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PREFACE.

TN an introductory course on the Differential and Integral Calculus

the subject of Infinite Series forms an important topic. The

presentation of this subject should have in view first to make the

beginner acquainted with the nature and use of infinite series and

secondly to introduce him to the theory of these series in such a way

that be sees at each step precisely what the question at issue is and

never enters on the proof of a theorem till he feels that the theorem

actually requires proof. Aids to the attainment of these ends are

:

(a) a variety of illustrations, taken from the cases that actually arise

in practice, of the application of series to computation both in pure

and applied mathematics ; (Ij) a full and careful exposition of the

meaning and scope of the more difficult theorems
;

(c) the use of

diagrams and graphical illustrations in the proofs.

The pamphlet that follows is designed to give a presentation of

the kind here indicated. The references are to Byerly's DiffereMiai

Calculus, Integral Calculus, and Problems in Differential Calculus',

and to B. O. Peirce's Short Table of Integrals; all published by

Ginu & Co., Boston.

WM. F. OSGOOD.

Cambridge, April 1897.





i:n^troduction.

1. Example.— Consider the successive values of the variable

.s„ = 1 -^ r + r2+ -I-
r"-i

for ?i = 1, 2, 3, Let r have the value ^. Then

Si =: 1 = 1

s„ = 1 -f ^ z=z\^

«3 = 1 + i + i = If

If the values be represented by points on a line, it is easy to see the

S, = I S^ s, S^^

law by which any .s„ can be obtained from its predecessor, .s„_i,

namely : .s„ lies half way between 6„_i and 2.

Hence it appears that when n increases without limit,

Lim .s„ =: 2.

The same result could have been obtained arithmetically from the

formula for the sum s„ of the first n terms of the geometric series

a -\- ar -{- ar^ -\- -|- ar"~^,

1 — r

Here a =: 1, 7- = ^,

When n increases without limit,
^j^^n

approaches as its limit,

and hence as before Lim s„ ^= 2.
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2. Ih'linition of (in Infinite Scries. Let ?/oi "n "21 l^c

any set of valiit's, positive or lu'gative or both, and foiiii the series

«o+ ". + ". + (1)

Denote the sum of tlie first n terms by .s„

:

•\, = "m + "1 H- + «„-!•

Allow u to increase without limit. Tiien either (() .s,, will approach

a limit U:

Lim .s„ := U;
n = X

or b) s„ approaches no limit. In either case we speak of (1) as an

Infinite Series, because n is allowed to increase without limit. In

ease a) the infinite series is said to be convergent and to have the

value* U or converc/e towards the value U. In case b) the infinite

series is said to be divergent.

The geometric series above considered is an example of a con-

vergent series.

1 + -^ + 3 +
,

1-1 + 1-

are examples of divergent series. Only convergent series are of use

in practice.

The notation

"o H~ "1 H~ '-^^^ '"/• (or to infinity)

is often used for the limit C7, or simply

U =i ?^, -\- u^ -\-

* U'\s ofti'ii called i\\Q Slim of tlie series. But the student must not forget

that U '\a not a sum, but is the limit of a sum. Similarly the cxjjrcssion " the sum
of an infinite numl)er of terms" means the limit of the sum of n of these terms,

as n increases without limit.



I. CONVERGENCE.

a) SERIES, ALL OF AVHOSE TERMS ARE rOSITIVE.

3. Example. Let it be required to test the convergence of the

series

^ + i + r2 + r^+ +^+ (^)

where n\ means 1-2 -3 n and is read ''factorial n".

Discarding for the moment the first term, compare the sum of the

next n terms

1-2-3

with the corresponding sum

= -^-^i<2 (Cf. §1),

2'2-2

n — 1 factors

Each term of o-„ after the first two is less than the corresponding

term in S„, and hence the sum

0-,. <>S„<2,

or, inserting the discarded term and denoting tlie sum of the first n

terms of the given series by s„,

,.„=l + l+ji, + p|^+ + 1., -3.'....,.
<«

no matter how hirge )i be taken. That is to say, s„ is a variable

that always increases as n increases, l)ut that never attains so large

a value as 3. To make these relations clear to the eye, plot the

successive values of .s„ as points on a line.
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.So =1 + 1 =2.

58 = 1 -h 1 + i = 2.5

., r= 1 + 1 + ^^ + :^ = 2.(u;

.''.= 1 + 1 + ,\ + .^ + ^'t
=2.708

;{ !
' 4 !

^0=1 + 1+^, + ^^, + :-, + ^

'^=^ + ^ + 2i + 3': + 4': + 57 + (r!

= 2.717

= 2.718

, = 1 + 1 + ^; + ;'t + ^, 4- ;^ + ,; :
^ fl ^ --'1'

s =
i s^=a S3 e 3

Fig. 2.

When n increases by 1, the point representing s„^.i always moves

to the right, but never advances so far as the point 3. Hence there

jiinst be soiue point e, either coincidinc/ ivith 3 or lying to the left of3

(i.e. e <C 3), n-hich .s'„ approaches as its limit, but never reaches. To

judge from the values computed for .s'l, s^, ' ' ' Sg, the value of e to

three places of decimals is 2.718, a fact that will be established

later.

4. Fundamental Princu'le. The reasoning by which we have

here inferred the existence of a limit e, although we do not as yet

know how to compute the numerical value of that limit, is of prime

importance for the work that follows. Let us state it clearly in

general form.

If s„ is a variable that 1) ahcays increases ichen n increases:

.s„, ^ s„, n' ^ n
;

hut that 2) ahcays remains less than some definite fixed number^ A:

for all values of n, then s„ approaches a limit, U:

Lim .s„ =: U.
71 = 00
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, 5

This limit, U, is vol (jreutcr than A:

U<A.

s. Sa S3 s. U A
1

\ H—h-fffi —\
Fig. 3.

The value A may be tlie limit itself or any value greater than the

limit.

Exercise. State the Principle for a variable that is always de-

creasing, but is always greater than a certain tixed quantity, and
draw the correspondino- figure.

5. First Test for Convergence. Direct Comparison. On the prin-

ciple of the preceding paragraph is based the following test for the

convergence of an infinite series.

L<^t "0 + "1 + ^'2 + (a)

be a series ofpositive terms, the convergence of which it is desired to

test. If a series ofpositive terms alreadf/ knoicn to be convergent

"u + "1 + "2 + {(3)

can be found, whose terms are never less than the corresj)onding terms

in the series to-be tested (a), then (a) is a convergent series, and its value

does not exceed that of the series ((3).

For let

«„ = "0 + "1 + + "»-i,

Sn = »0 4- "l + + a„_i,

Lim S,, =-A.
n = 30

Then since S,^ <^ A and s„ <C S„,

it follows that s„ <^ A

and hence by §4 .s„ approaches a limit and this limit is not greater

than A.

EemarJi. It is frequently convenient in studying the convergence

of a series to discard a few terms at the beginning (m, say, when m
is 2i fixed number) and to consider the new series thus arising. That

the convergence of this series is necessary and sufficient for the

convergence of the original series is evident, since

Sn = ("0 + + ",„-l) + (",n + + "-.-0

= u -\- s„
I — m '
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V is coiistiiiil iiiul lii'iicc N, will (•oiivfi'ij.f lounrd ;i limit if .s„_„ does,

and couversi'l\

.

Examples. Prove llic t'ollowiiio; series cojivor<2;ont.

1 + J. + ;!3 +
I.
+

r 4- /••* + r' + /-i" +
, < ?• < 1

3 !

~
;)

!

~
7 !

'^

1-2 ~ 2-3 ~ 3-4
~

Solutiov. Write .s„ in tlie fo-iii

then

Lim .s„ = 1.

71 = 00

1-2 ^ 3-4 ^ 6-6
~

! + -+.',+
, P>i-

6. yl Neio Test-Series. It lias just been seen tliat the series

1 + ^ + ^, + -+ (3)

converges when the constant quantity j; ^ 2. We will now prove

that it also converges whenever j:) ^ 1. The truth of the following

inequalities is at once evident

:

')!' ' 3/' ^ 2'' 2'' ~ ^

4/' ' 5'' ' y/' ' 7/' ^ 4/' 4/' —

1

i + i+ +±<» = J_
8" ^ 9" '

' 15" ^ 8'' 8''-^
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Hence, adding m of those iiie(iuulities together, Ave get

2'' ' 3'' '

" (2'" "^ ^
1
)'' "^ •2''~

^ A''~ 1 '" g/"" ^

-I- (2-),-.

Denote 1/2''"^ by ?•; then, since j» — ] ^ 0, ?• <; 1 and tlie series

2!-! + 4^ +^ + =r^r-^-^ r^ +

converges toward the limit -. Couseqnently no matter bow

many terms of the series

2" ' 3'' ' 4

T
be taken, their snm will always be less than , and this series is

1 — r

therefore convergent, b}' the principle of § 4.

Series (3) is nsefnl as a test-series, for many series that could not

be shown to be convergent by the aid of the geometric series, can

be so shown by reference to it. For example,

1 . _J__ , ^:_ I J_ ,

"^2V2"^;3V;3^4V4^

7. Divergent Series. The series (3) has been proved convergent

for every value of ^> ^ 1. Thus the series

1 +^+ ' '

2 '^ 2 3 '7 3

is a convergent series, for j) =. 1.01. Now consider what the nu-

merical values of these roots in the denominators are :

72—1.007, '73=1.011, '7 4=1.014.

In fact '7 100 = 1.017 and '7 1000 = 1.071 ; that is, when a

thousand terms of the series have been taken, the denominator of the

last term is multiplied by a number so slightly different from 1 that

the first significant figure of the decimal part appears only in the

second place. And when one considers that these same relations will

be still more strongly marked when^) is set equal to 1,001 or 1.0001,

one may well ask whether the series obtained by putting 7* = 1,

i + 2 + 5 + i+ w
is not also convergent.
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This is liowt'vcr in>i the cms*'. For

sine*' each of thi' // tiTiiis, save the hisl, is oi'catt'i- than 1 j'l //. Ih-iice

wi' can stiii<c in in the series anywhere, athl a (U-linile nnniltcr of

ternm together anil tluis get a sum greater than ;i, and we can (h)

this as oftiMi as we please. For example,

" = -1 —— > -

" = *'
o + (i

+ 7 + s > 2

'

9 ' 10
^ '16-^2

Hence the snm of the first n terms increases without limit as n

increases without limit,

or Lim .s\, := oo

The series (-i) is called the harmonic series.

How is the apparently sudden chanoc from convergence for p ^ 1

in series (o) to divergence when p ^=- \ to be accounted for? Tiie

explanation is simple. AVhen p is only slightly greater than 1,

series (3) indeed converges still, but it converges towards a lanje

value, and this value, which is of course a function of j), increases

without limit when j>, decreasing, approaches 1. When p ^ 1, no

limit exists, and tlie series is divergent.

8. Test for Diverrjence. Exercise. Establish the test for diver-

gence of a series corresponding to the test of §5 for convergence,

namel}' : Let

"o + "i + (a)

he a series of jjositive ierms that is to he tested for divergence. If a

series ofpositive terms already known to tte dicergent

^'o + ^'i + (/3)

can be found ichose terms are never f/reater than the corresponding

terms in the series to he tested (a), then (a) is a divergent series.

Examples.
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1+^, + .',, + :,'.+ j'<i

Tliis last series can be proved divergeut ])y reference to the series

2 ^ 4 ^ (J
^

, , 1,1,1, ,1Let s..=
:, + -+-+ + _

The series in parenthesis is the harmonic series, and its sum in-

creases without limit as n increases ; hence .s„ increases without limit

and the series is divergent.

9. Second Test for Convergence. The Test-Ratio. Let the series

to be tested be

and form the test-ratio

AVhen n increases without limit, this ratio will in general approach a

definite fixed limit (or increase without limit). Call the limit t.

Then if r <^ 1 the series is convergent, if t '^ 1, it is divergent, if

T = 1 there is no test :

Urn !^^^^^i Convergent;
n

" T ^ 1, Divergent;

" T = I, Xo Test.

First, let T <^ 1. Then as n increases, the points corresponding

to the values of ti„ + i/u,^ will cluster about the point t, and hence if

r y \

a fixed point y be chosen at pleasure between t and 1, tlie points

'W,i + iA<» 'v^'ill, for sutliciently large values of /*, i.e. for all values of n

equal to or gieater than a certain fixed number m, lie to the left

of y, and Ave shall have
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""*'
<y, n>m;

"n
^^

or, n = m, '»*' *^ '>'' "m + i < "."T'

)i = ») -f 1, '" + '' < y, ?/,„^.2 < ?<„, + ! y < M„,y2,

1
+ 1

n = VI + 2, -"' + ^' < y, M,,, + 3 < 7,„,^,,y < u,y,

Adding j> of tlu'se incijiinlities, Ave get

< «,„ ( y + y' + y'-^ + + y") < "». yrz—

'

The Sinn of the terms v, beginning with ",„ + i never, therefore,

y
rises as his^h as tlie valne ?«,„

—-— • Hence the y<-series converges.
1 — y

Tlie ease that t ^ 1 ( or t =: x ) is treated in a similar manner,

and may 1h' left as an exercise for the student.

If T =: 1 there is no test. For consider series (3). The test-

ratio is

and hence t = 1, no uiMtter what valne p may have. But whenp ^ 1,

(3) converges; and when ^> <^ 1, (3) diverges. Thus it appears

that T can equal 1 both for convergent and for divergent series.

Remark. The student Avill observe that the theorem does not say

that the series will converge if ?<„ + i/«„ becomes and remains less

than 1 when n increases, but that it demands that the limit of

«„ + i/»„ shall be less than 1. Thus in the case of the harmonic

series this ratio n/(ii -\- 1) \s less than 1 for all values of », and j^et

the series diverges. But the li^nit is not less than 1.

Examples. Are the following series convergent or divergent?

1 12 12 3

3'3 5 '3 5 7'
1 2 3 4
+ ,. + ;ra + ^4

+
2

2 2^ 2'''

2100 T^
-J
100 r ^100 I

il + JJ_ + Jl +100
~

1002 n- jQ(^8 n-
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10. .1 FiirtJicr 'rcsl-Iidlio Test. The followinir test for coiivor-

gouce and cliveigeiu-e is sometimes useful; the proof of the rule is

omitted. If

api)roaches a limit, let this liiuit be denoted by a-. Then the series

'»o + "i 4-

conrcvges, if a '^ 1 (or if a- = oo)
;

diverges, if o- <^ 1 (o>" if o- = — x) ;

if o" zz: 1, fJu're is no test.

Example.

1 • 2
~

3 • 4
~

and o- = 2 ; the series converges.

Test the following series :

11-3 1-3-5

2
~^ 2^ ' 2-4-6

~^

^^m^im-'
_^_+-^_4-_L_+
22 — a ' 3- — a ^^ 4^ — « '^

Apply any of the foregoing tests to determine the convergence or

the divergence of the series on pp. 45, 46 of Byerly's Problems i)i

Differential Calculus.

h) SERIES WITH BOTH POSITIVE AND NEGATIVE TERMS.

11. Alternating Series. Theorem. Let the terms of the given

series 1) be alteritatehf positive and negative:

"o — "i + ^'j — "s H- ; (5)

2) let each u be less than (or equal to) its ivedecessor

:

3) let Lim v/,, = 0.

)« = 00

Then (he series is convergent.
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Tlic rolldwiiig' st-rii'fs iiiny serve as ;in example.

Proof. Let

\ = "o — "i + "2 + (— l)"-^»„_i

and plot the points .s,, .s„, n,,, Then we shall show that the

points .s'l, .s'a, .s,^, •^•j,„ + i, always move to the left,

S^ S^ Se Ua II S^ S3 ^—

I

\—hH hH

—

\ \

—
FiQ. 5.

bnt never advance so far to the left as .s„, for example. Hence by

the principle of § 4 they approach a limit, Ui

:

Lim .s-2„, ^i = Uy.
m = 00

Similarly, the points .%, S4, .s,., .s,,,,, always move
to the right, but never advance so far to the right as .s^, for example;

hence by the same principle they also approa(!h a limit, U^ :

Lim .S2,,, =: U2 .

m = CO

Finally, since

•''2», + 1 = -^-J,,, + «2m ,

lim .s2,„ + i
= lim .Sg,,, -|- lim n^^

;

TO = Qc tn ^ <x> m = 00

but lim t<2„, ^ ;
— here the third hypothesis of the theorem comes

into play for the first time ; — hence

or simply U. Thus .s„ approaches a limit, C7, continually springing

over its limit.

\
\

1 Mi l l I \ \

Tk;. 6.

Such is the reasoning of the proof. It remains to supplj' the

analytical establishment of the facts on which this reasoning depends.

First,
•'*2m + l ^ ^2m-l ^^'^^ '^2™ ^ ''^2m-2-

For.S2,„+i=:»o— («i— M2)— — (W2«-3— '"2,»-2)— 0<2m-l— "2m)

^^^ *2l» - 1 (^'2m - 1 "2m) )

S2,„=(Wo— Ml)+ -\-(>hm-i W2„_3)H-("2m--2— ^*2™-l)

= «2-» - 2+ 0'2m - 2— "a,,. - 1) ;

and the parentheses are all positive (or null).
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Next •'*2m + l ^ •'*2 '^"tl •'*2m <C ^1'

For .S2,„ + 1 = .S2,„ -|- Mo,,. ^ «2 + «2m > -^2?

No,,, ;= .S.,
, , ?<., \ S, tlo <C Si.

The proof is now coiui)lete.

Examjyles.

i_i + i_i +
1 1 ^ 1

log 2 log ',] log4

12. r/ze Limit of Error in the AUernating Series. Suppose it be

required to find the value of series (5) correct to ^•, say, to 3 places

of decimals.

For this purpose it is not enough to know merely that the series

converges, and hence that enontjh terms can be taken so that their

sum s^^ will differ from the hmit U by less than .001, for n might be

so great, say greater than 10,000, that it would be out of the question

to compute s^^. And in any case one must know when it is safe to

stop adding terms.

The rule here is extremely simple. The sum of the first n terms

of series (5), s,^, differs from the value of the series, U, by less than

the numerical value of the (n. -\- l)st term. In other words, we may

stop adding terms as soon as we come to a term which is numerically

smaller than the proposed hmit of eri'or.

For, consider Fig. ((3). The transition from s„ to s„ + i consists in

the addition to s^ of a quantity numerically greater than the distance

from s^ to U. This quantity is precisely the {n -\- l)st term of the

series. Hence the rule.

For example, let it be required to compute the value of tlie series

3 2 3--2 ~'
3 ' 3^ 4 3* '

^
'

^

correct to three places of decimals.

(i) = .3333 i i\Y = .0556

1 (!)»= .0123 i {iy= -0031

i {ir= .0008 i ar= .0002

i (i)^ = ^0000 ,0589

.3464
.3464 — .0589 = .2875

or, to 3 places, the value of series (7) is .288.*

* The 4th phice is retained throughout the work to insure accuracy in the third

place in the final result.
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Examples. 1. Show tlmt the vmIiic of tilt' seiies

1_1111 1111
'2 'i 2- '•> 2''

I 2'* ;")
'2''

to three plaees of decimnls is .10;').

2. How many terms of tiie series

would have to he taken that tlie sum mit>iit represent the A-alue of

the series eorreet to 3 places of decimals?

13. ^l trencral Tlworem. Ld

"o + "i -r

he any convergent series of2>ositive and negative terms. Then

Lim u^^ = .

More generally,

Lim [//„ + ?/„ + !
+ -f ;'„+,,_i] = 0,

ra = 00

irJiere ]) is any integer, either constant or varying irilh n.

The proof of this theorem How's directly out of the conception of a

limit. Let

and plot the points .Sj, .Sg, s^, Then what we mean when

we say "x^ approaches a limit U" is that there is a point I about

which the sja cluster, as n increases. This does not necesi^arily re-

quire that (as in the series hitherto eonsideied) s^ should always come

steadily nearer to U, as n increases. Thus s.^ may lie further away

from [' than .So does. But it does mean that ultimately the sjs will

S3 U-c^ s^ U s^U+c^ s,

\ \ 1 Mill 1 1 \

—
Fk;. 7.

cease to deviate from U liy more than any arbitrarily assigned quan-

tity, S, however small. In other words, let 8 be taken at pleasure

(rr 1/1,000,000, say) and lay off an interval extending to a dis-

tance 8 from U in each direction, ((/— 8, f'-j-8); then for the

larger values of ?«, more precisely, for all values of u greatei- than

a certain fixed number m, s^ will lie Avithin this interval. This

can be stated algebraically in the following form :

C7— 8 < .5„ < CT+ 8, when n > m.
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Having thus stated what is iiicajit by ^/s approacliiug a limit C7,

we now turn to tlu* proof of the theorem. The sum

"« + "» + i
+ + %+r-l n + r

S

If n ^ m, both .s;^ and .s;^ + ^,
will lie in the interval (U— 8, U -\- 8).

The distance between these points is therefore less than 2 8. Hence

- '^S < ''„ + "„ + i
+ + ^,+.-1 < 28,

no matter what value p may have. But if a quantity depends on n

and can be made to remain numerically as small as is desired by

increasing j;, then it approaches as its limit, when 11=200. Thus

the proposition is established.

It is to be noticed that while the condition Lim u^^ ir: is necessary,

if the series is to converge, it is in no wise sufficient for the conver-

gence. Thus in the harmonic series (4) the general term approaches

as its limit, but still the series diverges. The harmonic series

however does not satisfy the more general condition of the theorem

;

for if we put j) = n,

^'"+"'-^+ +"—
^
= ,TTl + n4^2+ +,-^>l

and does not converge toward as its limit. This fact affords a

new proof of the divergence of the harmonic series.

It may be remarked that the more general condition

Lim [v^^ -\- »^^^i -\- -|- "„+,,_i] = 0,
n ^ cc

where |) may vary with n in cia>/ ivise ice choose, is a sutticient con-

dition for the convergence of the series. See Appendix.

14. Convergence . The General Case. Let

Uo + ^'1 + (tt)

be any series and let

'''0 + ''•1 +

denote the series of positive terms,

— "\, — ""i
—

the series of negative terms, taken respectively in the order in which

they occur in (a). For example, if the ^-series is

2^2- 28 '
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tlu'ii till- c-siM'ios is

1 + J. H- i. +
and the — K'-sories is

_1_1_1
2 "2^ 2^

Let s„ = »,, -I- »^ -^ -\- ,/^^_j,

Then, whatever value )t may have, .s,, eaii he written in the form

'**"« ^ ""iH '^l>
•

Here 7?i denotes the nuinher of positive terms iu .s^, a,,, tiieir sum,

etc. When n increases without limit, both m and p increase without

limit, and two cases can arise.

Case I. Both o-^^^ and t^, approach limits :

Lim o-,,, =: F, Lim t^, = IF;
m = CO p =z oo

SO that both th(> r-series and the lo-series are convergent. Hence

the ?<-series will also converge,

Lim .<?„ = U,
n = 00

and
U= V— W.

The above example comes under this case. Case I will be of

principal interest to us.

Case II. At least one of the variables o-^^_, t^„ approaches no limit.

For example, sujipose the »-series were

,_i+i_i + i_i + i_
:ii ^ 3 3'' ^ 5 3» ^ 7

' - 2 + 3 - 4 + 6
-

6 + 7

-

As these examples show, the it-series may then be convergent and

it may be divergent.

Exercise. Show that if the w-series converges and one of the

V-, w-series diverges, tlie other must also diverge.

Let us now form the series of absolute values* of the terms of the

* By the absolute value of a real inunlxT is meant the numerical vahie of that

number. Tlius tlie absolute value of — 8 is 3 ; of 2^ is 2.i. Graphically it

means the distance of the point representing that number from the point 0.
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M-series and write tliis series as

"'o + "'i +
u\^ will be a certain r, if n^^ is positive ; a certain «', if v^ is negative.

If we set

'^'n = "'o + "'l + H- «'„-!

it is clear tliat

<, = cr,„ + T,.

From this relation we deduce at once that in Case I tfie ?<'-series

is a conrergeut series.

Conversely, //" tJie u'-series converges, then both the v-series and

the ir-series converge, and ire have Case I.

For both the i"-series and the ic-series are series of positive terms,

and no matter how man}^ terms be added in either series, the sum

cannot exceed the limit U' toward which s\^ converges. Hence by

the principle of § 4 each of these series converges.

Definition. Series wliose absolute value series are convergent

(i. e. M-series wdiose '^'-series converge) are said to be absolutely or

^mconditionalh/ convergent ; other convergent series are said to be

not absolutely convergent or coiidifionally convergent. The reason

for the terminology nnconditionally and conditionally convergent will

appear in § 34.

15. Test for Convergence. Since the H-series sureh' converges

if the «'-series converges— it is then absolutely convergent— and

since the ?« '-series is a series made up exclusively of positive terms,

the tests for convergence obtained in I. a) can be applied to the

w'-series and from its convergence the convergence of the w-series can

thus be inferred. The series that occur most frequently in elementary

analysis either come under this head and can be proved convergent

in the manner just indicated, or they belong to the class of alternat-

ing series considered in § 11.

The test of § 9 can be thrown into simpler form whenever the test-

ratio ?<„4.i/»„ approaches a limit, t\ the rule being that ichen t is

numerically less than 1, the series converges absolutely; tchen t is

numerically greater than i, the series diverges; when t is numerically

equal to 1, there is no test:

c — \ <^t <^1 ,
Convergence

;

lim "'" + ^ — ^ . I t '^ 1 or t <^ — 1
,

Divergence :

n = <X> '^n 1

^ = 1 or ^ = — 1
,

Xo Test.

u„



18 CONVERGENCE. §§ 1'), Hi.

I'di'. tli<' tfst-iatio "„ + i/"„ is niniicricnlly equal to the test-ratio of

till' scric's of alisolute valiK'H, u'^^i/u\^. Now if a variable /'(»)

approaclu's a limit, II, wlien v = a, its nunierieal value, heiiij^; the

distance of tlu' point representiii<;./( "} fi'<>"i tlu' point 0, approaches

a limit too, namely the numerical value of // (distance of // from 0).

Hence

lim ^'/. + 1

71 — CO u\^

where t equals the numerical value of ^ If then — 1 <^ i <^ 1, it

follows that T <^ 1 and the it'-series converges. The w-series is

then absolutely convergent.

The second part of the rule will be proven in the next paragraph.

Example. Consider the series

X- x^ X*
X 4-

2
~

3 4
~

n

M„ n -j- 1 x" 1 + ^

Lim "f^i^} ^t = —x.
n = CO K„

Hence the series will converge when x is numerically less than 1,

i. e. when

When cc r= 1 or — 1, this test fails to give any information concern-

ing the convergence of the series. But it is then seen directl}' that in

the first case the series is convergent, in the second case, divergent.

16. Divergence. To establish the divergence of a series

with positive and negative terms, it is not enough to establish the

divergence of the ?<'-series, as the example of the series

2
~

3 4
~

show^s. It will however sutlice to show that the terms do not approach

as their limit, and this can fi-equently be done most conveniently

by showing that the terms of the w'-series do not approach 0.

Thus if « > 1 or ^ < — 1 , then t > 1

u'
and —'^ > 1, when n > m.

u' =
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Hence m'„. + i > '/',„,

w'm + 2 > "',,,+ 1 > "'„P

«'„. + 3 > "',„ +2> "',„,

or «„ > m',„, n > m

;

that is, all the ii\'h from y* =^ m on are greater than a certain positive

quantity p = »'„, and lience %i\^ and ?^^ cannot approach as their

limit, when », = cc^.

Example. In the series of § lo, ^ in — x; hence this series di-

verges for all values of x numerically greater than 1. These results

may be represented graphically as follows :
—

Divergent —

T

1 Dirergent

Conrergfiit

Exercise. F'or what values of x are the following series conver-

gent, for what values divergent? Indicate these values by a diagram

snnilar to the one above.

V^ ' V"

Ans. — 1 < a; < 1 , Conv. ; .^> 1, ;f < — 1, Div.

^+in+i^,+

^_^ »_ ,

3 o /

l + - + fT + 3,+

10.1; -f-
10-.r- + lO^r^ -|-

1 -^ .<• ^ 2 ! a-^ + 3 ! x^ -h

17. Theorem, Let

«o + "i -{- ('z-\-

be lunj absolutely convergent series; p,^, pi, pz, «'\V ^^t ^f

quantifies not increasing vinnericaUi/ iiidejiiiitebj. Then the series

Oopo + f'lPi + f'ipj +
converges absolutely.

For, let a',„ p'„ be the absolute values of a,,, p,,
respectively, // u

positive quantity greater th:ui any of the quantities p\^, and form tlu-

series
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TIic tciiuti of this 801-ios an' less n-spcctivcly tli:in I lie U-niis of the

(•oiivi'r<r('nt scries

Ihi',, + JI,i\ -|- Hit'. -|-

;iiiil cucli sorii's is iiitulc up (xciiisivcJY of posil ivc Icniis. Hence tiie

lirsl serii'S eouveiiies nixl tlie series

"opo + "iPi + "zPi +
converses absolutely.

Examples. 1 . The series

siii.r sin3.r sinoo;

1-2 32- H 52

converges ahsolutely for all values of x. For the series

12 32 T- -2

converges absolutely and sin u x never exceeds unity numericallv.

2. If Uq -\- (ii -\- a. -{- and h^ -j- /,.^ -j- are

any two absolutely convergent series, the series

'^0 -\~ "1 f'os -v -f- a., cos 2x -\-

and bi sin x -j- b., sin 2.f -j-

converge absolutely'.

3. Show that the series

e~'' cos x -\- e~-^ cos 2.r -|-

converges absolutely foi" all positive values of .'•.

4. What can you say about the convergence of the series

1 + /• cos e -\- r^ cos 2 -\- ?

18. Co)icer(/(nice and Direnjence of Poicer iSeries. A series of

ascending integral powers of .r,

"« ~\~ fh-'' -|- <^''2'^"^ "h »

where the coeflicients a^, «i, a^, are independent of x, is

called a jmv^er series. Such a series may converge for all values of

X, but it will in general converge for some values and diverge for

others. In the latter case the interval of convergence extends equal

distances in each direction from the point x = 0, and the series con-

Divergent — r >• Dirergent

Convergent

verges absolnteh/ for every point x lying vithin this interval, but not

necessarily for the extremities of the interval.
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The proof is as follows. Let iCo be any value of .r for which the

terms of the po^ver series a^xv;* do not increase without limit ; a' , j\,

the absolute values respectively of a,„ x,,. Then a\x';; is less than

some fixed positive quantity C, independent of ?*, foi- all values of /;.

For X z= a-Q, the power series may converge and it may <liver<ie.—
Let h be any value of x numerically less than a-'g ; h' its numerical

value. Then the power series converges al)solutely for x =. h. For

where r = h'/x'^ <^ 1, Hence the terms of the absolute value series

«'o + ci\Ji' -\- a'Ji'-'-{-

are less respectively than the terms of the convergent geometric series

C-\- Cr-\- Cf^ -f
and the series

f^o -|- f'l^' + «2^^^ -\-

converges absolutel}-.

From this theorem it follows that if the power series converges for

X = Xq, it converges absolutely for all values of x within an interval

stretching from to Xq and reaching out to the same distance on the

other side of the point x ^ ; and if diverges for x = x^, it diverges

for all values of x lying outside of the interval from x^ to — .q. If

now the series ever diverges, consider the positive values of x for

which it diverges. They fill a region extending down to a point

X = ?•, where r in general is greater than and such that the series

converges absolutely for all values of .r numerically less than / ; and

this is what was to be proved.

A simi)ler proof of this theorem can be given for the special case

that ci„ + i/c(,^ approaches a limit, L, when u = cc . For then

Lim "ft + i __ lim ^n + 1
•^'" j

n ^ 'X. ti^ n = CO CI„X"
'

or t =: Lx. Hence when L = 0, the power series converges abso-

lutely for all values of a? (§ lo) ; while if L — 0, the series converges

absolutely when x is numerically less than 1 //>, and divei'ges when x

is numerically greater than 1/L. This proves the proposition.



11. SERIES AS A MEATUS OF COMPUTATION.

a) THK L()(;Ai;rril.MIC SKinES.

19. Oiu- of tlic most iinpoi'taut iipplicatioiis of iiiCmite series in

analysis, mikI tlu' one that chieHy eoiuHTUs iis in this course, is that

of coniputiuii; the numerioal value of a eouiplieated analytic expres-

sion, for example, of a definite integral like

X
1

when the imlefinite integral cannot be found. In fact, the values of

the elementary transcendental functions, the logarithm, sine, cosine,

etc., are computed most simply in this way. Let us see how a table

of logarithms can be computed from an infiuite series.

A series for the function log^ (1 -j- h) can be obtained as follows.

Begin with the formula

The function (1 -|- .r)~^ can T)e represented l)y the geometric series :

1
1 — .T + ;r^ — .»•» -|-

1 + X

Integrate each side of this ecpiation l)etween the limits and h :

/ — = / 1 • ilx — / xdx -f I xriJx —
Jo 1 + •'^' Jo Jo Jo

Evaluating these integrals we are led to the desired fonuula

:

logd J^h)=,h— J^ (8)
- 3 b

In deducing the above formula it has been assumed that the theo-

rem that the integral of a sum of terms is equal to the sum of the

integrals of the terms can be extended to an infinite series. Now
an infinite series is not a sum, but the limit of a sum, and hence the

extension of this theorem requires justification, v. §§ 39, 40.
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Exercise. Olttaiu the foi-imila

taii-W/ = li — - -\-

O

Hence evaluate the series

•-^!,-

20. In the examples of § 12 tlio value of series (8) was computed

to three places of decimals for h =^ J and h = ^^ and it thus appears

that

log 1^- = .287 (.')), log li = .405 (o).

To find log 2 we could substitute in (8) the value h := 1 :

log 2 = 1 — i + .^ — 1 4-

But this series is not well adapted to numerical computation.* In

fact to get the value of log 2 correct to the third place of decimals, it

would be necessary to take 1000 terms. A simple device however

makes the computation eas}'. Write

9—4.3
- 3 2

and then take the logarithm of each side

:

log 2 = log A -|- log I-

= .287 (5) + .405 (5) = .693 (0).

Hence, to three places, log 2 = .693.

Next, to find log 5. Here the series must be applied in still a

different way, for if 1 -|- h he set equal to 5, /i = 4, and the series

does not converge. We therefore set

5 = 4+ 1 =4(1 -hi),

log 5 =r 2 log 2 -|- log Ij

= 1.386 (0) + .223 (2) = 1.609 (2),

where log 1^ is computed directly from formula (8).

From the values of log 2 and log 5, log 10 can at once be found.

log 10 = log 2 -|- log 5 = .693 (0) + 1.609 (2) = 2.302 (2)

or to 3 places,

log 10 = 2.302.

This latter logarithm is of great importance, for its value must he

known in order to compute the denary logarithm from the natural

* The formula is nevertheless useful as showing the value of a familiar

series, (6). We could not find by direct computation the value of this series to,

say, seven places, because the work would be too long.
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loiiaritlim. \\\ tin- ri>i-iiiiil:i for the liiuisroniKition of loj;:iritliins

from tin- Itasi' r to tlu' liasi' A.

we have l'*iiiu'

'--^^' = o:,a, = -^^'-

log..-!

loo;, ]6

Hence for example

2730:

Examples. Compute

log 20, logi„20,

log 9, logio9,

log i:% logiol3.

21. Series (8) is thus seen to serve its i)u pose well when only a

few places of decimals are needed. Siipi>ose however we wished to

know log 2 correct to 7 places of dechnals. Series (8) would then

give less satisfactory results. In fact, it would require IG terms of

{Tie series to yield log li to 7 places.

From (8) a new series can be deduced as follows. Let /i = — x.

Then (8) becomes

log ( 1 — .c) = — a; — - — '- —
Next replace h in (<s) by x :

x^ x^
log(l +.r) = + -^—

2 + 3
—

Subtracting the former of these series from the latter and combining

the logarithms we get tlie desired foi-nuila :

-;^=K-'+f+-^ ) <«)

AVe have subtracted on tlie riglit hand side as if we had sums.

"We have not ; we have limits of sums. This step will 1)0 justified

in §80.

We will now ai)i)ly series (9) to the determination of log 2 to seven

places. X nnist be so chosen that

—— = 2. 1. e. X =^ A and1—0' ^

.,l+^ = .(. + •,+ ;+- +
)1—

i
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The advantage of tliis series over («) is twofold : first, it sulfioes to

compute the vahie of tlie series for one vahie of .»•, x =: ^, and

second, the series converges more rapidly than (8) for a given

value of X, since only the odd powers of x enter.

(i) =
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Examplea. Show th:it

l()<i i| — .22:5 1 i;i (4)

l()<i :. = I AW.) 437 (.S).

Coiiijuito lofT 2 l)y iiiil of llic formula

loLT 2 =^ — log A =: — log 15
— log ^.

Knowing log 2 luul log 5 we can find log 10 :

log 10 =z 2.302 585.

Example. Compute

to six places.

Series (9) is thus seen to he well adapted to the conipiilatiou of

logarithms. If // denote any positive numlier and x be so deter-

niint'd that

1 + •••
. // — 1—

// , 1. e. X = —-—
,

1 —X y -\- \

then X always lies between — 1 aud -|- 1 and series (9) converges

towards the value log ?/. For values of // uumerieally large the

convergence will be less rapid and devices similar to those above

explained nnist be used to get the required result.

In the actual computation of a table, not all the values tabulated

are compnted directly from the series. A few valnes are computed

in this way and the others are found l)y ingenious devices.

b) THE lUNOMIAL SERIES.

22. In elementary algebra the Binomial Theorem for a positive

integral exponent

:

{a -\- by = a"' -I- mn"'-^b + "^

^f
~ ^^

a'"-^b'' -|-

(to m 4- 1 terms)

is estal)lished.

Consider the series

^ '^ ^ 1-2 ^
1 • 2 • 3

^

If fjL is a j)ositive integer, this series breaks off with p. -f- 1 terms, for

then, from this point on, each numerator contains as a factor.

Thus if /x r= 2, we have

1 -(- ^•''
~f" 1 ^li

^^ "h 1

—
o—5 ^^ -{- etc. (subsequent terms all 0),
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or simply 1 -(- •2x -\- x'-. In this ease the scM-ii'S is soen by conipari-

soii with the binomial formula (a. = I, b = x, m = /x) to iuivc tlic

value (I -\- x)f':

(,l+.)>^=l+^.+ 'tljtZLlly^ + '^At=m!pll^+

If however /a is any number not a positive integer (negative num-

ber, fraction, etc.) the series never breaks off, i.e." it becomes an

infinite series. Let us see for what values of x it converoes, for

only for such values will it have a meaning. The general term of

the series is

fx (fx. — 1) (i^
— 2) (^_n -t- 1)

1-2 • 3- • n
Hence

/*(^— 1) (/^— » + 1) (/^ — »)
_^.„ +

1

rVM _ 1 • 2 • n (n+ 1)
•

1 • 2 • • n

fx — n 1 — ix/n~
11 -\- 1

'^ — ~
1 -|- i/n

^

and

Lim ^'„ + i _ ^ ^

n = 00 ;;
n

Consequently the series converges for all values of x numerically less

than unity. (§ 15.) For the values x- = 1, — 1 special investiga-

tion is necessary, which we will not go into here.

Divergent — 1 1 Divergent

Convfvgeiit

We may note in passing that when <^ .i^ <^ 1 the series finally

becomes an alternating series, a fact tliat is useful when the series

is used for computation.

Toward lohat value does the series converge when x lies Ix'tween

— 1 and -|- 1 -^ T'^c answer to this question is as follows: For all

valneft of x for tchirh flic hi)tomial series converges, its value is

(l-^xy:

(1 ^ .,)^ = 1 + txx + '^-^-T^ a- + (10)

The proof of this theorem will not be considered here (v. Chap.

III). Let us first see whether the series is of any value for the i)ur-

poses of computation.

Example I. Let it be required to compute \J 35 correct to live

places.
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.

v) 11.

We must llirow tlu' iMdicaiid into a ronii :i<l;ii»tcil to (•oiiii)iitutiou

.Jiy tlir si'i'ii's. W'v do this ;is follows. Since 'l^ = '.V2. \\v write

^35 = 2. (1 +^V)'-

The second factor can be ct)ni|)iitt'd hy aid of the scries.

— 1 ^. — ;l

(1 + ^V)' = 1 + i i\ + y:f ii^y + f-fy^ (i^)' +

— 1 _j_ .01 s 7-,() — .000 to;; + .000 oio — .000 uo3

= l.Ol.S 0,S(4)

and <J 3o = 2.030 17.

Exercise. Show that in the above computation we are justified in

breaking ofT, as we did, with the fifth term.

Example IT. Find ^ lo to five places.

Here we liave a choice between the expressions

15 rr: 8+ 7 = 2«
( 1 + A)

and 15 = 27 — 12 = 33
( 1 —

;^

)

In the first case (1 -\- |^)s, in the second (1 — i)' would be com-

puted by aid of the series. In i)ractice however there is no question

as to which expression to use, for the seconil series converges more

rapidly than the first.

Examples. 1. Complete the computation of ^/ 15.

2. Show that V ••• = 2.0S0 01) and -</ 2000 = 2.9G1 94.

3. Compute ^y 2 first by letting /x ^— ^ , x = 1-
;

then by writing 2 := J i|.

4. Find -^ 2 to five places by any method.

5. Obtain from (10) the following foi'mulas :

^ = 1 - .'• + .'•' -.>•'+
1
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23. Series for si)i-^li (ual U()i~^/i. Tlir Computation of it.

The method set forth in H9 is applicable to the representation of

8in~^/i and tan~^/i (v. Exercise, § ID) by series.

in V< = / , ^
z= li -\- - -f- — h (11)

.tan-^A = /< — o + V — (12)

From these series the value of tt can be computed. If in series

(12) we set /i ^ 1, we get the equation :

4 3^5 7
^

This series, like series (6), is not well adapted to computation. A
better series is obtained bv puttino- h =z ^ in series (11) :

This series yields readily three or four places of decimals ; but if

greater accuracy is desired, more elaborate methods are necessary,

(v. Jordan, Conrs d'Anali/.se, Vol. I, § 262 ; 1893).

Exercise. If the radius of the Earth were exactly 4000 miles, to

how many places of decimals would you need to know tt in order to

compute the circumference correct to one inch? Determine tt to this

number of places by Jordan's method.

24. The Length of the Arc of an Ellipse. Let the equation of

the ellipse be given in the form :

.i; rr: a siu (^ , y =. h cos <^ .

Then the length of the arc, measured from the end of the minor axis,

will be

e^ sin^ <^ d<^
,

where (a^ — h^)/a'^ =^ e"^ <^\. The integral that here presents itself

is known as an Elliptic Integral and its value cannot be found in the

usual way, since the indefinite integral cannot be expressed in terms

of the elementary functions. Its value can however be obtained by

the aid of infinite series. The substitution of esin<^ for x in the

last example of § 22 gives the formula

1 ., . „ .
1

V 1 — e'^ siu"-^ <^ = 1 — - e'^ sin- <^ — -—- e* sin*
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Ih'IU'O (V. J) 10)

r 1 /'0 1 /*<t> -|

•s := O
<f>
— ;

(-
j s\n^(f>(i<f>

— ''
I »\n*(f>il({i

Those intoiji'als can be evaluated l»y the aid of the fonmihis of I\' of

PeMei''s Slioi'f Table of Tntec/rals. In partieidar, the U'ngtli of a

quadrant «S will be found by putting <^ ^ K ir :tnd using tiic fonnula

(No. 2 10 of tiie 7'ahles)

f^. ,
1 • 3 • 5 (M — 1) TT

I sin"d)r/<i = -

—

-— ^^ ^, n, an even niteger.

Jo 2-4-6 n 2

The elHptie integral then becomes the integral known as the Complete

Elliptic Integral of the Second Kind; it is denoted l)y E

:

TT

=i[-Gy-^-(:^^)":-(^y? ]

(No. 248 of the Tables). Hence

S =z aE.

If e =r tlu' ellipse reduces to a circle and S = ^wa.

Examples. 1. Com[)ute the perimeter of an ellipse whose major

axis is twice as long as the minor axis, correct to one tenth of

one percent.

2. A tomato can from which the top and bottom have been removed

is bent into the shape of an flliptic cylinder, one axis of which is

twice as long as the other. Find what size to make the new top and

bottom. If the original can held a (piart, liow much will the new

can hold?

25. The Period of Oscillation of a Pendulum. It is shown in

Mechanics (v. Byerly's Int. Cal.^ Chap. XVI) that the time of a

complete oscillation of a pendulum of length I is given by the formula

T=i AK
,

A = / ^
,

k — sin -

,

\y Jo V 1 — k'm\^<{> 2

where a denotes the initial inclination of the pendulum to the vertical.

K is known as the Complete Elliptic Integral of tiie First Kiiwl and

its value is computed as follows. The substitution of A-sin<^ for a;

in the series for (1 — x^)~'^ gives the foi-mula (v. Exs., § 22).

^ = 1 + ^
k-'sm^<t> + 4^ k*sm'<l> -f

V 1 — k^sm^<l> ^ ^ • ^
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Integratiii<i- and ivducing as in § 24, we ol)tain tlu- t'oi-nuila

If the angle through whicli the pemhiluni osciUates is small, an

approximation for T siillieientlv accurate for most purposes will be

obtained by putting ^ =: 0. Then K z=. \tt and

— J^'

the usual pendulum formula.

Exercise. Show that if a <^ 5°, this approximation is correct to

less than one tenth of one percent.

APPROXIMATE FORMULAS IX APPLIED MATHEMATICS.

26. It is often possible to replace a complicated formula in applied

mathematics by a simpler one which is still correct within the limits

of error of the observations.*

The Coefficient of E.rjxdision. By the coefficient of linear expan-

sion of a solid is meant the ratio

V — I

where I is the length of a piece of the substance at temperature t°, V

the length at temperature t' °. The coefficient of cubical expansion

is defined similarly as

P Y

where F, V stand for the volumes at temperature t°, t'° respectively.

Then

V — V_ V^ — Z8

as is at once clear if we consider a cube of the substance, the length

of an edge being I at f. The accurate expression for a in terms of /3

is as follows.

a=^l+/?— 1=^/3-^^^+ • • • •

See Kohlrauscli, Phi/sical Measurements. §§ 1-6.
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Since /3 is siniill, — usiiully less tli;iii .0001, — tiic cnor ijkkU' liy

nrgleetinfi ail terms of the series subsequent to the first is less than

the errors of oliservatioii and hence we may assume without any loss

of accuracy that

Double Weighiiuj. Show tliat if the apparent weii^ht of a body

when placed in one scale pan is ;)i, when placed in liie other scale

pan, }>., (the dilTerence being due to a slight ine(iuality in the lengths

of the arms of the Itnlance), the true weight 2? is given with sullicient

accuracy by the fornuda

:

p = Hpi -\- ih)-

27. Errors of Observation. In an ex])erimental determination of

a physical magnitude it is important to know what effect an error in

an obsen^ed value will have on the final result. For example, let it

Ite required to detennine the radius of a capillary tube by measuring

the length of a colunui of mercury contained in the tube, and weigh-

ing the mercury. From the formula

tv = TT r"I p ,

where w denotes the weight of the mercury in grammes, I the length

of the column in centimetres, p the density of the mercury (=z 13.6),

and r the radius of the tube, we get

'^ -n-pl '^

Now the principal error in determining r arises from the error in

observing I. Let / be the true value, I' = I -\- e the observed value

of the length of the column; /• the true value, r' =1 r -\- E the com-

puted value of the radius. Then E is tlie error in the result arising

from the error of observation e, the error in observing to being

assumed negligible. Hence

- /^_i ^-L '^ 1'
. . . .

^
V 2 1^8 1'

Since e is small we get a result sutliciently accurate by taking

only the first term ; and hence, approximately,

£ = -4,-. I.e.
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Tlius for a givcMi enor in ol)SCM-viii<>- /, the error in the computed value

of r is inversely proportional to the length of the eolunui of mercury

used,— a result not a priori obvious, for r itself is inversely propor-

tioned only to V ^•

Exercise. An engineer surveys a field, using a chain that is

incorrect by one tenth of one percent of its length. Show that the

error thus arising in the determination of the area of the field will be

two tenths of one percent of the area.

28. Pendulum Problems. A clock regulated by a pendulum is

located at a point (^-1) on the earth's surface. If it is carried to a

neighboring point (J5), h feet above the level of (^), show that it

will lose 2^ ^t seconds a day, i. e. one second for every 244 feet of

elevation.

The number of seconds JSf that the clock registers in 24 hours is

inversely proportional to the period T of the oscillation of the pen-

dulum. Hence (cf. §25)

N'

where the unprimed letters refer to the location (A) , the primed letters

to (B). If the clock was keeping true time at (A), thenN= 86,400.

(/' _ P'
7,~ {P-^ny

where R denotes the length of the radius of the earth. (Cf. B3'erly's

Diff. Cal., §117.) Hence

\' 'J J R + h

P= ^v;.-.v-+x-^^.=

If h does not exceed 5 miles, h/P < .001. h'^/P^ < .000 001, and

the first term of the series gives X— N' correct to seconds :

X—X' = ^^h.

Examples. 1. The summit of ]Mt. Washington is 6226 feet above

the sea level. How many seconds a day will a clock lose that keeps

accurate time in Bost<>n Harbor, if carried to the sununit of the

Mountain ?

2. A pendulum that beats seconds on the surface of the earth is

observed to gain one second an houi" when carried to the bottom of a

mine. How deep is the mine?
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29. A'.iv/v/.s'r.s. 1. Show tli:it tlic convctioii tor cxpniision and

contraction due to licat and cold is liivcii liy the I'orniuhi

II = 4."), 200 a/,

wlicro a denotes tlic coelliciiMit of linear expansion, / the rise in

tenii)eratin'e, and u the nnndier of scL'onds lost in a day.

For brass, a =: .000 Ol'J, / iK'ing measnrcd in deijrees centijirade.

Thus for a brass pendnhini ii = .H'2t, and a rise in temperature of

h° causes the clock to lose a little over 4 seconds a da}'.

_'. A man is standing- on the deck of a shi[i and liis eyes are // ft.

above the sea level. If I) denotes the shortest distance of a ship

away whose masts and i-iooino- he can see, bnt whose hull is invisible

to him. Il^ tiie height, measured ii\ feet, to which tlic hull rises out of

the water, show that, if refraction can lie neglected,

/> — 1.2;3 (V // -|- V //i) miles.

If // r= /*, = 16 ft., B = 10 miles (nearly).

:». Show that an arc of a great circle of the earth, 2i miles long,

recedes 1 foot from its choixl.

4. Assuming that the sun's parallax is H".7r), prove that the dis-

tance of the sun from the earth is about '.14 million miles.

5. Show that in levelling the correction for the curvature of the

earth is 8 in. for one mile. IIow nmch is it for two miles?

(!. The weights of an astronomical clock exert, through faulty

construction of the clock, a greater propelling force when the clock

has just been wound up than when it has nearU' run down, and thus

increase the amplitude of the pendulum from 2° to 2° 4' on each side

of the vertical. Show that if the clock keeps correct time when it

has nearly run dow'n, it will lose at the rate of about .4 of a second

a day when it has just been wound np.

7. Two nearly equal, but unknown resistances, A and B, form

two arms of a Wheatstone's Bridge. A standard box of coils and

a resistance x to be measured form the other two arms. A balance

is obtained when the standard rheostat has a resistance of r ohms.

When liowever A and B are interchanged, a balance is obtained

when the resistance of the rheostat is )•' ohms. Show that, ap-

proximately,

6. Tlie focal length /of a lens is given by the fornuila

/ P: ^ i'2
'
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where p^ and p., denote two conjugate focal distances. Obtain a

simpler appioxiniate t'orninla for /' that will answer when y*, and p,^

are nearly ecpial.

9. " A ranclunau (\ feet 7 inches tall, standing on a level plain,

agrees to bny at S7 an acre all the land in sight. How nnicli must

he pay? Given GiO acres make a square mile." Admission Exam.

in Sol. Geom., .June, 18',)o.

Show that if the candidate had assumed the altitude of the zone

in sight to he equal to the height of the ranchman's eyes above the

ground and had made no otlu'r error in his solution, his answer would

have been 4 cents too small.

10. Show that for small values of h the following equations are

approximate!}^ correct (// may l)e either positive or negative)

(1 -f- Ii)"' = 1 -\- mh.

Hence (1 -{- h)- = 1 + 2h;

1

1 + h
1 h;

1

(1 + ^0

1 — h h

1 2/i;

V 1 + /i

If h, k, I, p, are all numerically small, then, approximately,

(1 + /0 (1 + A-) (1 + /) = 1 +/; + ^- + /+
,

(1 + /0(1 + A-)----^^ _i_p_
(1 + (i+i>)



III. TAYLOR'S THEOKEM.

30. It is not the olijcctol' this clitiptcr to prove Tiivlor's Theori'iii,

since lliis is done satisfnelorily in iiny ijood treatise on tlie Differ-

ential C'alenlus ; but to indicate its l)earini2; on the subject under con-

sideration and to point out a few of its most important applications.

It is remarkable that this fundamental theorem in infinite series

admits a simple and rip;orous proof of an entirel}^ elementary nature.

Rolle's Theorem, on which Taylor's Tiieorem depends, and the Law
of the Mean lie at the very fountlation of the differential calculus.

From Rolle's Theorem follows at once the theorem contained in the

equation

/(.r,-f- 70 =./X-»o) +/' (-'VO /' +./" (-^-o)
1; + • • • • +/"' (•'•o+ Oh) ^'

, (13)

This latter theorem is frocpiently ref(M'red to as Taj/Ior'.s Theorem

h"

[uently ref(M

tvith the Remainder Ji,^ = /'"' (.i-y -|- 6h) - • It includes the Law

of the Mean
/(.r„ + h) —f(x,) = hf(x, + eh) (14)

as a special case and thus affords a proof of that Law. If in (13),

when n increases indetinitely, 7?,, converges towards as its limit,

the series on the riuht hand side of (13) becomes an infinite power

series, represent in<i' the function ./'(''"o "h ^0 throu<;hout a certain

region about tin; point .'•„

:

f(x, + h) =f(x,,) +/'(.,.,)/, +/"(a-o) |; + (15)

This formula is known as Taylor's Theorem and the series as Taj/hr's

Series.

The value Xq is an arbitrary value of x which, once chosen, is held

fast. The variable x is then written as a;,, -|- h. The object of this

is as follows. It is desired to obtain a simple lepresentation of the

function /(.r) in terms of known elements, for the purpose of com-

puting the value of the function or studying its properties. One of

the simplest of such forms is a power series with known coefficients.
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Now it is iisimlly impossible to represent /(a-) by om- uiid tiic same

power sei'ies for all values of .»•, and even when this is possil)le, tlie

series will not conver«)e rapidly enough for large values of the argu-

ment to be of use in computation. Consequently we confine our

attention to a limited domain of values, choose an x,, in the midst of

this domain, and replace the independent variable x by h, where

X ^ a'o -\- h, h = X — Xq.

The values of x for the domain in question may not be small, ])ut the

values of h will be, h =^ corresponding to x = .r,,. If Xq is so

chosen that /(.Xo), /'(xq), /"(.("o), arZ »«/". are all finite, then

the value of f(x) for values of x near to .Tq, i. e. for values of h

numerically small, will usuall}' * be given b}' Taylor's Theorem.

An example will aid in making clear the above general statements.

Let

f(x) = log x.

Then it is at once clear that f(x) cannot be developed by Taylor's

Theorem for .Tq =^ 0, for/(0) =: log = — x . It is just at this

point that the freedom that we have in the choice of Xq stands us in

good stead; for if w^e take Xo greater than 0, then /(Xq), /'(X;,),

/"(xq), will all be finite and/(xo -f- h) can l)e developed by

Taylor's Theorem, the series converging for all values of h lying

between Xq and — Xq. The proof is given for Xq =: 1 in the lJ{tf.

CaL, § 130. Thus we have a second proof of the development of

log (1 -h h), (formula (8) of § 19).

31. Two Ap2)lications of Taijlor's Theorem vnth the Remainder^

(13). This theorem, it will be observed, is not a theorem in infinite

series. Any function whose first n derivatives are continuous can be

expressed in the form (13), while the expression in the form (15)

requires the proof of the possibility of passing to the limit when

n ^ GO .

Thus (13) is a more general theorem than (lo) and it avoids the

necessity of a proof of convergence. t It is because of the applica-

tions that (13) and (15) have in common, that it seemed desirable to

treat some applications of (13) here.

* Exceptions to tliis rule, thouiih possible, are extriMiiely rare in onliiiary

practice.

t It is desirable that (i;'.) sliouM be applied much more freely tliaii bas

hitherto been the custom in works on the Infinitesimal ChIcuIus, botli because

it affords a simple means of proof in a vast variety of cases and because many

proofs usually given by the aid of (Ip) can be simplified or rendereil rijiorous

by the aid of (13). The applications given in this section are cases in point.
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First ^l/tplira(io)i : Maxima, Minima and Points of In /lection;

(Utrratniw. Let it \w nMitiiivd to study tlic riiiiction ./'(.'') in the

ueigliborliood oi' tlir point x = .'u.

/(-..•„ + M =:fM -\-f'(x;) h + hj"\x, + eh) h\

Plot till' function as a curve :
*

//, =./Y.i-) =./(.
1

-|- /i),

and jilot tilt- curve

ll-i = f(Xo) + f'i^o) ft = /(-i-o) + fi^v) (.X — x„).

Till' latter ciii-vc is a ri^lit line. Consider the difference of the ordi-

nates, Vj and '/.,

:

//, — .V, = A/"(.ro+ ^A)//-.

Hence it appears that ^/^
—

//._, is an inlniitesinial of the second order.

This property characterizes the line in question as the tangent to the

curve in the point .r„. and thus we get a new proof that the e(|uatioii

of the tangent is

y=f{x,) -f /'(.I-,) (.« — ,•,).

Next, suppose

Then /(.r„ + h) = f(x,) + /(-')
(..„ + dh)

j^^ ,

The equation of the tangent is now

and
?/i
— ?/2 = f'"^ (x,, + Bh)

(2n)!

f^^"^(x) will in general l)e continuous near the point x =z x^ and

it is positive at this point; it will therefore be positive in the

neighborhood of this point and hence

//i — }h >
botli for positive and for negative values of //, i. e. the curve lies

above its tangent and has therefore a niinimuin at the point x z= x„.

Similarly it can be slioAvn that \f f-'^"^ (:«„) <^ 0, all the earlier deri-

vatives vanishing, f(x) has a maximum in the point Xq.

Lastly, let

/'(xo) = 0, P"H'''o) = 0, /(•^"+^K^-o) H= 0-

* The student should illustrate each case in this § hy a figure.
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''"" "-''='"""" ('" + ^")-(24'+-iy!-

/'-" + !) (cc) will in gencial he continuous near x := Xq and it will

therefore preserve the same sign for small values of h, positive or

negative; but h-" + '^ changes sign with //. Hence the curve lies on

opposite sides of its tangent on opposite sides of the point Xq and

this is then a point of inflection.

Exercises. 1. Show that the condition for a i)()int of inflection not

parallel to the avaxis is

/"(•nO =0, r"-\.vo) = 0, P"-^'^(xo) =\= 0,

/ 2" + i)
(.v) being continuous near x = x^.

2. Show that a perpendicular drawn to the tangent from a point

P' infinitel}" near to a point of inflection P is an infinitesimal of

higher order than the second.

Curvature. The osculating circle was defined {Diff. Cal. § 90) as

a circle tangent to the given curve at P and having its centre on the

inner normal at a distance p (the radius of curvature) from P. We
will now show that if a point P' be taken infinitely near to P and a

perpendicular P'3/be dropped from P' on the tangent at P, cutting

the osculating circle at P", then P'P" is in general an infinitesimal

of the third order referred to the arc PP' as principal infinitesimal.

Let P be taken as the origin of coordinates, the tangent at P being

the axis of x and the inner normal the axis of // ; and let the ordinate

y be represented by the aid of (13). Here

.To = 0, x = /^ /(O) = /'(O) = 0, /"(O) > 0,

and y = ^ f" (0) x^ + ^ /'" (6 x) xK

The radius of curvature at P is

_ [^_±_(D^mi _ _]__^~
D^ll /"(O)

and the equation of the osculating circle is

^•' + 0/ — P)~ = P-

Hence the lesser ordinate i/' of this circle is given by the formula :

*

.V-' . x'

r r

- p " p'

* Instead of the infinite series, formula (13) might have been used here, with

n = 4. But we hajtpen to know in this case that the function can be developed

by Taylor's Tlieorem (15).
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aiul // — //' — .r' ( }. /"\d.i-) — a -3 '• • • •

From this result follows tli:\t (// — //') /.r" appioaclics in ficnci'al

a finite limit dilTeicut from 0, and liciici' that //
— //' is an infini-

tesimal of the IfiinI order, referred to 7-"3/ ^ .t as principal infini-

tesimal. Hut P'M and PP' are of the same order. Hence tiie

pro|)osition.

E.vorrixe. Show that for any other tanijent circle //
— y' is an

intinitesinial of the second order.

Second Application : Error of Observation . Let x denote the magni-

tude to be observed, y z= f (x) the iiiai2;nitude to be computed from

the observation. Then if .ipbe the true vahie of the observed magni-

tude, X = Xq -\- li the value determined l)y the observation, h will be

tiie error in the observation, and the en-or // caused thereby in the

result will be {cf. (14))

II = fix, + //) — /(.v,;) = fix, -\-eh)h.

In general /'(•«), will be a continuous function of x and thus the

value of f{x^^-\-^h) will lie but slightly changed if x, -\- 6h is

replaced by x. Hence, aijproximatel}',

II = f\x)h

and this is tlu' formula that gives the error in the result due to the

error in the observation.

32. TJk' Priiicijxd ^Ipplicdlions of Taylofs Theorem icithout the

Rcinniudcr^ i. e. Taylor's Series (15) consist in showing that the

fundamental elementary functions: e-^, sin.r, cos.r, log.r, xi^, sin~^a;,

tan~^r can be represented l)y a Taylor's Series, and in determining

explicitly the coetlicients in these series. Jt is shown in Ch, IX of

the Uiff. Cul. that these developments are as follows.*

.7'^ x^
e^ = 1 + .r + ^ + ^ +

x^
,

x^

x^ . X*
cos .T = 1 - - + _ -

These developments hold for all values of x.

* The flevelopments for sin-'z and tan 'x are to be sure obtained by in-

tegration ; but the student will have no difficulty in obtaining tlieni directly

froDQ Taylor's Theorem.
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, 1 /, I 7 ,
/'"

,

/''

logo; = log(l + h) =//_ + _
1 .)

.VM ^ (1 + ],Y :::, 1 + ^/, ^ '^^J^ '*' +

SUV ^r ^ .)• -4- \- — -4-

.1"^
,

.(•"

tan \i' ^ .»• — .r + T
o

Tliese developments hold for all values of h (or, in the case of the

last two formulas, of x) numerically less than 1.

Exercise. Show that sin.K can be developed about any point x^ by

Taylor's Theorem and that the series will converge for all values of h.

Hence compute sin 46° correct to seconds.

33. As soon however as we pass beyond the simple functions and

try to fipply Taylor's Theorem, we encounter a ditficulty that is

usually insurmountable. In order namely to show that /(x) can be

expanded by Taylor's Theorem it is necessary to investigate the

general expression for the »-th derivative, and this expression is

usually extreme!}' complicated. To avoid this difficulty recourse

is had to more or less indirect methods of obtaining the expansion.

For example, let it be required to evaluate

i ax.
^"

The indefinite integral cannot be obtained and thus we are driven to

develop the integrand into a series and integrate term by term. Now
if we try to apply Taylor's Theorem to the function (e-'' — e;'"^)/.i',

the successive derivatives soon become complicated. We can how-

ever proceed as follows :

x^ x^

,-.. = 1 _ ^. + +
x^ x"

3^

/ i-^ x^
e^ — p~-^ = 2 i X A-

'-

1-

"

f-

V 3 !
^ 5 !

^

and hence, dividing through by x, we have

X V ^ 3 !
^ 5 !

^
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'iex_g-x

f.
(J.v= 2 1+ ., -,-T-h - -

,
+ = 2.11 1 ;-^(»2 .

Exawplrs. Do the cxaniplt's on p. .">(» of tlu' /'rnhlems.

Gtniend Method for the Expansio)) of a Function. To (lovclop a

function f(x), made up in a simple inaiinor out of the eh'nieiitaiy

functioiis, into a jiower series, the jienoral nielliod is tlic rollowiiii!;.

The fundanieiital elementary functions havinsj; heen developed by

Taylor's Tlieorem, Jj
IV2, we i)roceed to study some of tlic simjjlest

operations that can l)e pei'fonnc(l on series and thus, starting with

the developments already obtained, pass to the developments de-

sired.



IV. ALGEBRAIC TRANSFORMATIONS
OF SERIES.

34. It has been pointed out repeatocUy (§§ 19, 21, 24) that since

an infinite series is not a sum, but a Ihiiii of a sum, processes appli-

cable to a sum need not be applicable to a series ; if applicable, this

fact requires proof.

For example, the value of a sum is independent of tlie order in

which the terms are added. Can this interchange in the order of the

terms be extended to series? Let us see. Take the series

1 - * + ;i
- i + (a)

Its value is less than 1 — i-j-i:=| (§1-) Rearrange its

terms as follows :

1 + i - i + i + i - i + i + iV -^ + m
The general formula for tlu*ee successive terms is

and if each pair of positive terms be enclosed in parentheses :

(1 + 4) - i + (i + 4) - i + (^ + tV) - ^ -h (y)

the result is an alternating series of the kind considered in (§ 11).

For it is easy to verify the inequahties

+ 4^'— 1 ^ 2l- ^ 4^-1- 1
"^

4A; — 3 ' 4^'— 1
-^ 2A- -^ 4^- -|- 1 4fc -|-

3

Hence the series (y) converges toward a value grealer than (1 -|- ^)

—
i^
= f . The sum of the first n terms of (;8) differs from a properly

chosen sum of terms of (y) at most by the first term of a parenthesis,

— a quantity that approaches as its limit when ?; =: x . Hence

the series (/8) and (y) have the same value and the reariangement of

terms in (a) has thus led to a series (;8) having a different value

from (a).

In fact it is possible to rearrange the terms in (a) so that the new

series will have an arbitrarily preassigned value, C. For, if C is

positive, say 10 000, begin by adding from the positive terms
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till I'lioiiuli liMvc lici'ii 1:il<('ii so tliMt tlu'ir sum will just cxci'i'd C.

'I'liis will :ilw:iys hi' possihlo, since this si'iics of positive terms

diverjxes. Tiu'ii hf<>;iii witii tlie negative terms

-^-\-l
ami add just enouuh to reduce the sum Itelow (!. As soon as tliis

has licen done, hegiii a<iaiu with the positive terms and add just

enough to l)rini; the sum alK)ve C; and so on. The series thus

olitained is the result of a rearrangement of the terms of (a) and its

value is C.

Ill the same way it can 1)e shown generally that if

".. + "i + "2 H-

is any convergent series that is not absolutely convergent, its terms

can be so rearranged that the new series will converge toward the pre-

assigned value ('. Because of this fact such series are often called

conditionally <-o)irer<i<nit. Theorem 1 of §35 justifying the denoting

of absolutely convergent series as anconditionally convergent.

There is nothing paradoxical in tliis fact, if a correct view of the

nature of an infinite series is entertained. For a rearrangement of

terms means a replacement of the original variable .s^^ ])y a new vari-

able .s',, , in general uiKHjual to s
_

, aiid there is no a priori reason why

these two variables should approach tlie same limit.

'I'lie above example illustrates the impossibility of extending a

priori to infinite series processes applicable to sums. Most of such

processes are however capable of such extension under proper restric-

tio)is, and it is the object of this chapter to study such extension for

some of the most fundamental i)rocesses.

35. TiiEOKKM 1. //* a)i absolutely convergent aeries the terms can

be rearranged at jAeasnre without altering the value of the series.

First, suppose all the terms to be positive and let

K = "0 -I- "1 -f- + "n-\ ; •
1''" •'•« = u.

71 = OD

After the rearrangement let

.S',, = U\,+ U\^ +''',/-!•

Then s\^. ai)proachcs tiie limit (^ when n' ^= oo . For .s'^. always in-

creases as m' increases ; but no matter how large 71' be taken (and then

beld fast), n can (subsequently) be taken so large that .s^ will include

all the terms of *'„- and more too ; therefore
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or, uo matter liow laij^i- /(' be taken,

•s',, < U.

Hence .s'^, approaches a limit U' ^ U.

We may now turn thino;s about and regard the ?<-serios as gener-

ated by a rearranoement of the terms of the w'-series, and the above

reasoning shows that U^ U' \ hence U' = U. q. e. d.

Exercise. The second step in the above proof was abbreviated

by an ingenious device. Replace this de\'ice by a direct line of

reasoning.

Secondly, let the series

^'o + "i + "2 +
be any absolutely convergent series and let

'\= ^.. — ^r, (Cf. §14)

U= V— w.

Let u'o -\- n\ -\- u'o

be the series after the rearrangement and let

<, = <,,-<,,

U' = V — w

.

But V = V and W = TT; hence U' - U.

Exercise. Find the value of the series

l,l_l,l,l_l4_l,_L_l.
91 "1 93 2'^ •>^

"'
2'^ '^^ 2^ 2^^ 2®

Theorem 2. If

t^ = "0 + "1 +
V = V, + ". +

are any tico convergent series, they can be added term by term, or

If they are absolutely convergent, the third series will also be abso-

lutely convergent and hence its terms can be rearranged at pleasure.

Let

^\ = "0 + "1 + + "»-i

'

Then

S„ + f„ = (Uo + t'o) + ("1 + ^'l) + + ("„-l + '',.-!)•
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WluMi » := 00 , tlic left luiutl side coiivcii^cs toward (7 -{- V; hence

r+ r=("„+ '•„) + (", + '•,)+

It rcinuiiis to sliow that Ilif paii'iithcses may be droppi'd. This is

shown in the same way as in llic case which arose in § .'51.

I'iic proof of tin- second part of the theorem presents no difficulty

and may be left to thi' stmU'nl.

Exercise. Show that if

U= ii„ H- "i + ", +
is any converszcnt series, c any number.

cU = cuq -f- ^""i "I" ''"^ ~I~

Theorem 3. If

U = II,, + "i + "o +
V=r,-^r,^ r,^r

are any two ahsolulely converffent series, (hey can be multiplied together

like sums ; i. e. if each term in the ^/irst series be multiplied into each

term in the second and the series of these products formed, this series

will converge absolutely toicard the limit UV. For example

UV =. KqV^ -\- u^i\ -f ,i^,\, -\- >i„r., -f K^v^ -|- luv^ -f

Tiiis theorem does not hold for series that are not absohitely con-

vergent.

Let s^^ =r
?<o

-|-
/^i -f -|-

(/^ _i

,

^» = "^0 4- ''i
+ + ''',,-1

;

then Urn .s;/„ =: UV.
W= 00

The terms of the product s^^t^^ are advantageously displayed in tlie

following scheme. Tiiey are those terms contained in a square n

terms on a side, cut out of the ui)per left hand corner of the scheme.

..'
' !-••"

'

..-'''
!

.-•"

..Uii2,y.^Mi^i -j- Vihi -\- Uip3 -f- • • >• •!
'''• .-•' .-'

I . I

The theorem asseits that if any series be formed by adding the

terms of this scheme, each term appearing in this series once and
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only once, — for ex;inii)le, the terms that lie on the oblique lines, the

successive lines beini;- followed from top to bottom :

»(.'(. + "o'"l + "i''o + "o'"2 -f- , (a)

this series will converge absolutely toward the limit UV.
It is sufticient to show that o)ie series formed in the prescribed way

from the terms of the scheme, for example the series formed l»y fol-

lowing the successive bonndai'ies of the squares from top to bottom

and then from right to U'ft, namely the series

converges absolutely toward the limit UV. For any other series

can then be generated by a rearrangement of the terms of this series.

Let Sy denote the sum of the first -ZV" terms in (f3).

First suppose all the terms of the vf-series and the y-series to be

positive.* Then, if ir- < iV^< (n -f 1)^,

«\^. < Sy < '^. + iL + x.

Hence lim Sy=z UV.

Secondly, if the ?<-series and the y-series are any absolutely cou-

vergent series, form the series of absolute values

«'o + U\ + «', +
^'o + V\ + V', +

The product of these series is the convergent series

But this series is precisely the series of absolute values of (a), and

therefore (a) converges absolutely. It remains to show that the

value toward which it converges is UV. Since Sy approaches a

limit when X^ increasing, passes through all integral values, Sy will

continue to approach a limit, and this will be the same limit, if N
passes only through the values n'^

:

lim Sy = lim iS,,,

.

JV= 00 n = xj

But
S„, = sj„ and lim S„, = UV.

n = <x>

This proves the theorem.

* The casi' that some of the terms are must not however he exohidcd ; hence

the douhle sign (^) i>i tlie inequality helow : Sy ^ s„ + ii'„ + i.
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I"\)r exaiiiiilc. It-t

/(a-) = "o + ^'i
•' + "•..•'-

+
,

<^(.r)= ^0 + /'!•'• + ''_.•'•' +
he two eoiiviTiit'iit power series, x any point lyini;' at once within the

re«!;ion of eonviwifenee of l)oth series. Then the product of these

series is ijiven liy tlic fonmihi

f(.r) i> (.J-)= o„ />„ 4- (a„ /^ -f a, />„) x -\- ((to ^.^+ '( , /', + a., />„ ) x- -\-

Tiiis formula can be used to give tlie sqnare, or l)y repeated ai)pli-

cation, any power of a power series. Thus it gives as the s(|uare of

the geometric series

1 -h .. + x-^ +
the series

a result agreeing with the binomial expansion of (1 -f- x)~^.

.Exercise. Find tiie first four terms in the expansion of

X loo- ( 1 ^ X)
e -^sin-i' cos.i; r^r^=^ and ;

V 1 — a--' 1 4- '«

Scpiare the series for e'' and show that the result agrees with the

expansion ^)f c'^''.

36. One more theorem is extremely useful in practice. Its proof

would carry us beyond the bounds of this chapter.

Let

<^„ (jl) = b,, + !>,>/ -h //,//- + + hX
be any polynomial in // and let // be given by the convergent power

series in x

:

y = <-io-\- <'!•« + f'.'-^'" +
Then the i)Owers of y : .?/-^, y^, y" can be obtained at once as

power series in x by repeated nuiltiplications of the .T-series by itself,

the terms of the polynomial <f>„(y) then formed by multiplying these

power series respectively by the cotlicients b, and the polynomial

<!>„(!/) thus represented as a power series in x by the addition of these

terms.

Su])pose however that instead of the polynomial 4>„(!l) ^c had an

infinite series :

<t>{U) = ^) + ^.'/ + ''2.'/'+

Under what restrictions can the above process of representing

<l>„(y) as a power series in x be extended to representing <t>(j/) as a

power series in x?
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One restriction is inunedintely ohvioiis. Since a power series

represents a continnous function (v. § :iH) tlie values of ?/ corre-

sponding to small values of x will lie near to a^ and thus the point «„

must surely lie within the interval of convergence (— ^' <C .V <C ''') ^f
the series <f>(y). Suppose a^ =: ; then this condition is always

satisfied. And now our theorem is precisely this, that no further

oonditiou is necessary.

TiiKOKEM 4. If Uq = 0, no further restriction is necessary ; i.e.

tin' above process of representing <^{y) as a power series in x is always

applicable.*

RemarJc. The point of the theorem just qnoted is this. We know
from § 35 that each term in the y series can be expressed as a power

series in x

:

bji" = f,{.i') = a,/") -|- a,^"Ki' 4- ,ij"\i-^ -\-

and hence that <^(//) can be expressed in the form

c^(.V)=/o(aO+/i(x)+./;(.r)+

It remains to prove (and it is precisely this fact that the theorem as-

serts,— a fact not true in general of a converoent series of the form

/o(-i')+/i(-o+./;(^)+ ,

where f„(x) denotes a power series) that if we collect from these

series all the terms of common degree in x and then rearrange them

in the form of a single power series, first, this series wnll converge,

and secondl}^ its value will he <^(,v).

Examples. 1. Let it be required to develop e*^'"-^ according to

powers of .I'.f ^^^^ y = •^' sin.r. Then

4> {y) = e" z= 1 -f ./ -f J y^ -|- ^y^ J^ ,i- ,,* J^

2 4.'' 2 4 •*
I

,-in. ^ 1 _^ .,. _U i.,4 ^ _^,,6 _ 3V^a-«.+

* Tlie case «„ = is the one that usually arises in practice. But tlie theorem

still holds provided only that — r <^ a„ <^ r, the only difference heiiig that tiie

ciiethcients in the final series will then he infinite series instea<l of sums. Cf.

Stolz, Allgemeine Arithmetik, Vol. I, Ch. X, §25.

t Even when it is known that a function can be developed by Taylor's

Theorem (v. Ch. Ill; Diff. CaL, Ch. IX; Int. Cat., Ch. XVII) it is usually

simpler to determine the coefficients in the series by the method here set forth

than by performing the successive dififerentiations requisite in the ap])lication of

Taylor's formula. The example in hand illustrates the truth of this statement.
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2. I'"in(l tlic lii'st I li'iiiis ill the i>\|);iiisi(»ii of sin (/isii).'').

3. ()l)tain a few Icniis in the tU'vclopiiu'iil of cncli of the follo\viii<j;

functions according to powiTs of x.

log COS.T.

Suggestion. Let eos.c:= 1 -\- >/ ; then

,,= — ^a-^+^u;"—

and log cos;r = — h x" — ^V -v* — /- .r^ -f-

V C08X*, log ( 1 -f- e'"),

1 1

V 1 — 2.r cos 6 -j- x'^ V 1 — ^'^ «ii»^'«

Theorem 4 gives no exact information concerning tbe extent of

the region of convergence of the final series. It merely asserts that

there is such a region. This deficiency is supplied by an elementary

theorem in the Theory of Functions.*

But for many api)lications it is not necessary to know the exact

region of convergence. For exami)le, let it be required to determine

the following limit.

log COSX' -|- 1 — -

lim -^ 1 -{- x^ -\-
x^

X — sin X — X

Both numerator and denominator can be developed according to

powers of x. The fraction then takes on the form

i x^ -|- higher powers of x

— ^ ic* -f- higher powers of x

Cancel x^ from numerator and denominator and then let x approach

as its limit. The limit of the fraction is then seen to be— 3. The

usual method for dealing with the limit 0/0 is ap{)licable here, but

the method of series gives a briefer solution, as the student can

readily verify.

Exanijde. Determine the limit

x = 1 — cos X

An important npplieation of Tiieorcin 4 is to the proof of the

following theorem.

* Cf. Int. CaL, §220; Ifigher Mathematics, Ch.VI, Functions of a Complex

Variable, by Thos. S. Fiske ; John Wiley & Sons.
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Theorem. The quotient of ttoo poioer series can be represented

as a poiver sei-ies, provided (he (-(Dintaii/ term in the denominator series

is not :

//• cto =\^

It is sufficient to show tliat

1

can be so represented, for then the power series that represents it

can he multiplied into the numerator series

bo -\- biX-{- boX- 4-

Let ?/ = cii X -\- a., .i-^ -|-

1 1 1 1 .V i_
y^ y^

_i_

provided y/tto is numerically less than unity, i. e. y numerically less

than ao- Thus the conditions of Theorem 4 are fulfilled and the func-

tion l/(ao ~\- y) (^^11 be expressed as a power series in x bj' develop-

ing each term (— 1)" v/"/a^^ + i
into such a series and collecting from

these series the terms of like degree in x.

Corollary. If the coefficients of the Jirst m j^oicers of x in the

denominator series vanish, the quotient can be expressed in the form

&o + i..f+ 6,.x^+ _ C_ CL^
_!. ^-1 ^

For

b, + b^x+b^x^^ _ 1 b,-^h,x-\-b,x.^

a^x"' -\- a^^ + i-K'-'
+ i -|- x'" a„ -|- a,,, + iX -\-

~^" (^o + ^'i-^' + ''-•*'+
)

and it only remains to set e,^ =. C„_,„ and divide a-'" into each term.

Examples. Show that

1 2
tan.r =•»' + 3

•*'' + j^
-J^' +

,

1



COXTIXITTTY, TNTEGRATTOX AND
DIFFKKENTIATIOX OF SFKIFS.

37. Cnufiiim'ff/. AVe have had nmnorons cxniiiplos in the fore-

tjoiiig of contiiuioiiH fniu-tions represented by power series. Is the

converse trne, namely, that every power series represents, within its

interval of eonvt'itieiiee, a continuous fimetion ? That this question

is by no means trivial is siiown by the fact tliat while the continuous

functions of oidinary analysis can be represented (within certain

limits) by triiioiioiiictric serii's, i. e. by series of the form

"o ~l~ "icos.c -|- (t.,co^'2x -\-

-j- />isiu.r -(- />2sin"2.f -\-

a trisionometric sciies does )iot necessarily, convei'sely, represent a

continuous function tln<)U(>ii()ut its interval of convergence.

Let us tirst put into precise form what is meant l)y a continuotis

funclion. <i>{x) is said to be continuous at the point x^ if

.(X)= <^ (.»„);IDU

X = .r„

i.e. if, a l)elt being marked off liounded by the lines y = 4>(-i\t) -\- e

and y =r 4>(xq) — e, where c is an arbitrarily small positive quantity,

Fig. 8.

an int('r\al (.»•„ — 8, .c,, -|- 8), 8 ^ 0, can then always be found such

that, when x lies within this interval, 4>(x) will lie within this belt.

These conditions can be expressed in the following form :

<^ (^o) — £ < <^ (x-)< (^ (.To) + e , .To _ 8 < a- < .To + 8

;
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or *
I

<^ (..) — c^ (r,)
I

< €
,

I

..; — .,„
|
< 8 .

A simple suflicient eoiiditioii flmt the si'iies of continuous functions

represent a continuous function is given by tlie followiu<>- tiieorein.

THEOKKM 1. //'

"o {^') -\- »i{^)-^ , a < X < yS
,

is a scries of continHOus functions converyent throughout the iutervcd

(a, /3), then the function / (.t-) represented by this series loill he con-

tinuous throughout this interval, if a set ofx>ositive numbers, M^, Mi,

Mn, , independent of x, can be found such thcU

1)
I
"„ ('^)

I
^ 'X, ' a<x< ^ ,

n = 0, 1,2, ;

2) J/o + M, + 31, +
is a convergent series.

We have to sliow that, Xq being any point of the interval, if a posi-

tive quantity e be chosen at pleasure, then a second positive quantity

8 can be so determined that

I

f(x) ~f(x,)
I

< e
,

if
I

., _ a-o |< 8 . .

Let

f(x) = s^{x)^r,^{x).
Then

/(.^•) — /(•'o) = {sjx) — sjx,)
\
4- /•„(:i-) — 7-„(a-o).

We will show that the absolute value of each of the quantities

|'''n(^") — \(-''o)|? '„('')' '"(X-^'o) '** 1^^^ t^^^^^ i^-i ^^ ^ '^^ properly

chosen and
\
x — a;^

|
<^ 8. From this follows that the absolute

value of f(x) — f(-fo) is less than e; hence the proposition.

Let the remainder in the J/-series be denoted by M^^

:

and let n be so chosen that B^^ <^ || e, and then held fast. Then,

since

I
^,(^)

I
< ^K,

it follows that

\r„(x)
I

< 72„

* The absolute value of a quantity .-1 shall from now on be denoted by
|
^

]
•
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for (ill raluen of x at once,* or

Since .s'„(.r) is the sum of a lixcd iiiiiultci- of continuous functions,

it is a continuous function and lirncc 8 can be so chosen that

\-\{^) — \i^.)
I
<^, \x-x,

I

<8.
Hence

|/(x)-/(a-„)
I

<c, |a;-a-o|<8,

and the theorem is proved.

Exercine. Show that the series

sin a; sinSx sin 5 a;

converges and represents a continuous function.

38. The iiencral test for continuity just obtained can be applied

at once to power series

TiiEORKM 2. A poiver series represents a continuous function

within its interval of convergence. The function may however be-

come discontinuous on the boundary of the interval.

Let the series be

f{x) = ao -j- aiX -f a.x^ -|-

convergent when — r <^ a- <^ r ; and let (a, /5) be any interval con-

tained in the interval of convergence, neither extremity coinciding

with an extremity of that interval. Let X be chosen greater than

either of the quantities
|
a

| , |
/8

|

, but less than r. Then

I ^'n-''" I
<C

I "n I
^'S a < .T < ^;

and the series

I
«u

I
+

I

''1
I

-^' +
I

('•-•
I

-'^'' +
converges. Hence if we set

M =
\
a

I

X"

,

the conditions of Theorem 1 will be satisfied and therefore f(x) is

continuous throughout the interval (a, /3).

By the aid of this theorem the following theorem can be readily

pioved.

* It is just at tliis point that the restriction on a convergent series of con-

tinuous functions, wliich the theorem imposes, comes into play. Without this

restriction this proof wouhl be impossible and in fact, as has already been

pointed out, the theorem is not always true.
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Theorem. //' a potcer series vanishes for all values of x lying in

a certain interval about the point x z= :

= tto + a^x -f- a.,x- -\- , — Z<a;<^,
then each coefficient vanishes:

Oq =0, «! rr: 0,

First put .1- r= ; then a„ r= and the above equation can be

written in the form

= x {Ui -\- a.;,x -\- )

From this equation it follows that

rr: ftj -j-'ct^.f -|-

provided x =|r ; but it does not follow that this last equation is

satisfied when x = 0, and therefore a^ cannot be shown to vanish by

putting X =: here as in the previous case. Theorem 2 furnishes a

convenient means of meeting this difficulty. Let

f(;x) = a, 4- «,*+

Then sincef (a;) is by that theorem a continuous function of x

lim ./; (x) =
./'i (0) = a, .

x =
But lim fi(x)=0; .-. a^ = .

x = o'

By repeating this reasoning each of the subsequent coefficients can

be shown to be 0, and thus the theorem is established.

Corollary. //" ttvo power series have the same vcdae for all

values of x in an interval about the point x = 0, their coefficients

are respectively equal:

aQ-\- a^^x-^- aoX^-\- z=bQ-\-biX-{- box"^ -\- ; — l<^x<^l^

«„ = &Q, a^ =i bi, etc.

Transpose one series to the other side of the equation and the

proof is at once obvious.

The Determination of (he Coefficients c. It was shown in § 36

that the quotient of two power series can be represented as a

power series.

By the aid of the theorems of this paragraph a more convenient

mode of determining the coefficients c can be established. Multiply

each side of the equation by the denominator series

:
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60 -|- I'l .(•+ h., .V-'-{-= (<f„ -\- a ,
.r -f- ((, y- -|- • • •) (Co+ Ci x -\- c„ x--\--- •)

= «o t-'o+ (« 1
'(.+ «o t'l) •»•+ (('2 «o+ «i ^'i+ «o ^2) -t-"^+

Hence to =: (JqCo

^1 = CfiTo -f OoCi

^2 = «2^0 + «iCi + «0C2

A simple mode of solvinor these equations for the successive c's is

furnished by tiie rule of elementary algebra for dividing one poly-

nomial by another.

Quotient:
j

(.^^ _j_ ^^j; _j_ c^.f^ -(-

bo
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39. The Integration of iSeries Term bij Term. Let the continuous

funt'tion/(.r) be represented by an infinite series of eoutinuous func-

tions convergent throughout the interval (a, /8) :

f{x) = u, (X) + n, (X) -h ,
a < :« < /? . (A)

The problem is this : to deterniiuo when the integral of /(.r) will be

given by the series of the integrals of the terms on the right of

equation (A) ; 1. e. to determine when

f^f(x)dx= 1^ u^(x)fIx-\- ru,{x)dx-\- (B)
e./a t/a t/a

will be a true equation. The right hand member of (J5) is called

the iei'm by term integral of the ^-series.

Let

/(a;) = .s„(.f) + r„(.^).

Then

s„ (x)dx -\-
I

r„ (a;) dx

or

Jf{x) dx^ I ?<o
(x) d X 4-1 "

1
(x) dx-\- -\-

I
?< „ _ 1

(x) d

x

+ Pr„(..)c?.T.

Hence the necessary and sufficient condition that (B) is a true ecpiation

is that 11m
7? = CO

t/a

I
r„{x)dx =

To obtain a test for determining when this condition is satisfied,

plot the curve

y — r„ (.«) .

3
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Draw liiu's tluoiiii'li tlii' liiLrlicst and lowest points ol' tlic cwrvt' parallel

to tlio .r-axis. The distance p„ of the more reniotc of tiieso lines

from the .r-axis is the maximum value that
| /„(.'')

|
attains in the

interval.- Lay olT a l)elt hounded by the lines // = p„ and // ^ — p,,.

Then the eurve lies wholly within this belt and the al)Sohite value of

the area under the curve cannot exceed the area of the rectangle

bounded by the line // = p„ , or (jS — a) p„. This area will converge

ti)ward as its limit if
*

lim p„ = 0,

. n = oo

and thus we shall have a nKjJirieiit condition for the truth of equation

(B) if we estaltlish a suflicient condition that the maximum value p„

of
I

?'„(.t')
I

in till' interval (u, ^) approaches when u =z -x . Now
we saw in the proof of Theorem 1 that if the series (^1) satisfies the

conditions of that theorem,

I

r„(.r)
I

< R,„ a < a; < /?, lim Ji„ = 0.

n = <x>

Hence any such series can be integrated term by term and we have

in this result a test sufficiently general for most of the cases that

arise in ordinary practice. Let the test be formulated as follows.

TiiEORKM 3. Series (A) can alwai/s be integrated term by term, i. e.

Jf(.v)dx= I
Uo(x)dx-\-

I
nj^(x)dx -\-

will be a true equation, if a set ofpositive numbers Mq, M\, M^, ,

independent of x, can be found such that

1)
I '^A^) I

< -^^"' a<x<l3, n=: 0,1,2, ;

2) 3/o + M, + 3/, 4-

is a convergent series.

The form in whk'h the test has been deduced is restricted to real

functions of a real varial)le. But the theorem itself is equally appli-

cable to complex variables and functions. It is desirable tlieiefore

to give a proof that applies at ojice to both cases.

* This conilition is not Siitisfieil by all series that are subject merely ti) the

restrictions hitherto imposed on (.4). Not every series of tliis sort cmii be

intejirated term by term. See an article by the author : A Geornetricat Method

for Ihe Trentment of Uniform Convergence and Certain Donhle lAmils. Bul-

letin of the Amer. Math. Soc, 2d ser., vol. iii. Nov. 189(5. where examples of

series that cannot be integrated term by term are given and the nature of such

series is discussed by the aid of graphical metluxls.
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Keeping the notation used above, the relation

J_/'(.r)
d X—I Uq (x) d X -j-

j u^ (x) dx-\- + I u,^_i{x)dx

still holds and the proof of the theorem tnrns on showing that the

liypotheses are sutiicient to enable us to infer that

'"" f^r,Xx)dx=0.

Let the remainder of the 3/-series be denoted as in § 37 by R„ :

Then it follows, as in that paragraph, that

h^,(.^•) \
< K-

Now

I

f^r,Xx)dx < P
I

7-„(.r) \-\ dx
\
< RJ,

the second integral being extended along the same path as the first,

and I denoting the length of the path. But lim (lij) = ; hence

I
?-„(x)d.v converges toward when n = go and the proof is

tJ a

complete.

40. We proceed now to apply the above test to the integration

of some of the more common forms of series.

Fh'st Applkation : Poioer Series. A jyower series can be integrated

term by term througJwnf (otf/ interval (a, f3)
contained in the interval

of convergence and not reaching out to the extremities of this interval:

|a |<r,
I
^

I

<'•.

Let the series be written in the form

f(x) = Oo + a,x -\- a,.r- -(-

and let X be chosen greater than the greater of the two quantities

I

a
I

,
\

13
\

, but less than r. Then

1

«„-^"'
I
< I

«»
I

^\ a<X< (3,

and if we set
| "„

|

X" r= 3/",,

,

the conditions of the test will be satisfied.
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Ill iKii'ticiilar

If wlicii .(• :rr /• or — /', till' series for f(.r) coiiverjfos absolutely,

then // iiiMv he taken eiiiial to /• or — /•. If however the series for

j\x) does not converge absolutely or iliver_i>;es when x z=z r or — i\ it

ma}' nevertheless happen that the inte<iial series converges when

h z= r or — r. In this case the value of the integral series will still

be the integral of _/\.r). Thus the series

_^=, _, + ,._.,.+

diverges when .r =r 1 ; but the ecpiation

r'> dx ,
/<•''

, A'

X -r+:r = "-"- + ^

-

still holds Avlien }i :=- \ :

log2 =l_i + ^ — J-l-

The proof of this tlu'oreni will be omitted.

Second Applicalion : Stories of Poire rs of a Function. Let <fi(x) be

a (•niifiiiiioiis fimcHon of x and Jet its maximum and minimum values

lie between — /• and r u-hcu a <^ x <^ (i. Let (he jwwer series

"o + «i// + "-•.'/" +
converge when — r <^ ?/ <^ r. TIicu the series

f(x) =ao-\-a,<f>{x)-\- a, [<!>(.>)]-

+

can be integrated term by term from a to /S

:

f^f(x)dx=a„ f
dx-^a^ j^<f>(x)dx-^a^

j
l<f>(x)Ydx-\-

Foi- if 1' be so taken that it is greater than the luunei'ioally greatest

value of c/)(.r) in the interval a ^ x <C /?. l)ut less than /% then

1)
I

"„
I 1

4>(-'-)
I

" <
I

'^,
I

y,

2) |oo|+ \a,
I

FH-
I

a,
|

r^ +
converges ; and if we set

1
a„

I

Y" = M„
,

the conditions of the test will be satisfied

.

Thus the integrations of §§ 24, 25 are justified.



§§ 40, 41. coNTiMTiTY, iNTi:(;uATi()\, i)Iki"ki;i:nti.\ti()N. (Jl

Third Application. If lite fnnctiott <^{x) (ukI I lie scries

satisfi/ the same conditions as in the preceding theorem and if \p(x) is

any continuous function ofx, then the serien

f(x) = a,V(.iO + OiiAC-^-) <^ (•'-•) + Uoip(x) [</)(.)•) ]2 -f-

can be integrated term /j>/ term.

The method of proof has been so fully illustrated iu the two pre-

ceding applications that the detailed construction of the proof may
be left as an exercise to the student.

This theorem is ncedi'tl in the deduction of Taylor's Theorem from

Cauchy's Integral.

Examjjles. 1 . Compute
K

JI
.^'se~^d.^•, I y/ sinx dx.

e/O

2. Show that

iJ^%os(.Tsinc/.)d<^= 1-|,+ -^,--^,-^^^

Hitherto the limits of integration have always been the limits of

the interval considered, a and {3. It becomes evident on a little

reflection that if any other limits of integration, a.\,, x, lying within

the interval (a, (3) are taken, Theorem 3 will still hold :

Jf(x)dx=^ I
ifQ(x)dx-{-

I
Ui(x)dx-\-

a < .1-0 < /3, <^S-'^S ^•

For, all the conditions of the test will hold for the interval (.Xq, x) if

they hold for the interval (a, j8).

41. The Differentiation of Series Term by Terin. Let the function

f(x) be represented by the series

:

f(x)=u,(x)-^n,(x)-^

throughout the interred (a, (B). Then the derivativef (x) loill be given

at any point of the interval by the series of the derivatives .

•

f'(x)=u'o(x)-\-u\(x)^

provided the series of the derivatives

u'o(x)-\-n\(x)-\-

satisfies the conditions of Theorem 1 throughout the interval (a, ^).
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Lft tilt' hittfi- si'iii's Itt' (Iciiott^d l»y <^ (.<-") :

Wo wish t»^ inovc that

15v 'riu'oivin 1 the function <^(.r) represented ]\v tlie ?«'-series is con-

tinuous and by Throri'in 2 the series can he in1('<j;rali'(l term by term :

/ '^cl>(x)dx= / '»'o(.r)r?.r+ /' H\{.v)dx-{-
t-'a tJa J a-

= f{x)-J\a).
Hence, differentiating,

cl>(x)=f(x), q.e.d.

Exercise. Show that the series

cos.r cosS.T cos5.r

can ])e differentiated term by tei'ui.

By the aid of tiiis general theorem we can at once prove the follow-

iiig theorem.

Theorem. A poicer series can he differentiated term by term at

any point tvithin (but not necessarily at a point on the boundary of)

its interval of convergence.

Let the power scries be

/(•'•) = rt.) + <h-^' -\- n^^ -\- ";v'-^ H- ,

convergent when
|

.r
|
<^ ?•, and form the series of the derivatives

:

a^ -\- •>a.,x -\- 8a;,.r2 -\-

Then we Avant to i)rove that if
| .»o |

<^ r,

/'(a^o) = ^'i H- '2 "-•'•„ H- :^ff.v'o- +
It will be sufficient to show that the series of the derivatives con-

verges when
I

i^;
I

<^ r ; for in that case, if X be so chosen that

\
Xq\ <^ X <^ ?% the conditions of the test will be fulfilled throHgh-

ont the interval (— X, X). We can prove this as follows. Let a;'

be any value of x within the interval (— r. r) :
— r <^ x' <^ r, and

let X' be so chosen that |
x'

| <^ X' <^ r. The series

|«o| +
I

a,
I

X'-f |«,
I

X'-^+

converges. It will serve as a test-series for the convergence of

I

«!
1 + -M "2

I I

•'•'
I
+ 3 a„ X I

I
2
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if it can be shown tluit

from some definite point, n r= m, on. This will be the case if

x'

< I

a;'
I

,
?i > m .

But the expression on the left approaches when ?i ^ x , for

I

.1-'

I

/ X' is independent of n and less than 1 ; the limit can

therefore be obtained b}' the usual method for evaluating the limit

00 • 0. Hence the condition that the former series may serve as

test-series is fulfilled and the proof is complete.

Exercise. From the formula

1 = 1 + X + .^2 + x^ -\-

1 —X
obtain by differentiation the developments for

1 1

(1— .r)2' (1— .r)3' (1_,^.)"'

and show that they agree with the corresponding developments given

by the binomial theorem.
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A FUXDAMKNTAL TIIEORKM RECJARDINd THE EXISTENCE
OF A LIMIT.

It was sliown in >j i;> tliat if tiie variable s^^ approaches a limit

when n increases indelinitely, then

«„ + ,-
—

-^

approaches the limit when 7) is constant or varies in any wise with

)i. And it was stated tliat if, conversely, the limit of this expression

is () when 11 = x: , no matter how ive allow x> fo vary icith n, then 5

will aiiproach a limit. This latter theorem is important in the theory

of infinite series. It is however only a special case of a theorem

regarding the existence of a limit, which is of fundamental impor-

tance in higher analysis.

Theorem. Let f(x) he any function of x such that

Urn \_f(x') —/(a;")] =
ivhen x' and x'\ regarded as independent variables, both become infi-

nite. Then f{x) approaches a limit when x = x .

We will begin by stating precisely what we mean l)y saying that

f(x') — f(^") approaches the limit when .x*' and x", regarded as

independent variables, both become infinite. We mean that if X is

taken as an indei)endent variable that is allowed to increase without

limit and then, corresponding to any given value of X, the pair of

values (x', x") is chosen arbitrarily subject only to the condition that

both x' and x" are greater than X (or at least as great), the quantity

/(.r') — /(•>-") will then converge towards as its limit. In other

words, let c denote an arbitrarily small positive quantity. Then X
can be so chosen that *

I

./(•«') —fi^") \<^y if x'> X and x" > X.

We proceed now to the proof. Let us choose for tiie successive

values that c is to take on any set cj, tj, £3, steadily de-

creasing and approaching the limit 0; — for example the values

1, i, ^, 1 ^, =^ !/'• I^cnote the corres[)onding values of

X by Xi, Xg, X3 Then in general these latter values will

* For tlie notation cf. foot-note, p. 53.
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steadily increase, and we can in any case choose them so that they

do always iuciease.

Begin by putting e = cii

I

./(•»•') —/(•«") |< ^1 ,
^'> A^

,
x" > X,.

Assign to x' the value X^. Thou

\f(X,)—f{X) |<£i,

i.e. f{X,) — q </(.i-) </(X0 + e,

for all values of x greater than X^. The moaning of this last rela-

tion can 1)0 illustrated graphically as follows. Plot the point /(X^)

on a line and mark the points /(X^) — ei and f(Xi) -(- cj. Then
the inequalities assert that the point which represents f(x) always

lies within this interval, whose length is 2ei, provided .r ^ Xj.

f-4
/<Xj) : fc^^-)^

Fig. 111.

Denote the left hand boundary f(Xi) — cj of this interval by a^,

the right hand boundary /(X^) -\- c^ by /3i. Then, to restate con-

cisely the foregoing results,

ai < /(^') < Pi if '^^ > ^i ; /3i — a, = 2 q.

Now repeat this step, choosing for e the value e.2 :

\fiX,)~f{x) |<e.,,

i. e. f{X,) — e, <J\x) </(X,) + e.3,

where x denotes any value of the variable x greater than X.^. Plot

the point /(Xo) ; this point lies in the interval (a^, /?i). Mark the

points /(Xn) — €2 and f(Xc,) -f- co . Then three cases can arise :

(a) both of these points lie in the interval (aj, ft^) ; let them be

denoted respectively by a^, /So

;

(b) f(X2) lies so near to ai that/(X3) — c, falls outside the inter-

val; in this case, let a^ l)o taken coincident with aj : a., = a^ ; the

other point /(X2) -|- e.j will lie in the interval (a,, fS^) and shall be

denoted by
ft., ;

(c) /(Xo) lies so near to yS, tliat./'(X_,) -(- e.j falls outside the inter-

val ; in this case, let ^83 be taken coincident with /81 : /So = fii ; the

other point f(Xo) — e, will lie in the interval (aj, /3i) and shall be

denoted by ao.
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In each oiu' of tlicse tlirce cases

"2 < f{x) </3, if .T > X,
; /3, — ao < 2 ea .

The remainder of tlu- proof is extremely simple. The stej) just

described at lenjitli ciin he rei)e!ited ajjain and a<i;aiii, and \v<" shall

have as the result in the general ease the followin<>; :

a. < /(^) < A if ^ > ^\ ; A — «- < -^ £,•

.

Now consider the set of jtoints that r('i)rcs('nt a,, a.,, . . . a,, . . .

They advance in geneial toward the right as / increases,— they

never recede toward the left, — but no one of them ever advances

so far to the right as /3i. Hence, by the i)rinciple * of 5^4, they

opproach a limit A. Similar reasoning shows that the [)onits repre-

senting ^1, ^21 • • • A? • • • approach a limit B. And since

< /3,
— a, < 2 e,

,

these limits nnist be equal : ^1 z= B.

From this it follows that /('") converges toward the same limit.

For

and if when x increases indefinitely, -we allow i to increase indefi-

nitely at the same time, but not so rapidly as to invalidate these in-

equalities, we see tliat/(a;) is shut in between two variables, a, and /8,,

each of which approaches the same limit. Hence /(a;) approaches

that limit also, and the theorem is proved.

In the theorem in infinite series above quoted n is the independent

variable x, .s,^ the function /(ic) ; the expression s„ + p — ,s^ corre-

sponds to f{x') — f{x") ; and thus that theorem is seen to be a

special case of the theorem just proved. The domain of values for

the variable x is in this case the positive integers, 1, 2, 3,

Another apidication of the present theorem is to the convergence

of a definite integral when the ui)per limit becomes infinite. Let

f(x)= r\f>(x)dx.

Then f(x') —f(x") = f <i>
{x) dx — I

'

4> (x) dx = I <j> (x)dx.

Hence if lim I <^{x)dx=zO
J.--"

* This principle was stated, to be sure, in the form 5,,' ]> S if ?i'> n;

but it obviously continues to hold if we assume merely that S„f ^ S„ when

n' > n.
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when x' and x'\ regarded as independent variables, both bceome in-

finite, tlie integral
/**

(fi (.r)(lx£
is convergent. The domain of values for the variable x is in this

case all the real quantities greater than a.

In the foregoing theorem it has been assumed that the independent

variable x increases without limit. The theorem can however be

readily extended to the case that x decreases algebraically indefi-

nitely or approaches a limit a from either side or from both sides.

In the first case, let

x = — y;
in the second, let

, 1
x ^ a -\—

y

if X is always greater than its limit a ; let

1
X ^ a

y

if X is always less than a. Then if we set

f(x) = <t> {!,)

and the function
(f> (y) satisfies the conditions of the theorem when

y = -\- cx> , <fi (y) and hence /(;v) will approach a limit. Finally, if a:

in approaching a assumes values sometimes greater than a and some-

times less, we may restrict x first to approaching a from above,

secondly from below. In each of these cases it has just been seen

that/(.^;) approaches a limit, and since

lim [/(.6-')— /(.«")] =
where x' and x" may now be taken the one above, the other below a,

these two limits must be equal. We are thus led to the following

more general form of statement of the theorem.

Theorem. Let f(x) he such a fnuction of x that,

/m[/(.r')— /(a;")] =
when x' and x", regarded as independent vanables, approach the limit

a from above or from below or from both sides, or become positively or

negatively infinite. Then f(x) approaches a limit when x approaches

the limit a from above or from below or from both sides, or becomes

positively or negatively infinite.
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A TAHLK OK II IK MoUK LMPORTANT FORMULAS.

Till' lu'iivv line iiKlicaics tlic rc^jidii of convergence.

_L_ ^ 1 _^ ,. + ,.. ^ ,.« +

— 1 1

a _ 6.C
- a ^ a* ^ o^ ^ a*

'' +
— r n r

r = V numerically.

X^ . a.-' X*
l0g(l+^)=.^ — ^4- ;^ — J +

— 1 1

^''^ l-.r= -[''+ 3^i; +
— 1 1

(1 +xr = 1 +^..+ !ilf=il.r«+ ^i(^i=iH^x'+
— 1 1

1
—-^ = 1 — 2.C + .3.1-2 _ 4 J.3

I

(1 + x)2
^ ^

1 1
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-, .
1 9 .

1-3 , ,
1 • 3 • 5 „ ,

^ I —x' 2 '2-4 ' 2 • 4 • 6

V 1 — a;2 — 1 — ^ a;2 _ __ x*
1 -3

2 • 4- 6

1

,.2

II I
''^

I

'*^^
I

^
I= '+^+2! + 3T + 4T +

..7

/yi2 /^.4 /yi6

C08X=l-- + --^ +

tan a; := a; -|- ^ x^ -(- y^^ a;^ -|-

cot X ^ ^x — A ^^ +
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sec J" = 1 -j- i .f- -|- ./'^ X* -\-

-| n
I

- 1 1

.r* .1-6 a;''

3
~

5 7
^

— 1 1

0<^<1

/(xo + //) = /(.vo) + //./' (xo + eh)

TT

i['-G^^-G::y^-(^y?+ ]
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For small values of x the following equations are approximately

correct.

f{a-^x)=f{a)+f'(a)x

(1 -f- x)'" ^ I -\- mx

(1 -f- xy'= 1 -f 2x

^l-\-x=^l-^^x

1 -\- X

1

, = 1 — i^
V 1 -\- X

If X, y, z, to, are all numerically small, then, approximately,

(1 + a;) (1 + 2/) (1 + 2) = l-\-x-\-y-}-z-{-

sin x =1 X or x — ^ a;^

cos a; = 1 or 1 — ^x^

tan X =: X or ^ + g^ ^^

sin (a -j- a;)— sin a =r a; cos a

cos (a -f- ^)— cos a =1 — x sin a

X
log (a 4- aj)— loga= -

£' ^ )
^^
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