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  ABSTRACT 

Two aspects of currently available Miniature UAVs (MUAVs) that limit the adoption of 

this technology for civil and research purposes are the high cost and closed design 

philosophy. This thesis attempts to solve these problems by presenting an open source 

design that is focused on low-cost, while maintaining a reasonable level of performance.  

The use of Commercial Off-The-Shelf (COTS) equipment is maximized where possible 

to reduce development time and cost. A novel approach used by this design is the use of a 

Nintendo Wii MotionPlus device as an Inertial Measurement Unit (IMU). This mass 

produced COTS part provides a three degree of freedom IMU for minimal cost. 

All software is of a modular design to ease understanding and facilitate 

improvements. To reduce development time, and to help discover requirements, a Rapid 

Application Development (RAD) methodology has been adopted that is suitable for 

implementation by a single developer. Software prototypes are constructed and iteratively 

built upon to discover more requirements. At the completion of each phase, testing is 

performed. Once a suitable level of maturity has been reached, the software prototype is 

rolled into the main build. Flight-testing is performed at the completion of the design 

along with a quantitative measure of flight stability. 
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EXECUTIVE SUMMARY 

This thesis presents a design for a low-cost quadrotor research platform. Chapter I gives 

an introduction to existing UAVs and their applications. In addition, it discusses 

limitations of currently available UAVs and an outline of the proposed solution. 

 Chapter II gives a background on quadrotor helicopters and their applications 

across varying industries. Existing quadrotor designs are presented and their individual 

shortcomings are highlighted. Finally, this chapter presents the proposed solution that is 

the remainder of this thesis. 

 The implementation of a risk analysis and management system is discussed in 

Chapter III. This chapter identifies five major risks for this thesis and discusses these 

risks at each stage of the risk management process. 

 The hardware design is covered in Chapter IV. This chapter breaks the hardware 

design down into both electronics system design and frame design. The electronics 

system design section discusses the selection of electronic parts and modules while the 

section on frame design presents the available options for a suitable quadrotor frame. 

 Chapter V presents the Rapid Application Development (RAD) software 

methodology adopted for this thesis. The implementation details of a RAD methodology, 

suitable for implementation by a single developer, are presented in detail along with a list 

of software modules. 

 The software design and encountered challenges are presented in Chapter VI. 

Flow diagrams are used to provide a functional flow of the software. The Digital Signal 

Processing performed by the on-board processor is discussed along with the control 

algorithms implemented to provide augmented stability. Software testing is a large part of 

the development effort and is also presented in this chapter. 

  The control algorithms implemented for this design require tuning before flying. 

The selected tuning procedure is outlined in Chapter VII along with a description of the 

tethered test flights tuning verification. 



 xiv

 The first flight test is discussed in Chapter VIII and logged flight data is presented 

in graphical form to give a quantitative measure of stability. Performance predictions are 

calculated, based on flight data, and comparisons are made to existing designs. 

 Chapter IX concludes the thesis with an overview of what has been achieved and 

some suggested improvements. Ideas for future development are also presented in this 

chapter. 
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I. INTRODUCTION  

Over the past 10 years, the UAV market has grown rapidly and it is expected that 

this market expansion will continue for the foreseeable future. While much of this growth 

is attributed to defense applications, there are an increasing number of applications for 

UAVs in the commercial sector. This is particularly so for smaller sized UAVs 

categorized as Miniature UAVs. Miniature UAVs or MUAVs range in size from Micro 

Air Vehicles (MAVs) to a “man portable” size [1]. 

While MUAVs are gaining popularity, there are some aspects of current designs 

that are limiting their adoption. The first problem is cost. Current MUAV designs are 

built from scratch and use customized airframes and electronics, which dramatically 

increases cost. Another aspect of current designs that limits MUAV adoption, especially 

in the field of academic research, is the lack of access. When using MUAVs for research 

it is advantageous to have low-level access to both autopilot source code and hardware 

schematics. This makes it easier to integrate new sensors, using existing processing 

power, as well as experimenting with new algorithms. 

This thesis attempts to address these problems of cost and lack of access through 

the design and development of a quadrotor MUAV for possible defense, commercial and 

research applications. At the same time, it attempts to demonstrate how a Rapid 

Application Development method can be used in practice by a sole developer. The design 

goal is to produce a capable low cost quadrotor helicopter by utilizing mass-produced 

Commercial Off-The-Shelf (COTS) hardware. While full flight autonomy is the objective 

of this design, the first stage in achieving this is to implement an augmented flight control 

system that provides enough stability so the quadrotor can be remotely piloted.  

Although the design of a quadrotor helicopter encompasses many disciplines 

including mechanical, aeronautical, electronic, and software engineering this design will 

use COTS parts for the mechanical and electric hardware where possible and concentrate 

on software engineering aspects. This thesis takes a novel approach to the use of a mass 

produced COTS part made by Nintendo called the Wii MotionPlus. While this device is 
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designed to plug into a Nintendo Wii controller, and provide a more real game 

experience, its benefit in this thesis is the 3-axis rotation rate information it provides at a 

cost of only $20. 

In order to identify and track significant risks for the project and provide trigger 

points for identifying when a risk becomes an issue an initial risk assessment is 

undertaken of the proposed design. This provides a mechanism to solve problems before 

they cause significant delays or incur any additional cost. 

Once the hardware design is complete, the software engineering aspects of the 

design need to be defined. The quadrotor helicopter inherits all of its functionality 

through software and hence is a relatively software intensive system. Given the amount 

of software required for such a design, coupled with limited development time, a Rapid 

Application Develop (RAD) methodology is used. The RAD approach allows the 

software coding to commence as early as possible with the limited number of 

requirements that are initially available. The approach taken is a method that could be 

sensibly adopted by a single developer. 

Any software implementation creates challenges and problems that need to be 

addressed. Some of these problems discussed include the selection of an appropriate 

filtering and control algorithm. Software testing is an important part of the development 

and the testing methods employed within the development are also outlined. 

Before the flight control system can provide augmented stability, it requires 

tuning. This tuning method is discussed in detail along with a tethered flight test to 

validate the tuning. Lastly, the flight test results are used to provide a quantifiable 

measurement of stability and performance predictions are made from the given test data 

with comparisons made to MUAV commercial solutions. 
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II. BACKGROUND 

A. QUADROTOR HELICOPTERS 

A quadrotor helicopter consists of four rotors that are mounted at the end of two 

perpendicular axes. The fixed pitch rotors are driven by a DC electric motor, either directly 

or through a reduction gearbox. Rotors at opposite ends of an arm turn in the same direction 

while rotors on a perpendicular axis rotate in the opposite direction. This concept is 

illustrated in Figure 1. 

 

 
 

Figure 1.   Quadrotor schematic showing rotor direction of rotation (From [2]) 

When all four motors are spinning at the same speed, the rotors create thrust that 

lifts the quadrotor into the air. As there are pairs of rotors spinning in opposite directions, 

the torque produced in each direction around the yaw axis cancels out and the yaw angle 

remains constant. To change the pitch attitude, the speed of motor 1 is reduced while the 

speed of motor 3 is increased, or vice versa, creating a non-zero pitch angle. As both 

motor 1 and motor 3 are rotating in the same direction the total counteracting torque 

provided is not changed so the quadrotor maintains its yaw angle. The roll attitude is 

adjusted in a similar manner. To adjust the yaw angle the speed of motors 1 and 3 are 

increased while the speed of motors 2 and 4 are decreased, or vice versa. This creates an 

imbalance in the total torque in the yaw axis and so the quadrotor will change yaw angle. 

The quadrotor should maintain a relatively constant thrust during yaw and the height of 

the aircraft should remain constant.  
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 While the above description provides a simplified overview of how a quadrotor 

maneuvers, the dynamics of the aircraft are complex and tightly coupled  [3], [4]. These 

dynamics make it extremely difficult for a human to control the quadrotor without an on-

board flight augmentation system to reduce the aircraft response down to an acceptable 

level.  

1. Advantages of the Quadrotor Helicopter 

Despite the complex control systems required for a quadrotor aircraft, there are 

many benefits to this aircraft over other platforms. Having four rotors as opposed to a 

single rotor in a traditional helicopter allows each of the rotors on a quadrotor to be 

smaller and lighter, hence carrying less kinetic energy. This is advantageous when 

working within indoor environments. For example, in the undesired case of a blade 

striking an object, due to the design of a quadrotor, much less damage will result when 

compared to a helicopter in the same situation. It is also possible to mount the rotors 

within a duct or shroud to protect both the aircraft and any object if contact occurs. 

Due to the complex electronic control system, the mechanics of a quadrotor are 

relatively simple and the aircraft is able to use fixed pitch propellers. This reduces setup, 

maintenance, and manufacturing costs and time associated with a quadrotor. The 

relatively simple mechanical setup of a quadrotor also leads to limited vibration making it 

a friendly environment for inertial sensors and cameras. 

2. Quadrotor Applications 

Quadrotor aircraft are suitable for a wide range of applications such as aerial 

photography, law enforcement, Defense, academic research, and as a teaching aid for control 

theory. 

 MUAVs are becoming more popular for both use in commercial industry and 

Defense. MUAVs are now carried by small teams of defense personnel and these aircraft 

offer a remote look at what lies beyond the horizon. One of the current issues with MUAVs 

used for this purpose is launch and recovery. This is because only little ground space is often 

available combined with the possibility of being surrounded by trees. The quadrotor is ideal 
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in this type of environment as it is a Vertical Take Off and Landing (VTOL) aircraft and is 

easy to fly due to the onboard flight augmentation. 

The quadrotor helicopter can also make an excellent teaching aid for control 

theory as it provides a real world control problem. Students can make changes in the 

control algorithms and feel the effect of those changes when flying. The quadrotor can 

also be used in the teaching of dynamics. The dynamic calculations and simulations can 

be performed and then qualified against real flight data from the inertial sensors. 

B. EXISTING QUADROTOR DESIGNS 

While the quadrotor’s popularity has only increased in recent years, there are many 

existing designs available. These designs can be broken down into two main categories: toys 

and professional commercial products. 

There are numerous quadrotor designs available as a Radio Controlled (RC) toy. 

Some examples are the Walkera UFO #5, Walkera UFO #8, Dragonfly, and Alien Air 

Jump Jet. 

 

 
Figure 2.   Toy quadrotor: Walkera UFO (from Walkera [Online])  

While these toys are very low cost and provide a full six Degrees Of Freedom 

(DOF) Inertial Measurement Unit (IMU) they lack robustness and can only carry very 

light payloads. Personal experiences with the quadrotor in Figure 2 lead to conclusions 

that the inertial processing was also not optimal. This sub-optimal behavior was 
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experienced after approximately one minute of flying where full deflection on a control 

axis is sometimes required to maintain a zero degree pitch and roll. Given the six DOF 

sensor of this quadrotor, the expected behavior is to auto-level to zero degrees pitch and 

roll when no control input is applied. In order to keep costs down, the toy versions also 

use brushed DC motors as opposed to brushless motors. This leads to significantly lower 

power efficiency. Brushless motors, while more expensive, also have a much longer 

service life as they do not have brushes that undergo mechanical wear. 

Quadrotor helicopters are also available as a ready to fly commercial product for 

professional use. One such aircraft is the Hummingbird quadrotor from Ascending 

Technologies. While the hummingbird performs very well, it is expensive and, 

importantly for research use, there is no source code or hardware schematics given for the 

low-level autopilot. While the hummingbird does provide a high level API for accessing 

some functions there is no way to modify the Inertial Measurement Unit (IMU) 

processing algorithms, control loop algorithms, and controller input processing from the 

Radio Controlled transmitter. This places limitations on the availability of this aircraft to 

research institutions as well as the scope of research that can be performed. 

C. OUTLINE OF THE PROPOSED SOLUTION 

The improved quadrotor solution outlined by this thesis will maximize the use of 

mass produced COTS equipment to reduce cost while also making available both the 

hardware schematics and software for researchers to modify. Ideally, the cost of this 

aircraft should be as low as possible without sacrificing performance. 

Most of the work for the quadrotor will be focused on software to allow control of 

the quadrotor. Due to the limited time available, along with the lack of complete 

requirements, a Rapid Application Development (RAD) approach to software 

development will be implemented. This methodology uses software prototypes as a 

starting point and grows the maturity of the prototype as the development progresses. 

Through this process, more requirements are discovered and incorporated into the 

prototype. Software testing will also play a critical role in this development, as there is 

kinetic energy in this system that can cause harm to the system itself as well as people.  
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Developed as a research platform, it is highly likely that the software will be 

modified and built upon in the future. For this reason, the software needs to have a high 

level of maintainability.  
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III. RISK MANAGEMENT 

A. INTRODUCTION 

The multitude of in-depth skills required to build a quadrotor coupled with limited 

time presents a unique challenge for thesis research. Taking on such a project means that 

a risk analysis and system management is critical. Risk was managed in this thesis using 

the five essential elements of the risk management process [5]. 

• Identify 

• Analyze 

• Plan 

• Track 

• Resolve 

Using the five essential elements outlined above the risk management process was 

initiated from the start of the project. Each step of the process is discussed below. 

B. IDENTIFY 

The first step in the process is to identify areas of risk within the project. These 

areas were identified based on confidence level of achieving the stated goal. 

1. Quadrotor Frame 

The quadrotor frame must be light, rigid, low-cost, and crash resistant. The ability 

to design and create the quadrotor frame was considered a risk due to lack of experience 

in building quadrotor frames and limited mechanical skills. 

2. Inertial Measurement Unit Data Processing 

The quadrotor will require some inertial sensing to determine its attitude and 

hence allow the Digital Signal Processor (DSP) to compensate for input that is not given 

by the human controller. To extract attitude information from the inertial sensors usually 

requires Kalman filtering, an area which can be complex to understand and implement. 
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3. Requirements Change 

While the basic requirements for this design were established, it is likely that 

many smaller requirements are not initially identified. Additionally, it is highly likely that 

existing requirements will change as the development progresses.  

4. Low-Cost COTS Inertial Sensors 

As one of the main requirements for this design is low cost, a mass-produced 

COTS inertial sensor must be used. These devices are prone to drift dramatically with 

temperature and it is unknown if they are suitable for this application.  

5. Available Time 

This is possibly one of the greatest risks in the project. It is uncertain if there will 

be enough time to complete the entire design and still have enough time to produce a 

quality thesis document. It is hard to estimate exactly how long the entire development 

will take (there is generally a tendency to underestimate) as well as how much time will 

be more generally available.  

C. ANALYZE 

In this second stage, the identified risks are analyzed to obtain an estimation of 

the probability of the risk becoming an issue and the severity of impact if the risk 

becomes an issue. 

Once the probability of occurrence and severity are obtained the risk matrix in 

Table 1 is used to identify the resultant risk category.  
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Probability Of 

Occurrence 

Insignificant Minor Moderate  Major  Severe 

Highly Likely M H H E E 

Likely M M H H E 

Possible L M M H E 

Unlikely L M M M H 

Rare L L M M H 

Table 1.   Risk Matrix (From [6]) 

1. Quadrotor Frame 

Given the mechanical ability and experience required in such an undertaking, the 

probability of this risk becoming an issue was determined to be “Likely.” The severity of 

this occurring is Major, as without a frame the quadrotor will not fly. Even if the frame 

was built but it had some defect (i.e., was not perfectly symmetrical) this could have a 

major impact on the controllability. The resultant category for this risk is “High.” 

2. Inertial Measurement Unit Data Processing 

While lack of experience in IMU data processing was a concern, an engineering 

background provides some confidence that this could be learned and implemented. For 

this reason, the probability of this risk becoming an issue was determined to be Possible. 

In the worst case that no IMU processing algorithm could be implemented, the severity is 

Major as the on-board controller requires this information to provide augmented stability. 

The resultant category for this risk is “High.” 

3. Requirements Change 

It is extremely difficult to have a concrete final set of requirements for a product 

not previously built. Additionally it is inevitable that requirements will change. This is 

especially the case in the areas of research and development. The probability of this risk 
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becoming an issue was defined as almost certain. While the consequence of requirements  

change is not likely to halt the development, it can lead to time delays and additional 

costs. The consequence of changing requirements is considered to be moderate. The 

resultant risk category is “High.” 

4. Low-Cost COTS Inertial Sensors 

MEMS based inertial sensors have previously been used in quadrotor control 

systems but the selected sensor for this design is untested in the mechanically noisy 

environment of a quadrotor helicopter. For this reason, the probability that this risk 

becomes an issue was determined to be Possible. 

If the inertial sensor were deemed unsuitable, another sensor would have to be 

selected. This would result in additional cost and a short delay for transport of the item 

but the overall impact on the project is minimal. The severity of impact was determined 

to be “Minor.” The resultant risk category is “Medium.” 

5. Available Time 

The probability of occurrence for this risk was determined to be “Possible.” While 

it is highly desirable to complete the initial proposal, if time can be justified and the work 

makes a positive contribution, then the thesis can still be termed successful. For this 

reason, the impact was determined to be Moderate. The resultant risk category is 

Medium. 

D. PLAN 

The planning stage identifies alternatives for unacceptable risk category items and 

provides an action plan for the remaining risks. For this thesis project, any risk with a 

category of High or greater was considered unacceptable and some form of risk removal 

or mitigation needed to be implemented.  

1. Quadrotor Frame 

The resultant risk category of High for this item was unacceptable. Ideally, this 

risk would be removed altogether by purchasing a COTS frame but there is no suitable 
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low cost solution available. The next best option was to copy an existing design that was 

made of low cost materials and easily constructed. A simple and elegant design was 

found and selected for the quadrotor frame. This approach aligns with modern business 

practice of only performing core business processes. In this case, the core business is 

software development using a rapid application methodology not mechanical design and 

construction. 

The revised probability of occurrence for this risk was then considered unlikely. 

This changes the revised resultant risk category to medium. This was considered an 

acceptable level of risk. The action plan if this risk still became an issue was simply to 

buy a more costly COTS solution and work around the unsuitable characteristics of the 

frame. 

2. Inertial Measurement Unit Data Processing 

The resultant risk category for this risk was unacceptable. The underlying reason 

for this risk was the lack of understanding of IMUs and IMU data processing. This 

triggered considerable research in this area. The conclusions made from the research 

were that while Kalman filtering and a 6-DOF inertial sensor are preferred and often 

provide significant stability, there are much simpler algorithms that provide suitable 

performance. Additionally only a 3-axis rate gyro is required for a bare minimum 

augmented flight control system. 

To reduce this risk, the decision was to use digital filtering of only a 3-axis rate 

gyro sensor for the initial design stage. Time permitting a 3-axis accelerometer would be 

added with more complex filtering algorithms, such as the Kalman filter. The revised 

probability of occurrence for this risk was determined to be Unlikely. The revised 

resultant risk category of medium was accepted. 

3. Requirements Change 

The resultant category for this risk was unacceptable. Requirements changes are 

inevitable in most projects and this is even more likely for academic research work.  
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Aside from applying due diligence to the early design and specification stage, in this 

project there was little that can be done to counteract the possibility of changes to the 

initial specification.  

Another approach is to also constantly expect and preempt changing requirements 

as the project progresses and plan for each possible outcome. Where a modular design is 

used, then the project will also be more adaptable to changing requirements. It was not 

possible to change the probability of occurrence of this risk but the impact could be 

minimized by some of the previously mentioned methods. On revision of this risk, it was 

decided to leave the severity at Medium and accept the risk and plan for constant 

requirements change. 

4. Low-Cost COTS Inertial Sensors 

The resultant category for this risk was considered acceptable but an action plan 

was required to provide a resolution if the risk were to become an issue. The action plan 

for this risk was to purchase the proven sensors in the event that the chosen sensors were 

not suitable for the quadrotor application. In this instance, the additional cost would have 

to be accepted. This risk was accepted at the current level with the specified action plan. 

5. Available Time 

The resultant risk category for this risk was considered acceptable but constant 

management of the project would be required to track progress and provide an early 

warning to a sliding schedule.  

Prioritizing features for incorporation into the quadrotor plays an important role in 

managing the available time. The initial design will be as simple as possible and, if time 

permits, more complex features will be added, such as full automation. By taking the 

time to produce a quality schedule for the entire project, including several significant 

milestones, this provides a reference point to track project progress. 
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E. TRACK 

Once the risk planning is completed, the risks need to be tracked as the project 

progresses. Once a week all risks are reviewed to identify any apparent issues or risk 

escalations. In addition, the time schedule was also reviewed to obtain an indication of 

project progress. This was used as a trigger for risk five. If new requirements were 

introduced or identified, an investigation into impact on all aspects of the project was 

carried out and an estimate of the required additional work was performed. 

F. RESOLVE 

This final process in the risk management model is used to resolve risks that 

become an issue. If the tracking stage identified an impending issue, the alternative plan 

that was identified at the planning stage, is implemented. Once the alternate plan is 

carried out, the risk is again analyzed through the other four processes in the risk 

management model for reevaluation.  
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IV. HARDWARE DESIGN 

A. INTRODUCTION 

The hardware design is broken down into two subcategories: 

• Electronics system design 

• Frame design 

 
Each of these designs is discussed below. 

B. ELECTRONICS SYSTEM DESIGN 

To enable a human pilot to control the aircraft, the quadrotor helicopter requires 

some form of on-board control system to provide augmented stability. A block diagram 

of the electronics system is contained in Figure 3. 

 

 
 

Figure 3.   Electronic system block diagram 
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A primary design constraint for this system was that it would be low cost. To achieve this 

goal the use of COTS equipment was maximized where possible. 

1. Inertial Sensor(s) 

The inertial sensors are often the single most expensive electronic component in a 

quadrotor design. Older quadrotor designs such as the X-UFO made by Silverlit 

Electronics used small mechanical gyros. These were relatively cheap due to low-cost 

labor, but suffered from mechanical failure and were not crash tolerant. 

Modern quadrotor designs use Microelectromechanical (MEMS) based inertial 

sensors. These sensors consist of very small mechanical components ranging from 1 to 

100 micrometers in size and fit inside a traditional electronic chip package [6]. The cost 

of these sensors in low quantities has made these sensors relatively expensive compared 

to the other electronic components required for a quadrotor. Some new generations of 

MEMS sensors are low in cost for small quantities but are not suitable for quadrotor 

platforms due to their low resonant frequency. The vibration frequency of the quadrotor 

is in the same range as the low-cost MEMS resonant frequency, this produces large errors 

from the sensors that are unable to be filtered. 

To reduce the cost of the inertial sensor, this project uses a mass produced COTS 

product called a Wii MotionPlus, made by Nintendo. This device contains a single chip 

dual axis MEMS gyroscope that provides pitch and roll information, as well as a single 

axis MEMS gyroscope to provide yaw information. Additionally, the device contains 

analog conditioning circuits for the gyros and a microcontroller with built in ADC. The 

device is interfaced to the main control board through an Inter-Integrated Circuit (I2C) 

serial bus. All of this is accomplished for the total cost of approximately USD$20. 

2. Battery 

The battery selected for the design is a Lithium-Polymer (LiPo) battery. While 

NiCad and NiMh chemistry batteries are available at lower cost, the LiPo has a much  
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higher energy density and their cost is constantly falling. A 3S LiPo was selected 

(meaning 3 LiPo cells in series) as the selected motor and propeller combination works 

efficiently at this voltage. 

3. Radio Control (RC) Receiver 

A wide range of RC receivers is available with various protocols and frequencies. 

It should be noted that receivers are not all created equally. Even receivers of the same 

frequency with the same protocol can have very different performance specifications. 

Until recently, RC receivers operated in the VHF band and used either Pulse 

Position Modulation (PPM) or Pulse Code Modulation (PCM). PCM was more robust as 

it sent error checking information with each packet but it also suffered from “lockout.” 

Lockout occurred when synchronization was lost with the receiver, for whatever reason, 

and the radio-controlled model would not respond to the controller. This is obviously a 

highly undesirable state. Modern RC control equipment uses the 2.4GHz Industrial 

Scientific Medical (ISM) band and uses a more robust modulation method than PPM or 

PCM.  

Newer systems use either Direct Sequence Spread Spectrum (DSSS) or Frequency 

Hopping Spread Spectrum (FHSS). One of the greatest advantages of the 2.4GHz 

spectrum used by modern RC systems is that the electrical noises from sources such as 

electric motors are not present. A 2.4GHz system was chosen (made by Spektrum) for the 

quadrotor design because of the lower noise attributes of the 2.4GHz band mentioned 

above and the robust communications provided by DSSS.  

4. Motor 

There are two basic types of technologies to choose from, Brushed DC and 

Brushless DC motors. Brushed DC motors are very low cost, have a high starting torque, 

but suffer from poor efficiency due to the use of mechanical commutation. Brushless DC 

motors are higher in cost, require an electronic controller, have a low starting torque, but 

are much more efficient due to electrical commutation. 
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A brushless DC motor was chosen for this design due to the high efficiency. The 

brushless motor selected was an “outrunner” design that is optimized for running direct 

drive to a propeller, negating the need for a gearbox. This saves weight, increases drive 

efficiency, reduces maintenance and reduces cost. 

5. Electronic Speed Controller (ESC) 

As brushless motors are being used in this design, the ESC required is much more 

complex than that required for a brushed motor design. The Hummingbird quadrotor, 

made by Ascending Technologies, uses a specially designed ESC that enables fast 

updates of motor commanded speed (1kHz). While this enables the control loop to run 

faster there is additional cost in producing a custom ESC for this purpose.  

Standard brushless RC ESCs were chosen for this design in an attempt to keep 

costs to a minimum. The disadvantage of using ESCs designed for regular RC model use 

is the update rate for motor speed selection is limited and the exact rate is unknown.  

6. On-Board Processor 

The on-board processor used by existing designs varies from simple 8-bit 

microcontrollers to 32-bit processors and FPGAs. For the initial control software, only 

simple control algorithms are planned that will require minimal processing ability. 

Despite this, the design of this quadrotor is pitched at research institutions and so requires 

considerable capacity for more complex processing while still mindful of cost constraints.  

A Microchip dsPIC development board [7]  was chosen for the design as it meets 

both requirements of being low cost while still providing ample processing power. This 

processor has many on chip communication peripherals such as Serial Peripheral 

Interface (SPI), I2C, and Universal Synchronous Asynchronous Receive Transmit 

(USART) ports that facilitates raid incorporation of new sensors.  

An important consideration in the selection of processor is the availability of 

compilers and Integrated Development Environments (IDEs). Microchip provides an 

academic version of their compiler for the dsPIC line of processors at no cost. 
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An even more important consideration when choosing microcontroller devices 

and development environment is previous developer experience with the particular device 

and environment. This has the ability to dramatically reduce development time, 

particularly in the early stages, as the developer does not have to learn the particulars of 

the device and IDE. Having previously worked with the Microchip dsPIC line of digital 

signal controllers as well as having experience with Microchip’s MPLAB development 

environment made the dsPIC an obvious personal choice. 

7. External Flash Memory 

The external flash memory is available to store configuration parameters used by 

the controller as well as for storage of real time logged data. The ability to store 

configuration parameters enables changes to configuration parameters to be made without 

the requirement of recompiling the firmware and re-flashing the dsPIC microcontroller. 

The data logging capability will be useful for both initial development as well as 

for future research. The current flash memory is a 2MB 8pin DIP package Integrated 

Circuit (IC) that uses a Serial Peripheral Interface (SPI) port for communicating with the 

dsPIC. This device supports high-speed burst writing of data and typically 1Mbps overall. 

Once the driver software is written for this device larger capacity SPI flash memory could 

also be used with the potential for high capacity SD/MMC cards. 

C. FRAME DESIGN 

The primary design requirements for the frame are that it is light as possible as 

well as being rigid. The lighter the aircraft, the less power that will be required to lift it. 

This translates into longer run times and a greater power margin for additional payloads. 

The frame needs to be rigid enough so as to minimize the amount of flex during flight, as 

this is an assumption made by the control algorithms. The control system will tolerate 

flex in the frame but at the expense of the effectiveness of the control system. 

Existing frames are commercially available that meet the above requirements well 

but these cost several hundred dollars. To keep construction costs down, an open 

hardware design was chosen that can be constructed for approximately $40–$60 and only 
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requires some simple power tools [7]. This open design was modified to provide a lighter 

mounting plate for the dsPIC board as well as providing greater vibration dampening. In 

addition to providing cost-effective construction, this design also allows for simple low 

cost repairs if damage occurs. 

D. MATERIAL COST 

The cost breakdown for the quadrotor can be seen in Table 2.  

 
Item Cost 
Frame – Trex 600 Tail Boom $20
Frame – PVC Pipe 4-Way joint $3
Frame – Fasteners, Mounts, Miscellaneous $20
Frame – Trex 600 Landing gear $20
dsPICDEM Microcontroller Dev Kit $80
Wii MotionPlus $20
4 x Brushless motors $24
4 x Brushless Electronic Speed Controller $47.60
Rhino 2150mAh LiPo Battery $20
4 x Counter Rotating Propellers (10x4.5) $10
Spektrum AR6100 2.4GHz receiver $49
Total $313.60

Table 2.   Quadrotor cost breakdown 

At a total cost of $313.60, including the receiver, this is well within the low-cost 

design goal when compared to commercial offerings. To provide full autonomous 

operation the addition of a GPS, 3-axis accelerometer, and magnetometer would also be 

required. Purchasing these items as pre-soldered modules would only cost an additional 

$150. 
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Figure 4.   Quadrotor cost breakdown pie chart 

Figure 4 gives a graphical representation of cost breakdown. From the pie chart, 

the dsPICDEM microcontroller development kit is the largest contributor to cost, 

followed by the frame. While a lower cost microcontroller board could have been used, 

the selected board provides large scope for future development. Despite the frame being 

of simple construction, the relative cost compared to other parts for the quadrotor is 

significant. Time permitting a more refined hardware design will be performed that 

further reduces the cost of the frame.  
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V. SOFTWARE METHODOLOGY 

A. INTRODUCTION 

A quadrotor helicopter requires experience in many disciplines. Of these areas, 

the greatest proportion of effort was in developing software. This was exacerbated by the 

fact that a full set of requirements for the quadrotor was not available at the beginning of 

the project, due to lack of experience in building such a product. Given this lack of full 

requirements a traditional software development methodology, such as the Waterfall 

model could not be used. Due to the time constraint and lack of requirements, a Rapid 

Application Development (RAD) approach was adopted [10]. 

The RAD approach uses both iterative development and prototyping to gradually 

produce a final product. To allow the software to have a high level of maintainability the 

software is of a modular design. Adopting a modular design also enables the rapid 

incorporation of additional sensors to the processor board by simply adding another file 

to the build that abstracts the new hardware. 

There are many existing forms of RAD including Extreme Programming (XP) 

and Scrum [10]. While these use some form of iterative development they are intended 

for development teams of at least two people, and in some cases, many more. XP has 

indeed been used successfully as the software methodology for university projects 

consisting of two or more people [11]. What is required, however, is a form of RAD that 

assists in the discovery of requirements, allows for requirements change, and can be 

followed by a single developer. Individual developers with no internal reporting 

requirements may not feel the need for the adoption of a formal methodology. However, 

as a contractor to government or business or even as a matter of basic professionalism, 

having in place some form of methodology allows for development to occur without the 

need for extensive pre-planning but still using a disciplined, systematic and quantifiable 

approach. For smaller projects that are required within short time frames, government or 

business may contract directly with individual developers, which allows for direct 

communication and collaboration with the developer.  
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However, as the field of software engineering continues to grow in importance, it 

may become difficult for even an individual developer to be successful in contracting for 

tenders without being able to demonstrate the methodology to be used in developing the 

product. And for those contracts not requiring any formal tender documents (which are 

often the smaller projects undertaken by individual developers), it is likely to give clients 

a level of confidence where developers can demonstrate a systematic approach to 

development. 

The RAD methodology is clearly suitable for smaller projects tackled by 

individual developers where timeframes are limited and clients have not had the time to 

consider or unaware of specific requirements. Software can be written quickly allowing 

for changing requirements.  

The proposed RAD attempts to provide an approach specifically for a single 

developer. While any methodology could be discussed at length in the abstract, there is 

no better way to demonstrate and test the usefulness and practicality of such a 

methodology than through application. The development of the quadrotor in this thesis by 

a single developer demonstrates how the proposed new RAD methodology can be 

applied. 

The proposed new methodology will use the following steps to produce the final 

software product: 

 
1. Assign software modules from high level requirements 

2. Build prototype for a single software module 

3. Implement any newly discovered requirements for module 

4. Test software module 

5. Repeats steps 2-4 until no more failures are found  

6. Integrate module into core software build 

7. Perform integration testing 

 
Steps 2-7 are performed for each software module that is created in step 1.  
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For a single developer working alone it is unlikely that any form of software 

methodology would be used. The above list provides a systematic way for any developer 

working on their own, to not only follow a RAD approach but in the very least follow 

some predefined and proven approach. A detailed description of each step is outlined 

below. 

1. Assign Software Modules from High Level Requirements 

The principal requirement of this project was to build a quadrotor helicopter. 

From this principal requirement, the hardware was derived, and is described in Chapter 

IV .The software requirements are determined from both the electronic hardware (as the 

software provides an abstraction layer) and the principal requirement (the control system 

part of the software). Examples of software modules are: 

• Serial port 

• Proportional Integral Derivative (PID) control 

• MotionPlus Sensor 

2. Build Prototype for a Single Software Module 

Once all the software modules are defined, each module can be individually built. A very 

simple list of requirements is derived for each module and implemented. This allows the 

design to be built gradually and the programming effort is focused on one area at a time.    

3. Implement Any Newly Discovered Requirements for the Module 

At the beginning of the development only a small subset of the full requirements 

are actually known. As a module is being constructed from basic requirements new 

requirements are discovered and implemented.  

There are occasions when developing a module it is discovered another function 

is required to be implemented in an already existing module. As an example, if you are 

developing a debugging module that provides debug support it may be discovered a serial 

port function that can send a different data type is required. In this instance the new 

requirement is added to the serial port module. 
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4. Test Software Module 

Once a module is completed, unit testing is performed. At this level of testing 

100% code coverage should be achieved (i.e., all code is executed at least once). This 

testing is not emulated but instead actually performed on the target hardware with 

stimulated inputs and test-instrumented outputs. While this method requires more setup 

and implementation time than testing on the PC it provides a much higher level of 

confidence in the performance of the software. 

5. Repeats Steps 2–4 Until No More Failures Are Found 

Any faults found in the previous step are removed and testing is repeated until the 

module is working according to the requirements. This may require anything from small 

syntax corrections to complete rewrite of some functions, as well as the possible addition 

of helper functions. 

6. Integrate Module Into Core Software Build 

The complete and tested module is added to the core software build and 

recompiled together to ensure there are no linking errors. The main module is now 

modified to access the new modules functions. 

7. Perform Integration Testing 

Once the completed module has been integrated into the core software build, 

integration testing is performed to ensure there is no unexpected emergent behavior. As 

each module is added to the core software build and tested, the testing also ensures that 

other software modules have not regressed. One of the main criticisms of RAD is that of 

quality, because the completed software is ultimately based on a prototype [10]. This 

criticism is addressed by performing testing not only during the development of each 

prototype but also as each completed module is integrated into the main build. 
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B. SOFTWARE MODULES 

The software modules assigned to the quadrotor are as follows: 

• Main – The main entry point for the program 

• CRC – Provides CRC16 data integrity functions 

• mainLoop – The main control loop for the quadrotor 

• mainLoopTimer – Controls timers for the loop trigger rate 

• motionPlus – Hardware abstraction layer for the Wii MotionPlus 

• PIDs – Implements the PID controllers for each axis of control 

• PWM –Hardware abstraction layer for the PWM module 

• Serial – Hardware abstraction layer for the serial port 

• SPI – Hardware abstraction layer for the SPI port 

• ipCapture – Hardware abstraction layer for the input capture module 

• extFlash – Manages the external flash memory system 

• engMode – Provide debug and tuning functions 

• dataConversion – Provides data conversion helper functions 

• lowpass_psv1 – FIR filter data structure for pitch axis  

• lowpass_psv2 – FIR filter data structure for roll axis 

• lowpass_psv3 – Fir filter data structure for yaw axis 
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Figure 5.   UML Diagram of quadrotor software 
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A UML class diagram is used in Figure 5 to show the function and file 

dependencies of the C code for the quadrotor. 

C. FAULT DETECTION 

The quadrotor relies on sensor data and stored calibration values to perform its 

function of providing augmented flight stability. If these sensors fail, or the calibration 

values are corrupted, the system needs to return itself to a safe state. 

Calibration values for the transmitter, as well as PID values for the control loops, 

are stored in external flash memory. If these values are not read correctly by the DSP an 

undetermined state will result. For this reason, it is necessary to not only detect corrupted 

data but to additionally place the quadrotor in a safe state. A 16-bit CRC value is used to 

ensure data integrity when power is initially applied and the calibration values are read 

from external flash. If the CRC check determines that the data has been corrupted then 

the motors are turned off and placed in the disarmed state, the control loop is disabled, 

the user is notified via LED indication, and the software enters a continuous loop doing 

nothing. In this state, the quadrotor is unable to be flown. 

Detecting failure of the MotionPlus module is not as simple. The difficulty in 

detecting a failure with the MotionPlus module is there is no data integrity checking data 

sent along with the gyroscope values, so it is not a simple case of performing a CRC 

check on the data. Through experimentation is was observed that if there was a failure of 

the MotionPlus, due to loss of power to the module or a severed communication line, the 

DSP would read a full scale value. At startup, the MotionPlus requires bias calibration 

(this is discussed more in the section on software development). If the module is working 

correctly the uncalibrated values from the MotionPlus will be somewhere around the 

middle of its possible range (~8192). At startup, the DSP checks the uncalibrated value 

from the MotionPlus, and if it is not approximately within the middle range then the same 

action for the erroneous CRC check explained above is initiated. 

Without these safety-monitoring functions, it would be possible for the user to 

attempt to fly the quadrotor with no IMU information and erroneous PID values. This 

could result in catastrophic system failure. 
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VI. SOFTWARE DESIGN 

A. INTRODUCTION 

The software for the quadrotor helicopter runs on “bare metal.” That is, the 

software runs directly on the dsPIC hardware with no dedicated operating system. All 

interaction with external devices required the construction of a specific software driver 

for that hardware module. Timing of critical functions is achieved through internal 

hardware timers that trigger an interrupt. This quadrotor implementation currently has 

2300 lines of source code, not including DSP libraries. 

B. SOFTWARE FLOW 

1. Interrupts 

The software uses interrupts to both control timing and perform management of 

some internal hardware peripherals.  

The frequency at which the main control loop runs is controlled by an internal 

hardware timer. When this timer overflows, an interrupt is triggered. This interrupt sets a 

software semaphore that instructs the main software to execute the main control loop. 

The internal control loop is set to run at 200Hz. Ideally, the control rate should be much 

higher [8] but this is a limitation of the RC brushless ESC being used.  

The other hardware interrupt is associated with the input capture module that 

reads the control information from the receiver. As there is more than one interrupt there 

are priorities assigned to each interrupt. While the interrupt associated with the input 

capture from the receiver is important, as this is the human input to the quadrotor, the 

control loop is more important. The control loop maintains the quadrotor stability and can 

perform this in the short term on its own without human intervention.  

The signals captured from the RC receiver consist of a Pulse Position Modulated 

(PPM) signal for each channel received. The PPM signal is a pulse ranging from 1-2ms 

that is proportional to the stick position on the RC transmitter. A complete series of all 

channels is called a frame and is repeated approximately every 20ms. The last control 
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signal in the frame initiates an interrupt on both its rising and falling edges. Ideally, the 

interrupt would only occur on the falling edge of the last signal in the frame but this was 

not possible with the particular setup used and the input capture module of the dsPIC. 

When the falling edge interrupt occurs, the software reads the value captured by each 

channels register. This value is proportional to the pulse width of the incoming control 

signal. These values are scaled and converted into a fractional format so that the dsPIC 

hardware multiplier can handle them. The values are stored so they can be sampled by the 

control loop when required. 
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2. Flow Diagrams 

 
Figure 6.   Software flow for main function 
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Figure 7.    Software flow for mainLoop module 
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C. DIGITAL SIGNAL PROCESSING 

For the on-board controller to provide augmented stability it must know how the 

aircraft is positioned in reference to the earth. This is termed aircraft attitude. For fully 

autonomous flight, the absolute attitude is required. While the end goal of this design is 

for the quadrotor to be fully autonomous, the initial requirement is to only provide 

augmented stability. 

1. Augmented Stability Control Loops 

For augmented stability, the quadrotor only requires information on its relative 

attitude. This greatly simplifies both the required sensors and the sensor processing. For 

relative attitude determination, gyro sensors can be used for each axis. The MEMS based 

gyro measures rotation rate. Using only gyro sensors there are two basic approaches to 

augmented flight control. The first is simply a rate limiter for each axis. This method 

measures the rotation rate from the gyro and a desired rotation rate from the controller 

and provides an error output that is the difference between these two signals. This error 

can then be applied to a PD or PID controller with the aim to minimize the rotation rate 

error. This control method has the effect of dampening the dynamic response of the 

aircraft so that it can be controlled by a human operator. This control method can be seen 

in Figure 8.  

 
 

Figure 8.   Rotation rate limiter for a single axis 

The second approach that could be used for augmented flight control is a 

“heading hold” algorithm. The downside to the rotation rate limiter is that while it will 

reduce the dynamic response it does not hold the currently set aircraft attitude very well. 



 38

For the rotation rate limiter, if the controller encounters a disturbance, it will 

endeavor to minimize the rotation rate but the angular displacement from the initial 

attitude will move. This can be countered to some degree by using a full PID controller, 

as the Integral term will accumulate the error, but in practice, there is still significant 

deviation in attitude. The “heading hold” algorithm attempts to counter this problem by 

effectively not only dampening the rotation rate but also remembering the angular 

displacement encountered during a disturbance and then returning the aircraft to the 

initial attitude. 

 

 
Figure 9.    Heading Hold algorithm (From [8]) 

For most real-world control problems, the PID control loop provides a very robust 

and high performance controller. For this reason, the rotation rate limiter was selected for 

implementation on all axes. After in-flight evaluation of the performance of this 

implementation, the decision will be made on whether implementation of the heading 

hold algorithm is required. 

2. Inertial Measurement Unit (IMU) Data Processing 

Before the MEMS gyros can be used to provide the required information for a 

control system, the raw signal from the gyro must undergo some signal processing. 

MEMS gyros output a voltage that is proportional to the rotation rate they experience 

with a resting voltage approximately half way between the supply voltage and zero. The 

direction of the voltage deviation from the rest point indicates the direction of rotation. 
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For example, if the gyro resting voltage was 2.5V then a voltage of 3V may mean a 

clockwise rotation and a voltage of 2.0V would mean an anticlockwise rotation. This 

resting voltage is termed the gyro bias voltage and must be calculated each time the gyro 

is used. The difficulty in this arises because the gyro must be completely still during the 

calibration procedure and the voltage bias drifts with environmental conditions such as 

temperature. If an incorrect bias is used by the control system then the system will think 

that there is a constant rotation rate when there is no actual rotation at all.  

The Wii MotionPlus uses two MEMS gyro parts to obtain 3 degrees of freedom 

[11]. An InvenSense IDG-600 [12] is used to provide both pitch and roll gyro 

information, all in a single package. A single axis gyro from Epson Toyocom [13] 

provides yaw information. While the MotionPlus performs analog to digital conversion 

for each gyro axis, it does not calculate the bias point and this has to be performed by the 

quadrotor control system. The bias point is obtained by averaging a large number of gyro 

samples while the quadrotor is left stationary.  

To assess the amount of bias drift experienced by the MotionPlus device, gyro 

samples for each axis were logged at 200Hz over a period of 5 minutes while the 

quadrotor remained completely still. The gyro data is a 14-bit value and hence has a 

calibrated range of +/-8192. Figure 10 shows the samples collected from the pitch gyro 

with a fitted line that shows the bias drift. In this figure, the bias has already been 

calculated and applied, hence, the data is initially centered around zero.   



 40

 

Figure 10.    Pitch gyro bias drift 

There is considerable noise present on the gyro signal along with an obvious bias 

drift. The bias drift may seem small compared to the maximum possible signal of the 

gyro (+/-8192) but if this signal is integrated to calculate angular displacement in degrees 

(as is the case when the Heading Hold or full PID algorithm is implemented) then the 

error continually grows. Figure 11 shows the angular drift over time for the pitch gyro. 

 

 
Figure 11.   Pitch gyro angular drift 
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From Figure 11, the pitch gyro can be seen to have drifted -159.3 degrees in 5 

minutes. This is a drift rate of 0.53 degrees/second. Due to such a high drift rate, it will be 

impossible for the control system to maintain a particular attitude for even a brief period 

while just using MEMS gyros. Despite this drift, the information from the MEMS gyro 

will be enough to provide approximate relative attitude to the controller, so that it can 

dampen the dynamic response.  

The yaw gyro bias drift and angular drift can be seen in Figures 12 and 13, 

respectively. Figure 12 clearly shows a much lower bias drift than the pitch axis gyro, 

which will contribute to a much better angular drift figure, as seen in Figure 13. From 

Figure 13, the gyro drift for the Yaw axis can be seen to have moved 5.322 degrees in 5 

minutes, a drift rate of 0.018 degrees/second. The lower drift rate of the yaw gyro is 

mostly attributed to fact that the yaw gyro is rated at 100 deg/sec while the pitch and roll 

gyro is a 2000 deg/sec gyro. 

 

 
Figure 12.   Yaw gyro bias drift 
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Figure 13.    Yaw gyro angular drift 

The predominant cause of drift in a MEMS gyro is temperature change [9]. For 

this reason, some implementations use a pre-computed look up table to provide continual 

updates to the bias level depending on the current temperature. Due to manufacturing 

differences between devices of the same part number, it is not practical for manufacturers 

to provide accurate temperature compensation information for each serial number. To 

obtain accurate temperature compensation data, each gyro is required to have its bias 

voltage measured and tracked while within a temperature-controlled environment. 

Currently there is no temperature compensation performed on the gyros used for this 

quadrotor. This could be an area of further research if time constraints allow. 

3. Finite Infinite Response (FIR) Filters 

The noise present in the gyro signal while the quadrotor is operating has both 

electrical and mechanical components. This noise should be attenuated as much as 

possible to provide the controller with a high Signal to Noise Ratio (SNR) and, hence, the 

most accurate estimate of rotation rate from the gyros.  

 



 43

The MotionPlus gyro module provides data in 14-bit format with a voltage 

reference of 3.3V. The voltage resolution is calculated below. Given such a low voltage 

resolution, there will be considerable electrical noise. 

 
 

 
 
 

The mechanical component of noise comes from the four DC motors. This will be 

the largest component of noise and must be filtered. FIR filters were used for this 

purpose. 

A FIR filter is a type of digital filter that uses the mathematical process of 

convolution to remove unwanted parts of a signal. A block diagram of the basic FIR 

structure is shown in Figure 14. 

 

Figure 14.   FIR filter basic structure (From [15]) 

The constant values of  are termed the filter coefficients and are selected to 

obtain the desired filter response. Filter coefficients are often automatically generated 

from a digital filter design program once filter parameters are selected. 

In order to design the FIR filter the desired cutoff frequency is required. The 

cutoff frequency must be carefully selected so that noise is filtered out while the dynamic 

motion of the aircraft is not. To obtain the frequency of the noise present in the gyro 

signal, the gyro data was sampled while the quadrotor was fixed to a test rig that only 

allows a single degree of freedom movement and the motor speed was increased to take 

off power. Figure 15 shows the spectral view of the sampled pitch gyro data during the 

aforementioned test. 
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Figure 15.    Pitch gyro spectrum with induced mechanical vibration 

Figure 15 is obtained by performing a Fast Fourier Transform (FFT) of the pitch 

gyro samples. Most of the mechanical noise can be seen between ~50-80Hz. The lower 

frequency components (<10Hz) will contain the wanted gyro rate information. For this 

reason a cutoff frequency of 8-10Hz was selected. 

To generate the FIR filter coefficients the Microchip dsPIC Lite program was 

used. Figure 16 is a screenshot of the filter design program showing the designed filter. 

This is a 16-tap FIR filter that will attenuate the noise that exists at ~40-80Hz by at least -

50dB. During operation, the dsPIC controller will filter all three gyro axis at each control 

iteration. This is a considerable computational load for a low cost embedded system but 

the dsPIC architecture is designed for a highly efficient implementation of FIR filtering 

due to the hardware multiply accumulate engine and DSP architecture. 

 



 45

 
Figure 16.    dsPIC Lite filter program 

To test the filter implementation the same vibration test as mentioned above was 

performed again only this time the FIR filter was operating on the dsPIC controller. Both 

the raw input samples to the filter as well as the filtered output samples were logged. 

Figure 17 shows the unfiltered roll gyro samples during the test while the quadrotor 

moves back and forth in the roll axis. The noise can be seen superimposed over the rate 

information from the gyro. Figure 18 shows the filtered gyro samples from the FIR filter. 

It can be seen from the filtered gyro samples that the filter is working well and removing 

most if not all of the mechanical noise. 
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Figure 17.   Roll gyro samples showing mechanical noise  

 

 
Figure 18.   Filtered roll gyro samples 
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D.  SOFTWARE TESTING 

Testing was performed at each stage of the design to ensure correct operation of 

each module and to confirm that the software did not regress when further changes were 

made. Once all software was complete, integration testing was performed before adding 

the motors and speed controllers to the existing hardware. This was to ensure that the 

quadrotor responded as expected and, in particular, that no un-commanded motor 

operation was encountered. This was a specific safety concern as a moving propeller has 

the potential to cause injury. 

Given the number of sensors and control inputs to this controller, the input space 

for testing is very large (i.e., if you were to write a list of all the possible combinations of 

inputs to the controller the list would be very large). This makes it impossible to test the 

entire input space so a more functional approach is taken. Testing was performed by 

instrumenting the code [16]. By using this method, data of interest is sent out the serial 

port in real time to be displayed by a program on the PC. The instrumenting of code 

provided the following data over the serial port: 

• Speed command being sent to all motor controllers 

• Unfiltered gyro data 

• Filtered gyro data 

A LabVIEW [17] program was created to provide a graphical representation of 

the instrumented data in real time. A screenshot from the LabVIEW test program can be 

seen in Figure 19. 
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Figure 19.   LabVIEW test program screen capture 

For testing with LabVIEW, the internal timer interrupt in the on-board controller 

was disabled so that the control loop can be triggered from LabVIEW. The control loop 

rate can be changed by adjusting the “delay before read” data box in the LabVIEW 

Graphical User Interface (GUI). A serial representation of the PWM command sent to 

each motor controller can be seen in the middle of the screen shot of Figure 19. For each 

iteration of the control loop, triggered by LabVIEW, the on-board controller performs the 

functions of the main control loop and sends an update of each instrumented parameter 

back to the PC for display.  

Using this display, a complete integration test of all software can be performed. 

Several tests were performed to confirm correct operation of each software module. Once 

all tests are complete, a high level of confidence in the function of the software is 

achieved. Specific tests are discussed below. 

1. Test 1 

The first test to be performed was simply to have the aircraft stationary while 

moving the RC transmitter sticks in each of their own axis. While performing this test, 

the motor outputs on the LabVIEW program are observed to confirm correct behavior. 
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The bar graph representation on LabVIEW should move smoothly with control input 

from the RC transmitter sticks and the correct quadrotor motor mixing should also be 

confirmed. This test confirms correct operation of the following software modules: 

  
• ipCapture 

• serial 

• mainLoop 

2. Test 2 

In this test, the throttle on the RC transmitter is set to half way and the aircraft is 

rotated back and forth individually around its 3 axis. The behavior observed on the 

LabVIEW program should indicate that the controller is sensing the movement and is 

trying to compensate for the induced attitude change. For example, if the aircraft is rolled 

to the right the right motor speed will be seen to increase while the left motor speed will 

be seen to decrease. This will have the effect of the aircraft acting to oppose the 

movement. This is carried out for each direction of rotation around each axis. This test 

confirms correct operation of the following software modules: 

• ipCapture 

• serial 

• mainLoop 

• motionPlus 

• PID (To a limited degree) 

3. Test 3 

In this test, the aircraft is kept stationary on the ground and the PWM outputs 

from the dsPIC are connected to an Oscilloscope. The PWM outputs are observed from 

when the quadrotor is started until the motors are armed to ensure that the PWM is 

commanding a motor off condition irrespective of the setting of the RC transmitter sticks. 

Once the motors have been armed the PWM outputs are observed to confirm that they are 

proportional to the output that is indicated in the LabVIEW display. The motors are then 

placed again in the unarmed state, the throttle on the controller is increased and the motor 
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PWM outputs are observed on the oscilloscope to ensure they are maintaining the motors 

in the off state. This confirms correct operation of the following software modules: 

• PWM 

• engMode 

• ipCapture 

4. Test 4 

The purpose of this final test was to confirm the correct timing of the operations 

within the dsPIC. The main control loop executes at a rate of 200Hz, this is a period of 

5ms. The dsPIC has <5ms to perform all operations within the control loop before it is 

required to perform these operations again with new data. If the dsPIC is unable to 

perform all operations within the 5ms timeframe, then the system will become unstable 

and most likely crash.  

The most accurate way of measuring and confirming the correct timing was to 

place commands in the code that toggle one of the output pins when the main control 

loop starts and stops. Using an oscilloscope, both the main control loop period and 

execution time can be monitored.  

Results from the test concluded that the main control loop was executing once 

every 5ms as required. The oscilloscope also showed that it was taking 1ms to complete 

the main loop when not writing logged data to the flash memory and 2ms to complete 

when writing a page of flash data. This gives a maximum CPU usage of 40%. The extra 

1ms required for writing to the flash device could mostly be eliminated by using the 

Direct Memory Access (DMA) hardware within the dsPIC to perform the data transfer 

but this was not implemented due to time constraints. Using the DMA hardware to 

perform external flash memory data transfers would reduce the CPU load to 20%. At 

least half of this 20% CPU usage is devoted to waiting for the MotionPlus device to 

provide another sample. This could further be reduced by implementing a Real Time 

Operating System (RTOS) to make use of the CPU while it waits for the MotionPlus. 
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E. PC BASED CONFIGURATION SOFTWARE 

For the configuration of internal settings and control parameters, as well as 

providing assistance in debugging, a PC based configuration program is highly desirable. 

A PC based GUI was designed to provide the following functionality: 

• Fast adjustment of internal PID values 

• Initiate and confirm RC transmitter calibration 

• Initiate and confirm gyro calibration 

• Calibrate ESCs 

• Manage external flash memory data 

 
A screen shot of the PC GUI can be seen in Figure 20. 
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Figure 20.   PC configuration GUI 

The GUI was built in Visual C++ to enable rapid development. The functions 

performed by the GUI are described blow.  

1. Fast Adjustment of Internal PID Values 

During the PID tuning process, it is anticipated that many changes to PID values 

will be required. It is not realistic to make these changes in firmware and then recompile 

the code each time a change is made. Therefore, this function provides a means of 

making “on-the-fly” changes to PID values. As a means of checking that changes have 
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been made correctly and sent without error to the dsPIC, the PC program can also read 

the current PID values. To make changes to PID values, the motors on the quadrotor must 

be in the disarm state. The serial cable is then connected to the quadrotor and the changes 

can be made quickly. 

2. Initiate and Confirm RC Transmitter Calibration 

This function initiates the RC transmitter calibration process. This is required so 

the full range of each control stick can be used and that the resting points of the joysticks 

are read as zero by the on-board controller. After a calibration is performed, the 

calibration constants are sent to the PC GUI. This can be used to ensure correct 

calibration and for debugging purposes. 

3. Initiate and Confirm Gyro Calibration 

While the on-board controller performs gyro calibration as a part of its startup 

routine, there can be considerable drift in the gyro bias due to temperature. For this 

reason, it is beneficial to have a manual ability to initiate a gyro calibration routine. As 

this function also provides a means of confirming correct operation of the MotionPlus 

device, this was another reason for its use in development. After completing a gyro 

calibration, the dsPIC will send the new bias values back to the PC for display.  

4. Calibrate ESCs 

When new ESCs are added to the quadrotor, they require their PWM input range 

to be calibrated so control over their entire power range is allowed. This also ensures that 

the same power is applied to each motor for a given PWM value. This function allows the 

on-board controller to directly generate the required PWM sequence for ESC calibration. 

5. Manage External Flash Memory  

The external flash memory is used to store configuration and control parameters 

as well as being used for data logging. This function reads the contents of the memory 

and stores it in a file on the PC. Log data can then be imported to another program for 

analysis. There is also a single button to erase flash data. 
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Once transmitter calibration and PID values have been updated, there is also an 

option to write these values to the parameter configuration section of the external 

memory. This saves the user from having to calibrate the transmitter and enter PID values 

each time the quadrotor is used.  
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VII. TUNING AND TETHERED TESTING 

A. INTRODUCTION 

To ensure that the quadrotor is stable enough to control before the first flight, the 

PID control loops require tuning. Some methods available for tuning PID controllers are 

the Ziegler-Nichols method, software based, or manual tuning. Manual tuning was 

selected for the initial tuning method for this project, as it is easy to set up and provides 

visual confirmation of the correct implementation of the PID controller.  

B. TEST RIG 

For PID tuning, each axis was individually isolated and separately tuned. The test 

rig used for pitch and roll can be seen in Figure 21. The assumption when using this rig to 

perform testing is that it provides minimal dampening of the dynamics and so provides a 

reasonable approximation to dynamic response of an axis in flight. 

 

Figure 21.   Quadrotor test rig 
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The process for manual PID tuning starts by gradually increasing the proportional 

gain until the system experiences some minor oscillations before settling. Next, the 

integral gain is increased to remove the steady state error. At this stage, the quadrotor will 

respond rapidly to an input from the RC transmitter and will move to the new 

commanded position. The integral term now present in the PID loop means that the 

quadrotor holds the currently set attitude more accurately, as any drift from this point that 

is detected by the gyro is integrated so that it “remembers” the angle it has drifted. 

Finally, the differential term is increased to remove the slight overshoot and oscillation.  

During tuning, the behavior described above could be observed for each 

parameter of the PID controller. This provided confidence that the PID implementation 

was correct and also gave an insightful understanding of the workings of PID controllers. 

For tuning the yaw axis, a “lazy susan” was used. This allowed the quadrotor to 

move around its yaw axis while fixing both the pitch and roll axis. The same method for 

tuning the pitch and roll was also used for yaw.  

This manual tuning is only intended as an initial method to get a rough estimate of 

the required PID values. Once the quadrotor has some accumulated flight time, the data 

logging function will be used to log both input to motor controllers as well as gyro 

outputs. If time permits, this data will be used for system identification to develop a black 

box model of the quadrotor. From this model, more precise control parameters could be 

selected. 

C. TETHERED TESTING 

If the quadrotor were to crash during first flight, this could lead to catastrophic 

damage of the on-board controller and the quadrotor frame. This would considerably 

delay the project. For this reason, all practical steps were taken to ensure that the control 

system was performing satisfactorily before the first flight. To ensure that the control 

system was stable enough for flight, while allowing for an unstable system, the quadrotor 

was tethered from the ceiling and placed on a small takeoff platform. Using this tether, 

the quadrotor can be flown in a very limited area. If a failure occurs, the tether stops the 

quadrotor from striking the ground. 
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The tether is mounted on a pulley system with a counterweight provided, which 

allows just enough weight to remove all slack from the tether. This prevents the tether 

from becoming tangled in the propellers of the quadrotor. Using the tethered setup, the 

quadrotor was successfully hovered in a small area. This provided more confidence that 

the PID values discovered in the tuning phase are sufficient and flight tests can now be 

carried out. 
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VIII. FLIGHT TEST 

A. INTRODUCTION 

The first flight test was carried out on a clear day with light wind. The quadrotor 

flew without any problems. The stability requirement was met as the quadrotor could be 

controlled by a human operator. Figure 22 shows logged data for the human input control 

for the first flight. An explanation of the logged data is as follows.  

The first green spike from the user places the motors in the armed state. The 

throttle (yellow) is then gradually increased till the aircraft is in a hover position. For the 

first flight, the pitch and roll controls were quite sensitive and required some 

familiarization. This can be seen by the pitch (red) control during the first part of the 

flight where overcompensation occurred on a few occasions. The two negative yaw 

(green) control inputs are when the quadrotor was aligned so that the tail points directly 

toward them. From approximately 0.8 to 1 minute, there are very small adjustments to 

pitch and roll to maintain the quadrotor hovering over the same position. From 1 minute 

onwards, the quadrotor was allowed to drift from the current position while correction 

was only provided if there was any drift from a flat pitch and roll.  

 

Figure 22.    User input for first flight 
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As can be seen from the figure, there is very little, if any, input required to 

maintain a constant attitude. Given that GPS is required to maintain a position when 

using MEMS IMUs (due to the excessive drift), and only MEMS gyros are used in this 

implementation, this platform is very stable. During light gusts of wind, the quadrotor 

would noticeably compensate for the perturbation. When use of the control sticks of the 

transmitter stops, the quadrotor does not auto-level at this stage. This is because the gyros 

only provide relative position information and the controller is not aware of the current 

absolute attitude. With the addition of accelerometers, the quadrotor will provide an auto-

leveling feature and will provide an enhanced level of stability. 

Flight endurance is currently estimated at 8 minutes for a 2,000mAh battery, 

compared to the Ascending Technologies quoted flight time of 20 minutes on a 

2,100mAh battery for their research pilot aircraft. The difference in flight times is mostly 

attributed to weight, as the Ascending Technologies research pilot weighs 500g including 

the flight battery, while the quadrotor designed in this thesis currently weighs 1236g 

including the flight battery. The frame of this design is the largest contributor to the total 

weight of the aircraft, as it is constructed of aluminum, PVC, and polycarbonate. The 

frame was selected for its simple construction and was only intended as an interim 

measure. A lighter frame design would increase flight time and allow larger loads to be 

carried. 
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Figure 23.   Quadrotor in flight 
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IX. CONCLUSION 

The goal of this thesis was to produce a low-cost quadrotor research platform by 

maximizing the use of COTS equipment. The total cost of the current platform is $313.60 

(see Table 2). This was achieved though the set objective of using mass-produced COTS 

parts such as the Wii MotionPlus, low-cost brushless motors and controllers. While in its 

current form, the quadrotor is not fully autonomous. The only additional hardware 

required for autonomous flight is a GPS, 3-axis accelerometer, and 3-axis magnetometer. 

These items could be purchased for approximately $150. These additional components 

would add 30g to the total weight of the quadrotor and have a negligible affect on flight 

duration.  

Flight test data from Chapter VIII provides evidence of a stable platform. This is 

important when being used for research, as it will limit the time spent learning to fly the 

quadrotor. 

While the quadrotor designed in this thesis consists of many parts, both hardware 

and software, it inherits most of its ability through software. Not surprisingly, the 

software development side of this thesis consumed 95% of the effort. A RAD 

methodology was adopted for software development, which allowed a fast start to 

software development and worked well to discover missing requirements as the 

development progressed. This is evidenced through the fact that, before starting the 

project, the only initial requirement was “to build a quadrotor helicopter” and, at the 

completion of the project, the quadrotor was flying under human control. One of the main 

strengths of the RAD methodology applied in this design was the continual testing 

performed at each iteration in the development of a software prototype. Once all the 

software prototypes were combined into a single build, there was no unexpected 

emergent behavior. It is highly unlikely this would be the case when using a traditional 

Waterfall model.  

Products that have a relatively small software requirement can be developed by a 

single developer. In this instance, it is unlikely that a structured software methodology 
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would be used. The RAD methodology presented in this thesis is ideal for a single 

developer to follow as it is simple and encourages a short planning stage. The final 

product of this thesis is a testament to its success. A modular software design supported 

the RAD methodology and also provides a more understandable and modification-

friendly code. Having the software source code, and hardware schematics from this 

design, allows greater flexibility in further research topics with this platform. 

The first additional improvement that could be made to this design is a lighter 

frame. While the current 8 minutes’ duration on a 2,000mAh battery is still useful, the 

lighter frame would add considerable endurance to the platform. The next step is to 

achieve full autonomy. This would require the addition of GPS, magnetometer, and 3-

axis accelerometer along with accompanying software. The final step would be to add a 

powerful embedded processor such as the beagleboard from www.beagleboard.org. This 

board would communicate with the dsPIC over a simple serial interface and would 

provide enormous scope for additional research. Having the dsPIC handle the real time 

processing of maintaining position and attitude allows the higher-level processor to 

perform other supervisory functions such as image processing.  

While fully autonomous flight has not been achieved, this goal is not too distant. 

Development of this quadrotor will continue after completion of this thesis to achieve 

fully autonomous flight and waypoint navigation. 
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