt 5 would nt

im 149 i m wuts 1 wut s

ima 8 i m a yall 12 y all

imma 3 i mm a youre 3 you re

isnt 3 is nt youve 1 you ve

its 69 it s

Table 30. Contractions Encountered in Privacy-Masked Chat Corpus

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX C: CHAT EMOTICONS

Emoticons found in the privacy masked chat corpus are shown in Table 31. Most

are apparent, although two classes bear specific mention. The first, indicated by three or

more open/closed parenthesis/brackets such as “)))))”, signify one half of a “hug”. Thus,

the following indicates 10-19-40sUser111 is being given a hug—(((((10-19-

40sUser111))))). The second, indicated by “:word:”, signify a command to the chat room

system to display one of its built-in emoticons. Thus, the following indicates displaying a

graphical emoticon showing a smiley face drinking a beer—“:beer:”.

(o Y o)))))))) :/ =(

((()))))))) :@ =)

(((())))))))) :D =A:A=-\

((((()))))))))) :O =/

(((((())))))))))) :P =D

((((((()))))))))))) :] =O

(((((((())))))))))))) :beer: =[

((((((((()))))))))))))) :blush: =]

(((((((((())))))))))))))) :love: =p

((((((((((())))))))))))))))) :o * >:->

(((((((((((())))))))))))))))))) :p @$$

((((((((((((())))))))))))))))))))) :tongue: [[[[[[[[[[[[[[[[[[

(((((((((((((()))))))))))))))))))))) :|]:)

((((((((((((((()))))))))))))))))))))))))))) ;)]]]]]]]]]]]]]]]]]]]]]

((((((((((((((((())))))))))))))))))))))))))))))) ;-(^_^

(((((((((((((((((()? ;-) _

((((((((((((((((((((+*+*+*+* ;0 o.0

(((((((((((((((((((((-(;] o.O

(((((((((((((((((((((((-_- <3 o.o

((((((((((((((((((((((((=-s <3's o0

(((((((((((((((((((((((((3333333 <33 o0o

((((((((((((((((((((((((((:(<333 o<|=D

(((((.. :) <3333 oO

(__I__) :-(<33333 oOo

))) :-) <333333333 o_0

)))) :-@ <3333333333333333 o_O

))))) :-o <33333333333333333 xD

Table 31. Chat Emoticons Encountered in Privacy-Masked Chat Corpus

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

APPENDIX D: CHAT ABBREVIATIONS

Abbreviation Definition Abbreviation Definition
afk away from keyboard ltnc long time no chat

bbl be back later ltns long time no see

bbs be back soon ltnsea ltns phonetic

brb be right back ltr later

brbbb brb variant nm not much

btw by the way omg oh my god

cya see you omggg omg variant

gm good morning rofl rolling on floor laughing

gn good night rotflmao rolling on the floor laughing
my ass off

gtg got to go t/c take care

j/k just kidding t/y thank you

j/p just playing tc take care

jk just kidding tdr turbo diesel register

jw just wondering ty thank you

lawl laughing out loud
(phonetic)

tyvm thank you very much

lmao laughing my ass off w/b welcome back

lmaoo lmao variant wb welcome back

lmaooo lmao variant wc who cares

lmaoooo lmao variant wth what the hell

lmaooooo lmao variant wtf what the f**k

lmfao laughing my f**king
ass off

y/w your welcome

lol laughing out loud yvw you very welcome

lolol lol variant yw your welcome

lolololll lol variant yw's yw variant

lool lol variant

Table 32. Chat Abbreviations Encountered in Privacy-Masked Chat Corpus

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

LIST OF REFERENCES

[1] S. C. Herring, Computer-Mediated Communication: Linguistic, Social, and Cross-
Cultural Perspectives. Amsterdam: John Benjamins, 1996.

[2] B. A. Eovito, "An assessment of joint chat requirements from current usage patterns,"
M.S. thesis, Naval Postgraduate School, Monterey, CA, U.S.A., 2006.

[3] E. Ivanovic, "Dialogue act tagging for instant messaging chat sessions," in
Proceedings of the ACL Student Research Workshop, 2005, pp. 79–84.

[4] Linguistic Data Consortium, "About the Linguistic Data Consortium," August 2007,
Available at http://www.ldc.upenn.edu/About/.

[5] M. Zitzen and D. Stein, "Chat and conversation: a case of transmedial stability?"
Linguistics, vol. 42, no. 5, pp. 983-1021, 2004.

[6] M. Nystand, "The role of context in written communication," in Comprehending Oral
and Written Language R. Horowitz and S. J. Samuels, Eds. San Diego: Academic Press,
1987.

[7] H. Sacks, E. A. Schegloff and G. Jefferson, "A simplest systematics for the
organization of turn-taking for conversation," Language, vol. 50, no. 4, pp. 696-735,
1974.

[8] A. C. Garcia and J. Baker Jacobs, "The eyes of the beholder: understanding the turn-
taking system in quasi-synchronous computer-mediated communication," Research on
Language and Social Interaction, vol. 32, no. 4, pp. 337-367, 1999.

[9] M. R. Freiermuth, "Features of electronic synchronous communication: a comparative
analysis of online chat, spoken and written texts," Ph.D. dissertation, Oklahoma State
University, Stillwater, OK, U.S.A., 2002.

[10] W. Chafe and J. Danielewicz, "Properties of spoken and written language," in
Comprehending Oral and Written Language R. Horowitz and S. J. Samuels, Eds. San
Diego: Academic Press, 1987, pp. 83-113.

[11] J. Lin, "Automatic author profiling of online chat logs,” M.S. thesis, Naval
Postgraduate School, Monterey, CA, U.S.A., 2007.

[12] W. N. Francis, H. Kučera and A. W. Mackie, Frequency Analysis of English Usage:
Lexicon and Grammar. Boston: Houghton Mifflin, 1982.

[13] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language
Processing. Cambridge, MA: MIT Press, 1999.

 110

[14] D. Jurafsky and J. H. Martin, Speech and Language Processing : An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Upper Saddle River, NJ: Prentice Hall, 2000.

[15] E. Brill, “Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging,” Computational Linguistics, vol. 21,
no. 4, pp. 543-565, 1995.

[16] J. L. Austin, How to do Things with Words. Oxford: Clarendon Press, 1962.

[17] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R.
Martin, C. Van Ess-Dykema and M. Meteer, "Dialogue act modeling for automatic
tagging and recognition of conversational speech," Computational Linguistics, vol. 26,
no. 3, pp. 339-373, 2000.

[18] T. Wu, F. M. Khan, T. A. Fisher, L. A. Shuler and W. M. Pottenger, "Posting act
tagging using transformation-based learning," presented at The Proceedings of the
Workshop on Foundations of Data Mining and Discovery, IEEE International
Conference on Data Mining, December 2002.

[19] F. Lundh, “Python ElementTree module,” August 2007, Available at
http://effbot.org/zone/element-index.htm.

[20] M. P. Marcus, B. Santorini, Marcinkiewicz M. and Taylor A., "Treebank-3," 1999,
Available at http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC99T42.

[21] S. Bird, E. Klein and E. Loper, "NLTK: the Natural Language Toolkit," ver. 0.7.4,
August 2007, Available at http://nltk.sourceforge.net/index.php/Main_Page.

[22] S. Bird, E. Klein and E. Loper, Natural Language Processing in Python. August
2007, Available at http://nltk.sourceforge.net/index.php/Book.

[23] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[24] G. F. Luger, Artificial Intelligence : Structures and Strategies for Complex Problem
Solving. ,4th ed., New York: Pearson Education, 2002.

[25] N. Schemenauer, "Back-propagation neural network," March 2007, Available at
http://arctrix.com/nas/python/bpnn.py.

[26] E. Ivanovic, "Automatic utterance segmentation in instant messaging dialogue," in
Proceedings of the Australasian Language Technology Workshop, 2005, pp. 241-249.

[27] R. Hwa, "Supervised grammar induction using training data with limited constituent
information," in Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics on Computational Linguistics, 1999, pp. 73-79.

 111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. LorRaine T Duffy, PhD
SSC San Diego Code 246207
San Diego, California

