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PEEFACE.

|~N modern schools of Engineering a student acquires his know-

ledge of the Strength of Materials and of its application in

design, partly by hearing lectures, partly by making experiments

in the laboratory, and partly by working out examples in the

drawing-office. The present treatise is an attempt to set forth

briefly a lecture-room treatment of the subject, which to be effec-

tive must be supplemented by laboratory and drawing-office work.

Indications are also given of some laboratory experiments in

elasticity, and a number of pieces of apparatus are described

which have proved serviceable at Cambridge.

I am indebted to Messrs A. and C. Black for permission to use

the substance of the article " Strength of Materials " which I

wrote for the Ninth Edition of the Encyclopaedia Britannica.

Also to Professor Unwin, and his publishers Messrs Longmans,

for the illustrations on page 74, which are taken from his valuable

Treatise on the Testing of Materials. To Mr T. Peel of Magdalene

College I owe much for his kindness and care in reading the proofs

of these sheets.

J. A. EWING.

Engineering Laboratory, Cambridge.

October, 1899.

k. s. m.
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CHAPTER I.

STRESS AND STRAIN.

1. Introductory. The term " Strength of Materials " is

used in a somewhat wide sense to name that part of the Theory

of Engineering which deals with the nature and effects of stresses

in the several parts of engineering structures. When a structure

is loaded, that is to say, when forces of any kind are applied to it,

the applied forces cause the parts of the structure to be stressed

in various ways. Unless the parts are severally strong enough

and stiff enough to bear these stresses the structure fails. To

determine beforehand what loads the structure will bear safely,

or conversely to design a structure which will be safe under a

given set of loads, requires two things. We must be able to

analyse the stresses in the various parts of the structure and by

determining their relation to the applied loads to calculate their

amounts. And further, we must know by experiment the pro-

perties of the materials which form the structure, both as to

strength and as to stiffness, in order to judge after the action of

the load has been analysed, what dimensions should be given to

the parts to make them individually safe, and to prevent the

structures as a whole from being unduly strained out of shape.

Hence the subject has two sides. On one hand, it is experi-

mental and deals with the properties which materials arc found

to possess as to strength and elasticity. On the other, it Is

mathematical and discusses the kinds of stress to which the pieces

of structures are subject, and also the changes of form which occur

in consequence of the fact that all materials are more or less

clastic.

E. S. M. 1



2 STRESS AND STRAIN.

2. Stress. Stress is the mutual action between two bodies,

or between two parts of a body, whereby each of the two exerts a

force upon the other.

Thus when a stone lies upon the ground there is at the surface

of contact a stress, one aspect of which is the force which the stone

exerts upon the ground, pushing the ground downwards, and the

other aspect is the equal force directed upwards which the ground

exerts upon the stone. Newton's " Third Law," that " action and

reaction are equal and opposite," may be paraphrased by the state-

ment that every force is one aspect of a stress. A stress may exist

between two separate bodies, or between portions of a single body

separated only by an imaginary surface of division. In a tie-rod,

for instance, which is bearing a pull there is a stress between the

twTo parts into which the rod may be imagined to be divided by

any plane of cross-section : each part exerts a pull upon the other

part across the plane.

3. State of Stress. A body is said to be in a state of stress

when there is stress between the two parts which lie on opposite

sides of any imaginary dividing surface. Thus the tie-rod of the

last example is a body in a state of stress because there is a pull

between the parts into which the rod is cut by suciy imaginary

surface of cross-section.

A pillar or block supporting a weight is in a state of stress

because at any cross-section the part above the section pushes

down against the part below, and the part below pushes up against

the part above. A plate of metal that is being cut in a shearing

machine is in a state of stress, because at the plane which is about

to give way by shearing the portion of metal on either side is

tending to drag the portion on the other side with a force in that

plane.

4. Condition of Equilibrium. The kind and amount of

stress which exists over any surface within a body at rest is in

general to be determined by considering that if the body is con-

ceived to be divided into two parts A and B by the surface in

question the force which A exerts upon B across the surface

must equilibrate all the other forces which act on B, namely, the

loads or external forces which are applied to it, including its

weight and any forces which are exerted on it by its supports.

Similarly the forces which act on A must when taken together be
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in equilibrium, and the forces exerted by B upon A must balance

the other forces which act on A. Thus the stress between A and

B may be investigated by considering the equilibrium of either

A or B.

5. Distribution of Stress. Intensity of Stress. A stress

acting at a surface is distributed over it, each square inch or other

portion of the surface bearing so much. The distribution may or

may not be uniform. If it is uniform every square inch or other

unit of area in the surface bears the same amount of the stress as

every other. The intensity of stress, by which is meant the

amount of stress per unit of area, is in that case found by dividing

the whole stress by the whole area. Thus if a stress of P tons is

uniformly distributed over a surface of S square inches, the inten-

sity p in tons per square inch is given by the equation

P
P 8'

When the distribution is not uniform there is still a definite

intensity of stress at any point in the surface, the value of

which is

BP
BS

where BS is an indefinitely small area surrounding the point and

BP is the stress acting on that small area. For practical purposes

the intensity of a stress is usually expressed in tons weight per

square inch, lbs. weight per square inch, or kilogrammes weight

per square millimetre or per square centimetre*.

6. Normal and Tangential Stress. When a solid body is

in a state of stress the direction of

the stress at any imaginary surface of

division may have any inclination to

the surface ; it may be normal to the

surface, or tangential to it, or oblique.

A stress the direction of which is

oblique to the surface is most con-

veniently treated by resolving it into

normal and tangential components. a

Thus if pr (fig. 1) be the intensity

* One ton per square inch = 2240 lbs. per square inch 157*2 kilos per Bquare

centimetre.

1—

J

Fig. 1.
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of stress on the surface AB, the direction of the stress making

an angle 6 with the normal to the surface, this oblique stress

is equivalent to a normal stress pn together 'with a tangential

stress pt, the intensity of the normal component being

pn=pr cos0

and that of the tangential component

pt=pr san0.

Xormal stress may consist either of push (compressive stress) or

of pull (tensile stress) : if a stress of pull be taken as positive a

stress of push will be negative. Xormal stress tends to make the

portions which lie on the two sides of the surface directly recede

from each other if it is positive, or directly approach each other if

it is negative.

Stress which is tangential to the surface is often called Shear-

ing Stress. It tends to make the material on one side of the

surface slide past the material on the other.

7. State of Simple Push or Pull. The simplest possible

state of stress is that of a short pillar or block compressed by

opposite forces applied at its ends, or that of stretched rope or

other tie. In these cases the stress is wholly in one direction.

These cases may be distinguished as simple push and simple pull.

In them there is no stress on planes parallel to the direction of

the applied forces.

8. Complex states of Stress. Principal Stresses. A
more complex state of stress occurs if the block (which for

simplicity of statement we may assume to have a rectangular

cross-section) is compressed or extended by forces applied to a

pair of opposite sides, as well as by forces applied to its ends

—

that is to say, if two simple push or pull stresses in different

directions act together. A still more complex state occurs if a

third push or pull be applied to the remaining pair of sides. It

may be shown that any state of stress which can possibly exist

at any point of a body may be produced by the joint action of

three simple stresses of push or pull in three suitably chosen

directions at right angles to each other. These three are called

principal stresses.^ and their directions are called the axes of

principal stress. The axes of principal stress have the important

property that the intensity of stress along one of them is greater,

and along another is less, than in any other direction. These
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are called respectively the axes of greatest and least principal

stress. We shall have examples later on of more or less complex

modes of stress, in which it will be important to calculate the

principal stresses, since the greatest principal stress measures the

greatest intensity which the material has to bear.

9. Character of the Stress in Simple Push or Pull.

Returning now to the state of stress which is produced by a single

simple pull or push, let AB (fig. 2) be a

portion of a tie or strut which is being

pulled or pushed in the direction of the

axis AB with a total stress P uniformly

distributed. On any plane section CD
taken at right angles to the axis there

is a normal pull or push of intensity

P
p = -~

, S being the area of the normal

cross section. On such a plane there is

no tangential stress. But on any plane

EF whose normal is inclined to the axis,

the stress is still in the direction of the

axis, and is therefore oblique to the plane

EF. Hence on such a plane there is

tangential as well as normal stress. Let

6 be the angle which the normal to the

inclined section EF makes with the direc-

tion AB along which the stress acts. The
area of the inclined section is

S
S' =

cos 6'

b:

Fig. 2.

The total stress P acting on this area may be resolved into the

normal component
P» = P cos 6,

and the tangential component

Pt=P sin 6.

Dividing these by the area S' over which they act we find the

intensities of the components as follows:—The intensity ot' the

normal stress on EF is

Peostf P , ...
/>„= .„ =

s
, CO89 0=2>CO8*0,
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and the intensity of the tangential or shearing- stress on EF is

P sin
Pt =—™— =psin a a p sin 20

6 cos 6 = r— —

This intensity of tangential or shearing stress reaches a maximum
when the surface EF has an inclination of 45° to the direction of

the pull, for sin 20 has then its greatest possible value. It is clear

that any surface having this inclination, whether plane or not, will

be a surface of maximum shearing stress, and the intensity of the

shearing stress upon it will be

• A - « - - Pmax. pt
= p sm 4o~ cos 4o —-

.

This production of shearing stress, on inclined surfaces, by the

application of simple pull or push finds an important illustration

in the testing of materials. When a bar is pulled asunder, or a

block is crushed by pressure applied to two opposite forces, it

frequently happens that yielding takes place wholly or in part by

shearing on surfaces inclined to the direction of the pull or the

thrust.

10. Combination of two simple pull or push stresses in

directions at right angles to one another. Suppose that in

addition to the simple pull or push of fig. 2 there is a second pull

or push stress acting at right angles to the first, as iu fig. 3. On
any surface EF inclined as in the figure there will be a stress the

Fig. 3.
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normal and tangential components of which are readily found as

follows. Let pX) py be the intensities of the stresses which Px and

Py respectively produce on planes perpendicular to their own
directions, and let the plane EF be inclined so that its normal

makes an angle 6 with the direction of Px and 90° + 6 with the

direction of Py . Then by summing the effects due to Px and Py

separately we have, for the intensity of normal stress on EF,

Pn =Px cos2 6 +py cos2
(
-£ +
2

=px cos
2 +py sin

2
6.

Again, for the intensity of tangential stress on EF,

p t =px sin 6 cos 0+py sin /y + 0) cos I
~ + 6 I

,

= {px —Py) sm cos 0-

This tangential stress becomes a maximum as before when the

inclination of the surface is 45°, and its value then is

Max. pt
= Px py

2

The normal stress on the same surface, inclined at 45°, is

P*+Pv
2 '

11. State of Simple Shear. A special case of great import-

ance in practice occurs when the two simple stresses of § 10 are equal

in intensity but opposite in sign : in other words, when one is a push

and the other is an equal pull. When this happens there is no

normal stress on a plane inclined at 45° to the two directions, for the

normal component of the pull is equal and opposite to that of the

push. The expression ^-~:y vanishes when p,t
= —px - In other

words, there is nothing but tangential or shearing stress on the

two planes which are inclined at 45° to the axes along which the

pull and push act. And the intensity of the shearing stress on

each of these planes, namely

Pz-P,,
2

'

is numerically equal to px or to pyt

This is called a state of simple shearing Stress, <»r mere briefly

a state of simple shear. It may be described as a state in which
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there are two principal stresses only, one equal and opposite to

the other. These two principal stresses give rise to a stress

which is wholly tangential on the two planes inclined at 45
=

to

the axes of principal stress, and the intensity of the tangential

stress on each of these planes is equal to the intensity of either of

the principal stresses.

The state of simple shear may also be arrived at in another

way. Let a cubical block or an elementary cubical part of any

solid body (fig. 4) have tangential

stresses QQ applied to one pair of

opposite faces, A and B, and equal

tangential stresses applied to a

second pair of faces C and D, as

in the figure. The effect is to

set up a state of simple shear.

On all planes parallel to A and B
there is nothing but tangential

stress and the same is true of all

planes parallel to C and D. The
intensity of the stress on both

systems of planes is equal through-

out to the intensity which was applied to the face of the block.

To see the connection between these two wrays of specifying a

state of simple shear we have only to consider the equilibrium of

Fig. 4.

the parts into which the block may be divided by ideal diagonal

planes of section. To balance the forces QQ (fig. 5), there must

be normal pull on the diagonal plane, the amount of which is

P = v2Q. But the area of the surface over which P acts is greater

than that of the surface over which Q acts in the proportion
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Fig. 6.

which P bears to Q, and hence the intensity of P is the same as

the intensity of Q.

Again, taking the other diagonal plane (fig. 6), precisely the

same argument applies except that here

the normal force P required for equili-

brium is a push instead of a pull. Its

intensity has the same value as before.

Thus the state of simple shearing stress

defined as consisting of two equal tan-

gential stresses on two planes at right

angles to one another is found to admit

of analysis into two equal principal

stresses, one of push and one of pull,

acting in directions at right angles to

one another and inclined at 45° to the directions of the shearing

stress, just as the combination of a push with an equal pull at

right angles to it has already been found to set up a state of

simple shear.

12. Equality of Shearing Stress in two directions. No
tangential stress, whether occurring by itself or as the tangential

component of an oblique stress, can exist in one direction without

an equal intensity of tangential stress existing in another direc-

tion at right angles to the first. To prove this it is sufficient to

consider the equilibrium of an indefinitely small cube (fig. 7), with

one pair of sides parallel to the direc-

tion of the shearing stress. This aQ'

stress, acting on two opposite sides,

produces a couple which tends to

rotate the cube. No arrangement of

normal stresses on any of the three

pairs of sides of the cube can balance

this couple ; that can be done only

by a shearing stress Q' whose direc- 2f

tion is at right angles to the first

stress Q, and to the surface on which

Q acts, and whose intensity is the

same as that of (,). The argument is equally valid whether these

tangential stresses act alone or as the tangential components of

oblique Stresses, and also whether there is or is not, other stress on

5*

YQ'

Fig. 7.
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the remaining faces of the cube. If Q and Q' act alone we have

the condition of simple shear described in the last paragraph.

13. Fluid Stress. Another important case is found when

there are three principal stresses all of the same sign and of equal

intensity p. It may be shown that the tangential components on

a plane inclined in any direction cancel each other. There is no

shearing stress anywhere ; the stress on every plane is wholly

normal and its intensity is p. This is the only state of stress that

can exist in a mass of fluid at rest, in consequence of the fact that

a fluid can exert no statical resistance to shear. For this reason

the state is often briefly described as a fluid stress.

14. Strain. Strain is the change of shape jDroduced by

stress. If the stress is a simple longitudinal pull, the strain

consists of lengthening in the direction of the pull, accompanied

by contraction in both directions at right angles to the pull. If

the stress is a simple push, the strain consists of shortening in the

direction of the push with expansion in both directions at right

angles to that ; the stress and the strain are then exactly the

reverse of what they are in the case of simple pull. If the stress

is one of simple shear, the strain consists of a distortion such as

would be produced by the sliding of layers in the direction of

the shearing stresses.

15. Elastic Strain and Permanent Set. Limits of

Elasticity. A material is elastic with regard to any applied

stress if the strain disappears when the stress is removed. Strain

which persists after the stress that produced it is removed is called

permanent set. For brevity it is convenient to speak of strain

which disappears when the stress is removed as elastic strain.

Actual materials are in general nearly perfectly elastic with

regard to small stresses, and very imperfectly elastic with regard

to great stresses. In most materials, if the applied stress is less

than a certain limit, the strain is small in amount, and disappears

wholly or almost wholly when the stress is removed. If the

applied stress exceeds this limit, the strain is, in general, much
greater than before, and the chief part is found, when the stress is

removed, to consist of permanent set. The limits of stress within

which strain is wholly or almost wTholly elastic are called elastic

limits or limits of elasticity.
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For any particular mode of stress the limit of elasticity is much
more sharply defined in some materials than in others. When
well denned it may readily be recognised in ihe testing of a

sample from the fact that after the stress exceeds the limit of

elasticity the strain begins to increase in a much more rapid ratio

to the stress than before. This characteristic goes along with the

one already mentioned, that up to the limit the strain is wholly

or almost wholly elastic.

16. Hooke's Law. Within the limits of elasticity the

strain produced by a stress of any one kind is proportional to

the stress producing it. This relation between elastic strain and

stress was enunciated by Hooke in 1676, and is known as Hooke's

Law.

In applying Hooke's Law to the case of simple longitudinal

stress,—such as the case of a bar stretched by simple longitudinal

pull,—we may measure the state of strain by the change of length

per unit of original length which the bar undergoes when stressed.

Let the original length be I and let the whole change of length be

hi when a stress is applied whose intensity p is within the elastic

limit. Then the strain is measured by y , and this by Hooke's

Law is proportional to the intensity of the pull p.

Ihus -j oc jj,

which may be written

Sl = p
I
~ E'

where E is an appropriate constant depending on the particular

material dealt with. The same value of E applies in push as in

pull, these two stresses being essentially of the same kind and

only differing in sign. The longitudinal extension per unit ol

length of -j may be conveniently expressed by a single symbol c.

_M_p
e ~ l~ E'

The constant E may be defined as the ratio of the intensity "t

stress to the longitudinal strain:

—
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17. Young's Modulus or the Stretch Modulus. This

constant E is called Young's modulus, the modulus of longitudinal

extensibility, or more briefly the Stretch Modulus. Its value,

which is expressed in the same units as are used to express in-

tensity of stress, may be measured directly by exposing a long-

sample of the material to longitudinal pull and noting the exten-

sion, or indirectly by measuring the flexure of a loaded beam of

the material, or by experiments on the frequency of vibrations.

Practical methods of making such measurements will be described

in a later chapter. It is frequently spoken of by engineers simply

as the modulus of elasticity, but this name is too general, as there

are other moduluses which relate to other modes of stress.

In iron and steel the value of Young's Modulus is about 13000

tons per square inch ; in other words, a stress of 1 ton per square

inch produces an extension which is
^ Qnnn of the original length.

This will serve to illustrate the important fact that the elastic

strains which occur in engineering structures are very small

quantities. A strain amounting to as much as one part in a

thousand would be exceptionally large. To produce this would

require in steel a stress of 13 tons per square inch, and the stresses

which are permitted in structures have rarely more than about

half this intensity.

18. Ratio of Lateral Contraction to Longitudinal

Extension in Simple Pull. In a stress of simple pull or push

the width and thickness of the piece change by amounts which

bear (for strain within the elastic limit) a definite proportion

to the longitudinal strain. If the stretch per unit of length in

an elastic strain is e the transverse contraction per unit of the

width is

(7 <lE
'

where a is a coefficient to be determined by experiment. Its

value in metals is generally between 3 and 4. The ratio of lateral

contraction to longitudinal extension in elastic strains, or - , is
<j

'

often called Poisson's Ratio.

When a pull is applied which exceeds the elastic limit, lateral

contraction still accompanies the longitudinal extension but its
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proportion is no longer the same as that which holds for elastic

strain. All that has been said here about the lateral contraction

produced by stress of a simple pull applies also to the lateral

expansion produced by a stress of simple push.

19. Strain produced by Shearing Stress. Modulus of

Rigidity or Shear Modulus. When the state of stress is one of

simple shear (§11) the material is distorted so that an element

originally cubical becomes lengthened in one diagonal direction,

and shortened to an equal extent in the other, its sides remaining

parallel. There is no change of volume in this distortion.

The square side ABCD (fig. 8) takes the form indicated by

the dotted lines, its angles changing by a

IT
small quantity <£ to the values — + cf> and

— —
<f>.

This change of angle expressed in

circular measure serves as a measure of the

strain : it is called the Angle of Shear. Since

Hooke's Law holds good (within the elastic

limit) for shear as well as for other strains,

<f>
is proportional to the intensity q of the

shearing stress. It may therefore be written

Fig. 8.

*- 9.

C
where C is a constant for the particular material, expressing its

elastic resistance to shearing strain. G is called the Modulus

of Rigidity. It is stated numerically in the same units as

are used to specify the stress. The value of C is most often

determined by experiments on torsion, and it is generally found

to be about two-fifths that of Youngs modulus E. G may be

defined as the ratio of shearing stress to shearing strain, or
.

20. Modulus of Cubic Compressibility or Bulk Modulus.
When three simple stresses of equal intensity p and o{ the same
sign (all pulls or all pushes) are applied in three directions,

the material (provided it be isotropic, ili.it is to say, provided

its properties are the same in all directions) suffers change
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of volume only, without distortion of form. If the volume

BV
is V and the change of volume is BV, the fraction -~ measures

BV
the strain. The ratio of the stress p to the strain -~ for elastic

V
changes of bulk is called the modulus of cubic compressibility or

bulk modulus and may be denoted by K.

BV_p_
V~ K'

In this strain the linear dimensions of the body all change equally,

and (assuming the cubic strain to be small) the amount of the

linear strain in any direction is one-third of the cubic strain or

P
3K'

The modulus K may be directly measured by observing the

contraction of volume which a body undergoes when immersed in

a liquid to which pressure is applied, but its value is more usually

inferred from a knowledge of the other elastic constants.

21. Relation between the Moduluses of Elasticity. The

four elastic constants which have now been defined, namely, E, C,

K, and a, are related in this way that if any two of them are

known by experiment the other two may be calculated. In other

words, an equation may be formed connecting any three of these

constants with one another. Two of the constants are sufficient to

specify the elastic properties of the material. The relations which

exist between the various elastic constants will be discussed in the

next chapter.

22. Work done in producing an Elastic Strain

:

Resilience. When a material which follows Hooke's Law is

strained the stress must increase in proportion to the strain, and

the mean value of the stress is half the final value. The work

done is measured by the product of the strain into the mean

value of the stress. Consider a tie-rod or other piece subjected to

simple pull, of intensity p. The strain e, per unit of length, is

^ . This extension is produced, in each filament of unit sectional

area, by the application of a force p and the mean force during the
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extension is \p. Hence the work done, per unit length of such a

filament, or in other words, per unit of volume of the material, is

p>

2E'

Since the material is, by supposition, elastic, this expression also

measures the energy stored in the piece in consequence of the

strain and capable of being restored when the strain is relaxed.

It is called the resilience of the piece.

In the same way —-

f
measures the work stored, per unit of

volume, in a material subjected to elastic shear by a shearing

stress of intensity q. This may readily be seen by considering

the distortion of a block like that of Fig. 8. The forces ou the

opposite sides of the block form a couple, and the work done is

half the product of the angle of shear into the moment of the

couple. By taking a block, each of whose sides has unit leugth,

the above expression for the resilience in a shear is at once

obtained.



CHAPTER II.

RELATIONS BETWEEN THE ELASTIC CONSTANTS.

23. Relation between E, C, and K. To find a relation

between Young's Modulus E, the modulus of rigidity C\ and the

modulus of cubic compressibility K, the following artifice is con-

venient. Suppose a stress of simple pull to be applied to a body

and consider a cubical element two of whose faces are perpendicular

to the direction AB of the applied stress. The applied stress p
which acts on the top and bottom faces of the cube may be broken

up into three parts each equal to ^p. Further, it will not affect

the actual state of stress if we suppose a pull stress of intensity

^p and also a push stress of the same intensity to be applied to

each of the other two pairs of faces. We thus obtain the group of

stresses indicated by arrows in the figure (fig. 9). Now the push

of ^p on the front and back faces ah and bg together with one

of the pulls of lp on the top and bottom makes up a state of

simple shear the intensity of which is ±p. Again, the push of ±p

on the two sides (if and dg together with another of the pulls of

^p on the top and bottom makes up another simple shear, at right

angles to the first, and also of intensity ^p. What is left is a pull

of
J-_p

on every one of the six faces, that is to say, a stress producing

cubic dilatation.

Thus a simple pull of intensity p is found to be equivalent

to two shears each of \p, the directions of which are at right

angles to each other and are inclined at 45° to the axis of the

pull, together with a cubic dilating stress which also has the

intensity \p.

Next we have to find the total change of length which the
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block undergoes along the axis AB in consequence of the stresses

due to these two shears and to the cubic dilating stress.

Bv

V
Fig. 9.

ha .

Each of the two shears causes an extension - - in the direction
a

AB, where a is the diagonal of an element such as that sketched

in Fig. 10 and 8a is the extension of

the diagonal caused by the shear. But

— = y (see the figure) and is there-

fore equal to \<f>.

Further, </> =~ , since J p is the

intensity of the shearing stress.

Hence each of the shearing stresses

extends the piece in the direction AB
by the amount (per unit of length)

1 P
o

•

Fig. 10.

B>, B. BI.
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Again, the cubic dilating stress ±p extends every dimension by

the amount (per unit of length)

K'
Thus the whole strain in the direction AB is equal to

9 iP ,iP _ ( 1 1 \

due to the two shears, and the cubic dilating stress which we have

seen to be equivalent to the simple pall p.

But the strain along AB due to a simple pull p is directly

expressed as

P
E'

Hence 4=^ = p (^ + tt~) ,
from which

F _ 9KC
SK+C

24. Relation of a to the moduluses C and K. Consider

next the change in transverse dimensions due to the shears and

the cubic dilatation into which we have analyzed the strain. Each

transverse dimension is affected by one of the two shears. The

shear contracts it to the extent ^ and the cubic dilatation enlarges

i P
it to the extent ~^ .

Hence the resultant lateral contraction, perpendicular to the

direction AB of the applied stress p, is

JL_P_
6(7 9K'

and a the ratio of the longitudinal extension to the lateral contrac-

tion is given by the equation

SC
+ 9K QK+2C

a =
1^ 1_ SK-2C
60 9K

It follows from this that o is always greater than 2, since C is

necessarily positive. It will be only slightly greater than 2 in

substances which have K great in comparison with 0. An instance

in point is furnished by india-rubber, where the elastic resistance
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to change of volume is great and the resistance to shearing is

small. India-rubber is distorted with ease but compressed (cubi-

cally) with great difficulty, and consequently the value of a in

it is not far short of 2.

The fractional expansion of volume which a body undergoes in

the elastic strain caused by a simple pull along one axis is equal to

2
the longitudinal strain multiplied by 1

, since for every unit by

which the length of a cubical element increases the breadth and

thickness each diminish by -
. No change of volume would result

if a were equal to 2.

25. Other expressions of relation between the Elastic

Constants. The equations given above are sufficient to establish

a connection between any three of the four elastic constants. It

may, however, be useful to indicate other ways in which these

relations may be found and other forms in which they may be

expressed.

Consider for example a simple shear of intensity p. The

linear extension and contraction respectively in two directions

inclined at 45° to the plane of shear are ^ or ^. We may

regard the shear as made up of two principal stresses, one of push

and one of pull, along these two directions, each having the same

intensity as the given shearing stress. The strain in either direc-

tion is

p £_
E' o-i,"

the first term representing the direct effect of the one principal

stress and the second term representing the lateral effect of the

other.

Hence
2C~~ E* aE y

or E = 2Ch+^

and C =
2(o-+ 1)'

This equation may of* course bo obtained also 1>\ eliminating

K in the results of §§ 23 and 24.

2 2
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It may be concluded from this that is always less than

— . Further, since a is not less than 2, the factor (1 + - ) cannot
^ V a-

J

exceed
f.

Hence E has in all cases a value lying between 2C
and 30. In metals <t is usually about 3J, which makes E about

2-60.

Again, consider a piece under "fluid" stress, namely with

three equal principal stresses all of the same sign. The linear

strain in any direction is made up of one direct and two lateral

strains and has the value

E aE crE E\ <rJ'

Hence the volume strain, being three times the linear strain, is

But the volume strain may also be expressed as ^ , whence

A-Afi-*)K E\ <rJ'

or E = SK (l -

1

and K =
3 (a - 2)

Combining this with the equation given above connecting C and

E with o-, and eliminating E, we have,

2(SK+C)
a =

SK - 20
or, eliminating a,

3K+C
These are identical with the results obtained more directly by

another method in §§ 23 and 24.

26. Isotropic material : Equations connecting Stresses

and Strains. Suppose an isotropic material to be in a state of

stress of the most general kind, and let the three principal stresses

be^,^, said pz , the axes of reference being chosen so that they

coincide with the principal axes. Let the strains along these axes

be ex , ey and ez respectively. Then ex is made up partly of the
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direct strain which px produces in its own direction, and partly of

the lateral strains produced by py and pz . The direct strain due

to px is ¥§ and the lateral strains are —^ and —if! •

Jcj ah ah

Thus e
=P?- P» + P*

or Eex =px
-Vz±&.

Similarly Eey =py
- 2*±£*

t

and Eez = pz
-^-Py

.

a

We proceed to apply these general equations to particular cases.

27. State of Simple Shear. The state of stress is one of

simple shear when py
= — px and pz

= 0. In that case the

equations become

Eex =px +^ = pz ML +
-J,

Eey = -px - P- = - Vx ( 1 +-)

,

Eez
= 0.

We have seen (§ 23) that the strain along each axis of principal

stress is equal to \(f>
where d> is the angle of shear.

2px
i
1 +

l)
Hence c/> = 2ex = /T ,

and since the intensity of the shearing stress is numerically equal

to px or py , this leads, as before, to the equation

E=2C(\ + -

28. Volume Strain. By adding the three general equations

we have

E (ex + ey + ez ) = {px + py + p9) (l -
-J

,

or E-y=(P»+Pv + P*)[}
-~
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In the particular case when Px=py =pz (the case which occurs

in a fluid)

8V „ / 2^

which gives the relation already found in § 25

(7

29. Simple Strain along one axis. The student will

notice that a simple strain, in the sense of a strain along one

axis only, is not produced by the application of a simple stress.

To restrict the strain to ex , making ey and ez vanish, we have to

apply certain stresses py and pz as well as a stress px . The

equations become in that case

0=p2
- Px+Py

PxHence py = pz
—

-. > showing that a simple contraction without

lateral expansion is produced when a direct compressive stress is

associated with two equal lateral stresses, also of compression,

each of which is less than the direct stress in the ratio 1 : a — 1.

The relation which then holds between the strain ex and the

stress px is given by the equation

j? /-, 2__\ .
(o--2)(<r + l)

Eex =px [l t 7T = p3

Hence

o-(o--l)/ iX o-(c--l)

^ ^cr(o--l)

ex ((7-2)(c7 + l)
5

and this constant may be called the modulus of elasticity for the

special mode of stress here assumed. Under this mode of stress

the strain ex is less than that which would be produced by px>

acting alone, in the ratio of a2 — a — 2 to a'
2 — a.

30. Lateral Strain prevented in one direction. A case

presenting more practical interest is found when a piece, pulled or

pushed along one axis (OX), is left free to contract or expand
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along one lateral axis (OY) but is prevented from changing its

dimension along the other lateral axis (OZ). In that case e2 and

py are zero and we have

Eex =px
- 1-,

a

Be,—***,

a

Hence the required lateral strain pz is of the same sign as px

TO

and is equal to — , and
c

Eex =px (1

Thus the special modulus of elasticity for this mode of stress is

-2

-I'

and the strain ex is less than px acting alone would produce, in

the ratio of cr
2 — 1 to a-.

31. Numerical Example. The elastic constants which are

most usually measured are Young's modulus E and the modulus

of rigidity C. In a later chapter experiments will be described

by which such measurements are made. With steel, the modulus

E is about 13000 tons per square inch and C is about 5000 tons

per square inch. Taking these values we may determine corre-

sponding values of the other constants, thus

—

EC^ = 7ui
—

7Tny
= 10830 tons per square inch,

2C
E-2C

The modulus for a strain in which lateral contraction or ex-

pansion is entirely prevented, or ^ ~T\> ls 17500 tons per
(a — z) (cr-f 1 )

square inch, and the modulus for a strain in which lateral

contraction is free to take place in one direction but prevented

Eg'1

in the other, or ——-, is 1421)0 tons per square inch.
<T

J — 1

a - -& an ~ &h



CHAPTER III.

ULTIMATE STRENGTH AND NON-ELASTIC STRAIN.

32. Strain carried beyond the Limit of Elasticity. All

that has been said about the elastic constants refers only to the

strains which occur when the stresses are so small as to fall within

the limits of elasticity. Within these limits we may without

serious inaccuracy take the strain as being proportional to the

stress and as disappearing when the stress is removed. Strictly

speaking, absolute proportionality of strain to stress is never

found, and probably there is no stress, however small, that does

not produce some permanent effect. There is always some slight

hysteresis or lagging in the relation of strain to stress, which

shows itself for example when a tie-bar is alternately loaded and

unloaded, the length under any intermediate amount of load

being a very little greater during unloading than during loading.

But in general this imperfection in elasticity is so slight that it

may safely be disregarded when we are dealing with the strains

caused by comparatively small amounts of stress, and up to a

certain limit, which is in general pretty well defined, Hooke's

Law may be taken as substantially accurate.

When that limit is reached a change takes place in the

relation of strain to stress which exhibits itself in two ways. As

the loading proceeds the increments of strain, for equal increments

of stress, become greater, and further it is observed that the

amount of strain due to any given load depends to some extent

on the time during which the load acts. When a load exceeding

the elastic limit is applied the strain which occurs at once is

followed by a continued "creeping" or supplementary deformation

which is very noticeable during the first few minutes and may go

on, though at a diminished rate, for a much longer time.
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We shall call a piece overstrained when the stress exceeds the

elastic limit. The overstrained piece is more or less plastic. A
stress which produces overstraining requires a long time (possibly

an indefinitely long time) to produce its full effect. As the load

is further increased this plasticity becomes in general more and

more marked. The material in some cases flows under the applied

stress like a viscous liquid and time is the main factor in de-

termining the amount of the strain. The behaviour of iron, mild

steel, and most other metals when tested for tensile strength,

exemplifies this. When the load exceeds the elastic limit a

certain amount of " creeping " or continued extension is observed

whenever the process of loading is temporarily suspended. And
a stage is reached at which, without further increase of load, the

piece continues to draw out until it breaks.

33. Ultimate Strength. The load which suffices to cause

rupture measures the ultimate strength of the piece. In

reckoning the ultimate strength of a material in tons or pounds

per square inch the practice of engineers is to take, not the

actual intensity of stress at the time when the piece breaks, but

the value which this intensity would have reached had the

original area of section remained unchanged. In other words,

the ultimate strength is reckoned as the breaking load per square

inch of the original area of section, not per square inch of the

area which the section has when the piece breaks. Thus if a bar

whose original cross-section is 2 square inches be broken by

applying a total pull of 60 tons, uniformly distributed over the

section, the ultimate tensile strength of the material is said to be

30 tons per square inch, although the actual intensity of stress in

the last stages of the test may have been much greater than this

in consequence of the contraction which the section undergoes

before the piece breaks, especially in the neighbourhood where

the break is to occur.

The reason for this usage is that engineers wish in all cas< -

to know what total load will break a piece, in order thai they may

arrange to prevent the actual load from being more than a safe

fraction of that. Suppose for instance that a tie-rod is t<» be

designed to bear safely a pull of 12 tons, and that the working

load is to be only one-fifth <>f the Load which would break the

rod. It must in that case have such an area of -'•(•lion as would
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be broken by a load of 5 x 12 or 60 tons. Hence if the material

has an ultimate strength of 30 tons per square inch, the proper

area of section is at once seen to be §£ or 2 square inches. Or, to

put the same thing in a slightly different way, the working load

is to be one-fifth of 30, or 6 tons per square inch, and the section

is accordingly -i£ or 2 square inches. Such a calculation proceeds

on the basis of the ultimate strength as defined by reference to

the original area of section of a test-piece, and has nothing to do

with the changes of section which occur during the process of

testing. It may be added that the working loads on the parts of

engineering structures are, or ought to be, in all cases within the

limits of elasticity, and within these limits the change of cross-

section caused by the elastic strains is so small that it may be

neglected in calculating the intensity of stress.

Ultimate tensile strength and ultimate shearing strength are

well defined, since in the corresponding modes of stress, namely

simple pull and simple shear, a distinct fracture is observed when

the stress is sufficiently increased. Under compression, on the

other hand, some materials yield so continuously that their ultimate

strength to resist compression can scarcely be specified : it would

for instance be difficult to assign any value to the compressive

strength of such a substance as lead, for a test-piece under

compression would flatten out almost without limit. Some

materials, notably brick and stone as well as the more brittle

metals, show so distinct a fracture by crushing that their com-

pressive strength may be specified with fair precision.

Some of the materials used in engineering are so far from

being isotropic that their strength is widely different for stresses

in different directions. The tensile strength of timber, fur

example, is immensely greater when pull is applied along the

fibre than when pull is applied across the fibre, and a similar

difference exists in regard to the shearing strength. In wrought-

iron the process of rolling developes something of a fibrous

structure, partly in consequence of the presence of streaks of

slag which become drawn out into long lines as the bar or plate

is rolled. The tensile strength of a rolled iron plate is accord-

ingly found to be considerably greater in the direction of rolling

than across the plate. Steel plates, being rolled from a nearly

homogeneous ingot, are more nearly isotropic, but even in them

some difference of the same kind is observed.
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34. Factor of Safety. In applying a knowledge of the

ultimate strength of materials to determine the proper sizes of

parts in an engineering structure the designer has to select a

number which will express the ratio of the ultimate strength to

the stress which is to be allowed. In other words, the working

stress, as we may for brevity call the stress which will occur in the

loaded structure, has to be a certain fraction of the ultimate

strength, and what this fraction should be is a matter for the

judgment of the engineer. The ratio

ultimate strength

working stress

is called the factor of safety.

The choice of a factor of safety depends on many considerations,

such as the probable accuracy of the estimated loads and also that

of the theory on which the calculation of the working stress has

been based ; the uniformity of the material dealt with, and the

extent to which its strength may be expected to conform to the

assumed value or to the values determined by experiments on

samples ; the possible effects of bad workmanship in causing a

deviation from the specified dimensions when the structure is

actually built; the degree to which the materials may be expected

to deteriorate in time or by exposure to variations of temperature.

Another important consideration in the choice of the factor of

safety is the variability or uniformity of the load : for reasons

which will appear presently a larger factor is properly chosen

when the load is subject to repeated changes. The factor of

safety also serves to provide for the incidental shocks which

may occur in consequence of sudden variations in the load.

Such shocks cause supplementary stresses which can scarcely

be made subjects of calculation.

The factor of safety is rarely less than 3, it is very commonly

4 or 5, and it is sometimes as much (in machines) as 10 or L2.

A Board of Trade rule permits the working stress in bridges and

other structures of wrought-iron to be 5 tons per square inch.

As the tensile strength of the material is in this case about

20 tons per square inch, the rule corresponds t<> a factor of safety

of about 4. A committee of engineers reporting to the British

Association in ]cStt7* recommends that in small bridges, where

* Rep. Brit. 4moc, L887, ]>• 488,
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the permanent load due to the weight of the structure is small

compared with the variable load due to traffic, the working stress

should not exceed 4 tons per square inch, but that in the

case of bridges or other structures of such magnitude that the

dead weight is more than twice the moving load the working

stress may safely be increased to nearly 6 tons per square inch.

These numbers correspond to factors of safety of about 5 and
3-J-

respectively. In the design of the Forth Bridge, where steel was
employed having a tensile strength of from 30 to 33 tons per

square inch, the working stress was allowed to reach 7J tons per

square inch, but in members liable to alternate compression and

extension it was restricted to 5 tons per square inch.

The ratioDal use of a factor of safety in determining the

dimensions of the several parts of a structure results in not only

making all parts sufficiently strong, but in preventing waste of

material locally by making the margin of strength equal for all

parts.

35. Variation of the Ultimate Strength under different

modes of loading. In specifications of ultimate strength it is

generally assumed that the load is made to increase continuously

and at a fairly rapid rate until the piece breaks : it is supposed to

be applied as it would be applied in ordinary testing. But by

following special modes of loading it is possible either to increase

or to diminish the ultimate strength very considerably. Instances

of this will be detailed later. By adding the load in a series of

steps with long pauses betwreen we may cause the piece to bear

much more than would suffice to break it if applied in the usual

way. On the other hand, if a load be applied and removed many

times it will suffice to break the piece even though its amount is

much less than would be needed to cause rupture in a single

application. A much smaller stress still will cause rupture if

it alternates between compression and extension. Hence in a

structure which has to bear " live " or variable load the per-

missible intensity of working stress is less than in a structure

which bears only " dead " or constant load.

36. Advantage of Plasticity. From an engineering point

of view the structural merit of a material, especially when live

loads and possible shocks have to be borne, depends not only on
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the ultimate strength but also on the extent to which the material

will bear deformation without rupture. Other things being equal,

a material which in the later stages of the test exhibits much
plasticity, by drawing out much under pull and narrowing its

section before it breaks, is to be preferred to one which breaks

off short. Accordingly the ultimate elongation and the contraction

of area are often specified as well as the ultimate strength. The

same characteristic is often tested in other ways, such as by

bending and unbending bars in a circle of specified radius, or

by examining the effect of repeated blows. This is sometimes

done by supporting a piece of the material on a beam and

causing a weight to fall on the middle of it from a given

height.
«

37. Ordinary Tensile Tests. The most usual test however

is made by applying a direct pull and gradually increasing it until

the specimen breaks. When the samples to be tested are small

wires the stress may be applied directly by hanging up the wire

and applying weight, but when larger sections are to be dealt

with some form of testing machine is needed to facilitate the

application and measurement of the load, and to allow the con-

siderable amount of work to be done which is expended in drawing-

out the piece beyond the limit of elastic strain.

As the test proceeds the extension is at first so small that it

can be measured only by a microscopic or other refined apparatus

called an extensometer. Presently the elastic limit is passed : the

increments of strain then become greater and the phenomenon of

creeping begins to be observed. In plastic metals such as wr< night-

iron and steel a further change happens when the load is increased

to a somewhat higher value than the elastic limit. A point called

(by Professor Kennedy) the yield point is reached at which the

specimen draws out suddenly, the sudden increase of extension

being generally greater than the whole amount of the extension

caused by smaller loads. At this stage, and during the remainder

of the test, the extension is usually so great that a pair of compasses

and a foot-rule serve to measure it. After the yield point is

passed, the piece continues to extend more or less irregularly

under augmented loads until rupture is about to take place, At

that stage there is a supplementary local yielding the portion

in the neighbourhood of the place where fracture is to orciii-
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draws out much more rapidly than the rest of the bar, and the

section there becomes attenuated.

38. Diagrams of Extension and Load in Tensile Tests.

The chief results of a tensile test are conveniently exhibited by

drawing a diagram to show the relation of the extension to the

load (reckoned per square inch of the original area of section of

the specimen). Typical diagrams for wrought-iron, mild steel,

and comparatively hard steel are given in fig. 11, the data for

which are taken from tests by the late Mr David Kirkaldy*. Up
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to the elastic limit the extension per ton of load is much the

same in all three materials, so that the early portions of the three

curves are indistinguishable. In each case there is a visible defect

of elasticity some way before the yield point is reached, and then

a well-marked yield point, especially in the softer metals, at which
extension goes on for a time through a considerable distance with-

out increase of load. After this the extension becomes less rapid

* Experiments on the Mechanical Properties of Steel by a Committee of Engi-

neers ; London, 1868 and 1870.



ULTIMATE STRENGTH AND NON-ELASTIC STRAIN. 31

until the final yielding occurs just before rupture. In the last

stages the flow of the metal continues even if the load be some-

what reduced, and it is therefore possible to make the end of the

curve bend back by taking off part of the load as the end of the

test is approached.

By way of contrast with the diagrams of extension and load in

plastic metals, shown in fig. 11, reference should be made to fig. 12,

-.
10

o>
CO
C£
LU

to

§ 5

co~
CO
in

1—
CO

! /
•4

CO

3

1PRESSI0N

2

PERCENT

1 // '

/ /

"o

EXTENSA

1

.PERCENT

1

/

QUARE

INCH

vY
/

/

/

o

TONS

PER

S

S
/

15 -

±
a
o

20

Fig. 12.

which shows how cast-iron behaves under compression as well as

under tension. The figure is taken from one of Hodgkinson's

experiments*.

The extension was measured on a rod 50 feet long ; the

compression was also measured on a long rod, which was pre-

vented from buckling by being supported in a trough with

partitions. The full line gives the strain produced by loading;

it is continuous through the origin, showing that Young's modulus

is the same for pull and push—a result which is also found to

hold good in other materials. The broken line shows the set

produced by each load. Hodgkinson found that in cast-iron some

set could be detected after even the smallest- loads had been

applied. This is probably due to the existence of initial internal

stress in the metal, produced by unequally rapid cooling in

* Report of the Commissioners on ///< Application of Iron to Railway Structures,

1840.
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different portions of the cast bar. A second loading of the same

piece showed a much closer approach to perfect elasticity. The

elastic limit is, at the best, ill defined ; but by the time the

ultimate load is reached the set has become a more considerable

part of the whole strain. The pull curves in the diagram extend

to the point of rupture
; the compression curves are drawn onlv

up to a stage at which the bar buckled between the partitions so

much as to affect the results.

39. Autographic Diagrams of Extension and Load.

Testing machines are frequently fitted with recording appliances

for automatically drawing diagrams showing the relation of the

extension to the load. When the load is measured by a weight

travelling on a steelyard, the diagram may be drawn by connecting

the weight with a drum by means of a wire or cord, so that the

drum is made to revolve through angles proportional to the travel

of the weight. At the same time another cord, fastened to a clip

near one end of the specimen, and passing over a pulley near the

other end, draws a pencil through distances proportional to the

strain, and so traces a diagram of stress and strain on a sheet of

paper stretched round the drum.

Apparatus of this kind is serviceable in showing the behaviour

of plastic materials after the elastic limit has been passed. Effects

of viscosity can be traced by noticing the changes in the form of

the curve when pauses are made during the application of the

load. The full strain corresponding to a given load is reached

only after a perceptible time, probably a long time. If the load

be increased to a value exceeding the elastic limit, and then kept

constant, the metal will be seen to draw out (if the stress be one

of pull), at first rapidly and then more slowly. When the applied

load is considerably less than the ultimate strength of the piece

(as tested in the ordinary way by steady increment of load), it

appears that this process of slow extension comes at last to an end.

On the other hand, when the applied load is nearly equal to the

ultimate strength, the flow of the metal continues until rupture

occurs. Then, as in the former case, extension goes on at first

quickly, then slowly, but, finally, instead of approaching an asymp-

totic limit, it quickens again as the piece approaches rupture.

The same phenomena are observed in the bending of timber and

other materials when in the form of beams. If, instead of being
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subjected to a constant load, a test-piece is set in a constant

condition of strain, it is found that the stress required to maintain

this constant strain gradually decreases.

The gradual flow which goes on under constant stress

—

approaching a limit if the stress is moderate in amount, and

continuing up to fracture if the stress is sufficiently great—will

still go on at a diminished rate if the amount of stress be reduced.

Thus, in the testing of soft iron or mild steel by a machine in

which the stress is applied by hydraulic power, a stage is reached

soon after the limit of elasticity is passed at which the metal

begins to flow with great rapidity. The pumps often do not keep

pace with this, and the result is that, if the lever is to be kept

floating, the weight on it must be run back. Under this reduced

stress the flow continues, more slowly than before, until presently

the pumps recover their lost ground and the increase of stress is

resumed. Again, near the point

of fracture, the flow again be-

comes specially rapid ; the

weight on the lever has again

to be run back, and the speci-

men finally breaks under a

diminished load. These features

are well shown by fig. 13, which

is copied from the autographic

diagram of a test of mild steel*.

40. Hardening effect of

rest after overstraining. But

it is not only through what we

may call the viscosity of ma-

terials that the time rate of

loading affects their behaviour under test. In iron and steel, and

probably in some other metals, time has another effect of a very

remarkable kind. Let the test be carried to any point a (tig 14)

past the original limit of elasticity. Let the load then be removed :

EXTENSION

Fig. 13.

* The increase of strain without increase of stress, which g06fl Oil without limit

when a test-piece under tension approaches rupture, is a Bpeoial oase oi' the general

phenomenon of " flow of solids," which baa been exhibited, ohieflj for oompn

stresses, in a series of beautiful experiments by Treeoa {Mimoire* tur VEcoulement

det Corps Bolides, also l'nir. Inst. Mech. Etig, L867 and 1878.

B. B. m. 3
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during the first stages of this removal the material continues to

stretch slightly, as has been explained above. Let the load then

be at once replaced and loading continued. It will then be found

that there is a new yield-point b at or near the value of the load

formerly reached ; up to this point there is but little strain. The

full line be in fig. 14 shows the subsequent behaviour of the piece.

But now let the experiment be repeated on another sample, with
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this difference, that an interval of time, of a few hours or more, is

allowed to elapse after the load is removed and before it is replaced.

It will then be found that a process of hardening has been going

on during this interval of rest ; for, when the loading is continued,

the new yield-point appears, not at b as formerly, but at a higher

load d. Other evidence that a change has taken place is afforded

by the fact that the ultimate extension is reduced and the ultimate

strength is increased (e, fig. 14).

A similar and even more marked hardening occurs when a load

(exceeding the original elastic limit), instead of being removed

and replaced, is kept on for a sufficient length of time without

change. When loading is resumed a new yield-point is found only

after a considerable addition has been made to the load. The

result is, as in the former case, to give greater ultimate strength

and less ultimate elongation. Fig. 14 a exhibits two experiments
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of this kind, made with annealed iron wire. A load of 23J tons

per square inch was reached in both cases ; ah shows the result of

continuing to load after an interval of five minutes, and acd after

an interval of 45J hours, the stress of 23^ tons being maintained

during the interval in both cases*.

41. Breakdown and Recovery of Elasticity after

overstraining. Further, a piece of iron or steel which has been

overstrained, so that permanent set has been produced, is found to

be very imperfectly elastic even with respect to small amounts of

load, when, after being removed, the load begins to be reapplied.

Hooke's law does not then hold even for loads much below the usual

elastic limit of the material. When a small load is applied the

immediate strain is seen to be followed by slow creeping, and if

the load be removed the strain which it caused does not imme-

diately disappear, but there is a slow creeping back. This is the

state of things just after the molecular structure of the piece has

been disturbed by overstraining. But if, after a considerable

interval of time (such as a few days), the overstrained piece is

tested again, a partial recovery of elasticity is found to have taken

place, and this recovery becomes more and more complete as

time goes on-f*. The following experiment will serve to show

the character of this action, as regards both the immediate effect

of overstraining in depriving the material of its usual elasticity

and also the subsequent recovery of elasticity with lapse of time.

The readings quoted were taken with an extensometer by which

the extensions of a nine-inch length in the middle of the specimen

were read to the nearest fifty-thousandth of an inch. The zero-

reading of the extensometer was 200. The specimen was a turned

rod of semi-mild steel, with a diameter of 0*705 inch (section

0*390 sq. inch). In the initial test of the piece, before over-

straining, it was found that Hooke's law held with great accuracy

up to a load of 10 tons (corresponding to a stress of 25*6 tons per

square inch) and that the average extension per ton of load up to

* The experiments of figs. 14 and 14 a are taken from a paper by tin' author in

Proc. Hoy. Soc. 1880, "On Certain Effects of Stress on Soft Iron Wins," where

further experiments bearing on the same point will be found.

t For an investigation of this effect of overstraining, sec papers by Bausohinger,

Mitth. mis dem mech.-tech. I. ah. in MilTichen, ami by the author, /v<><-. Roy. Soc*
%

vol. 58, L895,
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that point was 85J of the divisions of the extensometer, corre-

sponding to a value for the modulus E of

1x9x50000 1Q™. . ,

n .QQn
—

a ^! = looOO tons per square inch.
\J 0'j\) X 0O9"

The load was increased to 11 tons, when the yield-point was

reached and a permanent extension (of 0'14 inch) took place.

Immediately after the overstraining the load was removed, and a

series of subsequent tests were made which are detailed in the

Table below. In the first of these, made only a few minutes after

overstraining had occurred, there is nothing like proportionality of

extension to load even with loads of one or two tons, and creeping

was observed to occur almost from the first. The later tests

show a gradual progressive recovery of elasticity, which however

is by no means complete even after three weeks.

An experiment of this kind serves to emphasise the distinction

between the yield-point and the elastic limit. If the loading of

the overstrained piece had been continued a yield- point would

have appeared at a load higher than 11 tons, considerably higher

after several days of resting. But the elastic limit in this condi-

tion, if there can be said to be any limit within which the elasticity

is sensibly perfect, is very low—probably not higher than about

2 tons. Immediately after overstraining the piece cannot properly

be said to have any elastic limit, but when a period of resting

brings about recovery, a more or less definite elastic limit re-

appears, and rises to higher loads the more prolonged is the period

of rest.

In wrought-iron the recovery of elasticity after overstraining

takes place much sooner than it does in mild or semi-mild steel.

When in the overstrained condition, and before recovery has taken

place, iron or steel exhibits much hysteresis in the relation of

extension to load. Any process of loading and unloading, repeated

until the changes become cyclic, then shows a well-marked

difference in the length of the piece for any one amount of load

in the two stages of the process. The curves exhibiting extension

in relation to load form a loop, and this loop closes up as the piece

gradually recovers its elasticity by prolonged rest.

42. Effect of Heating in facilitating Recovery of Elas-

ticity after overstraining. An interesting contribution to this
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subject has been made in experiments conducted in the author's

laboratory by Mr James Muir*, who has found that when a piece

of iron or steel has had its elasticity broken down by overstraining

it will make a very complete recovery if heated for a few minutes

to a temperature such as that of boiling water. "When the over-

strained piece has been immersed in a bath of boiling water it is

found to have practically perfect elasticity up to a new yield-point

which is higher than the load used in the process of overstraining.

Figs. 15 and 15 a illustrate this by curves drawn from

Mr Muir's observations. In the experiments of fig. 15 the

EXTENSION (REDUCED)

Fig. 15. Serai-mild Steel.

material was a semi-mild steel with 04 per cent, of carbon, which

when tested in the ordinary way showed a breaking strength of

39 tons per square inch. In fig. 15 a the material was wrought

iron with a breaking strength of 23 tons per square inch. The

* Phil. Trans. Boy. Soc, 1899.
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length under measurement was 8 inches in both cases, and the

unit of extension in the diagrams is -^^ of an inch. In drawing

30 Tons per
sq. inch.

A.

B.

C.

D.

E.

Primary test.

10 minutes after A.

16 hours after A.

10 minutes after C.

After 4 minutes'
exposure to 100° Cent.

EXTENSION (REDUCED)

Fig. 15 a. Common Wrought-Iron.

40 Tons per
sq. inch.

35

EXTENSION (REDUCED)

Fig. 15 b. Hysteresis in Semi-mild Steel after over-straining.

these diagrams the geometrical device IS used of shearing baok the

curves uniformly by 1 unit of extension for each 4 tone pel square
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inch of load. The curves are drawn from separate origins to avoid

confusion. In fig. 15 the steel bar in its first loading gave a well-

marked elastic limit at about 22 tons, and this primary test was

continued (far beyond the limit to which the curve A is drawn)

until the load was 35 tons per square inch. Curve B shows the

very imperfect elasticity which the piece exhibited immediately

after this overstraining. In other experiments curves of loading

and unloading were observed for this condition of the metal, and

were found to show the characteristics of hysteresis exemplified in

fig. 15 b, where the arrows sufficiently indicate the sequence of

the operations. Returning to fig. 15, curve G shows the remarkably

complete elastic recovery which results from exposure to the

temperature of boiling water, and also the raised elastic limit

which this treatment produces. Curve D shows a further raising

of the elastic limit, by additional overstraining (after G) followed

by a second bath in boiling water.

In fig. 15 a, the first overstraining A is seen to produce the

non-elastic state B, but a rest of 16 hours suffices to restore nearly

perfect elasticity, and the next loading gives the curve C, with a

raised elastic limit. This operation was carried far enough to

overstrain the piece a second time, and curve D then shows that

a very imperfectly elastic condition has reappeared. Finally curve

E shows the recovery of elasticity brought about by immersion in

boiling water. This piece was further overstrained and its elasticity

was again restored by hot water, with the result that it finally

bore a load of 29-J- tons per square inch before breaking.

A remarkable experiment may be made by taking a bar of

mild steel and stretching it in the first instance just up to the

primitive yield-point, then heating it for a few minutes to 100° C.

to produce elastic recovery, then stretching it again just up to its

new yield-point, then heating again to 100° C. and so on. Each

step raises the elastic limit, and notwithstanding its naturally

plastic quality the bar may in this way finally be caused to break

with a fracture resembling that of hard steel, with comparatively

little total extension or contraction of section at the fracture, and

under a total load much greater than that which could be applied

in an ordinary test.

In one of Mr Muir's experiments a bar of semi-mild steel

showing a strength under ordinary tests of 39 tons per square inch
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and an extension of about 20 °/ on 8 inches, was caused to pass

through a series of steps of this kind, by being heated to 100° C.

just after each successive yield-point was passed. The first yield-

point was at 27 tons, the next at 33, the next at 38, the next at

43 J, and the last about 47. The piece was then broken, showing

a strength of 49J tons per square inch and a total extension

(including all the steps) of 12 per cent.

43. Influence of time in the process of testing. We
have seen that intervals of rest, during the process of testing,

cause a hardening effect once the primitive elastic limit has been

passed, and after any such interval a new yield-point appears at a

higher load. By applying the load in a series of steps, with long-

pauses between, the results of a test may be made to differ very

considerably from those that are found in the ordinary process of

continuous or nearly continuous and fairly rapid loading. The

time during which any load (exceeding the elastic limit) is kept

on affects the result in two somewhat antagonistic ways. It aug-

ments extension by giving the metal leisure to flow. On the other

hand it reduces the amount of extension which subsequent greater

loads will cause. The stepped curve got by applying the load in

parts with long intervals between shows (in iron and steel) a less

total elongation and a greater ultimate strength than are found in

the ordinary continuous process. An early illustration of this was

given in experiments by Mr J. T. Bottomley*. Pieces of iron wire,

annealed and of exceptionally soft quality, when loaded at the rate

of 1 lb. in 5 minutes broke with 44£ lbs. and stretched 27 per cent,

of their original length before breaking. Other pieces of the same

wire loaded at the rate of 1 lb. in 24 hours broke with 47 lbs. and

stretched less than 7 per cent.

It does not appear that such variations in the rate of Loading

as are liable to occur in practical tests of iron or steel have much

influence on the extension or the strength, great as the effects of

time are when the metal is loaded either much more slowly or

much more quickly. In fig. 1G the results are shown of tests b\

the author of two similar pieces of soft iron wire, one Loaded to

rupture in 4 minutes and the other at a rate about 5000 times

slower.

* Proo, Roy. Soo. t L879, p. 991,
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44. Effects of Hardening through overstrain. It may
be concluded that when a piece of iron or steel (and probably the

remark applies to most other metals) has been overstrained in any

way—that is to say, when it has received a permanent set by the

application of stress exceeding its limit of elasticity—it is hardened,

in the sense of being rendered less capable of plastic deformation.

Further, after any such overstrain the physical properties of the

material go on changing for days or even months—the change

being in the direction of greater hardness. Important practical

instances of the hardening effect of permanent set occur when

plates or bars are rolled cold, hammered cold, or bent cold, or

when wire is drawn. When a hole is punched in a plate the

material contiguous to the hole is severely distorted by shear, and

is so much hardened in consequence that when a strip containing

the punched hole is broken by tensile stress the hardened portion,

being unable to extend so much as the rest, receives an undue

proportion of the stress, and the strip breaks with a smaller load

than it would have borne had the stress been uniformly distributed.

This bad effect of punching is especially noticeable in thick plates

of mild steel. It disappears when a narrow ring of material

surrounding the hole is removed by means of a rimer, so that the
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material that is left is homogeneous. Another remarkable instance

of the same kind of action is seen when a mild-steel plate which is

to be tested by bending has a piece cut from its edge by a

shearing machine. The result of the shear is that the metal close

to the edge is hardened, and, when the plate is bent, this part,

being unable to stretch like the rest, starts a crack or a tear

which quickly spreads across the plate on account of the fact that

in the metal at the end of the crack there is an enormously high

local intensity of stress. By the simple expedient of planing off

the hardened edge before bending the plate homogeneity is re-

stored, and the plate will then bend without damage. The injuri-

ous effect of punching holes in thick plates of iron or steel is now

so fully recognised that it is usual to specify that such holes shall

be drilled.

45. Annealing. The hardening effect of strain is removed

by the process of annealing, that is, by heating to redness and

cooling slowly. The effects of overstraining are got rid of by this

treatment, and the material reverts to its primitive state.

In the ordinary process of manufacture of iron or steel bars and

plates by rolling, the metal generally leaves the rolls at so high a

temperature that it is virtually annealed, more or less perfectly, and

the behaviour of a sample in the commercial ^tate consequently

does not differ much from that which the same sample would show

if specially annealed*. The case is different with plates and bars

that are " cold-rolled " or with pieces that have been hammered

while in the cold state ; they exhibit the greater strength and

much reduced plasticity which result from permanent set. A
similar difference is found between wire supplied in the " hard-

drawn " state and wire which has had the hardening effect of the

last passage through the draw-plate removed by subsequent an-

nealing.

When pieces of a structure have been shaped by straining

them while cold it is not unusual to anneal them afterwards In

order to do away with the hardening effect of the overstrain.

* In several of Mr Kirkaldy's papers a comparison is given of tin- clastic limit,

ultimate strength, and ultimate extension of samples which were annealed befon

testing, and of samples which were tested in the oommeroial state; In general the

annealed samples are distinctly, though not very materially, softer than the Others.

(on the Relative Properties of Wrought-Iron Plates from Essen and Yorkshire! London,

1H70
; also Experiments on Fayersta Stcl, I, on. Ion. 1S7M.)
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46. Hardening and Tempering of Steel. In wrought

iron, very miid steel, and most other metals the rate of cooling

from a red beat (in the process of annealing) is a matter of in-

difference : much the same degree of softness is reached whether

the cooling be fast or slow. But a slight difference may be

observed with the mildest steel, and with steel containing more

than 02 per cent, of carbon a marked difference is produced by

fast as compared with slow cooling. When heated to bright

redness and cooled suddenly, steel containing any considerable

proportion of carbon is found to acquire hardness of a different

kind from that which is produced by overstraining. A high-carbon

steel chilled by plunging it at a cherry-red heat into cold water

becomes so hard and brittle as to justify the title "glass-hard,"

which is sometimes applied to it. It is hard enough to scratch

glass, and so brittle that a blow may break it into fragments.

Steel treated in this way loses its plastic character entirely.

When tested under tension it breaks with practically nothing but

elastic extension, without contraction of section, and shows only a

moderate amount of tensile strength.

Further, the glass-hard steel may be deprived of its brittleness,

have its strength increased, and have the range of' elastic strain

greatly extended by subsequent heating to a moderate temperature.

This process is called the tempering of steel. Its effect depends on

the degree to which the temperature of the steel is raised, after it

has been hardened. The different grades of temper which are

produced in this way are often distinguished by reference to the

colour (blue, straw &c.) which appears on a clean surface during

the heating, in conseouence of the formation of a film of oxide.O ' J.

Heating the hardened metal to a temperature between 400° F. and

450
c
F. produces a straw-coloured surface and develops a grade of

temper suitable for the points of cutting tools intended to take a

keen and hard edge ; a temperature of about 550° produces a

purple-blue surface and gives a temper suitable for springs, where

the desideratum is that the elasticity should be very perfect

throughout a wide range of loads. When higher temperatures

are used in the process of " letting dowm " the condition which is

reached approaches more nearly to that of the annealed metal.

47. Contraction of section at rupture. The extension

which occurs when a bar of uniform section is tested by pull is at
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first general, and is distributed with some approach to uniformity

over the length of the bar. Before the bar breaks, however, a

large additional amount of local extension occurs at and near the

place of rupture. The material flows in that neighbourhood much

more than in other parts of the bar, and the section is much more

contracted there than elsewhere. The percentage contraction of

area at fracture is frequently stated as one of the results of a

test, and is a useful index to the quality of materials. If a

flaw is present sufficient to determine the section at which the

rupture shall occur, the contraction of area will in general be dis-

tinctly diminished as compared with the contraction in a specimen

free from flaws, although little reduction may be noted in the

total extension of the piece. Local extension and contraction of

area are almost absent in cast-iron and hard steel ; on the other

hand they are specially prominent in wrought-iron, mild steel,

Fig. 17.

and other metals that combine plasticity with high tensile strength.

An example is shown in fig. 17, which is copied from a photograph

of a broken test-piece of Whitworth soft fluid-compressed steel.

The piece was of uniform diameter before the test.

48. Non-elastic Extension. Experiments with long rods

show that the general extension which occurs in parts of the bar

not near the break is somewhat irregular*; it exhibits here and

there incipient local stretching, which has stopped without Leading

to rupture. This is of course due in the first instance to want of

homogeneity. It may be supposed that when local stretching

begins at any point in the earlier stages of the tesl it is checked

by the hardening effect of the strain, until finally, under greater

load, a stage is reached in which the extension at one place goes

on so fast that the hardening effect cannot keep pace with tin-

increase in intensity of stress which results from diminution o(

area; the local extension is then unstable, and rupture ensues,

* See Kirkaldy's Experiments on Fagerata Steel, London, L878, also Report of tin-

steel Committee, Part 1.
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Even at this stage a pause in the loading, and an interval of relief

from stress, may harden the locally stretched part enough to make
rupture occur somewhere else when the loading is continued.

The molecular disturbance which occurs at the yield-point does

not in general set in simultaneously in all parts of a test-piece

however uniform the cross-section may be. The author has

noticed it begin at one end, while along the greater portion of the

length nothing but elastic extension was taking place, and then

slowly spread from the place where it began until it included the

whole of the piece, the load remaining constant all the while. The
breakdown of structure appears to communicate itself gradually

from place to place along the bar, each portion becoming in turn

unstable when it finds itself deprived of support by the break-

down of neighbouring portions.

49. Crystalline Structure of Metals. Reference should

be made in this connection to the results of microscopic exami-

nation. When a metal is polished and lightly etched it is seen

under the microscope to consist, in general, of crystalline grains,

which are crystals with irregular outlines, the form of the

boundaries having been determined by the meeting of the grains

in their growth. Within each grain there is a definite orientation

of the elementary pieces of which the crystal is built up, and the

orientation changes from grain to grain. When the metal is

stretched by pull, or by cold rolling or cold hammering, the grains

become elongated. But when the piece, after the treatment, is

heated to redness and is again examined microscopically, the

grains are found to have re-formed and to be on the whole as

long in one direction as in another. Slow cooling tends to produce

large grains and fast cooling produces comparatively small grains.

Microscopic observations by Mr W. Rosenhain and the author*

have demonstrated that the manner in which a metal yields when

it takes any kind of permanent set is by slips occurring on cleavage

or " gliding " surfaces within each of the crystalline grains. These

slips show themselves on a polished surface by developing systems

of parallel lines or narrow bands, each of which is a step caused by

one portion of the grain slipping over the neighbouring portion.

Two, three, and even four systems of slip lines may be traced

* Proc. Roy. Soc, March 16 and May 18, 1899.
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when the metal is considerably strained. Plasticity results from

these slips, although the elementary portions of the crystals retain

their primitive form and the crystalline structure of the metal

as a whole is preserved. In some metals, in addition to simple

slips or motions of pure translation, there is a molecular rotation

resulting from strain, which gives rise to the production of " twin"

crystals. Apart from this, however, the occurrence of slips on

three or more planes within each grain suffices to allow the grain

to change its form to any extent as the process of straining

proceeds.

50. Percentage of Extension in Tensile Tests. It is usual

to measure the extension on a length, generally of 8 inches, in the

middle portion of the piece under test, and to express the extension

as a percentage of the length. Usually the fracture occurs within

the length thus marked off, and when it does so the whole extension

which is measured is partly general and partly local. The local

extension, which occurs near the place of fracture, will affect the

whole amount of extension to a degree that depends on the

transverse dimensions of the piece as well as on its quality in

respect of plasticity. A fine wire of iron or steel 8 inches long

will stretch little more in proportion to its length than a very long

wire of the same material, for with small transverse dimensions

the local part of the stretching will be unimportant. On the other

hand, a steel bar with a diameter say of 1 inch will show something

like twice as much extension, in proportion to its length, as will

be shown by a long rod.

The experiments of M. Barba* show that, in material of uniform

quality, the percentage of extension is constant for test -pieces of

similar form, that is to say, for pieces of various size in which the

transverse dimensions are varied in the same proportion as the

length. It is to be regretted that in ordinary testing it is not

practicable to reduce the pieces to a standard form, with one pro-

portion of transverse dimensions to length, since an arbitrary

choice of length and cross-section gives results which are incapable

of direct comparison with one another.

51. Forms of Test-Pieces. The form chosen for test pieces

in tension tests affects not only the extension bul also the ultimate

* Mrm. de in. Soc. des iiKi. Civ,, L880; Bee also a papei bj Mr \v. Baekney, "On

the Adoption of Standard Forms of Test*Pieoea," Mm. Proc. Fml. C. /"., L884,
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strength. In the first place, if there is a sudden or rapid change

in the area of cross-section at any part of the length under tension

(as at AB, fig. 18), the stress will not be uniformly distributed

there. The intensity will be greatest at the edges A
and B, and the piece will, in consequence, pass its

elastic limit at a less value of the total load than

would be required if the change from the larger to the

smaller section were gradual. In a non-ductile material,

rupture will for the same reason take place at AB,
with a less total load than would otherwise be borne.

On the other hand, with a sufficiently ductile material,

although the section AB is the first to be permanently

deformed, owing to lack of uniformity in the distri- Fig. 18.

bution of the stress there, rupture will preferably take

place at some section not near AB, because at and near- AB the

contraction of sectional area which precedes rupture is partly pre-

vented by the presence of the projecting portions C and D. Hence,

too, with a ductile material samples such as are sketched in fig. 19,

in which the part of smallest section between the shoulders or

*7p

Mill"' "i™

D C O

Fig. 19.

enlarged ends of the piece is short, will break with a greater load

than could be borne by long uniform rods of the same section. In

good wrought-iron and mild steel the flow of metal preceding

rupture and causing local contraction of section extends over a

length six or eight times the width of the piece ; and, if the length

throughout which the section is uniform be materially less than

this, the process of flow will be rendered more difficult and the

breaking load of the sample will be raised*. Forms of test-piece

are to be preferred in which the length along which the section is

* The greater strength of nicked or grooved specimens seems to have been first

remarked by Mr Kirkaldy (Experiments on Wrought Iron and Steel, p. 74, also

Experiments on Fagersta Steel, p. 27). See also a paper by Mr E.Richards, on tests

of mild steel, Journ. Iron and Steel Inst., 1882.
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uniform is not less than 8 or 10 times the greatest transverse

dimension, and if the piece has enlarged ends the change of section

should not be quite abrupt.

These considerations as to the choice of forms of test-pieces

have a wider application than to the mere interpretation of special

tests. An important practical case is that of riveted joints,

in which the metal left between the rivet-holes is subjected to

tensile stress. It is found to bear, per square inch, a greater pull

than would be borne by a strip of the same plate, if the strip were

tested in the usual way with uniform section throughout a length

great enough to allow complete freedom of local flow*.

52. Comparative Strength of Long and Short Rods.

The tensile strength of long rods is affected by the length in quite

a different way. With a perfectly homogeneous material, no

difference should be found in the strength of rods of equal

sectional area and of different lengths, provided the length of

both were great enough to prevent the action described in § 51

from affecting the result. But, since no material is perfectly

homogeneous, the longer rod will in general be the weaker, offer-

ing as it does more chances of a weak place ; and the probable

defect of strength in the long rod will depend on the degree of

variability of the material. When the degree of variability has

been established by numerous tests of short samples, the strength

which a rod of any assigned length may be expected to possess

can be calculated by an application of the theory of probabilities.

A theory of the strength of long bars has been worked out on

this basis by Prof. Chaplinf, and has been experimentally con-

firmed by tests of long and short samples of wire. The theory

does not apply when the length is so small that the action of § 51

enters into the case, and the experimental data on which it is

based must be taken from tests of samples long enough to exclude

that action.

* See Kennedy's "Reports on Riveted Joints," Proc. Inst. Meeh, Eng. 1881-5.

In the case of mild-steel plates a drilled strip may have as much as i-_> pel oent.

more tensile strength per square inch than an umlnlled strip. With punched

holes, on the other hand, the remaining metal is much weakened, for the reaton

referred to in § 44.

t Fan Nostrand'e Engineering Magazine, Dec. lssi); Proc. Engineers* club of

Philadelphia, March, 1882.

E, s. m. I
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53. Fracture by Tension or by Compression. In tension

tests, rupture may occur by direct separation over a surface which

is nearly plane and normal to the line of stress. This is usual in

hard steel and other comparatively non-ductile materials. Or it

may occur by shearing along an oblique surface. In very ductile

samples these two modes of rupture are frequently found in com-

bination, and the fractured surface is made up of a ceDtral core

broken by direct tension while round it is a ring over which

separation has taken place by shearing. The shorn ring often

fomis a continuous cone or crater round a flat core.

In compression tests of a plastic material, such as mild

steel, a process of flow may go on without limit ; the piece,

which must of course be short enough to avoid buckling^

shortens and bulges out in the form of a cask. This is illus-

trated by fig. 20 (from one of Fairbairn's

experiments), which shows the compres-

sion of a circular cylinder of steel (the

original height and diameter of which are

shown by the dotted lines) by a load equal

to 100 tons per square inch of original

sectional area. The surface over which

the stress is distributed becomes enlarged Flg
-
20 -

and the total load must be increased in a corresponding degree to

maintain the process of flow*. The bulging often produces longi-

tudinal cracks, as in the figure, especially when the material is

fibrous as well as plastic (as in the case of wrought -iron). A brittle

material, such as cast-iron, brick, or stone, yields by shearing on in-

clined surfaces as in figs. 21. 22. which are taken from Hodgkinson's

experiments on cast-iron
i

. The simplest fracture of this kind is

exemplified by fig. 21, where a single surface (approximately a plane)

of shear divides the compressed block into two wedges. With

cast-iron the slope of the plane is such that this simple mode of

fracture can take place only if the height of the block is not It---

than about one and a half the width of the base. When the

height is less the action is more complex. Shearing must then

take place over more than one plane, as in fig. 22, so that cones or

* For examples, see Fairbainrs experiments on steel, Rep. Brit. Ass., 1S67.

t Report of the Royal Commissioners on the Application of Iron to Railway

Structures, 1849 ; see also Brit. Assoc. Rep., 1837.
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wedges are formed by which the surrounding portions of the block

are split off. The stress required to crush the block is conse-

Fig. 21. Fig. 22.

quently greater than if the height were sufficient for shearing in a

single plane.

54. Inclination of Surfaces of Shear in Tension and
Compression Tests. The inclination of the surfaces of shear,

when fracture takes place by shearing under a simple stress of

pull or push, is a matter of much interest, throwing some light on

the question how the resistance which a material exerts to stress

of one kind is affected by the presence of stress of another kind,

—

a question scarcely touched by direct experiment. At the shorn

surface there is, in the case of tension tests, a normal pull as well

as a shearing stress, and in the case of compression tests a normal

push as well as shearing stress. If this normal component were

absent the material (assuming it to be isotropic) would shear in

the surface of greatest shearing stress, which, as we have seen in

§ 9, is a surface inclined at 45° to the axis. In fact, however, it

does not shear on this surface. Hodgkinson's experiments on the

compression of cast-iron give surfaces of shear whose normal is

inclined at about 55° to the axis of stress* and Kirkaldy's, on the

tension of steel, show that when rupture takes place by shear the

normal to the surface is inclined at about 25 to the a\i>
x

. These

results show that normal pull diminishes resistance to Bhearing

and normal push increases resistance to shearing. In th< ifi

Op. rit. t Op. rit.

4—2
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cast-iron under compression, the material prefers to shear on a

section whose normal is inclined at 55°, on which the intensity of

shearing stress is only 0'94 of its value on the surface of maximum
shearing stress, because on that surface the normal push is only

066 of its value on the surface of maximum shearinp; stress.

55. Fatigue of Metals. A matter of great practical as well

as scientific interest is the weakening which materials undergo by

repeated changes in their state of stress. It appears that in some

if not in all materials a limited amount of stress-variation may be

repeated time after time without appreciable deterioration in the

strength of the piece ; in the balance-spring of a watch, for instance,

tension and compression succeed each other some 150 millions of

times in a year, and the spring works for years without apparent

injury. In such cases the stresses lie well within the elastic limits.

On the other hand, the toughest bar breaks after a small number

of bendings to and fro, when these pass the elastic limits, although

the stress may have a value greatly short of the normal ultimate

strength.

A laborious research by Wohler*, extending over twelve years,

has given much important information regarding the effects on

iron and steel of very numerous repeated alternations of stress

from positive to negative, or between a higher and a lower value

without change of sign. By means of ingeniously contrived ma-

chines he submitted test-pieces to direct pull, alternated with

complete or partial relaxation from pull, to repeated bending in

one direction and also in opposite directions, and to repeated

twisting towards one side and towards opposite sides. The results

show that a stress greatly less than the ultimate strength (as

tested in the usual way b}7 a single application of load continued

to rupture) is sufficient to break a piece if it be often enough

removed and restored, or even alternated with a less stress of the

same kind. In that case, however, the variation of stress being

less, the number of repetitions required to produce rupture is

greater. In general, the number of repetitions required to pro-

duce rupture is increased by reducing the range through which

the stress is varied, or by lowering the upper limit of that range.

* Die Festigkeits-Versuche mit Eisen und Stahl, Berlin, 1870, or ZeiUchr. fur

Bauwesen, 1860-70; see also Engineering, vol. xi., 1871. For early experiments by

Fairbairn on the same subject, see Phil. Trans., 1864.
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If the greatest stress be chosen small enough, it may be reduced,

removed, or even reversed many million times without destroying

the piece. Wohler's results are best shown by quoting a few

figures selected from his experiments. The stresses are stated in

centners per square zoll* ; in the case of bars subjected to bending

they refer to the top and bottom sides, which are the most stressed

parts of the bar.

I. Iron bar in direct tension :

—

Stress. Number of Applications

Max. Min. causing Rupture.

480 800

440 106,901

400 .340,853

360 480,852

Stress.

Max. Min.

320

440 200

Number of Application*

causing Rupture.

10,141,645

2,373,424

440 240 Not broken with 4 millions.

II. Iron bar bent by transverse load

Stress.

Max. Min.

550

500

450

Number of Bendings
causing Rupture.

169,750

420,000

481,950

Stress.

Max. Min.

400

350

Number of Bendings
causing Rupture.

1,320,000

4,035,400

300 Not broken with 48 millions.

III. Steel bar bent by transverse load

Str 3SS. Number of Bendings Stress. Number of Bendings
Max. Min. causing Rupture. Max. Min. causing Rupture.

900 72,450 900 400 225,300

900 200 81,200 900 500 764,900-mean of two trials

900 300 156,200 900 600 Not broken with 33i mills

IV. Iron bar bent by supporting at one end, the other end

being loaded ; alternations of stress from pull to push caused by

rotating the bar :

—

Stress. Number of Rotations Stress. Number of Rotations

>m + to - causing Rupture. From + to - causing Rupture.

320 56,430 220 3,682,588

300 99,000 200 4,1)17.!'!'^

280 183,1 15 L80 19,186,791

260 479,490 L60 Not broken with

240 909,810 1 i'.^l millions.

* According to Bausohinger (lor. ait., p. i»), the oentner per square loll In

which Wohler gives his results is equivalent to 6*887 kiloa per Bquare om., or 0*048 I

ton per square inch.
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From these and other experiments Wohler concluded that

the wrought-iron to which the tests refer could probably bear an

indefinite number of stress changes between the limits stated

(in round numbers) in the following table. The ultimate tensile

strength was about 19J tons per square inch :

—

Stress in Tons per Sq. Inch.

From pull to push +7 to -7
From pull to no stress 13 to

From pull to less pull 19 to 101

Hence it appears that the actual strength of this material varies

in a ratio which may be roughly given as 3 : 2 : 1 in the three

cases of (a) steady pull, (b) pull alternating with no stress, very

many times repeated, and (c) pull alternating with push, very many
times repeated. For steel Wohler obtained results of a generally

similar kind. His experiments were repeated by Spangenberg,

who extended the inquiry to brass, gun-metal, and phosphor-

bronze*. On the basis of Wohler's results formulas have been

devised by Launhardt, Weyrauch, and others to express the

probable actual strength of metals under assigned variations of

stress ; these are, of course, of a merely empirical character, and

the data are not extensive enough to give them much value f.

The general conclusions to which Wohler's experiments lead have

been confirmed by the later researches of Sir B. Baker and

Prof. BauschingerJ. They show how important it is to take

account of the variability of the load in selecting a factor of

safety.

56. Imperfection of Elasticity. Wohler's experiments,

dealing, as all experiments must deal, with a finite number of

stress-changes, leave it an open question whether there are any

limits within which a state of stress might be indefinitely often

varied without finally destroying the material. It is natural to

suppose that a material possessing perfect elasticity would suffer

no deterioration from stress-changes lying within limits up to

* Ueber das Verhalten der Metalle bei wiederholten Anstrengungen, Berlin, 1875.

f See Weyrauch, " On the Calculation of Dimensions as depending on the

Ultimate Working Strength of Materials," Min. Proc. Inst. C.E., vol. lxiii. p. 275
;

also a correspondence in Engineering, vol. xxix. ; and Unwin's Machine Design,

chap. ii.

X For details of the experiments bearing on the subject, see Prof. Unwin's book

on The Testing of Materials of Construction, chap. xii.
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which the elasticity is perfect. But these limits, if they exist at all,

are probably very narrow. Indeed, in the case of iron, there is

indirect evidence that all alteration of stress whatsoever affects the

molecular structure in a way not consistent with the notion of

perfect elasticity. When the state of stress in iron is varied,

however slowly and however little, the magnetic and thermo-

electric qualities of the metal are found to change in an essentially

irreversible manner*. Every variation leaves its mark on the

quality of the piece ; the actual quality at any time is a function

of all the states of stress in which the piece has previously

been placed. It can scarcely be doubted that sufficiently refined

methods of experiment would detect a similar want of reversibility

in the mechanical effects of stress, even when alterations of stress

take place very slowly. When they take place fast there is a

want of reversibility due to another cause, pointed out by Lord

Kelvin, namely, that the application of stress produces change of

temperature, and consequently causes exchanges of heat to occur

between the piece and its surroundings. Such exchanges of heat

are necessarily irreversible, and hence the rapid application and

removal of a load must do work on the piece even although a very

slow application and removal of the load does no work. In other

words, a material may be perfectly elastic in respect to indefi-

nitely slow loading, and yet show dissipation of energy when the

load is applied and removed somewhat quickly. Apart from this,

however, there is probably in all materials some static hysteresis

in the process of loading and unloading, corresponding to imper-

fection of elasticity under indefinitely slow applications of loadf.

And in stress-changes which occur rapidly, experiments show

in general more dissipation of energy for strains within the

usually accepted elastic limits, than can be accounted for by

reference to the variations of temperature caused by straining.

This is shown by the rate at which the vibrations of elastic solids

subside. In experiments made by Lord Kelvin on the subsidence

of the torsional oscillations of bodies suspended from wins, the

bodies oscillating so as to twist the wire alternately to one and

the other side, it was found that the rate of subsidence increased,

in other words, the internal molecular friction causing imperfect

elasticity increased from day to day when the who was kept

* See papers by the author, /'////. ZVaiM., 1885, L886.

t See experiments by the author. Rep. Brit. Assoc. L889, p. BOS.



56 ULTIMATE STRENGTH AND NON-ELASTIC STRAIN.

oscillating, but when the wire was allowed to rest for a day its

elasticity improved. Thus it appears that repeated changes of

stress have a cumulative effect in reducing elasticity, while

Wohler's experiments show that they have also a cumulative

effect in reducing strength. It may be conjectured that repeated

strains induce a change in molecular structure of which the fatigue

in strength and the fatigue in elasticity are two manifestations.

A period of rest in a " fatigued " piece tends to restore elasticity

:

probably it would also tend to restore strength, but on this point

experiments are as yet wanting.

Annealing in any case serves to cure fatigue, and restores the

primitive quality of the piece in respect of both strength and

elasticity.

It is remarkable that a piece which has been fatigued by
many variations of stress, as in Wohler's experiments, and has had

its endurance nearly exhausted, does not in general show any

marked defect either in strength or in plasticity on being tested

to rupture in the ordinary way.

57. Cumulative Effect of Blows and Shocks. An effect

which is sometimes confused with the phenomenon investigated

by Wohler, but which should be treated as distinct from that, is

the failure which is sometimes brought about through the

cumulative effect of shocks. When a blow or shock expends

kinetic energy in straining a piece the strain, which may be more

or less general or more or less local according to the circumstances

of the case, is such that the work done in producing it is equal to

the energy of the blow. It may often happen that this exceeds

the amount of work capable of being taken up in an elastic strain,

and the limit of elasticity may, therefore, be passed in the strain

to which some portion of the piece is subjected. This causes

some local hardening, and as a similar effect may be frequently

repeated the capacity of the piece to endure shocks may gradually

become exhausted. A familiar instance is afforded by the chain of

a winch, which in the course of protracted use may be exposed to

many shocks from the slipping of the weight it lifts or from other

causes. Any such shock may be said to use up a portion of the

plasticity of the material, and the cumulative effect is to produce

a hardening which might in time cause an unexpected failure if

the chain were not periodically restored by annealing it.
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Fracture under successive blows, as in the testing of rails by

placing them as beams resting on two supports, and allowing a

weight to fall on the middle from a given height, results from the

accumulated effect which is brought about in consequence of the

energy of each blow being greater than can be absorbed by merely

elastic strain.

58. Initial Internal Stress. When stress is set up by

applying an external load the behaviour of the piece may depend

to a material degree on the existence of initial internal stress. A
state of stress may exist while there is no external load. Taking

some one section across the piece, we may for example have tensile

stress occurring over some parts of the section, balanced so far

as the resultant is concerned by compressive stress over other

parts of the section. A piece which is entirely free from such

actions is sometimes spoken of (in a phrase due to Prof. Karl

Pearson) as being in a state of ease. Internal stress, existing

without the application of force from without the piece, must

satisfy the condition that its resultant vanishes over any complete

cross-section. It may exist in consequence of set caused by pre-

viously applied forces (a case of which instances are given below),

or in consequence of previous temperature changes, as in cast-iron,

which is thrown into a state of internal stress by unequally rapid

cooling of the mass when it is being cast. Thus in a spherical or

cylindrical casting an outside shell solidifies first, and has become

partially contracted through cooling by the time the inside has

become solid. The inside then contracts, and its contraction

is resisted by the shell, which is thereby compressed in a tan-

gential direction, while the metal in the interior is pulled in the

direction of the radius. Allusion has already been made to the

fact, pointed out by J. Thomson, that the defect of elasticity under

small loads which Hodgkinson discovered in cast-iron is probably

due to initial internal stress. In plastic metal a nearly complete

state of ease is brought about by annealing; even annealed pieces,

however, sometimes show, in the first loading, small defects of

elasticity which may be due at least in part to initial stress, as

they disappear or become reduced when the load is reapplied.

59. Influence of Temperature on Strength Little is

exactly known with regard to the effect of temperature Oil the
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strength of materials. Some metals, notably iron or steel contain-

ing much phosphorus, show a marked increase in brittleness at low

temperatures, or "cold shortness." Experiments on the tensile

strength of wrought-iron and steel show in general little variation

within the usual atmospheric range of heat and cold. The tensile

strength appears to be slightly reduced at low temperatures,

but to be practically unaffected through heating up to 100° or

even 200° Fah. When the temperature exceeds 500° Fah. the

tensile strength falls off rapidly, and at 1000° Fah. it is only

a third or a fourth the normal value*. Reference may be made,

in this connection, to the effect which a "blue heat," or tempera-

ture considerably short of red heat, is believed to have on the

plasticity and strength of iron, and more especially of mild

steel. It appears that steel plates and bars bent or otherwise

worked at a blue heat not only run a much more serious risk of

fracture in the process than when worked either cold or red-hot,

but become deteriorated in such a way that brittleness may
show itself later when the metal is coldf.

Prolonged exposure of wrought-iron or steel even to so mode-

rate a temperature as 100° or 150° Fah., is known to bring about

a gradual change of molecular structure, which shows itself in

a marked variation of the magnetic quality of the metal, the

primitive state, however, being reverted to when the metal is

reannealed. It is not yet known whether any corresponding

mechanical changes are brought about in this way in annealed

metal, although, as we have seen in § 42, a brief exposure to such

a temperature has an immense effect on a piece that has been

newly overstrained.

* See Report of a Committee of the Franklin Institute, 1837 ; Fairbairn, Brit.

Assoc. Rep., 1856; Styffe on Iron and Steel, trans, by C. P. Sandberg. Notices of

these and other experiments will be found in Unwin's Testing of Materials, in

Thurston's Materials of Engineering, ii. chap, x., in Jour. Franklin Inst. 1881, vol.

cxii. p. 241, and in papers by J. J. Webster, Min. Proc. Inst. C.E., vol. lx., and

A. Martens, Zeitschr. des Ver. Deutsch. Ing., 1883.

+ Stromeyer, "The Injurious Effect of a Blue Heat on Steel and Iron," Min.

Proc. Inst. C.E., vol. lxxxiv., 1886.



CHAPTER IV.

THE TESTING OF MATERIALS.

60. Testing Machines. In most modern testing machines

the load is applied by means of hydraulic pressure acting on a

piston or plunger to which one end of the specimen is secured,

and the stress is measured by having the other end of the specimen

connected to a lever or system of levers provided with adjustable

weights. The hydraulic piston takes up the stretch as the test

proceeds, doing work upon the test-piece, and the lever is kept

floating by adjusting the weights on it as the stress increases.

In many small machines and in some large ones screw-gearing is

used instead of hydraulic power to apply force to the specimen.

Springs are used in a few small machines (such as wire-testers)

instead of weights, as a means of measuring the load. Another

plan, which has been successfully employed even in large machines,

is to make one end of the specimen act on a diaphragm forming

part of a hydrostatic pressure gauge.

61. Single-Lever Machine with vertically placed Test-

Piece. A favourite and convenient form of testing machine, now-

used in many English laboratories and steel-works is illustrated

in fig. 23. This machine, designed by Mr J. H. Wicksteed,

uses a single lever with a single heavy travelling weight as

the means of measuring the force.

The illustration shows a 50-ton machine, but machines of

similar design have been built to exert a force o\' 100 tons or mere.

The illustration includes an auxiliary apparatus for drawing auto-

graphic diagrams of load and strain, which will be referred to later.

The testing machine proper consists of a strong upright bo which

the cylinder of the hydraulic ram is attached near the toot, and a
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long lever or weigh-beam resting by a knife-edge on the top of

the upright, and carrying a travelling weight. The traveller

weighs 1 ton ; it carries a vernier by which its position is read

against a divided scale on the beam. The specimen is vertically

placed : its lower end is fastened in a cross-head which is pulled

down by the hydraulic ram below. The upper end is secured in

a shackle which hangs from an inverted knife-edge on the beam.

The beam itself oscillates about another knife-edge, at a short

distance from the first, resting on the top of the supporting upright

or " cat-head." The travelling weight is moved by means of a

screw concealed within the beam, which takes its motion through

spur wheels from a parallel shaft provided with a Hooke's joint in

the axis of oscillation of the beam. This shaft is turned either by

a handle wheel or by taking motion from a power-driven counter-

shaft above—an arrangement which is chiefly convenient for

running the weight back quickly after each test has been made.

A counterpoise which is seen projecting behind the pillar near the

ground serves to force up the ram when the hydraulic pressure is

relieved. The pressure in the hydraulic cylinder is applied in

some instances by means of a screw-pump, but a more convenient

plan is to use an accumulator, or better still a " hydraulic in-

tensifler" by which the work is done by admitting water from an

ordinary low pressure main under a large piston. This large

piston forces home a small hydraulic plunger, thereby producing a

greatly increased intensity of pressure in the fluid on which the

plunger acts, and that in its turn is transmitted to the straining

ram of the machine. Such an apparatus has the advantage of

allowing the load to be applied smoothly without shock, and at

a slow or comparatively quick rate at will. The rate of application

is regulated by a throttle valve through which water from the low-

pressure main has to pass on its way to the large cylinder of the

intensifies

The machine is designed for tests in compression and bending

as well as tension. Four columns, which are removable when tension

tests only are to be made, connect the upper shackle with a plat-

form in the shape of a cross-beam which hangs below the cross-head

which is pulled down by the hydraulic ram. The arrangement is

that of two stirrups linked with one another, one of t hem inverted,

SO that when the two pull against, each other a block o( material

placed between them becomes compressed. For tests m bending
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Fig. 24. Five-ton Testing Machine.
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one of the stirrups—namely the beam which hangs by columns

from the upper shackle—is made some four or five feet long and

carries supports at its ends for the ends of the piece that is to be

bent, while the cross-head presses down on the middle of the

piece. In both cases the force which is exerted is measured by

means of the weigh-beam and travelling weight, just as in tension

tests. The arrangement for compression and bending tests will be

clear from fig. 24, which shows a small machine by Mr Wicksteed

capable of exerting a force of 5 tons, in which the force is exerted

by means of a screw driven by hand. This machine has a supple-

mentary arrangement for torsion tests. A worm and worm-wheel

at the top of the upright serve to twist a specimen, one end of

which is secured in the axle of the worm-wheel, while the other

end is secured in a socket which projects from the side of the

weigh-beam. The axis of the specimen under torsion is in the

same line with the knife-edge about which the beam is free to

oscillate. Each of the " knife-edges " in the weigh-beam of these

machines is the edge of a square-cut bar of steel. The knife-

edges are long enough to prevent the load on them from exceeding

5 tons to the linear inch. With edges formed and proportioned

in this way the friction is insignificant. Care has to be taken in

testing to make the load come on smoothly and as far as possible

to keep the beam from being thrown into oscillation, otherwise its

inertia causes the maximum stress on the specimen to exceed the

amount shown by the travelling weight.

62. Calibration of Vertical Machines. Machines in which

the specimen hangs vertically have the advantage of allowing the

accuracy of their calibration to be readily tested by suspending a

heavy weight of known amount from the upper shackle. The two

points to be tested are (1) the distance between the knife-edges,

and (2) the value of the travelling weight. The value of the

travelling weight can be tested by the following method with-

out removing it from the beam. Move the traveller until the

beam stands horizontally midway between the stops. Then hang

to a point of the beam at a known distance / from the fulcrum,

and near the end, a known weight w. To balance the beam we

must now move back the traveller through a distance /, which is

measured by means of the scale and vernier. Then '/' the weight

of the traveller is given by the equation

Tl
x
= wl.
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In Mr Wicksteed's machines the weight of the traveller is

generally 1 ton. It is conveniently checked hy hanging a 56 lb.

weight to the beam at a point distant by 40 of the principal scale

divisions from the fulcrum. The traveller should then require to

be moved back one scale division to reestablish equilibrium.

The distance between the knife-edges (on) is next determined

by hanging a known heavy weight (say 1 ton) from the shackle

and observing how far in scale divisions the traveller has to be

moved to make the beam stand horizontal. Calling the weight W
that is hung on, and l2 the distance the traveller has to be moved,

we have Wx=Tl2 ,

an equation which determines x in scale divisions. Or, alternatively,

when the weight W has been hung on, we may restore the equili-

brium not by moving the traveller but by applying a measured

(small) weight at some distant point on the beam, in the manner

described above for testing the weight of the traveller.

63. Other Testing Machines using Weights and Levers.

For ordinary testing, in which the specimens to be dealt with are

of no great length, nothing could exceed the convenience,

accuracy and simplicity of the vertical machine. A preference

however is in some cases felt for horizontal machines on account

of the greater readiness with which they can be arranged to deal

with exceptionally long test-pieces. The Werder testing machine,

which is much used in Continental laboratories, is a horizontal

machine with a single lever, so arranged that both the application

and measurement of the load are effected at one end of the

specimen, the other end being merely held fixed in the frame of

Fig. 25. Scheme of Werder Testing Machine.

the machine. The lever is of the bell-crank type with a short

vertical arm and a long horizontal one and a fulcrum at the knee.

The lever is pushed out bodily in a horizontal direction by the
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hydraulic ram : its short arm pulls one end of the specimen, and

weights to measure the pull are applied to the long arm. The

arrangement is shown diagrammatical ly in fig. 25. T is the piece

under test, and L is the bell-crank lever to the long arm of which

weight is applied while the ram R keeps this arm horizontal as the

specimen stretches.

Fig. 26 illustrates the general arrangement of a recent horizontal

machine designed by Mr Wicksteed. Here tension tests are made

in the space marked Q, and compression tests in either of the

V7777777777777777*

Fig. 26. Scheme of Wicksteed's Horizontal Testing Machine.

spaces P or R*. The thrust of the hydraulic ram A is communi-

cated through the test-piece to the suspended frame B, and thence

through the bell-crank lever C and link D to the weigh-beam E.

A view of the complete machine, taken from a photograph, is

given in fig. 27. The cross-beam at the left-hand end is for

bending tests.

In many other testing machines a system of two, three, or more

levers is employed to reduce the force between the specimen and

the measuring weight. Probably the earliest machine of this

class was that of Major Wadef in which one end of the specimen

was held in a fixed support, and the stretch was taken up In-

screwing up the fulcrum plate of one of the levers. In most

multiple-lever machines, however, the fulcrunis arc fixed, and the

stress is applied to one end of the specimen by hydraulic power

or by screw gearing, which of course takes up the stretch, as in

the single-lever machines already described. Kirkaldy, who was

one of the earliest as well as one of the most assiduous workers

* An account of this machine will be found in Engineering^ •' ul \ .
I

t Report of Experiments on Metals /<>r Cannon, Philadelphia, L8

e. s. M.
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in this field, applied in his 1,000,000 lb. machine a horizontal

hydraulic press directly to one end of the horizontal test-piece.

The other end of the piece was connected to the short vertical

arm of a bell-crank lever ; the long arm of this lever was horizontal,

and was connected to a second lever to which weights are applied.

In some of Messrs Fairbanks's machines the multiple-lever system

is carried so far that the point of application of the weight moves

24.000 times as far as the point of attachment to the test-piece.

The same makers have employed a plan of adjusting automatically

the position of the measuring weight, by making the scale lever

complete an electric circuit wThen it rises or falls so that it starts

an electric motor which runs the weight out or in. Generally

the measuring weight is adjusted by hand. In some, chiefly small,

machines, the weight adjusts itself by means of another device.

It is fixed at one point of a lever which is arranged as a pendulum,

so that, when the test-piece is pulled by force applied at the other

end, the pendulum lever is deflected from its originally vertical

position and the weight acts with increasing leverage.

Multiple-lever machines have the advantage that the measur-

ing weight is reduced to a conveniently small value, and that it

can be easily varied to suit test-pieces of different strengths. On
the other hand, their multiplicity of joints makes the leverage

somewhat uncertain and increases friction.

64. Other Testing Machines. Diaphragm Machines.

Hydraulic testing machines have been employed in which one

end of the specimen is held in a fixed support and the stress is

inferred from the pressure of the fluid in the hydraulic rani by

which the load is applied, this pressure being read on a gauge.

Machines of this class are open to the obvious objection that the

friction of the hydraulic plunger causes a large and very uncertain

difference between the force exerted by the fluid on tin* plunger

•and the force exerted by the plunger on the specimen. It appear-.

however, that in the ordinary conditions of packing the friction

is very nearly proportional to the fluid pressure, and its effect ma\

therefore be allowed for with some exactness. The method is

not to be recommended for work requiring precision, unless the

plunger be kept in constant rotation en its own axis during the

test, in which case tin- effects of friction are almost entirety

-eliminated.
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In another important class of testing machines which we may
distinguish as diaphragm machines, the stress (applied as before

ne end of the piece, by gearing or by hydraulic pressure) is

measured by connecting the other end to a free diaphragm

which a liquid acts whose pressure is determined by a gauge.

Fig. 28 shows a simple machine of this class 'used in 1873

testing wire by Sir W. Thomson and the late Prof. Fleemin^

Kg. 28. Hydraulic Machine for Tcsrii:- Wire.

Jenkin). The wire is stretched by means of a screw at the top.

and pulls up the lower side of a hydrostatic bellows : water from

the bellows rises in the gauge-tube G. and its height measures

the stress

In a larger testing machine of this type by Thomasset. the

specimen pulls horizontally on the short end of a bell-crank lever,

the long end of which presses on a horizontal diaphragm,, consisting

of a metallic plate and a flexible ring of india-rubber. The

--ure on the diaphragm displaces mercury from a chamber,

which the diaphragm covers, and causes a column of mercury' to

rise in a eausfe-tube therebv indicating the amount of the stress.

The same principle is made use of in a number of other testing

machines. It has found its most important application in the

remarkable testing machine of Watertown arsenal, built in i s 7.'

by the U.S. Government to the designs of Mr A. H. Emery. This
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is a horizontal machine, taking specimens of any length up to

30 feet, and exerting a pull of 360 tons or a push of 480 tons by a

hydraulic press at one end. The stress is taken at the other end

by a group of four large vertical diaphragm presses, which com-

municate by small tubes with four similar small diaphragm pre

in the scale case. The pressure of these acts on a system of

levers which terminates in the scale beam. The joints and bear-

ings of all the levers are made frictionless by using flexible steel

connecting plates instead of knife-edges. The total multiplication

at the end of the scale beam is 420,000*.

65. Testing Machines for special purposes. Small testing

machines are made for such special purposes as determining

the tensile strength of cement in briquettes, or the transverse

strength of cast-iron bars, or for applying torsion. A usual test

of cast-iron is to lay a rectangular bar with a section 2 inches

deep and 1 inch wide on supports 3 feet apart, and load it in the

middle until it breaks. The load required is usually between

1 and 2 tons, and it is generally applied by means of a lever with

Fig. 20. Arrangement of Levers in Torsion Testing Machine.

a travelling weight. In torsion tests a worm and worm-wheel at

one end of the specimen serve to apply twist, and the moment of

i. tails of the Emery Machine ie€ "Report oft)

L888, A;.] i
i owin'fl I Materialt Kid Proe. Inst. M

1888.
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the couple may be measured at the other end either by a single

loaded lever, or better by using a system of levers such as that

sketched in fig. 29. The object in this arrangement is to secure

that a pure couple will be applied. The lever AB, to which the

specimen is secured at E. has equal arms. Half of the weight TT

acts directly at B. The other half acts at B on one arm of the

auxiliary lever CB. which is pivoted by a knife edge on a fixed

support at its middle point F. This produces an upward thrust

in the link CA equal to half the weight W, and hence the

twisting moment on the specimen is constituted by a pair of

equal and opposite forces forming a pure couple and escaping the

shearing force which a weight simply applied at the end of a

single lever would produce.

66. Attachment of the specimens in tensile tests. The

problem of holding a test-piece fairly so as to ensure that the pull

will be symmetrically distributed about the axis, and that fracture

will not occur at or near the grip through local inequality in the

stress,, presents some difficulty,, especially when the material is of a

rigid (non-plastic) kind. The shackles in which the piece is held

are hinged, to let them adjust themselves to the line of pull. The

test-piece is often made with enlarged ends on which screws are

cut, and the end is screwed into a nut the seat of which is shaped

to form part of a sphere, thus providing a ball-and-socket joint at

each end of the bar. Or the enlarged end terminates in a shoulder

inside of which two half rings are slipped on to form a collar, and

the half rings have spherical curvature where they bear on the

shackle. With plastic materials such as wrought-iron and mild

steel there is no difficulty in getting a fair test of ultimate strength,

even with the simplest appliances for holding the specimen, for the

plastic vielding which precedes rupture wipes out any inequality

there may be in the distribution of the stress to begin with. The

trouble of screwing the ends or of forming shoulders on the test-

piece may therefore be dispensed with, and a simpler attachment

by wedge grips may be used. In this, which is the commonest of

all methods of holding bars or strips of plate in commercial

testing, each end of the bar stands between two wedges of hard

steel the faces of which, where they press on the bar, are rough

while the backs are smooth and are greased to make them slip

down easily in a tapered recess in the shackle. When pull comes
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on the bar, the wedges are

drawn down with it and

press themselves against

the specimen with so

much force that the rough

faces of the wedges bite

into the plastic surface of

the bar and hold it se-

curely. In testing flat

plate-strips the ends of the

test-piece are usually cut

a little wider than the

main body of the piece,

thereby giving an enlarged

surface for the wedge to

act on. With round or

square bars no enlarge-

ment of the ends need be

used, but the wedges in-

stead of being plane have

a groove with roughened

sides, so that each end of

the bar is gripped at four

places round its circum-

ference. Fig. 30 shows

in sectional elevation and

plan the shackles of a

Wicksteed 100-ton ma-
chine with flat wedges

holding a strip of plate

as test-piece. The tapered

hole in which the wedges

sit is not cut out of a

single piece of metal, but

out of two half rings which

are separately free to turn

round the shackle, thus

admitting of adaptation to

Cases where the opposite

sides of the strip are not

quite parallel.

Fig. BO. Bhaoklea in Wioksteed'a VertioaJ

Testing Maohine.



72 THE TESTING OF MATERIALS.

67. Apparatus for drawing autographic diagrams of

extension and load. In laboratory testing the relation of

extension (beyond the elastic limit) to load throughout the test

may readily be observed by simply applying a pair of beam
compasses to two marked points on the specimen (usually

8 inches apart) from time to time as the test proceeds, and

transferring 1 the distance to a scale. When testing is to be done

rapidly, and a knowledge of this relation is still wanted, some form

of autographic recording apparatus is convenient.

In most of the arrangements which have been designed for

this purpose, the diagram is drawn by the relative movement of a

pencil and a sheet of paper on a drum, one component of the

motion being proportional to the extension and the other to the

travel of the weight bv which the load is measured. In a single

lever testing machine, for example such as that shown in fig. 23,

a convenient form of recorder is made by supporting the paper

drum horizontally on the main standard, setting the pencil

carriage on a screwed spindle, which revolves along with the

vertical shaft which gives motion to the travelling weight.

This makes the pencil advance, parallel to the axis of the

drum, through distances proportional to the load. The extension

is taken by having two clips firmly secured to the test-piece

at points 8 inches apart, with a fine wire or inextensible cord

attached to one passing over a pulley on the other, thence over

a second pulley on the first, and thence to the paper drum.

This causes the dram to be turned round through distances

proportional to the extension. In another arrangement, designed

by Prof. Tinwin*, the wire from the specimen causes a pencil to

travel longitudinally, parallel to the axis of the drum, and the

drum revolves through distances proportional to the displacement

of the travelling weight.

In Mr Wicksteed's hydraulic recorder, which appears on a

separate frame behind the main standard in fig. 23, the drum

is pulled round by a wire from the specimen, through distances

proportional to the extension, and the pencil takes its motion,

not from the travelling weight but from the piston of an

auxiliary hydraulic cylinder in free communication with the

straining cylinder of the machine. This piston compresses a

* The Testing of Materials of Construction, Chap. vn.
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spring in its advance, and therefore its displacement measures the

force with which it is pressed out. Its friction is eliminated by

keeping it in continuous rotation, and this makes it indicate

correctly the pressure in the main straining cylinder. But the

net load on the bar bears a somewhat uncertain relation to that

pressure, in consequence of the friction of the ram. Mr Wicksteed

contends that the friction of the ram is proportional to the pressure,

and that a uniform scale is therefore found, the value of which is

interpreted by occasional reference to the weigh-beam.

68. Measurement of Young's Modulus by Extenso-

meters. The small strains which occur in a tensile test of

non-plastic material, and those which occur during the early

stages of the test in material of any kind, require some form of

delicate measuring appliance. The name extensometer is given

to apparatus designed for this purpose. We have seen that the

whole amount of elastic stretching in such a material as wrought-

iron amounts to only about yoVo" oi> the length under observation.

In measuring the elastic modulus and in determining the true

elastic limit we must be able to compare the fractional parts of

this strain which are produced by successive increments of load. On
an 8-inch length of iron or steel the elastic extension is, in round

numbers, about TgVo mcn f°r eacn ton per square inch of load.

Hence to obtain accurate measurements of the modulus there is

much advantage in being able to read to, say, ^wu °f an incn -

Measurements taken between marks on one side of the bar are

so much affected by any bending of the bar through accidental

inequality in the distribution of the stress that no credit is to be

given them. It is essential either to measure the extensions on

opposite sides of the bar and take a mean of the two, or to measure

the displacement between two pieces which are attached to the

bar in such a way as to share equally in the strain on both Bides.

In the experiments of Bauschinger, which take high rank among

observations of this class, independent measurements of the strains

on two sides of the bar were taken by using mirror micrometers of

the type illustrated in fig. 31. There are two dips a and t> clasp-

ing the test-piece at the places between which th«' extension is bo

be measured. The clip b carries two small rollers, a\, </,. which are

free to rotate on centres fixed in the clip. These rollers press on

two plane strips attached t<> the other clip. When the specimen
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stretches the rollers are consequently caused to turn through dis-

tances proportional to the strain. The amounts by which the

""^—
*z.

U--*-"

Fig. 31. Scheme of Bauschinger's Extensometer.

rollers turn are read by means of small mirrors, glt g2 , fastened to

the rollers, which reflect the mark-

ing of a fixed scale, f, into the

reading telescopes el3 e2 . The ex-

tension of the bar is deduced from

the mean of the two readings. The

adjustment of this apparatus is a

matter of considerable nicety, and

in point of convenience a self-con-

tained form of extensometer is much

to be preferred.

Professor Unwin's extensometer

(fig. 32) uses two clips, clt c.2 , the

upper one of which is free to revolve

about the pair of points which attach

it to the bar, while the lower one is

deprived of this freedom by a set

screw s abutting on the side of the

bar. Each of the clips has a level

tube I fastened to it, and the lower

one carries a rod r furnished with a

micrometer screw m, the point of

which presses against the under side

of the upper clip. The screw s is

adjusted to make the lower level

tube horizontal : then the upper tube

is Set level also by adjusting m, and Fig. 32. Unwin's Extensometer.
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as the specimen stretches the amount is noted by which m has

to be turned to keep the tube level. The instrument reads to

tofo o
inch -

The author has devised an extensometer of the self-contained

class which has proved convenient and accurate in use. It can be

quickly applied to any test-piece and no part of it has to be

touched while the test is being made. The principle involved

is illustrated diagrammatically in fig. 33. There are two clips B and

©c olQ

0B

Fig. 33. Scheme of the Author's Extensometer.

G each attached to the test piece A by the points of two set-screws.

The clip B has a projection B' ending in a rounded point P which

engages with a conical hole in 0; when the bar extends this

rounded point serves as a fulcrum for the clip C and hence a point

Q, equally distant on the other side, moves relatively bo B through

a distance equal to twice the extension. This distance is measured

by means of a microscope attached to B either on a projection

which allows it to point directly towards a mark at Qt
or ta-

in the sketch) the microscope forms a prolongation of B ami

the motion of Q is brought into the held of view by means
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of a hanging rod R. The rod R is free to slide on a guide

in B, and carries a mark on which the microscope is sighted.

The displacement is read by means of a micrometer scale in

the eye-piece of the microscope. The pieces B and B' are jointed

to one another in such a way that the bar may twist a little, as it

is sometimes liable to do during a test, without affecting the

engagement of P with C. This also obviates any need of absolute

parallelism in the axes of attachment of the two clips. But the

joint between B and B' forms a rigid connection so far as angular

movement in the plane of the paper is concerned. This feature is

essential to the action of the instrument : it is only then that P
serves as a fixed fulcrum in the tilting of A by extension on the

part of the specimen.

Fig. 34 is a view of one form of the complete instrument, taken

Fig. 34. The Author's Extensometer.
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from a photograph*. The clips B and C are set at 8 inches apart.

Here the instrument is inverted, as compared with the scheme of

fig. 33. The joint between B and B' consists, in this instance, of two

upright pins fixed in B, one of which presses up into a hole and the

other into a slot in B', the line of this hole and slot being perpen-

dicular to the axis of the set-screws by which the clip is attached

to the rod under test. Hence, so far as movement about the axis

of the set-screws is concerned, B and B' act as a rigid whole. This

movement is prevented by the gearing of P in the hole in the

lower clip C. The piece B' is here a frame consisting of two

parallel steel rods united by a cross-bar at top and bottom, and

carrying, besides the screw P, the microscope, which is hinged

to B' about the point E vertically above Q, and is provided with a

focussing screw at F. The counterpoise D, which is also attached

to the piece B', serves to balance the weight of the microscope

and make the pressure vertical between P and the hole into which

it gears. There is a supplementary counterpoise D' for adjusting

the balance about the axis of the joint between B and B'. These

counterpoises are adjusted so that when the heavy end (Q) of C is

raised, making P cease to be in gear with C, P has no tendency to

move in any direction. The excess of weight on the right-hand

side of G may be made sufficient to produce the requisite pressure

at the point P but it is convenient to supplement this pressure by

means of a light spring pulling the two together. The frame BB'

with the microscope may be lifted off, leaving only the two clips

attached to the rod.

The object sighted is one side of a wire stretched horizontally

across a hole in a plate at Q, and illuminated by a small mirror

behind. The distances OP and OQ are in this instance equal, with

the effect that the movement of Q is double the extension of the

rod. The length of the microscope is adjusted, with reference to

the scale in the eye-piece, so that the numbers read on the scale

correspond to -gTrJiju °f an mcn °f extension. This adjustment is

tested by turning the screw P, which has a pitch of .,',, inch,

through one revolution, and observing that the displacement of

Q is 500 units of the eye-piece scale. In the instrument illus-

trated in fig. 34 the whole scale comprises 1,400 units, and

calibration tests show that throughout the middle L,200 of them

* Proc. Roy, Society, Vol. 68, M«iy. L896".
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the proportionality of the scale readings with the real movements

of Q is practically perfect.

The scale engraved in the eye-piece of the microscope has 140

divisions each corresponding to 50V0 mcn °f extension, and by

estimation to tenths of a division readings are taken to 5-0^00 inch.

The screw P further serves to bring the sighted mark to a

convenient point on the micrometer scale, and also to bring the

mark back if the strain is so large as to carry it out of the field of

view : thus a single turn of the screw adds 500 scale divisions to

Fig. 35. The Author's Extensometer (Newer Form).

the range shown on the micrometer scale. In dealing with elastic

strains there is no need for this, as the range of the scale is itself
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sufficient to include them, but it is useful when observations are

being made on the behaviour of metals as the elastic limit is

passed.

To facilitate the application of the extensometer to any rod a

clamp (not shown in the figure) is added by which the clips B and

C are held at the right distance apart with the axes of their set-

screws parallel, while they are being secured to the test-piece.

Such a clamp is especially convenient when the strain has been

carried beyond the elastic limit and it is desired immediately to

reset the clips to the standard distance apart after the length

between them has materially changed by the extension of the

specimen.

The form shown in fig. 34 is applicable to vertical specimens

only. A newer and in some respects more simple form, suitable

for horizontal or inclined bars as well as for vertical ones, is shown

in fig. 35. In this arrangement the microscope forms a prolonga-

tion of the clip B, and the displacement of the point Q in the clip

C is brought into the field of view by a rod R, as in the scheme

sketched in fig. 33. A ball-and-socket joint is used between R and

C, and the two are held together by a light spring. The calibrating

screw is now fixed in C and a hole at the end of it forms the socket

for B'.

Fig. 36 shows what is substantially the same form of extenso-

meter adapted to measure the elastic compression of short blocks.

Fig. 86. The Author's Extensometer applied to measure the Elastic

Compression <>f short Blooks.

Here the length t<> be dealt, with i».'i ween the <-lips is only l \ inches,

and the strain of the specimen is mechanically multiplied LO times



80 THE TESTIXG OF MATERIALS.

instead of only twice, as in the former case. This is done by
extending the clips to the right so that the distance of Q from

the axis is 9 times that of P. The prolongations to the left are

added to counterpoise the weight, so that the force with which

the point P presses against its socket may be vertical. The
motion of Q is transferred to the field of the microscope by means
of a vertical hanging piece which is jointed to the lever PQ
at Q, and carries the mark on which sights are taken. In this

instrument the calibrating screw is dispensed with, and the object

sighted by the microscope is a small piece of glass on which two

fine horizontal lines are engraved at a distance of J- inch apart.

The length of the microscope is adjusted to make these lines

include 500 units of the eye-piece scale. Each unit consequently

corresponds to a displacement of the glass plate'through 25 ^ QQ inch,

or in other words to an extension in the test-piece of 9-50W0 incn -

Extensometers such as have been described are an important

adjunct to the testing machine, and are most commonly used

along with it. It is however worth while to observe that for

many experiments on elasticity the testing machine is not essential.

Fig. 37. Small Testing Machine for Elastic Extension of Eods,

with Extensometer attached.
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So long as elastic strains are dealt with there is no need of

hydraulic or other gearing to take up the stretch, and a simple

lever may suffice to apply the load. A laboratory apparatus for

measuring Young's modulus in rods of various metals is shown in

fig. 37. By hanging weights from the end of the lever loads up

to 1 ton are applied to the rod, which may conveniently have a

diameter of J or | inch, and an extensometer attached to the rod

measures the strain.

69. Measurement of Young's Modulus in Wire. When
long pieces of wire are available the elastic extension admits of

direct measurement by means of a scale and vernier. A good

plan is to hang up two long wires side by side, fastening both to

the same support and attaching the scale to one and the vernier

to the other. One is kept taut by a load which is not varied

during the test. The other is first loaded with a weight sufficient

to straighten it, and additional weights are then applied to produce

the elastic extension, which is measured by noting the movement

of the vernier over the scale. With iron or steel wires, say 20 feet

long, the extension will be nearly -^ inch for each ton per square

inch of load, and as the load may generally be raised to 10 tons

per square inch, and often to much more without passing the

elastic limit, the movement of the vernier is sufficient to give

fairly accurate determinations of the modulus. The advantage

of using a second wire to carry the scale is that any yielding

of the support, or any change of temperature such as might

occur during the test, affects both wires equally.

When comparatively short pieces of wire are used some means

of magnifying the relative displacement is necessary. A con-

venient plan is to clamp two little blocks to the two wires to

serve as platforms on which is placed a small tripod carrying a

mirror, two feet of the tripod being supported in a hole and a slot

respectively on one of the blocks while the other leg rests on a

plane horizontal surface on the other block. When one wire

stretches the mirror tilts, and the amount of its tilting is measured

by means of a fixed reading telescope and scale. Fig. 38 shows

an apparatus for carrying out such measurements. The wires

hang inside a tubular stem from a clamp at the top, and a cross-

bar attached to the bottom end of one of thom carries a constant

quantity of load \yhile variable load is applied to the other. The

k. s. m. 6
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reading telescope with its attached scale is supported by part

of the framework so that the whole apparatus is self-contained.

A fixed shelf may be used in place of the second wire.

Fig. 38. Apparatus for measuring elastic extension of wires.

In calculating the extension from the scale readings it must be

noted that the angle through which the reflected ray turns is

twice the angle through which the mirror tilts. Let a be the

effective width of the tripod carrying the mirror, namely, the dis-

tance from its back foot to the line joining its two front feet, let s

be the number of scale divisions by which the reading in the

telescope changes when a load is applied, and let b be the distance

between the mirror and the scale expressed in scale divisions.

g
Then the small angle turned through by the ray is

j
. The angle
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through which the mirror tilts is — , where 81 is the extension of the
ci

wire. Hence 8l = —r and is found in the same units as are used in
2b

measuring a.

70 Measurement of Young's Modulus by Bending
Observations of the deflection of a loaded bar supported as a beam

on fixed supports, or clamped at one end and free at the other,

furnish a convenient method of determining Young's modulus for

the material of the bar. When the piece is long and sufficiently

flexible to bend considerably, the deflection is readily measured by

having a fixed scale behind the beam, with a fixed piece of mirror

glass alongside of the scale, so that readings may be directly taken

by bringing the eye to the level of the beam until the top edge

of the beam covers its reflexion in the mirror behind, and then

sighting the position of the edge upon the scale. In dealing with

less flexible bars an apparatus like that shown in fig. 39 is useful.

Fig. 39. Apparatus for measuring elasticity by deflection of beams.

There the supporting knife-edges arc clamped on a stiff frame

Like a Lathe-bed, and can be Bet to any desired distance apart.

6 2
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The deflection is measured by sighting a finely divided glass scale,

clamped to the beam, through a reading microscope of low power.

A useful addition to the apparatus consists of a little mirror which

can be set astride the beam at any place for the purpose of

observing the angle of slope there, the tilting of this mirror when

the beam is loaded being observed from a distance by means of a

reading telescope and scale. This mirror appears in the figure above

one of the two supports. In place ofloading in the centre, two loads,

equal in amount, may be applied at the two extremities of the

beam, which are arranged for that purpose to project by equal

distances beyond the two supports. The advantage of this method

of loading is that the middle portion of the beam between the

supports is then subject to uniform bending and to no other kind

of strain—a point which will be explained in the chapter dealing

with beams.

Let a be half the distance between the supports, and b the

distance by which the beam projects beyond each support. It will

be shown later (Chapter VII.) that if a load W be applied at

the centre the deflection caused then by that load is

Wa3

6A7

where / is the moment of inertia of the section about a horizontal

central axis.

Hence in that case

E-—
Again, if a load W be applied at each extremity, the upward

deflection at the centre is given by the equation

Wa*b

and in that case

Wa'bE=
2u,I

Fig. 40 shows a similar arrangement for observing the deflec-

tion of a cantilever or beam held fixed at one end and free at the

other. Taking L to denote the whole length from the clamp to
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the free end, and assuming the load W to be applied at the free

end as in the illustration, the deflection there is

WD
SET'

Fig. 40. Apparatus for observing deflection of cantilever.

The practical difficulty of ensuring that the clamp shall hold

the fixed end so securely as to keep it strictly horizontal makes

this experiment a less trustworthy means of finding E than the

other.

In both cases the apparatus is arranged so that the deflection

may be observed at various points along the length of the bar for

the purpose of examining experimentally the curve which a beam

of uniform section assumes under a given load or system of loads.

The slope may also be determined from point to point along the

length by means of the jockey mirror.

71. Measurement of the Modulus of Rigidity. Static

Method. This modulus is usually measured by experiments on

the torsion of a round rod or wire. It will be shown later that

when such a rod is twisted every part of it is in a state o[' shear.

and that within the clastic limit the angle of twist B (expressed in

circular measure) on any length / is connected with the diameter
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d, the modulus of rigidity C, and the twisting moment M by the

equation

n S21M
u =

or C =
S21M

7rd40'

In applying this to measure C in rods of moderate diameter a

convenient plan is to find 6 by

using two long pointers, clamped

to the rod near its ends with their

distant ends moving over fixed

scales. The difference of the

two scale readings measures the

twist on the length I between the

pointers. When the diameter of

the rod is so great as to make the

angle of twist too small to be

measured in this way, a pair of

mirrors clamped on the rod and

facing sideways should be used

along with a reading telescope and

scale for each. An optical pointer

has the advantage over a mechani-

cal pointer of doubling the angle,

and further it can readily be made

of much greater length.

Fig. 41 shows a self-contained

apparatus for experiments on the

torsion of wires. The wire hangs

in the axis of a tubular stem and

carries a cylindrical weight round

which two cords pass which are led

away over pulleys and carry hangers

on which equal weights are placed.

The wire is consequently twisted

by a pure couple, and the angle of

twist is read by observing the dis-

placement on a fixed circular scale

of a pointer attached to the cylin-

drical weight.

Fig. 41. Apparatus for measuring

modulus of rigidity by the tor-

sion of wires.
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72. Measurement of the Modulus of Rigidity. Kinetic

Method by Torsional Oscillations. Let a circular rod or wire

be held fixed at one end and have attached rigidly to the other

end a mass which is set into oscillation by applying a twist and

letting go. Then for elastic twists the moment acting at any

instant on the mass to restore it to its normal position will be

proportional to the angle of twist at that instant, and the oscilla-

tions will consequently be of the simple harmonic type, and will be

executed in the same period whether they are large or small,

provided they lie within the elastic limit. Thus if t is the period

of time taken to make each complete oscillation, and /u is the

twisting moment per unit of angle (in other words, the constant

ratio of the twisting moment M to the angle 6), we have

t = 27T\/ ,

when I is the moment of inertia of the oscillating mass about the

axis of the rod. The factor g converts the moment \x into kinetic

units.

But by the principle stated in § 71 (and to be proved later)

Hence t2 =
fig gd*C

and C =

.1/ ird'G

±ir2I _ V2SirlI

128irll

gdW

which allows G to be found by observing the period t, when the

diameter and length of the rod and the moment of inertia of the

oscillating mass are known.

The apparatus shown in fig. 41 allows this moans oi' measuring

C to be carried out on the same wire to which the static test is

applied. The cords have simply to be disconnected and the heavy

cylindrical mass to be set oscillating. Its moment of inertia is

9 ,
r being its radius and m its mass.

Another convenient \'<>vu\ of oscillator consists of a hollo*
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cylinder or ring with a rectangular bar across the top to allow the

wire to be attached, fig. 42. Its mo-

ment of inertia is

??z 1(?V" — ?'2
2
) m.2{a- 4- b2

)

where m^ is the mass of the ring i\ and

r.> its external and internal radii; nu is

the mass of the bar. a its half length

and b its half breadth measured hori-

zontally.

The method of oscillations may be

used with rods of considerable dia-

meter by attaching a cross bar to which

heavy masses may be applied. The

moment of inertia is most readily found

by noting the period when the amount

of the applied masses is changed. Thus after observing the

period tlf let an additional mass. m, be applied at each end of

the cross bar, and let t.2 be the value then found for the increased

period of oscillation. Calling the original moment of inertia /,

the moment of inertia in the second state is I+2ma 2
, where a is

the distance from the axis to the points at which the weights are

applied, and

from which

Fie. 42.

/ =

I + 2ma 2

73. Maxwell's Needle used as Torsional Oscillator.

This is a particularly convenient oscillator for use in measuring

It consists (fig. 43) of a tubethe modulus of rigidity of wire

Fie. 43. Fie. 43 a.

Maxwell's Xeedle.

into which four equal short pieces of tube can be slipped, each of

the short pieces being one-fourth of the length of the long tube.
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Two of the short pieces are empty and two are filled with lead.

By placing the tubes as shown in figs. 43 and 43 a the moment of

inertia of the system can have two values given to it, Ix and

I2 , of which I
x (corresponding to fig. 43) is considerably the

greater.

To express the change in moment of inertia, or 1^ —

I

2 , let a be

the half length of the long tube, m1 the mass of each of the two

short tubes that are filled with lead, and m 2 the mass of each of

the empty short tubes.

Then the system is changed by shifting two masses each equal

to mx
— m

2
so that the distance of the centre of gravity of each

from the axis changes from fa to \ a.

Hence

I1
— I2

= 2 (??*! —m
2)

(jqCi2 — jjrd2
) = (m x

— m
2)
a2

.

Pig. 41. Apparatus for experiments on torsional oscillation,

usinj^ Maxwell's Needle.
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Let ti and t2 be the observed periods of oscillation in the two
cases respectively.

Then

tf —

t

2
- 7X

— I2 (m1
— m2) cC

2 '

I1 (m1
— m2 ) a

2

or
Cj Zi" ~~ L2

But C =^A
gd* t±

2 '

and hence we obtain without calculating / the following equation

for C,

p _ 1287r£ (m1
— m2) a

2

~ gd± ' t;
2 - U2

'

A self-contained apparatus for experiments on the torsion of

wires by means of Maxwell's needle is shown in fig. 44.

74. Results of Tests. Data for Cast-iron. Cast-iron,

the product of the blast furnace, has properties which vary widely

in different specimens, depending as they do in great measure on

the quantity of carbon which the iron contains, as well as on the

manner in w7hich the carbon is united to the iron. The amount
of carbon may range from 2 up to nearly 5 per cent. In white

cast-iron it exists mainly in a state of combination with the iron :

in grey cast-iron it consists mainly of graphite mixed with the

iron. Silicon is also present in amounts that vary from less than

1 up to 3 per cent, or even more, along with small quantities of

sulphur, phosphorus and manganese. Comparatively great softness

is obtained when the amount of carbon present in the combined

state is small, although the whole amount of carbon may be con-

siderable, but a much stronger iron is obtained by having 1 per

cent, or more of carbon in the combined state.

The tensile strength of cast-iron may be as low as 4 tons

per square inch, and may be as high as 20 tons. These are

exceptional figures, and values ranging between 8 and 12 tons per

square inch are more usual in good foundry iron. The compressive

strength may be as low as 20 tons per square inch, and as high as

nearly 100 tons in exceptional cases : its ordinary values range



THE TESTING OF MATERIALS. 91

from 40 to 60 tons per square inch. The shearing strength

appears from such experiments as have been published to be

somewhat lower than the tensile strength. The great compressive

strength of cast-iron leads to its being largely used in the con-

struction of columns, but the facility with which it can be melted

and cast into any desired shape is the property to which its

application in engineering is mainly due. Very grey cast-iron is

the kind which becomes most perfectly fluid when melted, and

consequently takes most exactly the form of the mould, but a

less grey mixture is to be preferred when strength is a chief

desideratum.

It is only within very narrow limits that cast-iron can be

said to show even approximate proportionality between stress

and strain. Hodgkinson's experiments on long cast-iron bars

showed that both in extension and in compression the strain was

about '00017 for each ton per square inch of load, in the initial

stages of the loading. This makes, in round numbers,

E —
7
= 6000 tons per sq. inch.

In experiments on short cast-iron bars Prof. Unwin* observed

strains ranging in various specimens from '000133 to '000156 per

ton per square inch. The corresponding limits of E are in round

numbers 7,500 and 6,400 tons per square inch. Values of the

modulus of rigidity C in cast-iron generally lie between 3,400 and

3,000 tons per square inch.

75. Wrought-iron. In wrought-iron, which is manufactured

from cast-iron by the processes of puddling and rolling, only a

small fraction of the carbon present in the cast-iron survives the

action of the puddling furnace. The carbon remaining in the iron

is reduced to less, often to much less, than one-quarter of one per

cent. Traces of manganese, sulphur, silicon and phosphorus are

also found. The metal as rolled has a markedly fibrous structure,

arising chiefly from intermixture with particles of slag which the

process of rolling draws out into long filaments.

Good wrought-iron bars have a tensile strength of about '2~>

tons per square inch, and will stretch as much as -<> per cent on

an 8-inch length before breaking, the section becoming lvduoed

* 77//' Testing of Materials of Construction, 1st Ed, p.
'-''
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at the place where fracture occurs to 50 or 60 per cent, of its

original size. In good wrought-iron plates the strength of strips

cut along the direction of rolling ranges generally from 20 to 24

tons per square inch, and that of strips cut across the direction

of rolling from 18 to 22. In plates of poor quality the tensile

strength may be as low as 16 tons per square inch. Bars having

a tensile strength of say 23 or 25 tons have usually a well-marked

yield-point in the neighbourhood of 15 or 17 tons. The crushing

strength of wrought-iron is rather indefinite : it is often taken as

| of the tensile strength. The shearing strength ranges from about

16 to 20 tons per square inch, but is according to Bauschinger's

experiments notably less when a plate is sheared in a plane parallel

to its faces. In that direction the shearing strength may be only

8 or 10 tons. The value of E for wrought-iron lies in most cases

between 12,000 and 13,000 tons per square inch : it appears that

12,500 may be taken as a fair mean value. The modulus of

rigidity C is about 5,000.

76. Steel. The name steel is applied to a great variety of

materials which differ mainly in the proportion of carbon they

contain. At one end of the range is very mild steel, made in

the Siemens furnace or in the Bessemer converter, which contains

less than 0'2 per cent, of carbon, and differs from wrought-iron

chiefly in the greater homogeneity which it possesses as a

consequence of being rolled from a cast ingot instead of from a

puddled ball interspersed with slag. At the other end of the

range are high carbon steels, containing 0'5 per cent, or more of

carbon, capable of being hardened and tempered by the treatment

mentioned in § 46, and in some cases made by an entirely different

process, namely, by adding carbon to wrought-iron in the cementa-

tion furnace, with or without subsequent melting of the steel in

a crucible. Mild steel containing from 0*15 to 0*25 per cent, of

carbon has now to a very great extent superseded wrought-iron in

engineering construction. Its tensile strength is about one-third

greater, and its capacity for plastic yielding before fracture is also

greater.

Specimens of mild steel bar or plates containing about 0'2

per cent, of carbon show in general a tensile strength of 28 to

30 tons per square inch, and stretch about 25 per cent, on the

8-inch length. As the percentage of carbon is increased the
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plasticity diminishes, but the tensile strength becomes greater, at

least until the percentage of carbon is as high as Oo per cent. To

a considerable extent the strength and plasticity depend on the

amount of work which has been done upon the ingot in rolling it

down into the form of bar or plate, and the highest strength is

found in wire, which is the finished product on which the largest

amount of work has been spent. Steel wire containing a fairly

high percentage of carbon may show a tensile strength of 80, 100,

or even 120 tons per square inch. No rule can be laid down as

to the relation of the strength to the percentage of carbon, for

except in the mildest steel, the strength may be much affected

by the state of temper, and in all cases it is also affected by

the presence of other constituents and by the amount of rolling

or drawing down which the ingot has undergone, as well as by

the question whether the piece has been subsequently annealed.

The following results obtained by Bauschinger are quoted from a

table in Prof. Unwin's book, and will serve to give a general idea

of the way in which the strength of steel may depend on the

percentage of carbon it contains. The steels to which these tests

relate were made by the Bessemer process.

Percentage
of

carbon

Tensile

strength

tons per

sq. inch

Extension in

16 inches

per cent.

Shearing
strength

tons per

sq. inch

Elastic limit

in tension

tons per

sq. inch

•14 28-1 22 21-7 18

•19 304 20 23-6 21

•46 33-8 18 22-8 22

•51 35-6 14 25-5 22

•54 35-3 18 25-0 •7 9

•55 35-9 18 25-4 21

•57 35-6 18 23-1 21

•66 40-0 14 27-2 24

•78 41-1 11 26-3 24

•80 45-9 9 30-6 25

•87 46-7 s 31-7 27

•96 527 7 37 31

The contraction of area at fracture falls progressively from 4!)

per cent, in the mildest of these steels to 10 percent, in the steel

which is most rich in carbon.

It is remarkable that no meat dififerenbe is found in the
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modulus of elasticity whether the steel has much or little carbon.

In the examples just quoted the modulus E was found to vary

irregularly between 13/700 and 14.900 tons per square inch, but

the values have no correspondence with the percentage of carbon.

In the light of more recent experiments these values of the

modulus of elasticity appear to be rather high. Tests made by a

committee of the British Association (B. A. Report. 1896, p. 538),

on two steels, one of which was much milder than the other, gave

values of E which are lower than those quoted above and are very

nearly the same for the milder as for the higher carbon steel.

The following are the figures, those for E being the means obtained

by several observers with extensometers of various types

:

Breaking
strength

tons per

sq. inch

Yield-point

tons per
sq. inch

Ultimate
extension

or 8 inches

per cent.

E
tons per
sq. inch

23-4 16-0 32 13190

35-6 20-4 24-5 13250

Mild steel plates have a shearing strength of 24 to 26 tons,

and do not exhibit the same weakness in regard to shearing along

a plane parallel to then faces which is observed in wrought-iron.

The modulus of rigidity C was found by Bauschinger to vary

irregularly, in the series of Bessemer steels referred to above, from

5,320 to 5,670 tons per square inch. Like Young's modulus it

has no obvious relation to the hardness or softness of the steel.

In another series of tests (of Siemens steel) the mean value of

E was 13,360, and that of C was 5,310.

Even the mildest steel when quenched in oil or water from a

bright red heat shows some increase of strength, with some reduction

in ultimate elongation and raising of the elastic limit. In less mild

steels these effects are very marked, and when the percentage of

carbon exceeds 0"5 per cent, the process of hardening by quenching

deprives the steel of almost all its capability of drawing out before

rupture.

Steel castings, while generally much stronger than iron castings,

are less strong and decidedly less ductile than steel on which work

has been done by forging or rolling. The tensile strength is often

from 15 to 20 tons per square inch, sometimes as much as 25 tons
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or even more. The extension before rupture is usually less than

5 per cent.

Many special steels are manufactured in which the iron is

alloyed with other constituents in addition to small quantities of

carbon and manganese. Nickel, aluminium, chromium, tungsten,

molybdenum are among the metals used for this purpose. The

effects of various proportions of nickel have been particularly

studied by Mr Hadfield, who has shown that the addition of 5 or

even 7 per cent, of that metal produces a steel which combines a

high breaking load with much elongation and contraction of area

at fracture*.

* Min. Proc. Inst. C. E. vol. cxxxviii, 1899.



CHAPTER V.

UNIFORM AND UNIFORMLY-VARYING DISTRIBUTIONS

OF STRESS.

77. Use of the Stress Figure to represent a Stress

distributed over a Surface. A stress distributed over any

plane surface AB (fig. 45), such as an imaginary cross-section of a

Fig. 45.

strained piece, may be represented by setting up ordinates Aa, Bb,

etc., from points on the surface, the length of each ordinate being

chosen so that it represents to scale the intensity of the stress at

the corresponding point of the surface. In this way an ideal solid

figure is constructed, which may be called the stress figure. Its

height exhibits the distribution of stress over the surface which

forms its base. The volume of the stress figure represents the

total amount of the distributed stress. A line drawn from g the

centre of gravity of the stress figure parallel to the ordinates Aa
etc. determines the point D through which the resultant of the

stress on the surface AB acts. This point is called the centre of

stress for the surface AB.

78. Uniformly distributed Stress. When the stress is

uniformly distributed over the surface, in other words, when its

intensity at all points is the same, ab is a plane surface parallel to
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AB, and D is the centre of gravity of the surface AB. This is

sufficiently obvious from consideration of the stress figure : it is

also seen by taking moments about any axis YY in the plane of

Fig. 46.

AB. Let 8S be an element of the surface AB and let x be its

distance from the assumed axis. Then the moment of the stress

on the element BS is

p$S . x,

and the moment of the whole stress, being the sum of the moments

for all the elements, is

XpBS . x,

or p^x&S,

since in this case the intensity p is by assumption uniform.

The resultant of the stress

P = lpBS = pS,

where S is the area of the surface. To produce the same moment
this resultant must act at distance xr such that

P . xr = p^xSS.

Hence
p^x&S __ 'ExSS=

ptf 8

which is also the equation for the distance of the centre of gravity

of the surface from the assumed axis.

Thus, for example, if the stressed piece is a tic-rod of uniform

section, in which the distribution of stress is known bo be uniform,

the resultant pull must act along the axis of the rod, namely, along

the line which cuts each cross-section in its centre of gravity.

For brevity we may speak of this as an axial pull.

E. s. m. 7
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It does not however follow that an axial pull will necessarily

produce a uniformly distributed stress. Other distributions of

stress which will serve to bring the resultant

into the line of the axis can readily be imagined

:

in particular the resultant will be axial if the

distribution is symmetrical about the axis how-

ever much it may vary from point to point along

radial lines. The question is one of much prac-

tical importance, Under what conditions (if any)

will an axially applied load produce a uniformly

distributed stress?

Fig. 47.

Consider a tie-rod such as that sketched in

fig. 47, in which there are variations of section,

and suppose the pull to act along the axis. It is

clear that at a section AB near the fastening no

approach to uniformity in the distribution of the

stress can be expected. The central part of that

section, lying as it does directly under the pin hole,

bears but little of the load : nearly all is borne

by the outer portions. Again, on the section CD,

near a place where the area suddenly changes,

the central portion has to bear nearly all the load.

Or again, on EF the intensity is greater near the

edges than in the middle. But as we recede from

these exceptional places, advancing along parts of the bar where the

section is uniform, we find a more and more close approach to

uniformity in the stress, and at sections such as GH or JK the

variation is probably slight. The strains to which the variable

stress gives rise on such sections as AB or CD tend to equalize the

action on neighbouring layers. Thus, for example, when the

central part of CD is more pulled than the sides the greater

stretching of the material in the centre there produces a shear

which makes the lines along which the pull acts spread out, in

sections above CD, into the portions of material at the sides.

This equalizing effect of the strain occurs, to a greatly in-

creased degree, when the elastic limit is exceeded. In a plastic

material especially, like mild steel or good wrought-iron, the flow

of the material in those places where the stress first passes the

yield point tends to relieve these of some of their excess of stress
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and to throw a larger proportion on other parts of the section.

In the testing of non-plastic metal there is some difficulty in

getting a fair test, because the inequalities of distribution which

necessarily exist in the neighbourhood of the grips are apt to

cause fracture to occur there ; but in the testing of plastic metal

this difficulty does not present itself for the reason just stated,

and fracture tends to take place where the section is most free to

contract, namely, at or about the middle of the clear length.

Even however for stresses lying within the elastic limit the

equalizing effect of the strains is so considerable that for the

purpose of engineering calculations it is generally justifiable to

assume that an axially applied load produces a practically uniform

distribution of stress, except at or near shoulders, nicks, holes, and

other places where a change of section is found. It is taken for

granted in this statement that the piece is in a state of ease

before the load is applied.

Subject, then, to these reservations it is usual to assume that

'any load P applied axially to a piece whose area of section is $
will produce a stress the intensity of which may be taken as equal

P . . .

to -~ at all points of the section, to a degree of approximation

sufficient in calculations relating to the strength of the piece.

79. Uniformly-varying Stress. When the top of the

stress-figure (§ 77) is a plane inclined to the plane of the surface

on which the stress acts, the stress is described as uniformly-

varying. The intensity of the stress is then proportional at any

point to the distance of that point from a certain line in the plane

of the surface, namely, the line in which the top and bottom planes

of the stress figure meet when produced if necessary. Uniformly-

varying stress is illustrated in fig. 48. There MN is the line in

which the plane of the stressed surface AB is met by the upper

LofC.

N/

Mr-'-'

Pig. 18.
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bounding plane of the stress figure. This line is called the

Neutral Axis of the uniformly-varying stress. It lies at right

angles to the line AB which is assumed to be the direction along

which the intensity of stress varies most rapidly. There is no

variation in direction parallel to the neutral axis. The intensity

of stress p at any point may be written

p — ax,

where x is the distance of the point from MN and a is the rate of

variation of the stress in the direction of the line AB : in other

words, a is the amount by which p increases per unit of length in

the direction of AB.

Uniformly-varying stress is practically important because it

occurs (for stresses within the elastic limit) in a bent beam, in a

tie-rod when subjected to non-axial pull, and in a long strut or

column, even when the push is originally axial, after the column

has become bent so that the axis no longer coincides with the

direction of the resultant thrust. The stress in beams and in

struts will be considered in some detail later. Another example

of uniformly-varying stress is found in a masonry pier or arch where

the line of resultant thrust does not pass through the centre of

gravity of the joint or section over which thrust is distributed.

It is obvious from consideration of the stress figure that in a

uniformly varying stress the resultant falls to one side of the

centre of gravity of the stressed surface : in other words, the

resultant is non-axial. And subject to qualifications similar to

those which have been explained in dealing with uniformly

distributed stress, the converse is approximately true for stresses

lying within the elastic limit. That is to say, a non-axially

applied load may be taken as giving rise to a stress which

approximates more and more nearly to a uniformly-varying dis-

tribution the further the section dealt with is from any place

where the distribution is disturbed by shoulders or holes or any

such alterations in the form of the section. Thus, for example, a

long tie-rod of uniform section, the fastenings of which lie

excentrically so that the pull is non-axial, will have a stress which

to all intents and purposes is uniformly-varying except near the

fastenings. The stress in a loaded hook is another example : there

the resultant passes so far from the centre of the section that
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while the inner edge is in tension, the outer edge is in com-

pression.

80. Uniformly-varying Stress forming a Couple. When
the neutral axis MN (fig. 48) of a uniformly-varying stress lies, as

in that figure, outside of the stressed surface, all parts of the surface

are exposed to stress of one sign. The neutral axis may however

lie within the surface, and it then divides the surface into two

parts on one of which there is pull and on the other there is push.

A particular case of much practical interest occurs when the

neutral axis passes through the centre of gravity of the stressed

surface. The whole amount of the pull on one side of the neutral

axis is then equal to the whole amount of the push on the other

side : the resultant of the stress is not a single force but a couple.

For the quantity 1%8S has the same value over the positive region

lying on one side of an axis through the centre of gravity as it

has over the negative region on the other side of the same axis

:

multiply it by the constant a expressing the rate of variation of the

stress and we have equal values of SaxSS, or LjjSS, when sum-

mation is made separately on the positive and negative sides.

Such a couple stress is represented graphically in fig. 49, where

Fig. 49.

AB is a side elevation of the plane surface on which the stress

acts, the direction of AB being that along which the stress varies.

The neutral axis passes at right angles to AB through C, which is

the centre of gravity of the stressed surface. The volume of the

wedge ACE, representing in the stress figure the negative part of

the stress, is equal to that of the wedge BCF
t
which represents the

positive part of the stress. The greatest intensity o( negative

stress £>) occurs at .-1, and the greatest intensity of negative Stress
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p» occurs at B. Calling x
x
and x 2 the distances of A and B re-

spectively from the neutral axis through C we have

1 2

To find the moment M of the couple we have to find the sum of

the moments of all the elements, in other words, to integrate

x . pclS over the whole surface:

M-fxpdS

= ajx*dS = al,

where / is the moment of inertia of the surface about the neutral

axis through G. This may also be written

Xi X-2

81. Analysis of any Uniformly-varying Stress into a

uniform stress and a couple. A stress such as that shown in

fig. 48 or fig. 50 by the figure AabB may evidently be regarded as

Fig. 50.

made up of a uniformly distributed stress Aa'b'B together with

a uniformly-varying stress whose resultant is a couple, namely,

aa'b'b. The intensity of the uniform component, p , is the inten-

sity which the given stress has at the centre of gravity of the

stressed surface. The resultant is equal to p S, S being the area
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of the surface, and it acts at such a distance xr from C that its

moment about C is equal to the moment of the couple component

aa'b'b.

Hence to find xr which is the distance of D, the centre of stress,

from G we have

p S .xr = al

where a is, as before, the rate of variation of the stress, namely,

ro

—

£1 or F* /o
or F*—U

f
anc[ / is the moment of inertia of the

surface about an axis through G perpendicular to the direction AB
along which the stress varies.

The equation xr = —~ = 7-^—^—

~

allows the position of the resultant to be found when the stress is

specified by giving the extreme intensities p x and p 2 . If however

the position of the resultant is given, the extreme intensities are

found thus

:

p Sxr = aI = (Po
~ Pl)I

,

1

S.-i i It. &x.rx2 \

lmilarly p2
= p {) (

1 -f
——

- 1

.

82. Extent to which Stress may be Non-axial without
reversing its sign at the edge of the stressed surface. The

amount by which the resultant of a uniformly-varying stress may
deviate from the centre of the stressed surface without reversing

the sign of the stress on any part of the surface is found by writing

the condition for which is that Sxr x\ = I, or

hence, p x
= p 1 1 —

Taking the particular case of a circular surfaoe (radius r) NNr

7T?''' V
have /= -.

, S = 7rr-, and a^mri hence xr = .

4 4
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The stress will therefore have the same sign over a circular sur-

face provided the resultant does not deviate from the centre by

more than one-fourth of the radius.

In a rectangular surface such as a joint in masonry a similar

calculation shows that the deviation mav amount to one-sixth of

the width of the surface without causing the stress to reverse its

sign at the opposite edge. Hence the rule is sometimes followed

in the design of masonry arches, of keeping the resultant thrust

between neighbouring blocks within the middle third of the joint,

in order that no part of the joint may be exposed to tensile

stress.

In a joint formed without cement, or in one where the cement

has become ineffective in offering resistance to pull, the conse-

quence of allowing the resultant to deviate beyond the limit of

the middle third would simply be to put a part of the joint out of

action. That is to say, on the off side of the joint there would

be, over a certain area, no stress at all, and on the remainder there

would be compression, distributed in a uniformly-varying manner.

The case in question is illustrated in fig. 51. From A to E there

Fig. 51.

is no stress, the point E being found from the consideration that

EB is three times the distance of D, the centre of stress, from C.

In masonry piers and retaining walls it is by no means uncommon
to find the resultant passing further from the centre than the

middle third.

83. Simple Bending. The stresses which are produced in

a beam by the application of any system of loads will be con-
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sidered in the next chapter, but we may notice here a specially

.simple case in which the stress is of the kind illustrated by fig. 49.

w n

k-/rH

Fig. 52.

w.,

k—U->>.

F2

Let a beam be loaded as in fig. 52 with loads WXi W2 , applied at

points whose distance from the supports are l x and Z 2 , and let

WJ, = W2 l 2 .

Then the reactions at the supports, Fx and F2 , are respectively

equal to Wt and W2 . Consider the stress in any vertical section

AB of the beam, taken between the points of application of W1

and W2 . The beam is divided by such a section into two portions a

and /3. The only external forces acting on /3 are the couple formed

by W2 and F2 , and these must be balanced by the forces which a

exerts against /3 in consequence of the stress at the section AB.

In other words, the stress has the character of a couple, whose

moment is W2 l2 . We might have got the same result by con-

sidering the equilibrium of the portion a. The only external

forces acting on it are the couple made up of Wx and Flt and these

arc balanced by the forces which j3 exerts against a at the section

:

hence the stress at the section is a couple whose moment is WJ X
—

a result which is in agreement with that just arrived at, since

WA = W2l.

The moment of the stress on the section is called the Bending

Moment. The bending moment is in this case the same for all

sections lying between W
z
and W.,.

If the stress be within the elastic limit it will be distributed

in the uniformly-varying manner illustrated in fig. 53, with the

neutral axis passing horizontally through the centre of gravity of

the section. Calling //, and yt the distances of the top and bottom
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respectively from the neutral axis, we have at the top the greatest

intensity of compressive stress

Pi- J

Fig. 53.

and at the bottom the greatest intensity of tensile stress

My,
P-2
=

I

where M is the bending moment and I is the moment of inertia

of the section about the neutral axis. The intensity at any point,

distant y from the neutral axis, is

My
P= I'

84. Influence of Bending beyond the Elastic Limit on

the Distribution of the Stress. The assumption made in the

last paragraph, that a bending moment gives rise to a uniformly-

varying distribution of stress applies only when the material is

homogeneous and when the greatest intensity of stress falls below

the elastic limit. Hooke's Law is supposed to be true for all parts

of the beam.

If, however, the bending moment be increased, non-elastic

strain will begin as soon as either px
or jh exceeds the corre-

sponding limit of elasticity. The distribution of the stress will

then be modified. The outer layers of the beam are taking
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permanent set while the inner layers are still following Hooke's

Law. As a simple instance it will suffice to consider in a general

way the case of a material which is strictly elastic up to a certain

limit of stress, and then so plastic that any small addition to the

stress produces a relatively very large amount of strain—a case

not far from being realized in good wrought-iron or mild steel.

When a beam of such material is overstrained the diagram

exhibiting the distribution of stress will take a form generally

resembling that sketched in fig. 54 or fig. 55. In fig. 54 it is

Fig. 55.

assumed that the elastic limit is the same for tension as for

compression, with the effect that the distribution remains sym-

metrical about the original neutral axis. In fig. 55, on the other

hand, it is assumed that the elastic limit is lower for compression

than for extension, in consequence of which the neutral axis shifts

towards the tension side when the beam becomes overstrained.

When the overstrained beam is relieved from external load it

is left in a state of internal stress, the general character of which

(for the case of fig. 54) is indicated by the dotted lines in that

figure. This internal stress satisfies the condition that its sum

and also its moment vanish over the section as a whole.

85. Modulus of Rupture. In consequence of the action

which is illustrated, in a somewhat crude manner, by figs. .">4 and

55, the bending moment Mx
which will break a beam cannot be

calculated from the ultimate tensile strength ft
or from the

ultimate compressive strength fc by using fche formula

Vi //-

because the distribution of stress assumed in finding tlii^ relation
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between bending moment and stress ceases to exist as soon as

overstraining begins.

But when experiments are made on the ultimate strength of

bars to resist bending, it is not unusual to apply a formula of this

form to calculate an imaginary stress f which receives the name of

the Modulus of Transverse Rupture. Let the section be such that

y-L
= y2. Then the modulus of transverse rupture is denned as

/ = /

where M1 is the value to which the bending moment has to be

raised in order to break the bar.

This mode of stating the results of experiments on transverse

strength is unsatisfactory, inasmuch as the modulus of rupture thus

determined will vary in beams of the same material having different

forms of section. When a plastic material in which the tensile

and compressive strengths ft and/c are equal is tested in the form

of an I beam in which the top and bottom flanges form nearly the

whole of the section, it will have a modulus of rupture not far from

equal to ft or fc . On the other hand, if the material be tested

in the form of a rectangular bar, the modulus of rupture may
approach a value one and a half times as great. For in the latter

case the distribution of stress may approach an ultimate condition

in which the upper half of the section is in uniform tensionf t and

the lower half is in uniform compression of the same intensity. The

moment of the stress is then equal to ifthh
2 where b is the breadth

and h the depth of the section, while by definition of the modulus

of rupture f we have

Values of the modulus of transverse rupture are generally to be

understood as referring to bars of rectangular section.

In a material such as cast-iron, whose tensile and compressive

strengths are very different, the modulus of rupture is found to

differ widely from either of these strengths. Experiments on the

cross-breaking of rectangular bars of cast-iron generally give

values of the modulus of rupture ranging from 14 to 20 tons per

square inch, or fully double the values which are found in tests of

tensile strength.



CHAPTER VI.

STRESS IN BEAMS.

86. Character of the Stress in Beams. In general the

loads, as well as the supporting forces, applied to a beam act at

right angles to the beam's length. In the special case already

considered in § 83 the stress at any section is a bending couple

simply : in the more general case is a bending couple together

with a shearing stress in the plane of the section.

Imagine a beam loaded in any manner. Let HK (fig. 56) be

H v

—X,

V

•Xo-

F«

B

Fig. 56.

any cross-section. Between the two parts A and B into which

this section divides the beam there is a stress, the amount and

character of which is to be found by considering the equilibrium

of either portion A or B. The portion B, for example, is in

equilibrium and therefore the loads and supporting force applied

to it, namely, Fu F2 , F.M F4 , arc balanced by the forces which A

exerts against B in consequence of tho stair of stress which exists

at the section HK. The system of applied forces /*',, F, etc., may
be resolved into a single force and a single couple, by referring
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each force in turn to the plane of the section. Thus F1 acting

where it does act is equivalent to an equal and parallel force acting

at HK together with a couple whose moment is equal to Fxx1}

where xx is the distance of the force from the section. Similarly

F2 is equivalent to a force equal and parallel to F2 acting at HK
together with a couple whose moment is F2x2 , and so on. Hence

the system of applied forces as a whole is equivalent to a couple

whose moment is

XFx

and to a force, in the plane of HK, and parallel to the applied

forces, equal to

2F.

The former constitutes the Bending Moment at the section : the

latter constitutes the Shearing Force.

In other words, the stress on HK must be such as to

equilibrate first a couple whose moment is *EFx and second a force

IF tending to shear B from A. In these summations regard must

of course be had to the sign of each applied force : in the case

sketched, for example, the sign of F4 is opposite to that of the

other forces.

We conclude then that the stress on any section of the beam

may be regarded as due to a Bending Moment M equal to the sum

of the moments (about the section) of the externally applied forces

on one side of the section (SFx), and a shearing force equal to the

sum of the forces on one side of the section. It is a matter of

convenience only whether the forces on B or those on A be

considered in reckoning the bending moment and the shearing

force at the section which separates A from B.

The bending moment causes (for action within the elastic

limit) a uniformly-varying normal stress of the kind described in

§ 83. The shearing force causes a shearing stress distributed over

the plane of section in a manner which will be discussed later.

This shearing stress in the plane of the section is (by § 12)

necessarily accompanied by an equal intensity of shearing stress in

horizontal planes parallel to the length of the beam.

87. Stress due to Bending Moment. The stress due to

the beading moment is the thing chiefly to be considered in

practical problems relating to the strength of beams. It consists,
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in an ordinary beam, of longitudinal push in filaments above the

neutral axis and longitudinal pull in filaments below the neutral

axis. In a cantilever, which tends to " hog " instead of " sag

"

under the action of the loads, the pull is on the upper and the

push on the lower side : the bending moment is then opposite in

sign to the bending moment of a beam supported at both ends and

loaded at intermediate points.

Whether positive or negative in sign, the bending moment
produces (for stresses to which Hooke's Law applies) a distribution

of stress of the kind sketched in fig. 53, with a neutral axis at the

centre of gravity of the section. The intensity p, at any distance

y from the neutral axis is, by § 83,

My

where M is the bending moment and i" is the moment of inertia

of the section about the neutral axis. The greatest intensities of

pull and push occur at the top and bottom edges, their values

being

My, My2

pi = —¥- anc* P*
= ~f

'
•

88. Particular Cases. One or two examples may be useful.

Suppose the section of the beam to be a rectangle, of width b and

depth h, and to stand with the side h vertical. Then

bh*

"12 '

h

Pi=2V
6M 6M

~
bli>

" Sh
'and

where 8 is the area of the section.

The advantage, in point of economy of material, which is

gained by using a deep and narrow section is obvious. The stress

in a rectangular beam varies inversely as h for a given bending

moment when $ is constant.

In a bar of square section set with its diagonals horizontal and

vertical, the moment of inertia / has the same value as if the

b4

sides were horizontal and vertical, namely, -
where b is the
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length of each side. Hence^ for a given bending moment is greater

in the ratio in which y1 is greater, namely, in the ratio V2 : 1,

6V2.M
P1-P2 Sb

7TC/
4

In a soiid circular section of diameter d, I = -^-r and
o-±

_S2M_8M

If the section is a hollow circle, like that of a bicycle tube,

in which the thickness is small compared with the diameter, /

Sd2

approaches the limiting value -^- , and in the limit, when the

thickness is relatively indefinitely small,

P1-P2- Sd
,

89. Beam with Flanges and Web. A more advantageous

disposal of the material is arrived at, in respect of bending strength,

when it is concentrated at the places where the stress is greatest.,

namely, at the top and bottom. Hence in the most usual form a

beam consists of two flanges held apart by a thin iveb or by bracing-

equivalent to a web. The function of the web is, as will be shown

later, to take the shearing force. The bending moment is borne

mainly by the flanges, one of which is in tension and the other in

compression ; and if the depth of each flange is small in comparison

with the depth of the beam, the intensity of the stress is nearly

uniform over the whole of each flange, at any section.

Girders of this kind are formed by rolling solid metal with an

I section, or are built up of plates, or are made by combining

separate members to form frames. In some cases the beam takes

a box-shaped section through the use of two webs instead of one.

Often the strength to resist bending moment is calculated with

reference to the flanges alone, the (generally small) addition to

the bending strength which the web affords being left out of

account.

In that case the relation of the bending moment to the stress

in the flanges may be expressed simply as follows. Let Slt S2 be

the area of the flanges, p1} p2 the intensities of stress on them, and

h the height reckoned from the middle of one flange area to the
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middle of the other. Then, neglecting the small variation of p
over each flange,

M =p181 h =p282 h,

and consequently
M_ M

Pl ~

8

1h
> P

*~~SJi'

It is clear that the greatest economy of material can be secured

only when the sectional areas of the tension and compression

flanges are made inversely proportional to the tensile and com-

pression strength, so that 8tft
may be equal to 8cfc . In rolled

beams of wrought-iron and steel and also in plate beams of these

metals both flanges are usually of the same sectional area, but in a

cast-iron beam a section such as that shown in ne. 57 would be

Fig. 57.

suitable, with a relatively large tension flange, the ratio of the two

strengths being fully six to one. In a cast-iron beam the web is

necessarily of considerable thickness and cannot properly be left out

of account in reckoning the bending strength.

90. Variation of Bending Moment and Shearing Force

from point to point along a Beam. Diagrams of Bending

Moment and Shearing Force. The bending moment and the

shearing force in general vary from point to point along a beam, and

they are conveniently shown by setting up ordinates the lengths

of which represent the values of these quantities, fco any convenient

Scale, on a base line representing the length of the beam. A few

examples of such diagrams may be given, and the student will find

it a useful exercise to draw others for himself.

E. S. M. >



114 STRESS IN BEAMS.

1. Single load TT at the centre of the span :

—

ov
i

Fig. 58.

.w
2

Yir. 59.

Calling P and Q the reactions at the ends,, we have P=Q=^W.

Let L be the span and x the distance of any section from the

end P. then, for the moment at a section between P and TT,

J/, = P.':

aud for the shearing force

For a section between TT and Q the bending moment is

Q I
L — ;/.). and the shearing force is equal to Q or %W.

The maximum bending" moment is at the centre and its value

is
PL WL

or

The diagrams of bending moment and shearing force are

sketched in figs. 58 and 59 respectively. We shall distinguish a

shearing force as positive when it tends to shear the right-hand

portion of the beam up. With this convention the shearing force

is positive on the right-hand half of the beam,, and negative on the

TT W
left-hand half. It changes from + -^- to — at the place where

the load is applied.



STRESS IN BEAMS. 115

This abrupt change of the shearing force at the place where

the load is applied must not be misunderstood to mean that there

can be two different values of the shearing force at a single section.

There is only one value at each section, for any given distribution

of load. The apparently anomalous state of things at the section

under the load is due to the conventional assumption that the

load is applied at a point. Any real load, however much concen-

trated, would be distributed over some finite length of the beam,

and the change from positive to negative shearing force would be

gradual over that length.

2. Single load W placed at any distance c from one end :

—

I
1

w

Fig. 60.

Fig. 61.

Here Q =
T

and r =
T

The bending moment
Mr = PX

as before, so long as x is less than c : the greatest value La reached

, , . Wc(L-c) m, / ,. v , ,.

when x = c and is —^= -. The (negative) shearing force id

the left-hand portion is equal to P, and the positive shearing force

in the right-hand portion is equal to Q. The two rectangles

which make up the diagram of shearing force have equal arras.

- -2
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3. Two or more separate loads :

—

w
wa )

w

?-.

Q.

Fig. 62.

w3

w2

wx
Fig. 63.

Q

The diagram in this case may readily be drawn by drawing the

diagrams for each load considered alone, in the first instance, and

then combining them by adding the ordinates. The separate

diagrams are shown in fig. 62 in fine lines, and the final

diagram, derived from them, is shown in bolder lines. The shear-

ing force diagram may be formed by superposition in the same

way (fig. 63).

4. Continuous distribution of load, uniform per foot-run of

the span :

—

Let the uniform load be w per foot-run. The reaction at each

pier is \%vL. At any distance x from the left-hand end the bending

moment

Mx = Px — wx .
- =

^ (Lx — x2
).
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This is a maximum when x = \L, its value then being

wL2

The curve of bending moments is a parabola. (Fig. 64.)

Fig. 64.

Fig. 65.

The shearing force

Fx = wx P = W Ix — ,y

ivL
decreases uniformly from the value — at the left-hand end, be-

comes zero at the middle, and increases uniformly to =- at the

other end. (Fig. 65.)

5. Beam carrying a uniformly distributed load over a part of

its length only :

—

Here the portions which are clear of the load are affected just

as they would be if the load were concentrated at its own centre of

gravity G. The straight lines pa and qb of the bending moment
diagram, fig. 6Q, would meet, if produced, above G, and the curve

from a to b is drawn by erecting on the base ab the parabola which

would be the bending moment diagram of a beamAB carrying the

same distributed load.

The straight line diagram pabq represents the bending moment

which would exist if a pair of equal loads, fcogel her equal to I hedistri-
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buted load, were applied at A and B respectively. But in addition

to the moment so produced, the effect of the distribution between

A and B is to produce in that portion of the beam a supplementary

<k

Q

p A G B q

Fig. 66.

Fig. 67.

amount of bending, equal to that which the same load would

produce if distributed over a beam AB resting on supports at A
and B. This may be shown analytically, but it will be obvious

from considerations to be brought forward in § 92 below.

The diagram of shearing force for the same case is sketched in

fig. 67.

6. Beam projecting as a cantilever beyond one of its supports

and loaded as sketched :

—

The bending moment diagram afcd, fig. 68, is obtained by drawing

acd which is the diagram due to the load at D alone, and abe which

is due to the load at B alone and superposing them. Or, more

directly, we obtain afc by setting up on the sloping base ac the

ordinates of the diagram due to the load at B. To draw the

shearing force diagram, fig. 69, we may calculate the reaction at C.

which is the step by which the shearing force changes there, and

then draw the diagram from left to right- : or alternatively, sketch

the diagram for the load at D alone, the reaction at C due to
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AD
that load being WD . ~jji ; then superpose the diagram for the load

applied at B.

Fig. 68.

Fig. 69.

7. Beam with distributed load and projecting end carrying a

single load :

—

i
^-~—

,

.
: ,'"::';'

V

cr~ ••-.

Fig. 70.

Pig. 71
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The bending moment diagram for the single load is first drawn

abc (fig. 70) and then that for the distributed load is drawn on the

sloping base be. Similarly for the shearing force, draw defgh for

the single load and superpose on it the diagram gjkh for the distri-

buted load.

91. Graphic method of finding Bending Moments. The
following more purely graphic method of determining the bending

moments on a beam loaded in any manner is occasionally useful,

Given a beam AB carrying loads Wl} W2 etc. at distances a^, a2 etc.

from the support A. On an ordinate at A set off the distance

AC = QL, L being the span, and join CB. On the line CA mark

off CD = W1a1 , DE = W2a2> EF'= W3as and FG = W,a4 . The re-

maining distance GA will be equal to W-a3 since %Wa= QL, there

being no bending moment at the pier A. Join D with H the

point where CB meets the line of W1: D with / and so on. The

line BHIJKLA is the diagram of bending moments : its height

evidently represents the quantity 2ifa, summation being made

in respect of the forces which lie to the right-hand side of any

section.

92. Relation between the Bending Moment Diagram
and the Funicular Polygon for the same system of Loads.

The polygon formed by a hanging cord, under any system of loads,
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is a diagram of bending moments for a beam similarly loaded. To

prove this consider any section of the cord such as C (fig. 73).

The stress there may be resolved into two components, one along

Fig. 74.

the vertical line CD and the other parallel to the line AB, which

represents the span of the corresponding beam. The component

parallel to AB is the same wherever the section C be taken, as is

evident from consideration of the reciprocal figure. Call it H.

The force exerted on the cord at B may also be resolved into a

vertical part and a part along DB. Then the equilibrium of the

whole right-hand portion of the cord, from C to B, requires that the

moments taken about D shall balance, hence

H.CD = 2Fx

where x is measured horizontally from the section, the sum being

taken to the right of the section and including the vertical com-

ponent of the force at B, which is the same as the reaction at the

pier in the similarly loaded beam. Hence

2Fa>CD =
H

and since H is constant CD is proportional to 2Fj\ which is the

bending moment on the similarly loaded beam. In this proof it is

not necessary that the line AB be horizontal.

It is interesting to apply this proposition to such a case as the

example do. 5 of § 90.
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The continuous load from A to B (fig. 75) causes that portion of

the funicular polygon to take a curved form, namely the form which

Fig. (o.

a chain whose weight represents the distributed load would take

if hung from the points A and B. The straight line polygon

PABQ is the one which would be got by referring the load to its

two extremities A and B. Hence the bending moment diagram

is properly drawn (as in § 90) by drawing the straight line diagram

PABQ first and superposing on i5 a diagram representing the

bending moment which the distributed load would produce on a

beam of the span A B.

93. Connection between Bending Moment and Shear-

ing Force.

Consider two sections of a beam closely adjoining one another,

separated by an indefinitely small distance &%. Call the bending

moment on one 21, and on the other 21 + B2I.

We have
2I = XFx

the distance of each force from the second section being greater by

the amount hx.

Hence M + 821 = IFx + 8xZF

and m=8x%F
dM

or 2F =
da

That is to say, the shearing force is equal to the rate of change of

the bending moment, from point to point along the beam.
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Hence also, in diagrams of bending moment and shearing force,

the height of the ordinate in the shearing force diagram measures

the gradient of the curve in the bending moment diagram, and the

area enclosed by the curve in the shearing force diagram, between

any two points of the span, measures the difference between the

bending moments at these two points.

If, for instance, we take two points on the beam where the

bending moments are equal, the shearing force line between these

points must enclose equal positive and negative areas. A par-

ticular case is when there is no bending moment at each of the

two points. This applies, for example, to the whole length of an

ordinary beam resting on two end supports, for at each support

the bending moment is zero. It also applies to the whole

length of an overhanging beam such as that of example no. 6 in

§ 90. The case of simple bending, without shearing, discussed in

§ 83, is found only when the bending moment is uniform. Illustra-

tions of the relations between bending moment and shearing force

diagrams will be found in the examples which have been already

given.

94. Bending Moment and Shearing Force due to

Moving Loads. The student should find it easy to establish

the following propositions with respect to the action of moving

loads on a beam supported at its ends.

The bending moment at any section due to a single moving

load is greatest when the load is at the section. Its value is

Wx (L — x)
i L where x is the distance from one end. The diagram

of maximum bending moments is consequently a parabola ; its

W

L

height at the middle is - .

The shearing force at any section due to a single moving load

is positive when the load is approaching the section from the left,

and negative when the load has passed the section. The greatest

positive and negative values are found when the load is indefi-

11'

nitely near to the section, on each side. Their values are '

— W(L-x)
and ' respectively. The diagram of maximum shearing

Li

forces (positive and negative) is sketched in fig. 76.



124 STRESS IN BEAMS.

The bending moment at any section due to a uniform advancing

load is greatest when the beam is wholly covered.

Fig. 76.

The shearing force at any section due to a uniform advancing

load has its greatest positive value when the load covers the portion

of the beam lying to the left of the section, and its greatest negative

value when the load covers the portion of the beam lying to the

right of the section. The diagram of maximum positive and

negative shearing force is sketched in fig. 77. The values at any

IfJOf? 1U ( ±j Xi
section distant x from the left-hand end are 7r F̂ and Vr •

2L 2L

Fig. 77

95. Distribution of Shearing Stress over the Section of

a Beam. The shearing stress at any point in a vertical section of a

beam is (by § 12) associated with a shearing stress of equal intensity in

a horizontal plane through that point. If for instance AB and A'B'

are two closely neighbouring vertical sections separated by a short

distance Sx, the intensity of shearing stress in the section AB at

the point H is the same as the intensity of shearing stress in the

plane of HJ. We find the shearing stress inHJ by considering the

equilibrium of the piece AHJA', The normal stresses on AH and

A 'J due to the bending moments M andM+ 8M respectively differ
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by an amount represented in the figure by the shaded diagram

A'JKL, ACD being the stress figure for AC and A'CD' the

stress figure for A'Cf, and A'C'L being the difference between

them. The excess of horizontal force on one side of the piece

AIIJA' is balanced by shearing stress on the surface HJ, and the

whole amount of that stress is consequently equal to the total

stress represented by the shaded figure A'JKL.

Calling q the intensity of the shearing stress at H and f the

width of the beam there, we have

q£$x

for the whole shearing stress on HJ.

The intensity of the normal stress due to BM, at any height y
from the neutral axis is

yBM
1

/ '

and hence the whole horizontal force represented by the shaded

yBM
figure is

/
zdy,

where z is the width of the beam at the height //. integration

being performed between the limits y = CA and y — CH.

This may be written

BMC j BM
y-Jyzdy or

/
Sy^
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where S is the area of that part of the section which extends from

A to H, and y is the height of the centre of gravity of that part

of the section, above the neutral axis. Equating these two ex-

pressions for the whole horizontal force on HJ we have

from which
8M % _ FSy^

q hx' £1 & '

where F stands for the whole shearing force at the section con-

sidered, the shearing force being (by § 93) equal to -j—

.

It follows that the intensity of shearing stress is in all cases

greatest at the neutral axis, and diminishes to zero at the top and

bottom of the section. In the particular case of a rectangular

section, the greatest intensity of shearing stress is

or one and a half times the mean intensity over the whole section.

Similarly in a circular section the maximum intensity of shearing

stress is | of the mean.

In an I beam with wide flanges and a thin web the above

expression for q shows that the intensity of shearing stress is

nearly uniform over the web, and is much greater there than in

the flanges in consequence of the much smaller value of the width

J. A substantially accurate result is got, in such a case, by taking

the web to bear the whole shearing force, with practically uniform

distribution over the section of the web.

The same intensity of shearing stress occurs in horizontal

planes in the web, and has to be reckoned with in designing the

rivets or other fastenings by which the web is attached to the

flanges.

96. Principal Stresses in a Beam. The foregoing analysis

of the stresses in a beam, which resolves them into longitudinal

pull and push, due to bending moment, along with shear in

longitudinal and transverse planes, is generally sufficient in the
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treatment of practical cases. If, however, it is desired to find the

direction and greatest intensity of stress at any point in a beam,

the planes of principal stress passing through the point have to be

found. This is a particular case of the general problem of finding

the principal stresses when the stresses in

certain directions are known. In this case

the problem is exceptionally simple, from the

fact that the stresses on two planes at right

angles are known, and the stress on one of

these planes is wholly tangential. Let AC
(fig. 79) be an indefinitely small portion of

the horizontal section of a beam, on which

there is only shearing stress, and let AB be

an indefinitely small portion of the vertical

section at the same place, on which there is

shearing and normal stress. Let q be the

intensity of the shearing stress, which is the

same on AB and AC, and let p be the in-

tensity of normal stress on AB: it is required

to find a third plane BC, such that the stress on it is wholly

normal, and to find r, the intensity of that stress. Let 6 be the

angle (to be determined) which BC makes with AB. Then the

equilibrium of the triangular wedge ABC requires that

rBC cos 6 = p.AB + q. AC, and rBCsm6 = q.AB:

(r — p) cos = q sin 6, and r sin 6 = q cos 6.

Fig. 79.

or

Hence, q
2 = r (r —p),

tan 2(9 = 2q/p,

The positive value of r is the greater principal stress, and is of the

same sign as p. The negative value is the lesser principal stress,

which occurs on a plane at right angles to the former. The

equation for 6 gives two values corresponding to the two planes »>('

principal stress. The greatest intensity of shearing Btress occurs

on the pair of planes inclined at 45° to the pianos of principal

stress, and its value is s/q 1 + £/r (by § 10).

The above determination of r, the greatest intensity of Btress

due to the combined effect of simple bending and shearing, Is of
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some practical importance in the case of the web of an I beam.

We have seen that the web takes practically the whole shearing

force, distributed over it with a nearly uniform intensity q. If

there were no normal stress on a vertical section of the web, the

shearing stress q would give rise to two equal principal stresses, of

pull and push, each equal to q, in directions inclined at 45° to the

section. But the web has further to suffer normal stress due to

bending, the intensity of which at points near the flanges approxi-

mates to the intensity in the flanges themselves. Hence in these

regions the greater principal stress is increased, often by a con-

siderable amount, which may easily be calculated from the

foregoing formula. What makes this specially important is the

fact that one of the principal stresses is a stress of compression,

which tends to make the web yield by buckling, and must be

guarded against by a suitable stiffening of the web.



CHAPTER VII.

DEFLECTION OF BEAMS : CONTINUOUS BEAMS.

97. Curvature due to Bending Moment. We have to

consider, in the first instance, the strain produced in beams by the

action of the bending moment. The bending moment causes

longitudinal strains, of extension on one side of the surface con-

taining the neutral axes and compression on the other side. The

beam, if originally straight, consequently becomes curved. In

dealing with the curvature and deflection of beams we shall

assume that the strains lie within the elastic limit and, as is

always the case in practice, that the beam is stiff enough to keep

the deflection small, and we shall in the first place exclude the

case of a beam whose width is much greater than its depth.

The strain on any imaginary filament taken along the length

of the beam is sensibly the same as if that

filament were directly compressed or extended

by itself. Since the stress at any section

varies directly as the height y above or below

the neutral axis, the strain also varies directly

as that height. Hence two plane cross-

sections, taken near together, which are pa-

rallel before straining become inclined to one

another when the beam is strained, but remain

plane. Let I (fig. 80) be the original distance

between the two sections. At the level of the

neutral axis this distance remains unaltered

by the strain. At any height y above or

below the neutral axis it chancres by the

amount hi. By Hooke's law

ti_ p
I
" A"

Fi^. 80.

E. S. M.
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where p is the mean stress, between the two sections, at the

height y above the neutral axis. Further hi \ y = 1 \ R, where R is

the distance from the neutral axis to the axis where the two

planes of section meet.

Hence

P

Suppose the planes of section are taken indefinitely near

together, so that the bending moment M is the same for both,

R is then the radius of curvature of the bent beam at the place

My . .

considered. Since p — -— ^Q may express R also in the form

7?
EI

98. Condition of Uniform Curvature. It follows that a

beam, originally straight, will bend into a circular arc if V (or-

is constant. Practical cases in which this occurs are found

(1) when a beam of uniform section is exposed to a uniform

bending moment, and (2) when a beam is so designed that its

depth and flange stress are both

uniform. Calling the dip in the

middle iij, we have in that case

(fig. 81),

CE . CD = CA . CB,

from which, since u z is small

D _ DM
Ul ~SR~8EI-

The greatest slope is at each end,

and is

h ~2R~2EI'

R being by assumption large compared with L.

FiR. 81.
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99. Relation of Curvature, Slope, and Deflection.

Denoting distance measured along the span by x, slope by i,

and deflection by u, we have in all cases where

the deflection is very small, so that 8x may be

taken as sensibly equal to 8s (fig. 82),

du _ .

8%

8x

R
= 8i

Then the curvature

1 _ di d2u

R dx dx2 '

the slope

J -tt

and the deflection, measured from below up-

wards,

u — Jidx.

These equations allow us to find the slope and

the deflection when R cam be expressed as a

function of x. The following are examples.
Fig. 82.

100. Examples of Slope and Deflection in Beams and
Cantilevers.

(1) Beam of uniform section with uniform bending moment.

1 M
R~ EI*

._ M _^M f _ Mx
l ~JR

dx
~EIJ EI'

If we take the origin at the middle of the beam the constant of

integration is zero, since i = when x = 0, and the greatest slope

is found by writing x = -^ , namely

. M L
h ~lEI2 i

which agrees with the result got geometrically in the last

paragraph.

Similarly the deflection

f. 7
[Mx . M f , Ma?

u = I idx = £j
dx=

-]fj J
tod® -

2EI '

9- 2



132 DEFLECTION OF BEAMS: CONTINUOUS BEAMS.

and its greatest value, namely the rise of the ends of the beam

above the middle, is

ML2

Ul ~ 8EI
as before.

(2) Beam of uniform section with a single load W at the

centre of the span.

Taking the origin at the centre as before, in order to make the

constants of integration vanish, we have

W/L
2

w r/L

At the ends,

i, =
WL

To find the deflection,

W
u = Jidx = ^pj f(Lx — x2

) dx

Wx2 (L _ x\
~ Wl \2

"
3/

"

At the ends,

W1J
Ul ~ 4>8Er

(3) Beam of uniform section with a uniformly distributed

load.

Again, taking the origin at the centre,

M _ wL2 wx2

- ~g w >

i=\-dx =
Î
\[--x2

wx (L2 x2

At the ends

2JEI V 4

wL 3

h UEI'
To find the deflection,

,. 7 w f/L2x x3
\ 7

wx2 (L2 x2\

~ SEI \2 "
3 J

'
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At the ends owL4

384&T

Corresponding results for loaded cantilevers are readily found

in the same way.

Both in beams supported at the ends and in cantilevers the

greatest slope and greatest deflection may conveniently be ex-

pressed in the form
. _ WD , WD

where W is the total load, distributed or not, and n and n' are

factors depending on the uniformity or non-uniformity of the section

and on the mode of loading. The following table gives numerical

values of n and ri in various cases where the section is uniform.

L stands for the total length of the beam or the cantilever.

Beam of uniform section with single load

at centre

Beam of uniform section uniformly loaded

Cantilever of uniform section with single

load at end

Cantilever of uniform section uniformly

loaded

Similar expressions will apply in the case of beams of uniform

depth and uniform strength (uniform flange stress) if Ave under-

stand / to refer to the central section in the case of a beam, or to

the section at the fixed end in the case of a cantilever. The

curvature is, as we have seen, uniform, and the factors n and n

take the following values.

Beam of uniform strength and depth, with

single load at centre

Beam of uniform strength and depth uni-

formly loaded

Cantilever of uniform strength and depth,

with single load at end

Cantilever of uniform strength and depth

uniformly loaded

The deflection due to a combination of Loads may be found by

summing the deflections clue to the loads considered separately.

n n
1 1

16 48

1 5

24 384

1 1

2 3

1 1

6 8

n n'

1 1

8 32

1 1

16 64

1

1

2

1 1

2 4
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101. Deflection of a uniform beam under a single load

placed anywhere. As a further example of the general method

we may take the case of a beam of uniform section with a single

load W placed at a distance a from the end P and b from the

Fig. 83.

end Q. Take the place where the weight is applied as origin

and consider first the portion of the beam which lies to the

right. At any point in it the bending moment is Q (b — x). The

change of slope, in going from the origin towards the right is

f If O
I ^j-dx or -fTf$Q>

— x) dx, and the whole slope at any point on the

right is

• • Q C
x
,r

l=zl
° +

~EI (P- x)doc,

where i is the slope at 0,

. . Q /. x2

l = l° + El{
h0°-2

The deflection, measured up from the horizontal line through 0, is

u = i x + jr
T

I ('bx -
-J

dx.

Hence the height of the end Q above the horizontal line

through 0, namely cd + de in the figure, where the deflection of

the beam is, of course, excessively exaggerated, is

Q b*
i b +

EI'
S'

The line gd is drawn through in the direction of the slope of

the beam at 0.

Similarly the height of the end P above the horizontal line

through (namely gh —fg in the figure) is

P a3
.

EI'S
— iaa.
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Equating these two expressions for the deflection of below

the level of the ends of the beam we have

io(a + b) = Ml (Pa s -Q¥),

and, substituting the value of i found thus, the deflection at is

1(0 SElV a
a+b

_ Pasb + Qabs

~8EI(a + b)'

Wa2b2

" SEI (a + 6)
*

A graphic method of solving the same problem will be found

in 8 104.

102. Transverse Bending. Anticlastic Curvature. As-

sociated with the longitudinal bending of beams is a transverse

bending with opposite curvature. This results from the lateral

contraction of the longitudinally extended filaments and the

lateral expansion of the longitudinally compressed filaments. An
originally rectangular section tends to take a form like that-

sketched in fig. 84, the beam being one supported at its ends,

so that the bending moment produces longitudinal

extension above the neutral axis and longitudinal

compression below it. The lateral strain being - of

the longitudinal strain, the anticlastic or transverse

curvature to which it gives rise is - of the longi-

tudinal curvature, and the radius of transverse

curvature is Ra.

Figj 84

This however assumes that each filament is perfectly free to

expand or contract laterally, a thing which is never more than

approximately true and becomes loss true the greater Is the

width of the beam. When a wide flat strip is bent as a beam it

necessarily remains nearly flat: in other words, the horizontal

lateral strain which would give rise to transverse curvature is to a



136 DEFLECTION OF BEAMS: CONTINUOUS BEAMS.

great extent prevented. As a consequence, the strip is stiffer in

regard to longitudinal bending than it would be if each filament

were free to take lateral strain. The case approximates to that

considered in § 30, namely where lateral strain is free to take

place in one direction (namely vertically), but is prevented from

taking place in the other direction (horizontally). The ap-

propriate modulus for the longitudinal strain is then

Ea°-

c^-r

and the radius of longitudinal curvature, instead of having the

value

EI
M'

as it has (very nearly) when the transverse dimensions of the

section are small, has a value approximating to

Ela 2

M(a*-1)'

The ordinary theory of bending applies only when the section

is so comparatively narrow that the anticlastic bending due to

lateral strain is substantially free to take place, and this holds good

in most actual beams. The transverse flexure is not in general

of practical importance.

103. Resilience of a Beam. The work done in bending any

short portion Soc of a beam is —— where M is the bending moment

and Bi is the amount by which the slope changes from one to the

other end of the element of length 8x. Hence the whole work

done in bending the beam is

U=ifMdi,

integration being performed from end to end.

1 EI
Since 8i = -== &% and R = -^ we may writeR M J

[M2

The following are particular cases : (1) Beam of uniform section
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subjected to a uniform bending moment, and therefore assuming

uniform curvature,

2EI

Since -= = - this may be written
I y

J

2Ey*

And when the section is rectangular this becomes

TT
PihbL
6E '

pl being the intensity of stress at the top or bottom. Thus the

resilience of a rectangular bar when uniformly bent is

Pi
6E

per unit of volume, or one-third as great as the resilience of a

piece uniformly stressed by a simple pull or push of the same

greatest intensity p x .

This result might have been reached at once from the

consideration that in the beam the stress varies uniformly across

each half of the section from zero to p 1 and consequently the mean

value of p
2
is one-third of the extreme value p*.

(2) Beam of uniform section with a single load W at the

centre.

Take the origin at one end and calculate the resilience of one-

half the beam :

2 ~ 2EI J
M ax " 2JSIJ V 2 ) 8EI

a-'

3

Hence, writing x = —
, we have for half the beam

2~192EI'

W*D
and the resilience of the whole beam is ^,. 7 , r .

90 El

This might also have been got as half the product of the load

II7/ ;

by the deflection m1} which is .

'.
.J 48E1
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Expressed in terms of the greatest stress at the middle section

the above expression for U becomes

Pi'IL

§Eyr
In a rectangular beam loaded at the middle this gives

ISE '

making the mean resilience per unit of volume equal to

PL
18^'

or one-ninth of the resilience of a piece uniformly stressed with

the intensity p1 .

This again is a conclusion which might be arrived at by

considering that the mean value of p
2 across any section is ^px

2

for that section, and that the mean value of px

2 along the beam is

one-third of the value at the middle section. Hence the mean

value of p
2 for the whole volume of the beam is one-ninth of the

value of p* at the middle section.

104. Graphic method in the treatment of Deflection.

The three quantities

Curvature, -^
,

Slope, i,

Deflection, u,

are related to one another in the same way as the three quantities

Load per foot run iv,

Shearing force, F,

Bending moment, M.

-n du , di 1 . ., dM „ , dF
r or -=- = i and -=- = ^, while -^— = h and -±- = w.

ax ax K ax ax

Hence, if we assume an imaginary load iu' equal to the

1 if
curvature =, or ^^., the shearing force which w would causeR EI °

measures the slope due to the real load, and the bending moment
which w' would cause measures the deflection due to the real load.
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The problem therefore resolves itself into finding the shearing-

force and bending moment which would be produced by the

imaginary load w ', and in practice this is in general best done by

drawing the diagram of shearing force and bending moment for

the imaginary load.

The method may be illustrated by an example.

In a beam of uniform section with a single load W at the

M
middle, the imaginary load equal to the curvature is w' = ^ .

WL
This has its greatest value at the middle, namely Tpj- Its

mean value is half this, and hence the reaction at each pier due to

WL2

the imaginary load w' is YFWf

The diagram of w' is sketched in fig. 85, and that of the

shearing force due to w' in fig. 86. The greatest slope in the

16EI

Fig. 85.

Fig. 86

Fig. 87.

actual beam is the greatest value of the shearing force due !>

WD
w' and is therefore , .. „ T i

as was found otherwise m § 100.
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The diagram of bending moment due to w is sketched in

fig. 87. At the middle of the span the value is

WD L_ WD^ L_ WD
WEI' 2 16EI' 6

~ 18EI'

This measures the deflection at the centre produced by the actual

load, and is in agreement with the result found in § 100.

As another example we may take the case dealt with in § 101,

of a beam of uniform section carrying a single load at any point..

The diagram of imaginary load w is sketched in fig. 88. Let

Fig. 88.

P'
}
Q' be the reactions due to it, and Fa , Fh be the total amounts

of the imaginary load distributed over the portions a and b respec-

tively. Then calling the reactions at the support of the actual

beam P and Q as before, we have

, ^ x Pa Qb
greatest tu (at U) — -^j = -wr =

Wab
EI EI EI (a + by

a 2EI'
Fh =

2EI'

_Fa .ia + Fb (a + ib ) iPa* + lQb*(a + ib)
V ~

a+b EI(a + b)

The deflection in the actual beam at is the moment at due

to the imaginary load w\ namely

Q'b-Fb ^b.

Substituting the values given above for Q' and Fb this becomes

Pa3
b + Qa¥ Wa?b2

SEI (a + b)
' SEI (a -f b)

as in 101.
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105. Additional Deflection due to Shearing. The
shearing strain in a beam produces a supplementary deflection

which is in general too small to be of practical account. We
may examine its value in a particular case, namely that of a beam

of uniform rectangular section, loaded with a weight W at the

middle. The total shearing force is in this case uniform in

W
amount along the whole length, its value being — and it is

distributed in the same manner at each cross section.

By § 95 its intensity q at any height y from the neutral axis is

6 v\airg-,)

The work done in producing the shearing strain is by § 22

~~ Per unit °f volume at any place. The work done in shearing-

is therefore

2C
hdy

per unit of length of the beam. Hence the whole work done in

shearing the beam is

On integrating from y = ^ to 2/ = — ~ this gives

3 W*-L
s ~20hbC'

The work done in bending the beam (apart from shearing) is

by § 100,

{Jb"Mei'

The total deflection at the middle, where the load is applied, muel

be such as to give this quantity when multiplied by half the Load,

Hence the deflection is

:\\YL 117.

10/<6('
+
4NA7
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The second of these terms is the deflection due to bending,

without taking shear into account ; the first term is the additional

deflection due to shear. The ratio of the first to the second is

6Eh2

oCL*

'

This shows that for any usual ratio of h to L the additional

deflection due to shear is only a small fraction of the whole

deflection.

The following case admits of still more simple treatment and

is interesting as an example in which the shear strain may be of

greater importance. Let the beam be of the I type, in which

the shearing stress is practically all taken by the web and its

intensity q over the section of the web is practically constant.

With a single load W at the centre we have at all sections

where Aw is the (uniform) area of section of the web. This shearing

stress produces everywhere a slope supplementary to the slope

produced by the longitudinal strains in bending, of the amount

., q TT

L/ '1AWL/

Hence the supplementary deflection at the middle, where it is

greatest, is

,_ TT L
U ~2AU.C r

The deflection due to the longitudinal strains in bending is

(by § 100)

WD
U
~±8EI'

Taking the area of each flange to be uniform and equal to Ay we
may treat I as practically equal to

2
'

WL3

which makes u = ^ A ^ .
7 .

24>EAfh
2
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The ratio of the shearing to the bending deflection

tf_6E Af h?

u~ G '

A

W 'L2
'

As -jy is fully 15 in iron and steel, the shearing deflection may in

this case form a considerable part of the whole, when the span is

not a large multiple of the height and when the web is thin.

In the considerations which follow, relating to continuous

beams, the supplementary deflection due to shearing is not taken

into account.

106. Continuous Beams. A perfectly rigid beam resting on

two rigid piers would be lifted off one or both of these if a third

support were introduced. In a real beam the flexibility makes it

possible for the load to be shared by more than two piers. A
beam is said to be continuous when the number of its supports

is greater than two.

As a simple case we may first consider a beam of uniform

section, uniformly loaded, resting on three equidistant piers at the

same level. Imagine the middle pier to be removed, leaving an

ordinary beam of span 2L. The deflection at the middle would

then be (by § 100)

as? EI -^ EI'

In other words, this is the distance through which the middle pier

would have to be lowered in order to relieve it of all share of the

load.

Now imagine the middle pier to be raised until it lifts the

ends off their supports. The amount it must rise above the level

would be equal to the deflection at the end of a uniformly loaded

cantilever of length L, namely

wL*

*w
The pressure on it would then be 2iuL. This pressure increases

uniformly as the pier rises, from zero at a depth .,';, ' below the

level of the ends, to A 7 , r above the level of the ends. Hence8 LI
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when the middle pier is at the same level as the end piers the

pressure on it is

5

. 2wL = %wL.
5
24

5_-L.i
24

And the pressure on each of the end piers is consequently

i(2-f)wZ = -fwZ.

Another way of putting the matter is to regard the pressure F
on each end pier as a single inverted load, acting on a cantilever of

the length L to produce an upward deflection equal to the down-

ward deflection which the load would produce on a cantilever of

FL3

that length. The upward deflection due to F is r^.. Equating

this to the downward deflection produced by the load, namely

ttt^t i
we have F = %wL.

8EI 8

If the middle pier were fixed at any assigned small height

above or below the others it would evidently be easy to extend

this treatment to find the proportion of load borne by it and by

the other piers. The diagrams of shearing force and bending

Fig. 91.



DEFLECTION OF BEAMS : CONTINUOUS BEAMS. 145

moment, when the piers are at the same level, are sketched in

figs. 90 and 91. The diagram of bending moment is conveniently

drawn by treating each half BG and BA as a cantilever fixed at

J9, and loaded with an upward force F at the end along with a

uniformly distributed load w.

The points of inflection, where the bending moment is zero, are

at a distance of \L from the middle pier. At any distance % from

the middle pier the bending moment is

Mx = iwL(L- x)-
w{L - x)

\

The greatest negative bending moment occurs over the middle

pier: its value is ^wL2
. The greatest positive bending moment

occurs at points §L from each end : its value is TfgwZ2
.

It may be instructive to treat this example of a continuous

beam in a more general way, using a method which is suitable for

application to other cases :

—

Let F be the (unknown) pressure on each of the end piers.

Taking the middle point as origin we have

Mx = F(L -x) ^

—

L

T ( r, IVL\ /T1 rN WX 2

= L[F-
2
-)-(F-wL)x--~.

The slope

[M
7 If/ ivL\ /rT T .x

2 wx'c

l=
JEi

dx = El{
Lx

[
F - 2J-(

F ~ wL) 2- 6

The constant of integration vanishes, since i = when x = 0.

The deflection

f. , 1
{ T ( -n WL\X 2

,_, T .X
3 WX 4

u =j tda! =m{L (
F-

2 jg-^-^e ~ 24

The constant of integration again vanishes, since u = when

^ = 0.

Now if the piers are at the same level >/'=() when ./=/,,

and hence

2 J
° v ' ±\

which makes F = \wL

as before.

E, s. M. L0
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The student will find it a useful exercise to appl)~ this more

general method to the case of a beam of 4 equal spans. He
will find that each end pier bears a load of jqwL and each of the

other two bears %^wL.

107. Theorem of Three Moments. Whatever be the

length of the spans and the mode of loading an equation can

be found connecting the moments over any three neighbouring

piers. This is Clapeyron's " Theorem of Three Moments," the

algebraic expression of which does much to facilitate the solution

in less simple cases than the one considered above.

The theorem of three moments may be expressed in a gene-

ralised form applicable to all modes of loading, but it will suffice

for our purpose to consider the case of uniform loading only.

Let A, B, C be any three consecutive piers (at the same level)

in a continuous girder having any number of equal or unequal

spans, uniformly loaded with a weight iu per foot run. The

object of the theorem is to establish an equation between the

three pier moments MA , MB and Mc . The method we shall follow

in getting the equation is to express the moment and the slope at

B in two ways, by reckoning separately first from A and then

from C.

Taking the origin first at A we have for any point in the

span AB
Mx = MA + FAm-^ (1).

At B, where x = AB

MB =MA + FALAB-^AB (2).

Similarly by reckoning back towards B from C

MB=MC+FCLCB-^DCB (3).

Returning now to equation (1), since -j—, = -^ = =, we may

write that equation thus

EI d
^_ = MA + FAx^ (4).
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Integrating to find the slope

-,-, -,- ecu -. r -,-, x~ ivx .-, _«r£-*>+^ f—S-+0
<5>'

where G is a constant of integration.

Integrating again to find the deflection

EIu = MA
x~ + FA^-

w^ + Cx (6).

The constant of integration is here zero, since u = when
x = 0.

Hence, since u = when x = LAB

w
24

= \MAL\B + \FAL\B - ^ L\B + GLAB

on

from which G = - \MALAB -\FA L\B + ^DAB (7).

Writing iB for the slope, or -=-, at B, we have by equation (5),

since x is then LAB ,

EIiB = MALAB + \FADAB - iwL*An + G

Substituting for G the value given in equation (7) we have

EliB = \MALAB + \FA I?AB -\L\B (8).

In the same way, taking G as origin and reckoning back along

GB we get

w
- EIiB = \MCLCB + \FCL\B -^ L3cb (9),

the negative sign coming in on account of x being reckoned

negatively.

Equate these and eliminate the terms in FA and Fc In

substitution from equations (2) and (3), and we obtain an equation

between the moments MA , MB and Mc

\MALAB + MBLAB + bw&u = - \MQL0B - MaLa - \wL\B ;

or

(MA + 2MB) LAn + (Mc + 2MB) Lcn + ^ {L*AB + L\ fB) - 0...(10)

This is the theorem of three moments, expressed iii the

comparatively simple form which applies to uniform Loading, It'

10 2
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there are n piers it yields n — 2 equations and the terminal

conditions supply the two more which are required for solution.

Usually the terminal conditions simply are, that the moments at

the first and the last pier are zero.

As an example of the use of the theorem we may first apply it

to the case already treated, namely that of a continuous beam of

two equal spans. Here MA = and Mc — 0. Equation (10)

becomes
ivL'3

From which MB = —~— .

wL2

Then, since MB = FAL —
, FA = fwZ; as was found in § 106.

* _

Similarly with three equal spans the moment at each inter-

mediate pier is readily found to be , making the reactions

j-qwL at each end pier and \^wL at each intermediate pier.

Again, take the case of four equal spans. Here MA = ME == 0,

MB =MD .

Equation (10) gives

*MB + MC

and MB + 4ifc + MD =

2 '

2

i-i u —wL1
.. ,.. ,. — SivL2

from which M r = ——— and MB or Mn = —^^— .c 14 B D 28

The reactions at the piers are then found to be
-J-J, §§, ||, f|

and -^ of wL in each case*.

108. Advantages of Continuous Beams. In a continuous

beam the average value of the bending moment is much less than

in a series of separate beams bridging the same spans and subject

to the same load, and hence, by adapting the section to the

moment at each point the continuous beam may be made much

* For the graphic treatment of problems in continuous beams the student is

referred to a paper by Professors Perry and Ayrton, Proc. Roy. Soc. 1879, and to

Prof. Claxton Fidler's Treatise on Bridge Construction. See also Levy's Statique

Graphique, Vol. ii.



DEFLECTION OF BEAMS: CONTINUOUS BEAMS. 149

lighter than the series of separate beams. But the advantage

does not stop here : in the continuous beam the greatest values

of the bending moments occur at and near the piers, whereas in

the separate beam they occur at and near the middle of each span.

Hence the heavier sections of the continuous beam are placed in

positions where they are much less influential in causing bending

moment. In long beams the weight of the beam itself becomes

an important factor in producing bending moment: in a very long

beam it is the chief factor. In such cases the advantage of

continuity is specially great, on account of the concentration of

weight near the piers and the comparatively light sections which

are required towards the middle of each span. For short spans,

where the externally applied load is the chief part of the whole

load, the advantage of continuity is much less, especially when

provision has to be made for moving loads. When moving loads

pass over the beam the points of inflection change, and portions

of the span are subjected to bending moments which change in

sign as well as in amount.

The advantage of continuous beams is practically much re-

stricted by the possibility that the supports may yield and may
thereby disturb the distribution of moments. A small amount of

subsidence on the part of one of the piers may seriously alter the

stresses and upset estimates of strength based on the assumption

that the piers are on the same level. Even small errors in

construction, whether in the level of the piers or the straightness

of the built beam, are not without effect.

When beams intended to be continuous have been in the first

instance erected in separate spans they have of course to be

connected in such a way as to secure effective continuity. Account

must be taken of the flexure set up in each separate span by its

own weight, and one or both of the distant ends must be lifted

through a calculated distance before the near ends are joined over

the pier, so that when the distant ends are let down again the

moment due to the weight may be properly distributed.

109. Combination of Cantilever "with Beams. In an\

continuous beam we might Imagine the beam to be cut at each

point of inflection, and the parts to bo joined by a pin or other

joint capable of resisting shearing force, but incapable of resisting

bending moment. The stresses throughout bhe beam would be
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unaffected by this change. We should then have a system of

cantilevers projected from the piers, united by beams between the

ends of the cantilevers.

Such a combination would however be free from the objection

which has just been stated. Any subsidence of a support would

not affect the distribution of stresses, because the points of

inflection are now fixed. Moreover, they remain fixed when the

loads change and the changes of bending moment and shearing

force due to moving loads are readily calculated. The combination

retains the main advantage and escapes the drawbacks of simple

continuity. It has been used in some of the largest modern

bridges, notably by Sir B. Baker in the great bridge over the

Firth of Forth.

110. Encastre Beam. An encastre or built-in beam is one

whose ends are secured in such a way as to prevent any change of

slope from taking place at the ends. The condition is not easy

to realize in practice, and may be said to be never more than

approximately realized, It will suffice for our present purpose to

consider a beam whose ends are fixed horizontally so that they

remain horizontal when the beam bends under load (fig. 92).

Fig. 92.

This may be regarded as equivalent to one span in a con-

tinuous beam of an indefinite number of equal spans, similarly
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loaded. Over each pier such a beam would lie horizontally.

Hence we may apply the Theorem of Three Moments.

Taking the case of a beam of uniform section uniformly

loaded we have, in the expression of the Theorem given in § 107,

MB = Mc —MAi and hence the expression becomes

(3IA + 2MA ) L + (MA + 2MA) L + 1 (2i») = 0,

whence MA = —-=— .

This is the bending moment which must exist at each of the fixed

ends to keep the beam horizontal there.

The forces which each support exerts upon the beam constitute

(1) a couple whose moment is MA and (2) a vertical reaction equal

to that part of the weight which comes on each end, namely \iuL.

The first of these is the bending moment at the support, the

second is the shearing force.

At any point distant x from the end the bending moment

xMx = MA + \wL .x—wx.^,

the first term being due to the couple applied at the support, and

the second term to the vertical reaction at the support.

Hence Mx =—^- + -^-(L-x).

To find the points of inflection we write Mx = 0, which occurs

when
L2

x(L — so) = -75-

o

that is, when x = — ( 1 + -^
)

,

which gives x= 0211Z and a? = 0"789Z/ as the distances of the two

points of inflection from either support.

At the middle, where the positive bending moment is a

maximum, its value is

— iuL1 wL t r /A ?r/;2,. — wJJ wL ( T L\ wis

The diagram of bending moments is sketched in fig. 93. It

may be described as the parabolic; diagram for a simple brain of

span L, erected on a base ah which is the line of pier moments.



152 DEFLECTION OF BEAMS: CONTINUOUS BEAMS.

Instead of having recourse to the Theorem of Three Moments
for finding MA we might have proceeded thus :

—

Mx = MA + ™{L-x).

The slope,

1

EI
i = ^r^- IMxdx

f / ivx \=
EI)\Ma + T (Z ~

^J
dx

MAx +
wLx WX'

El V
A 4 6

plus a constant of integration which must be zero since the slope

is zero when x = 0.

But i = when x = ~ , and hence

^ +^--^ = 0,
i wZ3 wZ s

2
4
T6" " 48"

'wL'1

from which il/. =A
12

as before.

It is interesting to compare the bending moment borne by the

encastre beam with that borne by a beam of the ordinary kind.

In a uniformly loaded beam of span L simply resting on end

supports the greatest bending moment is —- . The encastre

beam is consequently stronger, so far as the maximum moment
caused by a uniform load is concerned, in the proportion of 12 to

8, or 3 to 2. It should however be noticed that if any yielding at

the supports occurs, which permits the beam to assume a slope at

the ends, the advantage of the encastre form is quickly lost.

To find the deflection of the encastre beam, uniformly loaded.

we have
/*., 1 f/—wL2x wLx 2 wx'6 \ ,

«

=

r* - ei }
{ ~w- + ~t- - xj dx-

At the middle, where the deflection is greatest, its amount is

ImEi
which is only one-fifth of the deflection in a similarly loaded

simple beam.
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As another example, the case may be mentioned of an encastre

beam of uniform section carrying a single load W at the middle.

We may proceed as in the former case to find the moment at each

support, or more simply infer it from this consideration :—In an

indefinitely extended continuous beam of which the given encastre

beam represents one span, the pier reactions are each equal to W.

The system suffers no change by inversion : the bending moment
over each pier is therefore equal to the bending moment under

each load, and the convex portion of the beam over each pier must

be of the same length as the concave portion under each load.

Hence the points of inflection are at the distance \L from each

support. The bending moment at the middle and at each support is

WL—— and the diagram of bending moments has the form sketched

in fig. 94. The deflection at the middle is readily found by

adding that of a cantilever of length ^ loaded with \W at its end

to that of a simple beam of length - loaded with ^^Y at its

middle : its amount is
WD

192EI'

The student will find it interesting to verify these results

analytically, and to apply the same method of calculation to the

case of a beam encastre at one end and resting at the other on a

simple support at the same level.



CHAPTER VIII.

FRAMES.

111. Frames. Among structures capable of bearing bending

moments and acting as beams a highly important place is taken

by frames. A frame is a structure composed of struts and ties.

Although it may be subject to bending as a whole its separate

parts or members are simply in tension or compression. This is

because the members are attached to one another by joints which

cannot transmit a bending moment and because the loads are

applied at the joints.

The simplest complete frame is a triangle (fig. 95). If such

a frame rests on supports at A and B and carries a weight at G it

Fig. 95.

is serving as a beam although its three members are individually

only subjected to tension and compression. We assume here that

the members are connected by joints in which there is perfect

freedom of angular movement—a condition which is approximated

to when pin and eye joints are used.
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Fig. 96.

Fig. 97.

112. Perfect, Imperfect, and Redundant Frames
frame such as that sketched in fig. 96

would be in equilibrium under a par-

ticular distribution of loads, but not

under any distribution. It is said to

be imperfect, because the number of

members is insufficient to make the

frame preserve its shape when the

loads vary. By adding one diagonal

member (BC, fig. 97) it is converted

into a perfect frame. The configura-

tion now persists however the loads

vary. Moreover, under any assigned

system of loads the amount of pull

and push on each member is deter-

minate.

Suppose, however, another member

were introduced (AD, fig. 98). The

amounts of pull and push in the

several members are now indetermi-

nate. The frame is now capable of

being self-strained : that is, stresses

may exist in the members apart from

any application of loads. This was not possible in the perfect

frame. A frame of this last kind may be described as having one

or more redundant members. In practice it is sometimes useful to

introduce redundant members for the following reason. Suppose

in the frame of fig. 97 there were a great excess of load on joint A.

The diagonal member BC would then be acting as a tie. But if

the excess of load moved to joint B the diagonal would have to

act as a strut. If BC were very flexible, and therefore incapable

of acting as a strut, the frame would virtually be imperfect, but it

could be made perfect by introducing the other diagonal AD which

would then act as a tie. If both diagonals were present from the

first, but both capable of acting as ties only, the frame would be

well adapted for bearing an excess of load either at A or at />. In

each case one of the two diagonals would simply go OUl of action

and the other would serve to complete the frame. Members

acting in this way—that, is, members capable of serving only as

ties, or only as struts, and going out of action when a change in

Fis. 98.
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the distribution of the load tends to reverse the stress in them

—

are called semi-members. We shall have instances of their use

later. In general, however, the frames which have to be con-

sidered are those with simply the right number of members to

be perfect in the sense explained above.

113. Method of Sections. A bridge frame, such as the

Warren girder of fig. 99, or the " N " girder or " Linville " truss

Fig. 99.

of fig. 100, may be regarded as a beam closely analogous to a solid

beam of I section, but with this difference that the top and

•d

Fig. 100.

bottom lines of members, corresponding to the flanges, are held

apart by a network of bracing instead of by a continuous web.

To find the stress in a top or bottom member we may
calculate the bending moment M at a vertical section taken

through the opposite joint. Take the section ab in Fig. 99.

The stress in b prevents the right- and left-hand portions of

the beam from turning about the joint a as a hinge. Conse-

quently the amount of the stress in b is

Mob
h

Fh =

where h is the depth of the beam at the section, measured from

the joint to the middle line of the member b. In applying this

method to a beam with vertical members, like that of fig. 100, it
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is convenient to think of the section as slightly inclined, so that it

escapes coinciding with a vertical member.

This method of sections is also applicable as a means of finding

the stresses in what we may call the web members. Let F be the

shearing force at any section such as cd, taken so as to cut an

inclined member. The top and bottom members which are also

cut by that section do nothing towards bearing the shearing force,

for the stresses in them are wholly horizontal. Consequently

the stress in the inclined member must have such a value that its

vertical component is equal to the shearing force F at the section.

Hence the stress in the inclined member is

F
cos 6

where 6 is the angle the member makes with the vertical.

In applying this principle to a frame with vertical members,

the device of taking the section slightly inclined is again useful.

Thus by taking cd slightly inclined as in fig. 100 we see at once

that the stress in the vertical member it cuts is simply equal to

the shearing stress reckoned by adding the loads on all the joints

which lie to one or to the other side of the section so taken. To

find the stresses in each inclined member of the " N " frame the

section is taken vertical as in the Warren girder.

The method of sections is specially convenient when the beam

is of uniform depth. To find the stresses then involves little more

labour than is required to tabulate the bending moments and

shearing forces for successive panels of the frame.

114. Graphic Process. Method of Reciprocal Figures.

As an alternative to the Method of Sections the graphic method

of Reciprocal Figures is in all cases practicable, and offers many

advantages when the depth of the beam varies. It is the usual

method of finding the stresses in the members of vool's, and is

applicable to framework generally whatever be the directions of

the applied forces.

The method consists in drawing, superposed on one another,

the polygons of forces for the several joints of the frame. It will

be readily understood by reference to one or two examples.

Take, for instance, the bowstring girder of fig. 101. For the
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sake of generality we assume loads which are unequal and un-

symmetrical. Find the reaction at each pier, either b}7 taking

moments about the opposite pier or by the graphic process of the

funicular polygon described below in § 188. We adopt the method

of lettering devised by Henrici and Bow, in which letters are

placed in the spaces between members, and in the spaces separated

by the lines of action of the applied loads, in a manner which the

figure exemplifies. Thus we have the load BC, the pier reaction

AB, the members EF, FG, and so on. Similarly the joints are

named by the letters round them, thus the girder rests on the

left-hand pier at the joint EAF.

Begin by drawing the polygon of forces for that joint (fig. 102).

Taking any convenient scale of forces, set out the known force

Fig. 102.
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EA (fig. 102) and find the forces AF and FE by drawing lines

parallel to these lines in the frame. The triangle EAF in fig. 102

is the polygon of forces for the joint EAF in the frame. The

forces in the triangle have the directions EA, AF, FE. This

shows that the member AF in the frame is a strut, and the

member FE is a tie. Mark them so by arrows, and go on to

draw the polygon of forces for another joint in the frame. A joint

must be taken at which there are not more than two unknown

forces: hence the next to be taken is the joint FAG. We use

the line FA already drawn in fig. 102, and complete a triangle on

it by lines parallel to the members AG and GF. These give the

forces in those members. The next joint is DEFGH. The forces

DE, EF, FG are already known, GH and HD are to be found.

Take a point D on the vertical line through E in fig. 102, at a

height above E which represents on the scale of forces the load

DE : then we have the polygon DE, EF, FG, completed by lines

GH, HD parallel to the corresponding members of the frame. By
proceeding in the same way from joint to joint the complete

diagram of fig. 102 is built up. It is a group of superposed

diagrams of forces for the several joints, each line serving twice

over, for the stress in each member acts as a force at each of the

two joints which the member connects.

The lines in the two figures, the frame and the force diagram,

are severally parallel, and each group of lines which meet at a

point in the one form a closed polygon in the other. For this

reason the figures are described as "reciprocal."

When drawing the force diagram it is important, at each joint.

to follow the same order in taking the forces. In the example

given above the forces are taken "clockwise" round the joint.

At each joint all the known forces are dealt with first, in drawing

the polygon, and the polygon is closed by lines parallel to the

unknown forces, the number of which must therefore not exceed

two.

115. Examples of the Method of Reciprocal Figures

This graphic method of determining bhe Btressea in the members

is applicable to frames of all kinds, Loaded in any manner. The

externally applied forces Deed Dot be vertical. In the diagram of

forces they form a closed polygon, since bhe frame as a whole is

in equilibrium under them. When bhe loads and reactions of bhe



160 FRAMES.

supports are vertical, the sides of this polygon coalesce into a

vertical line : the line of reaction (directed upwards) then coincides

Fig. 103.

.#
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with the line of loads (directed downwards). In the diagram,

fig. 102, the line of loads is BE; the reactions are EA and AB.

Figs. 103 and 104 exemplify the method as applied to a crane

or bracket supported by a socket at the foot and a horizontal tie

CB. The thrust on the socket need not be determined before-

hand : it is found when the force diagram is drawn. In drawing

the diagram we begin with the joint GAD, then take the joint

DAE, and so on. The triangle ABC is the polygon of the external

forces, and AB determines the direction and magnitude of the

thrust at the socket.

Fig. 105.

B. S. M. 11
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Fig. 105 is a simple example of a symmetrically loaded roof.

In such a case it suffices to draw half the diagram of forces, but

by completing it, as in fig. 106, we have a useful check on the

accuracy of the work.

116. Use of the Funicular Polygon in finding the

Reactions at the Supports. In fig. 107 the roof frame is

Fig. 107.

unsymmetrical, and this example will serve to show how the

reactions at the supports may be graphically determined by the

use of the funicular polygon. The funicular polygon is an

imaginary chain which would be in equilibrium under the given

loads. When the ends of such a chain are held apart by an

imaginary bar they produce at the supports which carry them
the same reactions as the loaded frame produces. Hence by

finding the reactions due to the imaginary loaded chain we find

those due to the frame itself.

To draw the funicular polygon, draw the line of loads BCDEFG
(fig. 108). Take any pole and join it with the points B, C, D, etc.

Then from any point in the line of the reaction AB draw a line OC
(fig. 107), parallel to the line OC of the force diagram, to meet

the line CD along which the load CD acts. Complete the funicular

polygon by lines OD, OE, OF parallel to the corresponding lines in
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the force diagram, and draw the bar OA joining its ends. Then
in the force diagram (fig. 108) draw OA parallel to OA in fig. 107.

It divides the line of loads in a point A such that AB and GA
are the reactions which were to be found.

Having determined the reactions, the force diagram for the

frame is readily drawn. It is shown on the left-hand side of the

line of loads in fig. 108.

In farther illustration of the method we may take a case

where the loads are not all vertical. Suppose wind to act on a

Fig. 101).

11—2
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frame making the loads CB, BE, EF, and FG inclined as sketched

(fig. 109). In that case one or both of the pier reactions must

have a horizontal component. Let us assume that the roof is

anchored at the left side, but that the reaction GA is vertical.

Having drawn the line of loads BCDEFG (fig. 110) and selected

a pole 0, proceed to draw the funicular polygon, starting from

the left-hand side, where the direction of the reaction is not

known. This determines the lines OG, OB, OE, OF, OG in

fig. 109. The joining bar OA is added, and the line OA is drawn

parallel to it in fig. 97, to meet a vertical reaction line from G.

This determines GA, which is the reaction at the right-hand end.

Then the reaction at the left-hand end is determined, in magni-

tude and direction by the line AB (fig. 110), which completes the

polygon BGGA of the external forces. The student will complete

for himself the force diagram of the frame.

117. Special Cases. In some frames a difficulty presents

itself in the drawing of the reciprocal figure or force diagram,

which has to be overcome by a suitable artifice. Consider, for

example, the frame of fig. 111. Beginning with the joint ABCL
the reciprocal figure is readily drawn for that joint, and for LGBM,
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and for ALMN. But we are then confronted by the difficulty

that there are more than two unknown forces at either of the

neighbouring joints ANOR or NMDEPO. In order to proceed

with the reciprocal figure, we determine, independently, the

stress in AR. This may be conveniently done by the method of

sections, taking moments about the top joint, or it may be done

graphically by the following device. The stress in AR depends

only on the loads and on the skeleton outline of the frame

(fig. 112): in other words, it is independent of the character of

the bracing within the panels Y and Z. Hence we may omit

this bracing altogether and refer the loads to the top and bottom

joints of each rafter as in fig. 99, and then draw as much as ifl

necessary of the reciprocal figure for that simple frame to find

the stress in AR. This is done in fig. LIS. Another method ifi

to substitute for the actual bracing in the panels Fand £a form
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of bracing which escapes the difficulty, as in fig. 114 : then by

drawing part of the reciprocal figure for this altered frame we

Fig. U3.
-7

find the stress in AR, which is not affected by the change.

Having found the stress in AR there is no difficulty in completing

the reciprocal figure for the original frame. It is sketched

complete in fig. 115.

118. Use of Semi-members in Bridge Frames. Counter-

bracing. In a frame such as that sketched in fig. 116, the
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diagonal members in the panels act as ties if the bridge is

symmetrically loaded. To the right of the centre the shearing

Fig. 115.

stress for any system of symmetrical loads is positive : hence at

any section on the right of the centre the diagonal cut by that

Fig. 116.

section is pulling, to hold down the part of the frame lying to the

right of that section. But if the loading is unsymmetrical the

shearing force in any panel may change its sign, and in thai

case the diagonal would have to act as a strut. To avoid this

necessity the other diagonal would in general be introduced

wherever such a reversal is liable to occur. The two diagonals

then form semi-members (§ 112), one being in action only when

the loads are such as to make the shearing force positive, and the

other only when the shearing force is negative. Panels thus

treated are said to be " counterbraced."
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In practical cases the load on a bridge consists of two parts

;

one is the steady load due to the weight of the structure and of

the roadway, the other is the variable or rolling load which passes

over the bridge. If all the load were of the latter kind the

shearing stress would be liable to reversal in every panel during

the coming on and passing off of the rolling load, and in that case

every panel would have to be counterbraced. But the presence

of steady load tends to prevent this reversal from happening,

except in the central panels. Consequently the number of panels

which require counterbracing depends on the proportion of the

rolling load to the steady load.

In a beam loaded with a steady load w per foot run the

diagram of shearing force is that sketched in fig. 117. If a

rolling load of w' per foot run be supposed to come on from one

end, it causes the shearing stress to take the maximum positive

and negative values shown in fig. 118. Under the combined

action of both loads the sign of the shearing stress suffers change

Fig. 118.

throughout the portion ab of the beam, a and b being taken so

that ae — ac and bd = bf. Outside of the limits ah there is no

change in the sign of the shearing stress as the rolling load passes

over the beam.

Hence in a frame beam similarly loaded, enough panels would

have to be counterbraced to include the region ah With a frame

in which the load is assumed to act at the joints there would be

stepped lines in the diagram of shearing force, instead of -the

continuous lines shown in figs. 117 and 118. The steps follow
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the same general outline, and in applying this construction to

find the number of panels which should be counterbraced no

inconvenience is caused by treating the load as continuous.

Another common instance of the use of semi-members is found

in frame piers. The panels of the pier are counterbraced so that

one or the other diagonal will be in action when a horizontal load

comes from one side or the other, such as would arise from the

action of wind on the pier and on the structure which the pier

carries.

119. Superposed Frames. Two or more frames may be

superposed to form a compound frame, the members of which

fulfil distinct functions in each of the component frames. Thus a

double Warren or lattice girder (fig. 119) is obtained by superposing

the frames of figs. 120 and 121. Each of these is readily examined

Fig. 119.

Fig. 120.

Fig. 121.

by the method of sections or the method of reciprocal figures, and

the members which arc common fco both frames have to bear

stresses equal to the sum of (hose determined for the component

frames separately. The Kink truss (fig. L22) and the Bollman
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truss (fig. 123) are other examples of compound frames, the only

common members in them being those which make up the top

boom.

Fig. 122.

f f I I Y { I

Fig. 123.

120. Effects of Stiff Joints. In the ideal frame the joints

are perfectly flexible, in the real frame they are frequently stiff.

Where pin and eye joints are used the condition of perfect

flexibility is approached—though on account of friction at the

pins it is not quite realized. But in many frames no attempt is

made to give the members freedom of relative turning at the joints.

Rivetted bridge-work and ordinary timber roofs are familiar

instances of frames with stiff joints. When the joints are stiff

the stresses are, strictly, indeterminate, for the frame may then

be self-strained although it has no redundant members. Further,

the stresses which are caused by external loads do not then admit

of exact determination : the stresses cease to be necessarily axial,

and the tension members are liable to be bent as well as pulled.

The maximum intensity of stress in the tension bars may therefore

be expected to exceed the value which would be found if the joints

were flexible. On the other hand the compressed members are,

for reasons which will appear in the next chapter, strengthened as

well as stiffened by fixing their ends. On the whole the frame

with stiff joints will generally be stiffer for small loads than the

other : that is, its elastic yielding will at first be less. It may.

however, be expected to reach its elastic limit sooner, although if

loaded to rupture it may stand a greater load.
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STRUTS AND COLUMNS.

121. Instability under Compression. A piece under

compression differs from a piece under tension in this important

respect, that if the distribution of the stress is for any reason not

strictly uniform, the yielding of the piece tends to increase the

inequality instead of reducing it. When a column is compressed,

if there is at any stage in the process an inequality in the intensity

of stress on two sides, the side that is more strongly stressed yields

more than the other, and the column bends in such a manner as

to bring the resultant thrust nearer to the more stressed side, with

the result that the inequality is made greater than before.

Some initial inequality in the distribution of the stress must

in all cases be expected. It may arise from a want of perfect

straightness to begin with, or from unsymmetrically shaped ends,

or from other causes which make the loading not perfectly axial.

Or it may arise from non-uniformity in the elasticity of the column

itself, due to a want of homogeneity in the material, or from the

casual application of some force distinct from the load.

The influence of this bending is more felt in long columns

than in short ones, but it may be traced in the crushing even of

a block whose length is four or five times its diameter. Let

such a block be tested in compression and it will bo found to

yield with a smaller total load than would bo anticipated from

the known crushing strength of the material, and in yielding it

will be seen to bend. Experiments intended to determine crushing

strength are consequently made in general on blocks which are only

about one and a half or two diameters long,
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In practical cases a column or strut is usually so long, in

comparison with its transverse dimensions, that the tendency to

bend under a longitudinal thrust is the main consideration

affecting its strength. We accordingly consider first the case of

a very long column, the theory relating to very long columns

being afterwards modified to make the results applicable to

columns of ordinary length.

122. Bending of Long Columns. Euler's Theory.

Consider a strut or column whose length is very great in

comparison with its transverse dimensions. Assume it to .

be originally straight and of uniform section, to be loaded

axially, and to be symmetrical as to elasticity. We shall

further assume it to have round ends, in other words, that

it is free to bend along its whole length, as in fig. 124.

Suppose that while the column carries an end-load it

is caused to become slightly deflected (say by the appli-

cation of a side force which is immediately removed).

In consequence of the deflected position of the strut

there is now a bending moment acting at every section.

If the end-load has a certain value P the deflection will

persist : if it has a smaller value the strut will straighten

itself; if it has a greater value than P the deflection will

increase. We have to find the critical value P which

will just serve to keep the strut from straightening itself.

Taking the middle point of the chord as origin, the

bending moment at any section distant y from is Pu,

u being the deflection there. Since the strut is in

.,., . ,
,

1 d2u ,

equilibrium the curvature, -~ or -7-^, must be propor-

tional at every section to the bending moment, and

dru Pu

where I is the moment of inertia of the section about a central

axis perpendicular to the plane in which curvature has taken place.

The negative sign in this equation arises from the fact that the

centre of curvature lies on the negative side when the deflection

is positive.

124.
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Assuming the section of the strut to be uniform., the solution

of this equation is

u = til cos y a/
-prf,

where v^ is the deflection at *

Now u = when y = - ' L being the length of the strut, and

hence

L /T
2̂ v wr°>

from which 2\ EI
=
I'

Hence the value of P is

This is the amount of end-load which is just sufficient to hold

the strut bent once curvature has been produced. It is important

to notice that P is independent of u x : in other words, the same

force will serve to keep the strut bent whether the curvature is

small or not so small. This is equivalent to saying that the strut

is in neutral equilibrium under the critical load P. Under any

smaller load it would be in stable equilibrium ; under any greater

load its equilibrium would be neutral, for the curvature once

induced would increase without limit under the action of the load.

Hence this value of P must be taken as the limiting load

ir
2EI

which the strut can support. In this sense the expression -=j

measures the strength of the strut. This is Euler's Theory of the

yielding of struts. It is valid only when the strut is long and

when the loading is perfectly axial, and the strut is perfectly

straight and perfectly symmetrical in respect of elastic quality.

In such a case, the strut on being loaded would show no

* The general solution of the equation is

U=A cosy *y -j + BsinijA^/ = .

where A and B are constants whose values are to be determined from tin

conditions of the particular case. In the case of fig. 124 the QOnditiona arc thai

ii = -u
1
when y = 0, and that uaOwhen j/== =r, and also when // =

Hence I>=0 and A = ?/,

.
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permanent bending (after any casual side force had acted) until

the critical load P was reached. Under that load it would

maintain any bending that might be given to it. With the least

further increase of load it would give way completely.

L /P~
The condition cos -=r a / -=> =

is also satisfied when

2'V EI*

L /~Pr__mr
2 V EI~ 2

'

n being any integer. This gives a series of higher values of P,

namely
n2

ir
2EI
L2

'

The physical interpretation of these val ues is that they are the

critical loads for a strut bent in segments, the lengths of which are

L L— , — , and so on.
L o

These modes of bending do not however need to be considered

in dealing with the strength of struts.

123. Fixed and Free Ends. The above theory requires

modification when the ends of the strut are held fixed so that

they are forced to remain parallel to the direction of

the thrust when the strut bends. This state of things

is illustrated in fig. 125. The line of thrust PP then

passes through the points of inflection B, D : by deviating

from the ends A, E, it supplies the bending moment
required to maintain finite curvature there. The

section of the strut being, by assumption, uniform,

the condition of equilibrium is identical at points

between B and A and at corresponding points between

B and C. A corresponding symmetry holds for points

above and below D, Hence the points of inflection

are at one-fourth of the length from each end. The

yielding of the strut takes place under that critical

load which would cause yielding in a round-ended strut

of the half-length BD—namely when

7T
2EI 4,7T

2EIP =
BD2 " L

In this case the ends are fixed in such a manner

that their position as well as direction is maintained.
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If, however, the conditions were such that there was freedom

on the part of the top of the column to move sideways, the

direction of the ends only being constrained, then the strut as a

whole would be represented by the portion AC of fig. 125, and in

that case

IT EIp = » •

where L stands, as before, for the actual length of the strut.

When one end is fixed and one is free to turn, but not free to

move sideways, the bent strut takes a form approximating to the

curve BGE of fig. 125, and the critical load is that which would

correspond nearly to a round-ended strut of § the length, or

9tt2EI
4Z2

'

Finally, when one end is fixed, and the other is free not only

to turn but to move sideways, the condition of the whole strut is

represented by the curve BE of fig. 125, and the critical load is

that which would be borne by a round-ended strut whose length

is 2Z ; in other words

p =
^EI
4Z 2 '

Euler's formula may be expressed to suit all the cases in

this form

117T
2EI
I2

'

where n is a constant depending on the manner of attachment of

the ends.

The cases are summarised below :

1. Both ends round.

2. Both ends fixed in direction and

position.

3. Both ends fixed in direction. One

end only fixed in position.

4. Both ends fixed in position. One

only fixed in direction.

5. One end fixed in direction. The

other end round and free to

move sideways.

Critical load P by
Euler's theory. It

tt'EI
T

Ll
1

W'EI
4

7T*E1

V 1

Ott-v;/ 9

4/;-' 4

TT-'AV 1

\l. 4
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It may be noted in passing that a strut may be attached in

such a way that it has round euds with respect to one direction of

bending, and fixed ends with respect to the other.

Euler's theory requires important modification when applied

in practical cases. It serves however to show the primary im-

portance of giving a strut a form of section in which the moment
of inertia is large.

124. Modification of Euler's theory to meet practical

conditions. We have next to consider what modifications are

imposed on Euler's theory by the conditions which hold in the

case of real columns.

In the first place it is clear that a very short column will not

yield in the manner contemplated in Euler's theory, but will yield

by direct crushing. Its strength will depend, at least mainl}7
,

on the crushing strength of the material—a term which does

not enter into the Euler formula. For a very short strut the

application of that formula would give a load greater than the

simple crushing strength of the strut. In the ideal very short

strut, where bending plays no part in causing failure, the breaking

load would be

fcS,

where

/

c is the crushing strength of the material and S is the area

of section. In the ideal very long strut of Euler's theory the

breaking load is

7T-EI

But the breaking load must alter in a continuous manner as

we pass from very short to very long lengths, and an equation

which will express a continuous relation between the two is to

be found.

If we write

feS_P =
1 +fcS^m

we have a relation between P and L which is continuous and

which makes P=fcS when L is indefinitely small, and also

2 T^T

makes P = —^— when L is indefinitely great. In other words,
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it makes P approximate to fcS when the strut is very short, and

to
IT EI

when the strut is very long.

Further it gives, for struts of intermediate length, a value of P

which is considerably less than the value
TT EI
D corresponding to

Euler's ideal strut. This is as it should be, for the ideal conditions

of perfect straightness, perfect symmetry of elasticity, and perfect

centrality in the application of the load are never realised in

practice, and any deviation from these conditions makes the actual

breaking load less than the ideal load of Euler's formula.

Fig. 126 illustrates the curve which represents the relation of

strength to length as expressed by this formula. The height of

A \B

Q
<
o Fig. 126.
-J

D\ \
o
z
X
<
Hi
c-

OQ

===—2
LENGTH

A is fcS. The line BC represents values of P found from Euler's

if'EI
equation P=

Jt>
. The continuous curve ADE, which rises

nearly but not quite as high as BC when the length is very

great, is got from the equation stated above.

If now we take the results of any group of experiments made

to determine the breaking load of struts of various lengths, of the

same material and the same cross-section, wo find that the points

representing such experiments lie, in general, fairly well on a

continuous curve resembling ADE, The experimental curve will

however lie lower than the curve BO even when thfl struts are

long, because of the weakening which is Introduced by deviation

from the ideal conditions assumed in Euler's theory.

E. S. M. 1 2



178 STRUTS AND COLUMNS.

Moreover, these sources of weakness are irregular, and cannot

be expected to show themselves equally in all the experiments.

One strut will be more homogeneous than another, straighter, or

more strictly axial in its loading. Hence the results of experiments

are found to lie irregularly about such a curve, and it is only at

the best a roughly approximate expression of them that can be

given by any formula.

The formula may be made to agree most closely with experi-

mental results by treating it as empirical, and adjusting the

constants. In other words, the constants in the numerator and

denominator are to have such values assigned to them as will

make the values of P agree most closely with experiments on

struts of the same material but of different lengths.

Thus we may write it in the form

P fS

1 + 4c ~y

and then select values of f and 4c to suit the available ex-

periments.

This may also be written

/
p

1 + 4c ¥
where p is the breaking load expressed per square inch of the

section, and k is the radius of gyration of the section with respect

to the axis about which bending is most likely to take place,

namely the axis about which / is least.

This is for struts with round ends. When the ends are fixed

we have

/

1 + c ¥
and generally we have for the other cases distinguished in § 123,

4c L2

— as the coefficient of -j-
, where n has the values stated there.

to tC

A formula of this kind was first put forward by Prof. Lewis
Gordon, who based it on a suggestion of Tredgold, and it was
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adopted with some modification by Rankine. In the form which

has just been given it is generally known as Rankine's formula.

In Gordon's original formula, the ratio of length to least

breadth of section was used, instead of the ratio of L to k. This

alters the constant in the denominator ; thus for a strut with fixed

ends,

/pss
:"/Xv'
l + a

b.

where b is the least breadth of section and a is a constant

depending both on the material and on the type of section.

Rankine's modification of Gordon's formula makes it applicable

to columns of any section.

The constants a and c are connected by the equation

c _^
a~b 2

'

b2

In a strut whose section is a solid rectangle k2 = r-= and

consequently a = 12c. Other cases are tabulated below.

k2

Form of section
b

Solid rectangle 3-9 •

Thin hollow square ^

.

Solid circle

Thin hollow circle

L, T, or cruciform section with

J_
16*

1

8*

18'

equal sides, each equal to b, ~r

.

H section, with equal web and

flanges

Among the most authoritative experiments from which the

values of the constants maybe deduced are those oi' Hodgkinson*.

The following table gives some of his results for solid rectangular

columns of wrought-iron having flat and well-bedded ends. The

* Phil Trans. Hoy. Soc. IS 10. 1857.

I _ w
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behaviour of these columns may be taken as that of columns with

fixed ends. In all the instances cited here the least width was

exactly or approximately 1 inch (generally 1'023 inch), and

the other transverse dimension was approximately either 1 or 3

inches. The exact dimensions of the section are used in calcu-

lating the breaking load per square inch and the ratio of length L
to least breadth b.

Approximate
dimensions
of section

Length
in inches

Eatio
L
1

Breaking load

in tons per

square inch, p

lxl 7-5 7-3 21-7

1" x 1" 15 14-6 154
1" x 1" 30 29-3 11-3
-t II nil
1 x 6 30 30 13-2

r x i" 60 58-6 7-7

1" x 3" 60 60 8-1

-in -inlxl 90 88 4-35

1 " 9"1x6 90 90 4-42
17) O'/lxo 120 120 1-91

Fig. 127 shows these values of the breaking strength, in
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relation to the ratio of length to least breadth
( t )

• The separate

observations are shown by small circles, and the dotted curve is

sketched to lie as well as possible among them. The curve CD,

shown by a full line, represents the breaking strength given by

Gordon's formula,

P=—^7xv>

where the constantsf and a have the values assigned to them which

Gordon found to represent best the results of these and other

experiments by Hodgkinson on rectangular wrought-iron columns,

namely

/= 16 tons per sq. inch, a = goVo*

The corresponding value of c, the constant in Rankine's

formula, would be -g^joo". These constants are usually accepted

for wrought-iron.

Fig. 127 will serve to illustrate the necessarily rough character

of experiments or calculations on the strength of columns. The

results of experiments differ somewhat widely amongst themselves,

and the Gordon or Rankine formula does not express even the

average of the experimental results with any great precision. The

agreement between the results of experiment and the curve CD
of the figure is good for struts whose lengths range from say 20

to 100 times their breadth, but for shorter struts there is con-

siderable discrepancy, of such a kind that the formula errs on

the side of safety.

It is interesting to compare these experimental values of the

breaking strength with those which would be found, in an ideal

strut, on Euler's theory. We may take 12000 tons per square

inch as a probable (rather low) value of E in wrought-iron.

Then for an ideal column 1 inch square, with fixed ends, Euler'a

theory would give

_ 4tt-EI _ 39500
P ~ I? ~ L*

in tons per square inch, L being in inches. The curve AB in

fig. 127 gives the values of p derived from this. It shows, when

compared with the results of the experiments, How wide of the
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mark Euler's theory would be if applied to struts of moderate

length.

What happens when the real strut is tested under compression

is that owing to the departure from the ideal conditions of

symmetry in form and quality and load it bends, at first slightly,

and each addition of load is associated with a finite increase in the

deflection.

In this bent state the distribution of stress is not uniform

because the resultant passes away from the centre, and as bending

proceeds the stress on the off-side may change to tension. Failure

ensues when the greatest compressive stress on one side or the

greatest tensile stress on the other exceeds the limit of elasticity.

125. Values of the Constants in other materials. The

values of the constants derived from experiments on cast-iron

columns with flat ends are

/= 36 tons per sq. inch, c = g^Vo-

Thus for cast-iron pillar, with flat ends, when the section is a

hollow circle, we have
36

^800 \d.

where d is the external diameter.

When the section is a solid circle

36
P = ^W1 +

400 \dj

Experiments on steel columns have been carried out by

Mr Christie*, who gives a table of average results. Professor

Fidlerf finds that these are expressed with a fair degree of

accuracy by Rankine's formula, for ratios of -j- greater than 20

and less than 200, taking the following values for the constants

:

For mild steel, /= 21*4, c = ^oho-

For hard steel, /=31'2, c=
2 oooo *

* Tram. American Inst, of Civil Engineers.

t Treatise on Bridge Construction.
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It is important to notice that the formulas of Gordon or

Rankine with these various empirical constsfnts are not to be

accepted as applicable beyond the limits of length reached in the

experiments on which the constants are based. If we were to

apply them to longer struts they would give a greater strength

than is compatible with Euler's theory, whereas a real strut of

great length is certainly weaker than Euler's ideal strut.

Rankine's formula, for a strut with fixed ends,

/
P-- -j},

gives values of p which approximate more and more closely to

/ k>

c' L 2

the greater the ratio of L to k becomes.

Now Euler's theory gives for the breaking strength of the long-

ideal strut

P WEI . 9r7 k*

S
=
l3ir

= *7rE -Lf

It is certain that the strength of the actual strut is somewhat less,

and hence

f- should be less than WE
c

if the practical formula is to be applicable to very long struts.

In fact, however, the constants which are usually accepted do not

satisfy this test. Thus for wrought-iron or steel 4nr'
2E ranges

from about 480000 to 520000, but in wrought-iron

*
is 16x36000=576000

c

if we take the received values of these constants. For stool the

f
constants stated above make - about 620000 or 640000. These

c

considerations only strengthen what has been already said, that

a formula expressing fche results of experiments od stmts is

essentially empirical, and has Little or DO value when extended

beyond the limits of experiment.
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126. Struts with Lateral Load*. When, in addition to

thrust at its ends, a strut carries lateral load which produces

bending moment, the strut becomes laterally deflected and the

whole bending moment at any section is made up of the bending

moment due to the lateral load, together with the bending

moment due to the end thrust. Let fi be the bending moment
due to lateral load at any section, and u be the deflection there.

Then the whole bending moment in that section is

M = fi + Pa,

and therefore the curvature

d^
=
-EI i/M + Pu) -

To integrate this we must be able to express /iasa function of x,

which is the distance from the origin in the direction of the strut's

length.

As a particular case, suppose that the lateral load is distributed

more or less uniformly. The diagram of bending moment, due to

a uniformly distributed load alone, is a parabola which is not far

from coincidence with a curve of sines. Thus if we express the

moment due to the lateral load in the form

f
1 = iWL cos -y-

where W is the whole of the distributed load, we get values

which are nowhere widely different from the values which would

be given by uniform loading. At the middle, where x = 0, this

expression makes fi = J WL, and at the ends fi = 0. These are

correct for uniform loading.. At points between the middle and

the ends it gives values which are slightly less than those which a

uniform loading would produce.

Expressing /ul in this manner we have

d2u Pu WL irx

d^ + EI + 8EI
C0S 77=°>

which gives u =
AWL cos -=-
° L

EI$-P

as the equation for the deflection of the strut.

* See a paper by Prof. Perry, Phil. Mag., March, 1892.
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At the middle, where this deflection is greatest, its value is

WD
Ui
~8(tt2EI-PD)'

The greatest bending moment is

WL PWD
flt + Pll, = —q- +

8 *{tt*EI-PD)

WL /

,

P
1 +

8

1 ^-p

7r'
2EI .

The quantity is the load which would cause instability,

by Euler's theory. Calling it Q we may express the greatest

bending moment of the laterally loaded strut in the following form :

1Ul
8 \Q-P)-

Having found the greatest bending moment we may readily

proceed to find the greatest intensity of stress. It is made up of

the stress which the load P alone would cause, if acting axially,

together with the stress which is produced by the bending

moment. Taking the middle section, where the stress is greatest,

let y x
and y2 be the distances from a central axis through the

centre of gravity of the section to the inner and outer edge

respectively. Then the stress due to bending alone produces a

M y
compression equal to —

j
l
at the inner edge, and a tension equal

M y
to --p-

2
at the outer edge. Hence the greatest intensity of com-

pressive stress, namely at the inner edge of the middle section, is

MxVl P

where A is the area of the section, and / is its moment of inertia

about the axis with respect to which bending occurs. The

greatest intensity of tensile stress occurs at the outer edge of the

middle section, and its value is

My*
__
P

I A'

From these expressions (hat value of /
} may be calculated

which will cause the greatest stress t<> reach an assigned limit
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when the lateral loading is known ; or alternatively the amount of

lateral loading can be determined which, in conjunction with a

given thrust P, will cause the greatest stress to reach an assigned

limit. The theory also serves, of course, to test the suitability of

assumed dimensions of section when the end thrust and lateral

load are both assigned.

A practical case occurs in the coupling rod of a locomotive

which in addition to acting as a strut has to bear a lateral

load due to its centrifugal acceleration. Each part of the

rod moves in a circle of radius r, making n turns per second.

The centrifugal force per unit length of the rod is therefore

4 7T" 71?VTW
in pounds weight, where ??i is the mass of unit length of

the rod in lbs.

The bending moment due to centrifugal force is greatest

when the rod is at the top or bottom of its path : in each of

these positions the effect is that of a lateral load equal to

4*77"^ ??" ?
1
???

per unit of length. When the rod is exerting longi-
y

tudinal thrust as well as running at a high speed the thrust and

this lateral load should be taken account of jointly. In general

however the bending due to centrifugal force is greatest under

conditions which exclude longitudinal thrust, namely when the

engine is running down hill with steam shut off.



CHAPTER X.

TORSION OF SHAFTS.

127. Torsion of a uniform circular shaft. When a rod

or shaft of uniform circular section is twisted, by applying opposite

couples to its ends, the axis of the rod being the axis of the

couples, the stress is everywhere one of pure shear. The strain

may be regarded as due to a rotation of each plane of section

relatively to neighbouring planes. At the centre the strain, and

therefore the stress, is nil, and at other points of the section the

amount of the shear is proportional to the distance from the axis.

Assuming the strain to lie within the limit of elasticity the

intensity of shearing stress q varies with the radius r. A radius

DB (fig. 128) turns round to DC, and a straight line AB drawn

parallel to the axis at any distance r changes into the helix AC.

Fig. 128.

Let
<f>

be the angle which this helix makes with lines parallel

to the axis: then cf> is what we have called in § 19 the angle of

shear, at the distance r from the axis; it is proportional to r.

The angle 6 or BCD may bo called the angle <>t" bwist for tho

length AB; it is proportional to AB.
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Taking two normal cross sections at a distance £x from one

another we have

C being the Modulus of Rigidity.

The lines of principal stress are helices inclined at 45° to the

direction of the axis.

128. Relation of the greatest intensity of stress to the

twisting moment in solid and hollow circular shafts.

Since q varies as r we may write

where q1 is the intensity at the surface where it is greatest, and ra

is the radius of the shaft. The whole moment of the shearing

stress distributed over each cross-section must be equal to the

moment applied by the twisting couple M. Over any ring of

radius r and radial width Sr the intensity of stress is q and the

total stress is q . ^irrhr. This acts at a radius r, and contributes to

the whole moment the quantity

q . 27rr2 8r.

Summing up these quantities for the successive rings into

which the whole section may be conceived to be divided, we

have

M = fq.27rr2 dr.

Substituting — for q this gives

7\

For a solid shaft the limits of integration are from r = to

r = r, .

Hence for a solid shaft

2 '



TORSION OF SHAFTS. 189

For a hollow shaft the internal radius of which is r2 and the

external r1}

=
7rg1 (r1

4 -r25

To express the greatest intensity of stress produced by a given

twisting moment M we accordingly have

2M
2i =

7T?Y

when the shaft is solid, and

2Mr1_

when it has a central hollow with radius r2 .

These results may be expressed for both cases by writing

Mi\
qi = -jr,

where J is the polar moment of inertia of the section, which in a

hollow or solid round shaft has twice the value of / the moment
of inertia about a diameter.

It is important to notice how little the greatest intensity of

stress is increased when a shaft is lightened by removing even a

considerable portion of the mass from the centre.

129. Angle of Twist in Round Shafts. Writing i for

the angle of twist per unit of length we have

._S<9_0_ 7l

8x r C)\

whether the shaft is hollow or solid. This gives

._M_
l ~~

CJ'

. . 2M , 2M
whence i= and —^7- ..

for -the two cases. An application of this to tin- measurement of

C has already been given in § 71. Another application La to

observe the twist of a shaft as a humus of determining the couple,

and from that the power, which the shaft Lb transmitting,
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130. Relation of Power transmitted by a Shaft to

Torsional Stress and Angle of Twist. In practical problems

relating to shafting the data often are the speed of rotation of the

shaft, and the number of horse-power it is to transmit. Let H be

the horse-power and N the number of revolutions per minute.

Then the work done per minute, in inch pounds, is 12 x 33000 H,

and the angle turned through per minute is 2-rrN. Hence the

twisting couple in inch pounds,

12 x 330005 ™™#

Applying this to a solid shaft of diameter d,

__ 2M_ _ WM _ 3210005"
qi ~

7T7Y5 " ~^¥ ~ Ndz
'

W
From this d — 68*5 *

As a safe value of q1 9000 lbs. per square inch is often taken in

wrought-iron shafting, which makes

* = 3
'29 \/jT

for wrought-iron.

The greatest stress qx may safely be 13500 for steel, and 4500

for cast-iron. The corresponding expressions are

3
/77

d = 2-88 W ^ for steel

;

^ = 4*15 a/ ^. for cast-iron.

It has been assumed here that the twisting moment acting on

the shaft is uniform. In many practical cases however the

moment varies periodically. A shaft driven by a single crank and

connecting rod, for instance, is subject to a moment which varies

from a maximum to zero twice in each revolution. The propeller

shaft of a steam-ship, driven by two, three, or more cranks suffers

smaller, but still considerable, variations in twisting moment.

When a fly-wheel intervenes between the source of power and

the shaft it tends to smooth out such irregularities, but some

irregularity in the moment remains, and in all cases where the
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moment is not uniform provision should be made by an appropriate

increase in the value of d.

Another reason for increasing d is present in most cases. The

shaft is subject to a certain amount of bending as well as twisting.

This arises partly from its own weight, partly from the weight of

pulleys or spur wheels upon it, and partly from the lateral forces

which are brought to bear on it by the gearing or belting through

which it takes or gives off power. We shall see presently how to

calculate the effect of a bending moment acting in conjunction

with a twisting moment when the amount of the bending moment

is known. But in many practical cases the bending moments to

which the shaft may be liable can scarcely be specified with any

certainty, and in such cases the practice is generally followed of

increasing the diameter to provide for such contingencies, by an

amount which experience of similar shafting has shown to be

prudent*.

131. Twisting combined with Bending. When a shaft

is subjected to a known bending moment in addition to a known

twisting moment we may apply the method exemplified in § 96 to

find the magnitude and direction of the greatest principal stress.

An important practical instance occurs in the case of a crank-shaft

(fig. 129). Let a force P be applied to the crank-pin A at right

Fig. 120.

angles to the plane ABC. At any section G of the shaft,

between the crank and the bearing, the force P gives rise not

only to a twisting moment M
t

the amount <>t' which is r.All. hut

* For practical rules on this point reference should be made to I'nwin's

Elements of Machine "Design.
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also to a bending moment M2 the amount of which is P . BG.

There is also a direct shearing force at the section C, the total

amount of which is P, but this, as we have seen in § 95, is

distributed over the section in such a way that its intensity is

zero at the top and bottom of the section. It is at the top and

bottom that the intensity of stress due to combined bending and

twisting is greatest, and hence in calculating the greatest principal

stress we have no direct shearing stress to take account of. At

the top and bottom of the section there is, first, a normal longi-

tudinal stress due to bending, the intensity of which is

4Jf,
P =—i >

7T?Y

and second, a shearing stress due to torsion, the intensity of

which is

2M,
y
=—»•

When these are combined as in § 96 we obtain for the principal

stresses the values

Jp ± vV + ip
2

_ 2 (M2 ± Vi^2 + M?)
irrx

z

Hence the greater principal stress has the same value as the

stress which would be produced by the application of a bending

moment of the magnitude

without any twisting. This is sometimes called the equivalent

bending moment. In the same way the quantity

M2 + Vil^2 + M*
is sometimes called the equivalent twisting moment, as being

the moment which if acting alone to produce torsion would

produce a stress numerically equal to the greatest stress which

the actual combination of bending and twisting moments pro-

duces. The student should, however, be careful to notice that

the greatest stress produced by the combination is a normal

stress, whereas that due to a twisting moment is a shearing

stress, and for this reason the conception of an equivalent bending

moment is less open to criticism than that of an equivalent

twisting moment.
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Since M1
= P . AB and M2 = P . BC, the equivalent bending

moment may be expressed as

$P (BC + JAB* + BC*)
or

iP(BG + AC).

The greatest shearing stress, due to the combined bending

and twisting, being by § 96, \'q2 + \pr, is equal to

2v/

i/ 1
* + i/2

2

_ 2P. AC
rn\z

tti\3

The axes of principal stress are inclined so that

. M1 AB^n2e = Mr'BC'

being their inclination to the section.

In all cases of combined twisting and bending, whether the

moments are due to forces applied to a crank or to other causes,

the method here given may be applied to find the equivalent

bending moment, or to calculate directly the principal stresses

and the greatest shearing stress. The joint effect of the two

moments is readily exhibited by drawing a diagram showing the

equivalent bending moment at all sections of the shaft*.

132. Resilience of a Round Shaft under torsion. The

work done in twisting unit length of a shaft, within the limit of

elasticity, is

where M is the twisting moment and i is the angle of twist per

unit of length. We have seen (§ 129) that

9i
l -cri

and Af = vr/V ry,

2 '

Hence the work done per unit of length is

* For examples see Unwiu's Elements of Machine Design,

E. S. M. 13
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and hence the mean resilience, per unit of volume of the

material, is

4C"

an expression which may be compared with those already given

for a rod under pull, and for a bent bar.

If instead of a solid shaft we are dealing with a hollow shaft

whose thickness is small compared with its radius, the resilience

per unit of volume approximates to the value

26"

all the material being then subject to a stress which approximates

to (h .

133. Torsion beyond the Elastic Limit. When the

twisting of a round shaft is earned beyond the elastic limit the

first portion to take permanent set is a ring round the circum-

ference, and if the material is reasonably plastic the stress on this

ring ceases to increase or increases onlv verv slightly when an

increased twisting couple is applied. ^Yith increased torsion

more and more rings become similarly affected, and the condition

of the shaft ultimately approximates to one in which the shearing

stress is uniform throughout the section. Thus if q be the

ultimate shearing strength of the material, the twisting moment
which is required to break the shaft approximates to the value

for a solid shaft, or

27rq (i\3 — r2
3

)

3

for a hollow shaft.

The moment, in the case of a solid shaft, has therefore a value

greater in the ratio of 4 to 3 than that which it would have if a

uniformly varying distribution of stress were maintained.

The ultimate strength of a shaft to resist torsion is not to be

inferred from a knowledge of the shearing strength of the material

any more than the ultimate strength of a beam to resist bending

is to be inferred from a knowledge of the tensile strength and

crushing strength of the material, and experiments on rupture by
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torsion are not a satisfactory way of obtaining data with respect

to shearing strength.

134. Spiral Springs. An ordinary helical or " spiral " spring

yields mainly by torsion. There is in strictness some bending as

well, but when the slope of the helix is very small the bending is

insignificant, and the strain may be treated as approximating

closely to pure torsion. This is the case when the spring is closely

wound and the diameter of the helix is large compared with the

diameter of the wire or rod of which the spring is made.

Let a be the radius of the helix and r the radius of the wire,

which we assume to be circular in section. A load P, stretching

the spring, exerts a twisting moment Pa on the wire. It produces

a shearing stress, due to this torsion, the greatest value of

which is

2Pa

The angle of twist per unit of length is

qx 2Pa Pa
% =

Cr ttCV4 GJ'

The whole angle of twist is il
y
when I is the length of the wire

composing the helix. It is this twist that causes one end of the

spring to move out when the other end is held fixed.

Every element in the length of the wire produces by its twist

a displacement of the point from which the load is hung, through

a distance equal to the product of the angle of twist into the

radius of the coil. Hence the whole amount by which the spring

is extended is

.. 2Pa~l
ail = n - .

The work done in stretching the spring is half the product of

this quantity into P, an expression which is easily shown to bo

a 2

equivalent to n̂ per unit of volume of the wire.

A numerical comparison of the resilience of a spiral spring

with that of a bent rod will show that a considerably larger amount

of energy can be stored in a spring where the strain is torsional

than in one where the material is strained by bending.

13—

2
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The best disposition of all, that is to say the disposition which

would allow a given weight of material to store the greatest

amount of energy, would be that of a thin hollow tube of circular

section, strained in torsion. A spiral spring made of such a tube

would store an amount of energy approximating to ^ per unit of

volume.

We have already seen that a rod directly extended has a

resilience equal to ^-= , and a bent rod (if rectangular in section)

when subjected to a uniform bending moment has a resilience

equal to £=. Since E is generally about f 0, these quantities are

less than the resilience of the twisted tube in the ratio of 2-J and

7J respectively, if we assume that equal intensities of normal

stress and shearing stress are permissible.

135. Helix in which the obliquity is considerable.

The spiral spring dealt with in the preceding paragraph was

supposed to have coils so flat that the strain could be treated

as simply one of torsion. When the obliquity of the coils is

considerable, the effect of bending has to be taken account of.

Let a be the inclination of the wire to a plane perpendicular to

the axis of the helix (fig. 130). Then the moment due to the

Pa sin a

Fig. 130.

load, namely Pa, which acts about the axis OY may be resolved

into two moments,
Pa cos a and Pa sin a,
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acting about OT and OS respectively, of which Pa cos a produces

twisting about the axis of the wire OT, and Pa sin ol produces

bending about the axis OS perpendicular to the axis of the wire.

Hence the angle of twist per unit of length is

Pa cos a

and the angle of bending per unit of length is

Pa sin a

Now resolve each of these angles about the axes OX and OY
to find the horizontal and vertical components of the angular

displacement, per unit of length of the wire. Call the horizontal

rh

and vertical components of angular displacement j and -y respec-

tively, I being the length of the wire. The horizontal angular

displacement is reckoned as positive when it implies increase of

curvature in the helix.

The horizontal component of angular displacement, about OX,

i ,, • , • Pa cos a . . . ... mi i •
i

due to the twist is —~-=— .sin a ana is positive, lhe horizontal

component of angular displacement due to the bending is negative

, . . , . — Pa sin a
and its value is —=-==

. cos a.
hi

Hence

e „ • (I i

j = Pa sin a cos a I ~
T
— -r=j

Both bending and twisting produce positive vertical com-

ponents of angular displacement, and the amount due to the

two is

<b „ /cos- a sin 2 a

-r la
{-cj

+ ei

We are of course assuming here that the strains arc small and

that the principle of superposition is applicable.

Hence the axial extension of the spring, which is ncp, is

.. .,, , COS8 a sin- a
e = Pa-l(

aJ + m



198 TORSION OF SHAFTS.

and the whole angular displacement of the free end in the

horizontal direction is

6 = Pal sin a cos a I -~j— -=j
J

.

In a wire of circular section J=21, and C is in general about

| E. Hence the quantity

CJ EI

is in that case positive and its value is about ~rwj- The positive

sign means that such a spring coils itself closer as it stretches*.

When a is infinitesimally small 6 vanishes, and the expression

Petri
for the axial extension becomes -^-= as before.

CJ

The expressions given here for e and are not applicable to

springs in which the section of the wire is other than round, for,

as will be shown in the next paragraph, the torsional rigidity of

other sections is not correctly, expressed by CJ. It is, however, in

general not excessively different from CJ, and hence it will be

obvious that if a section be chosen in which J is very much

greater than I the value of 6 may come to be negative : in other

words, a spring may be made which will unwind when it is

stretched. Let the spring for instance be wound from a thin

strip, so that the section has a depth much greater than its width

measured radially to the coil. Then / is small and J is relatively

very large. Although the expression given above for 6 is not

applicable to such a section without modification, it serves to

show that may be expected to be negative in such a case, and

to have a comparatively large value. With such a spring there

is, in fact, a large rotation of the free end. Since this rotation is

proportional to the applied load it may be used, instead of the

extension, as a means of measuring the load. This property of

springs wound from flat strips has been discussed by Professors

Ayrton and Perry f, who have also applied such springs to a

number of uses in the design of instruments.

* The treatment of spiral springs is easily extended to include cases in which

a known couple is acting horizontally, to wind up the spring, in addition to, or in

place of, an axial load, and also cases in which horizontal angular displacement is

prevented from taking place. See Perry's Applied Mechanics, Chapter xxviii.

t Proc. Boy. Soc. No. 230, 1884.
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136. Torsion of non-circular shafts. It is only in shafts

of circular section that the shearing stress is uniform at all points

equally distant from the axis, and varies uniformly along the

radius. If the shaft has any other form, the stress due to a

torsional couple is distributed over the section in a much less

simple manner.

Fig. 131.

To see that this is the case, consider the stress at any point

on the surface of a shaft in which the edge of the section is not

perpendicular to the radius. A shearing stress at P perpendicular

to the radius there, namely PA, may be resolved into shearing

stresses PB along the edge of the section and PC perpendicular

to the edge of the section. Each of these must be associated with

equal shearing stress in a plane parallel to the axis of the shaft.

Thus PC must be associated with a shearing stress parallel to the

axis on a plane tangent to the surface of the shaft at P. But

such a stress cannot exist unless forces parallel to the length of

the shaft are applied at the boundary. In other words, a simple

twisting couple cannot by itself produce in a non-circular shaft a

distribution of stress such that the direction of shear is every-

where perpendicular to the radius. To produce such a distribution

would require the application of longitudinal forces to the boundary,

in addition to the twisting couple.

M
It follows that we cannot apply the formula

T to reckon the

angle of twist in a square or, generally, a non-circular section, nor

Mr
treat the intensity of stress as —

j , as it was in a hollow or solid

shaft of circular section.

The actual distribution of stress produced by Bimple twist in
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shafts of square, triangular and other forms of section has been

investigated by St Venant, who has shown that in a shaft of

square section the greatest intensity of stress occurs at the middle
71 T

of each side, and that its value then is
r>

_-
f> 7o , h being the side

0'208 th*

of the square. This intensity is greater, by about one-seventh,

than the greatest value which would have been found if the

Mr
formula —=- were applicable. Again, St Venant shows that the

u

torsional rigidity of a square shaft is 0*84 CJ instead of CJ; in

other words, that the angle of twist of a square shaft per unit of

length, due to a twisting couple M, is

M
084 CJ'

The torsional rigidity of a square shaft is consequently less than

that of a solid round shaft of the same sectional area in the ratio

of 0-88 to 1.

When the section is an equilateral triangle St Venant finds

the torsional rigidity is 0'6CJ, which is 0'73 times that of a

circular shaft of equal section.

137. Stability of Shafts under End Thrust and
Torsion. Professor Greenhill has investigated the influence

which torsion produces on the stability of a shaft exposed to

end thrust*. Taking end thrust alone the theory of Euler leads,

as we have seen, to the conclusion that instability is produced by

a thrust P when it is so related to the effective length L that

ZL
2

_Z.
L*~ EI'

Professor Greenhill finds that when there is a torsional couple T
acting on a round shaft in addition to end thrust, the condition

producing instability is that

7T
2 P T 2

L2 EI *EV
The second term is so small, in practical cases, that it need not

in general be taken account of in estimating the stability.

* Proc. Inst. Meek. Eng., 1883.
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The instability which may be produced in a shaft by the

action of an end thrust is quite distinct from the instability

described in the next paragraph.

138. Centrifugal whirling of shafts. This action, although

it has nothing to do with the torsion of shafts, may usefully be

described when we are dealing with the causes of instability to

which a shaft is liable.

When a shaft revolves at a high speed its own inertia gives

it a tendency to instability which is distinct from, although

analogous to, the instability of a long column under end thrust.

This instability is independent of any torsion to which the shaft

may be subjected. It results from centrifugal force coming into

play as soon as the shaft deviates from perfect straightness. At a

particular speed the centrifugal force is just sufficient to keep the

shaft bent and the state of things is then analogous to that of a

column sustaining an end load equal to Euler's limiting value.

The effect on the shaft is that when this critical speed is reached

the amount of bending becomes large, for the centrifugal force

increases pari passu with the deflection, and the shaft is then said

to " whirl."

Let w be the mass of the shaft per unit of length, and n the

number of revolutions per second. Then the centrifugal force at

any place where the deflection from straightness is u is

4<7r-n2 wii

9

per unit of length of the shaft. This is equivalent to a lateral

load causing bending, and the bending moment M caused by it

must be such that

d2M _ 4<7r*nHvu

da? g

The curvature of the shaft due to this bending moment is

</-//_ M
dot? ~EI

where / is the moment of inertia of the section about a diameter.

Hence
d4U ^7r-iriU(i
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which for brevity we shall write

d4u

dxA

,
(kir2n2w\*

using m to represent =j^ 1 .

The general solution of this equation is

u = A cosh mx + B sinh mx + G cos mx + D sin m#.

When the shaft is simply supported at bearings but not held

in them in such a manner as to fix its direction there, it is free to

bend along the whole length L between the bearings. In that

case the deflection and the bending moment are zero at each end.

Hence, taking the origin at the middle, u = and -j— = when

x = -= and when x = — -= . Further -7- = when x = 0.
2 2 da?

From these conditions it follows that A, B and D each =0,

and the equation for the deflection becomes

n= C cos mx,

where G is the deflection at the middle.

Then since u = when x = ^

from which

2

cos -s- = 0,
2

??liv 7T

2 2"

Hence the length L between bearings and the speed n which

causes whirling are related to one another thus

:

T —- ( 9EI V- (
7r

'2

9EI\z
m \4)7r

2n2 wJ \ 4n2w /
'

(gEI
or

tt /gEI
=
2L2 V io10

When the' bearings are such as to fix the direction of the shaft

at each end it may be shown that

??iZ = 4'74.

Other interesting cases arise when the shaft carries one or more

pulleys, the mass of which has the effect of increasing the tendency
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to whirl. The student is referred to a paper by Professor

Dunkerley (Phil. Trans. Roy. Soc. 1894) where a large number of

cases are considered in detail, and where an account will be found

of experiments by which the results of the theoretical investigation

were put to the test.

The formula which expresses the condition giving rise to

whirling in an unloaded shaft supported by bearings which do not

fix the directions of its ends, namely

7T gEI
?*~22>V w

may be put into a form more convenient for application to

ordinary shafting. For iron or steel we may take E to be about

30,000,000 lbs. per square inch, and w to be 0'28 lbs. per cubic inch.

Hence for an iron or steel shaft the formula becomes

it / 32-2 x 12 x 30,000,000 irr^
n ~2L*V

'

0-287rr2 ' ' 4
'

where r is the radius of the shaft and L is the length between the

bearings, both in inches. This gives

160,000?-

or Z = 400a/-,
V n

n being the number of revolutions per second as before.



CHAPTER XI.

SHELLS AND THICK CYLINDERS.

139. Stress in a Thin Shell due to Internal Pressure.

When a circular cylinder contains a fluid under pressure the

material of the cylinder is thrown into a state of circumferential

tension, which may be treated as sensibly uniform if the thickness

of the wall is small in comparison with the diameter of the

cylinder. Such a thin cylinder is called for brevity a shell, and

the circumferential stress is called the hoop tension. The barrel

of a cylindrical boiler is in effect such a shell : the thickness of

the plates being so small relatively to the diameter that we may
without sensible error consider the hoop tension to be uniform

throughout the thickness of a plate.

To find the relation of the hoop tensionf to the radial pressure

p, consider the equilibrium of a piece of a shell subtending a small

angle 6 at the axis of the cylinder. The piece which is shown in

elevation and plan in fig. 132 has four sides, two of which (AC
and BD) are parallel to the axis of the cylinder, and the other

two are perpendicular to these. As the piece is supposed to form

part of a uniform circular cylinder there can be no shearing stress

on any of the four sides, for the neighbouring pieces are under

identical conditions, and further, whatever normal force acts on

AB must be balanced by an equal and opposite normal force

on CD. The only forces left to be considered are the hoop

tensions on AC and BD, indicated by arrows in the figure, and

the pressure of the fluid on the inner surface of the piece.

The piece is in equilibrium under the action of the three

forces P, T, and T, where P is the outward push which the fluid
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exerts on it, and T, T are the pulls exerted on its sides AC and

BD by neighbouring pieces, in consequence of the hoop tension.

->

Fig. 132.

Let the width of the piece measured parallel to the axis, namely

AC or BD, be unity. The circumferential length AB is rd.

Then, since is small, P is sensibly equal to the product of the

intensity of the fluid pressure into the area of the piece,

P=pr6,

and T=ft,

t being the thickness of the shell.

But P = TO

by the triangle of forces (fig. 132).

Hence ft=Pr
>

/=
_j)r

t

This result is evidently applicable to a thin shell exposed to

external as well as internal pressure, if P be bakeD to represent

the excess of the internal pressure over the external.
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The same result can be arrived at almost more simply by

considering the equilibrium of half the cylinder. Here P, the

Fig. 133.

resultant of the internal pressure, is 2prl, where I is the length of

the piece under consideration. This piece is balanced by T + T.

Hence
2T=2prl,

2ftl = 2prl,

f=
_pr

T
as before.

140. Longitudinal Stress in Cylinder exposed to In-

ternal Pressure. If the ends of the cylinder are held together

by longitudinal stress on the cylinder itself, and not by separate

stays or other supports, there will be a longitudinal stress, the

amount of which is readily found by imagining a transverse divi-

sion AB, fig. 134, and considering the equilibrium of either of the

Fig. 134.

two portions, say the portion to the right. The sketch shows the

cylinder, with its end, in section. Whatever the form of the end

be, the resultant of the internal pressure on it is a force P acting

along the axis of the cylinder and equal to pS where S is the area

of section of the shell, as a whole, namely the area 7rr2 . This force
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is balanced by a longitudinal stress/
7

acting over the ring which

constitutes the section at AB, namely the ring whose area is 2irrt.

Hence
/' . 2irrt = p . 7TT2

,

r= pr
J 2t'

Thus the longitudinal tension /' is half the hoop tension/.

It is clear that if the ends are held together by stays, or in

any manner other than by the material of the shell itself, the

relation stated here does not exist. It is easy to imagine cases in

which the presence of stays prevents any longitudinal tension from

coming on the shell, and even cases in which an excess of

tightness in the stays may put the shell into a state of longi-

tudinal compression.

141. Spherical Shell. The tensile stress in a thin spherical

shell is at once found by imagining a diametral plane of division,

and considering the equilibrium of each half. The resultant fluid

- pressure is p . ttt
1

: the resultant of the tensile stress on the ring

section is/. 2irrt. Hence

f==
pr

J 2t'

142. Cylindrical Shell of oval section. In a cylindrical

shell of oval section, fig. 135, such as the tube of

a Bourdon pressure-gauge, the equilibrium of the

halves separated by a plane AB shows that if / is

the hoop tension at A or at B,

2f.t=p.AB,

p.AB
J~~ 2 '

Similarly, if/' is the hoop tension at A' or B\

p.A'B'
J

2

Thus the greater hoop tension is found at the places of greater

curvature. A piece of the shell at A or at /> is supported against

the pressure within, not merely by the hoop tension which results

from the curvature there, but also by shearing stress on the sides

of the piece which face towards A* and />'. This shearing stress
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is associated with a bending moment which acts upon any annular

strip of the tube bounded by two parallel transverse sections.

The bending moment varies, from point to point round the strip,

both in amount and in sign, in such a way that its tendency is

everywhere to make the section more nearly circular.

143. Thick Circular Cylinder. We have next to consider

the distribution of hoop tension in a circular cylinder so thick

that the hoop tension cannot be treated as having the same
intensity from inside to outside.

We may regard the whole thickness as made up of a series of

superposed rings. The radial pressure is transmitted from ring to

Fig. 136.

ring with reduced intensity, and the hoojD tension decreases as we
pass out from one ring to the next. Consider a small piece of a

ring, anywhere within the thickness. Let r be its inner radius

and r + Br its outer radius. On the inner surface of such a ring

there is a certain intensity of radial pressure p. We may write

p + &p as the intensity of radial pressure on the outer surface, it

being understood that hp will be negative in the usual case,

namely when a cylinder has to bear an excess of internal pressure.

The radial pressure p is one of the three principal stresses.

Another is the hoop stress p', and the third is the longitudinal

stress, parallel to the axis, which does not need to be taken

account of in considering the equilibrium of the piece, since it

has equal and opposite values on the front and back faces.
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Reckoning push stresses as positive, we shall find that p has a

negative value when there is an excess of pressure within the

cylinder.

As before we take the width of the piece to be unity in the

direction of the length of the cylinder, and assume 6 to be small.

Then the whole radial force acting on the piece (reckoned as a

force pushing it in) is

(p + hp) (r + 8r) 6 — pr6,

and this must be equal to the resultant of the forces arising from

hoop stress, namely to

p'Sr.0.

Hence (p + Sp) (r -f- Sr) — pr— p'hr,

or phr + r&p = p'hr,

which may also be written

A further relation between p and p' is got by considering the

strains. Unless the cylinder be very short the strain must be of

such a character that plane sections taken transverse to the

length remain plane when strained : in other words the longi-

tudinal strain is uniform. Assume further that the cylinder has

free ends. Then the longitudinal strain is entirely due to the

lateral action of the two stresses p and p' , and its amount is

P , P'

aE aE'

Hence to make the longitudinal strain constant we must have

p + p = 2a,

where 2a is a constant.

If we assume that the cylinder instead of having free ends

is subjected to a uniformly distributed longitudinal stress p'\ the

longitudinal strain is the sum of the direct effect of p" and the

lateral effect of p and p', and in that case also the condition of

constant longitudinal strain requires that the sum ofp and p shall

be constant.

We have then the two equations

/> + // as 2a,

and pSr + r&p = p'Sr.

K. s. M. I 1
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Substituting 2a — p for p' and multiplying by r, this second

equation becomes
r2Bp + 2prhr = 2ar8r,

or ^(pr2
) = 2ar.

Integrating, pr2 = ar2 4- b,

b

where b is another constant.

Also p' = 2a — p = a—-

.

The constants a and b are to be found by considering the

boundary conditions.

In the ordinary case of a thick cylinder exposed to internal

pressure only, let pi be the internal pressure and let the internal

and external radii be ry and r2 respectively. Then p — pi when

r = r1} p = when r = r2 .

Hence o = ^-
.) >

a =

TV — Tj

r2
- — r^

Hence the hoop stress at any radius r is

M 2
I 2-piV^il +
7

r r 2 _ r z

the negative sign showing that it is a tension.

The hoop tension has its greatest value at the inner surface,

when r = rx . We there have

?V — *i

At the outer surface it is

- 2p%r?

r2
2 - r-f

'

Thus if f represent the greatest safe tensile stress which the

material of the cylinder will stand, the greatest safe internal

pressure is

n2 + i~i
'
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It should be noticed that the hoop tension is always greater

than the internal pressure, no matter how thick the cylinder is.

We have assumed throughout that the stresses lie within the

elastic limit and that the cylinder is free from initial internal

stress. The formulas are applicable to the design of the cylinders

of hydraulic presses and other thick tubes intended to resist

internal pressure.

Fig. 137 (p. 213) illustrates by the curve AB the variation of

hoop tension in a tube whose external diameter is three times its

internal diameter. It will be noticed that the external portion of

the metal is under comparatively little hoop tension and con-

sequently contributes comparatively little to the strength.

144. Thick Cylinder exposed to External Pressure. If

the exterior is exposed to a radial pressure pe and the inside is

free from pressure, these boundary conditions give the following

equations for the constants a and b, i\ and v* being the internal

and external radii as before

:

, -perfr2
2

r2 — 1

1

a =
fv* * , 'V* "

Hence in that case the hoop stress at any radius r is

Per*' (1 + 5)
p =

r* - r\
s

As this has the same sign as pe , it represents a circumferential

pressure. It increases towards the inner surface, and there, when

r = ru it has the value

2p e r.r

r.r - ir

145. Use of Initial Internal Stress in strengthening a

thick tube. We may make the external portion of a thick tube

more effective for the purpose of standing pressure from within it'

we arrange that there shall bo a condition of initial Internal stress,

of such a kind that the outer Layers are bending bo contract ever i he

inner layers. This bhrOWS the inner layers into a State of initial

hoop pressure, and when the pressure of (he fluid inside the tnhe

1 I
-2
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becomes operative, its first effect is to relieve them of this initial

pressure and to throw additional tension on the external layers.

One way in which a helpful condition of initial stress may be

produced is to build up the tube out of two or more superposed

layers, the outer being shrunk on over the inner. This device

has been applied in the construction of big guns. The outer tube

is bored to a diameter somewhat smaller than that of the barrel

over which it is to be placed. It is then heated until it expands

sufficiently to slip over the barrel, and as it cools its contraction

makes it press on the barrel below, producing hoop tension in

itself and hoop pressure in the barrel. Then when any pressure

is applied inside the tube its effects in producing hoop tension

are superposed on the existing hoop stresses, with the result that

the outer portion of the compound tube becomes more severely

stressed than it would be if no initial stress existed, and the inner

portion is less severely stressed, since its hoop tension is reduced

by the initial stress there. By this means the general distribution

of stress due to internal pressure is considerably equalised. It is

evident that this method of equalising the stress may be carried

further by building up the whole tube in the form of a series of

rings each shrunk on above those below it, and in gun-making it

was at one time customary to shrink a series of tubes one above

another.

Confining our attention to the simple case where the cylinder

is built up of two tubes, let p be the radial pressure at the

surface between them, due to the shrinking on of the outer tube,

apart from any stress that may be caused by application of

pressure within the bore of the inner tube. Then the results

arrived at in the last paragraph show that the condition of initial

stress in the compound tube is as follows. In the inner portion,

from radius r
3

to radius n, there is circumferential stress (of

pressure) equal to

f.*-,'(i+g)

r2
2 — Ti

2

In the outer portion, whose radii are r2 (internal) and r3 (external)

there is circumferential stress (of tension) equal to

w(i+*i)
r,- - r.S



SHELLS AND THICK CYLINDERS. 213

Now suppose that the compound cylinder as a whole, with

internal radius rx and external radius r3 , is thrown into a state

of stress by the application of an internal pressure pi.

The hoop stress which this would cause at any radius r,

apart from initial stresses, is

-pir^il +

r .

The actual hoop tension is to be found by taking the sum of this

and of the initial circumferential stress.

CA

Fig. 137.

Fig. 137 illustrates this summation for a particular case. It is

there assumed that r3
= 3/ ,

1 and ?\2
=2?-

1
. The inner tube has a

bore of 2 inches radius ; its external radius is 4 inches, and on

this an outer tube with an external radius of 6 inches is shrunk

on. The dotted curves CD and EF represent the initial states

of circumferential stress set up in the outer and inner tubes

respectively by the shrinking on. The curve AB represents the

hoop tension which would be caused in the tube as a whole, if it

were free from internal stress, when an internal pressure is

applied equal in this example to seven times the pressure al the

surface of contact of the two tubes. The curves QH and JK
represent the resulting actual state of hoop tension. There is of

course a discontinuity in the hoop stress as we pass from one tube

to the other.
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The numerical results of this example are stated in the

following tables. The radial pressure produced by shrinking

on, p , is taken as unity, and pi=*7p .

Circumferential Stress in Compound Cylinder.

Radius

Hoop
pressure

due to p

Hoop
tension

due to p

Hoop
tension

due to pi

Eesultin:

hoop
tension

Inner

Tube

(
2 2-67 8-75 6-08

il
1-93

1-67

4-37

2-84

2-44

1-17

/^-.i J- n -»

1°
( 6

2-60 2-84 5-44
Uuter

Tube
1-95 2-13 4-08

1-60 1-75 3-35

The advantage of the initial internal stress is obvious when a

comparison is made between the two last columns of the table. It

reduces the greatest hoop tension from 8*75 to 6"08 by throwing

a larger share of duty on the outer layer of material. By
division of the tube into three or more parts, with appropriate

pressure at each surface of division, a more equal distribution

could be secured. In all cases the state of initial stress must of

course satisfy the condition that the total hoop pressure and

total hoop tension due to initial stress are equal.

In the more modern method of gun-making a long strip of

steel is coiled over a barrel to form the compound tube. By
regulating the tension under which the steel strip is wound on the

barrel a suitable condition of initial internal stress is produced*.

146. Stress in a Revolving Ring. The problem of finding

the circumferential stress in a revolving ring, due to the action of

centrifugal force, is so closely analogous to the problem of the

boiler shell that it will be convenient to mention it here.

Consider a short portion of the ring, subtending a small angle

at the centre. Let s be the area of section, p the density, and r

the radius. When the ring is revolving with a velocity v, the

centrifugal force on this piece, expressed in gravitational units, is

psrO
rg

* The student is referred in this connection to articles by Prof. Greenhill in

Nature, Vol. xlii. pp. 304, 331, 378.
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and this is balanced by the resultant of the two tensions at the

extremities of the piece, namely

fie

wheref is the intensity of the circumferential tension. Thus

fse=
psrW

rg

j. pv2

or J=—>
9

a result which shows that the hoop tension due to centrifugal

force in a revolving ring depends only on the circumferential

velocity and is independent of the radius of the ring. Thus in

a running belt the tension, so far as it is due to centrifugal force,

is independent of the size of the pulleys, and is the same in the

straight and curved parts of the belt. In a steel ring, the density

of which is 0*28 lbs. per cubic inch, a velocity of 567 feet per

second produces a hoop tension of 15 tons per square inch.

147. Stress in a Revolving Disc. A more difficult problem

is presented by a revolving disc. The following solution is sub-

stantially accurate when the disc is thin, and of uniform thickness.

We have two principal stresses to deal with at any point, namely

the radial stress p and the hoop stress p. We shall use the

positive sign for tensile stress and shall express the stresses in

absolute units to avoid the introduction of g into the equations.

Let a) be the angular velocity of the disc,

p its density,

E Young's modulus,

/jl Poisson's ratio, namely -
,

u the displacement of any point at radius r in the direction

of the radius, due to the strain.

Taking a small element of the disc with radii r and ?• + 6> and

with radially directed sides, the equilibrium of the element

requires that the centrifugal force, which is pco'-r per unit of

volume, shall be balanced by the resultant of the hoop tensions

p'on the sides of the element together with the difference of radial

stress on the outer and inner faces of the element. This gives an
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equation between p and p' analogous to that in § 143 with the

addition of a terra due to the centrifugal force, namely

d
P'^folP^ + rtpi* (!)

Next consider the strains. The strain in the direction of the

n . du
hoop stress is - and the strain in the radial direction is -j- . Hencer r dr

Eu ,

-~=P -MP- (2 )>

and E-£=p-/j,p' (3).

Combining (2) and (3) we have

. E (U du\ JN

p - T^Kr^H-) (4) '

E (llu du\
P=T^{r +

ch-)
(5>

Substituting these expressions for p and_p' in (1),

dhl du U (1 — LL
2
) (0*07* _ ,_ x

r
d? + dr—r + E =° ^

This gives, on integration,

u_G (l-^2
)ft)

2/?r
2

r~? +Cl 8E (7) '

du C 3(1-^)0)^
3r*"JS + Ci SE (8) '

We have now to eliminate the constants by applying boundary

conditions. Two cases have to be distinguished, namely the case

of a complete or solid disc, and that of a disc with a hole in the

centre.

Taking first the disc with a hole in it, let rx be the radius of

the disc and r the radius of the hole. Then p = when r = r1

and also when r = r . Applying these conditions in (4) and (5)

we obtain

^-^W/O^+r.' +^-a + iWr*} (9),

and p = °f(3
+ n)(rs + r *-

r^-r^ (10).
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7

From (9) it follows that the hoop stress has its greatest value at

the circumference of the hole, namely

Greatest £>' =^ {(3 + /i) n2 + (I - fi) rA (11).

And in the particular case where the hole is very small this

becomes

In the second case, that of a disc without a hole, the conditions

are that p = when r = r1 and u = when r — 0.

Applying this latter condition in (7) we have = and

M== <7ir _5 8j£~ V12 )'

By substituting these values in (5) and applying the condition

that p — when r = rx ,

Cl ~ SE (14) '

Hence, by (4),

^
=ft

?{(3+/i)n2_(1+3/tt)r7
(15) '

»2.

and j9 =
W
/(3 + /x)(r1

2 -?-2
) (16).

o

Each of these stresses is a maximum at the centre, the maximum
value being

Hence the greatest hoop tension in a disc without a hole is just

half that which exists when there is a small hole.

These results show that if a thin disc of steel will bear safely a

stress of 15 tons per square inch it may, when it has a hole in the

centre, be whirled with a peripheral velocity of about 620 feet per

second, and when there is no hole the speed may be increased to

about 870 feet per second. It will be obvious that the strength of

a disc to resist whirling is improved by giving it extra thickness

in the neighbourhood of the nave, where the hoop tension is

greatest.



CHAPTER XII.

HANGING CHAINS AND ARCHED RIBS.

148. Loaded Chain. When a perfectly flexible chain or

rope is acting as a suspension bridge to support weights, the

condition that there can nowhere be any bending moment

requires that at each point where weight is applied there must be

equilibrium between three forces, namely the weight and the pull

exerted by the chain on either side of the point.

Fig. 138.

Let ABODE be the chain carrying W1} W2) Ws , TT4 , as

sketched in fig. 138. Then the pulls in the chain at A and B
must equilibrate Wlt and so on. Hence the form in which the

chain hangs must be such that lines drawn from any point

parallel to the successive sections of the chain will divide a

vertical "line of loads" AE into segments AB, BC, &c. which
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represent the loads W1} W2 , &c. The lines OA, OB, &c. represent

the pulls in corresponding portions of the chain. Further if a

^ « horizontal line through be drawn to meet the line of loads in Q,

AQ and J3Q represent the proportion in which the whole load is

borne by the two piers, and OQ represents H, the horizontal

component of the pull, which is constant throughout the chain.

This construction allows us to determine a system of loads

which will give an assigned form to the chain. The form is

evidently unchanged when all the loads are altered in the same

ratio—a process which is equivalent to moving the line of loads

nearer to or further from 0.

The converse problem is, given a system of loads, the distance

of their lines of application from the piers being assigned, to find

the form which will be taken by a chain carrying them. To solve

this, find by the method of moments or otherwise the proportion

of vertical load borne by each of the piers. Draw a line of loads

AB, BG, &c. and divide it in this proportion in Q. From Q draw

a horizontal line and take any point in it. Join with A, B,

&c, and draw a chain, the successive sections of which are parallel

to OA, OB, etc.

Any chain drawn thus will be in equilibrium under the given

system of loads, and to make the problem definite some further

condition must be assigned, as for instance that the chain is to

have a certain length, or that the horizontal pull between the

piers is to have a certain value, in which case the length of QO
in the force diagram is given.

When load is continuously distributed, the chain forms a con-

tinuous curve. The tension T at any point is equal to H sec i,

where i is the inclination of the chain there to the horizontal.

H is the tension at the lowest point. Any portion of the chain

Pig. L89.
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is in equilibrium under the tangential pulls Tlf T2 at its ends and

the resultant load R carried by that portion (fig. 139). Thus the

tangents when produced meet in the line of action of R.

149. Parabolic Chains. A case of considerable practical

interest is that in which the chain bears a continuously distributed

load which is uniform per foot run of the span.

Taking the origin at the lowest point of the chain, the total

load borne by any arc AB (fig. 140) is wAM= wx, w being the load

per foot run of the span. This load acts through V, the middle

point of AM. The tangent at B meets AM in V and consequently

bisects AM. Hence

y _ wx
x

tux'

an equation which shows that the form of the chain is a parabola.

Fig. 140.

Writing c for the horizontal distance of the pier from A, and d

for the depth of the vertex below the pier, we have

H = 1VXJ w&
2y 2d

'

The tension at any point

and at the ends, where the tension is greatest, this becomes

w°v5 + l
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It is convenient to remember that the half length of a

parabolic curve, from the vertex to either extremity, is approxi-

mately

2d2

and hence, if the half length undergoes a small change 8s, say

through strain or through change of temperature, the amount by

which the chain will sag is approximately

ScSs

If the piers are unequally high, we have distinct values for

Ct\ . Cvo -— C\" . C>2
,

(Ci -f c2) \ldx L Vrfj
c, =

v
7

^! + \ld.2 ^d x + \/d.2

'

an equation which serves to determine the position of the vertex

when the span L and the heights of the piers are known.

These results have application in the design of suspension

bridges, where the total load supported by the chain, including its

own weight, is nearly uniform per foot run of the span. Another

application is to determine the stress in a telegraph wire, due to

its own weight or to a load of snow. Strictly, in such a case the

load is uniform per foot of the wire's length, but so long as the

inclination is small there is no material difference between that

and a load which is uniform per foot run of the span. The case

of a load uniform per foot of the chain's length has little interest

except as an exercise in applied mathematics. Its solution is

given in the next article.

150 Common Catenary : Uniform Chain loaded with

its own weight. Here w is uniform per foot of Length, not per

foot of span. On any arc s the load is ws. The horizontal

component of tension H may be represented as tent where m is B

certain length. Using i as before to express the inclination at any

point,

(hi . W8 S
-£- = tan i = = —

.

(I.r win in
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Then £Vi+©2=
™ v™2 +*2

.

Sx &s
or — = / .

in vm2 + s2

rp

Integrating,. — = \oge (s + Vm2 + s2
) + G.

lib

Since 5 = when x = 0, C = — loge ??i, and

a; , s + Vm2 + s2= log*
,

x

or s + Vm2 + s'
2 = ??ze'".

m sinhHence s = -^ \e m - e m
) =

dy s . , x
Also ~t- —— = sinh —

,ax in in

x
from which y = ??i cosh in,J in

the constant of integration being — m since y = when x = 0.

This is the equation to the common catenary, taking the

origin at the vertex.

A neater expression is obtained by shifting the origin to a

point at a distance m below the vertex. Then calling y the new

ordinate,

x
v' = m cosh — .

in

The tension at any point is

T = */H2 + w2
s? = w \/m2 + s

2

= turn * / 1 + sinh2 — = wm cosh —v m m
= wy'-

That is to say, the tension at any point is equal to the weight of a

chain whose length is the vertical distance of the point from a

horizontal line drawn at a distance in below the vertex.

Taking the origin again at the vertex, we have

x
y + in — m cosh —

.

° in
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Also s
2 = m2 sinh2 —

.

m
Hence (oc\ cc

1 + sinh2 —
)
= m~ cosh2 — = (y + m)2

,mj m

y = Vs2 + m2 — m,

g2 y%
and m = ——-

-
,

an equation which enables m to be found when the data are the

length and the dip of the chain. When the data are the span and

the dip, or the span and the length, the value of m may be found

by trial from the equation given above. The following table gives

the- ratio of m to the span corresponding to various dips, which

are stated as fractions of the span

:

Dip — span g j^ j 2 j4 j-q Yg 2 0-

?^span 1-023 T270 1*518 1766 2013 2261 2508.

As an example, take the case of a wire stretched between level

supports with a span of 1000 feet and a dip of 100 feet. The

stress at the middle, or mw, is 1270w, w being the weight of the

wire per foot. If the curve were treated as a parabola the

calculated stress at the middle would be ,- (§ 149) or 1250w.

This will show that even when the dip is as much as one-tenth

of the span no material error results from treating the distribution

of weight as uniform per foot run of the span.

151. Suspension Bridge with Stiffening Girder. The

flexibility of the hanging chain causes it to change its shape

under moving loads and this is a serious drawback to the use of

suspension bridges. If the platform is also flexible it may be

thrown into a state of dangerous oscillation, especially when

variations of load are repeated periodically, as happens for example

when troops are marching over the bridge. The structure ni.w

however be stiffened by the use of auxiliary girders tor that pur-

pose. These girders are usually arranged in the manner indicated

in fig. 141. Each chain carries a pair of stiffening girders, the

length of which is equal to half the span, They are hinged to

One another by a, pin at the middle M
t
and they rest on the pieifi
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by pins and Q which are allowed sufficient freedom to slide in

the direction of the span, and are held from rising as well as from

falling, because with some distributions of load they may tend to

rise.

A single stiffening girder without a central hinge has also

been used, but this has the disadvantage that the stresses on it

depend on the initial tightness of the chain, and are much affected

if through changes of temperature or any other reason the chain,

becomes tighter or slacker. With a central joint, the stress in

each part of the structure is at once determinate, and does not

change, except to a trifling extent, when the relative lengths of

the various pieces are altered by changes of temperature or other

causes.

To investigate the distribution of the load between the chain

itself and the stiffening girder, when the girder is hinged, we may
proceed as follows.

The forces on each girder are the loads it carries, acting

downwards, the pulls of the suspension rods, acting upwards, and

the forces on its ends at the pins acting either downwards or

upwards. These forces produce, in general, bending moment at

any section of the girder. The bending moment on the jointed

girders is zero at the ends and at the central hinge.

We have seen in § 92 that the curve of a hanging chain is a

diagram of bending moments for the load carried by the chain.

Applying that principle to the chain with a stiffened girder, it is

evident that the pulls of the suspension rods must always adjust

themselves in such proportions, no matter how the load varies, as

to make the curve of the chain represent a bending moment diagram

for them, considered separately. In other words, out of the whole

load carried by the structure, the chain carries directly, distributed

through the suspension rods, as much as will constitute a system
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having a bending moment diagram of the shape of the chain.

Hence if we draw a diagram of bending moments for the complete

system of loads which the structure carries as a whole, and subtract

from that a diagram of bending moments having the shape of the

chain (using the appropriate scale so that this latter diagram will

represent the bending moments due to the pulls of the suspension

rods), then the difference between the two diagrams will show the

bending moments which have to be borne by the stiffening girders.

The diagrams may be drawn superposed, so that their differences

are found graphically. The scale on which the curve of the chain

represents a diagram of bending moments is to be determined

with reference to the consideration that the resulting moment on

the girder is zero at the central hinge. Consequently the total

load diagram of moments must intersect the chain -load diagram

of moments (that is, the chain curve) at the point which corre-

sponds to the position of the hinge.

An example will make this construction more intelligible.

Let the curve represent the given form of the chain, which is

drawn inverted so that it may resemble the bending moment

diagrams with which the student is familiar. This curve represents,

on a certain scale which we do not at first know, a diagram of

bending moments for what has been called here the chain-load,

that is to say, that part of the load which the chaiu carries in

consequence of the pulls in the suspension rods. Now lei a

bending moment diagram be drawn for the whole load carried by

the structure. Draw that on the same base, selecting for it Buch

a scale as will make that diagram intersect the other at the place

where the hinge comes in the jointed girder (namely, at the

middle of the span). The scale thus chosen is the scale on which

both diagrams are to be interpreted. The difference between the

two diagrams gives, on the same scale, the bending moments on

E. S. M. 1 B
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the jointed girders. Thus, in fig. 142, let the load. consist simply

of a single concentrated load applied at a point P distant a from

one end of the span, and b from the other. The diagram of such a

load is a triangle, with the vertex over P, and we have to draw

this triangle so that the side DQ shall intersect the chain curve

at C, the place corresponding to the hinge. Hence the diagram

is to be drawn by joining QC, and producing it to meet a vertical

line through P in D, and then joining OD. The value of DP as

Wab
a bending moment is known, being —y— where L is the span.

This determines the scale of moments for the figure. The over-

lapping pieces ODC and CFQ are then the bending moment
diagrams of the two girders. The right-hand girder in this case

bears negative moments : that is to say it is bent up by the pull

of the suspension rods on it, and is held down at its ends by the

pins there. Having in this way determined the bending moments

on the girders we may go on to find the shearing forces f
-=—

1 .

The shearing forces at the ends and middle of the span are the

forces which have to be borne by the pins.

This construction is applicable to any form of chain curve, and

may be used to determine the bending moments and shearing

forces which have to be provided for under any assumed distribution

of load, and also the pulls in the suspension rods. If we assume

that the form of the chain is a parabola, the pulls in the suspension

rods are equivalent to a uniformly distributed load, and the case

represented in fig. 142 may be expressed algebraically thus

:

Let w represent the load per foot run which is equivalent to

the pulls of the suspension rods. Then CM represents, in the

diagram of bending moments,, a moment equal to —~- . The load

WabW applied at P produces there a moment DP equal to -=-
,
and

Wa
at the middle a moment CM equal to

9
- . Hence, since the joint

is at the middle,

wL 2
_ Wa

~~8~ ~ 2 '

4TFa
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which determines the amount of pull in the suspension rods when

the number of the rods is known. The greatest bending moment
Mp to be borne by the left-hand girder, for this position of the

load, is DE, or DP - EP.

But DP = -^ and EP = —- (L - a), and substituting
L 2 v J °

4 W

a

for w we obtain, for the bending moment at P on the

stiffening girder,

, a _ 3a? 2as

Mp *y^\ L L2
+ D

To find the position of the load which will make this moment
dM
da

a maxir i we write - - = 0, which gives

a = ^(l± ^=0-21lZ, or 0-789Z.

The maximum moment to be borne by the stiffening girder is then

readily found to be

0-096WL*
This is the maximum positive bending moment which each

girder will have to bear when a load W moves across the bridge.

The maximum negative moment occurs at the middle of each

girder when the load is at the middle of the span. Its value

(fig. 143) is

FG = FN-GN=\CM
= tV WL.

The student will find it instructive to extend this method of

determining the moments on the stiffening girders to the case

of a uniform advancing load.

* This quantity is only very little greater than the moment produoed by placing

W in the middle of the half girder, namely ... WL.

15—2
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152. Inverted Chain. The Arch. Imagine a chain

consisting of a series of stiff jointed rods, loaded at the joints,

to be inverted so that it forms an arch, the form of the chain

and the distribution of loads remaining unchanged. The chain

is still in equilibrium, but its equilibrium is now unstable. Each

Fig. 144.

Fig. 145.

Fig. 146.

rod is now exerting thrust, instead of pull, and at each joint the

thrusts of the two rods meeting there equilibrate the load applied



HANGING CHAINS AND ARCHED RIBS. 229

at the joint. But any variation in the distribution of load or

any casual disturbance of the form of the chain upsets this

balance and the arch yields.

Next suppose that in place of being made up of jointed rods

the arch is composed of blocks or " voussoirs " as in the model

shown in fig. 144. In that model the voussoirs have slightly

curved surfaces which allow them to rock to some extent on

one another, thereby exaggerating the action which the elastic

compressibility of the material permits in an arch of stone blocks

with flat faces. It is clear that this rocking action gives the arch

a stability which was not possessed by the inverted chain of rods.

The loads may alter, or the form of the arch may be disturbed,

to a limited extent, without causing the structure to break down.

Each voussoir remains in equilibrium provided that the vertical

force made up of its own weight and any load applied to it can

be balanced by the two forces which are exerted upon by its

neighbours through the joints between it and them. A con-

tinuous line may be drawn to represent the direction of the

thrust at all the joints as in fig. 144. This is called the linear

arch : it represents the form of an inverted chain carrying the

same system of loads.

When the distribution of load is altered, the voussoirs turn

slightly with the effect that the linear arch takes a form which is

proper for the new distribution. In fig. 144 we have, besides the

general load due to the weight of the voussoirs, an extra load at

the crown, and consequently the linear arch rises there, just as a

chain already in equilibrium under a distributed load would sag-

more considerably wherever an extra load was applied. Similarly

in fig. 145 the linear arch rises at the haunches to meet extra

loads applied there, and is fiat at the crown, while in fig. 146 it rises

to meet the load on one haunch. Precisely similar changes occur

in the form and position of the linear arch in a ring of stone

voussoirs, although there the absence of curvature at the joints

prevents the action from being visible as it is in bhe model with

curved blocks*. When the linear arch deviates from the middle

of any joint, the resultant stress is no Longer axial, and the

varying distribution of stress on the surface then causes a varying

Figs, 114-110 arc due to Eleeming Jenkin, and are oopied from lii* artiole

"BridgcH" in the Encyclopaedia Britdnnica,
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amount of elastic compression which implies, in effect, some

turning on the part of each voussoir.

The limits of loading within which the structure remains

stable are determined by the consideration that the linear arch

may not pass outside of any joint. If, for instance, in fig. 146

the load on the left were increased, one of the joints between the

crown and the right-hand abutment would open because the linear

arch would reach the inner extremity of the joint. Besides this

condition, it is evidently necessary that the blocks should not slip

on one another at the joints : in other words the direction of the

linear arch at each joint must not make with the normal an angle

greater than the angle of repose. In the model the joints are

roughened to allow the linear arch to be largely displaced without

causing slip.

For reasons which have been explained in § 82, the rule is

generally followed in the design of large stone arches that the

linear arch be not required to pass outside the middle third of each

joint. When this requirement is satisfied the effect is that all

the surface at each joint is in compression, with an intensity

which may range from zero at one edge to a maximum at the other.

An obvious further practical condition is that the joints should

be wide enough, in relation to the load, to prevent the greatest

intensity of this compressive stress from exceeding a safe value.

153. Arched Rib. A stiff rib, say of metal, shaped in the

form of an arch, differs from a ring of individual voussoirs in this

respect, that the linear arch need not lie within the section of

the rib. In other words, the resultant of the stress at any section

of the rib may lie outside of the section, because the rib is

capable of sustaining bending moments. When the position of

the linear arch is known, and the amount of the thrust in it, it is

easy to find the bending moment which acts at any section of the

rib. Each section has, in general, to bear bending moment, direct

thrust, and shearing stress. We shall consider a rib carrying

vertical loads.

Let AB (fig. 147) be a section of the rib and let DE be drawn

tangent to the linear arch at the same place. The resultant

thrust F has the direction and position indicated by DE. This is

equivalent to a parallel force applied at C, the centre of gravity

of the section, together with a bending moment F.CE, if CE
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be drawn perpendicular to BE. The force F acting through C

Fig. 147.

may be resolved parallel and perpendicular to the section. The
component parallel to the section causes shearing stress : the

component perpendicular to the section causes a uniformly dis-

F
tributed stress of compression -^ (S being the sectional area of

AB), which has to be superposed on the stress due to the bending

moment in finding the whole normal stress at any point of the

section.

Now the thrust F at any point in the linear arch may be

resolved into a vertical component V and a horizontal component

H, of which H is constant for all points in the arch. Comparing

the triangles FVH and DCE of Fig. 147 we have

H:F=CE: CD.

Hence the bending moment, which is F.GE, is equal to H.CD.
In other words, since H is constant, the height of the linear arch

above or below the centre line of the rib constitutes a diagram of

bending moments for the rib. The linear arch itself, as we have

already seen in dealing with hanging chains, takes a form which

is that of a diagram of the bending moments which the same

system of loads would produce on a straight beam. Hence the

problem of drawing the linear arch for the rib resolves itself into

drawing a diagram of bending moments for a similarly loaded

beam, with an appropriate scale and subject to the particular

terminal conditions which apply in any given case.

154. Rib hinged at the ends and centre. We shall first

take the comparatively simple case in which the rib is hinged at

the ends and also at the crown (or to put it more generally) at

one other point besides the ends (tig. 148). Wherever there i- a
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hinge the bending moment on the rib must be zero, if we leave

out of account the trifling amount of bending which a hinge may

Fig. 148.

take in consequence of friction. Consequently the linear arch

must pass through the centre of each hinge. We proceed to draw

a diagram of bending moments for the given loads, considered as

acting on a beam of the span OQ. If this diagram passed through

the third hinge it would be the true linear arch, for in that case

the condition would be satisfied that there is to be no bending

moment on the rib at P, as well as at and Q. In other words

we have to select such a scale for the bending moment diagram,

drawn on the base OQ, as will make it pass through P. This is

readily done by first drawing it to any scale, say OKQ, and then

PM
reducing all the ordinates in the ratio fryr*

The linear arch OJPQ having been found in this way, the

distance JC between it and the central curve of the rib gives,

on the same scale, the bending moment which has to be taken

by the rib. The amount of the thrust F at any place is also

determined, like the pull in a hanging chain, from the known

form of the linear arch and the known values of the loads. Hence

the stress at any section of the rib is found.

It will be clear that the construction by which the linear arch

is found applies whether the loads are symmetrically or unsym-

metrically distributed. The student will notice the correspondence

between the problem of the hinged arch and that of the chain with

hinged stiffening girder/treated in § 151.
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155. Rib hinged at the ends only. In the case discussed

in the last paragraph, namely that of a rib hinged at three places,

the problem of finding the linear arch is perfectly determinate

:

the jointed rib cannot be self-strained as a whole, and with a given

system of loads only one distribution of stress is possible. It is

not affected by any yielding of the abutments, or by expansion

or contraction of the rib through changes of temperature. But

if the rib is hinged at the ends only it is clear that this is no

longer true. The rib is bent if the span increases by any yielding

of the abutments, or if, while the span remains fixed, the rib itself

expands through heat. Hence it may be subject to bending

moments apart from the effects of applied load. To make the

problem of finding the linear arch determinate, we must introduce

some assumption as to the initial state of stress before loads are

applied and as to the fixity of the abutments. In what follows it

will be assumed that the span does not alter, and that no stress

exists in the rib except what is caused by applied loads.

With these assumptions the problem is determinate, and the

linear arch is to be found from the consideration that the total

effect of the elastic bendings which the loads cause in every part

of the rib is such as to produce no change of span. In other

words, that

2&» =

where Sx is the horizontal displacement of one end. of the rib,

relatively to the other end, which results from the bending

of any element of the rib, the sum of such displacements being

taken for all the elements. The linear arch must of course have

its extremities in the hinged ends, as in previous cases, and it

must be a diagram of bending moments for a similarly loaded

Fig. 1.49.
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beam. The further consideration, that the bending must be such

that X8x = suffices to fix the height of the linear arch.

In order to consider the horizontal displacement of due to

any one element 8s, taken alone, we must think of the portions of

the arch lying to either side of the element as behaving for the

moment like rigid bodies. Then if the position of the opposite

end be considered fixed, the elastic bending of 8s would cause

to move through a small distance Oa perpendicular to CO. The

horizontal component of this displacement, or 8%, due to the

bending of 8s, is Ob. Thus

8x__CN
= jy_

Oa~~CO~ CO

where y represents the ordinate CN of the centre line of the rib.

Let M represent the bending moment acting on 8s, then the

angle through which the sides of 8s turn relatively to one another

in consequence of bending is

M
8s.

Hence 0a =

EI
M.C0.8s

and 8x =

EI
My8s
~EI

Hence the condition that the span is not to be altered by

loading makes

2^ = 0.
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It should be added that we are here neglecting the direct

effect of the compressive stress in each element in altering the

span, an effect which is very small compared with that of bending.

Now the linear arch OJQ (fig. 150) is related to the centre line

of the rib OCQ in such a manner that CJ is everywhere propor-

tional to the bending moment on the rib. The condition that

%Bx = may therefore be expressed

2
CJi^ = o.

Suppose that the summation is made for a series of points

taken at equal distances along the rib ; we then have

But GJ=JN—y, and the condition becomes

If a bending moment diagram OKQ for the beam carrying the

given loads be drawn to any scale, its ordinate bears a constant

ratio to those of the required linear arch, so that we may write

JN = rKN,

and 2f = 2^Y=^f\

Hence r =

2
yKN

'

a quantity which is readily calculated after measuring CN and

KN at a series of equidistant sections. Thus when r is found the

diagram OKQ is transformed into the required linear arch by

changing its vertical scale in the ratio r : 1.

The procedure therefore is, to draw the curve of the rib, OCQ,

and also on the same base a diagram OKQ of bending moments

for the similarly loaded beam. Then taking a scries of sections

at equal distances along the arc of the rib measure CN and K

y

and calculate r, which gives the ratio in which the scale ^( the

bending moment diagram is to bo altered in order to give the

linear arch. Then draw a second bending moment diagram OJQ
to this altered scale. The distance CJ at am section measun - -

i
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that scale the bending moment which acts on the rib. The

construction applies to unsymmetrical as well as to symmetrical

loading.

156. Rib fixed at the ends. Here again we have to make
certain assumptions without which the problem of finding the stress

is indeterminate. We may assume as before that there is no

initial stress, that is no stress except what is due to the loads, and

that the abutments do not yield. The given condition that the

ends are held fixed implies, in general, that when the rib is loaded

there is some bending moment at each end. We shall take the

rib to be symmetrical and symmetrically loaded, in which case the

moment is the same at each end. Call it fi. Then the linear arch

is a diagram of bending moments made up of (1) the moments in

a beam carrying the same loads, and (2) the moment fi superposed

on that : in other words the ordinate of the linear arch is

JN - /x,

where JN is, as in fig. 150, the bending moment on a beam

carrying the same system of loads. The end moment is negative

because it tends to reduce the amount of bending; such a beam

would experience. Thus the linear arch retains the form which it

has in a rib hinged at the ends, and is simply shifted downwards,

parallel to itself, through a certain distance /x, which we have to

find. Hence at any section of the rib the actual bending moment
is now 21 — /x, where M is, as in § 155, the moment in a rib with

hinged ends. The condition that 18x shall be zero still applies,

and now leads to the result

K (M-p)ybs
EI '

%
(CJ-r)yhs^

where J represents as before a point on what would be the

linear arch for a rib with hinged ends. Since CJ = JX— y and

.AY = rK2F this becomes

r
^KX_st_^l

i
= (i),

summation being made at a series of equidistant sections along

the rib from end to end.
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The further condition that the inclination of the rib at the

ends remains unchanged gives another equation involving the

two unknown quantities r and /x. Taking any element 8s along

the rib, the bending in it considered alone would change the

inclination of its ends, relatively to one another, by the amount

(M - p)

EI
8s,

and hence 2 - pj ^s = 0>

or 2,
j
.—— =

for a series of equidistant sections.

If we substitute rKN — y for CJ this gives

r2~-2|-/^ = (2).

The equations (1) and (2) together enable the quantities r and fi

to be found.

If the loading is unsymmetrical we have different moments /^

and yu2 at the left- and right-hand ends respectively, and at any

intermediate point the true moment acting on the rib is

M-fi

CO

where fi = y^ — j (/*i — fa)>

L being the span and x the horizontal distance from the left-hand

end. This quantity is to be introduced into the equation stated

above, and a third relation is found by equating the sum of the

vertical displacements of one end, or 2S?/, to zero, a condition

which holds when (as here) the opposite end has its direction as

well as its position fixed.





APPENDIX.

The following Tables contain a few representative data

regarding the Strength and Elasticity of Materials.

/. Strength to resist Tension.

Wrought-iron :

—

Finest Lowmoor and Yorkshire plates, tested in direction

of rolling

Finest Lowmoor and Yorkshire plates, tested across

direction of rolling

Staffordshire plates, in direction of rolling

„ „ across direction of rolling ...

Average good boiler plates, in direction of rolling

,, ,, ,, „ across direction of rolling

Ship plates, in direction of rolling ...

„ „ across direction of rolling

Finest Lowmoor and Yorkshire bars

Average good bars

Soft Swedish bars

Charcoal-iron wire, hard drawn

annealed... abo it

Steel :

—

Ordinary mild steel bars and plates with about 0'2 per cent

of carbon

Specially mild steel

Steel for rails, with about 0*4 per cent, of carbon

High carbon steel for springs, annealed

„ „ „ tempered

Steel castings ...

„ „ annealed

Steel wire, ordinary ... ... ... ... ... aboi

,, ,, tempered ...

Ton
squar

s per
e inch.

27 to

24

26

24

25

20

29

20 to

19

24

24 to

25

20

29

35 to

30

40

28 to 32

2 i to 36

36 to i:>

if) to B0

60 to 70

L5 to 45

25 to

70

L00
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Steel

—

continued :

Pianoforte steel wire

Xickel steel with about 5 pei

12

Chrorne steel

Tungsten steel ..

Cast-iron

,5 5,

cent, of nickel, annealed ..

average about

sphorus

Copper, cast ...

„ rolled or forged

„ wire, annealed

,, „ hard drawn

Copper with 0"2 to 0'4 per cent, of phc

Ordinary yellow brass, cast '66 per cent, copper, 34 per

cent. zinc-

Ordinary yellow brass, rolled

Brass wire

German-silver wire ...

Gun-nietal (about 90 per cent, copper and 10 per cent, tin)

Phosphor bronze

„ „ wire, hard drawn

Aluminium, cast

„ rolled ...

Aluminium bronze (90 per cent, copper, 10 per cent, aluminiiun

Zinc, cast ... ... ...

„ rolled

Lead about

Tin

Soft solder

Timber tested in the direction of the fibre :—

Oak

White pine

Pitch pine

Eiga fir ...

Ash

Beech

Teak

Spanish mahogany

Cement, set for 1 week

„ „ 1 year

Leather belting-

Hemp rope

Tons per
square inch.

120 to 150

40

90

80

5 to 15

8

8 to 12

13 to 16

18 to 20

26 to 30

20 to 22

10 to 12

15 to 24

20 to 25

30

12 to 17

16 to 18

45 to 70

4 to 6

6 to 10

40

1 to 3

7 to 10

1

1 to 2|

3

3 to 7

1| to 3^

4

2| to .H

4 to 7

4 to 6

4 to 7

4 to 7

016
0-24

2

4 to 5
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II. Strength to resist Crushing.

Wrought-iron

Cast-iron

„ „ average

High-carbon steel, hardened by quenching

Brass ...

Timber

Cement

„ concrete

Portland stone

Sandstone

Yorkshire grit

Slate

Basalt ...

Granite

Brick, London Stock

„ Staffordshire blue

Glass

about

Tons per
square inch.

16 to 20

25 to 65

40 to 50

120 to

5

180

2 to 4

1* to

1

2

2

2 to

3

5

5 to 10

8 to 10

6 to 10

| to li

2 to 6

10 to 15

777. Strength to resist Shearing.

Wrought-iron bars, across the direction of rolling

,, ,,
plates, ,, ,, „ ,,

„ „ • „ in the plane of rolling ...

Mild steel

Cast-iron

Timber (along the fibre)

18 to 22

16 to 20

8 to 12

21 to 25

6 to 13

i to 1

IV.

Wrought-iron

Steel ...

Cast-iron

Copper, cast

„ rolled

Brass . .

.

Bronze ...

Gun-metal

Silver ...

Gold ...

Platinum

Phosphor bronze

Aluminium bronze

Timber

E. S. M.

Moduluses of Elasticity.

E
Tons per

square inch.

12500 to 13500

13000 to 14000

4500 to 7000

5000 to 6000

5500 to 7500

5000 to 6500

6000 to 7000

5000

4800

5400

10500

6000

6500

600 to 950

C
Tons per

square inch.

5000 to 5500

5200 to 5700

1700 to 2700

1900 to 2300

2100 to 2900

2000 to 2300

2300 to 2700

1900

L800

2100

4000

28 K

I

2500

16
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V. Approximate Weights of Materials.

Lbs. per

cubic foot.

Metals :

—

Wrought-iron 480

Steel 490

Cast-iron 430 to 470

„ „ grey foundry ... 450

Copper 550

Brass, cast ... 520

„ rolled or drawn ... 530

Gun-metal 540

Aluminium, pure ... 162

„ commercial ... 165 to 170

Zinc ... 450

Tin 465

Silver 655

Lead 710

Gold 1200

Platinum 1340

Timber :

—

Oak 50 to 55

White piue 25

Ked pine 30 to 40

Pitch pine 40 to 45

Ash 45

Beech 43

Teak 40 to 55

Spanish mahogany 40 to 50

Stone, Brick &c. :

—

Limestone ... 125 to 175

Portland stone 144

Sandstone ... 135 to 145

Slate 175

Basalt 187

Granite 170

Masonry 116 to 144

Brickwork, ordinary 112

Concrete 120 to 130
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Annealing, 43

Arch, 228

— linear, 229

Arched rib, 230

— — hinged at ends and centre,

231

— — hinged at ends only, 233

— — fixed at ends, 236

Autographic stress-strain diagrams, 67

Axial pull, 97

Ayrton, Prof., 198

Baker, Sir B., 54, 150

Barba, 47

Bauschinger, Prof., 53, 54, 73, 92, 93

Beams, deflection of, 129

— transverse bending of, 135

— continuous, 143

— resilience of, 136

— stress in, 109

Bending moment, 110

— — diagrams, 113

diagrams, how related

to funicular poly-

gon, 115

— — and shearing force,

how related, 122

— of beams, 129

— of long columns, 172

— stress, 104

Blows and shocks, effects of, 56

Bollman truss, 169

Bottomley, J. T., 41

Bow, 158

Bulk modulus, 13

Cantilevers, deflection of, 131

combined with beams, 1 19

Cast-iron, test of, 31

— crushing of, 50

— data for, 90

— beams, 113

Catenary, common, 221

Centrifugal whirling of shafts, 201

Chain carrying loads, 218

— parabolic, 220

— inverted, 228

— loaded with its own weight, 221

Chaplin, Prof. W. S., 49

Clapeyron's Theorem of Three Moments,
146

Christie's experiments on columns, 182

Cold-shortness, 58

Columns, 171

— Euler's theory of, 172

— Gordon's formula, 179

Compression, failure by, 50

Connecting rod treated as a strut with

lateral load, 186

Continuous beams, 143

— — advantages of, 148

Contraction of section in tensile tests, 44

Counterbracing in bridge frames. 167

Creeping in strain, 24

Crushing strength, table of, 241

Crystalline structure of metals, 46

Curvature of beams, 129

— — uniform, 130

— — anticlastic, 186

Cylinders subjected to internal pressure,

204

Deflection of beams, 181

— — due to shear, i n

Diagrams of strain and stress. 80

autographio, BS
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Disc, revolving, 215

Dunkerley, Prof., 203

Greenhill, Prof., 200, 214

Gun-barrel with initial stress, 212

Ease, state of, 57 Hackney, W., 47

Elastic compression of blocks, apparatus Hadfield, K. A., 95

for measuring, 79 Hanging chain, 218

Elastic moduluses, table of, 241 Hardening and tempering of steel, 44

— strain, 10 — of metals after overstrain,

Elasticity, imperfection of, 54 33, 42

— — in cast-iron, 57 Heat, influence of, on recovery from

Emery testing machine, 68 overstrain, 36

Encastre beam, 150 Henrici, Prof., 158

Euler's theory of columns, 172 Hodgkinson, 31, 50, 91, 179

Ewing, J. A. , experiments on overstrain, Hooke's law, 11

Hoop tension in cylinders, 204, 208, 211

— in revolving ring, 214

— — disc, 217

Hysteresis, mechanical, 24, 55

— — in overstrained

steel, 39

35

— crystalline structure of

metals, 46

— extensometer, 75

Extension, non-elastic, 45

— percentage of, 47

Extensometers, 29, 73

— Bauschinger's, 73

— Unwin's, 74

— Ewing's, 75

— — for compres-

sion, 79

Factor of safety, 27

Fairbairn, 50, 52

Fairbank's testing machine, 67

Fatigue of metals, 52

— — in elasticity, 55

Fidler, Prof. C, 182

Fink truss, 169

Flow of solids, 33

Forth Bridge, 150

Fracture by tension or compression, 50

— under successive blows, 56

Frames, 154

— perfect and imperfect, 155

— redundant members in, 155

— with semi-members, 156, 166

— solution of by method of sec-

tions, 156

— solution of by method of reci-

procal figures, 157

— superposed, 169

— effects of stiff joints in, 170

Funicular polygon, 120, 162

Gordon's formula for columns, 178

Imperfection of elasticity, 54

Instability of long columns, 171

Internal stress, initial, 57

Isotropic material, equations of strain

in, 20

Kelvin, Lord, 55, 68

Kennedy, Prof., 29, 49

Kirkaldy, D., 30, 43, 45, 48, 51, 65

Launhardt, 54

Linear arch, 229

Linville truss, 156

Martens, Prof., 58

Maxwell's needle, 88

— method of reciprocal figures,

157

Method of sections, 156

Modulus of elasticity, Young's, 12, 16,

73, 81, 94

— cubic compressibility, 13, 16

— rigidity, 13, 16, 85, 87

— rupture, 107

Moduluses of elasticity, relation between,

14, 16

— — table of, 241

Moving loads on beams, 123

Muir, J., experiments on overstrain,

38
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Nickel steel, 95

Overstrain, 25, 42

— due to slips in crystals, 46

— effect of inhardening metals,

33, 35

— in breaking down elasticity,

35

— experiments on, 35, 37, 38

Pearson, Prof. Karl, 57

Perfect frame, 155

Permanent set, 10

Perry, Prof., 184, 198

Plasticity, 25

— advantage of, 28

— nature of in metals, 46

Poisson's ratio, 12, 18

Principal stresses, 4

— — in a beam, 126

Kankine's formula for columns, 179

Reciprocal figures, 157, 159

Redundant members in frames, 156

Resilience, 14

— of beams, 136

— of shafts, 193

Revolving disc, 215

— ring, 214

Rib, arched, 230

Richards, E., 48

Rigidity, modulus of, 13, 16, 85, 87

Riveted joints, 49

Rosenhain, W., crystalline structure of

metals, 46

Rupture, modulus of, 107

Safety, factor of, 27

Sections, method of, 156

Semi-members, 156, 166

Set, permanent, 10

Shackles for testing machines, 66

Shafts, torsion of, 187

— centrifugal whirling of, 201

— resilience of, 193

— under end thrust and torsion,

200

Shearing strength, table of, 241

force in beams, 110

— diagrams of,

113

Shearing stress, simple, 4, 7, 21

— — equality of in two di-

rections, 9

— — in beams, distribution

of, 125

Shear modulus, 13

— in tension and compression tests,

51

Shells, 204

— spherical, 207

— of oval section, 207

Simple bending, 104

Single-lever testing machine, 59

Slips in crystals of overstrained metal,

46

Slope and deflection in beams, 131

Spangenberg, 54

Spiral springs, 195

Steel, stress-strain diagrams of, 30

— data for, 92

Stiffening girders in suspension bridges,

223

Strain, 10

— elastic, 10

— non-elastic, 24

— — work done in, 14

— simple, along one axis, 22

— lateral, 12

— hysteresis in, 55

Strength, ultimate, 25

— tables of, 239

Stress, 2

— intensity of, 2

— distributed, 2, 96

— normal, 3

— tangential, 3

— compressive, 4

— tensile, 4

— shearing, 4

— principal, 4

character of in simple push or

pull, 5

— fluid, 10

— uniformly varying, W
— in beams, 10'.)

Stress-strain diagrams, BO

— an'tographi*

72

Stretch modulus, 19

Btromeyer, 58

Struts, 171
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Struts with lateral load, 184

Superposed frames, 169

St Venant, 200

Suspension-bridge chain, 220

— — with stiffening girder,

223

Tables of strength and elasticity, 239

Temperature, influence of on strength,

57
— influence of in producing

recovery after over-

strain, 36

Tempering of steel, 44

Tensile strength, table of, 239

— tests, 29

Testing machines, 29, 59

— — calibration of, 63

— — Werder's, 64

— — Wicksteed's horizon-

tal, 65

— — diaphragm type, 67

— — Emery's, 68

Test-pieces, forms of, 47

— long and short, comparative

strength of, 49

Theorem of three moments, 146

Thick cylinder, 208

— — exposed to external pres-

sure, 211

— — advantage of initial

stress in, 211

Thomasset testing machine, 68

Thomson, James, 57

Thurston, Prof., 58

Time, influence of in testing, 41

Torsion of shafts, 187

— — in relation to power

transmitted, 190

Torsion of shafts beyond the elastic

limit, 194

— of non-circular shafts, 199

Torsional oscillations, 87

Tresca, 33

Twisting combined with bending, 191

Ultimate strength, 25

Uniformly distributed stress, 96

— varying stress, 98

— — — analysis of,

102

— — — forming a

couple, 101

Unwin, Prof., 72, 91

— — extensometer, 74

Volume strain, 21

Voussoirs of arch, 229

Wade, Major, 65

Warren girder, 156

Webster, J. J., 58

Weights of materials, table of, 242

Werder testing machine, 64

Weyrauch, 54

Whirling of shafts, 201

Wicksteed, J. H., 59, 65, 72

Wire guns, 214

Wohler's experiments on the fatigue of

metals, 52

Work done in straining, 14

Wrought-iron, data for, 91

Yield-point, 29

Young's modulus, 12

— — measurement of, 73,

81, 83
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