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PREFACE.

AMONGSsT-the important results of the recent at-"
tempts to extend Science to the labouring classes,
may be ranked the elementary treatises published by
Baron Dupin. Possessing an ektraordinary fund of
scientific information, as well as of practical k,g,ow-
ledge collected during a penod of twenty y,.p's, in
the workshops and manufacturing estnbb.zm;aents of
the most* cnhghtcned nations of Europe,’ combined
with a singular degree of clearness, eleggnce, and in-
genuity, in mathematical, and physical expositions,
this distinguished individual might have continued
to delight and instruct inquirers of the highest
description, by'works classical and profound, but
without having witnessed the occurrences alluded
toy he might never have directed his attention and
his efforts to this_rgost interesting object, the im-
provement of humble and neglected intellect.

The value of this new species qf_‘ instruction, as
Dupin has correctly termed it, was felt by him on
his first visit to Glasgow, where it: then alome pre-
vailed. His_notice and commenglatiop of what
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he had observed, awakengd ‘the attci'ltion of several

1ghtened friends -to the txtension of education in
Edinburgh ; of which. the foundation of the School
of Arts*was a_ consequence. 1t was not, however,
until his return to Fr'mce, after a second visit to Lon-
don, where public ‘attention had been rccuntly and
successfully directed to this most promising branch
of education, that he became induced or encom&gcd
to imitate in Paris what he had witnessed and ap-
plauded in the institutions of this country. The con-
stituted authorities there, immediately seconded his
patriotic intentions, by permitting him to occupy an
establishment, prepared and furnished, as it might
have seemed, for stich a purpose; and the first
cougge of lectures, deliyered in the onservaloire des
Arise Metiers, on the application of Geometry to the
arts an upfactures,—the work now offered in his
own langi\ege to the British student,—was published
immediately, for the assistance of the provinces,
already prepared by the decided success of this
attempt, for similar undertikings. This singularly
happy specimen of the method and of the utility
of combining science with mechanical proceedings,
contributed it is probable, even more than the clo-
quent and enthusiastic recommendations of an in-
dividual so justly celebrated ps Baron Dupin, to
the rapid progress of the measure in France.

If in this career of improvement, Great Britain
should appear to have been outstripped by her active
and ingenious neighbours, it ought in justice to the

-



PREFACE. iii

people, to be recorded, that all that has been here
cffected, has been effected by thémselves; that not
one name in connection with the government of this
country, the splendid name of Huskisson alone ex-
cepted, has lent its influence, or its encouragement,
1o accelgrate the progress of Mechanics’ Institutions ;
and that in France, public functionaries of every
descfiption, local and general, have vied with each
other in extending this intellectual impulse. Even
the illustrious individual nearest to the throne of
that great etipire, has publicly, and at the instant of
its commencement, declared himself to be friendly to
the diftusion of information amongst the working
classes ; and his mind was vividly affected by con-
tcmplatmg the new sources of pr osperlty, which,
tlnough these institutions, rmght»be enjoyed. qy his
future subjects.* ,In proof of this intcrest.Dupin,
in his last cloquent communication on th subject,
observes, that * when the Dauphin travelied through
Lorraine, the magistrates .of Metz presented to him
the former pupils of the Ecole Polytechnigue, who lec-
ture gratuitously to the workmen of that great city,
on perspective, and on geometry, and mechanics
applied to the arts. This enlightened Prince ex-
préssed the high satisfaction which he felt in be-
coming acquainted with the important services con-

* Expost fait 3 la Société d’Encouragement pour I'Industrie
Nationale, sur les progris du nouvel enseignement de la géomés
trie et de la méchanique, appliquées aux arts et metiers en
faveur de la classe industriele. Géométrie, 16° .Lemn, 1825,

b2
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ferred by distinguished members of that school, which
enjoys the honour of his protection.”*

As might be inferred from the mdlﬁ'erence of the
official men. in this country, the public acts of its
government contain nd notice of these proceedings,
or indeed advert at all to the inter esting nnd Jational
subject of popular or - universal education. It is con-
solatory, however, to find that the same silence has
not every where been maintained. In the speech of
the King of the Netherlands on opening the States
General in the Session of 1826, we fisd-a strong ex-
pression of the value of the present efforts to facilitate
the diffusion of useful knowledge, and a direct alu-
sion to that partictilar branch which has here been
allawgd to proceed without the slightest discoverable’
noticgy_ ** Public instruction,” says his Majesty, * s
becoming™mort and more adequatce fo the wants of so-
ciety. "IRe indigent class can now cvery where en-
joy it grat‘\\tously. In some towns a beginuing has
been made ta give to the. working clusses scientific
instruction, with a view to increase their practical
knowledge.” :

The official encouragement bestowed upon this
plan in France, combined with the natural zeal of
Frenchmen, has heen followed by its extensiorr to
a degree somewhat astonishing. In the report

® Effets de I'Enseignement Populaire sur les Prosperités de
la France, par le Buron Charley Dupin. Discours prononcé
dans la stance d'ouverture du cours normal de géométrie et de
mechanique, appliquées, le 29 Nove 1826, au Conservatoire des
Arts et Meti.ers.'—Retuc Encycloy édique, 97¢ I.‘rraiwn. .
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made to the Society for the Encouragement of
National Industry, just referred to, Dupin has thus
detailed its progress :—* You know, gentlemen,”
says he, “ that our most formidable rivals in ‘manu-
factures, the English and the’ Scotch, have for some
years recognized all the udvantaoes of. instruction
in the sciences applied to the arts and trades, with
rc'galfd to the working classes : they have esta-
blished schools of this description in several of their
great manufacturing towns.

“ They confmenced with Glasgow ; and this town .
soon experienced from it the most favourable effects.
Tite example of this advantage derived from in-

_struction by the labouring classes, once made evi-
dent to the eyes of commerce and industry, nume-
rous imitations were soon produced. Edinburgh and
London first provided instruction for the i chanic,
and afterwards Liverpool, Manchester, Bi'fl'ningham,
Newcastle, and  Aberdeen, did the sfme.  This
movement proceeded with so much rapidity, that
from the first of January; to the first of July, thirty-
one towns in Grcat Britain have established these
new schools.

“If France had remained without imitating this
exdmple, or even without cndeavouring to surpass
it, our mechanics would soon have found themselves
infe_ri.or, both theoretically and practically, to the
same class in England and Scotland,-and we should
have been still less than ever, in a condition to
sustain .against our rixals the competition of com-

neree.
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“ Assured of this truth, I have considered it to
be a duty to attempt in France, according to my
feeble means, the extension of teaching geometry
and mechanies applied to all the arts; instruction
which, by a deplorahle fatality, is at once the most
necessary and the most abstruse.” a

After mentioning the extensive opportunitics
which he has enjoyed, of collecting valuable prac-
tical materials for the composition of a normal
course, adapted, when published, for repetition by
'intelligent professors of mathematics, without the
necessity of visiting, as he had done, the manu-
factories and public works in France, and other
countries ; and after enumerating the conductors of
workshops and manu€actories, who soon began pub-
licly to. communicate these lectures to the men
whom they einployed, Dupin preceeds “ to speak
of the same species of education, applied on a greater
scale in the principal towns in France.

“ His excellency the minister of the marine and of
the colonies, desiring to contribute to the progress
of the arts of production in our s.eai)orts, both com-
mercial and military, has directed the professors of
hydrography to lecture twice a-week when the
shops are closed, on the application of geometry,
and mechanics to the arts; forming courses similar
to those which have been delivered in the Conserva-
toire of Paris. )

“ Thus, by this single act, which places the name
of M. Le Comte de Chabrol,. amongst those of the
greatest benefactors to the industry ef France, the
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manufacturing population of forty-four sea-ports
receive gratuitous instruction: and amongst these
ports we mention with pride, towns such as Mar-
seilles, Bourdeaux, Rbuen, Nantes, Havre, Caen,
Dunkirk, Bayonne, Brest, Toulon, Lonent, Cher-
bourg, fc.

“ In ail these ports, the civil and mxlltary authori-
ties®have _gssisted with emulation in giving all their
cfforts to aid the benevolence of the minister of
marine.

“ The offiters of the navy, the cominissioners, the'
commissary-generals and directors and the commis-
sioners of classes, have solicited and have scconded
the mayors, the sub-prefects, arfd the prefects ; they
have rivalled these officers in zeal and cmulation in
j)rocuring for their respective ports, ‘all the means
which could acgommodate the professor; a large
room, fire, light, &c. .

. “I shall content myself with a single iact, to show
to the manufacturing classes of Francg what may he
expected from the mechanics of our ports.

‘ The town .of La Rochelle contains only 18,000
inhabitants ; nevertheless, the provisional course
opened this year for the working classes, at the com-
nfencement was attended by three hundred students ;
and six weeks afteryards this number was increas-
ed ‘by eighty persons, from the town and its en-
virons, to whom the professor, with a zeal worthy of
the highest eulogium, delivered a preparatory course,
in order that they might join thosc who were more
advanced. '
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“ At Nevers, a town containing 12,000 inhabitants,
a similar course of instruction, which commenced
in January, this year, has had an auﬁitory of two
hundred persons ; which is in the same proportion
with the former attendance at La Rochelle.

I shall now epeak of the courses which will
immediately open in the towns of the interior.

“ Thanks to the enlightened care of M. le Baron
de Rambaud, Mayor of Lyons, M. Tabarand for-
merly a military engineer, will teach in the second
‘town of the kingdom, Geometry and -Mechanics,
as applied to the arts.

“M. Le Comte de Turmel, the Mayor of Metz,
has just published a very remarkable prospectus of
a course of instructiop, gratuitous like all those of
which T have hitherto spoken, and of which I have
still to speak, which is to be delivered in the eve-
ning, by \laree officers of artillery, Messrs. Bergery,
Poncelet, and Lemoyne, formerly pupils at the Ecole
Polytechnique, At Nevers, where the first experi-
ment has fully succeeded, Messrs. Morin, Boucau-
mont, &c., both students at the Ecole Polytechnique,
will commence courses, not only of Geometry and
Mechanics applied to the arts, but also of Natural
Philosophy and Chemistry. '

“ At Versailles, tharks to the, united attentions of
M. Le Comte Destouches, Prefect, of M. Le Maire,
and of M. Polonceau, engineer-in-chief des ponts et
chaussées, Geometry and Mechanics applied to the
arts, will also be taught by a former student at the
Ecole Polytechniqgue. The same will occur at St.



PREFACE. ix

Etienne, which will owe this service to M. Blavicr,
a young professor of the school of mines.

“ Permit mie, gentlemen, to call your attention for
a moment to the courke of instruction given°at St.
Loo: you will see that this little town offers a
very fing example to the greatest cities of France.

“In a proclamation published by M. Le Chevalier
Clérent, mayor of the town, on the occasion of the
coronation of his Majesty, we read as fcllows : —

“< The 80th of May, (the day following the rejoic-
ings of the town on the occasion of the coronation of
his Majesty, fixed for the 29th of May,) will open for
the manufacturing classes, who have so much rea-
son to bless the new reign, a gratuitous course of

“arithmetic, of practical geometry, and linear perspec-
tive, applied to the arts and nagufactures. These
lectures will be given in a temporary room, which
will be pbinted out to the apprentices in the profes-
sions and manufacturing arts, when they apply at
the house of the mayor to be entered, where the
tickets of admission will be delivered to them.—

“ During this autumn, a course of geometry and
mechanics applied to the arts, has been given not
merely to the apprentices, but to persons of all pro-
fessions in the town of St. Loo.

“ At Clermont, the,chief place in the department
of Pily.de-Déme, a rich and populous town, a prefect,
known by his scientific statistical labours, M. le
Comte D’Allonville, has founded a school of practi-
cal geometry and lmem. perspective, on the excellent
method given by M. Franceeur.
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“ In the month of August, M. le Comte D'Allon-
ville, whilst presiding at the distribution of prizes
at this school, informed the public, that M. Dar-
lay, Professpr in the Royal*College of Clermont, in-
tended to open a gratuitons course, on geometry and
mechanics ‘applied to the arts, in the evcnmg, for the
benefit of the workmg classes.

“ M. Petit, engineer des ponts ¢t chaussées, is en-
gaged in cstablishing the same plan of instruction
in the manufacturing town of Louviers: and seve-
ral great manufacturers have promised to employ all
their interest in performing the samc service for
the towns of Elbceuf and Sedan. .

‘“Some professors and cngineers, animated by a
generous desire to promote the public good, have
proposed to deliver lectures at Cimoges, Poitiers,
Tonnerre, Aix, Strasbourg, Repnes, Douay, Va-
lence, &c. In all places these offers have been
received with a just and lively gratitude.

“ It thus appears, that on the 26th of October,
1824, instruction was afforded to the working
classes at a single point only in France, and that
point the capital.

“ On the 26th of October, 1825, this instruction,
cvery where gratuitous, is offered to all the me-
chanics of fifty-nine towns: the population of whu.h
amounts to_2,040,000.”

The farther. progress of these valuable arrange-
ments for multiplying popular instruction, Dupin
has exhihited in the following passage :—* This
winter (Dec. 1826), thanks to the benevolence and
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to the effectual assistance of a great number of mu-
nicipal. councils, mayors, prefects,” and sub-prefects,
equally friends to useful knowledge, ninety-eight
towns are endeavouring® to rival each other in' their
zcal for lmpartmg the new mstrucuon to the work-
ing classgs.” :

It is probable, that in each of these mstltutlons, this
work® and ,khe two excellent volumes on mechanics,
which were afterwards published, form the bases of
the lectures on the respective subjects. That they
will require some adaptation to the leading pursuits
of the particular places into which they may be
introduced, by extending the discussion of topics of
considerable local intercst, and curtailing others

* which may have but slight connection with the ope-
rations of the inhabitants, need .not be questioned.
That they may, however, with the greatest advan-
tage, be thade the text hooks of the courses delivered
in this country, as well as in France, I have no hesi-
tation in asserting ; and no one, I think, can doubt,
after perusing the following lessons, that if they were
illustrated, and occasionally expanded, with distinct-
ness and intclfigcncc, although nothing whatever
should be done in the way of adaptation or jmprove-
ment, many important benefits must result to the
attentive and competgnt student.

Where a professor, who is capable of preparing
for himself an elementary treatise, may undertake
courses of Geometry and Mechanics with a view to
their practical applicatéon, it is not my wish, or, I ven-

* RevuegEncyclopédique, Livraison 97:‘, page G1.
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ture confidently to belicve, the wish of the elogquent
and patriotic author of this work, that he should be
compelled servilely to copy it, or indeed to do more
than Select from it, and mak% it his model, so far as
his approbation of its' contents may render it desi-
rable. Actordingly, I observe with great, satisfac-
tion, the original character of the work of M. Ber-
gery, printed for the assistance of the membérs of
the new school established at Metz. Although both
the school and the treatise have confessedly sprung
from the advice and the example of Dupin, yet the
plan is in many respects very different; and a part
of almost cvery ome of the thirty lessons, entitied
Geometrical Laws 6f Nature, contains a much more
extensive application to natural phenomena, than the
original work : thjs part indeed is executed with
singular clearness and ability. In regard to energy
and enthusiasm, M. Bergery certainly is not infe-
rior to M. Dupin, as the following quotation from
his introductery discourse will demonstrate. After
having exhibited in powerful language, the social,
moral, commercial, and political advantages conferred
by knowledge, he says, ¢ If all these motives are not
sufficiently powerful, I would thus address you :—You
are Frenchmen ; France is dear to you ; you cannot,
without having your hearts pained, see her trampled
upon and enslaved. Alas! such is the lot which
awaits her, which awaits every nation, if our indus-

*» Giométrie appliquée 3 VIndustrie, a I'usage des artistes et
des ouvriers. Sommaire des legons publiques donnces dans
I'hétel de ville de' Metz, par M. C. L. Bergery ; 8vo, Metz, 1825.
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try fails to make an immense progress. A Colossus
lifts itself up.near us, and threatens us; the riches
and the power of England increase in an appal-
ling manner; in a mahner which makgs us ttemble
for the future. England increases thus, because
in it industry is supreme; because thefe the thirst
after positive knowledge is' extreme; Decause
theré its ,light has been diffused, even amongst
the most simple workmen. These workmen not
only attend courses of lectures, but they assemble
together in classes, where one of them reads aloud
instructive dissertations; they have also libraries, and
they are provided with periodical works, which ex-
plain to them the processes of their trades, the
nature of their machines, and. every thing belonging
to other professions, which may. ,render them more
skilful in their own. On this account nothing
amongst’ us can give an idea of the rapidity, the
cconomy, or the perfection that the English have
introduced into their manufactories., This truth
is painful, I am sensible: it will, without doubt,
afflict those g’ooﬂ Frenchmen, whose patriotism
leads them to believe us to be superior in every
thing : it will, I know, offend those, who ipfluenced
by vain national pride, obstinately refuse to see
the .elevation of our, eternal rivals. But the truth
must be proclaimed : the fatal security in which
we live demands it; it must also"be known to all;
for on this our safety depends.” In a very spirited
concluding discourse, delivered on the 14th of April,
.1826, M. Bergery having referred to t.he subjects
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which had been discussed, and to those which will
afterwards be corsidered, notices the:laborious du-
ties of the teachers; but 1mmed1ately adds, “We
shall ‘be amply rewarded for our fatigues, if you
continue to second our efforts by your assiduity,
by unrelaiing aftention, and by your jprogress.
Yes, by your prngr:ess; for in fact many amongst
you have profited by our lessons much beyontl our
hopes. There are workmen, I can assert, because I
have indisputable authority for the asscrtion—there
are workmen, who since the opening of these courses,
have improved their instruments, and have con-
structed others much more perfect than before :
workmen who have already carried into their
occupations, that geometrical spirit which has
simplified their proceedings, and which leads to
that precision without which the arts cannot pro-
duce any thing cither good or beautiful. ¥or these
exertions they will be rewarded, or rather thcy
are rewarded. already : for. already they work with
more intelligence, with morc pleasure, and conse-
quently produce with greater celerity, more beau-
tiful results.”

Whilst this species of popular instruction continues
slowly to extend through Great Britain, some minds
of adequate qualifications and powers, may at length
be influenced to attempt an equally clear, and still
more complete exposition of the application of Geo-
metry to the Arts, than is to' be found in the follow-
ing pages. That this has ye{ been cffected hy any
British author, no well-informed or competent ma-.
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thematician will venture to assert: nor, whatever
may be their __fespective merits—and considerable
merit they do ‘certainly possess<—will Dr. Olinthus
Gregory, and Mr. Lees, ‘the intelligent authors of
* Mathematics for Practical Men,” and the * Ele-
ments of Arithmetic, Algebra and Geometty, for the
use of Students in the Edinburgl.l School of Arts,”
contentl, tha{ this publication has heen rendered
superfluous by any of those which have preceded it.
The applications of Geometry to practice, unceasing
in the lessons of Dupin, are only occasional in the use-
ful volume of Gregory ; and the Geometry of Lees is
little more than a judicious abridgment (partly by
the introduction of symbols) of tht propositions and
('lemonstrations constituting the.elements of Euclid.
In a nation, howcver, abounding with successful
cultivators of mathematical knowledge, and with
the most refined cultivators of the arts, both useful
and eclegant—in which, indeed, many of them have
originated, and all of them have been imnproved—
appropriate scientific talents united with sufficient
practical skill, may appear, and if my wishes be
answered, soon will appear, to surpass and there-
fore to supersede this work, which with every feel-
ing®of satisfaction and confidence, I now offer to
the acceptance, to the criticism, and to the com-
petition of my countrymen. .
' GEORGE BIRKBECK.

London, June 15th, 1827.






GEQMETRY OF THE ARTS.

First LEsson.

Right lines— Angles — Perpendicular aud Obligue lines.

Tk object of Geometry is to mdeasure eXtension and as-
certain its relations, .

Extension has three dimensions, viz. length, breadth,
and thickness.

All the bodies in nature, as well as all those formed by
art, have these three dimensions.

They are also found in every portion of space, whe-
ther it be a vacuum or be filled by a body.

The surface of a-body consists of all the points which
separate the portions of space occupied by the body, and of
the iutervening portions of space.

A surface, consequently, has both length and ,breadth,
but it has not thickness. The points constituting the thick-
ness of a hody cannot form any part cven of its surface.

The continued succession of points, which separate two
portions of the surface of a body, is called a line. A geo-
metrical line has only lcngth and neither breadth nor
thickness.

The space filled by a body, at any given time, has all
the dimensions of that Body. A complete idea may be
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formed of this by making a mould réund the body and
withdrawing it, when the mere sight of the mould gives us
an exact notion of the space the body occupied. An empty
box encloses a portion of space, and the fi g{u‘e of this por-
tion ig precisely the same as that of the interior of the box.
Consequentl\', all the geometrical properties of the di-
mensions of a body, also :belong to the space it fills. The
geometrical -properties, of any surface, and those of the
space occupied at any given moment by it, are the same.”
"'his is the reason why a purely theoretical geomedvicien
never considers any particular body nor its individual sur-
face, In order to ascertain the relations belonging to the
dimensions cither of the bady or of the surface.  He ima-
gines, in space itself, the form and the surface of a body,
which are sufficient for him. At first this species of ab-
straction presents some difficulties, but it exereises the
mind and strengthens the imagination; in the result, it
gives great powers of conception both in pure geometry,
and in geometfy applied to the arts. It is of much con-

* The vlmervations in the text would lead us, appurently, to a
clearer comprehension of geometrieal definitions than is u-ually ob-
tained. As the geometer always considers figured space, his doc-
trines, even when most abstract, do not relate, as is sometimes sup-
posed, to imaginury point< and lings, hut to the portions of space in-
cluded within themn. A surface is. the extended limit of a solid, a
line is the houndary of a surface, and a point is the termination of a
line. Space itself has neither boundaries, limits, nor terminations ;
all bodies have: and it is the relations as to form vy position of
what is included in these bounds, or comstitutes these limits and
terminations, which the geometer considers. If we place together
two pieces of polished marble, or well-planed wood, closely adjusted
to one another, so us to bring into contact every point of their var-
faces, the almost invisible line of separation hetween them will give
us an idea of a geometrical line, and the- termination of that line has
been denominated by geometricians, a point. Now it is not this
point, nor the Iine itself, nor the surface as a surface, which is ever
considered in geometry ; but the properties or relations, as to form
of the marhble or wood (and they may be taken in this respect as the
representatives of all similarly formed bodies),—of which the point,
the line, and the surface are the respective boundaries.
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sequence, therefore, gradually to accustom students to such
abstraction. There is one essential difference indeed, to
which they must attend, between bodies, as they are consi-
dered by the geometrician,,and as they actually exist.

In pure geometry, there is nothing to prevent our ima-
gination from supposing that l)udw\ nmay enter one within
the other. so that they may at the same moment occupy
wholly, or:in part, the same portionof space. But it is not
thus in the arts. The matter of two bodies cannot be at
the xame mdment in the same portion of spice.  When
this appears to take place, we must conclude that the mat-
ter of one only occupies the vacuities in the other ; as for
«xanple, when 'water enters into a sponge.  Hereafter it
wili be scen that these considerations are essential to the
formation of correct ideas of the effects and the movements
of “machines.

If we suppose, that a body gradually diminishes in

"length, breadth, and thickness, it will approach more and
more to an ideal limit, which is the pofnt of ‘geometricians ;
to form which cach of these dimensions is reduced to zero,

In the arts, the tebm point is very often given to those
portions of a surface, or a solid, the dimensions of which
are very small.  In writing, for example, there are dots or
points ; in geometrical desighs, in chalk drawings, in min-
jature painting, in engraving, &c. there are dotted lines,
or lines coimposed of points.

The termination® of a sharp_body, in the dimension of
its length, is also called a point: such as the point of a
needle: it is almost imperceptible, and in this respect ap-
praaches a point as it is understood by geometricians.

Studeats must accustom themselves to diqtinguish the
various modes of considering a point, both as it is under-
stood’in pure geometry and in the arts.

In order to facilitate the study of geqmetry, lines are
first treated of, then surfaces, and afterwards bodies; which
are called solids, if they have a form of their own, and vo-
lumes, i relation to the space which they occupy, if they
have no such foym, and must be contained by some vessel,
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or be inclosed by some resisting boundaries ; as, for exam-
ple, wine in bottles, .the water in rivers, in lakes, in the
sea, &c.

Geomctq supposes that bml:es are soth, or at least
that their form ix not subject to change, except, according
to some rule and within S8ome limit, at the moment they
become the sbject of investigation.

The most simple of @ll lines, and that which is the most
frequently employed in the arts, is the right line.

A right line is the shortest distance between any two
points : or that which we trace by always proceeding in the
same direction.

As there are not between any two points,- two directions,
of which, each may be shorter than the other, so there can-
not be drawn two distinct right lines between any two
points.  When two right lines terminate in the same two
points, they form, consequently, only one right line. If
two such lines are drawn on different bodies, and the two
hodies are brought together, so that any two points of one
line coincide with atiy two points of the other line, the
two lines adapt themselves in every point as if they formed
only one line. Of this property of right lines much use is
made in the arts.

Ist. To ascertain that a kne, already drawn, is a right
line, by means of another liné, which is known to be a per-
Sect right line :—It is only nccessary, in fact, to apply the
latter at any two points to the former, and sce if all the
other points of both correspond. If they do not, the line
examined is not a right line, and it may be made so, or
rectified, by the help of the perfect line.

2d. To trace right lines:—This is done by using bodies
having one or more rectilinear cdges, such as common ru-
lers or squares. 'I'he ruler or square is laid on a surface, to
which the right line, represented by the instrument, applies
exactly at cvery point ; and unless it do so, it is not possible
to trace a right line on the surface.  With a pencil, or any
pointed or cutting instrument, a line is then drawn, which
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every where coincides with the ruler or bevel, and is a right
line. _

In this manner the glazier, by means of a ruler and his
diamond, cuts the pane of glass which he is to fix, stralght,
or in a right line. *

When we have to draw a line through two given points,
the ruler st be placed equally distgnt fromg both, and
as near as iy required, by the thickness of the-instrument,
which is to draw the line: the ruler must then be held
firm and immoveable, till the line is drawn, taking care
that the pencil or pen always remains in contact with the
ruler.

When students begin to draw geometrical figures, they

are obliged to fake hoth care and time to draw a right
line, even with a pencil. They find it still more difficult
to draw a right line with ink, because they must give it
an cqual breadth through its whole, length. When the
«breadth is uncqual and too great, the figure ceases to be
correet.  Students should accustom thcmsel\ vs, therefore,
to give the lines thev trace no greater breadth, than is
necessary to make thgm distinet.

These observations apply only to lines exceuted in works
of art; of geometrical right lines it is necessary to repeat
what has already been said of points.  The geometrician
supposes lines ha_wc only length, without breadth; but all
lines executed in the arts, even those which represent the
ideal lines of geometricians, have breadth as well as length.

The term line “is very often applied in business to
straight excavations or clevations, considerable in length,
and not very deep or high, which, on this account, seem to
hawt some resemblance to the ideal line of geometricians.
Such are the temporary / lines thrown up, cither by the be-
siegers or the besicged; when a fortress is invested.

In writing and printing, the term lne is applied to a
series of words running across the page in the same direc-
tion; the height of the letters being very small compared
to the length of the line.



6 RIGHT LINES IN WORKS OF ART.

v

Ropemakers call a cord, which is of small diameter
compared to its length, a /ine ; and such a line, or cord, is
one of the instruments of practical geometry employed in
the arts. A cord stretched by the two ends, making al-
lowance for the weight, takes the form of a right line. If
such a cord, which has been rubbed with chalk or other
substance apswering the same purpose, be pulled tight over
a surface on which a right line is to be drawn, and it be
then lifted up in the middle, so as to make it, when let
go, strike the surface with a little force, it will form the
desired right line.

It is proper to distinguish carefully, in regard to lines
as well as points, between the ideal limit of the geometri-
cian and the perceptible line of the workman. In many
cases, it will be evident, that the progress of the arts de-
pends, in some measure, on the operations of the wqrk-
man being directed, gs much as possible, by the geometrical
or ideal limit, the nature and propertics of which, there-
fore, it is of much consequence that the student should
know.

Before he advances to this part of the subject, however,
he must obtain a notion of a plane surface, or that surface
which can be made by a right line.

In whatever manner a right line may be placed on a
plane, if two points of the line arc in contact with it, every
other point of the right line will also touch it.

In the arts, a plane may be employed to generate a right
line, or a right line may be used to make a plane. This
subject will be explained in detail, in the sixth lesson, when
surfaces will be more especially treated of.

In general, the lines necessary in works of art, are ira-
ced on a planc surface, prev lously prepared ; such as,
for short lines, a sheet of paper or parchment, or even a
tablet of ivory. For more extended lines, a large surface
is prepared, the niccly planked floor of a model chamber,
for example (called in his Majesty’s Dock-yards a mould
loft) such as is used by ship builders; house-carpenters
and bricklayers very often draw their plans on the planc
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surface of a wall; éngineers form models of bridges on plas-
ter floors ; and none of these artists can expect to be correct,
unless the surface, supposed to be a plane, has been pre-
viously examined, and unless a right line, placed over it
in every direction, touche? it exactly from one end 4o the
other.

The straight-edge.—The nght. line ,used in practl(.e for
ascertaining the correctness of a plp.ne surface, is called a
straight-edge, and there are few problems of practical geo-
metry more difficult than to form a perfect straight-edge.
The following method of constructing one is in use in
England, and is added by the Editor.

The straight-edge is usually made on a thin fat bar of
steel, or rather three bars. They should be about one-
eighth of an inch thick, two inches broad, and about two
feet six inches long, or nearly three feet. It would be im-
prudent to mahe them of greater lepgth, as they would be
liable to bend.

These bars are to be nicely planished ; and one edge of
each is then to be made as straight as possible, hy the
common means of filing and planing. They are then to
be made perfect, by grinding them mutually and recipro-
cally, with cach other; fine emery, rendered luid with oil,
being added to promote abrasion. They are, finally,
to be finished with a species -of louwm, carefully washed to
render it perfectly clear from any coarse silicious matter.

In gencral, it’ has been thought sufficient to grind two
bars together to’ produce a perfect straight-edge, but the
necessity of having three, and of repeatedly changing them
at proper intervals, until each edge is perfectly straight,
will appear evident, by the following considerations :—

Let A and B, fig. 13, double, pl. 1, be two steel bars, prepared for
grinding, and let us suppose the edge 4, of A, to be slightly convex,
and the edge b, of the bar B, to be nearly straight, or slightly concave.
If A be moved on B, in an horizontal direction from right to left al-
ternately, and a proper supply of oil and emery be kept between the
bars, the convex bar A will {,'rind the edge b, of the lower har B,
into a concavity correspondins to its own convexity, as shown by the
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dotted lines. The two curves being parallel, and perfectly coinci-
dent, the form of the edges will remain unchanged, and, however long
the grinding may be continued, a perfect btrmght-edgc will never
be obtained.

Let us now take a third bar C, one edge of which may he concave
as at d,” or convex, as shown at e. 1f*the convex edge e, is applied
to the concave edge b, of the har B, and the grinding be continued,
a similar effect will be produced, namely, one concave, and one con-
vex edge, as béfore, e.u)u exac tl\ corresponding, und ln-mg coincident
with the other. .

But if all the three edges are mutually and n-uproc.\lly zrmmd
together, the two convex edges ¢ und a of the bars (', and &, will,
by the grinding, be mutually cut down, and destroy €ach other's con-
vexity. Ultimately, by a very gentle approximation, a perfect
straight-edge will be produced on all the three. We have supposed
that two out of the three bars are convex ; but if the same number
of bars, being concave, are submitted to the same operation, the same
effect will follow. 1f all the three are either convex or concave, by
this method, they may be formed into perfect straight-edges.

Measures of le;;gth.'—'l‘he right line, being the shortest
distance between any two points, is very convenient as a
measure of distance.’,

The ordinary dimensions of all bodies are measured by
right lines; as, for example, the length, breadth, and
height of a pile of wood, of a house, a ship, &c.

In order to compare these various dimensions, something
must be taken.as unity ; and’ it must be ascertained how
often the measure is contained, or repeated, in the object
measured. If it is repeated once, .twice, thrice, or, m
short, any exact number of times, there is no difficulty ;
but there is a difficulty when a portion of the object, less
than the length assumed as unmity, is to be measured.
The plan, in this case, is to divide the measure itself intv a
certain number of equal parts, as 10, 12, 36, 100, or
1000 ; and to ascertain how many of the tenths, twalfths,
hundredths, ‘thousandths, of the measure are contained in
the remaining portion of the line to be measured.

A scaleisaright line, AB, fig:1, pl. 1, on which is marked
a certain number of the lengths assumed as unity, and of
its subdivisions. To form and ‘divide such a scale with
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precision, is one of the most important operations of art, and
geometry teaches us how to do it very exactly. This
subjeet will be_treated of in the fifth lesson.

It is very convenient for artisans to have with them a
right line, alrcady divided ticcording to the system of mea-
sures adopted in a country.  Formerly, in France, the foot
and the ell were used ; now, the smetreyis the measure gra-
duated on rules.  In England, we Qave the yard and the
foot, divided into inches.

Waorkmen are apt, by ill-directed economy or parsimo-
ny, to buy Tules or measures, on account of their low
price, which are not accurately divided, or which are sub-
ject to warp or change by the effect of time, or rub off at
the ends. It caiinot be too stroni.,lv recommended to thens,
however, to submit to other privations, and buy good rules
angl good instruments of every description.  The perfec-
tion which such instruments will enaple them to give their
work will indemmify them, and with interest, for the out-
lay. The importance of this recommendation will cause
it to he again adverted to. - '

After having considered the properties of a single right
line, we must consider several right lines in their rela-
tion of posit® .

- Let us su; ;+ that the right line, ABX, fig. 2, pl. 1,
turns round the uxed point A, and takes successively the
positions AC', AD. AE, &c. In this movement it will
gradually recede further from the original position ABX.
This scparation, BAC, BAD, or BAE, of one line from
another, is called an angle. The point A, whence the two
lines AB AC proceed, is called the apex or summit of the
angle, and the lines AB AC, are its sides.

"L'o poiut out the angle formed by the sides AB AC, it
is sometimes described as the angle A, but more frequently
the angle BAC, placing the Jetter A, which lelongs to the
apex, between B and C. which designate the two sides
respectively. :

"The linc AX, fig. 2, commumg to turn round the point
A, will reach the position AM, directly opposite to AB;
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if it continue to turn, it will approach’ towards AB, on the
contrary side, till at length, after making a complete circle,
it will return to AB.

It is evident that the right line, AX, has made a demi-
revobution when it reaches AM from AB. In fact, if the
part of the circle, BAME, were to be folded by the line
MB over the undgrncath part, the one would cover the
other preu:aelv and would coalesce with it.

In manceuvring troops, after having placed them in a
right line, facing one way, it is very often necessary to
make them turn to the other side. "They are commanded
to face about, which is effected by each man turning on
his heels, A, fig. 3, pl. 1. To render the movement casy, onc
foot, B, is placed behind the other, fig. 4, and at the same
time the man turns on his hieels.  Eac h of the fect performs
half a circle, fig. 5. The foot which was placed behind
then comes in front, and is brought back to a line with the
other, fig. 6. If the soldier were to face about once more,
he would find himself fronting the original direction, and
he would Lave made a complete circle.

Let us consider the angles formed by the right line AC,
with the right line DAB, fig. 7, pl. 1. There are here two
angles ; BAC, a small one, and CAD, a large one: their
sum is always equal to half a revolution of AC, or from
AB to AD. .

The angle BAC, therefore, is required in order that the
angle DAC may form a complete half revolution, and
DAC is required in the same manner for BAC to form a
half revolution. For this reason, BAC is called the sup-
plement, or the supplementary angle to DAC, just as DAC
is the supplement or the supplementary angle to BAC.

Let us suppose that the angle BAC, is enlarged by the
line AC separating from AB; we shall then see that the
supplementary angle is diminished. As the smaller angle
BAC, is always increasing, and the larger angle, DAC,
diminishing, there will be a tiin¢ when they will be cqual,
asin fig. 8. Each of these equal angles is what is called a
right angle. Thus we see, that a right angle is made by a
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line performing the half of a semi-revolution, or it is the
quarter of a complete revolution.

Right angles, such as BAC or DAC, fig. 8, pl. 1, or
angles formed by a quarter of a revolution, are required
to be made, or measured, ulmost every moment, inorder
to carry into effect a great numpber of practical opera-
tions.

When a bod) of troops, drawn up in ling, in the di-
rection AB, fig. 8, are required to face in a dircetion per-
pendiéular, or at right angles to it, they turn round the
point A. If they were to revolve completely round in
the same direction, they would face as at first 5 by
making only a quarter of a revolution, they face perpen-
dicularly to their former position. Of course they can be
commanded to face cither to the right or the left.

Now let us suppose two other right lines, MON and
OL, figs. 9 and 10, pl. 1, the position of OL being such
that the two angles NOL and MOL are cqual ; these
two angles are cqual to the two former angles, BAC
and CAD of fig. 8, which are right apgles.

To demonstrate this, place the right line, DAB, fig. 8, on MON,
fig. 9, in such a manuer that they coincide exactly at every point,
as must be the case with two right lines, and that the poiut
A falls on the point O, the side AC will then coincide exactly
with the side OL. Let us suppose it possible that AC, fig. 9,
has some other -position, and falls to the left of OL. It is
evident, as the angles CAB, CAD, are equal to each other,
that MOL, which i§ greater by COL than the first angle, and
NOL, which is less Iw COL than the sccond angle, cannot be equal
to each other. Onu the contrary, if AC, fig. 10, fall to the right of
OL, the angles BAC, DAC, heing equal to cach other, and MOL
bejpg smaller than DAC, and NOL larger than BAC, cannot be equal
to each other. Consequently AC cannot fall either to the right or
the left of OL, and must full directly onit. The right angles, formed

in the one case by the right lines, AC, BD. aud on the other, by the
two different right lines, OL, MN, are always cqual to each other.

This is the first principle on which the ‘use of the square
is founded. A square may be formed of two parts of
the right line AB, AC, fig. 11, pl. 1, fixed firmly to-

_gether at A, so as to form a right angle When it is de-
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sired, from the point O, fig. 12, to draw a line, OL to
form two right angles with MON, onc side of the square
AC is placed along ON, so that the point A comes as
near as possible to the point O, and the right line OL,
being® drawn_by the common’ method, is the required
right line. .

If workmen employ an incorrect square; all their work
will be affected by its incorrectness; and therefore it is of
great importance that they should be able to ascertgin the
accuracy of their instruments.  This may be casily done.

To prove squares.—To prove the square BAC, fig. 11.
begin by drawing very exactly cn a plane surface the right
line MON, fig. 13, pl. 15 then place the side of the
square AC as nearly as possible on the line ON, and draw
OL along AB. When this i~ done, turn the square and
place it in the direction of B'A'(", putting A'(" aver OM,
and notice what is the dircetion of the second side AW
If it fall precisely on the line OL, which has been before
traced, the instrument is correet; if it do not reach to
OL, the instrument is incorrect, and the angle it makes is
less than a right angle. If it fall beyond OL, the instru-
ment is also wicorrect, but the angle is larger than it ought
to be.

We shall hereafter see by what means workmen may
rectify an incotrect instrument.

There is another sort of instrument used by shipwrights
and other artisans, called a bevel, répresented by XYZ,
fig. 14, which is very convenient for drawing and trans-
ferring all kinds of angles. It is composed of two rulers,
attached to, and turning on, the same pivot, in such a man-
ner that angles of every size, from the smallest to the
largest, may be formed by them. The two rulers are fixed
so closely together, that they do not move one over’ the
other, without some little exertion, and they remain at
the angle to which they are set, unless some effort is made
to alter them. After this explanation, it will be scen that it
is very casy to draw any angle BAC, fig. 14, pl. 1, set-
ting out from the point O, fig. 15, and assuming a side OL
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of the new angle LOM, which is to be made equal to the
angle BAC. .

The bevel is adjusted so that the two sides, XY, YZ, coincide with
the lines AC, AB, fig. 1t. It is then’moved to fig. 15, taking
care not to alter the angle ; XY%sthen placed on OL, and, by ttacing
the right line, OM, according to the direction of the side YZ, the
angle MOL will be equal to BAC.

. L]

Superpos:lwn It i~ cssential to temark, that the me-
thod in use to form angles, or to ascertain if they are cor-
rect, i¥ to place squares or bevels on the figures, or the
figures on one”another. These means are frequently em-
ployed, both in practical operations and in a great num-
her of geometrical demonstrations.  When two figures,
placed one ‘over the other, are atbustvd to cach other
—when all the parts of both appear in the same lines,—
they have the same form and size ; they are perfectly equal
to onc another, and one figure is made of the same form
and size as another, when it is drawn on this principle.
Thus tailors and habit-makers place patterns on cloth, which
i> to be cut out exactly of the same form as the patterns,
which represent a certain shape to be given, or a part to
be covered.

When a line AC, fig. 16, pl. 1, makes with DAB the
two right angles ‘BAC, CAD, AC is perpendicular to
DAB. Conscquently a line, .4( is always dtawn perpen-
dicular to another right line, DAB, when the square,
XYZ, is placed with the side YZ along AB, and another
right line, AC, i$ drawn along the side XY. Other
means, however, of drawing perpendiculars will be pointed
out.

L%t us fold into two fig. 17, pl. 1, in such a manner
that the right line ABE, shall be the folding line; the
angleSOABD ABC, being equal, the line BC will be placed
on BD, and the angle CBE will exactly cover DBE. The
two latter angles are therefore cqual, as- well as the two
former. When two right lines, therefore, intersect cach
other,—if among the four angles which they form there be
one right angle,—the other three must also e right angles,
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and, in that case, each half of the line AB, BE, 1s perpen-
dicular to the other right line.

It is essential to prove, that from any point B, fig. 18,
pl. 1, only one perpendicular can be drawn to the given
right’line DAC. ¢

Let us suppuse that the ‘two perpendiculars BA, BD, could be
drawn to thg right lkine DAC, from the point -2.° Prolong BA,
so that Ab equals AB, apd draw the right line Db, and then fold
the part DACSH, over the part DACB. The angles bAC, BAC, being
equal, Ab is placed directly on AB, and the poiut b on tke point
B, consequently Db will also be placed on DB, and the angle ADb
i3 equal to the richt anele ADB.  Thus Db will form part of the per-
pendicular DB, and two right lines, AB, 6DB, may consequently
be drawn between the points b and B, which is absurd.

Having established these prliminary principles of right
angles, let u. proceed to oblique angles.

When the right line CD, fig. 19, forms two unequal
angles with the right line ACB, one will be smaller, and
the other larger, than the right angle ACE ; the smaller is
called an acute, the Jarger an obtuse angle.

It is evident that these two angles will occupy the same
space around C, on one side of AB, as the two right angles
ACF, BCE. The sum therefore of the acute angle BCD,
and of the obtuse angle ACD), will be equal to two right
angles.

In fact, it is casy to scc that the acute angle, BCD,
is a right angle, minus DCE, and the obtuse angle, ACD,
is equal to a right angle plus DCE; their sum there-
fore must be equal to two right angles.

Let us now suppose DC produced to CF, and let us
compare the two new angles ACF, BCF, with the two
former angles.

The angle ACD, plus BCD, formed by CD, and the right line
AB, equals two right angles, consequently BCD equals two right
angles, minus 'ACD. The angle ACD, plus the angle ACF, formed
by AC on the right line DCF, equals two right angles, consequently
ACF equals two right angles, minus ACD. Consequently, also BCD

and ACF, each being equal to two right angles, less ACD, are equal
to one another. By the same means the equality of the angles,
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ACD, BCF, which, like the two former, are opposite to one another
at the vertex, may be demonstrated.

When two right lines cross each other, they form four
angles ; and consequently, first, the adjacent angles, taken
in pairs, are equal to two right angles ; second, the dppo-
site angles at the vertex are equal.

We may nwy compare perpencicular and oblique lines
together. .

If from any point D. fig. 20, pl. 1, a right line, DE, is
drawn Yo the right line AB, and the angles AED, DEB,
are not right ‘angles, the line DE is not perpendicular to
AB, it is an oblique line. If we draw DC perpendicular
to AB, the angle AED is obtuse, and the angle BED in
face of DC is acute.

Let us prolong DC to d, so that CD shall be equal to Cd, draw
Ed, and fold up the figure, making the fold on the line AB, asif
it were a hinge. (d will then be placed on D, and the point € on
the point 1D, for the angles, BCD, BCd, are equal ; Ed therefore will
he equal to ED. The broken line DEd i» longer than the right line
Dd, connecting the same points Dd, whence the half of DEd, or the
oblique line DE, is longer than the half of 1Cd, the perpendicu-
lar DC.

It is a general property, therefore, of a right line, DC,
fig. 20, perpendicular to another right line, AB, to be
shorter than any oblique line drawn from the extremity D
of the perpendicular, to the right line AB. The right
lines DC, DF, measure the distances from the point D to
the right line AB, and’it results from this, that the short-
est distance from any point to a right line, is a line drawn
perpendicularly from the point to the right line.

This is a remarkable property of elementary geometry,
and one of the most useful in its practical applications.

Workmen have frequently to ascertain the shortest dis-
tances, the surfaces which have the least extent, and the
volumes which arc the least considerable, to answer some
stated purposc; but to find them is not an easy task.
Qucstions of this description, on which much of the eco-
nomy of labour depends will occupy a great pgrt of these
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lessons, and care will be taken to make the principles of
them plain and comprehensible.

Having drawn DB, fig. 21, pl. 1, perpendicular to AC, let
us suppose that BA isequal to BC; then the oblique lines
drawn from D to A, and from*D to C, are equal. In fact,
if we fold the part BDC on BDA, the perpendicular BD,
serving as the hinge, the two right angles-ABD, CBD,
being cqunl, BC will fall on BA, and C on A, and DC
will be equal to DA. Consequently, two ;)l)lique lines
equally distant from the perpendicular are equal.  *

Application of this principle to verify’ perpendicular
lines —Draftsmen, ship-builders, house-carpenters, masons,
&e. frequently make use of this property of geometry,
when they wish to ascertain if oune line is pérpendicular to
another, and thev cannot have recourse to the bevel or
square. ‘They measure very exactly two portions, BA,
BC, fig. 21, equal go cach other, setting out from the
line BD, the position of which they desire to ascertain
They then measure with a rule, or some other instrument,
the distance between the points A and 1V or the length of
the oblique line AD; they transfer tl: casure to DC,
setting out from D if it terminate exacuy in C, the two
oblique lines AD, DC, are cqual, and BD is perpendicular
to AC,

When it &% required to verify the position of a perpen-
dicular, DB or ABC, carc must be taken not to draw the
oblique line Da too near the perpendicular; for if it is
very near to B, a considerable deviation in B from the
perpendicular would only produce a slight alteration in
the length of the oblique line Db, and a mistake might
easily be committed. It would also be inconvenient to
make the oblique lines at too great a distance, the best
positions for them being those i in which AB, BC, are in
length equal to BD. :

By precautions of this nature, conducted on such prin-
clples in cach particular case, “we can glve to plans, build-
ings and machines, that degree of precision and correct-
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ness, which arc necessary when the arts of industry are
brought to a state of perfection.

It is not eneugh to have demonstrated that obligue lines
are always longer than perpendiculars; it must also be
shown that they ure longer in proportion as they diverge
from the perpendicular.

Let OD, ﬁg.\ 22, be perpendicular to OB, it will bé found that of
the two oblique lines, DC, DB, the shortfr is that nearer the per-
pendicular,  Let us draw CK perpendicular to CD, DC will of course
be sharter than DK, and proportionally still chorter than DB.

This propertd is of frequent application in mechanies.  Let us sup-
pose that it is required to bring a body B, fig. 23, pl. 1, towards AC,
porpendicnlar to BM. Let us suppose that this body has two ropes BA,
BU, fixed to it, one of which is drawn at the point A, the other at the
point C,in order to lessen the distance hetween these points and
the body. It must gradually advance towards M, the cords forming
the lines AW, CR, and aftersards AB”, (B, becoming less and
less obligue, and horter and shorter. Oun the contrary, if it were
required to push B from AC, bars of iron or pieces of firm wood

® would he used, and the force applied at A and C; th* lurs would
receive u direction more and more oblique, and would become longer
and longer, buth between B and A, and B and C.



18 FARALLEIL LINES.

SECOND LESSON

Parallel lines, and their combination with perpendicular
and oblique lines. .

Two night lines are parallel when, however much they

may be C\tcmhd in either direction, thcv will never meet.

From any point A, fig. 1 and fig. 2, pl » a right line,
AB may be drawn, which, however plol(mrrul would
never meet another right line CD, and ouly one such rjght
line can be drawn from any one point A.

From the point A draw AC perpendicular to CD), and AB perpen.
dicular to AC, AB wyill then be parallel to CD. For if the two
lines AB, (D, met in 4any one point, from that point two perpen-
diculars might be let fall on the right line AC, which has been al-
ready shown to be absurd.

Let us now demonstrate that every other line AE, fig. 2, will meet
(D. However small may be the angle BAE, it will be conceived
that in making AE turn round A, to separate it from AB, the
angle BAE mbst be repeated a sufficient number of times to cover
all the space occupied by the quarter of a revolution BAC. Take
any number of points, (1, (2, C3, C#4, all at an equal distance, (A,
from each other, and erect the perpendiculars, C1D1, CeDe, C3D3.
These perpendiculars, will divide the space BACCI, (¢, ('3, into pa-
rallel bands, each of which wili have the same superficies as ABCD.
A greater number of parullel bands can always be made, than there
are of the small angles, BAE ; EAEL; E1IAE2; ERAES; in the right
angle BACI. The space, therefore, occupied hy any single band,
BACD, is always less than the space included in one angle BAE,
however small it may be. Such a condition requires that the right
line, AE, should, when prolonged, intersect CD : for if it did not,
it would be necessary that the space BAE, a part of BACD, should
be greater than BACD, which would be shsurd.

Thus, whenever two right lines, AB, CD, are parallel, if one,
is perpendicular to a third line, AC, the other is also’ perpendicu-
lar to the same line.
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In drawing plans, and in making cabinet and joinery
work, this property of parallel lines ‘is frequently made
use of. An instrument is cmployed called a T square,
because it is formed of two pieces at right angles, MN,
OP, fig. 3, pl. 2, and has the shape of this letter. The
thicker and projecting branch ¢r stock ’VII\, is placed
along the side AD, of a plank ABCD ; the other part
OP being perpendicular to MN, it follows that all the
right dines, AB, EF, traced along the branch OP, are pa-
rallel lines. -+

Besides the common T square, there is another in use in Britain,
which seems to haye several advantages. It has a moveable blade,
and an arc of a circle divided into degrees, so that it is useful for
drawing parallel lines, both at right angles with the stock and at
any degree of obliquity. Fig. 4, represents such a T square, the
moveable blade of which, AB, can be set to any angle, and fixed
to the arc G, by the thumb-screw D. The action of the thumb-

* screw 1), and of a clamp E, may be more distinctly seen at fig. 4 double,
as likewise the screw F, upon which the blade turns as a centre.

The screw F being withdrawn, permits the blade to be taken out,
and the edges repaired, if they should receive any injury from wear
or accident. The arc G, being divided into degrees, permits the
blade to be placed at any angle where it may be fixed by the thumb-
screw D,

When troops are to be ranged in columns, that is to
say, parallel masses, AB, CD, &c. fig. 5, guides or flugel
men, A, C, E, G, are placed in a right line, and at equal
distances; each bedy of troops is then formed into a line
perpendicular to the right line ACEG; and the officers
are then certain that the different masses or columns are
pamllel to each other.

In writing and in printing, the letters are ranged in lines
always equi-distant antl parallel. The letters, individually,
consist of parts which are right lines.—the strokes of the m,
and », for example, which are also equi-distant and parallel.
The only difference remarked in them is, that these paral-
lels are perpendicular to the lines in roman type; they
are inclined to the right ifi the running hand and in ital-
ics, and inclined to the left in some old black letter.
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In music, parallel lines at equal distances, fig. G, pl. &
are uscd, the notes being made either in the form of dots @,
or small open circles G 3 and they are eithér simple, or are
distinguished by strokes parallel to one another. 'The
notes are so grouped, that the same length of time is neces-
sary to sing or chaunt the sounds of cach group or bar.
This is called a measure ; and the measures are separated
by right lines, perperidicular to the first parallels, which
are wnsoqucmly pavallel to each other. “

The five parallel lines are very often traced at the same
time, by means of a ruling pen with five points, at equal
distances from cach other: the pen is held, so that the five
points are in a line perpendicular to the raler; and in this
manner the five lines are drawn equally distant at every
peint, and consequently parallel.

Parallel lines, at cqual distances, are of frequent oc-
currence in the arts. The ploughman forms his fur-
rows in parallel lines.  'When he harrows his field, draw-
ing the harrow in a’direction perpendicular to the furrows,
the prongs of the harrow being equi-distant, describe pa-
rallel right lines; the points of the instrument, in conse-
quence, act equally in every part, and break down the
lumps of earth which have been turned up by the plough-
share. . i

When an engraver wishes to give us an’idea of level and
uniform surfaces. he represents the parts of them which are
more or less in the shade, by stronger or weaker lines, but
which are always parallel and at equal distances from onc
another.

When he is to represent the heavens, or a plane surfuce,
one part of which is more distant than the other from the
spectator, he also employs parallel“right lines. He may
make them -also at equal distances, provided those necarest
the spectator are either deeper or broader than the others.
He may also make all the lines of an equal breadth and
equal depth, but separating more and more from each
other, as the parts of space whi¢h they represent are less
in the shade, or farther from the spectawor. Even these
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deviations from parallclism, are subject to precise geome-
trical rules; and artists, who wish to work in an enlight-
ened manner, ought to make themselves acquainted with
them.

It may now be demonsjrated that two parallel right
lines are at an equal distance from cach other, at every
point in their le ngth

IMaving drawn the two parallels AB, CD, ﬁg 7, pl2 ‘and the right
lines, AC, MN, perpendicular to them, let IN take H in the middle of
AM, ang draw HK perpendicular to the two parallel lines ; fold up
the figure on the line 1K, so that the part of it to the left hand folds
over the part to the right.  The right angles KHA and KHM, on
the one hand, and the right angles HIKC HIKN, on the other, being
cqual to one another, ITA will be on the line HM, and KC on KN.
Morcover the'angles, HAC, HMN, being right angles, and, conse-
quently, equal to each other, AC will eover MN ; the point «C will
fall on the point N ; and consequently the perpendwular AC is equal
to the perpendicular MN,

Thus, all the perpendiculars, such as AC, MN, fig. 7,
which measure the distance between two parallel lines,
at different points, are equal to each other. They all
reprosent the shortest distance between these parallels.

AC, MN, perpendiculars to the right line AB, are
also parallels ; whence the right lines AM, CN, which are
perpendicular to them, are also equal to eachother.

Consequently, when we have two parallels, AB, CD,
and two other right lines AC, 'MN, parallel to each other,
but petpendicular to the two former, the portions of the
two first right lines; comprxsed within the second lines, are
cqual to cach other ; and the portions of the two latter.
comyprised within the former, are also equal to each other.

Application to rail-roads :—Rail-roads arc constructed
of two rails or wheel-tracks, which may be either grooves
bclow,; or rods above othe surface of the road, but fixed
perfectly straight and being perfectly united.; in which
or on which the wheels of carts or waggons ought to move
with precision, the two wheels on the right side mo-
ving on the right hand rail, and the wheels on the
left side moving on the deft hand rail When one of
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these rails or grooves is straight, the other ought to be
at a distance from it, cqual at every point, to the wheels of
the same axle-tree. - The two rails or grooves are, there-
fore, parallel. Rail-roads possess many advantages over
the roads now generally in use, and are much more eco-
nomical for the conveyance of goods. For heavy goods,
which require to be sent expeditiously, they are even, in
some cases; cheaper than canals, or other water convey-
ance. They derive nost of these advantages from the
wheel-ways having no inequalities, and from their geome-
trical properties, being rectilinear and parallel.

Let us suppose that the line CD, fig. 7, is made to ap-
proach towards AB, while it never ceases to be perpen-
dicular to AC; it will be always parallel to, AB, to which
all its parts will equally approximate.

The equality of distance in all their points, presented by
parallel lines, when they approach to or recede from cach
other, is of considerable importance in mechanics. For
example, it is applied to the movements of jennies and
mules, for making cotton-thread.

Application of parullels to the movements of mules and
jennies for epinning cotton :—Let the reader imagine
a frame or sort of chariot moving in the direction CD, fig.
7, pl. 2, which can advance or recede parallel to AB, by
means of castors or wheels of a very small diameter, mov-
ing in the two parallel wheel-tracks AC, MN. 'The cotton
threads extend from AM, where they are placed at cqual
distances from each other, and proceed to bobbins, also
placed at equal distances, in the direction of the right line
CN, on which they are rolled. When the chariot CN moves
towards A M, the distance of each point of CN from the right
line AM, is equally diminished ; and, in consequence, all the
threads are equally rolled on the bobbins,—they turning
round with a rapidity proportioned to the motion of the
frame,~—without ever ceasing to be all equally extended.
When the charot returns towards CN from AM, the
threads are all equally lengthened. Thus the principle
of the moving part of those useful machines for spinning
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cotton, which are now well known throughout Europe, and
are so common in England, is that of the equality of
parallels comprised between purallels.: Besides having the
great advantage of spinning 40, 50,.60, or even many more
threads by the movement of one frame or chariot, gll the
threads are spun of an equal thickness; which could never
have been cffected in spinning each one separately, and
without the geometrical means here bmught into notice.

Hitherto we have only compared parallels with per-
penditulars, let us now compare them with oblique lines.
Draw AB, CD, fig. 8, pl. 2, oblique with respect to LACF
if the two angles, EAB, ECD, called corresponding angles,
are equal, the two right lines, AB, CD, are parallel.

If they are ‘not parallel, by producing them they will meet at
some point or other, either above or below KACF: let us see if
this be possible.

Produce BA and DC to b and d, and take the figure BACD,
which turn upside down, so that A is placed where C, and C where
A now is.

But the angle BAF, which equals EA$Y, is equal to DCF, which
equals ECd ; the side AB, therefore, when the figuire is reversed, will
place itself on Cd, and the side CD, will be placed on Ab. If,
therefore, the two lines bAB, dCD, were to meet at any point on
one side of AC, it would be necessary that they should meet at a
second point, on the other side of AC; but this is impossible, for
there would then be two right lines, which would meet each other in
two points.

Thus it is an fnvariable rule, when two right lmee bAB, dCD,
forming acute equal angles, a, a', a”, &', with the obhque line EACF,
and consequently tho obtuse equ.d anglcs, o, 0, 0", 0", these lines
are parallel.

The converse is cqually true; that is to say, when the
lipes are parallel every oblique line intersects them, so as
to form with them four acute angles, equal to one another,
and-four obtusc anglgs,ealso equal to one another.

To convince the student of this, it is only necessary to observe
that the right line dCD, ﬁg. 8, pl. 2, drawn from the point C, so
that the angles a”, and ¢”, are equal to a; and @, is parallel to
bAB. More than one line pn.rallel to bAB, cannot he drawn frum
the point C, it is therefore the nght. line by which a, @', d’, @'/,
are equul as well as o, o',%", o".
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In the arts, when it is neccssary to draw one right line
parallel to another, these two properties of parallel lines
are frequently had recourse to.

For this purpose a ruler, and a trmngular instrument
ayz, fig. 9, pl. 2, made of wood,*of glass, or of metal, are
employed by t'he artist. This triangle has two sides 1z,
y2, which are at right angles; and is therefore called the
draftsman’s square.

Let it be supposed that it is required to draw through
the point A, fig. Y, a right line parallel to "CD
We begin by placing the square 2yz, so thdt one of its
sides, 1y, lies precisely in the direction CD. Then the
ruler is placed against the side 2y of the instrument,
and being cither held very firmly on the surface on
which the parallel is to be drawn ; or fixed in its place by
weights ; the square is then moved by the other hand along
the ruler, till the side 2y comes as near as possible to the
point A, taking into consideration the thickness of the
pencil or chalk with which the line is to be drawn.  The
line drawn along ay. will be necessarily parallel to CD,
since the corresponding acute angles formed by the ruler
and the two lines AB, CD, arc equal to cach other.

With the side yz of the square, we can at any time
trace lines perpendicular to the ruler; which is much
easier, than to draw perpendicular lines by wmeans of two
oblique lines with an equal inclination. For this pur-
pose, however, the square must be correctly made, and
nothing is more rare. Even in towns and cities, where the
arts have been much improved, there are only a small
number of persons who construct instruments suﬁlcxemly
accurate for a good draftsman.*®

* This remark of M. Dupin’s cannot.apply to England, though
it is a proof of the state of the arts in France ; and coincides with
what has often been publicly related of them. Almost all the com-
mon necessary and useful arts are, it is said, a century behind in
France, while science is fully as far advanced, if not further, than
in England. It is at the same time necessary to caution the Eng-

lish workman, against buying incorrect instruments, for such there
are: they cost littie, but that little is thrown away.—Ts.
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Let us now examine the application of the properties
just pointed out to the construction and movement of bo-
dies.

Having a body of an invariable form, ABCD, fig. 10,
pl. 2, let us suppose that it is moved forward in such a
manner, that all its pomts situated in the right line Amnp
move in the direction of Amnpa: every other point, B, or
C, or D, of the figure ABCD will also move along a
right line, Bb, Ce, Dd, parallel to Ae. In fact the body
not changing its form during the motion, cach point, B, C,
D, always reuains at the same distance from the right line
Aa; consequently it describes a right line parallel to
Amnpa.

This gepmetrical property is very often made use of by
worhmen of all descriptions.

The movement of drawers in their rcapective Srames is on
thas principle.  The drawers, fig. 11, pl. £, of tables, bu-
reaus, cupboards, or other furnitutre, are guided in their
movement by a frame, of which the right-angled joinings
represent so many parallel right lines, &a, B, Dd, Cc.
When the drawer is pushed in or drawn out, if the piece
of furniture is well made, that is to say if the parallelism
in every part is exactly preserved, the drawer is adjusted
at every point, as it moves backwards and forwards, and is
no where impeded in its motion.  The parallels being
a]wa_ys comprised between the same parallels, and bemg
in consequence equal, represent the distance of the various
points of such a dm.“er in its various positions.

Ariisans have frequcntly occasion to draw a line in the
middle, between two other lines, and parallel to them: for
this purpose, as well as for many others, they will find the
following instrument, the invention of Mr. Palmer, of
great use. o« ®

L)

In fig. 12, ). 2, A is a square har of hard wood, fmving the two
sliding checks B D, fixed tight to it. The cheek B is fixed on one end
of the bar, while the cheek ‘D slides upon it, but may be made
fust at any required point by the thumb-screw C. At the cheek
B, a conmmon scribing point.is fixed in the bar, and with this, and
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the sliding cheek D, it forms the common gage, and may be used
to draw lines parallel to the edge of any piece of work. With
the addition of F and G, two brass arms of equal length, this
instrument bisects any’ solid, and draws a line along its cen-
tre. One eud of each is.centered in the two sliding cheeks pa-
rallel to A; the other ends are unijed by the screw 1I, which it
formed into a sharp point beneath, to mark with. It is evident
from what has been said of obliques and parallels, that this
point will aulways be in the centre, between the two cheeks BD.
When the two sides of the solid to be marked are not parallel,
unscrew C, and as the gage is drawn along, press the two cheeks
B, D, towards each other, so that they may always be in contact
with the sides of the solid, and the point H will pass along the
centre of the solid, as correctly asif its sides were parallel. Be-
cause the obliques F, G, are of equal length, the scribing point
always preserves the same distance from the two cheeks B and D,
both of which are always in cuntact with the two sides. When the
cheeks B, D, are brought together, the two arms F G, lodge in
grooves made in the cheeks to receive them.

Application to the mwovement of pistons in pumps :—The
above explanation gives us to understand how a piston,
which fits exactly into the barrel of a pump, the figure of
which is represented by parallel right lines, moves in it
with precision, meeting no obstacle, and yet not being
loose, when the barrel of the pump and the piston are made
correctly. As the piston ascends and descends alter-
aately, each point in its outline describes a right line pa-
rallel to the axis of the barrel; and all the parallels thus
described must be placed exactly on the inner surface
of the barrel. In making the pistons of steam-engines,
in particular, the least defect in parallelism and the least
deviation, produces serious inconveniences and a great loss
of power.

Application of this principle in stretching the warp and
in weaving.—To prepare the warp, a certain number of
threads are first of all extended parallel to each other; one
end of each being fastened to a piece of list, and the other
rolled up round a plecc of wood. The part unrolled from
the wood forms a series of right lines parallel to each
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other, and placed in the same plane. In order that the
cloth to be wove may not be too loose in one place and too
tight in another, an instrument is used called a comb, or
reed, which is made of very thin and straight pieces, kept
at equal distances from, and parallel to, one anothers by an
appropriate edging. One of the threads of the warp is
passed through each of the intarvals.between the teeth of
the comb, which keeps them at equal distances from one
another. By this double system of parallel right lines, one
of which serves to regulate the other, when the comb is
made very Correctly, the weaver is enabled to make his
web of great length, as well as breadth, and perfectly
cqual in all its parts.

The fineness and beauty of the celebrated cachemire
shawls, made by the Indians, are well known, and are truly
wonderful. But, as they have not the same accurate in-
struments as the Europeans, for preserving the parallelism
and equal distances of the threads, it is not possible for
them to weave shawls, which for the uniform nature of the
texture can be compared to those madg in Ein'ope ; although
the weavers of Europe have not yet been engaged above a
quarter of a century in this, to them, new branch of in-
dustry.

It is of some consequence to make the reader aware
that the superiority obtained by the Europeans, in an art
long practised aud carried to great perfection in India, has
been produced by an approach to the precision of ideal
geometry in the-parallelism of right lines, which, in this
casc, are represented by very fine threads.

There will be frequent opportunities for remarking a
shnilar fact; and it will be seen that the progress of in-
dustry in most arts, requires the precision and rigour of
geometrical conccpuon and construction to be introduced
into the workshop. This it is, and it cannot be too often
repeated, which makes it more than .ever neccssary for
workmen to be perfectly acquainted with geometry and
its application to the arts.
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The propertics of parallel lines are very often employ-
ed to make another body or figure exactly equal to some
given figure.

Let us suppose for example, that we had to make a
figure: abed, fig. 12, pl. 2, whith should be cxactly equal
to ABCD, alrcady made. Draw Bb, Ce, Dd, equal and
parallel to A«, and then draw the lines ab, be, cd, da;
they will, necessarily, be equal and parallel te, AB, BC,
CD, DA, aud the two figures will be cqual.

This principle is apphed both in civil and waval archi-
tecture.~\When it is necessary to make a piece of wood,
stone, or iron, with a projection, which is to fit exactly
into a hollow or cavity, the property of. parallel lines,
just mentioned, is called into use. Let us suppose, for
example, that, in the opening represented by ABCDEF,
fig. 13, pl. 2, it is required to fit the picce of wood XV,
it will be sufficient tq draw the right lines, Ae, Bb, Cc,
Dd, Ee, ¥f, from the points ABCDEF, equal and par.
allel ; then trace the line abedef, and shape XY according
to this line. .

These means are employed to make, with the help of
thin planks, the moulds or drafts of the principal parts or
pieces out of which a ship is to be built according to some
given plan. Shipwrights give the name of moulding to
this operation. By its accuracy, derived from the proper-
ties of parallel lines, the vessel is constructed to a great
nicety, of the same form and shape as she was originally
planned in the conception of the naval architect.

The solidity of the vessel also, depends on the precision
with which the same process is applied, in adapting all the
hollow and projecting pieces, such as those represented in
fig. 14, pl. 2, which are to fit into pnc another. As they
are closely fitted, the possibility of their moving one within
the other, when the vessel is exposed to a heavy seca, is
lessened ; and this movement or play, as it is called, is, as
we shall hercafter see, one of the most dangerous causes of
destruction.

Method of projection.— Application of parallel lines to
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plan-drawing, and to descriptive Geometry.—1 have men-
tioned the method of constructing one figure equal to ano-
ther by the use of parallel lines ; and the same means are
employed as a general method of répresenting or of descri-
bing bodies. 'This is the dbject of designing in descfiptivec
geometry.

The object to be represented, is transferred ,to a plane,
called the plane of projection, suck as a table, a plank,
an extended sheet of paper, &c.  From every point of the
object” itself, lines are drawn parallel to any direction,
which may bé chosen on account of its convenience. It
will be readily conceived, that each point of the body
represented may thus be transferred to the plane of pro-
jection, by fullomng the parallel direction which has been
chosen. The new position of the point on the plane is
the projection of the point.

If all the points of a right line, ar of a curve, are thus
eprojected, they will form, on the plane of projection, a
new right line or a curve, which will be the projection of
the primitive right line or curve. .

This species of projection, or design, is made use of
to represent objects in civil, military, or naval architec-
ture, in carpentry, in sculpture, in making plans for ma-
chines, &c.

A single representation of ‘objects is not enough to de-
termine exactly their form and size. For this purpose
we must have two,plans; and it is found convenient to
supposc one of them horizontal and the other vertical.
To make the vertical plan, the object to be represented is
projected by parallel lines which are horizontal ; to make
the horizontal plan, the object is projected by parallel lines
which are vertical. _ .

THe horizontal projection is, properly speaking, the plan
of an object; the vertical projection is called the cleva-
tion of an object.

The student should be thoroughly aware of the import-
ance, and of the necessity of knowing and practising with
great exactness the art of linear projection. * _Ie should be
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able to draw both the plan and elevation of every object of
art which is either to be represented or made. To the pro-
ducts of every art an exact and precise form should be
given, either according to models—or according to some
rules and dimensions settled beforehand.

In the course of these lessons, the student will be in-
formed of the proper mode of proceeding.in the principal
cases he is likely to meet with in practice, but this instruc-
tion will not be sufficient. The artisan should, in addi-
tion, have recourse to a master, to teach him the art of
projection in its greatest extent, with all its methods and
all its resources.

Application of projection in Mechanics.—Parallcl lines
and perpendicular lines serve in the art of projection, not
only to represent the form of a body supposed to be im-
moveable at any given moment, but also to represent the
path which each one of its points follows, or ought to fol-
low, whenever it is set in motion. This application of
geometry is therefore of great importance in mechanics.
It enables us to represcnt by lines what is not in fact
permanent ; and to fix in a durable manner the trace of
those movements, the nature of which is, to disappear at
the very moment of their existence.

Let us suppose, for example, that 1 fire a musket
ora cannon ball towards any given point. The centre
of the ball describes a certain line, which is not marked
either before or after the passage of the ball ; but which
may, however, be represented on a surface, cither as it
was, or as it will be. Such a representation is of great use
in many cases; as for example, to calculate the effect of
firing from a battery against a fortification. According as
this line, directed to the highest part of the glacis of a for-
tification, enters within the place where its defendcr's are
situated, or passes above it, at such a distance as not to
touch them, the battery will be well or ill placed for the
assailants, and there will or will not be any danger for
the besieged. The line described by the centre of the
ball is projected on a plane, on which are marked in relief
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the respective positions of the battery and the fortifica-
tions ; and the military engineer is thus enabled to form a
correct opinion of what may be expected or dreaded from
the effects of the battery. '

The succession of points passed through by the centre
of the moon in her course round the earth,—by the centre
of the earth and the other plafiets in their eourse round
the sun, and the succession of points passed through by
the ccptre of comets, are also all represented on planes by
lines. To acquire a correct knowledge of the lines thus
described by the several planets, comets, &c. which com-
pose oury system, required many thousand years; and it
now forms .one-of the most noble discoveries ever perfect-
ed by the genius of man, and by the observations of seve-
ral successive generations.

‘The machines intended to supply the wants of society
and to assist the operations of man, are all constructed
on the supposition that certain parts of them will perform
certain determinate motions and no others. It is not
enough therefore to represent the patts of any machine in
any one particular position ; the motion of these parts
must also be represented. By employing the method of
projection, by parallel and perpendicular lines, this also
is effected. We can thus give an exact account be-
forehand of the effects which will be produced by the
different parts of any machine, when they are put in
motion. .

Already we see a number of important applications,
which may be made of parallel and perpendicular lines,
sigiple and casy as the theory of them appears. By them
we represent, and by them we fashion objects of almost
every form, such as,.furniture, buildings, and machines;
by them too we represent not gnly the forms of bodies, but
all their movements. There is, therefore, perhaps no part
of the science with which the student should be more fa-
miliarly acquainted.

One of the most useful applications of parallel lines is
that for reducipg to the standard of parallel right lines the
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figure of curved lines, or of measuring curved lines by
them.

Let any curved line, MABCDN, fig. 15, pl. 2, be
given; it is transferred to a principal right line or axis,
m, n, by means of a succession of other parallel right lines
Aa, Bb, Cc, Dd, &c. In gencral the latter are drawn
at equal distances from ohe another. )

Application to drawing curve lines :—The advantage of
this gcometrical property is, that it permits us to write
aud calculate, if this mode of expression be allowable, the
form of the least regular curves. We have an example of
this in ship-building. )

The fleetness with which a vessel moves through the
water, depends, other things being cqual, on the form of
her bottom or part beneath the water, which meets resist-
ance from the fluid. It is nccessary that the surface of
this part should be clésely connected, and smooth at- every
point, offering, whatever may be the plan of the architect,
no sudden irregularitics in any direction. To plan and
construct a ship the ‘most rigorous and cxact geometrical
principles are accordingly adopted ; and parallel and per-
pendicular lines arc in this case generally had recourse to.

nvery vessel has its right, or starboard side, precisely
the same as its left, or larboard side; or both sides, though
each is a very irregular curve, have exactly the same form
and dimensions, and arec equal and similar throughout.
To represent them a horizontal line is dfawn, MN, fig. 16,
pl. 2, which reaches from the stern-post to the stem. On
this right linc, divided into equal parts, MA, AB, BC,
perpendiculars are erected ; and on them are marked the
points which indicate the extreme breadth of the ship or
the situation of the water lines. R

It is supposed that the floating vessel, without lcaning
cither to onc side or the other, sinks gradually down,
and the line formed by the water on her surface, as she
sinks, is marked at every foot or other convenient dis-
tance. These lines are called water lines, and pn their
smoothness, if I may «» speak, or their gradual continuity,

-
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offering no abruptness nor interruption, cither in the fore
and aft, or horizontal, or in the perpendicular direction,
depends, above all, the beauty of form in a ship.  There
are certain dimensions, or rcl.uti(ms of length, breadth, and
depth, which are proper for cvery description of vessel, as
she is intended chiefly, to sail fast, to carry a great bur-
den, or to navigate in deep or shillow waters » but these
dimensions being observed, so as to muke the vessel answer
the principal intention,—for all vessels must be able hoth
to sail at a certain rate and to carry a certain quantity of
stores,—the cxcellence of her form depends on its smooth-
ness. The curves which are to constitute the water lines
are determined by half breadths, marked to the right and
left of the axis or keel, on parallel lines. When those
half breadths are numbered for every parallel, and for
every water line, and they may be made as numcrous
as the builder pleases, the plan on which the ship is to
be built may be carried into exceution with the greatest
nicety.* .

* It would be difficult to find a more striking example of the uti-
lity of the application of the mathematical sciences to the practical
arts, than is to be found in the success of the French nation in ship-
building. They are not a maritime people. One of their ambitious
sovercigns, however, resolved to make them so, and employed men
of science to build ships. He and the subsequent sovereigns of
France encouraged them in ascertaining mathematically the best
form for ships, and in applying the mathematical sciences to their
construction. The consequence has been that the French ships, par-
ticularly of their royal navy, are in general equal, if not superior, as
to form, to any other ships of the whole globe. We are a maritime
people, possessing a more extensive sea-coast, and more fami-
liar with the ocean than any other nation. In the practical and
merely manual part of building ships, as well as in managing them,
we are saperior to our neigh‘murs. That we in general overtook and
captured the finer-formed vessels of the French, was a ‘consequence
of the superior skill of our sailors; but the superiority of those ves-
sels, as to form, was so great, that most of the ships at present in our
navy have been modelled after captured French ships. Now this
superiority was altogether derivgd from the plan of constructing their
ships on mathematical principles. Such is, however, now the pro-
gress of scientific insfruction in this country, that there is%very rea-
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We have unother example of the apptication of these lines
in the construction of roads and canals.  From the line
MN, fig. 17, pl. 2. taken as an axis,—it buing, for exam-
ple, the level of thé water of the canal, or any other line
parallel to this level,—draw the perpendiculars, Aa, Bb,
Cc, to the ground, the figure of which is determined by
the curve, line passing through the points a, b, ¢, d. To
determine the heights Mm, Aa, Bb, Ce, an instrument to
be hereafter described, when treating of hydraulic ma-
chines, called a theodolite or a level, is used. )

Afterwards, what are called cross sections or profiles
are formed, by drawing from the points A, B, C, D,
horizontal lines, at right angles with M, N; and taking
each of these horizontal lines for a new axis, perpen-
diculars are let fall from it to the surface of the carth.
Their length is measured, and a figure is formed for cach
new axis with the perpendiculars, and that curve of the
earth which corresponds to them.

Thesc operations are indispensable, to know exactly the
quantity of ground which must be dug away, in those parts
vhich are too elevated, in order to carry it to the spots
which are too low, and thus transform the primitive shape
of the surface, into that which is proper for the road or
canal to be constructed.

When it is required to determine exactly the form of
the bottom of a lake, a river, a pool, or a roadstead, the
surface of the water, or what represents it, is divided by
two series of horizontal and parallel lines equally distant ;
those of one scries being at right angles with those of the
other. Perpendiculars are then let fall from the points
where the parallels drawn in one direction, are intersccted
by the parallels drawn in another direction, down to the
bottom of the river or lake; if we then connect by curve
lines the lower extremities of the perpendiculars, thus let
fall from the same horizontal line, we shall form a profile
son to hope, on this point, as on others involving not contention, but
generous emulation, that we shall net be surpassed by our enlight-
ened rivals. Tx.
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of the bottom of the roadstead, river, lake, or harbour
By letting fall a perpendicular from every point, and con-
necting all thie extremities by curve lines in both direc-
tions, we may obtain a nuber of profiles sufficient o give
us an idea of the form of the bottom.

In practice, when it is required to survey any river or
roadstead, certain points are sclected, both on different sides
of the river and in the direction of ils course: a boat is then
rowed from point to point in both dircetions, deseribing, in
fact, the horizontal lines just mentioned, on the surface of
the water.  As the boat moves onward, or frequently stop-
ping in its progress for the purpose, a skilful leadsman keeps
continually saunding, or letting fall, by a line and a lead, a
p-rpendicular from the surface of the water to the bottom
of the river.  The depth is marked at every spot, and an
accurate register kept of every sounding. By laying down
these various depths on paper, maKing proper allowance
for the rise and fall of the tide, the motion of the boat,
and numberless other things which practice teaches, it is
plain that we can draw a tolerably correct representation of
the bottom of a river, or a part of the sea shore, or even
of the areat ocean itself, as far as the bottom can be reach-
ed by a plumb line. The more accurately we can deter-
mine the situation of the floating boat, and.the more nu-
merous we make the soundings, the more accurate is the
knowledge we acquire of the surface of the earth, con-
cealed from our vigw by the water. That knowledge does
not in fact extend beyond the number of points preciscly
ascertained ; but its importance is very great to the art
of mavigation. By pursuing the geometrical method here
pointed out, we have acquired an accurate knowledge of
the figure of a large portion of the earth which is continu-
ally covered with water. Not only does that knowledge
enable the hardy navigator fearlessly to venture close to
the land, almost at times rubbing the side of his vessel
against the rocks, or stirring up the mud with her keel,
but it enables him, when o land is in view,—when neither
the sun nor the stars are to be seen, to ascertain, in many

» 2 -
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cases with tolerable precision, the situation of his vessel.
He determines by his soundings, over what part of that
hidden surlace, the situation of which has béen previously
ascertained, his vessel is at any moment floating.

In place of using these means of representing the form of
a portion of land, covered or not covered by water, it is
sometimes preferred to employ curve lines, of such a na-
ture that the vertical heights are cqual for cach curve;
forming subsequently a series of horizontal curves.  fGene-
rally it is assumed that the curves, which rueceed ecach
other, are at equal distances, measuring the distance verti-
cally ; consequently in vertical projection or in elevation,
the horizontal scctions are all representéd by parallels
equally distant from once another.  This manner of repre-
senting a portion of the land, has the great advantage of
showing to the eve on a plane, such as a sheet of paper,
the complete form of a portion of the carth’s surface in its
various points.

To ascertain this form is useful, not only in hydro-
graphy, or in the description of places covered constantly
ar occasionally with water; it also serves in topography,
to describe with precision and minuteness, and in detail,
the parts of valleys, mountains, &c. It is very frequent-
ly employed hoth by the military and civil engineer, in
planning roads, bridges, and fortifications.

When an aqueduct or a bridge is to be constructed,
the piles employed, being all of the height of some line
of level previously determined, MN, fig. 18, pl. 2, this
line is divided, generally, into equal parts, MA, AB,
BC, CD. From each point of the division the perpen-
diculars Aa, Bb, Cc, Dd, are let fall, and extended till
they reach the earth; and they represent the height or
length which the piles of the bridge or aqueduct must
be of.

I shall not dilate at greater dength, on the innumecrable
applications which may be made of this method of repre-
senting the forms of spacc, by the assistance of parallcls.
The student must be scnsible of its importance; and of
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the facility and rapidity with which it may be applied.
He should familiarise himself with it by frequent exer-
cise; and by representing with the rigour of geometry,
many objects, referring them to some axis and some pa-
rallels.  This species of mathematical representation or
design, must gradually become common in every sort of
workshop. : ’ .

The works, in French, of M. Francteur on Linear Design,
of M. Lacroix on Plane and Curved Surfaces,and of M.
Monge, on Dgseriptive Geometry, may he consulted with
advantage.  MM. Hachette and Vallée have also publish-
ed very good treatises on this subject, containing some ex-
cellent mattar, not to be found in other works. M. Fran-
ceeur’s book has been translated into English; and the
student may also study with advantage Fergusons A7t of
Druwing in Perspective, and other similar works.
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THIRD LESSON.

Oun the Circle.

A circle is a plane surface, of which the boundary called
the circumference is, in all its points, equally distant from
a single point called the centre.

All the right lines drawn from the centre to the circum-
ference, measuring equal distances, are equal to cach other.
These lines are called radii; and thus all the radii of a
circle are equal to one another.

When two radii are directly opposite to cach other, the
one to the right, the other to the left of the centre, the
single right line which they form is called the diameter
of the circle.

Thus, in the circle ABDE, fig. 1, plate 3, C being the centre,
CA, CB, CD, CE, are radii, all being equal to one another. If
the two radii CA, CD, form a right line ACD, this line is a dia-
meter of the circle. -

Every diameter DA, fig. 1, pl. 3, divides the circle
into two equal parts.

To be convinced of this it is only necessary to double the"part
DAB over the part DAE, turning it on the diameter DA, ason a
hinge. If any point of the circumference DAB fell within any point
of the circumference DAE, it would be nearer the centre than this
point ; if any point in DAB fell outside of any point in DAE it would
be further from tlie centre. But this cannot be the case, for all the
points of the circumference ABDEA are equally distant from the
centre. The part DBA will therefore fall in every point on the
part DAE, and the two portions of the circle separated by the diame-
ter DA are equal to each other. '
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Every right line, man, fig. 2, pl. 3, terminating at both
ends in the circumference of a circle, is called a chord
(cord) Every portion of the circumference of a circle
mgn, is called an arc (bow), The chord is also called the
subtense of an arc. The part pq of the radius Cpq inclu-
ded between the chord and the arc, and perpendicular to
the chord is called the sine (arrow). .

These names are borrowed frome the use among the
anciengs of a piece of wood bent, by a picee of cord, nearly
into the form of a portion of the circumference of the circle
fig. 3, pl. 3, which they called an are, and which was in-
tended to propel the arrows ¢sines) placed on the middle of
the chord, apd in a direction perpendicular to it.  This is
one instance of practice having preceded science and sup-
plicd it with terms.

The radius Cpy, fig. 2, perpendicular to the chord ma,
divides both the chord and the arc into two equal parts.

Let us draw the radii Cm, Cu, which are oblique lines forming
equal angles with the perpendicular Cp.  Therefore, first, mp = np.
The chords mq ng are also oblique lines equak to one another, and if
Cqn is folded on Cqm, the point n will fall on the point m, and the
are uaq on the arc mrq; for no point of the former arc can fall either
within or withaut the latter, unless it be nearer to or further from
the centre (. Therefore, secondly, the two arcs mrq, nsq are equal.

Application to linear design—The property of the cir-
cle just demonstrated is very usefully applied in the art of
design, and in most of. the arts in which exact measures are
to be iaken and combined together.

It serves in the first place to divide an arc of a circle mqn, fig. 4
pl. 3, in two equal parts. Take a pair of compasses and open them
mord than the half of mn ; placing one leg of the compasses in m,
with the other describe an arc of a circle ref ; then, fixing one point
in n, describe another anc #su, taking care that the compasses are
neither opened nor closed during the operation. The point s, where
these two arcs intersect each other, will be equally distant from m
and n ; and therefore it will fall on a line perpendicular to the right
lin®mn, which passes through tife middle of this line, and through
the centre of the circle. This perpendicular will divide the chord
mn, as well as the arc mqn, into two equal parts.

If the exact position of the centre is not known, draw on the side,
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of the above-mentioned centre two arcs, abe, dbe, with the same open-
ing of the compasses, the one having m for its centre and the other
n ; the point b, like the point + will be on the perpendicular, which
awvides into two equal parts the chord mm and its are mgn.

By these means, and knowing the position of only three
pomts. m, n, o, fig. 5, pl. 8, in -the circumference of a
cirele. we can determine the place of its centre, the length
of the radii, and conszquently we ean deseribe the whole
circumference.

For this purpese, first draw, in the manner just ponted out, g
through the middle of mn, and perpendicular to it : second, draw rb
through the middle of ro, und perpendicular to it.  From the puint
C. where the perpendiculars Cy, Cr, intersect each other, draw the
obliques, Cm, Cn. Co, they will all be equal lines. Cm, Un. Ca, there-
fore. will he three radii of the circle <ought, of which C will be
the centre.

When the chords AB, DE, FG, fig. 6, pl. 3, of a cir-
cle are parallel the ares AD and BE. DF and FG, con-
tained Petween them, are equal to one another.

To demonstrate this proposition  draw from the centre ¢ the ra-
dius Chanp perpendicular to all the chords: it will divide each of
them into two equa parts.  Comparing the length of the ares which
coirespondd with these chord-s we find that the are pA is equal to
!B, pD to pE, pl' to pG, which requires that the are AD should
he equal to BE, and DF to Et.

A right line XpY, fig. 6, perpendicular to Cp, and
drawn from its extremity, is wholly outside of the cir-
cle, which it only touches at the point p.  This linc is
the tangent of the crcle; and no other right line, at
the point p, can pass between the circle and the tangent
XpY. .

The radius being in fact perpendicular to the right line, XpY,
the termination p of the perpendicular is nearer the centre C, nlaced
on this perpendicular _than any other point X o1 Y. For the dis-
tance of any other point XY from the point C will be measured

by an oblique line, necessarily longer than the perpendicular Cp : con-
sequently, all the points 0o XpY, except p, are heyond the circle.

In the arts we find frequent use made of the properties
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of the circle in relation to right lines, which form tangents
to it.

The circle, for example, may be made to turn round its
own centre C, supposed tq be fixed. Supposing the tan.
gent XY, also to remain fixed during the movement ; first
tho circle will never pass beyond, XY; secondly, it will al-
ways touch XY in onc point, p, placcd at a distance from
the centre C, equal to the radius (. Cousequently, when
a fixad right linc touches a circle in o single point, if the
circle be fixed on an axis, it may be turned round without
any necessity ever to make an cffort to remove it from the

right line, or to displace this right line.

Application to turning, in which a moveable body is ex-
posed to a fired instrument. —The turner uses this geo-
metrical property in order to cut a plane surface into
a circular form. Hc¢ makes the plane turn round the
fixed point C, as the centre of thé circle.  He places a
cutting instrument in the direction of the tangent XY
which acting at the pomt p, every part of the plane sepa-
rated by the instrument, is at a gr cater distance from the
centre ¢ than the length Cp. All the points of the sur-
face of the picee thus cut are at the same distance, Cp
from the centre, and thus the form given is that of a
circle. . .

Application to grinding and polishing stones.—The same
geomcetrical property may be traced in the use of grind-
stones, and of stodes for polishing the rectilinear surfaces
of the products of art. The instrument to be ground on
the surface to be polished is held, ecither by the hand or
byssome apparatus for this purpose, against a stone of a
circular form. If the centre of the stone has been well
ascegtained, and the «cifeumference is very exact, when it
is turned, its surface always remains in contact with the
object to be ground or polished.

No other figure but the circle has this property ; and
other figures, on being turned round, would sometimes
be at a ‘distance from e objects held in g fixed position,
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and would sometimes strike against them or force them to
a distance. .

In place of supposing the circle moveable, and the
tangent XY fixed, we may suppose the circle fixed, and
the tangent XY moveable; and, placing the tangent so
that it shall always be kept at a distance from the centre
C equal to thre radius, it will continue to touch the circum-
ference of the circle. ¢

This principle is applicd to make bodies circular which
remain fixed ; but in this case the instrument, is made to
revolve round the centre.  One side of it is represented by
the tangent XY, and the cutting part by the point p.

Application to wheel-carriages.—Let us suppose that the
tangent XY remaining fixed, the circle is made to turn
round above and on it, so that cach point of the circum-
ference is successively placed without sliding cither for-
wards or backwards on a new point of the tangent; we
shall have the movement of wheel carriages, which, it is
hardly necessary to observe, is of the greatest importance
in the arts. '

In this movement the right line XY never ceares to he
the tangent to a circle, for it always touches the circum-
ference in only one point. Thus the centre of the circle
will always remain distant from the right line XY, the
exact length of the radius Cp. When whecls roll, there-
fore, over a right line XY, the centre of the wheel moves
in another right line parallel to the road-or right line XY,
Of course, if the right line is horizontal, the centre of the
wheel moves also in a horizontal line.

If any other curved figure were made to roll on a heri-
zontal line, one point, whether central or not, would rise
and fall alternately; and the motion, produced by a whecl
of such a shape, would be neither regular nor agreeable.
For this reason, the figure of a circle is given to all the
wheels of carriages destined either to carry goods or pas-
sengers; and it may be added, that in proportion as they
are true geometrical circles, the motion is equal, easy, and
regular.
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Application to parallel movements.—The property of the
circle which we are at present considering, supplies the arti-
san with an easy method of making any point move paral-
lel to a given right line. It is only necessary to fasten
this point to the centre of a circle, and make it roll for-
ward on its tangent.

Let us draw the line 2y, fig. 6; pl. 3, parallel to XY, at
a distance. equal to two radii Cp, sor to the diameter of
the gircle pCq. Then will zy touch the extremity g of
the diamecter_pg, and like XY, it will be the tangent of the
circle. If the circle is now made to turn round on XpY,
it will not ceasc also to touch zqy, because the distance of
the two parallds is every where the same.

Application to the construction of machines.—When it
is required to cause a ruler or rectilinear frame of any de-
scription to move exactly parallel to some given right line,
wheels or castors are employed of an equal diameter, and
truly circular, which are placed between the right line or
plane serving as the basis, and the ruler.or frame to be
moved. Tt is then only necessary Yo pull or push the
frame or the ruler, on the wheels or castors, according to
the nature of the machine of which they are to form a
part.

By attending to these principles, we see how much geo-
metry may contribute to enable every description of arti-
san to form right lines by means of circles, and circles by
means of right lives’; to produce rectilincar motion by cir-
cular movements, and circular movements by rectilinear
motion. Workmen themselves will know how to apply
these principles, on numerous occasions, and it is, therefore,
only nccessary here to point them out, leaving the applica-
tion-to the skilful handeof the artist. In teaching, how-
cver, instructors would do well, after making thc student
comprchend the cxtent of these principles, to supply him
with more examples of their application to the business
of life than have yet been furnished.

Having examined the properties of circles with relation
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to right lines, let us now proceed to cxamine the pro-
perties of circles in relation to one another.

Let us suppose that two circles AB, fig. 7, pl. 3, are
placed in such a manner that the thstance AB, between
their centres is equal to AO plm BO, or to the sum of
their radii. The point O, it is evident, is on the cir-
cumference of both, and ho other point, P, can be at the
same time on both thest circumferences. :

If we draw the right lines AP. BP, the right line AO, plws BO,
will necessarily be shorter than the broken line AP, plis BP, whence
AP, and BP, cannot be equal to, and must be greater than the ra-
dii, AO, and BO.

The two circles are consequently tangents to each other.

Application in transmitting the rotatory motion from one
aris to another.—The first circle, fig. 7, may be made to
revolve without ceasing to touch the second circle, whether
it be fixed, or turning either in the same dircction as the
former, or in an opposite direction. In this movement,
the two circles: will continually touch, without either in-
truding on the other.’

In the arts'we very often find one wheel put in motion,
by another on this principle; cither by the friction of the
circumference of the two wheels; or by teeth of an equal
size placed at equal distances on both wheels and working
one within the other. It must however be remcmbered, that
if one of the wheels turns from left to right, the other will
turn from right to left, or the two will move in contrary
directions. In fig. 7, pl. 8, this contrary motion is desig-
nated by arrows.

If three circles, A, B, C, fig. 7, pl. 3, arc in contact,eso0
that the first turns the second, and the second the third ;

-the second turning in a different‘direction from the first,
and the third contrary to the second, the first and third
will move in the same direction. It is necessary, there-
fore to have three circles in contact to transmit a circular
motion in the same direction, from one centre to ano.
ther. °

Bands thrown around circles.—When it s necessary to
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transmit a circular movement to a considerable distance,
in place of cmploying very large circles.or wheels, or a great
many of them, two only are used, and an endless cord
is passed around both. 'Tle band may either not be cross-
od, as in fig. 8, pl. 8, or crossed, asin fig. 9. The bands
are so put on, that the parts of them, mn, pg, which are
not in contact with the two wheels, are in % right line.
Either of the two wheels may be thade to turn, without
any change tahing piace in the length or the direction of
the circular parts of the band, pAm, and ¢Bu; or in the
length and direction of the parts, mn, pg, that are ina
right line.  Ify at the commencement, therefore, the ad-
liesion of the band to the circumference is sufficiently
great, when motion is given to a circle or wheel, to go
round with it and transmit the motion to the second circle,
it Wwill, as long as the first is moved, and without any
difficulty, continue to transmit its ‘motion in the same
.mmmc

If, in consequence of use, or of ch'mgcs in the heat
and moisture of the atmosphere, the band stretches and
becomes too long, a third wheel, D, fig. 10, pl. 3, is em-
ployed, which, disturbing the rectilinear part, pg, brings it
in the direction pr, r¢, and keeps it tight, notwithstanding
its clongation.  For this purpose, the difference of length
between the right line, pg, and the hent line prg, must
be equal to the clongation of the band. This method
is frequently practfced in the construction of machincs.

It must be carefully remarked of these bands, that their
effects are different as they are crossed or not. With the
bamtls crossed, fig. 9, pl. 3, the two circles move in an
opposite ‘direction ; but when the bands are not crossed,
as in fig. 8 and 10, the wheels turn in the same direction.

These are only a few examples of the ‘movements of
machines having the form of circles and.right lines; in
the course of these lessons,-many more applications of the
combined movement of nght lines and circles will be point-
ed out. :
Of the motion of one circle within another.—-.lf we cut



46 ONE CIRCLE WITHIN ANOTHER.

a circle out of a plane surface, we shall have for the part
cut out, a circle in projection, and in the rest of the
plane, a circumference which is sunk or hollow. Let
us suppose that the projecting, circle is made to revolve
on its centre, all the points in its circumference always
remammg at the same dlstnnce from its centre, will be al-
ways in cofitact with some point in the circumference of
the sunk circle. The‘circumference in relief will, in fact
as it revolves, touch in all its points the sunk ciroumfe-
rence. .

The circle is the only figure which possesses this property.
Every other figure so cut out of a plane surface, and
made to turn round an axis, will have some of* the points
in its outline, farther from, or ncarer to, the central point,
and these parts sometimes projecting beyond the parts of
a corresponding sunk figure on the plane, and sometimes
not extending to them, will leave a void space betwixt the
figure in relicf, and the hollow figure.

Wihenever it is negessary, therefore, to close up any por-
tion of a plain surface, while a certain part of the surface
must revolve on its own axis, this part must be made in
the form of a circle. For this reason, valves, corks of bot-
tles, of flasks, and a great variety of stoppers, are made
circular. .

Application to steam bores.—1In the construction of steam
engines, an ingenious use is made of. this property of the
circle, always to touch the circumference of a box which
incloses it, while it revolves on its own centre. In describ-
ing circular steam boxes, this use of circular figures wnll
be more minutely explained.

Division of the circle, and application to measuring an-
gles.—Before explaining this divisibn, it is neccssary to
make the student acquainted with an essential principle.

If two arcs of a circle AMB, DNE, fig.11, pl. 3 are
equal to each other, the chords AB, DE, which belong to
these arcs, will also be equal to each other.

To demonstrate this, let us place the arc, DNE on AMB, the
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point D being on the point A. The two arcs preserving the same
centre will exactly cover each other, the point E, will fall on the
point B, and the right line or chord, DE, will be precisely the same
as the chord AB.

Reciprocally the chords AB, DE, being equal, if the
second chord is placed on the first, the two arcs AMB,
DNE, will correspond through their whole extent, and of
course willbe equal. Therefore, if in a circle, fig. 12, pl. 8,
we draw a number of chords, AB, BC, CD, DE, ... . all
equal to ong another, the arcs corresponding to these
chords will also be equal to one another, and the circum-
ference of the circle will be divided into as many equal
parts as there have been chords drawn. We now proceed
to describe,

The most simple means of dividing the circle.

‘I1st. Into twwo equal parts. It is only necessary to draw
through the centre the diameter AB; fig. 13, pl. 3.

2d. Into three equal parts. The circle must be divided
into six cqual parts, and lines drawn from every second
point of the division, fig. 15, pl. 8. °

8d. Into four equal parts. Draw a second diamcter
DE, fig. 13, pl. 3. perpendicular to the first AB.

"This operation may be readily performed by taking a greater open-
ing in the compasses than the radiys of the circle, and describing from
the point A, as a centre, with this opening as the radius, the two
arcs, mFn, pGg; and from the point B, as a centre, the arcs rFs,
tGu. The right line FDUEG, is the perpendicular required.

4th. Into five equal parts. The circle is divided into ten
equal parts, and every sccond point only of the division
is taken, fig. 14, pl. 8.

To d.lvnde the circle into tep equal parts, the radius AC, fig .14, pl.
3, is divided into two uhequal parts, AM, MC; so that the larger
vart, MC, contains the smaller part, AM, as many times repeated, as
the radius itself contains the larger part MC. The larger part MC,
will be a chord, which, repeated ten times, will extend round the
whole circumference. The demonstration of this method, as well as
that of the division of the circ]e into six equal p';rts, is derived from
the properties of trmngles.
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5th. Into six equal parts, tig. 15, pl. 8. Itisonly neces-
sary to take as the chord the radius of the circle.

A perpendicular, dr'awn through the middle of cach
chord, dividing its arc into cqual parts, will cnable the
student to divide the circumference into eight equal parts ;
if the circle be already divided into four cqual parts,
fig. 13, pl.-3,—and intd (welve equal parts, if already
divided into siv equak parts, fig. 15, pl. 8, and «o on, with
all subsequent divisions. .

The fifteenth part of the circumference is equal to the
sixth part, minus the tenth part.

These very simple operations being continually practised
in constructing machines, and in various branches of in-
dustry, it is essential that artisuns should become familiar
with them, and comprehend the principles on which they
depend.

Having pointed oat the rigorous methods which geo-
metry supplies for determin’ng “hese problems, let us now
refer to a method by approximation, which in many cases
answers very well.

The radius of a circle being taken equal to 10,000,
the following, neglecting fractions, is the length of the
chord, which belongs to cach portion of the circumference::
thus the chord of the

Semi-circum is 20,000 Eighth . . 17654
Third part . 17,232 Ninth . . 6880
Fourth . . 14,145 Tenth . . 6180
Fifth . . 11,746 Eleventh 157
Sixth . . 10,000 Twelfth . 5176
Seventh . . 8,672

This small table will render it very easy to find the
opening of the compasses neces:ary to divide the circle
into as many equal parts as is required, from the half of
the circumference, to its twelfth part.

By the means mentioncd above for finding the middle
of an arc, the opening of the compasses may be imme-
diately obtained, which corresponds.
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to the 14th, 16th, 18th, 20th, 22nd, 24th, 28th part, &c.
of the circumference,

or to half the 7th, 8th, 9th, 10th, llth 12th, 14th part,
&ec. .

An casy method of dividing an arc into two equal parts,
has been pointed out; but a method has long been sought,
in vain, to divide an arc, into three cqual parts, on strict
geometrical principles. .

Application of arcs to measure angles—As angles may
be enlarged, or lessened, one of them may be taken as
unity, and emplo_yed to measure or represent all other
angles, expressing, in figures, the number of times they
contain this angle, or its subdivisions ; on the same princi-
ple as any extension may be taken as the standard for
lincar measure, as described in the first lesson.

‘In place of taking an angle itsclf, ABC, fig.16, pl. 3,
for unity, it has been found more *convenient to take the
"are, AB, included between the sides of the angle, and
deseribed from the point C, as a centre.

It is casy to see, that if a succession of radii, CA, CB,
‘D, CE, be drawn at such distances that the angles ACB,
BCD, DCE, are cqual, they may be placed one over the
other, and their ares, AB, BD, DE, applying themselves
to cach other in every point, will also be equal.

If we take two, three, or four of the angles, equal
to unity, to form a_single angle, we must also take two,
three, or four times the arc corresponding to them, to
have the arc corresponding to the new angle. The same
arithmetical figures or numbers, conscquently, will repre-
sewt the number of times which both the new angle and
the new arc, whatever they may be, contain respectively,
the anit, or the assumed measure of angles, and its cor-
responding arc.

Without changing these numbers, therefore, we may
take at will, as a standard, either the angle or the arc;
and in practice, it has been found more convenient to
adopt the latter. 'The following is the method of pro-

ceeding.
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The circle is divided into four equal parts, which gives,
consequently, four quarters of the circumference, measur-
ing the four right angles, which include all the space
round the centre C. ;

Each fourth part or quarter is then divided into nincty
equal parts, which are called degrees.

The circuriference of the circle, therefore, contains four
times 90 or 360 degreeS. This division appears, at first
view, rather capricious, and does not accord with the deci-
mal division, or the division by 10, 100, 1000, 10000,
&c. It has some advantages, however; the principal of
which is, that it can be divided into a great number of
equal parts, expressed in round numbers. Thus, the semi-
circumference equals 180 degrees, the third part of the
circumference, 120, the fourth part 90, the fifth part 72,
the sirth part 60, the eighth part 45, the tenth part 36,
the tweifth part 30, the fifteenth part 24, the twentieth
part 18, the twenty-fourth 15, the thirticth part 12, the
thirty-sizth part 10, &c. Without carrying this division
any further, the student will comprehend from this spe-
cimen, the advantages of the ancient manner of dividing
the circle into 360 parts or degrees.

In order to measure the parts of an angle which are
smaller than degrees, each degree is divided into 60 equal
parts, called minutes.

For still more delicate measures, the minute is again
divided into sixty equal parts, called scconds, the second
is again divided into sixty ¢hirds or into tenths, and the
third into sixty fourths.

The following marks, placed above the figures, are en-
ployed to signify degrees®, mmutes , seconds”, thirds ",
fourths ., For example, fifteen’ddgrees, forty-five mi-
nutes, ﬁfty-three seconds, thirty-seven thirds, and twenty
one fourths, are thus written, 15° 45’ 53" 37 21",

The circumference of the circle contains 21,600 mi-
nutes, or 1,206,000 seconds, 77,760000 thirds, and
4,665,600,000 fourths.

The second is less, therefore, than the millionth part of
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the circumference, and the fourth is not equal to the four
billionth part.

Application to Geography. —Geographers have made an
important application of this division of the circle to the
measurement of the surface of the earth, which is usually
expressed in degrees, minutes, secopds, &e.

They have ascertained that lines, drawn oh the sur-
face of the ‘earth, from north to soith, and from east to
west, til they meet, are very nearly circles; and they have
divided these ¢ircles into degrees, minutes, seconds, &c.

The length of these scparate parts, according to the
ancient division of the circle, still adopted in Great Bri-
tain, is as folows:—

The circumference of the earth, measured on a meridian or cir-

cle, passmg through both poles, is
40,000,000 metres, 43,745,410 yards.

1 degree equals . 11L111 — -
* 1 minute — . 1,852 —
1 second — . 34 —

1 third is half a metre and a fraction.*,
According to the modern division of the circle, now
adopted in France,
1 degree equals 100,000 metres.

1 minute — 1,000 —
1 second — 10 =
1 thid . . 1 decimetre, or the tenth part of ametre,

1 fourth . . 1 millemetre.

The division of the circumference of the circle, says
Mr. C. L. Bergery,t onc of those persons who have already

* The French metre is equal to 39.371 English inches. The state-
ment of M. Dupin has been made in round numbers, because this
number of ‘metres is the basis of the present system of French mea-
sures. The actual circumfer®nce of the globe, measured on the
meridian of Paris, is, according to M. Malte Brun, 39,999,867 me-
tres, giving as the length of the circumference in English yards,
43,745,410. A degree of the French modern circle'is the 100th part
of a quarter of a circle, a minute is the 100th part of this degree, a
second the 100th part of the minute, &c. ; consequently one centesi~
mal, or modern French degree, {s equal to 54'. .

t In his « Géomdérie appliquée i P Induatric,” Mentz, 1826.
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in France, followed the path marked out by M. Dupin,
though perfectly arbitrary, is of great assistance in the arts
and sciences. The greater number of instruments used
to ascertain the figure of any portion of the earth, have a
circle, or a part of a circle belonging to themn, divided into
degrees, which render the operations easy and exact. By
means of graduated circles, we trace the course of the hea-
venly bodies, discoveér their movements, measure their dis-
tances and their size, and predict the moment of anecclipse,
or the return of the comets. The needle of the mariner’s
compass, always directed towards the north, points out to
the navigator, on a graduated circle, whether he pursues his
proper course, or how much he departs fronrit.  Geogra-
phy only represents to us with so much precision the po-
sition and relative distances of all the points of the earth,
by making use of two graduated circles, the degrees of one
being longitude, and of the other latitude. It may, indeed,
be said, that without the graduation of the cirele, which,
gample as it appears, was slowly invented, the arts and
sciences, and consequently civilization, would be far infe-
rior to their present state.

Application of the division of the circle to the construction
of machines—The division of the circle into equal parts, is
an indispensable operation in many of the arts, and parti-
cularly in the construction of machines; as, for example,
to form cogged and toothed wheels for communicating mo-
tion, and fluted cylinders, for the operations of spinning cot-
ton, wool, &c. As cogged wheels are made with greater or
less accuracy, the movements transmitted by them, are more
or less smooth, and performed with more or less friction.
In practice, a great deal of precision is, in fact, obtained :
but it is only by making machincéry'with geometrical truth,
that stoppages, jirks, loss of force, &c. &c., which are
always the cobsequence of irregularity, and incorrectness
of form, are avoided or prevented. The student and
the practical mechanic, will both see, therefore, that it is
of great importance, carefully to ascertain that the tecth of
wheels, and the flutes of cylinders, which"are to work into
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one another, divide the surface of the circle on which they
are madc, into parts cxactly equal. Such exactness eco-
nomises power, and gives beauty and regularity to the
work performed by the ma(,hme, which cannot be equa.lled
by the unassisted hand of mian.

To measure angles.—A great number of instrumrents
are in use, on which the division of the circle,in degrees
and minutes, is marked. o

The most simple of these instruments is the protractor,
which 3s a semi-circle, made of brass or horn, the circum-
ference of which is divided into degrees.  If it be made of
brass, the space mupC, fig. 17, pl. 3, is cmpty; or the
instrument consists of a diaweter and a circular rim.  C,
the centre, is sometimes indicated by a notch; and two
other small notches, m, p, allow two other points of the
diaweter, traced on a plane surface to be scen, which is
otherwise concealed by the side mCp, or the part of the
snstrument corresponding to the diameter.  When the in-
strument is made of horn, there is no necessity for these
notches, on account of the substance itself being semi-
transparent, and thus allowing a design or figure to be seen
through it.

The protractor serves to transfer angles from one po-
sition to another, by measuring their openings, as for ex-
ample, that of XOY, fig. 17, the height and one side
of the new angle being given.

If we have to draw’a line, CY, which is to proceed from a given
point, O, in CX, and include a certain angle, for example, an an-
gle of 55°, with CX, we place the diameter mCp on (X, and the
point C, on the point O. A point, H, corresponding to 55° of the
protmctor, 1s then marked on the paper, or other plane surface,

and the right line, CHY, drawn through C and H, will make, with
OX, an’angle of 55°. o *

A protractor, somewhat different from the one described
by Baron Dupin, has been constructed by Mr. R. Christie,
sceretary to the London Mechanies Institution, intended
1o lay down both the sides and angles of geometrical figures
to any assigned dimensions, and to solve trigonometrical
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problems. The translator presents it to the notice of the
reader, because protractors with a vernier are described in
some books to be much wanted.

This instrument, fig. 19, pl. 3, consists of a semi-circular limb, the
three sides of a triangle, and four verniers.

The limb is divided into degrees and minutes by the vernier B.

The radii gr sides CA and CB, may be divided into any convenient
number of equal parts, gccording to the size of the instrument : in
one of about four inches radius, each of the sides is divided into 200,
and subdivided by its respective vernier into 2000. .

The side AD similarly divided and subdivided, iz nearly twice the
length of the radius; it turns on the joint A to form an acute angle,
and it will form a right angle with CA by resting against a projection
at A.

At the centre of each joint AEC, there is a small hole through
which the angles of any triangle formed on the instrument may be
marked on the paper.

‘The mode of using this protractor, is similar to that of using any
other furnished with a vernier, as far as regards laying down or
measuring angles. It may also be applied to the solution of pro-
blems in trigonometry, by adjusting the instrument to the given parts
of a triangle, when the required parts will be pointed out on the
parts of the instrument corresponding to them.

The graphometer is an instrument similar to the pro-
tractor, and is in use amongst land-surveyors. It also
consists of a semi-circumference, divided into degrees, but
it is larger, and is placed on a moveable stand or frame,
with three legs. It has small pieces of brass, with holes
in them, called sights, fixed at the extremities of the gra-
duated semi-circumference, which permit the ecye to sec
in a right line perpendicular to the plane of the circle.
Sometimes also, a comnpass box, and a magnetic ncedle,
are placed in the centre. The observer, placing himself
behind one of the sights, and looking through both, the
graphometer is turned round, till the line of vision
passing through the two sights, is in the direction of
some particular and previously selected object. I'he in-
strument has, in addition, an index on another diameter,
which moves round its centre, and which has also a sight
at cach end: this index is turned round to the point.
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where, on looking through its two sights, some other par-
ticular object is seen. The angle formed by two right
lines passing from the centre of the graphometer to these
two objects, is thus measured on the circumference of the
instrument by the moveablé index, and is contained batween
it and the diameter; the vertex of the angle being at the
centre of the instrument. The‘*angles measpred by this
instrument are generally horizontah and it is chiefly used
in land-surveying.

There are various other instruments for measuring an-
gles : and the teacher would certainly do well to show them
all to his pupils, and explain their properties and uses.
Quadrants contain only the fourth part of a circle; sex-
tants contain only a sixth ; octants only an eighth. These
instruments are employed in geographical and astronomi-
cal observations, for measuring the earth, and determin-
ing by the celestial phenomena, the relative position of dif-

* ferent spots. To the navigator, they are essential. By
their mcans, when the degree of steadiness requisite to
use them can be obtained, and wheh the heavens are not
obscured, he can ascertain the position of his vessel.
When to these he adds good time-keepers,—which arc
now so accurately constructed that they go for many
months, and in all climates, without varying a second,—
the skilful mariner can in general tell, as well as the tra-
veller on land, what is his position, and his distance from
the end of his journey.

Entire circles, called 7epeating circles, are also used.
They are so named, because the observations are repeated
on ,them in such a manner, that the different errors made
in the different observations, partly compensate one ano-
ther, and diminish thg sum total of the errors.

Independently of the faults inherent in these instru-
ments, they have all a source of crror in the inequalities of
the graduated division of the circle. The hand of man
can never attain that rigorous precision which belongs to
the conception of the geometrician. It can, however, so
far lesson the grrors of execution, that tfley become im-
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perceptible ; even if we endeavour to find them by means
of instruments that scem capable of detecting the smallest
inaccuracy

Instruments for dividing the circle correctly and commo-
diously, have been coustructed, and are generally in use.
A great number of circles, having the same centre, but
each of a different diam.ter from all the others, are drawn
on a plane and perfectly level surface; such, for example,
as a brass or steel plate. Sctting out from the smallest
circle, and proceeding towards the largest, they are divided,
the 1st, 2, 8d, +th, 5th circles,
into 3, % 5, 6, T cqualparts.

This first division must be made with great care, and
vught to be proved several times by one of the methods
already pointed out.

Let us suppose that another circle, or a part of a cir-
cle, is to be divided into equal parts; it must be placed in
such a manner that its axis shall be the same as those of
all the circles already drawn and graduated. Though
this is a matter of difficulty, the operation cannot be cor-
rectly performed, unless the centre of the circle to be
graduated, is placed directly over the common centre of
the circles already graduated. M. Gambey,* a celcbrated
French mechanician, found means to surmount this diffi-
culty, and by'a simple application of parallcls, to divide
a circle accurately, although it is not precisely concentric,
with the first graduated circles. \

Let ACB, fig. 18, pL. 8, be the surface on which an arc of a
circle, AB, is to be drawn, and graduated to correspond with the
graduation of the concentric circles on the plate. A frame at right
angles, CMNPQ, is held in such a manner, that the sides, CM, PQ,
are always directed towards the centre C, of the piece ACB, which

* The reader should, perhaps, be reminded that the division of a
circle or scale, is not so simple and easy as he might suppose from the
text. In Nicholson’s Operative Mechanic, will be found a descrip«
tion of Mr. Ramsden’s instrument for dividing the circle, which is
the best yet known. Thr.



DIVIDING THE CIRCLE. 57

is to be divided, and so that they can only be moved in a direction
parallel to their first position. When the graduated plate is turned
round a certain distance, let us suppose 50°, the side OCA, passes
to Oca, CB passes to cb, and the angle ach equals 50°. But during
this movement, the frame came;l to cmnpq, has not changed its di-
rection, and the line pq, is always in a right line with the centre
of the arc c. The indicator Q, marks, therefore, on the piece ACB,
a succession of points all equally distans from C, or an arc of a cir-
cle, having C for its centre ; and when the plate turns a degree, the
indicator Q, also moves a degree over the pnece to be divided.
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FOURTH LESSON.

On the various forms which may be given to the products
of art, by the right line and circle.

AmonG the plane figures terminated by right lines,
some are regular, and some irregular; some are simple,
and others complex. We shall confine our attention to
such as are most frequently made use of in the arts.

Two right lines, whether parallel or not, cannot ¢n-
close, completely, any portion of space; to effect this,
‘three lines, not parallel, are at least necessary.

A rectilinear triangle is a portion of a planc surface
inclosed by three right lines. We distinguish in a trian-
gle, ABC, fig: 1, pl. 4, its three sides, AB, BC, CA, its
three angles, and the three summits of these angles,
A, B, C.

It is a remarkable property of tnanglcs, that the sum
of their angles, whatever may be the size and form of the
triangle, is equal to two right angles. This property is of
considerable utility in the arts.

To demonstrate it, let us prolong tuae side AB to BE, fig. 2, pl.
4, and draw BD parallel to AC. The two parallels AC, BD, being
intersected by the two right lines, ABE, BC, we shall have, 1st.
the angle CAB, equal to the angle CBD. 2d. the angle ACB, equal
to the angle CBD: whence the three angles A, C, B, of the tri-
angle ACB, equal the sum of the angles, ABC, CBD, DBE, which
occupy the whole space on one side of the right line ABE, or of

two right angles.
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Whenever we know, therefore, two of the angles of a
triangle, we may find the third by a simple operation of
addition and subtraction.

Let us suppose, for examplg, that of these two angles one shall
be, 37°, the other 49° ; adding them together, we have 86°, which

being subtracted from 180°, or the sum of two right angles, leaves
94°, which is the third angle of the triangle.

Since the sum of the three angles of a triangle is equal
to two right angles, it is plain that if two of its angles
were right angles, the other would be reduced to no-
thing : a triangle, therefore, can have only one right
angle.

On the same principle, a triangle, ABC, fig. 1, pl. 4,
cannot have more than one angle an obtuse angle, or
greater than a right angle. A triangle, having one angle
greater than a right angle, is called an obtuse angled tri-
angle.

A triangle may have three acute angles, A, B, C, fig. 2,
pl. 4; it is then called an acute angled triangle.

A right angled triangle, ABC, fig. 8, pl. 4, is a triangle,
of which one of the angles, B, is a right angle. The Ay-
potheneuse, AC, is the longest side, and is opposite to the
right angle.

Let us now compare the sides of triangles with onc
another. The ‘right line being the shortest distance be-
tween any two points, it follows, that in a triangle, any
one side is shorter than the sum of the two other sides.

Of the two sides, AB, AC, of a triangle, fig. 1, pl. 4,
the longest side, CB, is opposite to the largest angle A.

Bet us take Ab = AB, and Ac= AC, and draw Bb, Cc, the an-
gles ABb, AbB, ACc, AcC, will be equal. ABC also, is greater
than ABb, and ACB is smaller than ACe, whence the angle ABC
is greater than ACB.

"The equilateral triangle ABC, fig. 3, pl. 4, is a triangle,
of which all the sides are equal to one another.

The triangle ABC, fig. 4, pl. 4, has two of its sides,
AC, BC, equal to each other, and is therefore called sym-
metrical. .
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In considering the two equal sides, CB, CA, as oblique
lines, equal with respect to the base AB, the perpendicular
CD, will fall on the middle of this base, and divide the
triangle into two equal parts. The symmetry of these tri-
angles justifies the appellation of symmetrical, given to tri-
angles which have two sides cqual.

In order fo comply with the laws of symmetry, houses
and public edifices arg, in general, covered with roofs, the
profile of which is a symmetrical triangle. Of ancient
Greek temples, and of the houses in Italy, the roofs are
in the form of an obtuse angle, fig. 5; of ancient Gothic
buildings, of steeples, and of the houses in the north of
Europe, the roofs are generally in the form of an acute
angle, fig. G, pl. 4.

An instrument for raising heavy bodies is, or rather for-
merly was, sometimes used, (for it is now supplanted in
England by more efficacious machines,) called a crab, fig.
7, pl. 4. It is composed of two picces of timber equal in
length, united at the end C, and separated at the other
end by the cross picce AB.  The rope by which the weight
is to he raised, passes over a pulley, fixed at C, and is
wound up by a windlass placed near AB. The triangle
ABC, is symmetrical, and the perpendicular or rope,
drawn from C to the base AB, divides it into two equal
parts. ' '

In the arts, when it is necessary to complete a trian-
gle, some parts of which only are known, the following
is the method of proceeding.

First.—When the three sides, 1, 2, 8, fig. 9, pl. 4,
are known.

The right line AB, is first drawn equal to side 3, in the posi-
tion in which the angle is to be constructed. From the point A, as a
centre, and with an opening in the compasses equal to side 2, de-
scribe the are of the circle mCn ; also from the point B, as a centre,
with an opening of the compasses equal to side 1, draw the arc pCq.

Through the point C, where these two arcs intersect each other, the
right lines, CA, CB, are drawn to the points A and B; ABC is the

triangle required. .
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Seconp.—When two sides, 1 and 2, and the angle «,
fig. 10, are known.

In a suitable position, draw the line AB equal to side 2; then
with any instrument which méasures angles, such as the pretractor,
the compasses, etc. draw the line AC so that the angle BAC equals
a, the angle given. AC is taken equal to side 1, and the right line
BC, being drawn, we have the required triangle. o

Turmwp.—When one side only, 1, and the two angles,
a, b,the summits of which are at the two extremities of the
given line, dre known, fig. 11, pl. 4.,—

The line AB is drawn equal to 1; with an instrument for laying

down angles, draw the right lines AC and BC, making them form
with AB the angles « and b ; ABC is the triangle required.

All these operations are very simple, but the student
should repeat them frequently with his ruler and compasses,
that he may be able to execute them with both facility and
correctness, when he is required to do so in the excrcise of
his profession.

Three methods have just been explained of constructing
a triangle. 1st. With the three sides given; 2nd. with
two sides and the angle between them given ; and 3rd. with
two angles and the side included between them given ;
and in each case we have scen that these data are suf-
ficient.

Consequently, 1st,, when the three sides of any two
triangles are respectively equal, the triangles are equal ; it
is, in fact, the same triangle constructed with the same ele-
ments in different places.

2nd. When two triangles have two sides, and the angles
included between them respectively equal to one another,
the two triangles arc eqtial.

8rd. When two triangles have two angles,. and the side
included between them equal, they alco are equal.

Thus the two triangles ABC, abe, fig. 8, pl. 4, are equal ; first, if

AB equal ab, BC equal be, and AC equal ac; second, if AB equal ab,
BC equal bc, and if the angle B equal the angle b, B being comprised
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between AB and BC, and b between ab, and be ; third, if AB equal
ab, if the angle A equal g, and if the angle B equal the angle b.

These three conditions of equality being frequently of
service in the arts, as well as in geometrical demonstration,
and in mechanical science, they ought to be well knawn,
and constantly present to the minds of workmen.

If any oné of the three conditions, according to which
two triangles are equal to one another, is not rigorously
fulfilled, the two triangles will not be equal. There will
be some angle or some side in the one, not cqual to the
corresponding angle or side in the other. In practice it is
of much consequence to be readily aware what arc the
conditions indispensable to accurate construction; it pre-
vents a multitude of mistakes, and when errors are com-
mitted, points out speedy methods of correcting them.

Figures of four sides, or quadrilaterals, are next to he
treated of. Some figures, ABCD, fig. 12, pl. 4, are com-
pletely inclosed by four right lines; they have four angles
and four summits, A, B, C, D. The right lines, AC, BD),
which unite the opposite summits, are called diagonals.

In geometry all figures of four sides are called quadri-
laterals. Some of them are distinguished, in consequence
of their forms being more or less regular, by particular
names.

A trapezium ABCD, fig. 13, pl. 4, is a figure of four
sides, two of which AB, CD are parailel.

A trapezium is rectangular, fig. 14, when a third side
BC, is perpendicular to the two parallel sides.

A trapezium is symmetrical when the two non-parallel
sides, AD, BC are, in relation to the two parallel sides,
equally oblique.

In some buildings the upper part of the roof is formed
of a symmethcal triangle, MDC, fig. 15, while the lower
part is formed of a symmetrical trapezlum, ABCD. 'This
sort of roof (a hip curved rodf) is called in France a
mansarde, from the name of the architect, M. Mansard, to
whom we are indebted for it. The vertical line, MEF,
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is the line of symmetry both of the triangle and of the
trapezium.

The parallelogram, fig. 16, is a figure, which has its op-
posite sides parallcl to cach ether. .

This figure is of constant recurrence in the arts; we
meet with it frequently in different parts of machines, i
serves to produce what is called the parallel motion, etc.

According to the properties of parallelq, demonstrated in
the sccend lesson, the opposite angles of a parallelogram,
A and C, fig. 16, on the one hand, and D and B on the
other, are equal to cach other, two being acute, and two
obtuse angles. If we add one of the acute angles to one
of the obtuse angles, the sum will be equal to two right
angles.

Let us extend the side DC, fig. 16, to E, the right
lines AD, BC, being parallel, the angle ADC will equal
BCE, and DCB plus BCE will be cqual to two right
angles.

Ax it has been proved that parallels included between other paral-
lels are equal—(second lesson ) it follows that the opposite sides of a

parallelogram are equal to one another : thus AB is equal to CD, and
AD to BC.

The point, O, the intersection of the two diagonals, is the
middle of both.

AOC, DOB, fig. 16, pl. 4, being diagonals, the triangles ABO,
DCO, are e¢qual ; for, first, AB=DC ; second, the angle ODC equals
the angle OBA, third, the angle OCD=0AB, according to the
properties of parallels ; consequently, OB=0D, and OA =0C.

Of ‘two diagonals, AC, DB, fig. 17, pl. 4, the longest,
AC, is pp;')osite to the largest angles, B and D.
Let us draw DE, CF perpendicular to the sides AB, CD; these

perpendiculars will be equal. But EB is shorter than AF, whence
the oblique DB is shorter than the oblique AC.

The parallelogram, ABCD, fig. 18, pl. 4, the four sides
of which are equal, is called a lozenge. In consequence
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of its regularity and beauty, it is very frequently employ-
ed in the ornamental arts.

When two sides of a parallelogram are at right angles,
all the angles are right angles. o

If the angle A of the parallelogram ABCD, for example, fig. 19,
pl. 4, is'a right angle, the sjde AD is perpendicular to AB. B( is
also perpenditular to AB; and the two angles A and B, as well as
their angles D and C, ard right angles.

Figure 19, pl. 4, is called a rectangular parallelogram,
or simply a rectangle. In it the diagonals AC, BD, are
equal.

To prove this, it is sufficient to remark that the two right-angled
triangles ADC, DAB, are equal. First, the right angle D equals the
right angle .\ ; second, the side AD is common to the two triangles,
and, consequently, equal for both: third, the side D' of the angle
D in the first triangle, equals the side AB of the anule .\ in the se-
cond, whence the third side AC of ADC equals the third side BD
of DAB; or AC, BD are the two diagonals.

A square, ABCD, fig. 20, pl. 4, has its four sides and
four angles equal. -

In summing up the properties of four sided figures, the
following deserve to be engraved on the memorices of the
workman and youthful artist.

In the square, the four angles are equal, and are right
angles; the fopr sides arc equal to one another, and the
two diagonals to each other.

In the rectangle the four angles arc equal, and are right
angles; it has two long sides equal to cach other, two
short sides, equal to each other, and two diagonals also
cqual to cach other.

In the lozenge the four sides are cqual to one another ;
it has two obtuse angles equal to cach other, and two
acute angles equal to each other. The diagonals are un-
equal.

In the parallelogram there are two long sides and two
large angles equal to each other, and two short sides
and two small angles also equal to cach other. "The dia-
gonals are uncqual, the longer being opposite the larger
angle, and the shorter opposite the smaller angle.
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Symmetry of four sided figures. By doubling these
figures into two parts, so that both shall be equal to one
another, we can prove that— lst. The trapezium, with
oblique equal sides, fig. 15, pl. 4, is symmetrical in rela-
tion to the right line, EF, which passes through the middle
of its two bases; 2d. The rectané,le, fig. 19, pl. 4, is
symmetrical in relation to any nght line drawn through
the middle of two opposite sides { 8d. The lozenge, fig.
18, pl. 4, is symmetrical in relation to cach of its dia-
gonals ; 4th. The square, fig. 20, pl. 4, is symmetrical in
relation to its two diagonals, and to any right lines passing
through the middle of two opposite sides. This symmetry
of four sided figures is of great importance in the arts and
in mechanics.

We know that in all triangles the sum of their angles is
equal to two right angles.  But all figures of four sides,
ABCD, fig. 12, pl. 4, may be divided into two triangles,
ABC, AC l) the sum of the three angles of each bemg
equal to two right angles.  The six angles of these two
triangles are equal therefore to the four angles of the figure
ABCD.  Consequently, in four sided figures, the sum of
their angles equuls twice two, or four right angles.

If wehave a five-sided figure, ABCDE, fig. 21, pl. {, we can from
one snmmit, A, draw two right lines, AC, AD, to the summits C and
D, and we shall divide the figure into three triangles; the sum of
the nine angles will be equal to the five angles of ABCDE.

Thus, in five-sided figures, the sum of the angles equals
three times two, or six right angles.

Following the same method, we shall sce that the sum
of the angles, in figures of

_ T8, 4, 5, 6, 7, 8, sides,
isequalto 2, 4, °G, 8, 10, 12, right angles.

Relation of the circle to figures terminated by right lines.
Around the three summits of a triangle, ABC, fig. 22, we
can always describe a circle in the following manner:—
From the middle of AB draw mo perpendicular to AB;
and from the middle of BC o perpendicular to BC. 'The
point o, where these perpendiculars meet, is equally distant
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from the three summits A, B, C, and is therefore the cen-
tre of a circle which passes through these three points.

A triangle thus placed within the circumference of a cir-
cle, is sald to be inscribed withiy it.

In a right-angled triangle, fig. 23, pl. 4: ora triangle
having one angle, B, right angled, the centre of the unc!c
0, “hlch passes through the summits of the triangle, is in
the middle of the side® AC, opposite to the right angle,
and which has before been called the hypothenuse.

The following is the most simple method of demon-
strating this truth :—

In the rectangle ABCD, fig. 23, pl. 4, the two diagonals
are equal ; and, consequently, their halves, O\, OB, OC,
0D, which may be taken as radii of a circle, are also cqual;
consequently, we may always inscribe a rectangle, fig. 25,
as well as a square, fig. 26, in a circle.

To give a demonstration of this, independent of the propertiex of
rectangular fizures, draw MO from the middle of AB, fir. 23, per-
pendicular to AB, and from N, the middle of BC, draw NO perpendi-
cular to it. The point (), where these lines meet, i~ the summit of two
equal triangles, AMQ, BMO, in which the acute angles correspond-
ing to AMO, BMO, are designated by the figures 1, 2. The sum of
these angles is equal to a right angle.  But in the large, right-angled
triangle ACB, the angle A and the angle (' are together equal to a
right angle ; whence the angles 1,1, 1, 1, are all equal; and so are
theangles 2, 2, 2, 2. The four angles 1, 1, 2, 2, round the point O, are
1 plus 2, and 1 plus 2, or equal to two nght..mgles ; whence AO and
OC are in a right line ; consequently, also, the point O, equally dis-
tant from A, B, C, is on the hypotheneuse, AC.

Any triangle, ABC, fig. 25, being given, if we construct
a triangle, ADC, cqual to it, we form a rectangle inscribed
in a circle, having its centre on the middle of AC.  The
diameter, therefore, of the circle inscribed about the sum-
mits, A, B, C, of the right angled triangle ABC, is the long
side AC of the triangle.

It follows from this, that every four-sided figure ABCD,
fig. 24, pl. 4, of which two opposite angles, B, D, are right
angles, may be inscribed in a circle, whlch passes about
the four summits of the figure.
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In fact, the diagonal AC, divides this figure into two
right angled triangles, both inscribed in a circle having
AC for its diameter,

Figures which have more than four sides, have receiv-
ed Greck names, signifyirfg the number of their angles and
sides. Thus a

Pentagon, hexagon, heptagon, octagon, &c.
has 5, 6, 7, . 8sides respectively.

A polygon, as the word expresses, is a figure of several
angles and sides ; and of these, regular polygons, in par-
ticular, deserve our attention, as they are of frequent and
important use in the arts.

Regular, polygons have all their sides and all their an-
gles equal.

According to this definition, if we find a point O, fig.
27, pl. 4, cqually distant from the three summits, A, B, C
of the regular polygon ABCDEF, it is cqually distant
* from all the other summits, and thus OA = OB = O('
= ()1), &

The symmetrical triangles AOB, BOC haviug their bases AB,
BC, and their symmetrical sides 0A, OB, OC, equal to one ano-
ther, are equal. The symmetrieal angles equal the balf of B, for
the two middle angles, being added together, form the angle B. The
triangle OCD, is equal to OCB, bhecause OC is common; (D = BC,
as the sides of a regmlar polygun; and the amele OCD = 0CB,
because one of these angles is the half of their sum. It may, in like
manner, be demonstrated that the triangles ODE, OEF, are equal
to the former, and consequently symmetrical ; whence their sym-
metrical sides OA, OB, OC, are equal. The point O, is conse-
quently equally distant from all the summits of the regular polygon,
and is therefore the centre of a circle, which is inscribed about

them all.

Since we can always describe a circle round three sum-
mits, we can also always describe a circle about a regular
polygon, whatever may be the number of its sides.

Conversely, a circle being given, we can always inscribe
a polygon in it of any number of sides we please.

It is only necessary for this purpose, to divide this cir-
cumference into as many equal parts as the polygon is to

r2 R
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have sides, and to conncet by right lines, the successive
points of division.

In the third lesson, the relation between the length of
the radii of a circle, and’ the distance between the points
of division, or the length of the Sides of any polygon, has
been stated. The student will, therefore, have no diflicul-
ty on this> subject. ' 4

Application of regular polyguns to regular fortificalions.
Military engineers employ regular polygons in constructing
regular fortifications ; the number of sides to be given to
the polygons depending on the size of the place to be for-
tified. The equilateral triangle and the square are not
used by them, except for ficld-work. 'The pentagon, her-
agon, and heptagon are employed to enclose small places
and citadels. Figures, with a greater number of sides, are
adapted for the fortification of large towns.

Application of the preceding forms, in paving, glazing,
mosaic, and generally to all inlaid work.—T'he object
generally proposed in all these branches of industry, is
to cover or fill a given space with figures terminated hy
right hines.  This object may be attained by an almost in-
finite variety of figures, according to the infinite combi-
nation of right lines, which may be traced on a plane
surface. .

If it is required that all the figures shall be regular,
and have the same number of sides, the problem is very
limited, and can only be solved by the following figures :—

1st. By equilateral triangles, the summits of which,
six and six, mcet at the same point, fig. 27, pl. 4.

2d. By squares, the summits of which meet, four and
four, at the same point, fig. 29.

3d. By hexagons, the summits of which meet, three
and three, at.the same point, fig. 28.

The following table will demonstrate these statements. The an-
gles of polygons,

of 3, 4, 5, 6, 7 sides
are 60° 900  108°  120°  128°7,
those of 8 9 10 11 12 sides

are o 135° 140° 144° 147°3 1500



APPLICATION TO PAVING, &c. 69

Now six times 60°, 4 times 90°, and 3 times 120°, make 360°. Nei-
ther of the other numbers of degrees dividing 360 by a round num-
ber, we cannot fill the space around any given point, by the an-
gles of any other regular polwgons, except those of three, four, and

six sides.*

It may be remarked, that m filling the space round
a point, fig. 27, with six cquilateral triangles, the six
outer sides form a regular hexagon, inscribed in a cir-
cle, Baving for its radii the interior sides of the trian-
gles ; —thercfore, the sides of a hezagon are equal to the
radius of the circle in which it is inscribed :— a proposi-
tion very useful in the arts.

The multiplicity of objects to be treated of in these
lessons, will not allow us to examine, in detail, many
figures, more or less regular, which, when combined toge-
ther, produce a pleasing effect.  T'o form and study them,
will exercise and correct both the taste and the imagi-
nation of students.

When we have to lay down a pavement, a piece of
mosaic, or some inlaid work,} on which persons are to

* The following table, taken from Lieutenant-C'olonel Pasley’s
** Complete Course of Practical Geometry,” may, perhaps, afford the

student some valuable additional information on polygons. Tr.
No. of Name of the Angle at the Angle of the Angle at the
sides.  Polygon. Centre. Polygon.  base of the ele-
mentary triangle
3 Trigon 1200 00’ 60° 00 30° 00
4 Square 90 00 90 00 45 00
5 Pentagon 72 00 103 00 54 00
6 Hexagon 60 00 120 00 60 00
7 " Heptagon 51 25§ 128 344 64 17}
8 ©  Octagon e45° 00 135 00 67 30
9 Nonagon 40 00 140 00 , 70 00
10 Decagon 36 00 144 00 72 00
11 Undecagon 32 437 147 164 73 38%
12 Dodecagon 30 00 150 00 75 00 -

+ It may be, perhaps, worthy of remark that the uncarpetted
floors of most French houses, belonging to opulerit people, as well
as of many public Yooms, suchyas libraries, galleries, &c. are form-
ed either of mosaic, or inlaid wood work, while the floors of most
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walk, it is of some consequence that too many summits
should not meet in any one point ; for in putting the foot
or any great weight on this point, it will be liable to give
way ; which would destroy the texture and solidity of the
work.

For this reason, equilateral triangles, the six summits
of which meet at the sume point, are scldom or never eni-
ployed. In general also, squares, which meet by fours
at the same point, are carefully avoided.

When a space is to be covered with regular four sided
pieces, equal to one another, the squares or rectangles are
ranged in straight lines; and the joints of the squares
of one row, are placed directly in the middle of the
square of the next row. On this principle stones are
generally emploved in masonry, of the shape, and pla-
ced in the mauner, pointed out in fig. 30, pl. 4.

The Romans frequently made the bricks and stones
they used for building walls, of a lozenge shape; and
from the resemblance of this sort of masonry to net work,
fig. 81, they called it net work, opus reticulatum.

The form of a hexagon, for paving, or for making the
tiled floors of apartments, has many advantages, fig. 98.

Bees construct their cells of the form of a regular hex-
agon, which enables them, with any given quantity of
wax, to inclose the largest possible space for the apartment
of each member of the hive.

In very remote antiquity, the human race construct-
ed very large and very solid buildings with enormous
blocks of stone, cut into the form of irregular poly-
gons, and many of the monuments then erected still exist
in Italy, Sicily, and Greece. These structures have been
called cyclopean ; they are represented by fig. 32.

The advantage of this species of building is, that we
can profit by the natural form of the pieces or blocks
of stones destined for the erection of such monuments;
of the houses of the middle classes are paved or covered with tiles.

Hence, perhaps, the importance give: to these subjects in Baron Du-
pin’s lectures, Tr.
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cutting and fitting them to each other, so as to lose the
smallest possible quantity of their whole mass.

In the celebrated jetty or breakwater, constructed at
Plymouth, for the protgetion of that harbour against
the violence of the sea, the top and the slope of the inner
side, on the upper part, are covered with large blocks of
marble, cut and fitted to one another as in the cyclo-
pean construction. 'The connexion®of the blocks with one
another, prevents the sea from moving any single block,
and makes each contribate to the solidity of the whole.

Of figures terminated by right lines, and portions of
the circle.—If figures, composed only of right lines, offer
to us a great variety of form, it may be easily imagined
how much this variety must be augmented, by combining
right lines and portions of the circle together.

The most simple of these consists of a semi-cirele and
its diameter.  Such is the figure of the graphometer and
the protractor, mentioned in the last lesson, and repre-

sented in fig. 17, pl. 8.

Such also was the form of the theatres amoung the an-
cients, and such is the form of amphitheatres employed for
public meetings, lecture rooms, &c. among the moderns.
The orator,* or the professor, takes his place at the centre,
C, fig. 33, and the auditors are ranged on banks, in the
form of semi-circles, placed at equal distances from each
other, all having the point C, for their common centre, and
AB for their diameter.

If from the extremities of the diameter AB, fig. 34,
pl- 4, we draw lines perpendicular to the diameter, they
will be tangents at A and B, to the semi.circle AMB. If
we then draw, at a certain distance, the right line CF,
purallel to AB, we sliall’ have a figure very frequently met

® This remark applies to the Chamber of Deputies in France, but
not to either the House of Peers or Commons in' England. In them
every member rises in his place, wherever that may be, to speak. In
the Chamber of Deputies, an elevated pulpit, called the Tribune, is

placed in the centre of a building, having the form of an amphitheatre,
and every membes who addresses the Chamber, meendl the tribune

for that purpose. o Tr.
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with in works of art ; it is that of arches, and door-ways of
a full curve, or semi-circular arch.

If on the top of the rectangle ABEF, fig. 85, with AB,
for a radius, we draw, first, from the point A, as the
centre,” the arc BM, and second, from B, as a centre, the
arc AM, we shall form what is called an arch of third
point. .

Arches of a semi-citcular form, were used in the archi-
tecture of the Greeks, and are used generally in madern
architecture : arches of the third point belong to Gothic
architecture. These two descriptions of architecture, are
indebted to thesc different geometrical forms for those dis-
tinct characteristics which are essential to cach. Each
has fair claims to estecm and admiration, and cach merits
to be particularly studied, as well for the excellence of its
forms and proportions, as for the boldness and solidity ‘of
its buildings.

If we describe a semi-circle on EF, fig. 34, as a diame-
ter, we shall have an outline AMBFNE, which represents
an arena, such as was appropriated by the ancients to
public horse races, and therefore called kippodromes.
The posts round which the horses were to turn, were situ-
ated at C and ¢, of the circular parts of the building.

The moderns use, in their bridges and public buildings,
elliptical arches, which are formed of the ares of scveral
circles. In the arch, fig, 36. there are three arcs, D, E, F,
having their three centres at O, P, Q. (See Lesson 14th.)*

In a species of Gothic, or rather Moorish, architecture,
the arches are formed of two short arcs of a small circle,
BD, GF, fig. 37, prolonged by two right lines, DE, FE,
which form an obtuse angle. In England, there are many
Gothic edifices constructed in this styie, which are not less
remarkable for the clegance of their form, than for the
boldness of the structure ;—the Chapel of Henry the
Seventh, at Westminster ; Trinity College, Cambridge ;

* This kind of arch is called, from its shape, a basket-handlc arch
—voute en anse de panier.
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and of the Palace, at Windsor, may be mentioned as ex-
amples.

Architectural profiles.— Architects have found means, by
some very simple combinagions of right lines and parts
of the circle, called mouldings, of ornamenting the pro-
files of their buildings. Such mouldings are also frequent-
ly uscd by the house-carpenter, the joiner, the cabinet-
maker, and the machinist ; who ought to understand their
geometrical principles.

The most simple of these mouldings is the fiflet, com-
posed of two parallel lines situated ncar to each other,
and terminated at one end by a perpendicular: AB, fig.
88, is such 2 moulding. A succession of them, placed one
above another, fig. 3Y, represents the capital of the Gre-
cian Doric order of architecture; called also the Pastum
order, from the celebrated temple found at that place,
surrounded by superb columns of this description.

The fillet is gencrally placed in connexion with the
edifice, at its exterior extremity by means of a quarter of
a circle sitnate helow it, to which it is a tangent; and at
its interior extremity, by insertion into the vertical face of
the wall, pilaster, or column, which is to be ornamented.

Generally also, the fillet is surmounted by a projecting
half-circle, fig. 38, called a band or corona. *

The quarter of a circle is also employed scparately in
relief, or convex, AmB, fig. 40, and also sunk, or concave,
AnmB, fig. 41.

Two quarters of a circle AMB BND, fig. 42, having

the same radius, and their centres O, P, on the same verti-
cal line, form the talon or cimatium : it is also termed an
ogee. .
Two quarters of a circle, AMB BND. fig. 43, having
the same radius, and their centres on the same horizontal
line, form the doucine or cimatium, but distinguished as
cima recta.

Such are the very simple elements out of which archi-
tects have compgpsed all that delightful variety o.f cornices,
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friezes, bascs, and capitals, which we see in edifices both
ancient and modern.

It must not be supposed that the combination of these
forms is entirely arbitrary, and may be made by chance, as
it were, or by the uureflecting caprice of an ill-regulated
imagination. The art of ornamenting the profiles of edi-
fices, is indebted for its perfection to the faithful ob-
servation of the laws of simplicity, varicty, and contrast.
In place of scattering ornaments with a too lavish hand,
they ought to be so collected into groupes, that the cye
can easily comprehend them; and they ought to be se-
parated from one another by a considerable space that is
both plain and uniform, that the eve may be neither fa-
tigued nor confused. In each group, the most delicate
mouldings should be opposed to the most massive ; and
forms consisting of right lines, to those composed of
circles; in order that each may bring out or contrast
with those which surround it. Such are the principal
rules of this part of the art of ornamenting buildings,
—rules which not the great architects alone of Greece
and Italy discovered and practised with amazing suc-
cess,—but which were also employed, with not less art
and skill, in the fine monuments which still remain to us
of ancient Egypt, in the Gothic cdifices of the Middle Ages,
and in the mosques and palaces which the Moors crected
in Spain, when they cultivated in that country the arts
and sciences, then almost unknown, or annihilated, in every
other part of Europe.

An application of geometry to architecture, much more
important than exterior decoration, is in the conception
and drawing the plans of buildings. The forms adopted
by architects may almost all be reduced to the right line
and circle. In some rare cases, in which they require more
complicated forms, they take parts of different circles: as
for example, in constructing the elliptical arch.

When{architects have occasion to construct an edifice in a
spot entirely free, they would be inexcusable were they not
to adopt regular forms, the simpiicity, uniformity, and sym-
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metry of which gratify the eye, and display that spirit of
wisdom and order which man has, in all enlightened ages,
exhibited in public and national monuments.

T'he form most generally *adopted is a square or a rec-
tangle, because these figures adinit most easily of those
subdivisions which are nccessary for accommodation in
the interior.  These forms have no_ other intunvenience
than that of not allowing of circular lines or apart-
ments, ‘without a loss of space, or without leaving some
abrupt corners of an irregular shape, which ought care-
fully to be avoided. Some use, however, may be made of
such corners, for concealing objects that ought not to be
exposed to view, or for constructing in them concealed
staircases.

In towns, where space is very valuable, the architect is
obliged to profit by the very smallest spot of ground, and
to plan, as well as he can, a suite of regular apartments,
in a building of an irregular form. In such cases, the art of
combining together geometrical figures, may be of great
usc to builders, and suggest to them the forms best adapted
to any particular situation.

Some architects think they are rendering their pupils
skilful by encouraging them to form plans of edifices, which
would cost millions of moncy, and which might be built
without any difficulty, on some imaginary plains. By this
means they give their scholars a taste for ridiculous gran-
deur, and inspire them with ideas of magnificence for which
the people must afterwards dearly pay. It would be much
better to excrcise the inventive minds of young men, in
forming plans of buildings suitable to those irregularities
of form which we always meet with in large cities, where
the houses are closely and irregularly pressed against one
another.
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FIFTH LESSON.

Equal, symmetrical, and proportional figures.

Two figures are equal when they are precisely of the
same form, and of the same size; so that, one being pla-
ced on the other, every point in one coincides, or is blend-
ed with the corresponding point in the other.*

To make one object exactly equal to another, is of great
importance in the practical arts, and geometrical science
furnishes the workman with many means of doing it.

In engraving, in sculpture, and in many other brauches,
both of the uscful and ornamental arts, for example, we
must make moulds or models, or execute work according
to models, so that it shall be precisely the same as some
given object.

In the second lesson it has been mentioned, that by
means of parallel lines of the same length, we can easily

* The following definitions may, perhaps, make the subject mat-
ter of this, and subsequent lessons, clearer to the reader:—

EquivarenTt figures are such as have equal surfaces as to quan-
tity.

]yiquu. figures are such as, when applied to each other, coincide
in all their points.

Figures are ‘similar, when they have their angles equal each to
each, and their homologous sides,—sides which have a corresponding
position, in the two figures, or which lye adjacent to equal angles,—
proportional.

Figures may be equivalent, though very dissimilar. Equal figures
are always similar, but similar figures may be vory unequal.
) ’ Tk.
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construct one figure cqual to any other, and so place it,
that the corresponding lines in the two figures shall be
parallel.

This method is liable to error, in proportion as the pa-
rallels increasc in length and are distant from one ano-
ther. To these causes of error, we must add the greater
or less imperfection of compasses, rulers, and ipstruments
employed to measure distance ; andethe greater or less
degree of fineness in the points of pencils, pens, or other
instruments uscd for drawing lines.

The means by which the geometrician satisfies himself,
in many cases, that two figures arc equal to one another,
may also cnable the artisan to make one figure equal to
another.  The geometrician sometimes places one of two
fizures on the top of another, and observes that neither,
in airy point whatever, projects beyond the other.

Let it be supposed, that we are required to mahe any
figure whatever, such as ABCD, fig. 1, pl. 5, on any
extended surface whatever, M\PQ, such as a piece of
cloth, a flat sheet of metal, &c.  Place ‘the figure ABCD,
ou MNPQ, in such a manner, that it will form, or fall on
abed, in the double fig. 1, pl. 5; then cutting MNPQ,
according to the sides ab, bc, cd, we shall have albcd
exactly equal to ABCD. .

Very often, in place of immediately cutting out the se-
cond figure by the first, the outline abed, is traced with
a pencil, with chalk, or with ink, taking the edges of the
pattern figure as guides ; which being removed, the re.
quired figure is more easily cut out.

By this mcans many workmen, such as shipwrights,
stone masdns, braziers, tinsmiths, tailors, &c. &c. fashion a
piece of stuff’ into any givén form.

When the figure to be imitated isnot cut out of, but only
marked on a surface, the above method cannot of course
be employed. In this case, if the figure is of little or no
value, all the prominent points w, b, ¢, d, being pierced
through, they may be transferred to the other surface,
MNPQ, and be®afterwards connected by lines. Very
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often, the outlines are pierced by some pointed instru-
ment, at short and equal distances, in their whole length ;
then, with a little bag, containing fincly powdered char-
coal, we strike on the model, as it lics over the other sur-
face, MNPQ, and the fine charcoal dust passing through
the small holes, traces, very accurately, the outline of the
figure to be made.

When the model tannot, or must not be perforated, a
sheet of transparent paper is laid over it, and its exact
form, or the parts to be mad-, are drawn or copicd on
the paper. The paper may be transferred to another
surface, and pierced, or the figure may be cut out, or
otherwise copied, as is most convenient.

Symmetry of figures.—Two tigures, abed, a'i’c'd, fig. 1,
repeated, pl. 5, are symmetrical when their corresponding
points a and ', b and ¥, ¢ and ¢, &c. are placed on
parallel lines, all of which are accurately divided in the
middle by a perpendicular line MN. If we were to dou-
ble the frame MNPQ, on MNT'Q, it is plain that a will
fall on a’, b on &’y &e.—so that the tigure «bed, could it be
impressed on the surface MNP'Q, would produce the
figure a’b'cd’y which is symmetrical to the former. By
means of parallels, therefore, and a perpendicular, dividing
them in thc middle, we can always make a figure, a'b'e'd,
symmetrical with another, abcd. '
" Production of equal or symmetrical figures, by engrar-
ing, printing, lithography, &c.—The object of these arts
is to form, on a surface of wood, metal, or stone, or on
any other substance, certain figures, of which the impres-
sion may be afterwards transferred exactly to some other
surfaces. It must be obscrved, that the figurc produced
js reversed, in regard to the plate by which it is made,
for the right of the plate is imprinted on the left, and
the left on the right of the paper, or other material, em-

loyed to receive the impression; we must, therefore, write
or draw the figure reversed, on the plate, if we wish that
the impression shall represent an object in its natural po-
sition. 'For this reason, types are cast reversed, and pla-
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ced by proceeding from the right to the left, in order
that, when applied to the paper, the letters they pro-
duce may be in their natural direction, ard be read from
left to right.  Thus, mere, impression does not produce
copies equal to the figure of the plate, but symmetrical.

Production of equal figures by stereotyping.—Matrices
are cngraved, composed, or drawn, and by means of
them, impressions are made on plates, which are again
employed in the ordinary wmode, to print writing, music,
drawings, &c.. At the first impression, the objects pass
from the left to the right, and at the second, repass from
the night to theleft. In stereotyvping, therefore, the printed
objects are identical, or are equal on the primitive matrix,
and on the copies taken from the intermediate plate.  On
this principle, the matrix for stercotyping has the letters
plactd or cut on it in a natural position, so that the letters
made by it are in a reversed position; but the impression
obtained from them is in a natural position.  In lithography
and in copper-plate engraving, the objeet to be produced
is drawn or written in a natural direction, on paper or on
prepared cards i the figure or writing is then transferred to
the stone or copper in a reversed position, and of course
shows, in the copies taken from the stone, the engraved
object in its natural position. . .

Gceometry supplies us with other means of making one
figure equal to another.

Let us suppose ABCDEFG.A, fig. 1, pl. 5, to consist of any num-
ber of sides. If from the summit or vertex A, of this polygon, whe-
ther regular or irregular, we draw right lines to ull the other sum-
mits, we shall divide the polygon into triangles, and a- it is easy to
construct one triangle equal to another, by making suecessively the
tri:mgle abe equal to ABC, acd equal to ACD, ade equal to ADE, we

shall, in the end, form completely the figure abedefy, ﬁg 1, repeated
equal to ABCDEFG.

We may reproduce any figure, ABCDEFGA, merely by using com-
passes to measure the length of its sides, and a protractor or other
instrument, to take the size of the angles. Let us first draw theside
ab equal to AB, then placing the centre of the protractor at B, and
moving the base or ¢iameter to the side AB, we can take off precisely
the number of degrees and fraetions of degrees which measure the
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angle ABC. The protractor is then placed on b, the point where it
is proposed to construct the new figure, and the number of degrees
transferred from the other figure is marked off. Let m be the point
corresponding to the number of degrees on the protractor—marking
m on the paper with the point of tke compass, and drawing the right
line bme equal to BC, a second side of the figure is ubtained. After-
wards, placing the protractor on C, the angle BCD may be marked off
and transferred to bed, and thus we may proceed with all the other
angles, till the whole bp completed. 1If the operation be well per-
formed, when the last right line gu is drawn, it ought to terminate
at the point e, and have the length of GA. But when the shles of the
polygon are numerous, it is nearly impos<ible to make u figure so very
correct. The least error in any one angle influences the whole, for
the position of any one side depends on the direction of the preced-
ing sides. Any error also in the length of a side, enlarges or lessens
the figure, by carrying out or bringing in too far all the sides of the
polygon.

These sources of error show how very much some
methods of operating, which are rigorously correct in the-
ory, may give rise to inaccuracies in practice. It is only
by a goud selection of different methods, that it is possible
to unite simplicity und case of execution with precision.

By the following methods we may ascertain if one figure
be made exactly equal to another :—

If we construct successively the triangles abe, acd, fig. 1
repeated, only taking into cousideration the comparison
between them and those to which they are equal, we shall
hardly be able to avoid very considerable errors.  In fact,
the number of errors committed in each angle, increasing
as the number of angles increases, multiplies the chance
of error. It may therefore happen that the sum of the
angles constituting bag, will differ very considerably from
BAG, though each of the particular angles bac, cad, which
it includes, may differ very little from the corresponding
angles, BAC, CAD.

We have the fellowing geometrical methods of ascertaining the
equality of the single angle and of the whole.

1st. The employment of parallel lines, because two angles having
their sides parallel are equal.

2nd. By measuring with compasses, and thys ascertaining that
AB is equal to ab, AG equal to ag, and BG equal to bg.
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Srd. Draw the third side BG, bg of the two triangles ABG, «by,
and see if the point a is at the same distance from BG, as the pointa
is from bg ; that is to say, see if the perpendiculars AZ a», drawn
from A to BG, and from a to bg, are equal to one another.

The verification of the angles ABG alg being finished, draw the
lines AC ac, AD ad, in these angles, in order to form within them
smaller equal angles. Make AC equal to ¢c, AD equal toad, and
AE equal to ae, and draw the sides be, cd, de, of, and the second
figure will be produced. ‘

This latter part of the operation may be proved, by ascertaining
with a pair of compasses, or any other instrument, that CD is equal
to cd, and DE, equal to de, and that the angle ABC, equals the
angle abe, and BCD equals bed. As soon as the existence of an
error is ascertained, the whole of the preceding operations anst be
repeated and examined, to discover its source and rectify it.

The method of squares.—There is a method employed
by artists for making one figure equal to another, which
comsists in dividing two spaces into an equal number of
corresponding squares, fig. 2, pl. 5.

The figure to be copied is first divided into a number of
bands or stripes, by two series of parallel lines, each series
being at right angles to the other. The four sides are num-
bered in order to distinguish them more casily. A si-
milar division is made on the surface, on which a figure,
equal to the former, is to be made : then the prominent or
essential points found marked in cach square of the origi-
nal, are inserted cxactly in the corresponding square of
the intended copy.*

We first examine if there is anything in the space OI, OI. Within
the vertical band, L. 1I, 1. 11, we find the summit A, which is on the
line No. 4.4. We take on this line an opening of the compasses,
equal to the distance of this point from 1.1, and place it in the new
figurein I, I, at a. We afterwards observe that the point B is in

the square II. 111, 6. 7. We measure the distance from B to
the lines I1, I1,and to 6, & ; and transferring these distances to the

* In extensive topographical surveys, whether for the purposes of
war, or ascertaining the value of land, the space of which a map is
to be drawn, is frequently divided into squares ; one person surveys
a square, marked on two lines 1, I, another a square marked 2, I1.
a third surveys a sguare marked 38, 11I, &ec., and all the surveys,
being afterwards collected, form the map of the whole sphce.
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new figure, it gives us the point b, In the xame way we may find the
place of every other point ¢, d, ¢, and draw the polygon abede—a
equal to ABCDE—A.

In this method there are three sources of error,—lIst.
the parallelism, and equal distduce of the lines which form
the square ; 2nd. in drawing the lines, with respect to their
being all perfectly straight at every point, and of an cqual
breadth throughout;, 3d. in measuring the position of
each point.

These observations will make the artisan sensible how
much the most simple methods are liable to error, and
how necessary it is in practice to acquire that skill, care,
patience, and good judgment, that fineness of tact and
perception, which no theories or methods can give.  Cor-
rectness is the characteristic of art in its greatest per-
fection. It is not surprising, therefore, that ages ofeat-
tention, and numerous trials, should have been requir-
ed to construct, correctly, any machine, of which the
principles are well known, and the form theoretically es-
tablished, but the successful working of which depends
on cach part being made with great precision. Nations
little advanced in those arts which depend on precision,
find it very difficult to overtake people who have preceded
them, even when they are at iberty to borrow their im-
provements ; for every advance already made, serves the
more skilful people as a means,—by making more correct
instruments, &c.—of hastening their progress, and dimi-
nishing the chances of error in their operations. An ex-
tensive and correct theory, judiciously applied to practice,
can alone place those nations on an equality, which are not
so at present ; and can alone cnable those who use it, to
excel the competitors who now sutpass them in manufac-
turing skill: To accelerate this application, is the great
object of our present plan of instruction.*

* The reader should, perhaps, be reminded here, that theory will
not give precision in execution. There can be no doubt, judging
from the admirable elementary works which hgve been published,
in France and Germany, both on the sciences and arts, that the
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Proportional figures.—It is not only necessary to know
how to render figures symmetrical, or equal to one ano-
ther, but we must also often make figures of exactly the
same form as others, but differing in size. This opera-
tion is geometrically performed by means of proportional
lines, and similar triangles.

Let us suppose, that the right line AF, fig. 3, pl. 5, is
divided into equal parts, AB, BC, CD, DE, and that
from c.'l(h point of the division, the parallel lines Aa, B,
Ce, l)d Ee, &ec. are drawn in any direction.

Thesc para]lcla will be all at equal distances from cach
other. If we ditaw A1, B2, C3, D 4, at right angles with
the parallels, we shall have a suceession of equal trian-
gles, AB1, BCZC, (D3, for these triangics have their
corresponding angles equal, and morcover, one side equal 5
thit 1s, AB, equal to BC, cqual to D, equal to DE;
whence the perpendiculars A 1, B2, C& D 4, which are
the corresponding sides of these triangles, and measure
the distances between the consccume parallels, are also
equal to one another.

Let us draw the line mnopgr, in a different direction to
AT, the parts mn, no, op, pq, gr, will be equal to onc ano-
ther.

If we draw perpendicular to the parallels, the lines m 1,

theory of them is, and has long been, as well, if not better known
in those countries than in this. Nor can there be any doubt, parti-
cularly as to Germany, that the theoretical knowledge of art is as
much diffused, or was up to a late period, there as here.  Our supe-
riority in manufactures arises chiefly from the practical skill of our
workmen. They already possess that in a high degree, which both
theory and practice are to give our competitors. The remarks of
M. Dupin prove, that having preceded them, we must be much want-
ing to ourselves if now, or at any subsequent time, we allow them to
surpass us. That one nation which chooses to borrow the arts of
another, does not need to go through those ages of study and costly
trinls, of which M. Dupin speaks, shows us how closely the interest
of all men is united ; and that we can only profit by the knowledge
of other nations, when they are more enlightened than ourselves.
We must, therefon.a, be emulous, not jealous of their success.

o Tr.
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12, 03, these lines being equally distant, s 1, will be equal
to n%, equal 1 03. Morcover the triangles, mn 1, 102,
op 3, have their sides parallel, and consequently their an-
gles cqual, whence théy are equal. The corresponding
sides, mn, no, op, are of course ‘also equal.

When an oblique line, therefore, AF, fig. 3, pl. 5,
is divided into equal parts by a succession of parallels,
Aa, Bb, Cc, Dd, these.parallels also divide into equal parts
every other right line, mr, which interscets them.

This principle is made use of to divide a given right
line into as many equal parts as we wish.

Let us suppose that it is required, for example, to
divide into five equal parts, the line AT, fig. . From the
point A, draw another right line AX, in any dircction ;
then with any opening of the compasses, mark the points
1, 2, 8, 4, 5, cqually distant from one another. Draw
tlu‘ough~ the points 5, and F, the right line F'5, and then
through the points 1, 2, 3, 4, the lines Bl, (2, D3. E4,
parallel to ¥5. The line AF, will be divided into five
equal parts, for the five parts of this right line will be com-
prised between parallels equally distant from one another.

By these methods, the scales are generally divided, which
are employed to draw architectural plans, whether naval,
military, or civil. The importance of having an exact
division is very great, for all the lines to be drawn by
the scale, will be affected by its incorrectness. If any
part of the scale be incorrect, all the parts measured or
drawn by it will also be incorrect; and the same being
repeated a great many times, may give risc to some new
errors of no trifling magnitude.

In order to form a good division of a scale, it is necessary
that the divisions A 1, 1.2, 2.8. &c."should not be smaller
than AB, CD, DE. It is necessary also to place the points
of the compasses very exactly on the line AX, fig. 4, pl. 5,
the direction of which must, in the first instance, be scru-
pulously examined. The mark made by the compasses
should be as fine as possible, in order that the lecast pos-
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sible error may arise from its size; finally, when the pa-
rallels are drawn, care must be taken that the middle of
the line, whether drawn by a pencil or with ink, passes
exactly though the corresponding poiuts of division, and
that the parallelism is as correet as possible. When all
these conditions are attended to, we may trust to the suc-
cess of our operation, .

The division of AF, fig. 4, may be verified by the com-
passes, to see if the parts AB, BC, ('D, are rigorously
equal, :

Important minute divisions of the scale~Very often it i< requir-
ed to divide the unit of the seale AM, fir. 5, pl. 5, into so many
parts that each division cannot be marked eaactly and distinetly
on the small right line AM. In this case draw the parallels Mm,
Nu, Oo, &e. equally distant from one another; then draw the per-
pédiculars MF and Af, and the oblique lins AF. The lengths of
Bb, Ce, Dd, Ee, are to one another as 1, 2,3, 5 they represent the
divisions of MA into as many cqual parts as there ave equal spaces
between the parallels Mm, Nn, Oo, &, For example, if MA re-
presents one yard, and there are ten pamllfls to M4\, all equally dis-
tant from one another, the parts B, Ce, Dd, Ee, will be respectively
equal to 1,2, 3, 4, tenths of a yard. With a scale constructed on
this principle, instead of placing the points of the compasses on
the same line MA, they are placed according to the variation of the
numbers on Nu, Qo, Pp, &e., which is attended also with this great
advantage, that the scale lasts Jonger. .

Perification of the plan of models of" machines, or of
other productions of art.—When we have to examine and
prove the plan of any machine or object, which has been
made according to a scale, the first thing to be done is
always to ascertain if the scale itself be correct.  If it be
incorrect, the plan is dceided, without further examina-
tion; to be badly exgcuted 5 if correct, there may be other
sources of error which must be examined.

T'o return to the division of right lines by parallels : let
us suppose that AF, fig. 5, is intersected by the parallels
Am, Ba, ¥'r, at unequal distances from one another, the
parts AB, BF, comprised between these parallels, will not
be equal to each other.  The same will” be the case with
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mn, nr, and every other right line, mr, intersccted by these
parallels.

But if BF is greater than AB, nr will be greater than
mn, and the number of times or contains mau, so many
times will BF contain AB.

If, for example, BF contains AB four times, dividing BF into four
equal parts. BC, €D, DE, EF, and drawing the parallels Co, Dp, Eq,
we shall divide nr into as many parts no, op, pq. gr. equal to mu, as
there are parts BC, (', DE, EF equal to AB; whence BF will
contain AB as many times as ur contains mn. .

This relation between BT and AB, and between v and
mn, is expressed in the following manner.

BF divided by AB cquals nr divided by .

BT . nr

AB - mn .
OrBF isto AB as ar isto mm.
Or BF : AB  :owr : ma.

This is called geometrical proportion: in it there are
il

) ) - BF
always two relations, or terms equal to cach other, B and

nr . . P
ot thus the geometrical ratio of two quantities is the

first quantity divided by the second 5 the inverse ratio 1s
the second divided by the first.

A proportional BF : AB:: ur:mn has four terms, the
first and last of which are called the extremes, the two
others the means or middle terms.

It is a fundamental property of proportionals, that the
product of the two extreme terms is cqual to the product
of the two mean terms.

“To demonstrate this, we observe that thé proportion BF: AB::
BF nr

nr:mn, 34 and’ b being equal, if I multiply these two ratios both

by AB and mn, the products will be equal. But BF divided by AB
and multiplied by AB, and then by mn is BF multiplied by mn, or
the product of the extremes. In like manner, nr divided by mn, and
wmultiplied first by AB and then by mn will be merely nr multiplied
by AB; or the,produet of the mean terms, whenee the product of
the extreme equals the product of the mean terms.
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The usc of geometrical proportion is almost infinite,
both in gecometry and arithmetic ; as well as in its applica-
tions to other sciences, to commerce, and to various arts.

"The following is the arighmetical method of expressing
geometrical proportions by numbers.

Suppose fig. 5, pl. 5, to have been made by means of a
scale, we can represent each term of the propprtional BF :
AB::nr:mn, by the number of times that these portions
of the right line contain the unit of the seale.

If, for example, BF = 30, AB = 5. wr = 24, mn =4,
we shall have two identical proportions.

BF : AB :: wr : .
30 : 5 ::24: 4

In this manner we may cxpress the ratios and propor-
tigns of lines by the ratios and proportions of numbers;
and comversely the ratios and proportions of the latter
by the former.

If we divide 80 by 5, we shall bave a quotient which
expresses the first ratio, 6. If we divide 24 by 4, we shall
have a quotient which expresses the secoud ratio, 6. The
two being cqual, there is a proportional. If we divide
5 by 60, we have a siath as the quotient, and if we divide
4 by 2k, we have also a sirth as the quotient; thus, when
two ratios are equal, the inverse ratios are also equal.

The proportional 80 : 5:: 24 : 4 gives then at the same

.80 _ 9t 5 4
time = = & and also 30— 24

If we multiply by 24 the two terms of equality,
5 4 5
30 = a3 W shall have 30 X 24 = 4.

Now 5 and 24 ar¢ the mean, and 80 and 4 are the ex-
treme terms : thus one extreme term equals the sum of the
mean terms, divided by the other extreme térm.

It may in like manner be also demonstrated, that each
of the mean terms cquals the product of the two extreme
terms divided by the other mean term.

When we know, therefore, three terms’ of a geometrical
proportion, the fourth may be immediately Tound by the
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rule just pointed out. Itis the rule of three; so named
because with the three terms of a proportional given, we
may find the fourth. "Che rule of three is continually used
in calculations of finance, of trade, and of business; and
geometry also has its rule of three.

If we have three lines (A) (B) (C), fig. 6, pl. 5, it is easy to find

a fourth, D, so that we should have as follows.
(A)Y(B):: (C): (D)

Begin by making (C) = PR at the end of A = OP. Fromthe
extremity of O draw the right line O M in any direction ; from
the point O, take the length O Q = (B), draw I'Q, and draw RS
parallel to PQ. Then we have

OP:0Q:: PR: Q¥
Or (A):(B):: (C): D.

When the two mean terms are equal to one another, the
length or the number which represents them is what is
called the mean proportional between the extremes. Thus,
in the proportion

2 : 4 ;: 4 : 8
4 is the mean proportional between the two extremes 2
and 8.

In geometry, two lines being given in length, their mean
proportional is casily found. This will be hercafter ex-
plained.

Similar triangles.—If two triangles ABC, dabc, fig. 7,
pl. 5, have their corresponding sides parallel, these sides
arc proportjonal, and the triangles are similar. Thus

AB:ab:: BC:bc:: AC: ac.

To demonstrate this, let us move abe without changing the direc-
tion of its sides, so that the point b falls on A ; produce ac and BC
till they meet in a point m, and we shall have AC = em, Cm = be,
Dbecause they are parallels, comprised betweer parallels.

But AC and ¢m, Cm, and be, being parallel, we have

AB:ab::em=AC : ac
*AB:ab::BC : Cm=bc
Whence AB: ab:: AC:ac:: BC: be.

If two triangles ABC, abe, fig.- 8, are so placed and
formed, that AB shall be perpendicular to. ub, BC to be,
AC to ac, these two tlriangles are similar.
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In fact, changing nothing of the triangle abc, let us make it turn,
to the extent of a right angle, round the point «, then ac will place
itself in ac’ in a position parallel to AC ; it will be the same for ab’,
and &' ¢’ ; whence the triangle a'}'c’ will have its sides parallel to those
of ABC, and the two triangles will be similar. Consequently ABC
and abe are also similar.

When the sides of two triangles are propdrtional, their
corresponding angles are equal, and the triangles are si-
milar.* Let us suppose that the two triangles ABC a'0'¢’
fig. 7, pl. 5, have no other relation than this.

AB:al':: AC:ac :: BC: bc.

Let us imagine a second triangle abc having the side
ab = a'tf, and its three sides parallel, respectively to AB,
BC, and AC, we shall then have A : ab:: AC: uc:: BC:
be, Whence

AC ol AC
(llc AB e ac = AB ab...
yo _ BC BC
¢ =

AR @Y. b= yyab..

If 't/ = ab, a'c must be equal to ac and b'¢ = be.

The two triangles abc, «'b'c’, therefore, have their three
sides respectively equal and they are consequently equal :
thus the anglesa =a=A, ¥ =b=B,¢ =c¢=C.

Thus, whenever the sides of two triangles are propor-
tionals, the angles opposite the proportional sides are equal,
and the triangles are similar. -

When two triangles, ABC, abc, have the sides AB,
AC, proportional to ab, ac, and the angle A = a, the two
triangles are similar ; for if we place the angle a on A, the
proportienal AB : ab :: AC : uc requires that AC and «ac
should be parallel; then all the three sides are parallel.

If we draw, from the point O, fig. 6, pl. 5, three right
lines OPR, 0QS, OTU, cutting the two parallel lines
I'TQ, RUS, we shall have successively, in consequence
of the similar triangles,

OPT, ORU; 1st....OT:0U.:: PT : RU,
0QT, O8U; 2d....07T:0U:: QT »SU,
and finally, PT:RU:: QT : SU.
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That is to say, that the parts PT, QT, RU, SU of the
two els intersected by the three right lines proceeding
from the same point, are proportionals. This principle is
also true conversely. ¢

We may now extend our researches, and demonstrate
that two polygons having their corresponding sides parallel
and propor tional, are sjmilar polygons.

Let ABCDEFGA abedefya, fig. 9, pl. 5, be polygons, the corres-
ponding sides of which are proportional and parallel. Thus AB:
ab:: BC:be—::m: 1. The corresponding angles being furmed by
parallel lines taken in pairs will be equal ; therefore the angle b =B,
Draw the lines AC, ac; the two triangles ABC, abe will be similar, for
they have the angle B equal to 4 included between two proportional
sides. Whence AB:ab:: BC:8c:: AC:ac::m: 1. Then draw
AD and ad, the trian:les ACD and acd will be similar for the same
reason, for AC:ac::CD:od::m: 1,and the angles ACD, acd are
equal, their sides being parallel. Whence AD is parallel to ad.

By continuing the reasoning now begun, we shall at

length finish by resolving polygons into similar trian-
les.

¢ Consequently, if we know how to make similar triangles,

we may gradually and successively form polygons similar

to others, however complicated they may be.

The Sector, or compuss of proportion, is represented by
fic. 10, pl. 5, and is employed to facilitate proportional
reduction of figures. It is composed of two rulers equal
to one another, and equally graduated.

To reduce the dimensions of any figure from the ratio of agivenline
E, to the ratio of a given line F, we take on the side AB, the length
AM =E. The number of the degrees corresponding to the point

“M is noticed, as also the point N, where the same number is found
on the other graduated branch. With a pair of common compasses
extended to the length of F, and placing one of their points on M,
we opert or shut the sector, until the distance between M and N equals
F, it is then evident that every length A 1, A2, A 3, on the two
branches, must correspond to the distances 1.1, 2.2, 8.3, so that we
have the following proportions

E:F-: AM:MN:: Al 11::A2::22:. A3:83...



PROPORTIONS OF THE CIRCLE. 91

With a pair of common compasses, therefore, we may immediately
take the reduced lengths 1.1, 22, 3.3, which correspond to the
lengths A1, A2, A3..

When we have not a sector at hand, we may make one
by drawing two lines AB, AC, fig. 11, pl. 5, in the fol-
lowing manner. Draw first AB = E, from the point B
as a centre, with an opening of the.compasses, BC = F,
describe the arc mCn ; and from the point A, as a centre,
describe the arc BDC. From the point C, where this
latter arc intersects mCn, draw AC. If it is required to
diminish, in the ratio of E to F, any length whatever, say
Ag, from the point A as a centre, describe the arc gkh, the
distance of the points g, A, is the reduced length, for we
have

. E:F:: AB:BC:: Ag: gh

Of similar regular polygons—Regular polygons of the
same number of sides, are similar. The sides being equal
to cach other are proportionals, and the angles not depend-
ing on the length of the sides, but on the number of them,
are the same in both polygons.

T'he perimeters (contour) of similar polygons, are to each
other as mere sides or lines.

In proportion as the sides of a polygon are multiplied,
it approaches to the circle in which it is inscribed.

We may therefore consider circles as similar figures, or
figures, of which, the lines similarly placed, are propor-
tional.

The circumferences of circles are to one another as their
radii.

If in tivo circles we inscribe two regular polygons, hav-
ing the same number®of sides, ubcdefa, ABCDEFA, fig.
12, pl. 5, the ratio of the proportional lines: in the two
figures will be, 1st. that of the radii of the two cir-
cles, 2d. the sides of the two polygons; 3d. the perime-
ters of the two polygons ; 4th. the circumferences of the
two circles.

If we draw a diameter AB, in the urcle, fig.*13, pl. 5,
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and if from any point C, in this diameter, we draw CP
perpendicular to it, and also draw the right lines AP and
BP, we shall form a triangle APB, having a right angle
at P. This rectangular triangle, is similar to each of the
triangles APC, PBC, of which it consists.

In fact, the acute angle A, is common to the two right
angled triangles APB, APC ; the other acute angle cquals
a right angle, less the angle A ; whence the three angles of
the two triangles are respectively equal, and the two tri-
angles are similar.

In the same manner, the acute angle B, is common to
the two rectangular triangles APB, PCB; whence they
are similar, which gives the following proportions.

AB : AP :: AP : AC
AB : BP :: BP : BC
AC : CP :: CP : CB.

Consequently, 1st.—In a rectangular triangle ABD, the
short side to the left AP, is a mean proportional be-
tween the hypothenuse AB, and that portion AC of
this hypothenuse which is to the left of the perpendicu-
lar PC.,

2nd. The short side to the right RP, is a mean pro-
portional between the hypothenuse AB, and the por-
tion BC of this hypothenuse to the right of the perpendi-
cular.

3rd. The perpendicular CP, is a mean proportional
between the two parts CA, CB, of the hypothenuse.

Finally, the hypothenuse being a diameter of the circle,
and CP the semi chord perpendicular to the diameter;
AP, BP, being two other chords drawn through the termi-
nations of the diameter, we have— *

1st. The chord on the left AP, a mean proportional be-
tween the diameter AB, and the part of this diameter AC
to the left of the half chord, perpendicular to the dia-
meter :

2nd. The chord on the right BP, a mean proportional be-
twecn the ‘diameter AB, and the part BC, of this diame-
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ter, and to the right of the half chord perpendicular to the
diameter :
8rd. The half chord CP, a mean proportional between
the two parts of the diameter, placed on its right and
left. * )
These geometrical properties are of great use in esti-
mating the effects and the movements of machines.
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SIXTH LESSON.

On the surface of plane figures, terminated by straight
or circular lines.

WHEX we wish to mecasure surfaces terminated by
right lines, or even by curves, we take as the unit of our
measure, a simple figure, equally easy to construct and
to subdivide ; viz. & square, the side of which is equal to
the unit of length.

Let us first explain how we can measure a large square
with a small one; or, in other words, ascertain how many
times the large square contains the smaller one.

We can form, in the large square, as many parallel
bands, as one side of the small square is contained times in
one side of the large square, and these parallel bands will
have the side of the small square for their breadth, and
the side of the large square for thecir length. But as
many times as the side of the smaller square, is contain-
ed in the side of the larger, so many times will the smal-
ler square be contained in each parallel band. If, for ex-
ample, the side of the larger contain: the side of the small
square ten times, the large square is divided into ten pa-
rallel bands, having the small side for their breadth: and
ten times the length of this side is their length. Each
band, therefore, will contain ten times the surface of the
small square ; and ten times ten will be the number of
small squares contained in the large one.
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By the same reasoning, it may be shown, that taking
the side of any square for the unit of length, it will be
contained in another square, having its side of an equal
length once; if the side be twice as long, four times ; if
three times as long, nine *times, &c., as in the following
table:—

1...once one = 1 6...six times sixX = 36
2...twice two = 4| 7...scventimesseven= 49
8...threc times three= 9 | 8...eight times eight = 64
4...four times four = 16 | 9...nine times nine = 81
5...five times five = 25 | 10...ten times ten = 100

The numbers 1, 4, 9, 16, 25, 36, &c., are called the
squares of 1, 2, 8, 4, 5, 6, because they represent the
number of squares, the side of which is equal to the unit
of length contained in the superfices of the squares, the
sides of which are respectively as 1, or 2, or 3, or 4. The
numbers 1, 2, 3, 4, &c. representing the unit of the length
of cach square, are called the roots of these squares.

If the square to be measured is smaller than that as-
sumed as the unit of length, the measure itself must be
divided. For example, its sides may be divided into ten
equal parts, and one hundred smaller equal squares being
thus formed, each of them may be taken as the unit of mea-
sure. If this second unit is too large, it is again divided,
if necessary, into a hundred equal parts, which will be one
hundred times one hundred, or the ten thousandth part
of the primitive unit; and so on to any extent. (See Vol.
the Second, Lesson on Measures.)

After having determined the superﬁces of a square ta-
ken by itsclf, let us consider squares combined two and
two, and see in what manner geometry can rcpresent their
sum, or their difference; or in other words, how we can
construct one square equal in surface to the sum or the
difference of any two given squares.

Let ABCD, fig. 1, pl. 6, and mnpq, fig. 2, be two given squares.
Let us construct a right angled triangle, of such'a nature that the
right angle Y, fig. S, shall be between the two sides XY == mn, and
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YZ = AB. If we construct squares, having XY and YZ for their
sides, we shall have XYab = mupq, and YZcd = ABCD. If we
construct the large square XZ:f, on the large side XZ, it will be
equal to the sum of the two given squares.

It has been shown, in the second Jesson, that in a right angled tri-
angle, XYZ, fiz. 3, pl. 6, if we let fall the perpendicular YU, from
the right angle Y to the longest side, we shall have *

XU: XY :: XY :XZ whence XY x XY =XY¢*= XU x XZ,
ZU:ZY :: ZY : XZ, whence ZY x ZY = ZY? = ZU x XZ.

Whence .\\ plus Z'h or, in other words, the sum of thc two
squares XYal, ZYcd, is equal to XU, plus ZU ; that is to X7, mul-
tiplied by XZ, which is the meaggpe of the square XZ(f. Thus the
large square equals the sum of the other two squares.

In any right angled trlingle, therefore, the square con-
struslel® upon the longest side, is equal to the sum of the
squares constructed on the other two sides.

If we had occasion to find a square, equal to the diffe-
rence between two giwem squares, we should construct a
right angled triangle, having its longest side equal to XZ,
fig. 8, the side of the larger square, and one of its other
sides equal to XY, the side of the smaller square. The
third side of the triangle will be the side of a square,
which will be equal to the difference of the squares of the
other two sides; for if it be added to the small square,
their sutn will be equal to the largest square.

As we know that 3 times 3 =9, 4 times 4 = 16, and
5 times 5 = 25; and that 9, plus 16 = 25, we sce that
8, 4, and 5, represent the sides of a right angled tri-
angle. Artizgns make use of this property, to draw a
right line, YZ, perpepdicular to another line, XY. They
divide XY into thaee parts; then taking YZ = 4, and
XZ = 5, of thess parts they construct the triangle XYZ,
in which YZ isthe required perpendicular.

Let us now proceed to measure the surfaces of figures,
which differ from the sguare in farm; beginning with
those 'luﬂl most néarlfhsemblo it.

* To npm the aquare, one s1dé of which equils AB, we write

AB?, and the sayrfices'sf: the D, is consequently AB?,
which expwéases AB multiplighby nn.y(’
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The surface of a rectangle is equal to the base, multi-

plied by the height.

To prove this, divide MQ, fig. 4, pl. 6, into parts, each of which
is equal to the side AB, of tife square ABCD, taken as the unit of
measure. Through the points of division, draw right lines paral-
lel to MN, which will divide the rectangle into bands, each of which
is equal in length to MN, and of the same breadth.as the square.
Each band will contain the superficies of as many squares, ABCD, as
MN coutains AB. Wherefore, MN being represented-by numbers,
the number of the squares ABC]},, contained in the rectangle MNPQ,
when AB is the unit, is represénted hy the base MN, multiplied by
the height MQ.

There is often a necessity in the arts, to find a square,
the surface of which, is equal to that of a rectangle,
MNPQ, and it may be done in this manner.

Place the two sides MN, MQ, end to end, so as to form one conti-
nued line, fig. 5, and on it, as a diameter, draw a semicircle. At
the point M, crect MR, perpendicular to the diameter QN, and
produce it, till it reaches the circumference of the semicircle. We
shall then have according to lesson 5th, pagé 9.

QM : MR: : MR : MN, whence QM x MN = MRz
Thus the square constructed on MR, will be equal to the rectangle
MNPQ, for these surfaces are measured hy the same lines.

The surface of a parallelogram, LMNO, fig. 6, pl. 6, is
equal to its base, multiplied by its height.

To demonstrate this propesition, through the points M,
N, draw MQ, NP, perpendicular to MN, and extend them
to OLQ. The two triangles MQL, NPO, are equal; for
MQ = NP, they being parallels situated between pa-
rallels, and the corresponding angles equal. Whence
the rectangle MNPQ, compared with the parallelogram
MNOL, contains in addition the triangle LMQ, and con-
tains less than it, the equal triangle ONP ; tlié surface of
the parallelogram, therefore, like that of the rectangle,
is measured by the base MN, miltiplied by the height
PN.

The multiplication table, or square of multiplication,
gives us, in numbers, the surface of a rectangle, or of
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a parallelogram, the two sides of which do not exceed
ten.

1' 2| 8| 4] 5|%] 7|8 9]/10
2. 4| 6| 8[10(12]14(16 18] 2
3 6| 9|12 |15|18 |2 |2 27|30
4 8|12]16| 2|2+ 28 |30 136 10
5 101520 | 253035 4o§ 15 | 50
6 12 18% 214 (30 [ 36|42 | 48 | 54 | 60
7 13|21 |98 |85 | 42 | 49 | 56 | 63 | 70
8 16|24 32|40 48|56 64 72|80
9 18(27!36!45|5¢]63| 7281|090
|10 20 30? 40 50 | 60 [ 70 | 80 | 90 | 100

The second column indicates the surface of rectangles or
parallelograms, which having 2 for their height, have as
their base 1, 2, 3, 4, &c.; the third column indicates the
surface of rectangles or parallelograms, which, having 8 for
their height, have 1, 2, 3, 4, &c., for their base, and so on
with the others. The use of this table is too well known
to require any further exemplification; the knowledge of
it is indispensable for every multiplication.

The surface of a triangle ABC, fig. 7, pl. 6, is equal to
half of its base, multiplied by its height.

Draw CD parallel to AB, and AD parallel to BC, the new triangle
ACD, is equal to the former ABC: but ABCD) forms a parallelogram,
the surface of which equals AB, the base of the triangle ABC, x
by its height CE ; whence the half of this product equals the surface
of the triangle.

Since we can always divide any figure whatever, into
triangles ‘terminated by right lines, we can immediately
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ascertain the superficies of any polygon, regular or irregu-
lar. Taking for each triangle, the half of the product of
its base, multiplied by its height, the sum of all the pro-
ducts, or of all the triangles contained in the figure, will
be the measure sought of the whole superficies. This ap-
plication makes the study of triangles of great importance,
particularly in Jand-surveying. Let us befin the appli-
cation of this principle, by measuri.ng the trapezium.

The surface of a trapezium equals the half of the sum
of its two bdses multiplied by its height.

The trapezium ABCD, fig. 8, pl. 6, the height of which is mn,
is divided by the diagonal AC, into two triangles ABC, ACD,
the first of which is measured by } of AB x mn ; the second by 4,
DC x mn. The sum of these two products will be the half of AB,
plus § CD), multiplied by mn ; and which is thus written § (AB +
CD) mn.

By mcans of this theorem, we may immediately find a
square cqual to the trapezium,

AB + CD., fig. 8, is measured and repreéented by the single right
line MN, fig. 5. MQ is taken = } mn ; then describe the semicircle
QRN, and the perpendicular MR, will be the side of the required
square.

The surface of a regular polygon equals the half of its
perimeter or outline, multiplied by the distance of its cen-
tre from one of its sides.

If through the centre, O, fig. 9, pl. 6, of the regular polygon
ABCD, we draw right lines to its summits, we shall divide it into the
equal triangles, AOB, BOC, COD....Let Om be the distance from
the centre to each side of the polygon, and consequently the height
of these triangles ; we shall then have as the measure of one, and
all of them, § AB x Om, and the total superficies, will be § (AB
+ BC+CD....) Omgor} (ABCD...)Om.

The difference between a regular polygon and the circle
in which it is inscribed, decreases, as the number of its
sides augments; and the difference becomes less than any
assignable quantity, if we multiply sufficiently, the number
of sides. We may thus regard the circle as a regular poly-

gon, having so great a number of sides, that the perpendi-
HR g
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cular Om, does not differ by any appreciable quantity
from the radius OA.

The surface of the circle, therefore, is equal to its cir-
cumference, wultiplied by the hulf of its radius, or to its
semi-circumference, multiplied by the radius.

Impossibility of squaring the circle—By means of the
method pointed out, fig. 5, for finding a square equal to a
rectangle, it would always be casy to find a square, the su-
perficies of which should be equal to any given circle,
provided we could find a right line, expressed in num-
bers, exactly equal in length to the circumference of a cir-
cle, the radius of which was known. But there cannot be
any measure of such a right line, and, therefore, the pro-
blem of finding a square equivalent to a circle, (called
squaring the circle) is one of which a rigorous solution is
impossible. Students should be careful, therefore, not to
waste their faculties in attempting what cannot succeed.

We can give an approximation to the measure of the
circumference, and of the surface of a circle, by num-
bers, taking

For the radius 100, 1,000, 10,000, 100,000, &c.
The circumference willbe 628, 6,283, 62,831, 628,313, &ec.
And the surface will he 314, 3,141, 31,415, 314,156, &c.

If, in place of considering the whole superficies of the
circle, we confine ourselves to a sector, AOB, fig. 9, the
arc of which shall be the half the third, the fourth, or any
other part of the circumference, it will be seen that this
part is also the half, the third, the fourth, &c., of the
surface of the circlee To measure it, we must multiply
the length of the arc AnB, included between the sides
OA, OB, by half the radius. If we cut off from this
product, that of 4 AB x On = surface of the trian-
gle OAB, we shall have the superficies of the scgment
AnB.

Comparison of the superficies of similar figures. First,
of triangles.

The relation of the superficies of two similar triangles,



SURFACE OF SIMILAR FIGURES. 101

is equal to the relation of the square of the corresponding
or homologous lines.

Let the bases of the two triangles AOB, aob, fig.” 11, pl. 6, be
each equal to half their height: a square, ABCD,.abed, construct-
ed upon their bases, as one of the sides, will be equal to their sur-
face. 1f we diminish or augment the height proportionably, the
base remaining the same, we shall form all sorts of similar triangles
XAB, rub, which retaining the same Qase, the surfaces will aug-
ment or diminish, in the same proportion. The relation, therefore,
of their superfices being originally represented by the squares
ABCD, abed,.of their bases, will be represented by them in all
citses.

All similar figures may be divided into the same num-
her of similar triangles, which are to one another as the
squares of two corresponding lines.

JThe surfaces, therefore, of similar figures, terminated
by right lines, arc to one another, as the squares construct-
ed on the two corresponding or homologous lines.

Thus the two polygons ABCDEFA, abedefa, fig. 12, pl. 6, being
similar, their surfaces are, as the squares ABMN, abmn, constructed
on the two corresponding sides AB, ab.

In the same manner, it may be demonstrated, that the
surfaces of circles, which are similar figures, are in propor-
tion to the squares constructed with thejr radii, or with
their diameters, as sides.

These proportions are very convenient in practice. The
surface of a circle, the radius of which is equal to the unit
of measure, cannot be expressed with much precision, even
by approximation, except by very complicated numbers.
But the relation of surfaces, may often be expressed with
great simplicity.

There are two important properties possessed by the
surface of regular polygons and circles, which are to
be noticed at present; though the demonstration of them
will not be given, because it depends on scientific methods,
which the student could not easily comprehend.

AMONG ALL THE FIGURES WHICH HAVE A GIVEN NUM-
BER OF SIDES, WITH AN EQUAL EXTENT GF OUTLINE
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(CONTOUR) THE SURFACE OF THE REGULAR POLYGON 18
THE LARGEST.

WITH AN EQUAL OUTLINE, THE MORE NUMEROUS ARE
THE SIDES OF THE REGULAR PQLYGON, THE LARGEE IS
ITS SURFACE.

WITH EQUAL OUTLINES, ALL FIGURES TERMINATED
BY ANY NUMBER OF SIDES WHATEVER, WHETHER RIGHT
OR CURVED LINES, HAVE LFSS SURFACE THAN THE
CIRCLE.

Applications—'To be acquainted with these, properties,
is of importance, economically, in several arts. 'The quan-
tity of lead, for example, required for glazing any given
space in the Gothic method, will be the least possible, if
the panes, having a given number of sides, are regular
figures.

When we have, also for example, to make pipes for con-
ducting water, gas, &c., and these pipes are to allow the
passage of a volume of fluid previously determined, if
they are made circular, the quantity of wood, or metal re-
quired for these pipes, is the least possible.

In architecture, the height and dimensions of an edifice
being given, and, consequently, the extent of its external
walls, the space which can be enclosed by any given quan-
tity of masonry, will be large, in proportion as the form of
the building approaches that of a regular polygon, and in
proportion as the sides of that polygon are numerous.

Let us now consider the indefinite surface of the plane
on which we have drawn the various figures just measured.
When any two points of a right line are in the same plane,
the whole of the line is in the plane. This property serves
in the arts to construct plane surfaces and to survey them.

Application to the manufacture of porcelain.—If the work-
man wishes, for example, to mould the clay into a plane
surface, he uses two parallel guides, or a frame-work, MN
PQ, fig. 13, pl. 6. A straight piece ST, being supported
by the two guides MN, PQ, is advanced progressively,
and every part of the clay which projects above the plane,
passing through MN, and PQ is either removed or com-
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pressed. It is not indispensable that the frame MNPQ
should be constructed of straight parallel pieces; it will
be sufficient that the sides, if produced should meet at
some point.

Application to cutting piles.—Saws for cutting piles ac-
cording to a horizontal plane,—the depth of which beneath
the water is given,—arc regulated in their movement by
tvo guides MN,PQ, fig. 13, both equally ‘distant from
the horizontal plane according to which the head of all the
piles is to be fashioned ; the saw itself is a transverse right
line st, represented by its parallel ST.  This parallel being
kept at an invariable distance from the saw by the rectan-
gular frame STts, and resting on MN, and PQ, the saw
describes a plane mnpg parallel to MNPQ.

Joiners and carpenters to smooth their work make use
ofeplanes. 'They begin by making the cdge of a plank
exactly rectilineal by means of their plane, the wooden
part of it (or the plane itself) being in a right line, and
the iron cutting away whatever is too projecting, till the
contact is cqual throughout, between the wood of the plane
and the plank. They then plane the sides, proceeding
from the prepared side to the other, tracing, in fact by the
instrument, a succession of right lines intermediate between
those of the edges.

The sawyer or the carpenter marks, above and below,
on the piece of wood, or on the plank, the side of which
he wishes to smooth or reduce, the outline of the plane he
is to form ; and then directing the stiokes of his axe or
the movement of his saw by these lines, the piece gradu-
ally assumes the desired shape.

Hitherto we have only considered one plane at a time,
and the lines drawn on this plane. Let us now examine
a plane in relation to lines, all the parts of which are not
included in it, and let us compare several planes with one
another. A right line may be either perpendicular, oblique,
or parallel, to any given plane.

Let AB, fig. 14, pl. 6, be the shortest line which can be drawn
from the point A to the plane MNPQ. It will be, consgquently, the
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shortest line which can be drawn from the point A to any right line
drawn on the plane; and it will therefore be perpendicylar to all
the right lines BE,BF, drawn on the plane, proceeding from the
point B, the termination of this perpendicular. The right line AB
is said to be perpendicular to the plape MNPQ.

A perpendicular, therefore, drawn from any point to a
plane is, first, the shortest distance from the point to the
plane, and secondly, it is perpendicular to all the lines in
the plane drawn through its termination.

Consequently, if we take a carpenter’s square and make
it revolve on one of the sides of the right angle, the other
side necessarily describes a plane.

This geometrical principle comes into use in construct-
ing many optical instruments, particularly some used in
the arts of navigation and astronomy.

AB, fig. 14, pl. G, being perpendicular to the plane MN
PQ, every line AD, AF, drawn from the point A to one
of the lines DBF, in the plane, is oblique to the line AB
and to the plane. Thus for the plane, as for the right line,
the oblique lines AD, AF, are all longer than the perpen-
dicular AB, and longer in proportion as they deviate from
this perpendicular.

Let us suppose that from the point A, all the oblique
lines possible have been drawn to the right line DBF,
being in the plane which passes through the termination of
the perpendicular; each point D, F,...of the right line
DBF, will, if the plane MNDPQ, be made to revolve, de-
scribe a circle in it, and all the points of each circle will
be at the same distance from any point A of the perpen-
dicular.*

The perpendicular to the plane of the circle, which
passes through its centre, is called the axis of the circle;
“and consequently this axis is perpendicular to all the
radii. ’

The axis, or the axle-tree of any wheel, is perpendicular

® If we prolong BA until Ba = AB, the points A and a will be

equally distant from every point D, E, of the plane, and of the
circles described.
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to the plane of this wheel, and, consequently, when the
wheel turns on its axis, each part of it moves without quit-
ting this plane. The wheel, therefore, in relation to sur-
|oumlmrr objects, does not change its position, but its se-
veral points take successively the position of one another.

By this geometrical principle, the motion of mill-stones
is regulated. Two stones being placed on the same axis,
the planes of both are consequently,parallel one remains
stationary while the other, moving with the axis, is fixed on
it. The moveable stone, turning so that its Jower surface
moves on itself, is always at the same distance from the
upper surface of the fixed stone; and if this distance be
such that the grains of wheat or of other plants cannot pass
without being crushed, they will be equally ground at
every point between the two stones.

£rom this example we may learn the great advantage,
I may even say the necessity, for precision in construct-
ing machinery. If the parallelism of the stones were not
perfect,—if the axis of the revolving stones were not ri-
gorously perpendicular to the plane of both ; if when
in motion it could lean cither to the right or to the left,
the two contiguous faces of the stones would be no longer
in the same plane, nor always at an equal distance from
each other.  In the parts where the stones were too close
together, the wheat would be too much crushed, it would
be heated and spoiled ; in the other parts it would not be
ground at all, and the stones would move apart from cach
other. In this casc precision is something more than a
luxury, or than an intellectnal pleasure, it is a condition
imposed by the nature of the operation, and is indispen-
sable to its success.

Application to turning. —Thc properties just pointed
out are employed in the arts to describe circles, by means
of the turning lathe. In it there are two fixed points be-
tween which is placed the article to be turned. When we
hold a cutting instrument immovably against a revolving
body, the instrument cuts away all the parts which pro-
jeet too much, and describes a cirele, having for its axis
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the right line which passes between the two fixed points,
and which has moreover its centre on this right line.

If we suppose that the edge of the instrument advances
by degrees, remaining perpendicular to the right line, all
the circles successively described by the instrument will
be in the same plane, and perpendicular to the right line
which passes between the two fixed points. We may use
a turning lathe, therefore, to produce a planc.

In fact, in the manufacture of machines, when it is ne-
cessary to make metallic plates, or the cnds of cylinders,
with a plane surface, very true, so that they can be ad-
justed with great accuracy to each other, this principle is
acted on.

Bramak’s machine for forming a plane surface—Mr.
Bramah causes a horizontal wheel, provided with a great
number of cutting instruments, to revolve round a vertival
and fixed axis. These nstruments do not all project an
equal distance from the plane of the wheel, but arc group-
ed by fives or sixes, projecting gradually, further and fur-
ther. The piece of wood, or other substance, to be reduc-
ed to a level, or made a perfect plane surface, is placed
on a movable horizontal frame, which can be made to ad-
vance and pass under the revolving wheel. The least pro-
jecting of each group of cutting instruments, first removes
the most prominent parts of the wood forming one surface,
which is further reduced by the next group of projecting
instruments, and the piece, as it continucs to advance, is
smoothed and levelled at every point. by cach successive
group of the cutting instruments. When all the narrow
chisels in the whole surface of the wheel, have performed
their operations, a plane fixed on the wheel, at the same
fevel, with the most projecting of them, passes over the
wood, which has been grooved so to speak by the chisels,
and cutting down all the remaining inequalities, finishes
by rendering the piece a perfect plane.

Two lines AB, CD. fig. 15, pl. 6, perpendicular to the
same plane, MNPQ, are parallel to each other.

To demonsirate this, draw the right line BD, in the plane, and
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through the terminations B, D, and through the middle O, of
BD, draw the perpendicular EF. Making OE = OF, the two
points, B, D, will be equally distant from E and F. Moreover,
every point A, C, of the lines AB, CD, perpendicular to the plane
MNPQ, is equally distant from ,the points E and F. In fact, if
we draw FD, and ED, these two oblique lines being equally dis-
tant from the perpendicular OD, towards EF, are equal. In the
same manner, CE, CF, being also two oblique lines, equally dis-
tant from the perpendicular CD, of the plane, are alsé equal ; AE
and AF are equal, for the same reason. Thus, the perpendiculars
AB, CD, belong only to the plane, which contains all those points,
which are equally distant from the two fixed points E and F ; whence
AB, CD, perpendicular to the same right line BD, are in the same
plane, and are, therefore, parallel.

"T'he horizontal plane is that of the surface of tranquil
water at the place where we are, and the perpendicular to
this horizontal plane, is called the vertical ; consequently,
all the perpendiculars to the same horizontal plane are pa-
rallel.

It must be remarked, however, that all the lines which
are perpendicular to the plane of the visible horizon, are not
verticals. There is only one which can’ have the direction
of the plumb line. Every vertical, if produced, would pass
through the centre of the earth, and there cannot be, at
the same time, two different right lines, which pass through
this point, and any point in the plane of the horizon; because
right lines, having two points in common, coincide, and
form only one. Horizontal lines are not required to pass
through any given point; it is only necessary that they
should be at right angles with the plumb line. It follows,
from what has just been said, of every vertical which is
perpendicular to the plane of the horizon, passing through
the centre ‘'of the earth, that no two such lines are exactly
parallel to each others A ship’s mast may be taken as
perpendicular to the plane of the horizon, at every mo-
ment, while she is circumnavigating the globe. But the
various perpendiculars it forms, with the horizon at dif-
ferent points of her course, so far from being parallels,
will form angles with each other, at every degree of in-
clination, till, in the neighbourhood of New Holland, for
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example, the perpendicular it forms, will be only a conti-
nuation, in the opposite direction, of the perpendicular it
formed to the horizon, when the vessel was in the Thames.
Thus, although all ‘perpendiculars to the plane of the ho-
rizon appear to us parallels; such, for example, as the
sides of our houses, strictly speaking, they are not; any
more than the curved surface of the earth is, as it ap-
pears to us, a perfect plane. In fact, all verticals are the
radit of a circle, having its centre at the centre of the
carth ; being all perpendicular to the curved surface of the
horizon.

The plumb line is a cord held at onc end, and having at
the other end, a piece of lead.  When, in a state of rest,
this line takes a direction perpendicular to the place where
the person is. It may, therefore, serve to ascertain in any
spot, if any given planc is horizontal. It i~ only necessary
to place one side of a square or level, in the direction of
the plumb bine, and ascertain if the other ~ide applies ex-
actly to the plane in every possible direction.  Two posi-
tions are suflicicnt’to verify the plane; because two right
lines are sufficient to determine the position of any plane.

Having the position of a horizontal plane, we may
reciprocally obtain a vertical in drawing a perpendicular
to this planc. But this operation is not so casy as the
former.

Vertical planes are those which are vertical through
their whole surface. If, from any point of such a plane, a
vertical line is drawn, as it is parallel to the first vertical
placed in this plane, it must also be wholly in it.

Two vertical planes necessarily intersect cach other in a
vertical right line, because the vertical drawn from any
point where these two planes intersect each other, must be
entirely in beth of them.

In a grcat number of arts, and particularly in those
which relate to the construction of buildings, frequent use
is made of horizontal and vertical planes, as well as verti-

cal lines.
In our houses, the floors, the ceilings, the upper and
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lower surfaces of the bricks and stones of the walls, are
all horizontal planes.

External and partition walls are vertical planes, and the
edges of the walls of the doer posts, of the windows, &c.,
are verticals, they being at the same time, in two vertical
planes.

In the designs of descriptive geometry, of stone mason-
ry, of carpentry, and of architecturd, generally, it is sup-
posed that the first design is on a horizontal plane, the se-
cond on a vertical planc; if the latter be the plane of the
outside of the edifice, it is the clevation; if it divides or
traverses the building, it is the section.

When a right line passes through two points A, C, fig.
16, pl. 6, cqually distant from a plane MNPQ, all the
other points of this right line AC, arc at the same dis-
tance from this plane.

If, setting out from AC, we draw the parallels AB, CD, EF, per-
pendicular to MNPQ, drawing on this plane, the right line BFD,

we shall have AB = EF = CD, whatever may be the position of the
point E,

The whole of the right lines procceding from the
point A, fig. 16, perpendicular to AB, form a plane ;
whence all the points of this plane, have AB, as the mea-
sure of their distance from the plane MNPQ. Thus, two
planes perpendicular to the same right line, are at every
point, at the same distance from cach other, and the lincs
AB, CD, being perpendicular to one, arc also perpendicu-
lr to the other ; measuring the shortest distance between
these planes.

Two planes, NPQM, NPRS, fig. 17, pl. 6, which meet,
intersect cach other in a right line NP.

1f, from the two points of intersection N, P, we draw a right line,
it will necessarily be altogether on the two planes, which contain
these two points. It will, therefore, be common to both planes.

It may be supposed, that the plane NPQM, is inclined, more or
less, towards NPRS, we shall then have an angle, larger or smaller,

contained between NPQM, and NPRS. To measure this angle, we
proceed as follows.

Draw, fig. 17, CA, in the first plane, and CB in the second, perpen-
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dicular to NP, the right line common to both planes. The angle
formed by the two planes, is represented by the angle formed by
these two right lines.

Let us suppose that the plane NPQM, revolves round
NP, as an axis. Each of the points in this plane, will
describe a circle ; and the plane itself will have passed
through the whole of the space around the axis, when
each of its points shall have described the whole circum-
ference of a circle. If we divide, into equal parts, the
space thus passed through, each point, wilt have describ-
ed, in each equal part, the same number of degrees. This
number may be employed to measure the angle itself, of
planes revolving round NP.

Mathematical instrument makers construct instruments
for the use of mariners, geographers, and astronomers,
adapted to measure the angle, which one plane makes
with another, and, in general, they are executed on the
principle just pointed out. An arc of a circle, gradua-
ted, AB, fig. 17, pl. 6, is placed in a plane, determined by
the legs of the cross staff, CA, CB, perpendicular to the
planes, the inclination of which is to be measured.  One
extremity B, is fixed on one of the planes, and the point
A, where the arc traverses the other plane, indicates the
number of degrees of inclination between the two planes.

To ascertain the direction of planes, they are in general
referred to some horizontal plane; and the intersection of
the inclined plane with the horizontal plane is called the
direction of the inclined plane. Consequently, if we con-
ceive, at right angles to this direction, 1st. a horizontal
line, 2d. a right line placed in the inclined plane, the
angle which they form with one another, will represent the
angle formed by the two planes.

The inclined line AC, fig. 17, pl. 6, which has just been
determined, is more inclined than any other line placed
on the inclined plane NPQM.

To demonstrate this, draw the horizontal line XOY, parallel to

the direction NP of the inclined plane, and COA perpendicular to
the two parallels, and CO will measure the distance hetween them.
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To descend, therefore, from the points XOY of the inclined plane,
which are all situated at the same height, to the points P, C, N,
which are also all on the same level, the shortest road, or the line

of greatest inclination is OA, perpendxcular to the two parallels
XOY, PCN.

When we come to speak of curved surfaces, it will be
seen that horizontal lines and lines of the greatest inclin-
ation have been advantageously employed to represent on
planes the forms and proportions of these surfaces.

Two planes are perpendicular to each other when they
form to the right and left, angles which are equal to each
other. These angles, if measured by perpendicular right
lines, are right angles.

When a right line is perpendicalar to a plane, all other
planes formed by this right line, are also perpendicular to
thiw plane.

Let AB, fig. 18, pl. 6, be perpendicular to MNPQ and FGDE, a
plane formed by AB. Draw AC on MNPQ perpendicular to GD ;
the angle BAC which measures the inclination of the two planes will
be aright angle. The two planes, therefore, will be perpendicular to
each other.

When two plancs, parallel to each other, are intersected
by a third plane, the two right lines of intersection are pa-
rallel.  In fact, if they were not they would mcet at some
point, whence the first and second planes of which they
are a part, would also meet, and could not consequently
be parallel.

"Two parallel right lines, included between two parallel
planes, arc equal. If we draw through these two right
lines, a third plane, it will intersect the two other plancs,
according to two other parallel lines, which will include
the two former; but parallels contained between parallels
are equal.

Two right lines ABC, DEF, fig. 19, pl. 6, intersected
by three parallel planes NP, QR, ST, are divided into
proportional parts.

To demonstrate it, draw Aef, parallel to DEF, the points E, F, e, /,
being the points of intersection of the right lines, ana the planes
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QR, ST, we chall have Ae == DE ; of = EF. But the two right
lines ABC, Aef, are both in the same plane, which intersects the two
planes QR, ST, in the direction of two parallel right lines Be, (/.
e shall therefore have

AB:BC:: Ae:vf:: DE: EF.

We come now to treat of solid angles, such as OABC,
fig. 20, pl. 6, formed by the three right lines OA, OB,
OC, meeting at the point O, and representing three por-
tions of the planes AOB, BOC, COA. This angle, as
will be seen, presents three common angles AOB, BOC,
CO4, and three angles formed by the planes taken in
pairs. Descriptive geometry teaches the means of ascer-
taining_the angles formed with planes, by angles formed
with lines, and conversely. The consideration of these
will be reserved for the next lesson.
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SEVENTH LESSON.

Solids terminated by plane surfaces.*

Wi have already examined the properties of right lines
and. circles, and the figures which may be formed by
them ; and, following a similar method, we are now to
treat, first, of solids terminated by plane surfaces, and
afterwards of those terminated by circular forms.

Two bodies are said to be equal, whén it may be suppo-
sed that they have issued from the same mould, such as
the copies of busts and of bas reliefs, modelled by the
sculptor or the figure maker.

* At the end of this lesson, M Dupin recommends, * that teach-
ers in explaining it, should make use of small figures of prisms and
pyramids, which are equal, ximilar, symmetrical, &c. The subse-
quent lessons ought also to be explained, by showing the pupils cy-
linders, cones, spheres, &c., both in relief, and in well-executed sec-
tions.” It was thought more advisable, to place this recommendation
at the beginning, than at the end of this lesson ; in order that those
who teach themselves, may be in time aware of the difficulty attach-
ing to this part of the subject, and endeavour to procure for them-
selves some solid geometri®al fizures. Mr. Donne, of Bristol, con-
structed for sale, a set of figures, with descriptions, to enable the
student to use them, which have been strongly recommended by Dr.
Beddoes, in his ¢ Demonstrative Evidence ;” and by Mr. Edgeworth
in his Practical Education ; and Professor Leslie, of Edinburgh, was
long in the habit of accompanying his mathematical instructions,
by visible solid representations of the geometrical properties he
explained. e Tr
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Two bodies are said to be symmetrical in form and posi-
tion, when the corresponding points of both may be joined
by parallel right lines, the middle of which is on a plane,
called the Plane of Symmetry, perpendicular to the plane
of these figures.

Application.—In the arts, it is continually required to
make bodies which are symmetrical, in relation to some
other bodies ; and tos mahke objects which are composed of
two symmetrical parts. Regular buildings, of every de-
scription, constructed on a single plan, such as palaces,
temples, &c., are examples.

In such works of art as houses, churches, &ec., which are
to remain immovable, symmetry is only an object of lux-
ury or of good taste; but in a multitude of bodics, des-
tined to perform certain movements with equal facility,
both to the right and to the left, it is an object of neces.aty.
Nature, we see, on this principle, has given to most ani-
mals two symmetrical sides, united by a plane, lying in
the direction of their customary progressive movements.
On the same principle also, the naval architeet gives to all
his vessels two sides, the larboard and starboard. which
are symmetrical, in relation to the plane, which lies in the
direction of the ship’s forward movement.  Carriages are
made symmetrical, in relation to a plane Iyving in the same
direction, on an analogous principle. (This subject will
be more fully explained in the sccond volume on Machi-
nery.)

A bar is a solid of indefinite length, its faces or sides
being planes, the boundaries or edges of which are parailel
right lines. A prism is formed by dividing the bar cross-
wise, by two parallel planes.  Each section, called a base,
is a’ polygon, the number of its sides being equal to the
number of the faces of the prism, or the bar.  The prism
is right angled or oblique, as the two bases are perpen-
dicular or oblique, in relation to the edges. It is trunca-
ted when the bases are not parallel.

The right angled prism is symmetrical, in relation to a
plane which intersects all the edges through the middle,
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at right angles; the edges being the perpendiculars, which

determine the conditions of symmetry.

Some truncated prisms are symmetrical, in relation to
a plane, which passes in like manner through the mid-
dle of all the edges, at right angles.

The triangular prism has three faces, fig. 1, pl. 7, and
two triangular bases; and there are as many varieties in
the form of this prism, as there age varieties in the form
of triangles.

Application to Optics.—Prisms of this description, made
of glass or crystal, are employed to decompose light, the
different rays of which, separate from one another in pe-
netrating one face of the prism to enter it, and in pe-
netrating another to come out. We then see, on any
surface which is placed to receive the light transmitted
through the prism, the seven primitive colours, in the
following order, viz., red, orange, yellow, green, blue, in-
digo, violet. 'The figure formed by these separated rays,
is called the Solar Spectrum.

Application to Architecture.— Architects employ the
right angled triangular prism, with symmetrical bases,
ABCDEY, fig. 7, pl. 7, to form the roofs, with two faces,
pediments, or gable ends, of regular buildings. Truncated
symmetrical prisms, fig. 8, are used for roofs of buildings
with four fronts. As this figure is regular, and easily
measured, stones are piled or heaped up in this shape, so
that the quantity they contain may be almost instantly
determined. For the same rcason, bomb shells and can-
uon balls are piled up in artillery depots, and fortified
towns in the same form.

In the construction of machinery also, the triangular
prism; with symmetscal bases, is employed as a fixed
guide, on which frames or carriages, the motion of which
must be rigorously rectilineal, are made to slide.

The quadrangular prism, fig. 2, pl. 7, as its name in.
dicates, has four faces or sides, and each of its bases is
a quadrangle. When this quadrangle is a parallelo-
gram, the prism is called a Parallelopipedon. When all its

1 2 .
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sides form right angles with cach other, it is a rectan-
gular parallelopipedon.  If the bases are squares, it is
a square parallelopipedon. When all the faces of the
parallclopipedon are squares, if is called a Cube. Play-
ing dice are of this shape.

Right angled prisms, with symmetrical bases, have their
planes of symmetry parallel to thé edges; and they pass
respectively through the axis of symmetry of cach hase.

When the base is a rectangle, the prism has three planes
of symmetry, respectively parallel to the six faces taken
two and two. When the base is a lozenge, the prism
has three planes of symmetry : 1st. the plane equal-
ly distant from both bases: 2. and 8d., the planes
which pass through the parallel diagonals of the lozenge
bases.

In the cube there are twelve planes of svmmetry, three
parallel to the sides or faces, six which pass through the
diagonals of the sides, and three through those of the
cube.

In cach of these .prisms, the planes of symmetry pass
through a remarkable point which is the centre of the
prism ; they intersect each other two and two in the di-
rection of the lines which are the diameters or axes of
the prism. This point and these lines possess some pro-
perties of importance in mechanism ; which will be cx-
plained in the second volume.

The cabinet-maker, the carpenter, the smith, and a num-
ber of other artizans, make frequent use of symmetrical
quadrangular prisms. The joists and beams of our houses,
the rafters, and almost every other piece in the roofs, are
prisms of this description.  Formerly these picces were of
the form of square prisms; but since the strength and
stress of timber have been better known, the advan-
tages of having the pieces thin in the direction in which
they have httle to sustain or resist, and thick in the
direction in which they have much to support, have been
recognised : and they are now generally so made.
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Pilasters and square pillars are rectangular, parallelo-

pipedons.

Crystuls—Nature presents to us, in the crystals of
different substances, geombtrical figures as varied as they
are precise and regular; such as triangular and quadran-
gular prisms, hexagons, octagons, &c.  The study of the
forms of these crystals and the classmcatwn of substances
according to them, is one of the most beautiful applica-
tions of geometry which has ever been made. It has
even afforded considerable information on the nature of
the substances of which the crystals are composed. By
dexterously dividing the crystals according to the join-
ings or unions of the several faces of their primitive forms,
geometry has enabled us to classify and arrange all their
vagieties ; and to prove that, even in the midst of the
greatest apparent irregularities, the forms of nature are
constant and invariable.

Let us now point out the method of making of a solid,
of any figure whatever, a right angled prism.

Near the object to he formed into a prism, a cord is stretched pa-
rallel to the direction in which the edges are to lie, and which, to fa-
cilitate the operation, we will suppose is horizontal.  One side of a
square held horizontally is placed against the cord. With a plumb line
carried along the other side of the square, we mark upon the object a
succession of points which belong to the base of the prism to be con-
structed. With an axe or saw, or other convenient instrument, the ob-
ject is then fashioned in the direction of the vertical plane which passes
through the points thus marked. On this plane the polygon which is
to form the hase, is traced. Setting out from each summit of this po-
lygon, we make a series of notches, the bottom of each of which is in
a direction perpendicular to the base; and these form the edges of
the prism. From each edge to the next, the projecting pieces are cut
away, and the substance symoothed by the means pointed out in the
sixth lesson. To prove the accuracy of the operation, we must matisfy
ourselves that the edges are perpendicular to the platie of the base,
and consequently to the sides of the base which meet each edge.
As an additional proof, it may be ascertained if all the edges are, at
every part, at an equal distance from one another, which is indispensa-
ble; and, if taken pairwise, that they are all exactly in the same plane ;
which may be perceived by examining with. the eye, whether each edge
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completely conceals all the points of the one which immediately pre-
cedes or follows it. To form the second base, draw on the face of the
prism, by means of a common square, a series of lines perpendicular
to the edges; the last of which must terminate exactly at the point
whence the first commenced. Such is the method employed by house
carpenters and shipwrights.

When the first face of the prism has been fashioned, and the con-
tiguous faces are to be formed, the angles which these faces ought
to have in relation to one #hother, or to the base, are measured and
set off by the square or bevel.

On the face which is to be formed, notches are cut at certain dis-
tances from each other, and to such a depth that one branch of the
bevel will just touch the bottom, while the other is applied to the
surface already prepared ; both branches being held perpendicular
to the edge which divides the prepared face from the face to be com-
pleted. The bottom of the notch then forms of course, a part of the
latter. After having drawn, at proper distances, the lines which are
to serve as guides, it is only requisite to cut away the substance be-
tween them in order to form the new face of the prism.

In geometry, figures, capable of entering exactly one
within the other, both solid and hollow, are represented by
lines which in their extent and position, have no difference
whatever. But in practice, the difference between the same
figures is very great. The construction of prisms supplies
us, as they are solid or hollow, with an example. The
means of making a solid prism, by gallopers, squares,
bevels, and cutting instruments, has just been explained.
Let us now suppose that we have a hollow or sunk prism
to cut out or make, such, for example, as common chests
or boxes, which have the gcometrical figures of a rectan-

gular parallelopipedon.

We begin by reducing the planks to the necessary thickness, and
being properly squared and of the requisite length and breadth, each
of them will form a face or side of the holloW prism to be made. Two
of these planks are cut according to the length and breadth of the
box, and two according to the length and height, and two according
to the breadth and height. They ure then fastened together at the
edges by nails or glue. Sometimes one of the sides is made to move
on hinges, and is fastened with a lock. If the planks have been ex-
actly squared when they are thus united, they will necessarily form
a parallelopipedon. It must, however, be remarked, that the different
planks may be united.by beveling both the edges to the angle of 45,
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as in fig. 3, pl. 7, A«, Bb; or hy lapping one over another as in

fig. 4.
When the box is to be made of such a size that the breadth of a

plank is not sufficient for its sides, two, three, or more are united to-
gether side~wise ; and if the work is of a rough kind, cross pieces are
nailed over all the planks on one or both sides. Common packing-

cases are of this description.

If the work is to be of a better kind, the planks are joined by cut-
ting the edge of one into several tungues in relief, BDQP, fig. 5,
pl. 7, and by cutting in the other plank corresponding grooves,
BDMN, so that the pieces in relief are exactly adapted to the

hollows.

The tongue, fig. 5, has the geometrical form of a rectangular
prism in relief, while the groove has the same form, but hollowed out.
Both may be fashioned by a plane made for the purpose.

The tenou and mortice, fig. 6, pl. 7, are also two rectangular prisms,
ane solid, the other hollow, which, like the tongues and grooves, are
so made that they fit exactly inte each other. When two prisms are
to M united at rizht anwley, this method is used. The tenon may be
cut by means of a saw.  The mortice on the contrary is made by the
chisel, aud requires more time to make than the tenon. It is another
example of the difficulty, different in hoth cases, experienced by the
workman in making similar solid or holluw prisms.

The practical arts of the carpenter and joiner offer,
besides the examples just mentioned, several other inge-
nious and simple applications of geometrical figures, ter-
minated by planes; some being solid and others hollow,
and which fit exactly into onc another. )

Carpenters have very often to construct, or rather to
shape out the figure of a prism by pieces of wood which
form the cdges of it, as in building roofs. For example,
fig. 7, pl. 7, represents the wood-work of a roof having the
form of a triangular prism, placed on the top of a quadr-
angular prism, or a wooden house of a rectangular form.
T'o build such a housey a carpenter must be able to solve
many geometrical problems, which he will eagily perform
by the principles already laid down in these lessons. He
should, for example, be able to ascertain the dimensions,
and draw every part of the work of its proper form, with
its angles rigorously exact; and he should be able to
transfer them accurately to the pieces of wood he is to
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fashion. It is of great importance for a house carpenter
to be acquainted with the principles of geometry, in order
that he may apply them generally, and not be stopped
by an unusual occurrence. In such a case, if he is ig-
norant of these principles, he has no other resource, but to
operate, as it were, by chance, feeling his way, and repeat-
ing his labour before the required task is accurately ac-
complished. . '

Geometry is even of still greater importance to the ship-
wright, because he has to construct more complicated and
better-combined forms, the excellence of which depends
on their being rigorously executed.

A pyramid is a tigure which, in appearance, is more sim-
ple than the prism, for it has fewer faces or sides, but is
in relief more complicated, because its faces are not pa-
rallel. °

Pyramids, figs. 9, 10, 11, 12, 20, pl. 7, are composed
of plane triangular faces having their summits at the same
point, their base ferming a plane polygon. ‘The base of
a pyramid is, therefore, a polygon, and the common sum-
mit of all the triangular faces is its summit.

A symmetrical pyramid has for its base, a symmetrical
polygon, and its summit is in the plane of symmetry.

A regular pyramid has for its base, a regular polygon ;
and its summit as also the centre of the base, must be situ-
ated on a right line, perpendicular to the plane of the
base. Thus, if we suppose the plane to be horizontal, the
summit of the pyramid ought to be in a plumb line, with
the centre of the base ; the plumb line, in this position,
represents the axis of the pyramid.

A triangular pyramid, OABC, fig. 12, has for its
base a triangle, ABC. A quadrangular pyramid,
ABCDE, fig. 19, has a quadrilateral figure BCDE, for
its base.

The roofs of towers or steeples, which are triangular
or square, are pyramids, having for their base, the tri-
angle or the square formed by the cornice of the steeple
or tower, figs. 9, and 10.
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Obelisks are regular pyramids, employed in general for
public monuments. Let us suppose, that such an obelisk
is to be cut out of a stone quarry, and that it is lying
down, its axis being horizontal, and its base vertical.

A vertical plane is cut in the rock or stone, on which is drawn
the square BCDE, fig. 11, pl. 7, which square is to he the base of
the obelisk. The upper face ACD, and the two contiguous faces,
ACB, ADE, are then cut out, takingegreat care that the angles
formed by the faces ACD, ACB, ADE, with the plane of the hase,
are perfectly equal to those of the intended obelisk. This operation is
verified by ascertaining that the summit, A, isen a right line, AO, per-
pendicular to the plane of the base, and passing through its centre O.
For this purpose, taking OM in the plane of the base, and AN, pa-
rallel and equal to OM, we find, by means of a square, if the right line
MN, which ought to be parallel to OA, is at right angles in two direc-
tions, with both AN and OM. If this be the case, the axis OA, will
e perpendicular to two right lines, drawn through the point O,
in the plane of the base; and, consequently, perpendicular to this
plane.  These circumstances being ascertained, and the errors they
puint out, heing rectified, it will only be necessury to work out the
lower face, ABE, the plane of which is determined by the edges
AB and AE. *

Let us now suppose, that it is required to cut a tri-
angular pyraniid of any form, out of a block of stone
or wood, and that we know the figures of the base, and
the angles formed Dby the plane of the base, with the
plane of cach of the three other faces.

We first mark and fashion onc surface into a complete plane,
according to the method pointed out in the sixth lesson ; then, by
means of a bevel, the two branches of which are placed at right
angles to the sides of the hase, three plane surfaces, ABO, BCO,
ACO, fig. 12, pl. 7, are marked out, forming quadrangles with the
hase. These are the three faces of the pyramid.

Very often the pusition of the summit is only given by the point
m, fig. 12, where the perpendicular Om, terminates in the base, and
by the height Om. Then, when the base has been marked, it is
placed on a level, and two heights, NI’, QR, are measured by the
plumb line equal to Om, the points Q, N, being taken on a level,
with the plane of the base, OR is then drawn equal to mQ, and
CP to mN; and the point O, where the two horizontal lines OR,
OP, ought to meet, is the summit of the pyramid. The summit
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being known and marked out, the block of stone or wood is cut
away, by first making notches in the direction of the right lines,
04, OB, OC, and afterwards cutting away the substance contain-
ed between these right lines.

In certain cases, it would be ‘much more simple to be-
gin by laying off on the basc, by means of a small geome-
trical sketch, the angles of the three sides, and then to
work them out, without troubling one’s self to find out
the position of the summit.

It would be suflicient, for example, fir. 13, pl. 7, from the foot .
of the perpendicular Om, let fall from the summit to the base, to
draw the lines mu, mp, mqy, perpendicular, respectively, to AB, BC,
CA, then to construct ~eparately, the right anzled triangles, Omn,
Owp, Omq, the angles Oume, Opm, Oy, wiil he those formed with
the base by the three fuces of the required pyramid.

'The elements ncecessary to form a triangle, have made
us acquainted with the conditions necessary to constitute
two triangles cqnal.  The same conditions are applicable
to pvramids. Two triangular pyramids are cqual; Tst.
when the three faces of one, are cqual to the three faces
of the other : 2nd. when two faces, and the plune angle,
which they include, are equal in hoth pyramids : 8rd.
when one face, and the three plane angles helonging to
it, are cqual: and 4th. when the six edges or lines, are
equal in both pyramids, &c.

An acquaintance with all the propertics, and the mcans
of calculating the surface of pyramids, is of considerable
importance in topographical operations, when places, the
position of which is to be ascertained, are not in the same
plane. The position of each place or point obscrved, is
in this case referred to the position of three other points,
forming a triangle, taken as a base. ¢With such instru-
“ments as the graphometer, the repeating circle, or the theo-
dolite, we measure the angle, which the visual ray directed
from each summit of the triangle taken as a base to the
observed object, forms either with one side, or with the
plane of the base. The three visual angles, united with
the three sides of the base, form a pyramid, the sum-
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mit of which is the position of the point observed. These
complicated operations are only performed by those who
belong to the learned professions, such as hydrographers,
or geographers, or land surveyors, who have extensive
districts to measure, for the purpose of valuing the land.

When a body is terminated on all sides by plane sur-
faces, these surfaces are terminated by right lines, form-
ing plane polygons; and we can decompose, as has been
shown, all these polygons into triangles.

If we take, thercfore, a point O, in the interior of a
body, ABC,...fig. 21, pl. 7, we may regard it at our plea-
surc; Ist. as the summit of as many polygonal pyramids,
as there are polygon faces to the body ; or, 2nd. as the sum-
mit of as many triangular pyramids as we can draw tri-
m:g]cs on these faces. In both cases, the whole of these
pyramids will represent the whole body.

Jdieasure of solids terminated by plane surfaces.—The
square is employed to measure surfaces ; to measure vo-
lumes the cube is employed, or a ~olid terminated on all
sides by squares.

To take the cube, or measure the solid contents of any
body, is to determine how many times it contains the
cube, which is assumed as the unit of measure. Let us
begin, by showing how we measure the volume of a large
cube, by a small one.

Let us suppose, for example, that the side of the large
cube C, fig. 14, contains ten times the side of the small
cube ¢, and let us divide the large cube, in a direction
parallel to one of its faces, into ten portions, of cqual
thickness. "This will be the thickness of the small cube.
The  bases of these portions, containing ten times ten
times one of the fates of the small cube, each portion
will contain ten times ten small cubes. The ten portions,
thercfore, will contain in all, ten times ten times ten of the
small cube; a multiplication which is thus expressed 10°.
Following out the same reasoning, and calculating that
twice 2, multiplied by 2, make 8; and that 3 times 8,
multiplied by 3, make 27, and so onit will be seen, that
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if the sides of the large cube contain the side of the
small one,

i, 2 8 4 5 6 1, & 9 10
times, there will be

1, 8, 21, 64, 125, 216, 343, 514, 729, 1000
small cubes in the large one.

In the abbreviated method of speaking, we say that 8 is
the cube of 2, 27 the cube of 3, 64 thc cube of 4, &c.,
which (lcnotcs the number of cubes contained in a large
cube, the side of which contains the side of the small

cube, 2, 3, 4....times.
The volume of a quadrangular prism cquals its base

multiplied by its height.

Let us suppose the prism, fig. 15, pl. 7, to be rectangular. Let us
divide it, parallel to its base, into as many portions as its height con-
tains the unit of measure repeated ; or, in other words, contains the
side of the small cube taken as the unit. As many times as the base
of each portion contains the base of the unit cube, so many times will
the small cube be contained in the portion.  The whole number of
small cubes, therefore, equals the number indicated by the surface of
the buse of the prism multiplied by the number contained in its height.
That is, the volume equals the base multiplied by the height.

T'wo prisms having the same rectangular base and the
same height, one, AG, being perpendicular, fig. 16, the
other, Ag, oblique, are cqual in volume.

To prove it, 1 observe that the two triangular prisms ABEF ¢f,
DCHGhg, are equal. In fact, they have the same height, AE = DH,
and their bases AEe, DHA, are two equal triangles, for AE = DH,
and the two other sides are respectively parallel. But if we add to
the parallelopipedon ABCDEFGH, the triangular prism DCHGhAy,
and cut off its equal ABEFef, we shall have the quadrangular oblique
prism ABCD efyh, whence this latter has the same volume as the
rectangular prism of the same base and height.

It may be eastly shown that the prisms ABCDEFGH, ABCDefgh,
fig. 15, are of the same volume as every other prism, having the same
height, and of which the bases shall be parallelograms of the same

surface as the rectangular base ABCD.

The volume of a right-angled triangular prism equals
its base, multiplied by its height.
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In fact every quadrangular prism ABCDEFGH, fig. 17, pl. 7,
may be divided into two triangular prisms of equal volume, and this
equality will be preserved, whatever may be the inclination given to
the edges of the parallelopipedon, provided its base and height be not
altered. But the surface of the base ABC, or ADC, of the triangu-
lar prisms, is the half of the surface of ABCD, the base of the paral-
lelopipedon ; whence the volume of the triangular prism is equal to
its base multiplied by its height.

The volume of any polygonal rism ABCD, abcd,
fig. 18, equals the base multiplied by the height.

Such a prism may in fact be divided into as many triangular prisms
as its base ABCD can contain of the triangles ABC, ACD....As
they are all of the smmne height as the whole prism, their whole vo-
lume will be equal to the sum of the triangular bases ABC, ACD,
ADE,...multiplied by the height.

Q/.tl:e solid conlmfls of pyramids.—Let us begin with
the triangular pyramid.

The volume of a triangular pyramid is the third part of
its base multiplied by its height.

To demonstrate this, let us take any triangular prism, AF, fig. 19,
pl. 7, and divide it by the plane ACE, which passes through the side
AC of the base, and through the angle E.  We shall have first a tri-
angular pyramid ABCE having the same height and the same hase as
the prism.  There remains also a quadrangular pyramid, of which
ACFD is the base, and E the summit.  Let us divide it into two tri-
angular pyramids by a plane AEF, and we shall have the reverse
pyramid ADEF, of which DEF is the base, and A the summit, and
which of course, has the same hase and height as the assumed prism
AF. If we compare the third pyramid ACFE to ADEF, we shall
see that they are equal in volume, because, making the triangles
ADF = ACF their bases, they have the same summit E. We see,
therefore, that the volume of every triangular prism is equivalent
to that of three pyramids having the same base and the same height ;
and alsg, therefore, that the base of each pyramid multiplied by
its height, which is the volume of the prism, is equal to three times
the volume of this pyramid. .

The volume of any pyramid whatever, fig. 20, is the
third part of the base multiplied by the height.

To demonstrate this, let us divide the base into triangles ABC,
ACD, ADE...each of which will be the base of a triangulpr pyramid,
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having O for its summit. Each of these triangular pyramids will
have for its measure the surface of the triangles AB(, ACD...multi-
plied by the third of their common height. Consequently the whole
pyramid will be measured by the whole of the base by the third of the
height.

.

Cubage of a body terminated by any number of plane
faces, fig. 21, pl. 7. Take any point of such a body, O,
for the summit of the pyramids which have the faces of
the body for their bases. The surface of cach face, mul-
tiplied by the third of the distance to the summit O, will
be the volume of the corresponding pyramid, and the sum
of the products of all the pyramids will be the volume of
the whole body.  In order to carry this method easily into
practice, it would be necessary that we should be able to
place ourselves in the interior of such bodics, and measure
directly the distance of each face. Unless this can be done,
we should enter into very complicated geometrical opera-
tions, very ill adapted to the rapidity and simplicity re-
quired in the operations of practical men.  Fortunately
there is another method more casy and more expeditious
of accomplishing the same thing.

Before explaininz this method, let us measure the volume of the
truncated triangular prism ABCDEF, fig. 22, We may decompose
it into three pyramids, the first having ABC for its base, BE for its
height, and consequently for its volume, the hase ABC multiplied by
the third of BE. The second pyramid having ACF for its base, and
its summit at K, is equivalent to the pyramid having its summit it B,
and ACF for its base; or, which is the same thing, having ABC for
its base and its summit at F'. The third pyramid ADFE is equivalent
to the pyramid ADEB, which is equivalent to ABCF; whence we
have the truncated prism ABCDEF equivalent in volume to the
three pyramids, having ABC for their conunon base, and their re-
spective summits in D, E, F, at the extrenity of the three edges.

If the three cdges are perpendicular t. the base, we shall have for
the volume of the three pyramids, and consequently for that of the
truncated prism, the surface ABC x } (AD 4+ BE + CF.)

It is required to find the volume of the truncated prism
MNODEF, fig. 23, included between two planes, MNO), DEF, oblique
with regard to the edges of the prism. Supposing ABC to be per-
pendicular to the edges, we shall have
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Volume ABCDEF = surface ABC x 4 (AD + BE + CF)
Volume ABCMNO =surface ABC x § (AM + BN 4 CO)

and finally,
Volume MNODEF = surface ABC x } (DM + EN + OF)

By these principles we can readily determine the volume
of any body terminated by any number of plane surfaces.
We decompose it into prisms and truncated triangular
prisms, the volume of which may be, immediately ascertain-
ed; and the sum of the volumes, of all of them, is the
volume of the body.

In the same manner it may be demonstrated with equal
ease, that the volume of every prism or truncated quadr-
angular prism, ABCDEFGH, fig 24, having its edges
perpendicular to the base ABCD, may be measured by
the surface of this base multiplied by the fourth part of
the sum of the four edges AE, BF, CG, DH.

Let us decompose successively, the quadrangular prism, into
two triangular prisms, ABCDEFG, ABCDEHG, and then into
ABDEFH, BCDFGH ; and

We shall have, the volume of the two former prisms =} surface
ABCD x L (AE + BF 4+ CG + AE 4+ DH + CG; ; and the
volume of the two latter prisms =

) surface, ABCD x 4 (AE + BF + DH + BF + CG + BH,)

Tuking the sum of these two produets, we shall have twice the vo-
lume of the quadrangular prism .

4 surface, ABCD x } (3AE + 3BE + 3CG +3D H).

Whence the simple volume of the quadrangular prism is

1 surface ABCD (AE + BF + CG + DH.)

Application to measure the Tonnage of Ships—We have
seen in the second lesson, that the bottom of a ship is di-
vided into horizontal sections by the horizontal planes of
the different water lines, at cqual distances from cach other.
It is also divided ventically by other planes, also at equal
distances.  These two series of planes divide the volume of
the vessel's bottom into rectangular prisms, truncated on
both sides and of an equal base. 'The whole volume of these
truncated prisms is obtained by multiplying the base com-
mon to them all, by the fourth part of the four edges of
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each prism. But each edge is common to four prisms,*
whence the whole volume of the ship's bottom will be cqual
to one of the rectangles ; that is to say, the product of the
distance of the planes of the water line multiplied by the
distance of the vertical planes, and by the sum of all the
edges which are horizontal lines, and are placed at the
same time both on each vertical plane, and on cach water
line. This method bejng at once simple and casy, though
it is only an approximation, may be employed to calculate
the volume of every other body .+

® Except the edges of the sides which are common to only two
prisms, and ought not, therefore, to be taken, cach one more than 2
or } times. There may be four edges, which belong only to one
prism, and of which we must take only the fourth part, or the quar-
ter, to add to the sum of all the edges, which belong to four prisms.

+ The method by which the tonnage or volume of British <hips is
ascertained, is in practice essentially different from the method de-
scribed in the text.  The Act of Parliament, passed in the 6th year of
his present Majesty, preseribes the following rule. © The length shall
be taken on a straight line, along the rabbet of the keel, from the
back of the main-stern post, to a perpendicular line, from the fore
part of the main stern, under the bowsprit, from which, substracting
three-fifths of the breadth, the remainder shall be esteemed the just
length of the keel to find the tonnage ; and the breadth shall be ta-
ken from the outside of the vutside plank, in the broadest part of the
ship, whether thas shall be above or below the main wales, exclusive
of all manner of doubling planks that may be wrought upon the
side of the ship; then, multiplying the length of the keel, by the
breadth so taken, and that product by half the breadth, and divid-
ing the whole by ninety-four, the quotient shall be deemed the true
contents of the tonnage.” If the vessel be afloat, the following is the
rule. “ Drop a plumb line over the stern of the ship, and measure the
distance between such line, and the after part of the stern post,
at the load water-mark ; then measure from the top of the plumb
line, in a parallel direction with the water,to a perpendicular point,
immediately over the load water-mark, at the fore part of the main
stern; subtracting from such measurement, the ahove distance, the
remainder will be the ship’s extreme length, from which is to be de-
ducted, three inches for every fuot of the load draught of water, for
the rake abaft, also three-fifths of the ship’s breadth for the rake
forward, the remainder shall be esteemed the just length of the
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Two symmetrical bodies are equal in volume.

If we decompose two such bodies into truncated triangular prisms,
having for their edges the parallel lines, which determine their
symmetry, for each truncate] prism, MNODEF, fig. 98, pk 1,
placed on one side of the plane of symmetry, ABC, we shall have on
the other side a truncated prism, mnodef; so that DM = dm, EN
=en, FO = fo; and the two prisms will be equal in volume.
Whence, the sum of all the truncated prisms, of the first body,
is equal to the sum of all the correspending prisms, of the se-
cond body. Thas, when two hodies, with plane surfaces, are symme-
trical, they are always equal to each other in volume. This being
true, whatever may be the number of faces, will also be true, when
there are so many faces, and they are so small, that the body may be
regarded as terminated by curved, and not by plane surfaces.

The plane of symmetry, therefore, of any body whatever, divides
this body into two parts of equal volumes.

« Of similur solids.—Two pyramids ABCD abcd, fig. 25,
are similar, when their corresponding edges AB and ab,
BC and bc, CD aund ¢d, AD and ad are parallel.

It is evident, in fact, that the triangles formed by the correspond-
ing faces of these two pyramids, having their sides parallel, are simi-
lar.« The three plane angles, therefore, which each summit of the
two pyramids respectively form, are also equal. Meoreover, the three
edges, forming each solid angle, being parallel, if we move abed, pa-

keel, to find the tonnage.” The remainder of tire operation is si-
milar to that for finding the tonnage, when the ship is not afloat.
We do not profess to have any acquaintance with the principles
on which this mode of measurement is founded. We can draw ne
comparison, therefore, hetween it, and that described in the text.
It seems, however, entirely to overlook one element of dimensions,
namely, the height or depth of the ship’s hold ; and we know of
no secret by which the volume of any bedy, the exact figure of
which is not known, can be accurately determined, unless the dimen-
sions in each qf the three directions be taken. There are varioys taxes
levied on shipping, in proportion to their tennage, and as our me-
thod of determining that, takes no account of depth, it has long
been the practice to build British vessels disproportionately deep,
to the destruction of the beauty of their form, and to their injury in
maany essential particulass, in order that they may carry as much,
while they measure and pay as little as possible. Fr.
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rallel to itself, in such a manner, that the point a, is placed on A, ab
will fall on AB, ac on AC, and ad on AD; whence the planes abo
and ABC, abd and ABD, acd and ACD, will correspond, one with
another ; the two solid angles, therefore, a and A, of the two pyra-
mids, will also be equal. In the same manner, it may be demonstrat-
ed, that the solid angles, B and 5, C and ¢, D and d, are equal ; and
thus, all the conditions required in order that these two figures may
be similar, are fulfilled by the single condition of the two pyramids
having their corresponding sides parallel.
s

If two pyramids, not having their sides parallel, have
their edges proportionals, they will also be similar.

The three sides of each of their corresponding faces being propor-
tionals, these faces will be similar ; the plane angles, and consequent-
ly, also the solid angles which they form, three and three, will be
equal. Thus, all the conditions of proportion will be fulfilled.

Two solids, terminated by plane faces, are similar when
their corresponding edges are proportionals, and their cor-
responding angles, whether plane or solid, equal to one
another.

We can always, in fact, decompose these solids into pyramids, the
sides of which will be proportionals, and, consequently, the corres-
ponding angles will be equal.

The volumes of the similar pyramids ABCDE ubcde,
fig. 26, pl. 7, are proportionals to the cubes of the corres-
ponding edges.

In fact, the volume of each pyramid equals its base, multiplied by
the third part of its height ; or the bases, BCDEF, bcdef, being
similar figures, are proportionals to the square constructed on one
of their sides. Of these bases, we have, therefore, fig. 26, the sur-
faces,

BCDEF : bedef : ¢ BCMN : bemn.

Let us now, on BCMN, and on bemn, as bases, construct cubes,
and we shall have, for the volumes of the twe: cubes,

. BC3 = BC2 x BC and bc’ = be® x be.
But BC:bc:: 4 AH: }ah.
Therefore BCS:be3: : BC® x § AH : bet x } ah.

In this last proportion, the two latter terms represent the volume
of the two pyramids, and the two former terms represent the volume
of the two cubes. .



SIMILAR PYRAMIDS. 131

The volumes of similar solids, terminated by any num-
ber of plane faces, are as the cubes of the corresponding
lines.

We can, in fact, decompose thep into any number of similar pyra-
mids, all having the same relation », to that of their corresponding
sides. But two pyramids, of which the corresponding sides are to
each other, as 1 is to », are, to one another in volume, as 1 is to the
cube of . By adding together, on the one hand, all the small pyra-
mids, and on the other, all the pyramids whith are #3 times more vo-
luminous, the volumes will be to each otheras: : 1: »3.

x
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EIGHTH LESSON.

CYLINDERS.

WHEN a right line is made to move along a curve
ABCD...fig. 8, pl. 8, while it rcmains parallel to any giv-
en direction it gemerates a cylinder, and hence it has been
called, the generator of the cylinder. Each right line, Aa,
Bb, Cc, representing a different position of the generator,
is an edge of the cylinder.

From this definition, we see, 1st. that there are as many
different kinds of cylinders as species of curves, ABCD,
by which the movement of the generating line can be
directed ; 2nd. that with the same curve, ABCD, fig.
1 and 2, we can form an infinite number of different cy-
linders, according as we give a different inclination to the
generating line Aa, Bb.

A complete right line, in the conception of the geo-
metrician, extends infinitely in both directions; so the
edges of a cyhnder, for it to be complete, ought also to
extend mﬁmtely in both directions.

But, in the arts, cylinders have ulways a termination to
their edges. in both directions; thus for the workman,
every cylinder has two ends.

When a cylinder is terminated at one end by a plane
surface, ABCD, fig. 1, this is called its base. If it is
terminated at both ends by plane “surfaces, pan.llel to
each other, it is said to have two bases. It is right-
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lined, fig. 1; or oblique, fig. 2; as its edges are perpen-
dicular or oblique to the planes of the bases.

Sometimes one of the planes which terminates a cylin-
der is not parallel to the other, as in fig. 8, which is a
cylinder terminated by the plane surfaces ABCD, MNPQ.
It is then supposed that the plane MNPQ, has divided
the cylinder with parallel bases, ABCD, abcd, and the
part ABCDMNPQ, as also the pary abcdMNPQ, is each
called a truncated cylinder.

A cylinder, with a circle for its base, is called a circular
cylinder. In the arts, it is this figure which is gene-
rally and exclusively called a cylinder, because it is ex-
clusively used in most branches of industry.

The right line Qo, fig. 4, drawn through the centres of
the two circles, which are the buses of the circular cy-
linder, is the axis of this cylinder. It passes through the
centre of all the circles, formed by intersecting the cylin-
der by planes parallel to the two bases.

According to the properties of parallels, already demon-
strated in the second lesson, the surface of the cylinder is
exactly the same whether generated ; 1st. by the movement
of a right line along the curve ABCD, fig. 3, taking suc-
cessively, the parallel positions Aa, Bb, Cc, Dd; or 2nd. by
the movement of the curve ABCD...fig. 4, which takes
successively the parallel positions, ABCD, A'B'C'D,
A"B’C'D", &c., along a right line, so that the same point
of the curve, A, for example, takes, successively, the po-
sitions A’, A”, A”,...of the edge Aa.

In the arts, both these methods are employed to gene-
rate right lined circular cylinders. As it is required
to give the cylinder perfect continuity, either in the di-
rection ‘of its edge, orein the direction of its base, so the
former or the latter method is preferred. .

lst. Mdlaing cylindsrs by edges.—When it is required
te give a cylinder perfect continuity in the direction of its
edges, a regular polygon of a great number of sides,
ABCDE, is inseribed in a circle, or the polygon is cir
cumseribed about a circle; as many plane faces or paral-
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lellograms, ABba, BCcb, as there are sides of the basé,
are then formed with precision along the whole length.
Afterwards, with an axe, a plane, a draw-knife, a saw,
or any other instrument proper for the purpose, follow-
ing the longitudinal direction of the parallel right lines,
Aa, Bb, Cc, &c., the projecting edges are cut away, and
the cylinder is rounded. By this means, we are certain
of fulfilling the condition of forming the surface by rec-
tilineal and parallel edges. But we are not so sure that
the surface which they represent has, in every part, a
circle for its outline, because the plane, the axe, or what-
ever instrument is used, gives continuity in the rectili-
neal direction of the edges, and not in the direction of
the circular outline.

Application to mast-making.—The masts of ships, par-
ticularly the top and top gallant masts, require to* be
made with a continued or smooth surface, in the direc-
tion of their length; in order that the strap or collar
which passes round each mast and yard connecting one
with the other, may slide up and down, without resist-
ance ; and such masts are made in the manner just pointed
out.

2nd. Making cylinders by equal and parallel curves.—
When it is necessary to ensure, above all things, smooth-
ness and continuity in the direction of the base of the
cylinder, or perpendicular to the length of the edges, it
is done by the process of turning. The turning chisels
describe, successively, a great number of circles ABC,
A’'B'C, A'B"C’, ...fig. 4, pl. 8, eo that the whole of them
represents a cylinder. We are then sure that the surface
is perfectly circular and continuous in the transverse direc-
tion ; but, in general, we cannot be. so certain of obtaining
continuity in the longitudinal direction.

Application to making pike and gun-spunge handles.—~In
the English arsenals, I saw the following means employed
to turn cylindrical surfaces. A piece of wood of the form
of a prism (a poll or staff) previously prepared, of four or
eight faces, is forced into the hollow of a circular plane,
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and as it moves forward, the plane makes it round. By this
means, a cylindrical surface, exactly circular, is formed, if
the prism is perfectly straight; but more or less bent, if
the wood be crooked in any part.

When we wish to produte a surface which shall be per-
fectly cylindrical, we must be certain of its smoothness and
continuity in both directions: which is accomplished by
making the turning chisel move by means of a guide, in
a direction parallel to the axis of the cylinder, so that its
edge always remains at the same distance from the axis.
We are then certain that all the circles are exactly equal,
and that the edges are perfectly rectilineal.

Application to trellis and cage work—~Both means of
forming cylinders are used for making open cylindrical
work, such as that of cages and trellis work. It may be
made of iron wire or iron bars, bars of wood, or even
cords extended in right lines, representing the edges of
the cylinder. Circles of the same substance, being all of
the same size, and having exactly the same curvature, re-
present curves parallel and cqual to the bases of the
cylinder. The lines and circles are fastened together, by
wire, or by soldering, at every point where they cross each
other, and a cylindrical surface is thus correctly formed,
as we see in various works of art, such as cages, baskets,
columns in trellis work, &c.

We can make cylinders of a certain size, by joining to-
gether, side by side, a great number of smaller cylinders,
and uniting them on the outside by circles, or circular
collars. Fascines, made for military operations, are of
this description ; and so also are those collections of pikes,
or other weapons, whlch are thus disposed, either for or-
nament or use.

There are some arts, in which the principal object con-
sists of making cylindrical surfaces, by doubling or rolling
plane continued surfaces. (See 10th Lesson. Developable
Surfaces.) .

Thus the cooper, or person who makes wooden mea-
sures, takes a number of small planks or staves, equally
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smooth, and of an equal size throughout, and he makes
them into the form and dimensions of the measures in use.
In France, the cylindrical measure formerly employed for
grain, was called a boisseay (bushel), and thus the person
who now makes measures, is called a bodsselier.

That he may be certain the measures are made cylin-
drical, he gives them a solid bottom, which is a plane, si-
milar to that of casks: very often, he puts an iron hoop
(circle) round the top, and one or two pieces of iron across
it (diameters,) to prevent the measure losing its cylindrical
shape, and altering its capacity.

The copper and tin-smith, and the brazier, who work with
very thin sheets of iron, copper, or tin, very often make
cylindrical bodies, which, of all curved surfaces, are the
easiest to form. The funnels of common stoves, spouts,
&c., &c., are cylinders. In general, the workman is tald
what is to be the diameter and the length of each pipe
or funnel : they are immediately aware what will be the
circumference, and multiplying that by the length, they
can tell what quantity of sheet copper, iron, or tin,-will be
required.

It is necessary to add, 1st. to the circumference of the
tube, a breadth equal to the overlaping of the two parts of
cach sheet, the edges of which are to be brought together
to form the cylinder ; and 2nd. to each length of tube, a
quantity equal to the extent which the pieces enter, one
within another, at their ends.

Boilers of steam engines must be mentioned as among
the most important works of a cylindrical form, made by
smiths ; but they have not a circular base, fig. 5, pl. 8.
To fasten the sheets of copper or iron together, which
are to form the boiler, cylindrical nails or rivets are em-
ployed, which fit holes made in the copper or iron exact-
ly, and being. riveted over them, completely prevent the
escape of the steam. - The cylindrical holes in the sheets
of metal, are made by four or five punches, fixed into
one frame, and at equal distances from one another. The
frame can be alternately raised and forced dowa by means
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of a powerful machine. The sheet of iron to be punched
for the cylindrical rivets, is placed on a support, which is
fixed, while the punches are descending, in order that they
all may pierce the iron at the required distances. When the
frame with the punches is’ raised, after piercing the holes,
the support on which the sheet is laid moves onward, so
that the punches, on the instrument again falling, may
pierce the following four or five holes at a proper dis-
tance from the former. *

Such are the means employed to bring together, with

precision and firmness, not only all the metallic sheets of
which steam-engine boilers are made ; but also the sheets
of iron, of which the exterior surface of iron boats, and
the iron tanks, for holding water, are made,—which have
been recently introduced into the naval service.
« Of these iron tanks, which, in shape, are cubes, or trun-
cated rectangular prisms, we may remark, that their edges
are blunted or rounded, by portions of the sheet iron being
bent at the edges, into the form of a quarter of a right
lined circular cylinder. .

The plumber and the organ builder make their pipes in
a cylindrical form; and they may be either made out of
sheets bent into the required shape, as is done by the tin-
smith and the brazier, or they may be drawn out, in the
manner of wire. )

Manufucture of cylinders by drawing.—At the arsenal
at Chatham, the following method is employed to make
hollow leaden cylinders of a given thickness and diameter :

Let ABCD, fig. 6, pl. 8, be a solid cylinder, having fox ita diame-
ter the interior diameter of the hollow cylinder to be made. A cy-
linder of lead, thicker and shorter than the one required, is first cast
around the solid cylinder, or around a mould of the same diameter.
The solid cylinder, ABCD, is thrust into the hollow cylinder ; and the
whole is then passed through s circular wire-drawing plate, witich is
lessened every time the cylinders are passed through it ; or they are
passed, &t every successive operation, through smaller holgs. By
this means the hollow cylinder is lengthened, and diminished in
thicknees, always retaining for its interior diameter, the diameter of
ABCD. By degrees, the hollow cylinder is reduced to the required
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thickness. 1Whea the solid cylinder, ABCD, is correctly made, this
method ensures the complete continuity of the hollow cylinders im
both directions.

Metal wires of all dimensions, as well as round bars of
iron, are cylinders, made by Yeducing the metal to the
proper diameter, by the process of wire-drawing : that
is, they are dragged forcibly through circular holes in
strong iron plates ; the metal being passed through holes
less and less in diameter, in order, gradually, to reduce the
size of the bar or wire, at each operation.

Cylinders are also cast in moulds.—The pipes, for ex-
ample, laid down beneath our streets, to convey water and
gas to our houses ; and the cylinders of common pumps,
and air pumps, are made in this manner.

Making cylinders by boring.—Pipes which serve some
common purpose, such as conducting water or gas, and
which are not required to be very exact, may be made suf-
ficiently ‘correct by casting ; but for pipes which must
be made with greater, and even mathematical precision,
such as those of the better sort of pumps; and for such
cylindrical bodies as cannon, howitzers, and mortars, we
are obliged to have recourse to more rigorous methods,
such as the operation of boring, which will be hercafter
explained. (See 12th Lesson. Surfaces of Revolution.)

Making cylinders by suwing.—Finally, cylinders may be
cut out by a saw: 1st. keeping the substance fixed which
is to be sawed, and making the saw advance parallel to
any given direction, while, in its motion, it keeps in some
line previously determined ; this is the operation of com-
mon sawing : or, 2nd. the cylinders may be cut out, by
giving an ascending and descending motion to the saw,
without its movmg backwards or forwards ; giving at the
same time to the piece of wood, the Decessary curvilinear
motion. Cylindrical surfaces are fashioned in this manner
at saw mills.

Construction of cylinders by architects—When archi-
tects wish to form a cylindrical surface, such as the arch
over a door way, a vault, the arch of a bridge, &c., they
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begin by constructing in wood a cylindrical surface, the
exterior part of which is identical with that hollow cylin-
drical surface which they mean to build. They construct
at intervals, a polygon, ABCD, fig. 7, pl 8, inscribed
within the circumference’ of the arch, giving to the poly-
gon, such a number of sides, that it may form, with the
circumference, segments easy to fill, without requiring too
much wood. In fact, they fill these segments by pieces
of wood, on which they place, side by side, the thick
planks, the ends of which are represented in fig. 7. The
upper surface of these planks, forms the cylindrical sur-
face, on which the masons place the stones, called the arch-
stones.

Measure of the surface of cylinders—We may consider
the surfaces of cylinders to be composed of as many edges
as our cyes can distinguish, when drawn as close as pos-
sible to each other; and, therefore, as prisms, terminated
by a great number of extremely narrow faces. The out-
line of the base is in this case a polygon, which for us
is equal to the polygon which serves as the base of the
prism.

If the cylinder is rectilineal, its surface, not including
the bases, cquals the perimeter of one of its bases, multi-
plied by its height.

The total surface of the rectilineal circular cylinder and
its bases, equals the circumference of one base, multiplied
by the length of one edge, plus, the length of one radius
of the bases.

In the prism ARCD, abcd, fig. 8, we can divide the
longitudinal surface in the direction of the edge Aa, and
turn back every face successively, BbcC, CecdD, &c., to
bring it into the same plane as AabB. We shall then
have a plane figure, composed of the parallels Aa, B,
Cc, &c., fig. 9, and of the sides AB, BC, CD, DE, ab,
bc, cd, de &c., perpendicular to the parallels; which re-
quires that ABCDE abede, should be two right lines pa-
rallel to each other, and perpendicular to the edges Aag,
Bb, &c. 'The rectangle thus formed, fig. 9, is what is
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called the developement of the surface of the prism; and
the surface of the prism can be developed, because it can
be executed, without its being necessary, that any parts of
the surfaces AabB, BbcC, should be either lengthened or
shortened to remain side by side, and form one continued
plane surface. A whole lesson will be devoted to develop-
able surfaces, among which, cylinders must be placed, as
they may be considered as prisms, having an infinite num-
ber of sides. .

Let us make, in the right lined cylinder, fig. 8, two
oblique and parallel sections MNPQ, mupg, and let it be
required to measure the cylindrical surface comprised be-
tween these two sections. It is evident, that the portions
of the edges Mm, Nu, Pp, Qg, being parallel right lines,
comprised between twq. parallel planes, are all equal. If
we regard the cylinder, therefore, as a prism with a great
number of faces, the surface of the parallelograms repre-
senting each face, will be—

Surface MmaN = AB multiplied by ... Mm;
Surface NnpP = BC multiplied by Nn = Mm;
Surface PpgQ = CD multiplied by Pp = Mm, &ec.
Whence, finally the surface MNPQ...mnpg = ABCD, multiplied
by Mm ; that is to say, equals the circumference of the base ABCD,
_multiplied by the length of one of the portions of the edges, includ-

ed between the twe parallel planes.

If it were required to measure the surface of the trun-
cated cylinder ABCD...MNPQ, fig. 8, we should be
obliged to develope the cylindrical surface, by marking
each edge AM, BN, CP,...according to its length, and
determine, on the developement of the cylinder, fig. 9, the
surface ABCD—MNPQ.

Supposing that the cylinder was a prism of a great
number of equal sides, we should have, if we made AB =
BC=CD...

Surface of the truncated cylinder ABCD...MNPQ...
= AB (AM + BN + CP + DQ), that is to say, the
breadth of one of its sides or faces, multiplied by the sum
of the edges.of these faces.
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Measure of the volume of cylinders.—If we regard the
cylinder as a prism, composed of a great number of faces,
we shall see that its volume equals the surface of its base,
multiplied by its height. *

The base of a right lined circular cylinder being a cir-
cle, has for its surface, the circumference multiplied by the
helf of its radius.

The volume of the cylinder, gherefore, is equal to
the circumference of the base, multiplied by the half
of the radius of the base, and by the height of the cylin-
der.

Prisms, whether oblique or right lined, of the same base
and the same height, are equal in volume, whence, also,
cylinders, whether oblique or right lined, of the same base
and height, are also equal in volume.

*We can determine very casily the volume of a trunca.
ted right lined circular cylinder. Let ABC, fig. 10, be
the circle, which serves as the base of the cylinder, and Oo
the axis, the volume of the truncated cylinder ABCej,
equals the surface of the base, multiplied by the axis Oo,
that is to say, equals the volume of a right lined cylinder,
having Oo, for its height.

In order to demonstrate it, let us imagine the right
lined cylinder ABCamcn, the upper base of which has its
centre in o, the two volumes amne, cmnf, are equal. Tt
‘may be first remarked, that o being the centre of the
circle amnc, the diameter mon, divides the circle into two
equal parts.

Around mn, as a hinge, let us turn the two right an-
gles of the volume mnae, the half circle mna, will then
fall on the half circle.mnc; all the parts of the edges, such
as ae, &c. will coalesce with the edges fc, &c., aund,
therefore, the plane mne, will fall altogether on the plane
mnf. The two volumes will, therefore, be included be-
tween three surfaces which coalesce ; and they are, conse-
quently, of the same volume. But the right lined eylin-
der posseases mnae more, and mucf less, than the truncated
cylinder ABCef. The two cylinders are, therefore, equal
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in volume, and the measure of one is also the measure of
the other. .

In the same manner as there are sectors of a circle,
AOB, fig. 11, so there are also, sectors of a cylinder,
which have the sector of the circle for their base, and
which are terminated on one side ABad, by the surface of
the cylinder itself, and on the two' other sides, by two
planes AuoO, BboO, which pass through the axis Oo, of
the cylinder.

A segment of a cylinder has for its base, a segment
of a circle, ABC, fig. 12, pl. 8, and for its outline, 1st.
the cylindrical part ACBach: 2nd. a plane ABla, pa-
rallel to the axis, having the form of a parallclogram.

Application of the properties of cylinders to determine
shadows—When the rays of the sun reach us, they are so
nearly parallel, that it would be difficult, with the most
delicate instruments, to detect the least difference in the
direction of two solar rays, falling even at a considerable
distance from each other ; as, for example, at the opposite
extremities of a large building. For this reason, in the
arts, the rays of light emanating from the sun, are regard-
ed as exactly parallel.

When a door, 2 window, or an arch, having the form of
an arc of a circle, ABCDE, fig. 13, pl. 8, is illuminated
by the rays of the sun, Aa, Bb, Cc, Dd, Ee, thesc rays
being right lines parallel to each other, passing through
the circumference of a circle, will form a cylinder or prism,
of which ABCDE is the base. This cylinder separates
all the part of the space enlightened by the sun, within
the door, the window, or the arch, from the part placed in
the shade. :

The consideration of cylinders, their figure, and their
position, is, therefore, of the highest importance, when it
is necessary to determine what points will be illuminated,
and what placed in the shade, in architecture, in painting,
and generally in all the arts of design. In the following
lessons, the means of solving, geometrically, the chief
questions relative to shadows, will be given. -
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Application of the properties of the cylinder to descriptive
geometry—One of the most useful applications of the pro-
perties of the cylinder, is to represent, by its surface, on
a plane, the design or projection of any curved lines what-
ever.

Let us supposec that we have, in space, a curve ABCDE,
fig. 14, which is to be represented on the plane of projec-
tion MNPQ. From each point of shis curve, we draw
a perpendicular to the plane. The succession of points,
a, b, ¢, dy ¢, or the termination of the perpendiculars in
the plane, will form a curve, which will be the geometri-
cal representation, or, as it is called, the projection of the
curve ABCDE.

In general, every curve is projected on two planes,
MNPQ, PQRS, perpendicular to each other, so that the
liney of projection, Aa, Bb, Cc, perpendicular to the
first plane, are parallel to the second, and the lines of
projection Aa’, Bh, Cc, perpendicular to the second plane
arc parallel to the first. The two projections, abrde,
a'b'cde, as we shall see, in treating of the intersection
of surfaces, will be sufficient to determine, completely,
the curve ABCDE, which they represent.

With a plane we can construct cylinders, and converse-
ly, with cylinders we can construct or make planes.

Application of cylinders in husbandry.—By means of a
cylinder, made to roll on a road, recently constructed or
-repaired, on a grass plat, or on a field lately ploughed up,
the projecting parts are flattened down to a common le-
vel, and the earth is thus smoothed into a plane surface.

Pastry cooks use a piece of wood, which is generally of
the figure of a cylinder, and called a roller, to spread out
their paste, which is déne by rolling it, pressing on it,
and pushing it with both hands. Thus, the paste is flat-
tened and transformed into thin leaves, terminated above
and below by plane surfaces.

Combination of cylinders— Flattening rollers—In place
of using only a single cylinder to produce plane surfaces,
it is found more advantageous to employ two combined
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cylinders, the axes of which are parallel. Let AB, ab,
fig. 15, pl. 8, be the axes of the two cylinders so placed,
that of themselves they neither approach to, nor separate
from each other, but may be tpade to do so to any degree,
it is the pleasure of the workman. The two axes being
placed parallel to each other, and the cylinders being
made as true as possible, they are, at the same distance
from each other, at eyery point. If we now cause a plate
of metal, or any other substance which can be flattened,
to pass between these two cylinders, it will be reduced to
the thickness of the shortest distance, whatever that may
be between the two cylinders.

After having caused the metal to pass once between the
cylinders, if they are made to approach each other a little,
and the plate be again made to pass between them, it will
be reduced in thickness by a quantity equal to the dis-
tance, the cylinders have been made to approach each
other. Following out this system, the plate may be re-
duced to any required dimensions; and by means of ma-
chines of this kind, called flatteners, metal is generally
formed into sheets. ) .

Application in Paper-making.—In the arts, we find this
property of cylinders very often called into use. In mak-
ing paper, for cxample, two cylinders covered with woollen
cloth, roll out the substance of the paper, and reduce it
into a continued sheet, giving it any desired length. Pa-
per of this description is called endless.

Application in Printing.—The types necessary to print
off one sheet of paper, are placed on cylinders of a con-
siderable diameter, which are in contact with other cy-
linders, covered with leather, and which supply ink in pro-
per quantity to the types. A cleau sheet of paper is then
made to pass between the cylinders bearing the types, of
which it receives the impression. This method of print-
ing, which allows each sheet to bestruck off with extreme
rapidity, is of great utility, particularly in printing news-
papers, which require to be distributed within a short
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time, after the matter is collected and composed, how-
ever numerous may be the copies required.*

* The Printing Presses, as they still are erroneously called, we
believe, of the description alled to in the text, which are used in
this country, differ materially from M. Dupin's account. To use
them, the matter to be printed is set up or composed by the printers,
with types in the usual method, and put into forms, just as for com-
mon press-work. The types are not placed on a cylinder, as describ-
ed in the text, but the form for printing one side of a sheet, is
put into a flat frame, being, geometrically speaking, a plane. This
frame, which is of the size of the sheet of paper to be printed,
when the steam-engine, or whatever moving power is employed, is
set to work, moves backwards and forwards with considerable rapi-
dity, in another frame fixed to the ground, which is of the same
width hetween the interior parts as the exterior parts, or extreme
width of the former, but three times as long. As it moves for-
ward, the types in it heing then charged with ink, it passes un-
der, and in contact with two cylinders, which revolve above it, also
with considerable rupidity. To the upper part of one of these cylin-
ders, the sheet of paper is applied, which transmits it, and spreads it,
in conjunction with the other, over the moving frame. This takes
place as the revolving cylinder passes over the moving frame, and the
impression of the types is accurately taken off by the pressure of the
cylinder on the frume. By the backward motion of the frame, the
sheet is thrown off from it ; and is then carried away by a boy. Ano-
ther boy constantly supplies the upper part of the cylinders with blank
sheets of paper, and impressions may be taken off as rapidly as the
frame can bc made to move backwards and forwards, and the cylin-
ders to revolve. In this machine, therefore, the paper, not the
types, is applied to the revolving cylinder.

The types in the frame are inked in its forward movement, by
means of smaller revolving cylinders placed above it, and touching
it before it reaches the printing cylinders. When the ink is ap-
plied, these small cylinders are raised up and receive a fresh supply,
while the frame returs beneath, and no longer in contact with
them.

For great dispatch, tw8 such frames, fixed to the ground, as the
one above described, and two such moveable frames and pairs of cy-
linders are employed ; the types for printing one side of the paper
being placed in one frame, and those for printing the other side in
the other. As the paper is printed on one side, it is transmitted to
the other machine, and printed on the other side. When great dis-
patch is not required, one machine only is employed, and after the
necessary number of copies are printed on one side, the form for

L .
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Cylinders are also employed for printing designs of
every description on cloth; the designs being engraved
on copper cylinders.

e
printing the other is placed in the frame, and the sheets printed on
the second side.

Although not successfully practised, an attempt has been made to
print with types in cylindrical forms; and as this occurred in an
establishment of singularsenterprize and ingenuity, sbout the time
of M. Dupin’s last visit to the metropolis, it is probable that he saw
the machine, and eoncluded that it was the representative of the
whole process of printing by power. Stercotype plates were cast
upon types in the usual manner, and by a curious contrivance, were
bent so as to apply to the surface of the cylinder, by which the im-
pression was to be conveyed to the paper. This method, provided
that it admitted of equal excellence as to execution, which, in fact,
did not appear to be the case, must obviously be adapted only to a
peculiar class of publications. -

It may not be out of place here, nor uninteresting to those who
love to trace the connection which exists between all the events of
the moral world, as well as between all the physical phenomena
of the universe, if it be remarked, that the great improvement in
printing just mentioned, took place at a time when communication
had become surprizingly rapid between every part of this country,
with a great probability of the rapidity being still further increased.
With this rapidity of communication, let us suppose that some alarm-
ing event occurs, exaggerated by rumours, like the murder of Mr.
Perceval, or an assemblage of a riotous mob. The report of such
an event, also exaggerated as it procceded, would be transmitted
by the thousand vehicles which daily and hourly leave the metropo-
lis, and might spread fear and apprehension and dismay through-
out the kingdom. It may, indeed, be supposed, with our present
rapidity of communicatiol, were there no circumstances accompany-
ing it, tending to check the propagation of false rumours, and to
spread correct information, that an alarming event, occurring in
the metropolis, magnified by rumour with its thousand tongues,
might shake the kingdom to its centre. So general a panic might
be created, such general anxiety and terror might be produced, that
it may be even doubted if our present rapidity of communication
would not be incompatible with the safe existence of society.

But there are counterhalancing circumstances which arise in the
natural course of things, without the agency or appointment of
governments, which, perhaps, have never even taken the view just
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Lithographic primting.—In lithographic presses, only
one cylinder is employed. After the design bas been
drawn on the stone and inked, the shect of paper destined

brought under notice. A certain portion of the community make it
their business to collect information. Depending on the favour and
support of the public, which would soon cast them aside were they
habitually to deceive, they have the strongest of all possible me-
tives for sifting the information they collect, and for propagating
only what is true. By their attention being directed to this object,
they acquire a sort of tact in discriminating ;—they are acquainted
with circumstances of which other men are ignorant, which enable
them to appreciate the correctness of all reports; and in the vast
majority of cases, the information they obtain and send abroad, is
substantially correct. Newspapers which are published by this class
of men, grow up in society, unwilled of governments, which very
often do all they can to prevent or suppress them. In the philoso-
phieal point of view, however, just considered, tending to spread cor-
rect information, and checking the propagation of false rumours,
newspapers are necessary, when communication is rapid, even for
the preservation of society ; and are fully as important and essential
a part of social economy as gaols and judges. A government may,
therefore, just as well deny justice or crimifial law to its subjects,
as publie journals. -

But 1f such vehicles of faformation be essential to preserve the ex-
istence of society, the invention which sends them forth to the workd
complete, in a short hour or two, when formerly twice or thrice as
much time was required, must be proportionally useful. Partly in
consequence of this improvement in printing, and partly in conse-
quence of other simultaneous improvements in the management of
newspapers, those published in the morning, are now ready, even
on nights when the Parliament sits late, to be sent from London by
the morning coaches. The most correct information which can be
obtained, is thus transmitted, in company with the most speedy and
earliest travellers. The exaggerated rumours of conversation, as
they are spread by the coaches, are accompanied by correct ac-
counts. Society, instead of being agitated by false rumours, remains
calm and tranquil at every point. Those who have heard of tt.le
numberless false reports and apprehensions which got abroad in
Great Britain, in the year 1745, or who know how much F'rnnce was
agitated as long as Buonaparte was in existence, by stories of his
coming back, will be sensible of the value to society, of all th.e means
which tend to check the propagation of false rumours. They will see at

L
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to receive the impressioh, is laid on it, and a cylinder
being rolled over the whole, with an equal pressure on
every part, gives to the impression equality and beauty.

Copper-plate printing—To print from copper plate en-
gravings, the plate, which is a plane, and the paper on
which the impression is to be left, both pass together be-
tween two cylinders, which press them one against the
other. “

Application of double cylinders to the manufacture of
bar iron.—According to the method formerly in use, and
still practised, generally, on the continent of Europe, in ma-
nufacturing iron, a large mass of cast-iron, called a loupe,
was violently heated ; it was then placed on an anvil, and
struck by very heavy hammers, which forced out the im-
pure matter, and the foreign substances which the mass con-
tained. By this process, iron was reduced into the form,
more or less perfect, of prisms or bars. The English,
within a few years, have substituted double cylinders,
which perform the work with great regularity, for the
rude labours of the hammer. Let the reader imagine
two pair of cylinders, notched in such a manner as to
form openings, the profile of which is a succession of lo-
zenge shaped holes, gradually decreasing in size, as in fig.
16, pl. 8; or a succession of rectangles, gradually di-
minishing, as in fig. 17. The mass of iron being vio-
lently heated, and sufficiently squared by the hammer, is
made to pass between the cylinders, moving successively
through the openings 1, 2, 3,...which gradually lessen its
size, and reduce thc heated mass to square or flat bars.
This method is very advantageous, on account of its draw-
ing out equally, all the fibres of the iron. At length,
this method has also been introdticed into France, but,
unfortunately, is not yet sufficiently practised.

once, that newspapers are essential parts of social order ; and that

they, and the improvements adverted to in printing, are necessary
to render harmless that rapid communication, which is, in many re-
spects, so extremely beneficial. Tr.
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Application of cylinders to carding.—A very successful
application of double cylinders -has also been made for
carding cotton and wool, and also to separate hemp and
flax. .

Two cylinders, fig. 8, are placed perfectly parallel to
each other, and carding pins are fixed in a regular manner
at every part of the surface of both the cylinders, so
that the points of one, lock in with the points of the
other. When cotton, wool, hemp, or flax, is made to pass
between these eylinders, which revolve either in contrary
directions, or in the same direction, but with different
degrees of velocity, the filaments of these substances must
necessarily extend themselves in a parallel direction, form-
ing, when they issue from between the cvlinders, a flat
band, called a carding or sliver.

Application of cylinders to spinning cotton, hemp, &c.—
A right lined circular cylinder, with a smooth surface,
AB, fig. 19, is combined with a grooved cylinder, CD.
The cotton threads are first dragged .slowly through one
pair of cylinders ; and quicker between another pair,
parallel to the first. «By this means, the cotton between
the two pairs of cylinders, is forced to extend pro-
portionally to the difference in ‘the velocity of the two
pairs of cylinders. As the cotton is thus drawn out, the
thread is rendered finer, which is one of the great advan-
tages of our present spinning machines.

The manufacture of grooved cylinders, is one of the
most delicate operations of art: it requires very great
precision. The least defect of parallelism in the grooves,
and the least inequality in the diameter of the cylinder,
would be sufficient to produce, in spinning very fine
threads, such differendes as would make them lose all the
advantages of the strength and regularity, which are com-
patible with_their finencss.

To make grooved cylinders, a species of machine is em-
ployed, that is adapted to divide the circle into equal
parts, according to the method described in the third les-
gon. After the number of grooves which the cylinder is to
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have, has been determined, and it has been placed on the
circle of division which supplies this number, the first
groove is formed, by making a cutting instrument move
backwards and forwards, along a guide, placed parallel to
the axis of the cylinder. When the first groove is complet-
ed, the instrument indicating the divisions of the circle is
moved one point ; the cylinder is, by this means, placed
in a proper position<for cutting the second groove, which
is made in the same manner; aud so on, till the whole
are compicted.

Cylinders are very often combined in a different man-
ner. A solid cylinder is made to enter or move in a hol-
low cylinder ; such, for example, is the movement of the
pistons of pumps, fig. 20, pl. 8; the cork of a bottle is
a solid cylinder; such, also, is the movement of the two
parts of a sheath or case, fig. 21, and of a round tobacco
or snuff-box, fig. 2%, &ec.

Hollow cylinders, which shut exactly within one ano-
ther, are the geometrical forms of opera glasses, and of
common achromatic telescopes, or spying glasses. They
can be drawn out at pleasure, as, at AB, fig. 23, or
closed up, as at ab. It is cvident that the easy and pre-
cise movement of such instruments, the parts of which
slide within one another, depends on the perfect manner
in which the inner and outer surface of each hollow cylin-
der is executed.

By lodging the ends of cylinders one within another,
those long lines of tubes or pipes are laid down, in Eng-
land, which carry both water and the material of light,
beneath the streets, into the houses and shops of the peo-
ple. As iron is very sensibly affected by an augmentation
or dimination of temperature, if the'pipes were laid down a
considerable distance, and were so united that the ends
of each could not move one within another, they would
break.

To obviate this inconvenience, onc end of each pipe is
terminated by a cylinder, ABCD, fig. 24, pl. 8, langer
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than the body of the pipe, CF. Into this large part, the
smaller end of the following pipe, mn, enters, in such a
manner, that the two pipes can move a little one within
the other, notwithstanding the solder or lead by which
they are united; and thus, without permitting their con-
tents to escape, they admit of the elongations and contrac-
tions occasioned by changes of temperature,
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NINTH LESSON.

CoNicAL SURFACESs.

THE sugface of a cone, SABCDE, iig. 1, pl. 9, is de-
scribed by a right line, which always passes through the
same point, S, and along a curve, ABCDE. The right
lines SA, SB, SC....are the edges or sides, and the point
S, is the summit or vertex of the cone.

In the example given, fig. 1, in which the summit S,
and the curve ABCDE, are in the same plane, the sur-
face of the cone is the same as the surface of the plane.
Thus, when a horse is driven round a circle, during the
preparatory exercises of breaking in, the rope which pass-
es to the horse, from the man or the post in the centre,
and which is kept constantly in a right line, describes
a cone, SABCD, fig. 3, provided the summit be out of
the plane of the curve ABCD, described by the point
where the line is fastened to the horse. But when the
rope is horizontal, the cone becomes a plane, and the ver-
tex S, is in the plane of the circle abcd, described by the
horse. The sides Sa, Sb, Sc....are in this case the radii
of a circle.

Geometry considers the cone, fig. 1, as a surface ex-
tended on both sides without limit, like the right lines
which constitute its edges. It considers two cones, form-
ed by the parts of the same edges, which are on the oppo-
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site sides of the summit, us forming only one surface, and
the summit is, for this reason, called the centre of the
cone.

We find some examples of these complete or double
cones in the arts. The hour-glass, fig. 2, that ancient
instrument, which is, even to this day, employed on board
ships to measure time, is formed of two cones, placed in
this position. In any portion of #ime, an hour, for ex-
ample, though such glasses are made to measure various
periods, taken as unit, all the sand runs from the upper to
the under cone, and a unit is reckoned for every time the
glass is turned.

In the arts, cones are always of limited extent, and in
general, only a part SABCD, fig. 1, is considered.

When the cone is terminated by a plane area, ABCDEF,
fig. 1, this is called its base. In the present lesson, we
shall suppose that every cone is terminated by a plane
base.

The regular cone, or right lined circular cone, the most
simple of all cones, is that of which the base, ABCDEF,
is a circle, fig. 3, apd of which the summit 8, is situa-,
ted on the axis SO, of the circle. The right line SO, is
also the axis of the cone.

The oblique circular cone, fig. 4, has also a circle for
its base, but all its edges are not cqual in length to one
another, and the right line SO, drawn from the summit
to the certre of the base, is not perpendicular to the
plane of the base.

In the regular cone, the edges SA, SB, SC, fig. 3,
being oblique lines equally distant from SO, which is
perpendicular to the plane of the circle, are equal to one
another. All the edges of this cone, therefore, are equal
to one another, and form the same angle witlr the axis.

Let us now suppose, that on a cone, the work of art,
we draw so many very fine edges, that they offer to our
senses, only the appearance of one continued surface, co-
vered with lines, the distances between which are too
small to be perceptible. The surface thus composed of
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small plane triangles, formed by the edges, does not differ,
so to speak, from a geometrical conc; if we substitute
one of these surfaces for the other, the errors, if there
be any, will be so small that they will escape our notice,
and may be neglected in practice.

A cone may, consequently, always be regarded as a
pyramid having a great number of triangular faces, the
breadth of which is extremely small, and the height of
which is the same as the length of the edges.

Thus, all the measures already given, both for the sur-
face and for the volume of pyramids, (Scventh Lesson) will
also scrve to mieasure cones.

The right lined circular cone being a regular pyramid ;
first, the whole surface of its faces, or the curved sur-
face of the right lined circular cone, equals the circumfe-
rence of its base, multiplicd by the half of one edge;
second, the whole surface of the circumference, and of
the base of the right cone, is equal to the circumference
of the base, multiplied by the half of one edge, plus the
half of the radius of the base.

The volume of any cone whatever, equals the third of
‘its height, multiplied by the surface of its base.

If we divide the cone by a plane parallel to its base,
we form a truncated cone, the surface and volume of
which will be measured, like the surface and volume of
a truncated pyramid.

The surface of a truncated regular cone, equals the
half sum of the circumference of the two bases, multi-
plied by the length of one of the edges, comprised be-
tween the bases.

If we divide a pyramid by a plane parallel to the
base, fig. 7, the small pyramid thus obtained is similar
to the large one.  This being true however numerous
may be the faces of the large pyramid, is equally true
of the cone; as well as all the consequences derived
from it. First, therefore, when we divide a cone by a
planc parallel to its base, a small cone is separated, si-
milar to the large one. Secondly—When two cones are
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similar, the curved surface of them is proportional to
the square of the corresponding lines of the two cones;
for example, to the square of the edges. Thirdly—The
surfaces of the bases are glso proportional to the square
of the corresponding lines. Fourthly—The volumes of
similar cones are proportional to the cubes of the cor-
responding lines.

Let us construct a truncated cone, ABC....abc....fig. 7,
pl. 9, detaching a small cone from a large one, by a sec-
tion parallel to the base. It is clear that we may ascer-
tain the volume of the truncated cone, by calculating
scparately, the volume of the small cone, and subtract-
ing it from the volume of the large one. The volumes
of each part of the cone being equal to the product of
its base, multiplied by the third of its height, the opera-
tion is not at all difficult.

When a cone .is not right lined and circular, or even
when the cone is merely not right lined, its surface cannot
be measured by these rules. .

In such cases, the surface of the cone must be decom-
posed into a number, of triangles, sufficiently numerous to
ensure the degree of exactness desired ; and the triangles
are to be produced on a plane surface, one by the side of
another. The triangles SAB, SBC, SCD, of the figures
3 and 5, pl. 9, are produced in this manner, in S’A’B,
SBC, S'CD, of figures 4 and 6. It is by this means
made evident, that the curved surface of the cone equals
the plane surface S'A’B’C'...which is measured by the
methods pointed out in the sixth lesson.

Having now stated the essential measures for the sur-
face and for the volume of the cone, let us see what use
is made of cones in tht arts.

The architect and the builder construct the roofs of cir-
cular towers, of right lined circular cones, fig. 8, having
for their axis the axis of the tower itself. Guns are cast,
fig. 9, of the form of a scries of truncated cones, the larg-
est base of which is towards the breech of the gun. The
hatumaker faskions his materials into the form of a trun-
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cated cone, with either a flat or curved rim. In the varia-
tions given to the dimensions of the part of this truncated
cone, and to the dimensions of the border, consists the
almost infinite diversity, in the shape of hats and bonnets,
which proves both the capriciousness and the fertility of
fashion. Figures 10, 11, and 12, will, perhaps, assist
the memory of the student.

Organ builders terminate the lower part of their cylin-
drical tubes by a truncated cone, ABST, fig. 13. Those
tubes, the sound of which imitates that of trumpets,—the
whole of them being called the trumpet, (one is represent-
ed at fig. 14), have the form, through their whole extent,
of a truncated cone.

Avrchitects at times, for the sake of solidity and strength,
employ columns which are of a greater diameter, from the
base to a third of the height, than in the part above; the
diameter gradually diminishing from that point upwards,
to the part which immediately supports the capital. When
columns are to be made of such a height that they can-
not be formed of a single block, they are divided by a
scries of parallel planes; and the different pieces into
which the colunin is divided, are regarded as truncated
cones, fig. 15. Each of these picces, called a drum, is
worked as if it,were a truncated cone.

The mast-maker makes ships’ masts of a form similar
to that of a column, inasmuch as he gradually reduces
their diameters from the heel to the head.

Cones are made by several methods, analogous to those
employed in making cylinders.

We may first form a regular polygon, ABCD, figs. 3 and 5, of a
great number of sides; and each of the faces, SAB, SBC, SCD,
may then be worked out, according to the Inethod explained in the
lesson relative fo plane surfaces.’

If, in place of a complete cune, we have only a truncated right
lined circular cone, ABCD...abcd, ... fig. 16, pl. 9, we must first
make the two plane faces ABCD,...abcd,...perfectly parallel. On
these two planes, two points are marked, O and o, which are in

a right line, perpendicular to the two planes. Through the two
points O, o, draw the parallel right lines OA, oa, having for their
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length, that of the radii of the two circles ABCDE, abede, which
must be drawn.

The two circumferences are then to bhe divided into the same
number of equal parts, and through the points of division A, B,C, D,
...ty b, ¢, d,...draw perpendiciars to the radius, in order to form
two regular polygons, cirewmseribed sbout two circles. 'The plane
trapezium faces, having for their superior and inferior bases the
sides of the two polygons I. 11, 2.1, 11111, 3.2, IIL. 1V, 4.3,...
are then worked out. By this means, we form a sort of truncated
pyramid, surrounding the cone. Cutting %way the edges, I. 1, 11. 2,
I11.3, 1V.4,...with a plane, or any other suitable instrument, until
the new faces thus formed touch the two circles, we make a trun-
cated pyramid, having twice as many sides as the first, and approach-
ing much nearer the figure of a cone. Continuing in the same man-
ner to cut down the edges, we approach nearer and nearer to the
true figure of a cone, and at length obtain that degree of exactness
which is required for the particular object.

- This is only an approximating method, as will be evi-
dent, and we must have recourse to other proceedings, to
form a cone of perfect continuity.

C'onical surfaces may be made by turning, if we cause a
cutting instrument, P, fig. 17, to glide along-a rectilineal
gmde, NM, fixed parallel to the intended edge, AS. In
every position of the instrument, it will describe a circle,
baving for its axis the right line which passes through the
points, on which the block to be turned revolves. The
whole of the circles thus described, will form the surface
of the come, SABC, fig. 17. In this manner, the boy’s
top, SAC, fig. 18, is made ; and few young gentlemen,
perhaps, are sensible, when they follow the amusement
of spinning tops, of the mathematical propertics of their
plaything.

We can form a right circular cone, by making a ge-
nerating right-line turn round an axis, SO, fig. 3, al-
ways making it preserve the same angle with the axis.
(See the Eleventh Lesson.)

By the definition of a cone, we sce that one may at any
time be produced by a movable right line always pass-
ing through a point, taken as the vertex.

Application to tracing likenesses.—An instrument, called
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a likeness tracer, ABCD, fig. 19, pl. 9, is employed to
copy profiles, with great exactness. It consists of a rec-
tilinear staff, which may be turned round the fixed point
S, one end of it resting on the profile ABCD,...the other
end being provided with a pencil, which touches a picee of
extended paper, the plane of which is parallel to that of
the profile. The curve abed, described by the pencil, is
similar to the profile ABCD.

To demonstrate this, let us draw OSo, fig. 19, perpendicular to
the two parallel planes of the profile and the portrait ; O and o,
being the two points where this perpendicular meets the two planes.
Let us suppose the staff which traces the portrait in any one of its
positions, in ASa, for example. Draw O\, oua ; the two right angled
triangles ASO, aSe, are similar. In fact, the angle ASQ, is equal to
the angle aSo, because they are two oppusite angles at the ver-
tex. Moreover AO, ao, are parallel, whence the triangles ASO, aSo,
are similar ; and

SO:So::80:82::0A: oa.

In the same manner, it may be demonstrated that,

SO :S0::8A:8¢::SB: S ::8C:8 ::8D: 8
SO:8 ::0A:00::0B:0b::0C:0¢::0D: od

Or the lines OA and oa, OB and ob, OC and oc, are parallel two
and two ; consequently, the fizures ABCDEF....abedef....ave similar
figures, the corresponding lines of which are parallel and proportion-
al to the distances of the fixed point S, form the planes of the pro-
file and of the portrait. Whence, finally, the profile ABCD, and
its portrait abed, are similar.

Nature herself, by means of the rays which emanate
from every luminous point, traces conical surfaces, similar
to those of the likeness-tracer. These rays enter the ball
of the eye at the pupil, and cross each other at a point
8, fig. 22, to reach a surface PQ, called the retina. On
this surface Nature produces a picture, which gives the
forms, and even preserves the colours of cxternal objects.
The impression produced on the retina is transmitted to
the optic nerve, by which it is transmitted to the brain,

the seat of the understanding.*

» There seems to be a trifling assumption in this passage, which

the translator thinks it necessary for him to notice if not to correct.
The physiologists, who have examined the organ of vision, have as-
certained, beyond a doubt, that there is such an impression made,
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Thus the admirable phenomenon of vision is effected in
man, and in the greater number of animals, by means of
conical surfaces traced in space, and in our eye; the
agent being rays of light scattered in every direction, by
bodies luminous, either in their own nature, or from re-
flecting the light of luminous bodies.

or picture painted, on the retina, as is described in the text. They
have also ascertained that the optic nerve, in a healthy state, and
the brain, are both necessary to correct vision. They have proved
too, that when the optic nerve and the brain are in a sound state,
when individuals are awake, and when the above described im-
pression is made on the retina, vision, or u sensation of sight, is
produced ; or we see the object, the image of which is impressed on
the retina. But there is nothing in the connection between the
picture on the retina, and our consciousness of perceiving the exter-
nal object, te warrant the assertion, that this impression or this
picture, is transmitted to the optic nerve, and subsequently fransmit-
ted to the brain. It is guite plain that the image is not transmitted,
for that is altogether an optical phenomenon, and neither the nerve
nor the brain has, as far as we know, any facility for either receiv-
ing or transmitting optical impressions. ‘Fhe picture on the re-
tina is the ultimate physieal circumstances which physiologists have
yet traced when vision ocgurs ; and between that and actual sensa-
tion and perception,—or the mental act of seeing, all is darkness.
We know that there are impressions on the retina ; we know that in
ordinary cases when they are received, vision follows; but we know
not how the bodily impression is connected with thé mental percep-
tion, and to account for it, by further impressions on the optic nerve,
by impressions on the brain, and by this being the seat of intelli-
gence, only serves to keep our ignorance out of view, and attempts
to explain the incomprehensible connection between the impression
on the retina, and the sensation of sight, by another equally in-
comprehensible connection, viz. an impression on the brain with this
sensation, of which connection, however, we have no knowledge what-
ever. There are in every direction some bounds to our knowledge,
which, although they coninually recede as investigation proceeds,
can never be passed ;—which equally exist, thongh their extent is
different, for the most ignorant savage and the most enlightened
philosopher ; and at which every man feeling himself suddenly ar-
rested, and being unable to explain the connection between certain
phenomena, feels the sentiment of wonder, and is compelled to re-
verence a Power, the ways of which, he is thus made sensible, are
inscrutable. Tr.
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All the luminous points visible in the heavens during a
beautiful night ; all the objects which make up a delightful
landscape, when seen on a clear and serene day, are paint-
ed in our eye, in all their due proportions and forms,
their colours and their flitting shadows, by means of cones,
in the manner just described.

Camera obscura.—Art imitates nature, constructing a
chamber similar to the interior of the eye, allowing the
light only to enter by a glass or lens, similar to the pupil
of the eye, S, fig. 22, pl. 9. The light forms on the
sides of this chamber, as on the retina, abcd, a representa-
tion of the colours, forms. and movements of the objects
that are in the front of the lens. If we receive this trans-
mitted light on paper, we can draw the outline which it
forms, and reproduce the same colours, the same lights
and shades.

The rays, which emanate from a single point S, fig. 20,
pl- 2, and meet an opaque surface abedef, cannot proceed
onwards ; the rays which touch the outline of this suiface
proceeding onwards, separate the space beyond the opaque
body into two parts; one illuminated, and the other de-
prived of light by it. The space deprived of light is call-
ed the shadow of the opaque body. Thus, when an
opaque surface or body is placed before a luminous point,
its shadow is limited by a conical surface, having the lu-
minous point for its vertex.

Silhouettes.—This property of the luminous rays has
been turned to account in drawing portraits on a plane
surface, similar to any given profiles. The profile to
he imitated, abicde, fig. 20, is placed in a plane parallel
to that on which the portrait is to be drawn. A light,
such as a candle or lamp, at a convenient distance, be-
comes the vertex of a cone, having for its base the
profile to be copied. " The cone is continued to the plane
of the portrait, so as to trace on it another base, ABCD...
gimilar to the former, and marked by the outline which
is the limit to the shadow of the profile; this base is the
silhouette of the profile.
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The student will observe, that the figures 19 and 20,
onc representing the physionatrace, and the other the
transmitted shadow, have the same letters of reference;
which is done designedly, because the demonstration given
of figure 19 applies also to fig. 20, and leads to the same
consequences.

Ombres Chinoises.*—The property of conical surfaces
to reproduce on a given plane the exact profile’ of a single
figure, or a group of figures, has also been turned to good
account to produce a pleasing amusement. A’single light
illuminates some cards cut into figures, or real figures,
and transmits the lights and shadows on to a curtain
which cannot be seen through, but which allows so much
light to pass in the illuminated parts as to render the
parts placed in the shade quite distinct to the eye of the
spectator. These parts are the bases of conical surfaces,
having for their vertex the lamp or any other luminous
point placed behind the curtain, the edges passing by
the profile of the persons or figures whose position and
form: are to be reproduced. .

If the same object, AB, fig. 21, the shadow of which,
MN, is carried to tHe curtain RR, moves from the lu-
minous point S, towards ab; the shadow formed by ab
is diminished, and is represented by mn. The position of
the luminous point remaining the same; as the object re-
presented is moved towards the curtain, the extent of the
shadow is diminished, while as it is moved from the cur-
tain, the shadow is enlarged more and more. If the ob-
ject remains fixed, the shadow may be enlarged by remov-
ing the luminous point nearer to the curtain, or diminish-
ed by removing it further off.

This variety producgd in the size of shadows, which pre-
serve the same form, and the diversity of scenes result-
ing from the motion of these shadows, and changmg the
objects represented, give a great interest to this species of

* The French name is preserved, because it is well known to the
English reader, and we have no substitute for it.
M .
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amusement. The properties of conical surfaces enable us
to reduce to exact geometrical forms the desired effects,
and to establish the proportions suited to this optical
game. Let us now refer to a much more important ap-
plication of the conical form of shadows than that of the
ombres chinoises.

‘PrINcIPLE OF PerspEcTIVE~When all the visual
rays pmsnble are directed from a fixed point, S, fig. 22, pl.
9, on the curve ABCD thesc rays form a cone, :aAB( D.
If we ascertain the section abed, made in this cone by a
plane, MN, the figure abcd will form in the plane MN
the representation, or, as it is called, the perspective of the
figure, ABCD. The same effect, in respect of form, will
be produced in the eye; that is to say, the perspective
will produce on the retina the same image as ABCD ; for
the right lines Sa¢ and SA, Sb and SB, Sc and SC, coa-
lesce and are the same.

Perspective, therefore, has for its aim to produce a re-
presentation of objects, so that, when viewed fronr any
point, S, the representation shall affect our vision like the
objects themselves. Our mind recciving the same imagos,
whether proceeding from the objects or the representation
of them, we find it difficult to distinguish between them ;
or, rather, we en.)oy a resemblance obtained by the efforts
of art. Such is the source of the intellectual pleasure
which the spectator experiences at the sight of well cxe-
cuted perspective.

If the eye of the spectator were not placed at the point
of view S, the cone Sabcd, would be changed ; and it
would no longer produce on the retina an image perfectly
similar to that produced by the object itself. Such is
the disagreeable effect experienced. more or less, when the
eye is placed in any other position than the point of sight ;
a point thus named, because it is that from which we
ought to see the perspective, to enjoy its proper effects.

The perspective of curves produces cones, that of poly-

gons produces pyramids, by the whole of the visual rays
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or right lines drawn from the eye to the outline of the
curve or polygon.

If we look at a regular polygon, to which the plane of
the picture is parallel, and the visual ray, drawn through
the centre of the polygon,’is perpendicular to the plane,
the perspective will be similar to the polygon, and the
image painted on the retina will be a similar regular po-
lygon. But if we draw the perspectne of the polygon,
and remove the point of sight, the image on the retina will
be regular no longer. The polygon will appear shorter
vertically, and lengthened in some other direction.

Thus, when the object to be gepresented is not in a
plane parallel to the plane of the picture, the perspective
generally differs in form from the object to be represented.
These differences are of infinite variety. There are, how-
ever, very important general rules, which serve to abridge
the labour necessary to place objects in perspective,—an art
which must be frequently practiscd by many artists, such
as architects, landscape painters, house and ornamental
painters, sculptors, when they cxecute das reliefs, &c.

If two right lines AB, CD, fig. 23, pl. 9, are parallel
to the plane of a picture MN, the perspective repre-
sentation of them, on the picture, will also be two pa-
rallel right lines.

In fact, if we draw the visual rays SaA, 8/B, ScC, the lines AB, ab,
as well as CD, ed, will be parallel: AB and CD are parallel to one
another, whence the two perspective lines ab, ed, will be also parallel,
and consequently will never meet.

Let us now suppose that the lines AB, CD, EF, fig.
24, are parallel to one another, but are not parallel to the
plane of the picture MN.

From the point of sight S, draw to the picture MN a right line,
SO, parallel to the right lines AB, CD, EF, which are fo be placed
in perspective. 'Then draw the visual rays SA, SB, which will cross
the picturc in a and b. These two rays are in a plane which passes
through 8, ‘and through AB, and, consequently, also through SO, pa-
rallel to AB. The three points a, b, O, therefore, which are all in this

M2
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plane, and on the picture, are in a right line.  Whence ab produced,
will pass through O. The same thing may be demonstrated of ca,
ef, &e.

The lines ab, cd, ¢f, therefore, the perspectives of the
parallels AB, CD, EF, produced if necessary, pass al-
ways through the same point O, when AB, CD, EF, are
not parallel to the plane of the picture.

The point O is very remarkable, and is called the point
of concurrence, of the perspective of the parallels AB,
CD, EF.

When objects on which there are many paralicl lines are
to be represented in perspective, it is advantageous to as-
certain the point of concurrence of all the lines in cach
direction. In this manner, we gain one point of perspee-
tive for each of them; and, by obtaining another point,
we are enabled to form a complete representation of them.

Application to Architecture.—In particular, when an
architectural design is to be placed in perspective, 1t will
be found very advantageous to determine the point of con-
currence. The greater number of lines drawn by architce-
tural draftsmen are parallels, either to the vertical plane,
which lies in the direction of the front of the cdifice to be
represented, or to the vertical plane at right angles with
it; and of these lines, some are vertical, others hori-
zontal.

The plane of a picture, on which the perspective is to
be drawn, is almost always vertical, fig. 25, pl. 9. In
this case, all the lines which are vertical in the building,
are also vertical in the perspective. The horizontal lines,
which are parallel to the plane of the front, have a point
of concurrence, O, which ought to be ascertained. 'The
point of concurrence o, of the horizontal lines, which are
perpendicular to the plane of the front, must also be
determined ; we have then only one single point more to
fix for the horizontal and vertical lines. The method of
projection supplies us with an easy method of deing this,
which will be pointed out in treating of the intersection of
surfaces.
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When we know that some of the lines are parallel, and
they are seen in perspective, we ought immediately to
examine if these lines, when prolonged, would meet at a
single point properly placed,swhich is their point of con-
currence in the picture.

When an edifice is drawn in perspective, on a vertical
plane, fig. 25, which, as already stated, is the most
usual case, both in plan drawing and in painting, the
points of concurrence of all the possible groupes of ho-
rizontal parallel lines are placed on the horizontal plane,
which passes through the point of sight. "This is, in ef-
fect, the only plane which ¢an be drawn through this
point, parallel to the horizontal lines. Thus, on the one
hand, the point of concurrence for the perspective of the
horizontal lines, parallel to the front of the building, and
on the other, the point of concurrence for the perspec-
tive of the horizontal lines, perpendicular to the front,
are both placed on a level with the point of sight. Con-
sequently, at this height, the horizongal lines of both di-
rections are put in perspective in the direction of a hori-
zontal line, Oo, fig. 25, situated at the same height as the
point of sight.

It will be casily perceived, fig. 25, that the parts above
and below the windows, which are in a right line in the
building, arc also in a right line in the perspective.  This
results, in fact, from a property of the different parts of
right lines, whether separated or not ; for if these parts be
Joined, though only by an imaginary line, they will form
a continued right line; the perspective of which is a
single right line, including, consequently, the representa-
tion of all the portions of a right line, which were to be
placed in perspective.

dpplication to painting.—In pictures in which several
persons are represented, the artist is careful not to place
them all in the same plane, nor in the same attitude.
Were he to do this, they would appear either all of the
same height, or lessening, according to some regular law;
so that if they were all in a standing posture, and equal in
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stature, not only would all their feet be placed in the same
right line, but all their knees, all their arms, all their
hands, and all their heads, would be respectively in the
same right line ; and all these'right lines concurring in one
and the same point, would produce an insupportable mo-
notony.

In order to avoid this, which would be ruinous to paint.
ing, the artist is careful to place his figures at different
distances from the spectators; and imagines several planes
parallel to the canvass. On the first, the nearest to the
spectator, objects are painted with the greatest relative
dimensions. They are relatively less on the second plane,
still smaller on the third, being gradually lessened in size
as the imagined planes are farther from the spectator.
On the first plane, or very near it, the principal persons
of the picture are generally placed, whose superior dimen-
sions, naturally, most attract attention.

According to the situation of the plane, on which the
figures are placed, the perspective of them ought to be
of certain dimensions. If the painter does not ascertain
this precisely, his picturc will be false, and the persons
will not appear at different distances as he wishes to re-
present them. If he has placed their heads properly,
and put their eyes in a suitable direction, the figures,
which ought to be looking at each other, will appear to
be looking another way, &ec.

Painters may, and in fact do, commit many other faults
against perspective ; particularly when they are to re-
present the human body or limbs, or animals, which are
not situated in a plane parallel to the plane of the pic-
ture ; and which, on this account, are very often reduced
in Jength.

These foreshortenings are the most difficult part of the
art of drawing ; and, in general, artists only succeed in
them by placing models in the very position in which they
desire to represent any object. They place themselves,
in relation to these models, at that point where the spec-
tator will be placed in relation to the picture.
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The few priuciples now laid down may suffice, in a
multitude of cases, to enable the student to ascertain the
correctness or incorrectness of the perspective of such
objects as fall under his ngtice. It very often happens
that both architects and painters are not properly ac-
quainted with the laws of perspective, and consequently
apply them incorrectly.  When geometrical knowledge is
more widely spread, many gross faults, which at present
offend the discrimivation of only a small number of
connoisseurs, will be perceived by the public at large;
and artists, finding more enlightened critics, will not be
able to err with impunity. They will be compelled to study
more profoundly the applications of geometry to per-
spective ; and thus, by enlightening the great mass of the
people, though they may neither practise the arts, nor
purchase the products of the artists, we secure for our coun-
try more skilful artists and more admirable specimens of
their skill. In the best days of Greece and Italy, it is
probable that almost every citizen could judge as cor-
rectly as the artists themselves, of the’ magnificent works
which adorned the tegples and cities of these favoured
countries. When the public is an enlightened judge, ac-
curacy of exccution is a gencral talent. Works of art
are then formed or constructed with that .exactness of
proportion in all their parts, which is as indispensable to
perfection in the fine arts, as in the structure of those
machines which, though intended to perform some service,
would not move at all, were not every part constructed
with geometrical precision.

Application of perspective to drawing the pluns of ma-
chines, and other products of industry—When machines,
or other works of art,*are to be represented, it is some-
times done in perspective. This method has an advantage
over projection, inasmuch as it renders visible many of
the parts which in that method conceal one another. For
example, in representing the projection of a building by
parallel lines, it is customary to make the vertical plane
of projection either parallel to the front, or at Jight an.
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gles with it. In the former casc, the small sides are not
visible; in the latter, the front itself is not scen. Per-
spective, as we see in fig. 25, pl. Y, has the advantage of
showing us at the same moment two sides of a building.

The method of projection enables us to place any
object in perspective, rigorously correct. The object
and the point of view being given in horizontal and ver-
tical projections, and also the plane of the picture, we
can obtain the perspective of any point, by drawing a
right line from this point to the point of view, and as-
certaining the point of intersection between the line and
the plane of the picture. (Sec Lesson 13th. The pro-
fessor who teaches from these lessons should illustrate
this by some simple examples, as the perspective of a
square or cube, with the necessary figures.)

To sketch a building, a machine, or any product of indus-
try at sight, in perspective, has this advantage, that we can
represent it as the eye perceives it, without the necessity of
making any alteration by our minds in its appearance.
‘Workmen and students should accustom themsclves, there-
fore, to both species of design; gt least, if they do not
practise them, they should be able to conceive and judge
of their effects; to practise them might, perhaps, require
more time than they have to spare. For more detailed
instruction, they must consult books which treat especially
of these subjects.

Application to theatrical decorations.—In order to in-
crease the illusion, which is the object aimed at in thea-
trical performances, and facilitate scenic representation, a
large picture, representing, generally, a landscape, con-
taining some fine buildings, is stretched across the bot-
tom, and constitutes the back-gréund of the stage. On
each side, in the direction of two lines which recede from
each other in advancing from the bottom towards the
spectator, a series of narrow and tall pictures, called the
side scenes, is placed. They are parallel to each other,
and to the scene constituting the back-ground. On them
are paipted trees, single columns, or elaborate pictures,
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parts of which are on each side scene, and which are con-
tinued from one to another. This is, however, an im-
perfect method ; for, in fact, the lines which represent on
these side scenes fractions of the same right line, though,
when seem from one point of view, appear to form only
one line, yet they are not, and do not appear to be in the
same direction when scen from any other part of the
theatre. Notwithstanding this dg¢fect, a well drawn and
well coloured scenic perspective so much resembles real-
ity, that it procures for the spectators in many parts of
the theatre a very agreeable illusion.

Conical projections applied to geography.—In order to
represent the most remarkable objects of the terrestrial and
celestial globe, a system of conical projections is sometimes
employed, similar to perspective.*

Though in mechanics so much use is not made of cones
combined two and two, three and three, &c. as of cylin-
ders combined in this manner, yet they are, in some cir-
cu.mstunccs, made use of with advantage.

Regular cones, combined as in fig. 26, pl. 9, are made
use of to transmit, by means of friction, the rotation of
one axis to another, the two axes not being parallel.  Re-
gular cones, with teeth, fig. 27, are employed for the same
purpose. )

Architects, in order to form large columnms, divide
them into truncated cones, or drums, which are grooved,
when the columns are to be fluted. To make fluted co-
lumns, much precision is necessary.  If there be one thing
more capable than another of giving us a correct idea
of the rare skill acquived by the Athenian workmen who
were employed in constructing those buildings which
still constitute the glory of that industrious city, it is the
perfection with which the drums forming, the parts of

* One of the poles of the earth is represented as the summit of
a cone, having for its base each of the curve lines, which are to
be traced on the most distant hemisphere. The intersection of
this cone and the plane of the equator is the polar projection of this
curve.
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the largest columns were fluted on their conical surfaces,
and with which these different truncated cones were so
adapted to cacli other, that the grooves, or fluting, when
put together, werc in complete unbroken continuity from
the capital to the base of the column.

Precision in making the teeth of conical wheels, is not
an object merely of luxury and ostentation, as perhaps
making fluted columns, may be considered. On this pre-
cision depends both the facility of transmitting motion,
and the economy of doing it, as will be hereafter ex-
plained, in giving an account of teethed wheels, in the se-
cond volume of this course.
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TENTH LESSON.

The Developement of Surfuces.

Every surface which can be unrolled, spread out, or
developed on a plane, in such a manner that no part of
ity in performing the operation, requires to be lengthen-
ed, shortened, opened, or doubled up, is called a deve-
lopable surface.

\We have alrcady examined two important species of
developable surfaces—cyljnders and cones; and we have
scen that these surfaces may be represented by, or spread
out on a plane, without breaking, and without doubling
once part over another. We have also scen, conversely,
that a part of a plane may be made, without breaking
or doubling into the form of a cylinder or a cone, the
figure and dimensions of which are given.

We have morecover seen, that a cylinder may always be
cousidered as a prism composed of a great number of
plane faces or sides, edch having the form of a pa-
rallelogram; and fhat a cone may be considered as a
pyramid with a great number of faces, each face having
the form of a very narrow triangle.

In the same manner we may consider every developable
surface, fig. 1, pl. 10, as composed of plane faces or
sides, «Ab, bBec, ¢Cd, terminated by right lines Aa, Bb,
C'c, which are called cdges. .
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If we wish to develope this surface, or to reduce it to
a plane surface, we begin by turning the face «Ab, round
the edge Ab, till it is in the same plane as the second face
bBc; these two faces are then furned round the edge Be,
till they are in the same plane as the third side ¢Cd. If
we perform a similar operation for each of the sides, till
we bring them all into the plane of the last one, we shall
then have completely dgveloped the surface.

The difference between the cone and the surface most general-
ly developable, i3, that in the cone all the angular faces have their
summit at the same point, while, in any other developable surface,
the summits A, B, C,...of the sides aAb, VBe, ¢Cd,...are not at the
same point.

In the same manner as the geometriciaus consider cones to be
formed of two parts, or consist of two cones, (fig. 1, Ninth Lesson)
so they also consider developable surfuces as having two parts, or to
consist of two surfaces; the first such as we have just deseribed, and
the second formed by producing the edges Ada’, BV, C¢,...beyond
the curve ABCD...generally called the curve of inflection. In the
arts, it is in general sufficient to consider only one part of develcp-
able surfaces.

Application—When we desire to preserve any valuable
objects, we in general inclose them in some substance less
valuable ; and this envelope, in most cases, is a flexible
and plane sheet of some common material, such as paper,
pasteboard, skins, cloth, tin, sheet-iron, &c. &c. such as
sheaths of instruments, scabbards, tents, wrappers, boxes
of all descriptions, the envelopes employed by confection-
ers, grocers, apothecaries, &c. &c.

All these envelopes, in whatever manner they may be
doubled and redoubled, are developable surfaces. It is
only necessary to remark, that the substances employed,
being generally susceptible of compression or extension,
may differ in places from the precise and rigorous forms
of the developable surface, such as we, following the ex-
ample of goometers, have here defined it.

Application to hangings and draperies.—This latter re-
mark may be extended to the hangings and draperies with
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which apartments, and the interior of public buildings,
are decorated.  They are composed of materials which, in
their foldings, differ from geometrical forms. If they con-
stituted developable surfaces rigorously geometrical, we
should have only rectilineal foldings, stiff and hard out- .
lines, destitute of grace and variety; such, almost, as the
foldings and the outlines of Etruscan draperies.

The Grecks appear to have begn the first people, whose
graceful and fertile imagination enabled them to perceive
the beauty of those combinations, which might be obtain-
ed by attending to the two distinct properties possessed
by draperies, of folding into developable surfaces com-
posed of rectilineal edges, and of falling in uniform curves,
varying by gradations regulated by the principles of
good taste. In the decoration of edifices, taste itself
is subject to rules, which may be reduced to general prin-
ciples.

Returning now to surfaces developable according to
strict principles, we shall sec how very extensively they
are used in the arts, and what advantages industry may
derive from the geometrical solution of questions connect-
ed with them. ’

Let it be required to construct a developable surface
(fig. 2, pl. 10,) passing through two curves ABCDEF,
abedef, which are not in the same plane. For this purpose,
we suppose that the curve ABCDEF is a polygon, having
a great number of sides, AB, BC, CD, DE;...we take a
ruler, perfectly straight, one end of which, laid on its flat
side, is placed on AB, and made to turn round AB till
the other end of the ruler meets the curve abedef in two
points, very near to each qther, a and b; and we then draw
the right lines Aa, Bb. This being done, place the
ruler so that the large flat side may touch BC and B4,
and mark the point ¢, where this plane side meets the
curve, and draw Cc. In the same manner the position of
Dd, Ee, Ff, are determined ; and thus we may produce
the developable surface ABCDEF abcdef, which will dif-
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fer very little from that which passes rigorously by the
two curves ABCDEF, abcdef. (See Thirteenth Lesson.)

Sawing wood iuto a curved or circular shape.—In ship-
building, it often happens that we must saw some of the

. timbers and planks, producing a surface of which the
outline abe, (fig. 2, pl. 10,) is traced on the lower part
of the piece, and the outline ABC on the upper part.
If we wish to do this, without bending the saw, so as to
make it lose its planc or developable surface, it will be
necessary that the right line formed by the tecth of the
saw should be drawn so as to fall successively on the
right lines or edges Aa, B, Cc,...fig. 2, and then the saw
will cut through the wood, describing at the same time
a developable surface.

Application of developable surfaces to stonc-cutting.—
—Masons very frequently employ devclopable surfaces,
which are generally cylinders or cones. To construct
arches having a complicated form, the figure of all and
each of the stones which are to form the arch is ascertainéd,
as will be explained in the Thirteenth Lesson, treating of
the intersection of surfaces. In order that the edifice should
have the greatest possible solidity, all the stones, as they
mutually support one another, ought to touch cach other
through the whole of that part of their surfaces which
is concealed from view, and called the joints. It is
necessary, therefore, that the surfaces to be joined should
be determined with precision, in order that they may
apply exactly to one another. This object is easily ob-
tained, if the faces of the joinings are made develop-
able. Wec can then fashion, either in pasteboard, in thin
-plank, or any other convenient substance, the pattern
of each developable surface ; apply it to the face of the
joint, and ascertsin if the pattern will touch this face in
every part, according to the direction of the edges.

Perhaps no more striking illustration can be given of
the necessity of having the surfaces of joints rigorously
parallel in every part of an edifice, than what occurred in
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building the Pantheon at Paris.* In this edifice, a vast
and lofty dome was to be supported by four groups of
elegant columns. In order to give the columns the ap-
pearance of consisting only of a single stone, the drums,
or truncated conical pieces of which the shafts were form-
ed, were hollowed out towards the centre, so that the
edges of every two pieces might unite closely all round,
and not leave the least visible sepgration. The aspect of
these columns, when first erected, was beautiful ; they
appeared a chef-dauvre of art : but when the immense
weight of the arch was laid on them, the edges of the
drums, which alonc were in contact, not having sufficient
surface to support the pressure, split and crumbled away,
and the whole dome settled down till all the surfaces of
each joining came into contact. The architect found it
necessary to ercct some large massy pillars in the centre
of each group of columns which supported the dome,
and the beauty of the structure disappeared. It would
havt been preserved, had the joinings of the drums been
surfaces applied to each other in every point. Geometry
supplics us with the means of doing this, in the most
simple as well as in the most complicated cases.

Let us draw very correctly the curvilinear edges AB, BC, CD,
DA, ab, be, cd, da, fig. 3, pl. 10, of an arch stone. We can determine
for each face of the joint a developable surface, which passes through
bhoth AB and ab, one for BC aund b¢, one for CD and ¢d, and one for
DA and da. By doing the same for the adjacent stone¢, we may be
sure that the faces in contact will apply to cach other in every
point. W hen we know the position and figure of AB and ab, of BC
and be, it will be very easy to employ the method already given, fig.
2, to determine each developable surface.

When a large superficies is to be covered with the
leaves of any very°thin and flexible substance, these

* Formerly the Church of St. Genevieve. * The dome of the
Pantheon,” says Mr. Scott, ¢ towers above all in light graceful pride ;
it arrests the eye of the spectator by the boldness of its elevation,
and detains it by the gracefulness of its construction.”—( Fisit to
Paris.) i Tr.
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leaves arc bhent or fashioned according to some develop-
able surfaces, by the following method. The workmen
or artists draw on the superficies to be covered fig. 4, the
curve lines ABCDE, abede, gb'cde, a"b’c"d"e’, which
are every where at a distance from each other, equal to
the size of the leaves to be ecmployed. They then bend
the leaves, so that they are adapted to the lines ABCDE,
abede, and then to the linesa’d’cd'e, a"b’c"d"e”. They place
these leaves in succession, uniting them by glue, or paste,
or solder, or by bringing the edges over cach other, and
then fastening them together.

Application to covering domes and cupolus, and coppering
ships—It was by following this method, that the magni-
ficent cupola of the Halle au Bled* (Corn Market) was
covered with sheets of copper. '

By following the same method, the bottoms of ships are
sheathed or coppered, with thin narrow sheets of this
metal, fig. 7, ABCDEF. The edges of the copper
sheets are cut straight, or in a right line, though their
edges very often cover one another in a direction not
corresponding to this line. But by bringing the edges
one over the other, so that the doublings are not equal at
all the angles, nor rectilinear for all the sides, the same
effect is produced as if each sheet had been cut into such
a shape as would have allowed the edges of all to have
come just into contact, supposing them all to have been
soldered together, while the whole of them exactly covered
the ship’s bottom.

The means adopted by shipwrights is practicable, be-
cause the surface of the ship’s bottom is very large in re-
lation to the size of each sheet of copper ; and because the
copper may be extended a little in any part, so as to be
adapted at every point to the two directions of the curva-

* This is & very large circular building in the middle of one of
the most populous and frequented parts of Paris, in which, alone,
all the wholesale buying and selling of corn and flour for the con-
sumption of the metropolis takes place. Tr.
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ture of the ship’s bottom. This will be rendered plainer,
when we treat of the two curvatures of surfaces which are
most common. .

The card and pasteboard enaker, who comsttucts a great
number of objects with sheets of paper, or pasteboard
pasted or glued together, produces a great variety of de-
velopable surfaces, both in relation to_their position and
form. .

When the coachmaker has constructed the frame-work
of a carriage, or put together the pieces of wood abd iron
which form the angular and solid parts of the coach—the
frames of the doors, windows, &c.—he must close up the
spaces marked by these frames, and by the wood-work
which forms the body of the coach. He does this, in ge-
neral, by thin flexible pieces of wood, bent according to
some developable surface, which will extend to the frame-
work at every point, and fill up all the intermediate
spaces. The coachmaker ought, therefore, also to be a¢-
quaiited with the solution of the problem explained by
figures 2 and 8.

The brazier, the stpve-maker, the tinsmith, ought also
to be acquainted with the solutien of this problem. In
the construction of stoves, for example, and of meny
of the kettlés and coppers used in the kitchen, in order to
adjust the upper part of the stove or cauldron to the
pipe, the workman must frequently make a developable
surface, which will pass through a lower base, ABCD, of
some certain form, fig. 5, pl. 10, and throtigh an upper
part abcd, having the forin of a circular pipe. He muist
in this case, know exactly what form to give the metal
plate, or system of metal plates, being planes, which being
suitably bent, will forin’a developable surface, adepted both
to ABCD and abed. The solution of this problerh will be
given when treating of tangents, in the Fourteenth Lesson.

In place of covering surfaces by small sheets, as in fig.
4, it is sometimes more convenient, and therefore prefer-
able, to cover them with long bands, which are develop-
able surfaces.

N
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When soldiers wore armour, the greater number of the
pieces which covered their bodics and their limbs had
developable surfaces;_ general)y they were cylindrical or
conical bands, easily made oy of metal plates, to which
it was only necessary to give a degree of curvature. There
were very few pieces, such as the helmet, which it was
necessary to make curved in two directions, and some-
times, even in constructing them, they were made of de-
velopable surfaces.

In ship-building, we have an example of a very fine
application of developable surfaces disposed in bands, or
in the planking of ships.

When the timbers of a vessel are fitted into the keel and placed
erect, she has the appearance of a sort of carcase, MNOPQ, fig.
6, the ribs or timbers being connected in pairs 1.1, 22, 8.3...
Being elevated in vertical planes, they leave large void spaces be-
twixt them (xyz, fig. 8, represents the elevation of the timbers in
middle of the vessel). To cover the bottom completely, the form of
which is determined by the timbers, planks are employed, of a given
thickness, and accurately fashioned, according to a given and proper
mould. The flat sides of the planks are placed against the outer part
of the timbers, and bent closely to them at.,every point, into develop-
able surfaces, each plank being adjusted side by side, and end to end,
to the contiguous planks, so as to cover, with great precision, every
part of the bottom. A rigorous method of cutting each plank, so
that the whole shall exactly cover the timbers, is supplied by geo-
metry.

Let us suppose that the ship has already been planked, from the
keel up to ABCD, fig. 6, and that it is required to fit the next plank
to the space immediately above, included between the lines ABCD,
abed. From a point z, to another point y, both bein:r conveniently si-
tuated between ABCD, and abed, a cord is extended so that it
touches every timber on the outward part. Let us suppose that the
plank to be fixed is prepared and placed, and that the cord is sud-
denly glued or fastened along the surface of the plank next the tim-
bers. Let us develope, that is to say, take down the plank, and re-
store it to its straight position. The cord, when fastened along the
timbers, marked on them, or on the surface of the vessel’s bottom,
the shortest distance between the points 7, y, and this cord, will
continue to mark the shortest line, which can be traced between
its extremities, on the developable and now developed surface ; that
is to say, on the plank. But the shortest line which can be tra-
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ced on this plane, is & right line. Whence the cord xy, will be in
a right line, fig, 6, double, if it retains on the plank the position
which constituted it on the bottom of the vessel, the shortest dis-
tance between 7 and y. ‘v

When the cord is extended alohg the timbers, it is marked on ita
length at the points 1, 2, 3, &c. and through them, perpendicular to
the cord, treenails or small pieces of wuod are fixed, which teuch with
their lower end, the upper edge of the plank already fixed, ABCD,
and at their upper end, the line to which the upper edge of the next
plank is to extend, abcd, or they extend to the two lines to which
the new plank is to be adapted.

The cord a2y, is taken from the timber and applied to the plank
GHKL, fig. 6 double, so that the treenails, 1171, 11217, 1113 I11,
+ IV 4 IV, are perpendicular to the cord. The polygons I, II, IiI,
IV,...1, Il, III, IV, are first drawn on the plank, and through
them a continued curve is drawn. They represent exactly, the up-
per and lower limit longitudinally or edges of the plank.

It is not sufficient to have found these curves; we must also
know at each point 1, II, 111, 1IV,...I, II, III, IV,...the angle
which the plank, to be applied, ought to make with the bottom, in
order that the edges may apply exactly to the edges of the con-
tiguoug planks. These are ascertained by placing one branch of
the bevel in the direction of each treenail, apd the other along the
edge of the plank already fixed, and perpendicular to the edge of
this plank which touches the timbers. These angles must be re-
spectively transferred to I, II, 111, 1V,...J, I, III, IV,...when
the plank is worked out by the shipwright, whether he employs an
axe or an adze.

In order to prevent confusion, as soon as the shipwright has ascer-
tained, by means of the bevel, the angle which the joining of the
new plank makes at I, II, I1I, 1V, with the contiguous plank al-
ready fixed, he places one side, ¢, of the bevel, ,on the side of some
thin plank NP, fig. 6, treble, and along the other side sr, of the
bevel, he draws a right line. All these lines being placed in the
same order as the treenails 1, 2, 8, 4,...which, correspond with the
points I, I1, III, IV, it is very easy for him to find what beveling
his plank will require at the points I, 1I, 111, 1V,...in order to give
the narrow side (cant) of the plank, a proper slope in relation to its
other sides. )

It is essential to remark, that this method, assuming no
particular form for the ship’s bottom, may be applied to
every species of architecture, civil or military, as well as
to building ships. It is one of the most favourable ex-
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amples of the advantages derived from applying in the
arts those geometrical properties we discover in sur-
faces. \

Developable models ang patierns—In a gréat number of
arts, when it is required to form surfaces terminated by
certain lines, these surfaces are divided into parts, which
may be supposed to be developable surfaces. Their shape
is then imitated by a. model or pattern of paper, or other
flexible substance, which will form true developable sur-
faces, without wrinkles, and without tearing. By models
and patterns of this description, tailors and mantua-ma-
kers fashion the pieces of the garments, which they adapt
to the geometrically irregular surface of the human body.

A very useful application of geometry consists in show-
ing us how we may cut out the different pieces of which
clothes are made, so as to lose the smallest possible quan-
tity of stuff. Though it is not customary to employ
either rulers® or compasses to resolve the problem, we
must not, therefore, suppose that the tailor or the' man-
tua-maker does not perform a mathematical operation,
and even a very complicated operation, which requires a
correct eye, a process of reasoning, and much knowledge
of the human form, as well as of the shape, which must
be given to the separate pieces of which clothing is made.
' Independent of economy, comfort, ease, graccfulness,
and elegance, ought all to be studied in clothing ; and
they are regulated by principles, which, in many respects,
approach the laws of geometry and mechanics. The re-
marks already made on the subject of draperies and
hangings in relation to developable surfaces, susceptible
of being shortened or lengthened in places, and which

* The tailor employs instead of a ruler, a flexible measure, which
is a developable surface, divided into equal parts. Being applied
round the body and the limbe, it enables the tailor to ascertain
their dimensions, which being transferred to a piece of cloth con-
stituting a plane, by developing the measure, gives the points
through which the tailor first draws the outlines, and then cuts
out his work. ’
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constitutes their flexibility and elasticity, may be, in a
great measure, applied to clothing. Materials of this
description, having the prqperty of adapting themselves to
the human form, easily takg theg shape which is dictated
by fashion. To use the terms of art, such stuffs make
the most becoming dresses.

If, in addition to being very elastic, the materials of
clothing are also very supple and veyy light; they may be
formed into those numerous inflexions, those varied and
numberless folds which accord with the laws of good
taste. Instead of preserving a hard rigidity, and a geo-
metrical inflexibility, light and flexible cloths, when once
arranged, are sensible of the smallest impulsion, and take
& waving appesarance, which reminds us of the varied
agitations and graces of life. .The artists of antiquity ap-
pear to have had stuffs of this description for the mo-
dels of those very elegant draperies with which some of
their statues are adorned. In modern times, muslins and
cacllemercs are the materials which best fulfil these con-
ditions. )

Clothing, to be perfect, should allow all parts of the
body and all the limbs to move with ease and facility;
which requires a certain amplitude and lightness, as well
as a precise form, adapted to the different parts. But
mankind having, in general, connected solemnity, im-
portance, and dignity, with slowness of motion, those
persons, who by their office are obliged to display these
qualities, must have a costume which is consistent ‘only
with such a motion. 'The processional robes of the priest,
the toga of the senator, and the monarch’s mantle, are
made of ample dimensions,.and of materials so little flex-
ible, that they form developable surfaces with large folds,
which cannot be put into hasty motion by the agitation of
the air. ' -

The military tunic, the. light drapery of the public
dance, the gay ball dress, on the contrary, should all be
fashioned, so that each dimension should be ‘as small as
possible. We should also choose the lighest, most flex-
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ible, and most waving stuffs, in order to display the hu-
man form, and its various movements, with gracefulness
and fidelity.

Under this point of view, the choice of the materials,
and the form of the garments, ought to be regulated by
considerations derived from the theory of the fine arts,
and connected with the organization of society. Consider-
ed in relation to conyenience, comfort, and health, they
belong to the more positive interests of the social state.
Finally, in relation to industry, we must look to mecha-
nics and geometry to furnish us with a messure for the
forms and the qualities of these products, and with the
means of manufacturing them in the best manner. These
sciences teach us, also, what shape and adaptation of them
are best calculated to produce, by the flexion of the stuff,
and the collecting of primitive plane surfaces, that variety
of pleasing forms which we observe in the clothing and the
drapery of a people, over all of whom the fine arts ex-
ercise their agreeable influence.

We shall return ‘to the subject of developable surfaces,
after we have explained the principles of intersections and
of tangents, to point out further applitations of them, not
less important than those already adverted to. At pre-
sent we must consider indefinite surfaces.

IRREGULAR NON-DKVELOPABLE, OR INDEFINITE SUR-
racEs.—Surfaces engendered by consecutive right lines,
which cannot be regarded as forming a succession of very
narrow plane faces, are called irregular non-developable,
or indefinite surfaces.

To form an idea of these indefinite surfaces, imagine
a ladder, fig. 9 and 10, pl. 10, of which the two sides
are not in the same plane. Place the ladder on the
ground, so that both the sides may be in a horizontal
direction, but not in the same vertical plane. Figure
9, will represent the vertical projection, and fig. 10,
the horizontal projection. The sides AB, CD, fig. 9,
will cross in some point 4,IV. If from this point we
draw a vertical line, it will pass, fig. 10, through the
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point 4, in CD, and through the point IV in AB. Let
us now, setting out from 4 and IV, divide the two up-
rights, AB, CD, into equgl parts, at the points 1, %, 3, 4,
5, 6, 7...1, II, I1I, IV} V, VI, VII, and draw the
right’ lines 1.1, 211, 8.II1, 4.1V, 5.V, &c., and we shall
form a crooked or lop-sided ladder. This repreaents an
indefinite surface. -

The arms of a windmill are ladders of this descnptlon,
being formed of long diverging sides and cross bars per-
pendicular to one of them. The rope ladders or rigging
of the top-gallant masts of a ship, form also such sur-
faces, but they want one side.

Indefinite surfuces may be considered as composed of
very narrow irregular faces, analogous to the ladder just
described. T'he sides which are the boundaries of these
irregular faces, are called edges.

Application to ship-building.—To plank or cover a
ship’s bottom, developable surfaces are formed of the
planks, as already explained, fig. 6, pl. 10. Some parts
of the ship, towards the stem and stern, are so much
curved, that it wou]d be impossible to make the largest
planks cover more than a small space, if the shipwright
endeavoured to preserve the exact form of some deve-
lopable surfaces. In the representation of planking, fig.
11, it will be seen that much wood would be wasted,
were the rectangular plank to be cut into the curv-
ed form 1, 2, 3, 4, 5, 6, 7, VII, VI, V, 1V, IIl,
II, I. Let us suppose, however, that we give a gentle
and regular curvature to the cord, abcdefg, fig. 11, we shall
then obtsin a line, which we can apply wmplebely to a
plank of much less dimensions than the form gnven in
fig. 12. .

But if we proceed to bend the plank, cut.into the form
of fig. 11, it will not exactly fill the space for which it is
destined on the ship’s bottom. Mechanical means must
be employed to force it into the required position. Such
an operation almost always changes’ the developable sur-
face into an indefinite surface.
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For those parts of the vessel where the curvature is
very great, the planks cannot be sufficiently bent, with-
out a risk of hreaking them bLyv the operation. In this
case we procged thus :— ?

Method of fitting the circular plunking.—Let us suppose that it
is required to adapt a plank called circular, on account of its grest
curvature, to a vessel's bottom, below the plank marked ABC, fig.
13, pl. 10, to a ship’s timbers. A ruler, represented by the right
line ED, is held fast, by the help of which an idea of a plane
surface is conceived, which will mark on the timbers three points,
m, n, o, of ABC. It ia assumed here, that the short portion of the
round piece ABC, has enly a simple curve. If there were bLetween
m, n, 0, points too far distant from the plane curve mno, these dis-
tances must be laid down by distinct points, which would be an ad-
ditional operation. Neglecting this additional operation, we draw
through the points m, n, o, the right lines m 1, » 2, 0 3, perpendicu-
lar to ED, aud measure their length. We then take a bevel, and
place one branch in the direction m 1, the other branch is placed on
the surface of the vessel’s bottom, both branches remaining in a
plane perpendicular to ED, mno. The same operation i« performed at
the other points n, o, of the curve mno. The succession of positions
in which the second branch of the bevel is placed, will form a non-
developable surface, which will be the inner side of the plank that s to
be adapted. The outer side is worked by forming a second non-deve-
lopable surface, at the same distance in every point from the first, in
order that the plank may be every where of the same thickness. For
the narrow side which comes in contact with ABC, we have again
recourse to the hevel ; and the angle is found, whioh the second
branch placed successively in m, n, o, against the surfuce of the
timbers, forms with the lower side of the plank ABC, already fixed.
It will then oply be necessary to work the plank according to these
angles, taking care to refer them to their proper places.

When a vessel is to be built, the timbers, as already de-
scribed, are first set up; they are fixed together in pairs,
. the pairs are placed in parallel vertical planes, fig. 14.
These timbers are then connected t¢mporarily, by means
of strong ribands or narrow planks, bolted tp each pair
of timbers, and placed lengthwise along both sides of
the vessel, The curves they are to form are deter
mined beforehand in the mould loft. For such parts of
the ship s have only a small degree of curvature in g
longitudinal direction, it is sufficient to work the planks
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which are to form the riband into the form of long quadr-
angular prisms, with the necessary beveling. ‘The pieces
are bent so that their endg meet at the points indicated
on the different timbers. the small portion of the bot-
tom occupied by each of these longitudinal ribands, is
developable into a rectilineal surface, the narrow plank may
be bent without difficulty through its whole length and
breadth to the timbers. If, on the centrary, the portion of
the timbers, covered by the riband, and which ought to be
in contact with it, is a non-developable surface, their perfect
contact does not take place, and great exertions are neces-
sary to adapt the riband closely and exactly to the timbers
in the direction determined by the builder. In the parts
of the vessel which are very much curved, recourse is
had to the following method.

ABC, fig. 14, forming part of the plane of the riband, is marked by
two cords; one of which is nailed on the timbers in the direetion
ABC, and the other, DE, is held at some distance from the ship’s
bottdn. The angle formed by this plane, and the surface of the
timbers, is measured on the different timbtrs A, B, C, by the be-
vel. Then placing the mould of the curve ABC, on the piece of
wood, fig. 15, which’is %0 form the riband, A BC is marked off, and
the piece cut into notches opposite to A, B, C, till the bevel shews
that they arc exactly of the same form as the angles measured on the
vessel. The wood is then cut away between the notches, so as to
form either a developable or non-developable surface. In the inte-
rior of this surface, the points e, b, ¢, are marked, every where equal-
ly distant from ABC, and then the points &', ¥, ¢, at a distance from
@, b, ¢, equal to the breadth of the riband, are also marked. We thus
obtain the first side abec't'e’, of the riband which is applied to the
timbers, The upper and lower sides are worked square with abe
c'b'a’, and these two sides are made at every part of the same breadth.
The fourth side is then worked square with the third. The forma-
tion of this’'piece, and the whole method of measuring and apply-
ing the planks to a shijf’s bottom, may be made very clear by the
help of models, to the students in maritime towns ; in towns in the
Interior, if it should be thought that the explanation canuot be easily
given, it may he omitted.

In civil architecture, also, non-developable surfaces are
employed for the arch stones of some arches, and for some
staircases.
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The steps of a staircase ought to be, as is well known,
horizontal and level in the part where the foot rests on
them, in ascending or descendirg. They are of the form
represented in fig. 16, by ABCFE, DEFGH, the joints
by means of which each step bears on that which is im-
mediately below, and supports that which is next above
it, being represented by BC, EF, GH. In a staircase
with parallel steps, or a straight staircase, the joints BC,
EF, GH, are all parallel to one another ; they are level,
and have the form of parallelograms.

But when the staircase takes a curvilinear direction, or
is what is called a round or well staircase, the work of
placing the steps is much more complicated. It is evi-
dent, fig. 17, that the steps have not the same breadth
throughout, being narrower towards the centre of the
staircase, than at the exterior part. Consequently, the
inclination of the staircase, measured by the lower line
GFC, fig. 16, is less in proportion as we recede from the
axis of the staircase. The joint, EF, of the steps, which
is every where at right angles to GFC, approaches to a
horizontal direction as we proceed towards the outer part
of the staircase, and to a vertical direction as we approach
to the centre.

The series of perpendiculars, EF, to the sunk edge E,
forms, therefore, a tortuous surface or ladder, like that of
figs. 9 and 10. The joint EF, of two consecutive steps,
is, therefore, an indefinite surface. When all the plane
surfaces of a step have been formed, according to the rules
of the most simple geometry, it only remains to form the
face of the jcint EF.

For this purpose, divide the length of each step into equal parts,
and through the points of division 1, 2, 3, marked on the sunk edge,
OE, fig. 17, draw the right lines 1.1, 22, 3.3, perpendicular to the
edge, and terminating in the next sunk edge above OB.

Fig. 18 represents, on a large scale, the elevation of the step
OEB, seen perpendicular to OE. E1, E2, ES3, represent 1.1,
2%, 33, of fig. 17 If we draw fig. 18, EI, EII, E I1], perpendi-

cular to E1, ES, ES, these lines will represent the direction of the
face of the joint of the two steps which touch each other in EQ,
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for the corresponding points 1, 2, 8, It will be sufficient to lay off
the angles AEI, AEII, AEIII, with the bevel to find the inclina-
tion of the face of the point EF, in each of the points 1, 2, 3, fig. 16,
of the contiguous steps.

The principles of this construction may be made very
clear, if recourse for explanation can be had to a model,
either in wood or in plaster.

Staircases considered as continued surfaces, belong, at
least for their lower surfaces, to spiral surfaces, which
possess great interest for the arts; and fall to be treat-
ed of in the T'welfth Lesson.
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ELEVENTH LESSON.

Surfaces ‘of Revolution.

Surraces of Revolution are, with the exception of plane
surfaces, the most easy to construct, and the most fre-
quently employed in the arts. Their properties are call-
ed perpetually into use in mechanics, and Nature in her
varied phenomena continually reproduces them before our
eyes. ‘

If we conceive any curve whatever, ABC, fig. 1, pl
11, which is made to turn round an axis AC, the sur-
face formed by it is a surface of revolution. The mo-
tion given to the curve, is called a circular or rotatory
motion, and when the rotation is complete, that is to
say, when the curve has revolved through 360 degrees,
it is called a revolution.

In this motion every point B, B’, B’, descubes a cir-
cle. All these circles have their planes Bb, B'Y, B"d",
parallel to one another, and at right angles to the axis
AC, on which all their centres O, O, 0", are situated.
In the Sixth Lesson, these varioue properties have been
demonstrated.

It is not necessary that the curve ABB'B'C, should be plane, in
order to produce a surface of revolution by revolving round AC. If
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we draw from each point of the curve, B, B', B’, perpendiculars
BO, B'O', B'(), to the axis AC, these perpendiculars will not
vary either in length or distance, when all of them are brought
into the same plane. Their eftremities B, B’, B’, will in this case,
form a plane curve, which, révolving round the axis, will produce
the same surface of revolution as the proposed curve.

The simple curve which produces the surface of revo-
lution, by turning round the axis,AC, is called the me-
ridian of this surface. The circles Bb, By, B"d’, the
planes of which are perpendicular to the axis and parallel
to one another, have been called, for this reason, the pa-
rallel circles, or simply the parallels.

We can describe as many different kinds of surfaces of
revolution as we can form different kinds of figures, by
means of right lines, circles and other curves, and by their
various combinations. These kinds even may be divided
into very distinct species, according to the situation of the
axis in relation to the generating line. We shall examine
subcessively, the most simple surfaces of revolution, and
such as are of most importance in thé arts.

Surfaces of revolution produced by the motion of a right
line—If the line is perpendicular to the axis, it describes
a plane by its revolution. In the Sixth Lesson, the diffe-
rent methods employed in the arts to form plane surfaces,
by means of this property of a right line, have been men-
tioned.

If the producing line is parallel to the axis 00, fig. 2,
it will describe a circular cylinder, the properties of which,
as well as its-applications to the arts, have been explained
in the Eighth Lesson.

If the producing line passes through one point of the
axis 0O, and is oblique in relation to the axis, it will
describe a cone, fig. 8, the properties and applications of
which have been explained in the Ninth Lesson.

When the producing right line is not parallel to the
axis, and relative to it, is in the same position as one
side of a non-developable ladder is to the other side,
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the right line will produce a surface of revolution, of
which the two curves, fig. 4, are in opposite direc-
tions.

When a right line, AB, fig. 4, pl. 11, does not pass through the
axis 00, we may conceive a second line ab, placed symmetrically in
relation to the plane OO, which passes through this axis. The two
right lines AB, ab, necessarily intersect each other in some point P,
situated in the plane of symmetry. If %ve make them revolve with
an equal motion around the axis, whether they equally approach to-
wards, or recede from the plane OO, it will always be their plane
of symmetry, and they will always intersect each other in some point
placed in this plane. Let us cause the plane of symmetry, and the
right lines AB, ab, to revolve round the axis. The two right lines
being so disposed as always to intersect each other in the plane 0Qo,
the several points where they intersect each other will form a curve,
which is the meridian of a surface of revolution, generated by the
two right lines AB, ab. These two right lines, therefore, on revolv-
ing round OO, will generate the same surface. Fig. 4, represents
the two series of right lines which form this surface. Students will -
comprehend, perfectly, these two series of lines, if they are in-
structed to make a model with two circles of card paper, united. by
an axis, and with threads equally oblique, but running in opposite
directions.

Sheers.—M. Ferry, formerly examiner at the Ecole
Polytechnique, has made an ingenious pair of sheers with
rectilineal blades ; one, AB, fig. 4, being fixed, and the
other ab, fig. 4, turning round an axis OO. The latter
always remains in contact with the former as it moves, and
divides the bodies which are placed between them.

Reels—Winders.—Some of these are formed of rods,
AB, ab, fig. 4, which revolve round the axis 00. The
‘thread is wound on the hollow part of the curve, and can-
not fall off. When a skain is wound on the reel, to re-
move it, all the rods are brought towards the axis, by
means of a simple piece of mechanism.

Of the Sphere.—To produce this surface, we have only
to cause the circle AM, BN, fig. 5, to revolve round one
of its diameters, AB. All the points of the circumfe-
rence of the meridian circle, being at the same distance
from the centre O, will always remain at the same dis-
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tance, when this circle is made to revolve round the axis
AOB. All the points, thercfore, in the surface of a
sphere, are equally distagt from a centre O, which is
the centre of the sphere.‘

Every point in the plane of the meridian AMBN, but
situated outside of or within it, is farther from or nearer
to the centre O, than the points of the circumfcrence
AMBN. Every point of space, therefore, which is si-
tuated in the plane of any other ‘meridian, will be fur-
ther from the centre of the sphere than the meridian of
the sphcre, if it be situated outside of it, and nearer,
if situated within.

Thus, not only all the points on the surface of a sphere
are situated at the same distance from the centre, but no
other point is at the same distance.

Fvery plane which passes through the centre of a
sphere, divides it in the direction of a curve, all the points
of which are at a distance from the centre equal to the
radius of the sphere. This curve is, therefore, a circle.
If we make these different circles révolve each on its di-
amcter, we shall produce spheres, all having the same dia-
meter and the same fadius. We shall, therefore, always
produce the same sphere.

Every cord, mn, of the circle AMBN, fig. 5, is smaller
than the diameter MN, and it is smaller in proportion as
it is removed from the centre of thc sphere. But when
the circle turns round an axis, AOB, perpendicular to the
cord MN, the semi-cord om, forms a plane, and its ex-
tremity describes a circumference, which is wholly on the
sphere. Consequently, 1st, every section of a sphere my,
made by a plane, is a circle. 2nd. These circles are all
smaller than those, thg centre of which is the centre of the
sphere, and which, for this reason, are called the great
circles of the sphere. 8rd. The small circles are less in
proportion as their centre is further from the centre of
the sphere.

Means of forming a Sphere.—Fix on the axis of a turning lathe,
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AB, fig. 6, the body which it is proposed to cut into the form of a
sphere. At a certain distance from this axis, fix the half circle
aTh, the diameter of which, ab = AB, and is parallel to it. The
point M, of a cutting mstrumentr which projects from TM, =
to the distance from ab to AB, and Inade to glide alung aTh, paral-
lel to it, will describe the meridian circle AMB. If the turming
lathe, thercfore, is made to revolve, the meridian will describe a
ephere. The cutting instrument may be so placed, that its foot may
glide along a circle aTb, having for its centre, the centre of the me-~
ridian circle, and always directed towards the centre O, of the two
circles AMB, aTb. It is evident that TM, tm, representing the
difference of the radii of the two circles, as T traverses the circle
aTb, M must necessarily be always om the meridian circle. The
cutting part of the instrument will, therefore, rest continually on
the surface of the sphere.

In this manner, spherical mill-stones are made, as well
as cannon balls, which are solid spheres. To make bomb
and howitzer shells, which are hollow spheres, it is neces-
sary to construct a mould, having the form of the parts
distinguished by lines, fig. 8, pl. 11, and consisting of two
spheres, one solid, A, and the other hollow, BBB. "Be.
tween these two spheres, the shell is cast. In this casc,
the correctness of the operation depends on several circum-
stances: 1st. The two parts A and BBB, ought to be per-
fectly spherical; 2nd. Their centres ought to be in the
same point. If these conditions are not exactly fulfilled,
the motion of the shell when discharged will not be correct.

In the circle Am, Bm, fig. 9, let us draw the cord
mm’, and the radius OoA, perpendicular to the cord.
By making the figure AmO, revolve round the axis AOB.
1st. The arc of the circle Am, will engender the spheri-
cal cap (calotte) ; 2nd. The segment of the circle, mAm’,
will produce the spherical segment; 8rd. The sector of
the circle, Om, Am’, will engender the spherical sector.

We must now resolve such problems as frequently occur
in the arts.

What is the surface of the spherical cap mAm', fig.
9, and of the complete sphere? What is the volume of a
segment of a sphere, of a sector of a sphere, and ol‘ a

complete sphere ?
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T'o ascertain the surface of the spherical cap, mAm’, fig. 9, let us
suppose that in place of the arc mAm', of the meridian circle of the
sphere, we substitute a polygon with a very great number of sides, mn,
np. Let us make this polygon ryvolve round the axis AOB, of the
cap every part of the right line mn, np will form a truncated cone,
of which AOB will be the axis. The whole surface of these trun-
cated cones will differ less from the surface of the spherical cap
mAn, in proportion as the sides of the polygon mupAp‘n'm’ are
numerons. But the surface of a right-liped truncated cone mm’
an’, equals the sum of the circumference of the two bases, multiplied
by the half of the edge mn. Thus,

Surface of the truncated cone mm'n'n = (circum. mm’ + circum.
nn') } mn.
Surface of the truncated cone nn'p’p = (circum. nn' + circum.
pr) s up.
and so on successively.

It we draw nh parallel to the axis, the rectangular triangle mah,
is similar to the rectangular triangle Oig, formed by Oi, perpendicu-
lar to the cord mn, by iy, perpendicular to the axis AQ), also per-
pendicular, therefore, to nk, and by Og, perpendicular to mih.

The two triangles are therefore similar, and we shall have nbh :
nm : »ig : {0 : : the circumference having ig for its radius, or i’ for
its diumeter, to the circumference having i@ for its radius, or AB
for its diamcter, supposing that the number of sides of the polygon
is so great, that there i> go assignable difference between Oi and
On: = OA, the radius of the sphere.

Whence, mn x circumference ii’ = nh x circumference AB.
Rut i = ) (mm' + wn') wherefore

mu x § (circum. mm’ + circum. an') == nh X circim. AD.

The first term of this equation, is the surface of the truncated cone
mm'n'n, the second term is the circumference of the meridian cir-
cle, multiplied by nh, the height of the truncated cone.

When the polygon mnp, therefore, is formed of a great number of
extremely small sides, the surface which it engenders, equals the
meridian circumference of the sphere, multiplied by the sum of the
heights nh, pl'....of the truncated cones, produced by the rotation of
the sides of the polygon. ¢

1. The surface, therefor8, of the spherical cap mAm', is equal to
the circumference of a great circle of the sphere, multiplied by the
sine Ao of the cap.

II. The surface of the sphere is equal to the circumference of a
great circle multiplied hy ita diameter.

But the surface of a great circle AmBa, cquals the
circumference, multiplied by the half of the radius, or
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the quarter of the diameter. The surface, therefore, of
the sphere is equal to four times the surface of its great
or meridian circle. )

If we know that to cover" a circle, AmBu\, fig. Y,
cqually at every point it requires a certain weight, or
quantity of sheet lead, or copper, or iron, or of puint,
we may conclude that it will require four times this
quantity or weight of metallic plates or paint to co-
ver a whole sphere, having this circle for its meridian;
and that with twice this weight or quantity, we can
cover an arch or a dome in the form of a hemisphere,
having the same circle for its base.

Measure of the volume of the spherc.—In considering the
surface of the sphere, as composed of a great number of
very small faces, we may regard cach of them as the base of
a pyramid, having its summit at the centre of the sphere.
The volume of the whole of these pyramids will be the vo-
lume of the sphere. ‘The volume of each pyramid is equal to
the surface of its base, multiplied by the third of its
height, which is, in this case, the third part of the radius.
The whole volume of the sphere, therefore, will be equal to
the sum of all the small faces, which have heen substitu-
ted for its surface, multiplied by the third part of its ra-
dius. Thus, the volume of the sphere is measured by its
surface, multiplied by the third part of its radius, or four
times the surface of its great circle, multiplied by the
third part of its radius.

We shall see, in like manner, that the volume of the
sector of a sphere, OmAw'O, fig. 9, is equal to the sur-
face of the cap mAwm’, multiplied by the third part of
« the radius of the sphere.

If from this volume, we subtract the volume of the cone
mOm’, we shall have the volume of the spherical segment,
mAm’ = § circumference, AmBm’ x Ao x Ao —"' cir-
cumference mm’ x Oo x mo.

The process employed to calculate the surface of a
sphere, furnishes us with a method of constructing a
sphere, which is often employed in the arts. If it be
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proposed to cover a spherical vault or arch with metal-
lic plates, or any other substance, we divide the arch, by
means of a succession of parallel planes, into zones or
circular bands, mm/'n'n, rm’sl’1 , &c. fig. 9, which are sup-
posed to be conical, and, consequently, developable. The
truncated cone mm'n’n, supposed to be developed, may
be drawn in this manner.

Produce mn, m'n’, fig. 9, till they meetein the point s, the sum-
mit of the cone, of which the truncated cone mm'n'n, is a part. If
we develope the cone, all the points of each base mm', nn’, being
equally distant from the summit s, fig. 9, will develope themselves in
the form of the two arcs of the circle, MM', NN’, fig. 9 double, both
having the same centre, S.

We shall have, fig. 9, and fig. 9 double, the circle mm' = to the

arc MKM', and the circle #n’ = arc NLN'. Let us now ascertain
the value of the angle MSM’'. ‘The arc MKM), equals the circumfe-
rence, of which the radius is mo. But this circumference is to that of
which SM is the radius : : mo : SM. The circle, therefore, having
mo for its radius = MKM' = the circle having SM for its radius
% :’:’I’ Thus the arc MKM', represents _m_‘; X 360° of the cir-
cumferance, having SM for radius.
It is only necessary to perform a multiplication and a division, to
have the number of degrees of the angle MSM/, and, consequently,
to know this angle itself. When this has been ascertained, with SM
=:am, and SN = sn, as radii, draw the two arcs MKM’, and NLN’,
fig. 9 double , we shall then have the zone MKM'N'LN, which being
bent naturally, by joining the two ends MN, M’'N’, will produce the
truncated cone mm'n'n, fig. 9.

Tinmen and card or paper-box makers, by means of
sheets of metal or paper cut into circular bands, and after-
wards soldered or pasted, have very often occasion to
construct surfaces which approach the form of a sphere, in
proportion as the bands are narrow and numerous. The
method just described, will be of use to them, and very
often, also, to architects and carpenters. '

Having explained the manner of forming a spherical
surface with cones, we must now proceed to point out the
means of forming it with cylinders.

Let us suppose that we make a great number of meri-

02 .
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dians, being planes, pass through the axis AOB, of a
sphere, fig. 10, in such a manner as to divide the space
around the axis into very smal} plane angles. Lot us more-
over suppose a succession of plfnes, perpendicular to the axis
of the sphere, and, consequently, parallel to one another:
1st, they will divide the sphere into a succession of paral-
el circles ; 2nd, they will divide the meridian circles into
a succession of pointg, at equal distances from one another,
on these circles. These points will be the summits of
regular similar polygons, of which the corresponding sides
will be parallels.  All the sides parallel to any given direc-
tion, will form a cylinder, of which the cdges will pass, at
the same time, through two consecutive meridian circles,
By this manner, we shall obtain a succession of ey lindrical
bands, similar in form to the sides of a melon; and the
more these bands.gre multiplied, the more the surface thus
produced will approach the form of a sphere.

Applications.—Oiled silk, skins, paper, gause, silk, &c,
when employed to construct balloons, tennis balls, terrtstrial
and celestial globes for the study of geography or astrono-
my, umbrellas, parasols, hemispherical shades for lamps,*
&c. &c. are united by cylindrical sides. In umbrellas,
parasols, &c., the direction of the meridians is marked
by pieces of yhalebone, or of iron wire.

In order that the cylindrical sides shall, when united,
form a surface, of which the joints or scams shall be me-
ridians of the same sphere, they must be made of the fol-

lowing form :—

The breadths mm' = MM’, un' = NN’, of one side are propor-
tionals to the radii OM, ON, of the parallel circles, by reason of the
similar triangles OMM’, UNN'. *OM, ON, being the radii of the
parallel circles which correspond to ms’ and nn', we shall conse-
quently have.OM : ON : : MM’ : NN': : mn’ : an’. We may
easily know, therefore, the breadths which correspond to the diffe.
rent points of each’piece, and, consequently, its form.

* In France, it is a general practice to make the hemispherical
shades put over lamps, which in this country are almost always made
of glass, of fine cotton. The text alludes to these. Tr.
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Application to Geography and Astromomy.—A very
important use has been madc of the properties of the
sphere in both these scienced,

The form of the carth id evidently that of a surface of
revolution, which differs but very little from the sphere.
Centuries passed away before mankind could imagine and
belicve that the carth was spherical in every direction,—
that it was what we call a globe, and had the form of a
sphere.  Before astronomers could ascertain that the earth
is not precisely a sphere,—that it is flattened in one direc-
tion and swelled out in the perpendicular direction,—it was
necessary that geometry and mechanical science should have
made a simultaneous progress. When geographers had
ascertained that the surface of the earth was spherical, they
divided this surface in the following manner :—

T'he right line around which the carth appeared to
them to make a complete revolution in twenty-four
hours; they called the carth’s axis. The points where
this axis intersects the surface of the, earth, they called
the poles of the carth. They called all the planes which
pass through the poles, meridians, and the lines which
these planes form by intersecting the surface of the earth,
meridian circles.  All the circles drawn on the surface of
the carth by planes parallel to one anothertand perpen-
dicular to the axis, they called parallels.

Regarding the carth as a surface of revolution, two pa-
rallels arc cvery where at the same distance from each
other, and the meridians measure the distance which se-
parates the parallels on the surface. The parallel which
passes through the centre of the earth is the largest and is
called the equator, because it divides the carth into two
cqual parts, called hemi‘or half spheres.

The northern hemisphere is that which contains the
north pole, and, consequently, France, England, Europe,
&c. are situated in the northern hemisphere. The other
hemisphere contains the south pole, and is called the
southern hemisphere.

If we conceive 360 plane meridians at an equal distance
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from one another, they will divide every parallel, includ-
ing the equator, into 360 equal parts or degrees, which
are degrees of longitude. Iffwe divide the space between
two of these 8360 meridians, into 60 equal parts by new
meridians, they will divide that space, or a degree of lon-
gitude, into 60 equal parts or minutes.

If the parallels are at equal distances from one another,
and amount to 1803 they will divide the meridians into
360 equal parts, which are degrees of latitude. Interme-
diate parallels would subdivide these degrees into minutes,
seconds, thirds, &c.

Division of the surface of the earth into spherical squares,
in order to describe objects.—In the same manner as we
divide the surface of a plane into squares, by lines paral-
lel to one another, and at right angles to another series of
lines, in order to mark out the position of figures traced on
the plane, so the surface of the globe is divided into sphe-
rical squares, by circles parallel and at right angles to onc
another, in order to point out with precision, on this
surface, the situation of all the remarkable lines and
points ; such as the site of cities, the course of rivers, the
direction of chains of mountains, the formn of the sea-coast,
&c. The position of any point is fully indicated, when we
know on what meridian and on what parallel, of cither
hemisphere, it is placed. The parallels are rechoned from
the equator 0°, through the degreces of latitude 1°, 2°, 3,
to 90°, to the north pole on the one hand or to the south
pole on the other. The meridians are reckoned in degrees
of longitude 1°, 2°, 3°, 4°, to 180°, setting out from some
assumed point. In France the meridian of the Observa-
tory at Paris, in England the meridian of the Observatory
at Greenwich, is this assumed point. Other nations use
the meridian which passes through the Peak of the island
of Teneriffe. The degrees are counted to the east and to
the west ; and at 180°, we are on the meridian circle of
that place from which the degrees are reckoned.

When we know in which hemisphere any part of the
globe is situated, if we know, 1st. the number of degrees
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which mark its latitude, and, 2nd. the number of degrees
which mark its longitude, we know its precise position,
which cannot be confoundeﬂ with any other.

Greography, astronomy, fand navigation, have all been
much indebted to the various persons who have ascertain-
ed the exact number of degrees and minutes, both of lati-
tude and longitude, which mark the position of the: chief
towns on the globe, and of its most conspicuous points.
It is done, as has been stated, by expressing with two num-
bers, the position of a point on a sphere; a method per-
fectly analogous to that which we employ to indicate by
two numbers, the position of any point on a plane.

This analogy has given occasion to represent the spheri-
cal surface of the earth, by a map, which is a plane divid-
ed into squares by right lines.

The pnrallcl right lines, at equal distances, I.I, ILII,
HLIIH,.. fig. 2, pl. 5, represent the meridians laid down
in their natuml length.  "The parallel right lines 1.1, 2.2,
3.3,...represent parallels of latitude, not merely laid down,
but clongated ; for 1.1 = 2.2 = 8.3, &c.. though the pa-
rallels in fact dimigish as they are removed from the
equator.

Let us suppose for the present, that the divisions 1.2,
2.3, 8.4, &c. are enlarged in proportion ito the corres-
ponding parallels 1.1, 2.2, 3.3, &c. If we suppose the
squares to be very small, we may regard each of those
traced on the sphere as a plane.” Its length and breadth
will be proportional to the length and breadth of the
square, enlarged proportionably in both directions on the
plane chart.

Thus, in what are called reduced charts, every figure
drawn on the sphere Will be transferred to similar squares ;
cach of the parts, consequently, of these figures, will, be
similar:—their lines making the same angles with one
another, as well as with the parallels and meridians.
Sea charts, in particular, are all constructed on these prin-
ciples.

Application to directing a ship’s course—If w¢ suppose
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that a ship’s course is always directed so as to form, at
every point, the same angle with the meridian, her voyage
will be represented by a stragzht line, drawn from the
point of departure to the placé of her arrival. The same
line, therefore, will inform the navigator of the angle which
the ship’s course ought to make with the meridian, when
he is navigating on a spherical ocean, or on a sea of which
the surface is a surface of revolution.

In asserting that the figure of the carth is spherical,
geographers only intended to say, that the globe, notwith-
standing the inequalities of every species which its surface
offers to our observation, deviates very little from the form
of a sphere in proportion to its size. In fact, the height of
the highest wmountains, is not equal to the thousandth
part of the diameter of a sphere bearing the ncarest pos-
sible resemblance in form and size to the earth. The
small protuberances on the rind of an orange, project more,
i relation to its volume, than the highest mountains in
relation to the volume of the earth.

To measure these inequalities with great precision, it
is supposed, setting out from somg point, such as the
surface of the sea or a lake, that we draw the surface of
a sphere having the same centre as the carth, and on
which meridians and parallels are marked, corresponding
to those of the carth.

To settle the position of any point whatever of the
carth’s surface, its altitude above this sphere is ascertain-
ed, as well as the degree of latitude and longitude which
inform us of the parallel and the meridian which pass by
a perpendicular, drawn from the point in question to the
surface of the sphere.

When the equlhbnum of ﬁulds has been explained to
the student, he will sce in what manncr, by means of the
barometer, we can measure the height of the different
points of the globe, and transfer them to the surface of
a sphere, assumed as the term of comparison. Such mea-
surements are not merely objects of curiosity ; they are
necessary to the engincer, that he may ascertain exactly
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the height of the ascents and descents to be passed, in car-
rying a road or canal from one point to another : they are
of use also, for distinguisiting the globe into regions, the
heights of which influence, if they do not determine, the
nature of every climate, as well as many other natural
phenomena.

Independent of the numberless incqualities which form
the undulations more or less extensive, and more or less
marked, of the superficies of the carth, the globe also dif-
fers in its gencral outline from the form of a sphere. It
is flattened towards the two poles, and, consequently,
swelled out towards the equator. We are, therefore,
ncarer the centre of the earth when we are at either pole,
than when we are in the temperate zones, and much ncarer
than when we are on the equator.

For many arts it is essential to know and calculate
the quantity which the earth is flattened at the poles,
for it makes the degrees of latitude comparatively long
towards the pole and short towards the equator.* It
influences the effects of gravity, to which all bodies are
subject, making it greater at the poles than at the cqua-
tor; so that a pendulum, as it is transported from the
pole to the equator, vibrates slower and slower.  Other
things being equal, the column of air at the pole is
heavier than the column of air at the equator; a cir-
cumstance which influences the motion of hydraulic ma-
chines, steam-engines, &ec.

In the sccond and third volumes, in treating of machines
and prime movers, we shall explain the law, according to
which the gravity of bodies, the vibration of the pendu-
lum, and the weight of the atmosphere, vary at different
parts of the earth ; and point out the consequences of this
variation in different arts. )

* The student may form an idea of this fact, by examining fig. 36,
pl. 4. In the flattened curve, BDEFG, he may consider BG as the
equator, and E the pole. The arc DF, having a radius DP, greater
than BO and GQ, the degrees of the arc DEF, are larger than those
of BD and FG.
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Celestial sphere—The sphere, divided into squares by
parallels and meridians, is also made use of to distinguish
in the heavens the position of the stars, as it is to distin-
guish on earth the situation of ‘placos. It is assumed, 1st
that the heavens form a spherc, having the same centre
and the same axis as the carth ; and, 2nd. that all the
stars are situated on the surface of this sphere.

A great number of the heavenly bodies, viz. all those
called fixed stars, always remain at the same distance from
one another on the celestial sphere, and their relative po-
sition does not alter.

If there were any one star placed on the celestial
sphere, precisely in the direction of the axis, or on the
pole, it would remain immovable, while all the others
would revolve round it. The star, now called the pole
star, is in fact, situated very near the celestial pole of our
hemisphere, and, consequently, describes only a very small
circle.

All the heavenly bodies vary their position in relation
to our globe. Astronomers measure the number of de-
grees in latitude and longitude, whieh mark this position,
at certain hours of the day; and on every day. When
they have thus distinguished in the heavens a succession
of isolated points, indicating sufficiently the path followed
by the star, they draw through these points a continued
curve, which thus marks out the path ‘triversed by the
star in its apparent motion on the surface of the celestial
sphere.

From the study of the curves, traced on the celestial
sphere by the motion of the heavenly bodies, astronomers
have perceived that they are' plane curves, and may be
drawn on a right lined circular cone or conical surface of
revolution, constituting that important study conic sec-
tions. The planets describe ellipses by their movements,
comets describe parabolas, and the sun is situated in one
of the focii of these curves. (See Lesson Thirteenth.)

The application of geometry to describe the course of
the stars,.is of so much importance, that but for it we



UNIVERSALITY OF GEOMETRY. 203

should never have discovered the great law of attraction,
which explains the different forces and motions of our
whole planctary system,'and gives to the modern science
of astronomy, an immense superiority over the astronomy
of the ancients. Thus, from the boy’s top,—from the
labours of the common tinman, who makes a tunnel in the
form of a right lined circular cone, and who cuts it slant-
ing, if he wishes to adapt it to®a vessel in an oblique
position, to the exalted studies of the astronomer who
calculates the course of the cclestial bodies, and ascertains
the form of these visual cones, of which the bases are the
curves, described by the centre of the stars, we find the
same geometry, the same surfaces, the same sections, and
the same curves. The principles of geometry, therefore,
are equally useful in the most common arts of life, and
in the most sublime scicnces.

My principal object in showing the connection which
exists between such opposite subjects, is to render those
notions familiar, at the mention of which the people are
apt to be terrified,—supposing them to be surrounded with
insurmountable difliculties,—but which may be easily com-
prehended, when we perceive their analogy with concep-
tions, which appear to us some of the most vulgar, be-
causc they are connected with common labour, and are exc-
cuted every day before our eyes or by our own hands.
This, T will venture to assert, is the true philosophy of
geowmetry, whether it be applied to the sciences or to
the arts.

When we observe with attention the appearance of the
heavens during a beautiful night, we perceive that the
radiant bodies which glitter in the celestial canopy, do not
remain fixed in relation to us. Like the sun, they rise
in the east, star after star, and constellation after constel-
lation; they mount towards the zenith, and again sink
towards the west, disappearing till the ensuing night.

In this motion, each of the heavenly bodies describes a
circle, and all these circles have the same axis, the axis of
the earth. Thus the heavens appear to us as if they
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revolved round the axis of the earth. During a long
succession of ages, the human race seem to have be-
lieved that all the heavenly bbdies moved round our
5lobe, which, in the vulgar creed, was supposed to remain
immovable in the centre of the universe. Geometry has
taught us the secret of this illusion. T'he mathematical
knowledge gathered in several successive gencrations,
seeming to prove that :enlarged experience is more than
equivalent to an additional sense, has unfolded to our
wondering and reverirg minds, the one simple and grand
cause of the eternal and harmonious (apparent) movement
of the celestial bodies.

We are at such a vast distance from the stars, that
visual rays projecting from the same star to parts of the
globe most distant from each other, appear all parallel.
The appearance of the heavens will, therefore, be the
same, whether we are on the surface or at the centre
of the earth. Let us suppose ourselves placed at the
centre. If the heavens revolve completely round the
carth in twenty-four hours, the earth does not revolve.
If, on the contrary, the sun is immovable, it will be ne-
cessary that the earth should revolve round its own axis.
In this motion, the only points in the heavens which would
appear fixed would be the celestial poles, corresponding
to the poles of our globe. The distances of the heavenly
bodies from these poles being variable, every star, though
appearing to rise and sink, in relation to the horizon at
the different parts of the earth, would be always, on a
visual ray, forming the same angle with that directed
towards the pole, and which represents the axis of the
world. Every star, therefore, would appear to us to move
on the same cone of visual rays, ana all the stars in ad-
vancing on their respective cones, would always appear to
us to remain at their respective distances. The appear-
ance of the heavens, therefore, would be precisely the
same, supposing the earth to revolve on its own axis, as
if we suppose the earth fixed, and the heavens to revolve
round it.
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It is thus by a property, a very simple one also, of
the revolution of planes and points round a fixed axis,
that we arc enabled to ascertain the exact identity in the
appearance of the heavens to us, whether the earth be
fixed, and the celestial canopy be carried round its axis;
or whether, on the contrary, the celestial vault remain
immovable, and the earth revolve on itself. When the
student is acquainted with the laws of circular motion,
he will see the reasons why geometers have decided in
favour of the latter system.

The sphere is not the only surface of revolution which
can be generated by making a circle revolve round a right
line. If we suppose that the axis of the surface does
not pass through the centre of the circle, we shall form
one of that species of surfaces which are called annular ;
because rings, such as are made use of in the arts, are
a particular example of this species of surfaces. It is
cvident that all the meridians will divide the ring into
equal circles, fig. 12, pl. 11, and also that all the parallels
will interscct the surface in circles. °

The rings worn on the finger arc generally annular
surfaces. *

In the arts we find rings employed, under the name of
ring-bolts, for the purpose of making ropes fast to them,
hooking tackles on to them, and a variety of similar pur-
poses. They are made of a ring, ABC, fig. 13, welded
through the eye of a bolt, EDH, and fastened into the
ground, into a wall, or into a ship’s deck.

The figure of a ring, or a portion of it, is also employed
in the decorations of architecture.

The doucine, AA, the quarter of a circle, QQ, fig. 14,
in the capitals and bases of columns, are the fourth part<
of an annular surface, formed by the revolution of a cir-
cle round the axis of the column; the torus, BB, is the
half of an annular surface, formed by the revolution of a
circle round the axis of a column or of an arch.

Architects also employ annular surfaces to construct
arches. In that fine building, the Halle au Bled of
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Paris, we sce & large semicircular arch, ABC, fig. 15,
around which is an annular surface, having for its meri-
dian the two semicircles ADE, CFG.

Circular vases of an antique ‘form, such as are repre-
sented in fig. 16, are composed of the cylindrical parts
AB, CD, EF, GH, and of the annular parts mn, pq,
s, tu, 1y,

When a joiner is making mouldmgs for a full curved
doorway, the circular parts of his rebating plane describe
annular surfaces.

A bell, ABCD, which in our houses is such a domes-
tic convenience, which in our manufactories summons the
workman to his labour, and in our churches calls men to
worship their Creator with one common accord, is a sur-
face of revolution, which is composcd equally of conical
and annular parts.

Sailors make use of a sort of half circular ring, called
a thimble. Tts exterior surface is made hollow, to receive
a rope, which encircles the thimble, and is fastened round
it, so that it cannot get lose; while another rope passed
through the ring, moves backwards and forwards at plea-
sure.

For a long time astronomers were unable to explain
the appearances of the planct Saturn, accompanied by its
ring, which asumes at different times the different ap-
pearances represented by I, II, III, fig. 11. When they
had become better geometricians, they casily ascertained
that the ring, which varies in its aspects, I, 1I, 11, ap-
pearing sometimes to surround and sometimes to cross
the planet, is in fact, permancnt and invariable in form
and size. The plain and easy method of projection has
been found sufficient to explain all the difficulty.

The pullies or sheeves which form the principal part of
blocks are cylinders, very flat in proportion to their cir-
cumference. The edge is hollowed into an annular sur-
face, having the arc of a circle for its generator.

A wheel is an annular surfacg, which is very much used
in the arts.
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The fellies of carriage-wheels, m, m, m, fig. 18, form
also an annular surface of revolution. At the centre
of the wheel is a solid piece, cal'ed the ndve, ABCD.
The spokes, or radii, at equal distances from one another,
connect the nave, which is also a surface of revolution, with
the ring formed by the fellies. The latter, consisting of
portions’equal to one another, are covered by the tire, a
flat band or hoop of iron, which extends over the whole
circumference of the wheel, and covering the joinings of
the feilies, is nailed to them.

Some wheels have all the spokes in the same plane,
rRRr, fig. 18, and on them the tire is at right anglez to
this plane, and forms a cylinder.

In other wheels the spokes, Ss, Ss, are placed in the
direction of so many edges of a right lined circular cone.
The tire being in them at right angles to the direction
of the spokes, forms a conical surface. These are conical
wheels.

When we come to examine the mechanical properties
of wheels, we shall compare the advantages and disadvan-
tages of these two species of surfaces of revolution for
moving burdens from place to place.

Casks may be considered as surfaces of revolution re-
markable for the simplicity of their structure. They are
made of thin planks (staves), narrower towards the ends
than at the middle, and joined at their sides, in such a
manner that being forcibly bent, and kept bent by means
of parallel hoops, AB, ab, cd, CD, fig. 19, a surface of
revolution is produced, of which these circles are the pa-
rallels, and the joinings of the staves the meridians.

To close these surfaces, of revolution, a circular planc
is formed of other marrow and thin planks (the heading),
the edge or circumference of which is fashioned into a co-
nical shape, so as to fit into a circular notch or groove,
made across the whole breadth of the inner face of each
stave.

After the staves are reduced to a convenient thickness,
the cooper makes their ends narrow, by pushing them
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over a large fixed plane, called a jointer ; and completing
this operation without any other guide than the eye, very
often makes his casks offensivelysirregular.

To work staves according to a form perfectly regular,
some persons have thought of employing geometrical
means. Let us suppose that cach stave is bent between
three or any greater number of fixed points, ABC, fig.
20, pl. 11, and that e, representing the axis of the
cask of which ABC is one of the staves, we place a
jointer so that its iron shall be in a meridian plane, or,
in other words, pass through the axis; and let us further
suppose, that the iron could both turn round this axis,
and move backwards and forwards in the plane of the
meridian. The jointer being brought to a convenicnt
distance from the stave, ABC, the upper part of the
small face i» first worked and afterwards turning the
stave, the lower part is worked, according to the form
which is proper for the meridian or profile of the cask.
Staves thus fashioned would form a very exact surfacé of
revolution.

On this principle a large manufactory of casks was
established near Glasgow, but it no longer exists. In
France there is one which promises to succeed very well.

When all the staves are brought together, their two
ends are sawed in a direction perpendicular to the axis ;
the groove for the heading is made by an instruinent called
a croze, having one side flat, which rests on the circum-
ference formed by the ends of the staves. A straight and
projecting iron is fixed on a vertical stock, at a proper
distance below the flat side, to cut out the groove. The
two headings being placed together, are fashioned into a
circle, the radius of which is equal to the radius of the
groove. Temporary hoops are employed in the first in-
stance till all the separate parts are made to fit ; they are
then removed, and the cask closed permanently at every
part with iron or wooden hoops.

Of all the vessels constructed of pieces of wood for
containing liquids, casks are the most advantageous ; but
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the wood must be of a good kind, and the casks ought
to be correctly made.

In the arrangement of the objects forming the%rgo of
ships, it is very often required to stow a great number of
casks in tiers one above another,” AB, CD, EF, fig. 21.
The scparate tiers, when not above three, are called the
ground tier, middle tier, and upper tier;; when above
three they are numbered, the lower ene, or No. 1, being,
however, still called the ground tier. Tt is of great im-
portance to know beforehand the height of each tier, in
order to ascertain what portion of the hold of a ship will
be occupied by the casks of wine, water, and spirits which
she is to take on board, and, of course, what space will
remain for the rest of the cargo.* ’

Though the combination, tig. 21, produces a gain of
27 hundredths of the radius of the casks, there is a con-
siderable space lost, which is avoided by the modern me-
thod of keeping the water on board ships, in iron tanks of
a cubical form, adapted to every part, even the most irre-
cular, of a ship’s hold. The metal, moreover, is better for
preserving the water sweet than the wooden staves.

In arsenals, whether for the service of the army or
navy, cannon balls, howitzer and bomb-shells, grenades

® It should be observed, that the three barrels m, n, jgsaupposed
to be equal in size, all touch each other in the lines joining their cen-
tres ; therefore, the centres are at a distance from each other equal to
the greatest diameter of the barrel. Let the right line ik, in the
triangle mup, be drawn from the summit », perpendicular to mp, mak.
ing mh = hp = 1, we shall have mn = 2; and because the square of
the hypothenuse is equal to the sum of the squares of the other sides
of the triangle, we shall'have nh? = mn? — mh® = 4 — 1 =3.

From this we see that nk is neasly equal to 1,73. But the centres

m, p, are at a distance frora their support equal to the radius of the
cask = 1, consequently, the height of the centre n, above the sup-
port, is 2,73,

If the cask n, was placed directly over the cask p, the height of
the centre n, above the support, would be three times the radius;
consequently, the sinking of each range of casks into the hollows
between the casks of the range below, causes a gain of nearly twenty-
seven hundredths of the radius.

P .
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of the same diameter or calibre, are piled up regularly
by horizontal planes, fig. 22. In gencral, the base of
each pile is a rectangle; and’cach forms a rectangular
prism, with symmetrically truncated sides.

To determine the number of balls contained in a prismatic pile,
truncated symmetrically, similar to that of fig. 22, count the number
of balls in one of the triangular faces ABC, which, taking r as the
number of rows of balls, will be,

1+243... 4

Multiply this total by the sum of the balls contained in the
three extreme rows Aa + Bb 4+ Cr, which represent the edges of
the truncated symmetrical prisin ABCabe.

Let n be the number of bulls in Aa, each of the ranges Be, Ce,
will reckon 7 — 1 balls more than Ae. Thus Ae + Bb + Ce = 3n
+2r—2

Whence the total number of balls in the pileis (1 +2 + 3 ...
+ 1) x (3n + 9r — 2), a product easy to calculate.

When there is only one ball in the row Ag, the prism hecomes a
quadrangular pyramid, of which the number of balls is,

(T +2+83+ . 4+r)x 3 +2r—2)
Or, (1+2+3...47) x d(2r+1)

When the pile is triangular, Ae =1, Bb =1, Ce = r, whence
Aa 4+ B+ Ce=1r + 2. *

For a triangular pile, therefore, » being the number of rows, we
shall have,

(1+2+4+38..47)+4(r+2)
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TWELFTH LESSON.

Spiral Surfuces.

Berorr cxplaining the properties of spiral surfaces,
and the applications of them in the arts, it is necessary
to examine the curves by which such’ surfaces are pro-
duced.

Having drawn the rectangle OHka, fig. 1, pl. 12, let
us divide it into bands of an equal breadth, by means
of the parallel right lines Ab, Bc, Cd, &c. Draw the
oblique lines Aa, Bb, Cc, Dd, which will be parallel to
each other, for they intercept equal portions of the other
parallels, AB = ab, BC = b¢, CD = cd, &c.

Let us suppose that the rectangle is bent into any
cylindrical form, having OH for one of its edges. Shut
up the cylinder, so that ak will coincide exactly with OH.
The point a will full on the point O, 6 will fall on A, d on
C, &c. The edges bemg all parallel to OA and ak, will
be represented in the rectangle OHka, by the.right lines
PQ, RS, TU, &c., parallels to the sides OHak. But
in the rectangle, all these parallel right lines intersect the
obliques Aa, Bb, Cc, under the same-angle, for all these
obliques are parallels. 1f we bend the rectangle on the
cylinder, fig. 3, none of the angles formed by the obliques
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Aa, Bb, Cc, fig. 1, and by the edges PQ, RS, TU, will
be changed. It will, therefore, be a property of the
obliques Aa, Bb, Cc, that in rejoining cach other at the
points A and &, B and ¢, C and d, &ec., of fig. 1, they
will form a curve, having the same angle at every point
with the edges of the cylinder. This curve is called a
helix or cylindrical spiral.

If we fold up the rectangle, so as to form a cylinder
the base of which is a circle, we obtain the heliv most
frequently employed in the arts.

Let us now suppose that two points, setting out from
H, advance at the same time ; onc following the dircetion
of the side Hk of the rectangle, fig. 1, the other following
the oblique line HA.  Let us suppose that the two points
pass in the same time, Ist, to PQ; 2nd, to RS; 3rd, to
TU....According to the propertics of proportional linces,
we shall have,

HQ : Qg : : HS : Ss: : HU : Un, &e.

The point, therefore, which moves in the oblique diree-
tion HA, separates from the base Hk, by the quantities
Qg, Ss, Uu.... proportionals to the distance of the edge
OH, from the edges PQ, RS, TU...

If we mauke, therefore, one of the cdges, HO, of the
cylinder ture round it, while a point is advancing along
this edge, in such a manner that the spaces passed through
by the point and the cdge are proportionals, the point
will describe a helir or spiral, as represented, fig. 3.

The spiral, therefore, is produced by the revolution
of a point round an axis, it being at the same time moved
forward in a direction parallel to the axis, in proportion
to the quantity it revolves round the same axis.

A turner, consequently, can describe a spiral on a cylin-
der, with a cutting instrument which advances parullel to
the axis, and proportionally to the quantity which the
cylinder revolves ‘round the axis. At each turn of the
cylinder, also, the turner’s instrument ought to advance
an equal length, which length being every where the same,
is the pace of the spiral or helix. The distance of the
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different revolutions of the helix or spiral, therefore, mea-
surcd on each edge, is always the same.

Let us suppose that we take off an impression, fig. 2,
by printing or any other means, of fig. 1 ; that is to say,
that we form a second figure symmetrical with the first,
and that it is bent ou a cylinder, fig. 4, equal to the cylin-
der fig. 8, we shall then form a spiral turning in a contrary
direction to that of fig. 3

The spiral, fig. 3, is said to be tumcd to the right ; that
of fig. 4, to be turned to the left. When the cylinders,
figs. 3 and 4, are cqual, and the motion of revolution is
cqual, the spiral turned to the right is symmetrical to that
turned to the left.

Spiral figure of screws.—In place of making a single
point revolve round an axis, we may substitute any plane
figure whatever, such as a triangle, fig. 5, or a square, fig
G, &c.  We shall then gencrate surfaces which may either
project from or be sunk into cylinders, which, in like
maundr, may be either solid or hollow. The spiral parts,
whether raised or sunk, are called threads. They are
forned round the cylinder by a triangle or square, either
raised or sunk, ad\anclng nlong the helix, always pre-
serving the generating, figure in the same position, in re-
lation to the outline of the helix and to the direction of
the axis of the cylinder.

The cylinder ABCD, fig. 5 and 6, which has the thread
cu its convex surface, is called the male screw; the hol-
low cylinder having a spiral thread formed in its concave
surface, is called the female screw.

Let us suppose that we have two cylinders of the same
diameter, on the surface of .which we have formed the
same spiral, and by it we cut two threads, one projecting,
the other sunk; they will form a male and female screw,
of the same thread and the same pace: the male screw
may be introduced into the female screw, by making it
advance, and turning it as it advances, without leaving
any vacuum between them, and without the malc screw
being diminished in size at any point.
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Let us insert the end of the projecting thread on the male screw,
into the commencement of the sunk thread on the female screw,
the arbors of both screws being so adjusted that their axes may be in
aright line. This being done, one “of the eylinders remaining fixed,
let us turn round the other, so that each point of its thread may
advance parallel to the axis, and proportional to the quantity which
it turns, according to the relation indicated by the curvature of the
helix by which the threads of the screw have heen formed,—the
profile of the surface of the projecting screw will describe the sur-
face itself of the sunk®screw, and the projecting thread will thus
adapt itself at every point without compression, and leaving no va-
cuum to the sunk thread. This is the movement of a screw in a
nut. Figures of both triangular and flat screws have been con-
structcd geometrically, and with the greatest care, figs. 5 and 6,
in order that the student may imitate the projection of screws on a
large scale They will find it une of the best geometrical exercises
which can be suggested to them.

As there are two species of spirals, one turned to the
right the other to the left, so there are two species of
screws and nuts, one turned to the right and the other to
the left. It is plain that a screw turned to the 1ighs, will
not enter a nut the thread of which is turned to the left,
and vice versa.

Screws arc continually used i the arts. They are
sometimes employed to change a circular movement into a
movement in a right line; and sometimes to produce a
change in the contrary dircction. This subject, however,
will be treated of in the second volume, on machines.

We must reinark fig. 1, that the psce OA = AB,...
of a screw, may be very small in relation te the length,
Hk, of the cylinder; moreover, the triangle. Hkh, is a
scale composed of parts, Qg, Ss, Uu,...which are to one
another : : 1 : 2: 83 : ... This scale is similar to that
formed, fig. 5, Lesson 5. If the base is equally divided
into the parts HQ, QS, SU, a very sensible error in these
lengths will be much less considerable in the heights Qg,
Ss, Uu....

In the arts this geometrical property is already em.
ployed, to divide right lines very exactly into equal parts,
by ricars of a screw.
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Let it be proposed to divide the ruler AB, fig. 7, into
equal parts. Suppose that the pace of the screw MN,
the axis of which is paralle] to AB, is the 10th part of the
circumference of the cylinder on which the screw is cut;
and that this base has for its radiud, the tenth part of the
radius of a circular plate, ’Q, of which the circumference
is divided into equal parts. Suppose further, that the errors
of the divisions of PQ, may amount to the 1000th part,
which would be inexcusable in any instrument interded for
precise and correct operations, the circumference of PQ), is
one hundred times greater than the pace of the screw,
and cach turn of PQ, only causes the index YX, which is
moved by the screw, to advance or recede one pace.
The error in the space traversed by the index, cannot,
therefore, be more than one hundredth part of the errors
in the divisions of the circle PQ. When the errors of
PQ do not exceed one thousandth part, they cannot ex-
ceed one hundred thousandth part in AB; that is to say,
a dmstance much less than can be appreciated by the sharp-
cest and most attentive sight. .

Let us turn round the circle PQ, so that a fixed index,
Z, corrc.sponds succlssively with the somewhat close di-
visions 1, 2, 3,...of the circle; we shall divide the right
line AB, into very minute parts, the mequalmes of which
cannot be recognised by our senses.

The machines for cutting screws are made in propor-
tion to the relations which must be established between
the longitudinal divisions A, B, and the divisions of a
circle PQ. It will be necessary, perhaps, to explain these
machines to the students by exhibiting them.

Screws differ very much, according to the form of the
thread, the section of which, perpendicular to the directing
spiral, is sometimes an equilateral triangle, and sometimes
a square; the former produces a screw with a triangular
thread, fig. 5, the latter a screw with a flat thread, fig. 6.

Screws are employed to move rulers or parallel cylin-
ders, nearer to or further from one another, without
changing their parallelism. Let us conceive, for example,
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two equal screws placed each at one cnd of a pair of
cylinders, in such manner, that in turning the screws,
they will force the axes of the cylinders to approach to or
recede from one another. When the two screws are
moved an equal quantity, we shall cause the cylinders to
approach or recede equally ; but we may have an index
fixed at each screw, so that the space traversed by it shall
be one, two, or three hundred times greater than the dis-
tance longitudinally between cach turn of the thread ;
and, thercfore, a movement of the screws, which makes
the index pass through one division, will not affect the
cylinders more than the one, two, or three hundredth part
of the motion of the index. By this means we can regu-
late their movements and their distance from one another
with extreme precision, which in many operations is of
very great importance.

Screws may also be applied in mafiy other similar
modes ; such as that of measuring or moving minute bodies
through minute points of space with a preeision, far-he-
yond what we could obtain by our senses alonc ; of which
we have almost numberless examples in the employment of
adjusting screws, in optical and astronomical instruments.

When it is required to fix an instrument, which stands
on three or four legs, at a very correct level, to cach of the
legs an adjusting screw is adapted, which is turned a little
round, as either of the legs of the instrument must be
raised or lowered. In this manner the instrument is
brought to the true position by almost insensible degrees,
and the motion can be stopped at the precise point. Ad-
justing screws are used in reflecting telescopes, for the
purpose of placing the mirrors in a proper position; and
in other instruments to separate some of their parts, or
bring them closer together.

Nature has set before man in her works, particularly
in the vegetable world, numerous examples of spirals.
Creeping plants wind and mount upwards round a ver-
tical cylinder, such as the trunk of a tree, or bush, or
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pole, describing a spiral. In some instances, the plant
sends forth long shoots, which it suspends to some other
object by filaments that wind round it in a spiral form.
Scveral of the fibres or vessels in the interior of plants,
are coiled up like spirals. There are many vegetables
also, of which the separate leaves, branches, or fruit, form,
as they grow out of the tree, a spiral round the cylindri-
cal trunk which bears them. .

Man has imitated the spiral forms of the vegetable
world, either to unite bodies together, or to penetrate into
them

When surgeons bind up a limb, having the form of
a cylinder, such as a finger, a leg, or an arm, for exam-
ple, they roll their bandages round it in a spiral di-
rection, in order to cover a space, gradually and with an
cqual pressure throughout, which is mucli larger than the
width of the bndage ; which may thus be casily fastened
at the end.

In explaining the propertics of the wedge and of the
screw, in the second volume, we shadll describe, more in
detail, gimblets, augers, corkscrews, gunworms, &c. &e.

Twisted columns.~\We sometimes sce trunks of trees
around which a branch of ivy has grown in a spiral dircc-
tion, and has so compressed the trunk, that it could only
grow between the turns of the ivy; and'it thus assumes
the form of a screw with a circplar thread. A tree of
this description was probably the original model of twist-
ed columns, fig. 8, which having neither the simplicity
nor the strength of straight columns, can only please
perverted imaginations. :

A wmore graceful ornament, and one more worthy of the
finearts, is that of garlands of flowers, twisted spirally round
regular columns; or, what is perhaps still more graceful,
round the light dresses of young maidens, when they are
adorned to share in the dance, threading, perhaps, a twist-
ed maze, which almost approaches a spiral ; or to mingle
with happy companions in those sportful games, in which
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they pursue each other round a circle of these same com-
panions, presenting the form of a spiral wound round a
ring. But let us return to more useful applications.

The worm of a still, fig. 9, resembles a corkscrew in
its form, but it is hollow. It is generated by the motion
of a circle, the centre of which moves along a helix, to
which the plane of the circle is always perpendicular.
When a fluid, ('onverted into the state of vapour by heat,
passes into the worm, which is placed within a cash filled
with cold water, the vapour becomes condensed, and
reaches the bottom of the worm in the state of a fluid.
In spiral tubes, therefore, brandy and other spirits, the
produce of distillation, are condensed into fluids.

The straw-hat maker forms cylinders, fig. 10, pl. 12,
out of narrow and level straw-plait, which being every
where of the same thickness, represents the bands AabB,
BbcC, &ec. fig. 1. Bent into the form of 'a cylinder, and
sewed together at the edges, they form a cylindrical sur-
face. By a similar method, taking care to extend or con-
tract one of the edges of the plait, we can coustruct a
plane, a cone, or a sphere.

In proportion as the straw-plait is narrow, and as thcre
is little necessity to expand or contract one of its edges,
so the workman is enabled to make his commeodity ap.
proach that precise geometrical form it is intended to
possess. The beauty of Leghorn straw-hats, is derived
from the perfect regularity and equality of the plait, it
being very narrow, and the straw very fine and uniform
in its colour and appearance.

Spiral springs, such as are used for coaches, are fre-
quently employed in the arts, but we must postpone the
explanation of their properties till wg treat of elasticity.

The hair of some persons curls naturally in a spiral
direction, and others curl their hair in this manner, by
twisting it round a hot cylinder of small diameter, or sim-
ply by rolling it up, in a spiral form, round a paper, called
a papillotte ; sometimes’ pressing it with hot iron pincers,
and sometimes doing nothing more to it, but keeping
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it thus rolled up for several hours. The heat of the
pincers dissipates the moisture with which the hair is
impregnated, and which, has a tendency to relax it, and
make it fall down straight from the head ; the compression
gives it a spiral curve, which it preserves for a longer or
shorter time, according to the nature of the hair and the
state of the atmosphere.

The art of the hair-dresser, and of the painter who
wishes to represent a fine head of hair, cousists in group-
ing the spiral curls, thus formed in masses, so as to har-
monise with the gencral dress and physiognomy of the
person represented by one, and adorned by the other. In
this, perhaps trifling art, the Grecks and Romans have
supplicd us, as in more important arts, with some clegant
models, which may be referred to as examples, in which
the combinations of these spiral forms are managed in
the most happy manner.

We must now, however, refer to a species of spirals
nmch more important than most of those hitherto alluded
to, viz. thread, rope, and every speties of twisted cordage.

T'o make cloth and rope, yarn more or less fine, is first
spun of hemp. of flax, of the phormium tenar, of the bark
of some trees, &c. ; cotton, wool, hair, and hides, cut into
strips, are also used for the same purpose. Before the
yarn is spun, the fibres of the raw material are drawn out
parallel, either by carding or hackling, and are divided
into very fine filaments, as cqual as possible in length and
thickness.

Spinning hemp and fla1.—In early times, these materials
were spun by the spindle, or bobbin, about which it was
wound as fast as it was twisted. In this operation, the
spinner, by means,of the finger and thumb of her right
hand, turns the point of the spindle as fast round as she
can, which gives a sufficient twist to the thread not rolled
on the spindle. At the same time she gradually draws,
with her left hand, the material off the distaff, as the spin-
dle revolves and descends towards the earth. When she
has thus spun a length, she winds it on the spindle, and



220 PRINCIPLE OF THE SPINNING WHELL.

fastens it to the end by a hitch or knot, that can be casily
made. The same process is then repeated, and the fila-
wents, which were loosely thrown in a parallel direction
round the distaft, assume a spiral form, and constitute a
thread.*

This mode of spinning is the slowest and the most an-
cient. Tt was superseded in the first instance by'a very
simple whedl, fig. 11, whlch is put in motion by the hand
or the foot of the spinner. As the thread is twisted, it
is gradually rolled on the bobbin, which is only a mechan-
ical spindle. The wheel twists the filaments into a thread.
The spinner, therefore, has only to give motion to the
wheel, and draw the flax from the distaff, forming it be-
tween her fingers, as the wheel turns, into a thread which
is every where of equal thickness.

The thread is wound on the bobbin of the wheel by
means of wings, fig. 12, provided with hooks. The wings
are fixed on the axle mn, which passes through the hobbin,
or wooden cylinder rs, on which the thread is to be rolled.
The motion given to the cylinder is more rapid than that
given to the wings, so that the bobbin pulls the thread,
which is thus gradually rolled around it.

Let us suppose, to fix our ideas on this part of the pro-

cess, that the cylinder makes five complete revolutions,
while the wings make only four : the thread must be con-
sequently wound once round the cylinder when it has made
five revolutions, and the wings only four. These different
rotatory movements are given by means of the large
wheel, OAB, fig. 11, mn, pg, being two other small
whecls, of which the reﬁpective diameters are to one ano-
ther : : 4: 5. It is evident that the cords AmaB,
ApgB, extended over the grooves of, the small and the
large wheel, pass over the same space of the large wheel,

* This ancient method of spinning is still practised in several
parts of France, particularly by women, who have at the same
time some other occupation ; in country places, both of Italy and
Spain, and in some parts of the Highlands of Scotland and the

Shetland Islands. Tr.



CARDING.—COTTON-SPINNING. 221

AB, when it is turned, and, consequently, that the pinion
mn must make five complete revolutions, while pg only
makes four. This is the relation between the wheels which
it is required to establish.

The advantages of the wheel, compared to the spindle,
are very great; ages were required before it was invented,
and much, very much, has it been surpassed by modern
inventions. .

In spinning cotton or wool, the material is first formed,
by the process of carding, into large flakes, being every
where of the same breadth and the same thickness ; and it
is afterwards drawn out, so as to form narrow ribands.
Being slightly twisted, these are converted into slivers or
rovings, which are again twisted, and gradually drawn
out onc by the side of another, cither by the hand or by a
machine. As the process continucs, they are turned round
themselves that they may be equally twisted ; that is to
say, that both the quantity of materials may be equal at
every point, and also that this quantity may every where
be equally twisted, so that the thread may be throughout
of the same size. , In this process, each filament forms a
spiral, having for its axis the axis of the fine cylinder re-
presented by the thread.

"The machine for spinning cotton, consists of a large wheel,
OAB, fig. 13, of a spindle provided with a small wheel
CD, and of an endless cord ABCD. The spindle receives
the thread in the same manner as the common spindle
already described, -—the thread extending itself into a sliver
or roving in the part not twisted. The workman takes
hold of this with one hand, at a convenient distance from
the spindle, drawing it out as the spindle revolves, and
with the other hand®turns the large wheel ; as it revolves,
the spindle revolving more rapidly, communicates its
revolutions to the cotton and forms it into a thread, the
clements of which are curved spirally. The twisting of
these spirals depends, 1st, on the rapidity with which
AOB revolves, and 2nd, on the rate at which the cotton
is drawn out from the spindle. When a portion of the
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material is sufficiently twisted, s0 as to form a thread of
the required thickness, the spiuner turns back the whed
that she may undo the spiral which the thread forms at
the point of the spindle, and then holding it perpendicu-
larly to the axis of the spindle, gives the wheel a turn
in the contrary direction, when the thread, in place of
twisting, is wound on the spindle, forming there also a
succession of spirals. (By this machine, therefore, the
same operations are performed as by the original spindle
and distaff, when the thread is twisted by the finger and
thumb.

One of the most original and most remarhable parts of
the modern spinning machines, is that which 15 substituted
for the fingers of the spinner. The light flakes of cotton,
as they come from the carding machine, are made to pass
between three pairs of cylinders or flatteners, so disposed,
that the first pair turns round less quickly than the sccond,
and the second less than the third; by the revolutions
of which the cotton is stretched out and narrowed. Tt
afterwards passes through a second series of three pairs
of cylinders, in which it is twisted a little, and is
then wound on bobbins. A certain number of these
are then placed on vertical axes, and ranged in order,
on a machine which performs all the operations formerly
executed by the spinner; it draws out the cotton, twists
it, and winds it when twisted, on other bobbins. The
thread is in this case also drawn out by means of three
pairs of cylinders, each pair revolving with different de-
grees of velocity The thread is then wound on a bobbin,

» Although, as stated by the author, three pairs of rollers are
used in spinning cotton, yet two only are efficient in forming the
thread, the middle pair having the velocity of the first in the series,
and, therefore, serving merely to support and conduct the skein.
The first pair of rollers, or those which first receive the skein, are
called the holding rollers, and the third pair, or those placed at the
front of the machine, moving with a greater velocity than the first,
are called the drawing rollers  The thickness of the skein or roving
being given, the size of the thread depends upon the relative velocity
of the first and third pair of rollers. Where the fibre or staple of the
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provided with wings, like those of the common spinning-
wheel.  This mode is called the continuous method of
spinning, because the operation is carried on without sus-
pending or altering the different species of motion.

In the machines called mules, mentioned in the Second
Lesson, the cotton is drawn out, not merely by the diffe-
rent degrees of velocity in the different pairs of revolving
cylinders, but also by making all ¢he bobbins on which
the cotton is wound, alternately approach to and recede
from the cylinders.  When the bobbins recede, the thread
i drawn out; when they advance, the thread is wound
on them. The thread is twisted when the bobbins have
reached the end of their course.

A frame for spinning coarse cotton carries 108 bobbins,
one for spinning fine cotton carries 216 ; it is managed by
one spinner, and two knotiers.* On an average, it spins in
eleven hours about 90lbs. of the cotton thread. No. 30.
Thus, three persons can manage a number of threads,
which would require 216 spinners with the wheel or spin-
dle, and cach thread is spun much quicker than by the
fingers. .

Thus, the means supplied by geometry of forming
vegetable  filaments, twisted spirally, into cylindrical
threads having always the same diameter, has multiplied
the resources of man, in this single instance, at least
seventy fold. The student will be more instructed by

material to be spun is tartuous and tenacious, as is the case with the
wool of sheep, another intermediate pair of rollers has occasionally
been used, to keep the skein flat, or to prescrve the fibres from start-
ing ; and in spinning flax by machinery, on account of the length of
its fibres, and consequent necessary distance of the holding and draw-
ing rollers, several pairs have been introduced, as conductors or sup-
porters of the skein In the adjustment of the rollers, in regard to
distance and relative velocity, consists the great practical difficulty
of the art of forming threads by machinery.

* In the manufacturing parts of England, they are called piecers, as
the art consists simply in applying the broken end of the thread to the
skein, when it leaves the front rollers ; and the revolution of the
spindle, by twisting the fibres spirally, repairs it completely.
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these remarks, if he can, at the same time, have an
opportunity of inspecting models of wheels and spinning
frames.

Silk, as it is produced by the silk-worm, is rolled up in
the form of a spiral, on a surface of revolution called a
cocoon. The first operation consists in developing the
thread of the cocoon and winding it on a bobbin; it is
then slightly twisted by being wound on a second bob-
bin. The threads thus prepared, are so twisted in the
first instance, that all the points which were before in a
right line on their cylindrical surface, form a spiral.
These threads are united two, three, and c¢ven four to-
gether, by twisting them in a contrary or reverse direc-
tion. Of course, this second operation untwists cach
thread a little, but it unites all the threads spirally to-
gether in their whole lengths. In this state, the silk
thread is called orgunzine.

This operation is similar to that of making rope with
hemp. By the effect of both the twistings, the parts of
cach thread have a tendency to return to their straight
position, by untwisting in one direction; while the united
threads have a tendency to untwist in a different direction.
The equilibrium established by the two twistings, pre-
vents the threads from untwisting, which they would do,
were they not constrained by some foree extrinsic to them-
selves. Ou this subject, however, which belongs to the
doctrine of forces, and extends beyond the bounds of geo-
metry, I cannot now enter into more ample details.

Hemp is at first twisted into single threads called rope-
yarns, the twisting being all in one direction ; several of
these yarns are then twisted together in an opposite dirce-
tion, to form what are called strdhds; three or four of
which, as the rope is to be three or four stranded, are
twisted together in an opposite direction from the strand,
and in the same direction as the yarn to form a common
rope. To form a cable-laid rope, three or four lengths of
this common rope, called in this case strands, arc twisted
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up in a contrary direction, that is to say, as the original
strands are twisted, and these may be again twisted to-
gether to form large cables.

The cables, shrouds, and standing rigging, of large
ships, arc generally laid up, as it is technically called, or
twisted in this latter mode; their common ropes, hraces,
haulyards, &e. &c. are twisted in the former mode.

In England, ropes are now made by means of some very
ingenious machincry, the regular geometrical movements of
which have been attended with the best effects. ' With one
third less material, or even a greater diminution, according
to the size of the rope, we now obtain, in conscquence of
this improved method of manufacturing, equal strength ;
and this may be quoted as one of the best examples known
of substituting scientific combinations of mechanic powers,
for operations that almost may be called merely manual.
Further detalls will be given of these machines in the
Second Volume.

V¥e have yet to speak of a species of non-developable
or indefinite surfaces, frequently employed both in civil
and naval architecture, as well as in constructing machiues ;
viz. spiral surfaces, denerated by the movement of a right
line, or of the arc of a circle.

Spiral surfuces of stairs—Among the various non-
devclopable surfaces examined in the Tenth’ Lesson, those
formed by winding staircases are spiral surfaces.

The spiral surface of the winding staircase is formed
by the motion of a horizontal right line, one end of which
is applied to the axis of the tower in which the staircase is
built, the other being applied to a spiral traced in the
direction of the interior circumference of the tower.

If we give the saige height to each of the steps, they
will all be of the same breadth, at equal distances from the
centre. Consequently, if ABC, fig. 14, is the circle
which represents the base of the cylinder forming the
tower, in which the staircase is to be built, every other
circle drawn from the same centre as the first will be di-

Q
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vided into equal parts by the horizontal projection of the
steps.

Screw o ArcHiMEDEs.—Jhe spiral surface of a stair-
case in a round tower, is a perfect representation of the
screw of Archimedes, so called from this great geometri-
cian, who invented it. The application of this screw to
raise water, will be described, when we speak of hydraulic
machines, in the third. volume.

Having had occasion to construct the screw ‘of Archimedes in
wood, I proceeded in the following manner:

I began by dividing the circumference ABCD, fig. 19, pl."12, into
as many equal parts as 1 wished to employ pieces of wood to form
a complete revolution of the spiral. I had the prisms squared, of
which the base ODC was the sector, representing one of the equal
divisions thus formed on the cylindrical face, having DC for the ho-
rizontal projection; and I drew a right line, inclined according to
the direction of the helix, which the spiral surfuce traces on the
cylinder ABCD.

1 divided the radii OD, OC, into equal parts, Dd, dd',... Ce, cc,...
then 1 caused the pieces of wood, already squared, to be sawed, with
a saw always kept at an equal distance from the two points D, C,
so that, first, on the upper base of the piece of wood the course of
the saw always terminated at D, while on the lower base it always
terminated at C ; secondly, on the upper base, a cut ended in d and
d', when, on the lower base, the same cut ended in ¢ and ¢. Each
of these cuts of the saw is the side of a polygon, representing the
outline of a spiral curve, placed on the spiral surface to be pro-
duced.

With a very small plane, the iron of which was circular, always held
in a horizontal position, and only stopping at the saw cut in CD, and
at the vertical in O, the superfluous wood was gradually cut away
to obtain the upper spiral surface of the screw of Archimedes.

When this was done, by means of a square, the faces of the joint
in OD and OC, were made to square with the upper face. Fi-
nally, drawing on the faces of the joint, and on the surface CD, right
lines equal and similar to those which limit the upper face of the
screw, we were able to work the lower face by the ‘means just de-
scribed for working the upper face.

Let us here remark, that a ruler bent without any effort on the
cylindrical outline ABCD, so as to pass by the two points C, D, indi-
cates by its outline a perfect arc of the spiral or helix, which may
produce great exactness, by means of the approximation just men-
tioned, giving many of the horizontal divisions by the saw, which
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stop at the axis O, on one part, and on the other at the helix, drawn
by means of the bending rule.

It is not uninteresting to remark, that the joints which are squared
with the spiral surface, are themselves the elements of a spiral sur-
face of the same description. The latter surfaces tracing, on cylin-
ders with circular bases, helixes, which even intersect, at right an-
gles, the helixes drawn on the former surfaces.

If it be required that the upper part of the pieces which
compose the spiral balustrade shall have the form of the
staircase, the upper face OCD, niust be allowed to retain
its plane horizontal form, and the right exferior face OD
its plane vertical form, working the surfaces of the joint
and the lower surface of the staircase, by the means
pointed out in the Tenth Lesson.

Often, in place of constructing a circular staircase,
the steps of which extend entirely to the solid pillar O,
fig. 14, pl. 12, the steps reach no farther than the circle
abd, fig. 15, which represents horizontally a ledge in
stone or wood, projecting a little above and below each
step. Such staircases are called open winding stairs; se-
veral of which may be scen in the+most elegant coffee-
houses of Paris, admirably constructed, and which, ap-
parently without support, surprise the beholder by their
lightness and boldness.

There arc open staircases, fig. 16, the outer part of
which is not circular.

Whatever may be the base, ABCD", fig. 16, of the cylinder which
represents the wall, inclosing the staircase, we always trace on it
a spiral or helix, which advances in the direction of the outline
ABCD*, proportionably to the quantity it is vertically elevated.
From each point of this curve, we then draw a horizontal line Ag,
Bb, Ce,...at right angles to the cylinder, having ABCD*, for its
base. Aa is made equal to B, to Cc, &o. ; and abed, which is also
a epiral, is to be drawg; this is the interior outline of the open

spiral which forms the staircase. The working of the different parts -
of the spiral surface or of the staircase, is not more difficult than

the working of that of figs. 14 and 15.

When it is required to make a staircase very strong, in
place of generating the lower surface, by means of a hori-
zontal right line, applied at the same time to the axis of
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the tower, and to a spiral traced on its inner surface, the
lower surface is often terminated by the arc of a circle, fig.
17, having this horizontal line for its diameter, and situa-
ted in the vertical plane. In this manrer a sort of spiral
surface is formed, presenting everywhere the same section.
It is necessary in some arts to make spiral surfaces in
steps upon a cone. Thus, watchmakers, with the cylinder
or box which contains the main spring, combine a cone
having on its surface @ spiral path, fig. 18. A very fine
chain, made "in a masterly manner, winds, from onc end,
round the cylinder, in the form of a helix, and from the
other end on the conical spiral. The variable relation of
the diameter of the cone at different heights, to the diame-
ter of the cylinder, compensates exactly for the diminution
of the power of the spring, as it expands; and it conse-
quently acts with an invariable force. This, also, is one
of the numerous subjects with which the student will be
made better acquainted, when the principles of machines
are explained in the second volume. .
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THIRTEENTH LESSON.

Iutersection of Surfaces.

WHEN two surfaces cut each other, the succession of
points, common to them both, is called their intersec-
tiony it is a right line or curve, according to the form
and position of the two surfaces.

Bodies terminated by portions of surfaces, distinct in
their form and directfon, offer at the boundaries of such
surfaces projecting or retreating lines, which are the in-
tersections of these surfaces. The rectilinear edges, for
example, which separate the different faces of the prism
and pyramid, are the intersections of the surfaces repre-
sented by these faces.

When one body crosses another, or is implanted in it,
the surface of the former is partly hidden by the latter;
the hidden part is separated from the visible part, by a
line which is the intersection of the surface of the former
body with the surface of the second.

Thus, in fig. 1, pl. 18, the line of intersection for the
two prisms ABCDalcd, MNPQm'r'p’q’, the first of which
penetrates the second, is the periphery mupg which se-
parates the hidden from the visible part of the latter. To
determine the horizontal and vertical projection of the in-
tersection of surfaces, descriptive geometry supplies us
with an easy method, which it will be very usefulfor every
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student to practise at length, by drawing the intersections
of a great number of surfaces. On this point, we must
content ourselves with pointing out the general course
. of proceeding, and we shall begin with the intersection of
planes. .

To represent the intersection of two planes of projec-
tion, the one vertical, the other horizontal, the paper is
divided into two parts by a horizontal line. AB, fig. 2.
The part of the paper above the line represents the ver-
tical plane of projection; the part below the line repre-
sents the horizontal plane of projection.  The latter is in
general the ground plan; and then the intersection, AB,
of the two planes, is commonly called the ground line.

In order that the representation- may he perfect, we
must double the paper up square ; AB marking the direc-
tion of the doubling, the lower part of the paper remain-
ing horizontal, and the upper part becoming vertical. At
least, we must do this in thought; and it is done natu-
rally in imagination, when on two planes we represent
objects, the position of which is known to us. Thus we
see, below the ground line, the plan of an edifice, and
above it, the elevation of the edifice, with doors, windows,
&c. &c. Even when the paper on which the plan and
elevation are drawn is placed on a horizontal table, we
restore, in our thoughts, the elevation of the edifice, and
imagine it vertical: on the contrary, if the paper were
placed vertically, as against the wall, the plan would, ne-
vertheless, appear horizontal, if it represented such ob-
jects as a garden, a landscape, &c. It is necessary, there-
fore, for the student, to imagine the horizontal or ver-
tical projection of volumes, of surfaces, or merely of lines,
in its true position, as represented above or below the
ground line.

To indicate the position of a point situated out of
the two planes of projection, two right lines are drawn
from it, one at right angles to the vertical plane, the
other at right angles to the horizontal plane, and the
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position of the ends of these two right lines is marked
on both planes of projection.

In order to abridge and facilitate the understanding
of this mode of representation, supposing P the point
situated in space to be projected, I will distinguish by
P, tig..2, its vertical projection, and by P,, its ho-
rizontal projection. Thus the letters v and 4, placed
below one or more letters, indicatedhe vertical or horizon-
tal projection of points, lines, surfaces, or volumes si-
tuated in space.

Through the point P, fig. 2, and fig. 2 double, situ-
ated in space, let us make a plane pass at right angles to
the ground-line AB, it will, on this account, form right
angles with both planes of projection, whence it will con-
tain the perpendiculars let fall from the point P, one to
the vertical, and the other to the horizontal plane of pro-
jection. Constructing a rectangle, fig. 2 double, having
for,its sides the two perpendiculars PP,, PP,, being the
intersections of the plane which contains them, with the
horizontal and vertical planes of projection, we shall have
MP, = I'P,, MP,e= PP,. If we turn the horizon-
tal plane of projection round, to bring it to the paper
which contains the vertical plane of projection, during this
movement, MP, and MP,, will not cease to be at right
angles with the intersection AMB of the two planes of
projection. In order, therefore, that two points P,, P,,
fig. 2. shall be respectively the vertical, and the horizontal
projection of the same pbint P, the right line I’,P,, must
be at right angles with the ground line AB.

The part MP, of this line, is the distance of the point
P, from the horizontal pline, and the part MP,, is the
distance of the point' P, from the vertical plane.

Projections of the right line—When a’succession of
points form a right line PQ, fig. 8, all the perpendiculars
let fall from these points on a plane, will form a third
plane, intersecting both the other planes in a right line. 1f
we have, therefore, only the projections P, P,; Q,, Qi
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fig. 3, of the two extremities of the right line PQ, joining
the points P, and Q,, P, and Q,, by a right line, we
shall have two projections of the right line PQ. It is by
the intersection of planes that we procure these projections.

To represent a plane according to the method of pro-
Jections, we must employ another method ; as follows :

The plane to be represented intersects each plane of
projection, according ¢o a right line: it intersects these
two planes, ai the same time, in the point M, fig. 4, situa-
ted on the ground line. The intersections PM, MQ, with
the two planes of projection, are called the traces of the
plane PMQ.

The position of a plane is fully determined by that of
two right lines which it contains; and, consequently, two
traces of a plane are sufficient to make us acquainted with
its position.

Let us now suppose that it is required to find the ver-
tical projection p,, fig. 4, of a point p, placed on the plane
PMQ, and that we know the horizontal projection p,, of
this same point. The two projections p,, pi, of the point
p» are nccessarily on a line perpendicular to the ground
line: let us draw this perpendicular. Through the point
P, draw on the plane PMQ, a horizontal line; it will be
parallel to the horizontal line PM ; whence its projection
Ps» my, will be parallel to PM. But the point m,, which
is on the ground line AMB, can only belong to a point m,,
situated on the vertical plane of projection. Therefore,
mym,, perpendicular to AB, contains the point m,, of
which m, is the horizontal projection. This point is also
on the trace MQ, wherefore it is at m,, If we draw
m.p,, parallel to AMB, this line will represent, on the
vertical plane, the projection of mp’ the vertical projec-
tion, therefore, of the point p, is situated at the same
time on m.p,, and on p,p,; and, consequently, it is at
the point p,, the intersection of these two right lines.
Whence plfis the vertical projection of the point, which
has p, for its horizontal projection.
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Let the traces MP and MQ, SR and ST, fig. 5, of two
planes be given, and let it be required to find the inter-
section of these two planes. 1st, the point D, being on
both the vertical traces, belongs to this intersection, and
as it is on the vertical plane of projection, it is projected in
D,, on the ground line AB. 2nd, the point”EE,, being
on hoth the horizontal traces, belongs to the intersection of
the two planes, and as it is on the borizontal plane, its ver-
tical projection EE, is on the ground line. ‘'We have now
got, therefare, two points of the right line, in which the
two planes intersect each other; viz. the first point D,,
D,. the second E,, E,. The right line to which these
two points belong, has for it projection therefore the
two right lines D.E,, DK, ; which is the intersection
sought.

Projections of a Polygon.—Any polygon whatever,
ABCDVY, fig. 6, terminated by right lines, has for its
projections two polygons of the same number of sides,
A B.CDE, ABCD,E,, the corresponding summits of
which are on the same verticals A A,, B,B,, &c.

As the interscction of two planes is always a right line,
of which the projections are also right lines, it follows that
a body terminated by plane faces, is also bounded by
rectilinear edges, which are the intersections of these faces.
Such a body is represented by drawing the right lines,
which are the projections of each edge. The summits
which terminate each edge, are placed on the same vertical
in both planes of projection.

In fig. 7, a pyramid SABC, is represented Both hori-
zontally and vertically, by the projection of its edges, and
the corresponding summits are projected in 8, and §,;
A, and A;; B, and’ B,; C, and C,, on the right lines
S.8, A,A,, B,B,, and C,C,, perpendiculars to the ground
line MN.

By the intersections of planes and of right lines, de-
scriptive geometrygteaches us how to determine the length
of a right liue, the two projections of which are known;
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and the superficies of a plane figure, given by the twc
projections of its outline ; the angle formed by two
right lines, of which the projections are known; the
angle formed by two planes, of which the horizontal and
vertical traces are known ; the shortest distance between
two right lines given by their projections; the angle
made by a right line given by its projections, with a
plane given by its traces, &c. The solution of all these
problems, however, can only be fully shown in a course of
instruction on linear design; but when known, almost
numberless applications may be made of them in the most
important arts; in architecture, in stone-masonry, in car-
pentry, in ship-building, in constructing machines, making
implements, Xc.

Workmen will not only be able to draw the horizontal
plans and vertical projections of buildings, of machines,
of ships, &c. but they may easily make a scction of these
objects by any plane whatever. The plane of this sec-
tion, meeting right lines, given by their horizontal and
vertical projection, will produce points and angles which
they will be able to determine. "The differcut planes
given by their traces will have a right line for their in-
tersection with the plane of the section ; the students will
ascertain these -right lines, and will produce a fuithful and
complete representation of every part of the building
which is not curvilinear.

The carpenter, for example, may represent exactly all
the pieces of a floor or a plane roof. By sections and pro-
jections he may obtain the form of every beam, rafter,
king-post, joist, purline, &c. These various pieces are
terminated by plane faces and by rectilinear edges; he
may draw the projections of these edges; these pieces abut
against each other, and the linee which mark the places of
these abutments are the intersections of the planc faces of
the pieces of wood in contact; and he may determine
these intersections by the easy methods just pointed
out. All the pieces of wood are not square or rectangu-
lar; he may measure the angles made by the different
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sides of the same piece, and by the adjacent sides of con-
tiguous pieces ; and he may in like manner find the direc-
tion, length, and breadth of each side of every piece.

By following this method, without, in fact, being sen-
sible that he is using geometry, a good practical carpenter
succeeds in ascertaining, by projection and sections, every
rectilinear part of the carpentry of a building. Thus, a
skilful carpenter, who draws with® precision and correct-
ness the plans of his different pieces of work; possesses, in
fact, a very extensive knowledge of geometry. It is of
little conscquence that he does not give to his lines, sur-
faces, and solids, the names employed by the professors of
the science, and conseerated by long usage in books.  The
things are, in principle, the same, though the names be
different.  Science neither loses in value nor utility, by
being clothed in common language, and taught without
didactic display.

These observations may be extended to masons as well
as to carpenters.  The stone-mason ds obliged to prepare
every one of the principal stones of which any regular
building is coustrueted, according to some precise form,
and so that the small stores placed by the side, or on the
top of one another, in some regular order, required by a
regard to solidity and durability, shall produce that precise
form laid down by the architect in his plans of the edi-
fice. The stone-mason, on the principle of horizontal and
vertical projection, generally divides the walls into a suc-
cession of intersecting planes, and then the form of each
stone is determined, 1st, by the exterior and interior face
of the walls, and 2nd, by the intersecting planes, called
planes of joining, because it is according to these planes
that the adjacent stones are joined together.

The shape of stones in common upright walls is easily
drawn, because they are all parallelopipeds, of which all
the contiguous faces are at right angles to each other, and
all the opposite edges are parallels. But when the walls
incline in any direction, forming together other than right
angles, each stone must be cut by a less easy rule: the
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" angles made by the inclined faces with the horizontal
faces,—the angles made by the direction of the edges of
one wall with the ditection of the edges of the contiguous
wall, &c. must be determined. 'The upper part of doors
and windows, though a plane, is very often formed of se-
veral picces placed alongside of each other, and larger
above than below, in order that they may not fall by their
own weight.  In this éase also, the angles made by the
edges and sidds, or faces of these stones, the dimensions of
each, so that the whole shall occupy only a predetermined
space, must be ascertained before the workman begins to
cut any one stone. All these problems may. be solved
by the method of intersections.

Young wmen, who are destined to be architects, build-
ers, and leading hands among stonc-masons, are taught
to work, by making in plaster, of proper dimensions,
models of arches, door-ways, window.frames, staircases,
&ec. Xe.  To each piece they give its proper form, deter-
mining geometrically, dts angles, edges, and joints. Such
mstruction and such exercise cannot be too much recom-
mended ; and it is desirable, that in giving this instruc-
tion, the parts to be cut should be arranged in the order
adopted in this work of plane, cylindrical, conical, de-
velopable, undefmable surfaces, and surfaces of revolution.
It would also be desirable that carpenters, cabinet-makers,
joiners, &ec. should be taught to make complex picces of
carpentry, joinery, &c. by modecls, and according to geo-
metrical principles. Their utility’ as workmen would not
be lessened either to themselves or others; their education
would be more rapid and more beneficial, and uniting the
dignity of science with their daily labours, they would
look on them with pride, and conceive them to be honour-
able.

Intersection of right lines, and planes with curved sur-
faccs.—We shall treat of the intersections of the right
Tine, and of the planes with these surfaces, according to
the order in which we have examined them.

Projections of the Cylinder—'To obtain them, we de-
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scribe on one of the planes of projection, on the horizontal
plane, for example, the trace, or the intersection of the
cylinder with the plane. All the edges of the cylinder
being parallel, the projections of them are also parallel.
As soon, therefore, as we have determined the direction
Ciers Cic, fig. 9, pl. 13, the two projections of one
edge, wé shall have the direction of all the other edges.
Generally, it is thought sufficient fo mark, in horizontal
and vertical projection, the extreme edges, A,a, and
E.e.; B.b, and D,d,.

dutersection of the cylinder with a plane—We have scen
how to ascertain the intersection of aright line with a plane,
when the traces of the plane and the projections of the
line are known. If we perform this operation for the dif-
ferent edges of the cylinder, each edge will give a point
of intersection, which may be projected horizontaily and
vertically. The whole of these points will form a hori-
zontal and a vertical curve, which are the two projections
of the intersection sought.

In practice, the intersections are very often traced on
the surfaces by bringing them into contact. Let us sup-
pose, for example, fig. 10, that the cylinder be the funnel
of a stove, and that the plane be a sheet of iron through
which the funnel is to pass; it is placed i in the direction
according to which it is to be fixed, but so as not to press
against the sheet of iron. A ruler may now be applied
to the cylinder, in the dircction of the edges of this sur-
face, one end of it touching the iron plate. If it be ap-
plied to each edge of the cylinder, or to as many parts of
its surface as may be necessary, and the point where the
ruler touches the iron plate be marked at each position,
the whole of these ppints will, when united, form the
curve of intersection of the two surfaces.

Let us suppose that any convenient length, contmually
preserved, be marked on the ruler, from the end which
touches the iron plate, and that at this length we mark a .
succession of points on the cylinder or funnel, they will
form a curve, which is the intersection of the cylinder
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with a plane. If we move either the plate or the cylinder
parallel to its own direction, in consequence of the equality
of parallels, comprised between parallcls, the two curves
traced, one on the plane and the other on the cylinder,
will touch each other in every point, and coalesce into
one. Having drawn these two curves, either the cylinder
or the plane is, or both surfaces are, worked out in the
direction of these curves, according to the purpose for
which the fynnel and the plate are to serve.

This method is correct, whatever may be the form of
the cylinder, and even if the plate, instead of being a
plane, should be curved in any direction.

Shipwrights employ this method to trace, at the spot,
the curve of intersection between the surfuce of the ship's
bow and of the decks, with the bowsprit and masts, and to
cut holes and steps for the latter.

Application of' the iutersection of cylinders to trans-
mitted shadows.—When a surface, terminated by promi-
nent edges, intercepts the rays of the sun, if we drawa
line parallel to the sun’s rays, through each point of the
intercepting surface, these parallels will form a cylinder,
which will separate, beyond the sufface, the part in the
light from the part in the shade. If there is an object
behind the cylinder, altogether in the shade, the sun is
completely hidden or eclipsed by the surface which trans-
mits the shade. If the object is only partially in the
shade, and we detcrmine the intersection of the surface
of this body with the cylinder, the curve thus determined
will separate on the object the part in the shade from the
part in the light. We thus obtain a line of separation
between_the light and shade on the opaque body, by the
curve of intersection of the surface of this body with the
cylinder, which marks, in space, the limits of the sun's
rays, intercepted by the opaque surface.

. Let us take a ruler, and hold it parallel to the sun’s
rays, placing one end of it against the surface which causes
the shade, and the other on the object, partially illumi-
nated. Each position of the ruler thus held will mark a
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point on the object, and the whole of the points thus
marked will be the line of separation between the light and
shade.

Painters, engravers, and draftsmen, must form precise
ideas of the cylinders projected by the shadows of bodies.
To them it will be very useful to ascertain, rigorously, by
the method of projection and the intersections of surfaces,
the figure of the shadows produged by many different
bodics, varying in position and form, on numerous other
bodies also varying in their position and form. By this
means they may acquire a species of demonstrative expe-
rience as to the effect of the sun’s rays in producing sha-
dows, and they will be saved from committing those gross
errors, of which, from wanting some little knowledge of
geometry applied to their art, they are occasionally guilty.

In architectural designs, the precision of transmitted sha-
dows is cssentially necessary, because all the objects repre-
sented, walls, columns, arches, &e. are rigorous geometrical
forms. The architect who desires to shade his plans, and
thus to be enabled to judge what ‘will be the effects of
light and shade on the appearance of his bulldmgs, must
accustom himself to determine the figure of transmitted
shadows with scrupulous fidelity.

In architectural plans, and in drawing designs of ma-
chinery, it is assumed that the sun’s rays come, descend-
ing at an angle of 45°, from left to right. When the
plan of objects is drawn by the pen, without being washed
in, the outlines which are towards the parts placed in shade
are distinguished by being wider than the others, or than
the lines scparating the parts placed in the light. This
explanation will be sufficient to give an idea of relief in
drawings, which might otherwise be supposed when seen,
to be mere designs or plans.

In fig. 11, for example, I can immediately distinguish,
on merely looking at the sides in relief and in shade, that
ABCD is a frame in relief, and abed a sunk frame. Stu-
dents who have to draw the plans of buildings and ma-
chines, must accustom themselves to make strong and fine
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lines with great skill; for if their lines cannot be distin-
guished, an object may be supposed to be in relief which
is below the surface, and an object below the surface may
be supposed to be in relief.

Application to perspective—When it is nccessary to
place a shaded architectural design in perspective, the
point to which all the parallel ravs converge must be
determined by the general method explained in the Ninth
Lesson. Whenever the perspective of any one point
is found,* if we unite, on the picture, this point with the
converging point of the sun’s rays, we shall have the per-
spective of the ray which passes through the given point ;
or if the point is opaque, the perspective of the shadow pro-
duced or transmitted by it. \ny curve placed in perspec-
tive will have for its shadow a succession of right lines,
all meeting at the point of concourse, like the edges of a
cone.

Intersections of the cone aud the plane.—These inter-
sections, which are specially denominated CoNic SkcTiIONS,
when a circular right-lined or oblique cone is considered,
are of the greatest importance both in science and art.
The study of them alone, like the study of triangles,
constitutes a separate and considerable branch of geome-
try ; it is, so to speak, an intermediate step between ele-
mentary geometry, and the highest branches of the science.
On the present occasion, I can only point out, in a few
words, the essential forms of conic sections, and their
principal applications.

The horizontal and vertical projections of the intersec-
tion of the cone with a plane, are determined in the same

* In general the plane of the picture PMQ, fig. 8, is supposed to
be vertical ; and according to this, X.8., X484, being the two pro-
jections of a right line, and 2., the intersection of X*8s, with
the horizontal trace of the plane, it will be sufficient to draw the
vertical line 4z ; ax. will be the height of the point mentioned
above, on a vertical elevated from z, on the picture. This method
will enable us to determine the intersection of any ray drawn from
the point of view, and, consequently, the perspective of all the points

in any given figure.
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manner as the intersections of the cylinder ; that is to say,
by determining the horizontal and vertical projection of
the intersection of this plane with cach edge of the cone.
The curve which passes through the points thus deter-
mined on each plane of projection, is the projection re-
quired,

Let us take a right-lined circular cone, fig. 12, the
most simple and regular of all cones; every section of this
cone made by a planc parallel to the base, like the basc, is
a circle, and the properties of the circle and its circumfe-
rence have been explained in the Third Lesson.

I. Tue Ecriesis.—If we divide the cone by a plane
PQ, fig. 12, pl. 13, oblique to the axis, and this plane
meet all the edges of the cone, the section of the cone thus
produced, is an ellipsis; a curve closed on all sides, of
which the principal properties are the following : —

It has a centre O, fig. 13, and two axes AB, CD,
which intersect each other at right angles. Every line,
SOT, drawn through the centre O, and terminated at the
circumference of the ellipsis, is divided by the centre into
two equal parts; it is a diameter which divides the ellipsis
into two parts, one of which would exactly cover the other
by turning this diameter end for end.

Fach of the two axes divides the ellipsis into two sym-
metrical parts. Thus, every line, MPN, perpendicular
to one of the axes AB, is divided by this axis into two
equal parts, PM, PN. Consequently, if we turn the
scmi-cllipsis ACB, on AB, 2s a hinge, all the points of
the outline ACB will fall exactly on the points of the
outline ADB.

If the centre of the ellipsis is also the centre of a circle,
having the axis AB for its diameter, by producing OD
and PN to d and 2 on the circle, we shall always have the
proportion OD : Od : : PN : Pn, which applies to all
the right lines PNn, parallel to the axis COD. Thus,
the ellipsis may be considered, in one direction, as a circle
flattened proportionably in all its parts.

On the contrary, if we draw the circle CbD, fig. 13,

R [ ]
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double, on the small axis CD, as a diameter, we shall have
the following proportion for every right line FgG, per-
pendicular to the axis CD, terminated at g in the circle,
and at G in the ellipsis. O) : OB : : Fg : FG.

Thus, the ellipsis may be considered in another di-
rection, as a circle elongated proportionably in all its
parts.

A circle being drasn on an inclined plane, represcated
by the right line AB, fig. 14, it is required to find its
projection on a horizontal plane.

Let ab be the projection of the diameter AB, the most inclined
of all the lines in the circle; o being the projection of the cen-
tre O, if we draw cod perpendicular to ab, and make oc = OC
= the radius of the circle, the curve abed, will be the projection
of this circle ; it will be an ellipsis. Let us draw MN perpendi-
cular to the diameter AB, of the circle, drawn on the plane AB;
the horizontal line MN, will be on the plane of the circle, and,
consequently, equal to its projection mn. Thus, the perpendiculars
mn, will be only so much nearer the great axis cod, as the perpen-
diculars MN, are nearer to the radius ('O, in the relation of OM
to om. The projection of the circle, therefore, is nothing more
than this circle flattened proportionably in all its parts; it is an
ellipsis.

It is a general principle, therefore, that whenever a
circle is projected on a plane, which is not perpendicular
to it, the projection is an ellipsis, and the great axis of
this ellipsis equals the diameter of the circle.

I cannot treat of a multitude of properties belonging
to the ellipsis, but there is one to which I must call your
attention, in consequence of the numerous and important
applications of which it is susceptible.

If we mark two fixed points F and f, fig. 15, by two
stakes or poles, to which a cord is fastened, longer than
the distance between F and f, and if we then, holding
the cord extended, and advancing sometimes towards F,
and sometime to f, draw the line described by the end
of the cord, we shall describe a curve which is an ellipsis;
and called the gardener’s ellipsis, because they use this
method to trace ellipses in their flower gardens.
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A very remarkable property of the ellipsis is that at
each of its points C, the two rectilincal portions of the cord
FC and JC, make the same angle in C, with the curve,
or with its tangent (CT.

To demonstrate thkis, produce FC, and tuke in it Cg = Cf;
and draw ﬂ Draw also the right line TC¢, perpendicular to fg.
The oblique lines (/' and Cg, being equals, the angle fCt = gCT
= F(Ct. Moreover, for any point whatever ¢, of CT¢, the sum of
the distances of the broken line Ft + ﬁ; = Ft + tg, is greater
than the right line FCy = FC + fC. The point t therefore, is
out of the ellipsis. Thus, the right line TCt, cannot touch the
ellipsis, except at C; it is a tangent. The tangent to the ellipsis
at (. therefure, forms the same angle with the two vector radii.
The same species of demonstration may be applied to the proper-
ties of the parabola and hyperbola hereafter mentioned.

Application to Optics.—We learn from experience, that
a ray of light, FC, fig. 15, which impinges on a curved
or other surface ACB, takes another direction Cf, or it is
said to be reflected in the direction Cf’; so that the two
rays*FC and Cf, make the same angle with the curve or
surface. If an ellipsis, therefore, be made to reflect the
light like a plane mlrror, every luminous ray FC, ema-

nating from the pomt F, must, when reflected, take the
direction Cf, which passes through f.

The two points F and f; are called the foci. All the
rays of light, therefore, emanating from one focus, and
reflected by the surface of the cllipsis, will pass through
the other focus.

Application to Acoustics.—Sound, like liglit, is propa-
gated in right lines; it is reflected also in right lines, with
an angle of reflection equal to the angle of incidence. If
the circumference of the ellipsis, therefore, is constructed
of materials which reflect sound, all the sounds emanating
from the focus I, will be reflected through the focus f,
which will be an echo of F.

Halls have been built in the form of an ellipsis, fig.
15, and have justified theory by experience. If we speak
at the focus F, in a low voice, so as to be heard only at a
small distance, at O, for example, the cffects of the echo

rR 2 . °
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will render the words pronounced at I, distinctly audible
at the other focus f.

A cruel use has been made of this echoing property
of ellipses. Prisons have been constructed, in which the
prisoners were chained near the focus F, and could not pro-
nounce the least word without being heard at the other
focus of an elliptical arch, separated from F by a par-
tition, which hindered the prisoner from seeing the gaoler,
who was appointed to listen in secret to every word he
uttered.

The curves described by the course of the planets
round the sun are ellipses, having the centre of the sun
in one of their foci. Thirty centuries, passed in study-
ing astronomy and gcometry, were necessary to discover
this truth, now confirmed by experience ; which prepared
the way for the great and beautiful discoveries in modern
astronomy.

If we make the ellipsis revolve round the large axis
AFfB, which passes through both foci, we shall form a
surface of revolution possessed of the following property ;
every luminous ray, or every vibration of sound, FC,
which emanates from the focus F, will be reflected in
the direction of a right line which passes through the se-
cond focus f.

In the same manner as all ellipses are constructed by
the circle, elongated or flattened proportionably at every
point, so with the ellipsoid of revolution, constructed by
making an ellipsis revolve onone of its axes, we may
form every ellipsoidal surface, whether elongated or flat-
tened. It is sufficient to point this out, without enter-
ing into farther details. .

There is a mode of tracing an ellipsis by a continued
motion, which is sometimes employed by artists. AOB,
COD, fig. 16, being the two axes, if we draw a right
line, MN = OA, and take in it, produced, if necessary,
N = OC, the point M always remaining on the small,
and the point N on the large axis, and making the right
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line advance or recede in every possible position, its ex-
tremity P, will trace the ellipsis ABCD.

On this principle, instruments have been constructed
for drawing an ellipsis by a continued motion, which are
true elliptical compasses.

In a paper published in the Journal de I Ecole Poly-
technigue, T have shown how this species of description,
by a continued motion, may be applied to draw any ellip-
soidal surface, using a right line, of which three ascer-
tained points always remain in three fixed planes, while a
fourth, made to advance or recede in every direction, de-
scribes an ellipsoidal surface.  This method may be ap-
plied in those drawings or operations which are required
in constructing elliptical arches.

II. Tur Parasora, fig. 17, is formed from the cone
ABOba, by a plane QR, parallel to one of the edges of
the cone. It is a curve mnp, closed on one side, open on
the other, and extending into infinity, its two branches
nm, np, scparating more and more.

The parabola MNP, fig. 18, has only one azis NL, in
relation to which its¢wo branches, NM, MP, are symme-
trical. It has one focus F. .

Produce the axis by a quantity, NG = NF, the dis-
tance of the focus from the summit of the parabola, and
draw through the point G, the right line XY, perpendi-
cular to the axis. If we produce the reflected radius IK
to H, on the line XY, the point I, of the parabola, will
e equally distant from ‘the focus and from XY ; there-
fore FI == HI. Take a square, with a cord fastened at
F, and placed along XY, having a second cord directed
along the square; if we hold the two cords in I, so that
FI = IH,-and allow both the cords to be equally unroll-
cd, as the square is removed from the axis, the point I
will describe a parabola.

If we suppose the cllipsis gradually lengthened, the two
foci will gradually separate from each other. If we re-
main at one of the foci, that part of the ellipsis which
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extends rounds this focus, will come gradually to resemble
a parabola, and at length will be of the same figure as
this curve.

The orbits described by comets seem to be parabolas,
the sun being at the focus; they are ellipses very much
elongated. .

In the clongation of the ellipsis, the vector radii drawn
from the focus, removed to a distance, towards the other
focus, approach more and more to parallel lincs, as the foci
are separated ; and they become parallels, if we suppose
the two foci at an infinite distance from cach other. The
ellipsis is then, rigorously speaking, a parabola, and the
radii proceeding from the focus where the spectator i:
situated, are so reflected by this curve, as not to meet
the axis, except in infinite space, where the other focus is
supposed to be. In the parabola, thercfore, the rays
emanating from the focus are reflected by the curve, pa-
rallel to the axis.

The parabola is made use of accordingly, to receive the
light proceeding from one focus, and to reflect it in onc
beam parallel to the axis, in place of allowing it to dis-
perse itself towards all the points of space.

Light-houses on this principle, are erected at varicus
places on the sea-coast, at the entrance of harbours, at
the mouths of rivers, over or near dangerous shoals, and
in various other situations, in which it is nccessary to point
out to the mariner a safe path, or warn him against dan-
ger. Both fires and lamps are employed for this purpose.
It is necessary they should be seen as far off as possible,
they are placed, therefore, in the focus of a piece of
plated copper, having the form of a parabola, which re-
"volves on its axis, fig. 18, pl. 13. It is the paraboloid of
revolution. "All the rays rcflected from the surface, called
a paraboloidal reflector, form a beam of parallel rays,
having for their base, the parallel circle ABCD, which
forms also the base of the surface: of the reflector
ABCDN.

Somgtimes the paraboloid is fixed, and in that case the
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light can only be seen, at a great distance, at the moment
when we cross the axis of the paraboloid. Sometimes the
paraboloid turns round a vertical axis; then it sends,
alternately to cvery point of the horizon, the light which
it reflects, and the sailor knows, by the regular appearance
and disappearance of the light, that it is not placed there
by chance, and is intended as a guide. The difference of
duration in the intervals of light and darkness, at different
light-houses, occasioned by making the paraboloid revolve
with more or less rapidity, serves as a mark to distinguish
one light from another on the same coast.

ITI. A~ Hvyrersora is the scction mnrp, m'ny, fig.
19, pl. 13, made in a cone by a plane, which divides
the two parts, AOB, «0b. It has two separate portions,
cach of which has two branches, like the parabola, but
with this difference, that the branches of the hyperbola
tend much more rapidly to become straight than those of
the parabola; so that the two branches of the closest
hyperbola, having the same axis and summit as the pa-
rabola, always end by projecting bc)ond the branches of
the parabola.

The hyperbola ABC, abc, fig. 20, has two axes; it
has two foci, F, f, like the ellipsis; but, in place of the
sum of the radii vector being constant, as in the ellipsis, in
the hyperbola their difference is constant. The two radii
FM, f'M, form the same angle also with the curve; but
the curve, in place of containing the radii vector, like the
ellipsis, passes between: them. There exist also, two
right lines, XOx, ZOz, which make the same angle with
the large axis FOf, and which, without there being a
possibility that they should ever meet the two branches
of the hyperbola, approach towards them in proportion
as the distance is increased from the centre O, through
which they pass. They are called the asymptotes of the
curve.

Intersection of the cone with curved surfaces.—To
determine this, it is sufficient to make a succession of
planes pass through the summit of the conc. They will
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divide the cone in the direction of its rectilinear edges,
and they will divide the curved surfaces in the dircction
of other lines, the intersection of which with these edges
will be the points of the curve desired.

Application to Optics.—Objects are made visible to us, as
was explained in the Ninth Lesson, by means of luminous
rays transmitted from every point of them to the centre
of our eye. Eauch ling projected by these luminous rays
becomes the base of a cone; and if we trace the intersec-
tion of this cone with the surface employed as a picture,
we shall obtain the perspective of the illuminated line.

In general pictures are plane surfaces, but sometimes
they have the form of cylinders or hemispheres.

Panoramas are cylindrical pictures, the point of view
being placed on the axis of the cylinder. By this means
the artist is able to represent on the surface of the cy-
linder, all the objects of nature which can be seen round
a given point as far as the horizon. The name pan-
orama, given to such pictures, significs wniversal view,
because it represents all the objects which can be disco-
vered from a single point. The trace of panoramas is,
therefore, nothing else but the intersection of the cylin-
drical surface forming the picture with one or several
conical surfaces, having their summits at the point of
view, and for their bases all the lines in nature which
the artist proposes to represent.

In order to simplify the work, in painting this species
of perspective, the horizon is divided into a great num-
ber of equal parts; into twenty, for example. The ob-
jJects to be represented, which fall within cach twenticth
part of the horizon, are first drawn in perspective on
common plain sheets of paper. On a canvas representing
the developement of the cylindrical surface forming the
picture, the twenty vertical and parallel bands embra-
cing the whole horizon, or rather the objects contained
in cach of them, are painted side by side ; and finally, the
canvas is extended against the cylindrical wall of the ro-
tunda that constitutes the panoramic building.
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The truth of this species of represcntation, when well
exccuted, is so striking, that it frequently producesa belief
that the spectator is actually looking at nature itself. No
other mode of representation makes us better acquainted
with the general aspect of any country round a given
point,—an advantage not possessed even by a plan in relief,
and which the representation of a part of the horizon on a
plane surface can never give. .

Magic mirrors.—The analogy of the geemetrical con-
ceptions employed in both, makes me mention, in conjunc-
tion with panoramas, a remarkable mechanical illusion.
Its object is to trace figures on a plane, so that when
refiécted by cylindrical or conical mirrors, they repre-
sent to the eye of the spectator regular objects and na-
tural forms. To draw such figures on a plane, we must
conceive, first, all the edges of the cones which place
cach object in perspective on the mirror; second, the
reflected rays, considering these edges as rays of incidence.
Each reflected ray, by its intersection with the plane,
gives one point, and the whole of the points thus deter-
mined is the figure yhich must be drawn. The pleasure
derived from such a picture arises from the surprise at
sceing the most irregular, and even sometimes the most
hideous figures, suddenly transformed, by the reflection of
the mirror, into beautiful or elegant forms, which gratify
our love of beauty, and our sense of propriety.

Pictures painted on domes—In large buildings, such
as temples and palaces, the archways, vaults, and domes,
are very often painted in perspective, the outlines of the
pictures being formed by the intersection of conical sur-
faces with the surfaces of these archways or domes. To
exccute them well, it is necessary that the artist should
have studied profoundly the laws of perspective; for he
has to draw figures, which, when seen from a short dis-
tance, may differ very mucli in form and position from
nature, and when seen at the proper point of view, must
appear in their proper and natural form and position.

Conical shadows.—When a luminous poin_t, a torch, a
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candle, or a beam of light, passing through a small open-
ing, falls on opaque objects, their shadow is projected in
such a manner, that a conical surface separates in space
the light from the shadow. If we desire to trace the
shadow which one body illuminated by a single point
produces on another, we miust determine the intersection
of the conical surface, formed by the body which transmits
the shadow, with the gbject to which the shadow is trans-
mitted. .

On this subject, as on that of shadows transmitted by
parallel rays, youthful artists may be reminded, that they
will find a great advantage in ascertaining beforchand, by
geometrical means, the exact form of many of the trans-
mitted shadows of this species, in order to accustom
themselves to the forms and figures which constitute the
results, and enable themselves more accurately to appre-
ciate the effects of light as to the form of shadows; which
will add much to the truth of their productions.

By following a method analogous to that just pointed
out, the student may find, first, the interscctions of de-
velopable or indefinite surfaces with other surfaces which
determine the points, where the latter are met by cach of
the right lines constituting the edges of the former; se-
cond, the intersections of surfaces of revolution with other
surfaces, by finding out the points where the latter are
intersected by parallel circles drawn on the former, &c.
In all these operations, the talent of the artist consists
in properly selecting his planes of projection, in order to
bave, for the projections of the generating lines of each
surface, simple curves, which may be easily drawn.
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'FOURTEENTH LESSON.

On tangents, and on planes tangents to curves and surfaces.

IN order to facilitate geometrical conception and de-
monstration, we sometimes, for a curve ABCDEYG, fig.
1, pl. 14, substitute a polygon, of which the small sides
AB, BC, CD, DL,...approach to the nature of that part
of the curve which lies between these different points.

If we draw the yight line XABY, through the two
points A, B, marked, we will suppose, on the curve as
near one another as possible, it will, so to speak, coa-
lesce with the curve, in the short space which separates
the two points A and B. It will mark the dircction of
this small part of the curve ABCDEFGH, and we then
say that the right line XABY is a tangent to the curve
in the small part AB.

This mode of finding the tangents to a curve, is only,
it must be remembered, an approximation; let us, there-
fore, try by a simple methed to form a rigorous geometri-
cal conception of a true tangent.

In the circle ABC, fig. 2, draw the radius OA, and at
the extremity A draw XAY perpendicular to the radius.
In the Third Lesson, it has been demonstrated that every
point in XAY, except A, is outside of the circle. The
right line XAY, which touches the circle in a single
point, is the tangent to the circle. We cannot draw
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through the point A, cither to the right or to the left,
a right line between the tangent and the circle XAY.
Let us draw any line AZ, through the point Ay and ON
perpendicular to OZ ; ON, the perpendicular, will neces-
sarily be shorter than the oblique OA, whence AZ will
pass into the circle, and consequently will not pass, pro-
ceeding from the point A, between the cirele and the
tangent XAY. .

As a very'small portion of the cirele proceeding from
the tangent follows the direction of this tangent, we may
regard a point very near A, on the circle, as being also on
the tangent, which is sufficient to point out its direction;
and it will be less incorrect, in proportion as the second
point is nearer to the former. ’

The radius 0.\, perpendicular to the tangent XAY,
is also perpendicular to that part of the curve which, pro-
ceeding from A, follows the direction of the tangent.
This perpendicular is said to be normal to the tangent,
and thus the radius of the circle is normal to its circumfe-
rence. In the arts, continual use is made of the properties
of tangents and normals, to give a sestled and determined
form to the direction of lines and surfaces.

Let us first sce how to draw regular polygons, by means
of tangents to the circle.

Let abedef,...fig. 3, be a regular polvgon; O being
its centre, we shall have Oa = Qb = O¢ = Od..., and
ab = bc = cd.... The triangles «Ob, bOr, cOd..., are
therefore cqual to one another; as are, consequently,
also the perpendiculars OA, OB, OC..., drawn from 0, to
ab, be, cd.... A circle, therefore, described from the point
0, as a centre, with the radius OA = OB = 0C =
OD..., has for its tangents all the sides of the regular
polygon abcde.

The polygon abcde..., is said to be circumscribed about
the circle ABCD... ; every regular polygon, therefore, may
be circumscribed about a circle.

It is easy to see, 1st, that the circumference of a circle
is greater than the perimeter of every polygon, ABCD,
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inscribed within it, and smaller than that of every poly-
gon abed circumscribed about it ; 2nd, that the surface of
the circle is larger than that of every inscribed, and smaller
than that of every circumscribed polygon.

By multiplying the sides of polygons, inscribed within
and circumscribed about the cirele, its radius being unity,
we may calculate two outlines, differing less from each
other than any length measurable by our instruments;
and yet such that one of these outlines shall be larger,
and the uthcr smaller, than the urcumﬁrence of the
circle.

Regular polygons have in the same manner been found,
of which the surface of one was larger, and the surface
of the other smaller than that of the circle, and yet differ-
ing from each other less than any dimensions given before-
hand. Thus, by numbers of close approximation, we may
express the circamference and the surface of a circle hav-
ing unity for its radius.

The same method may be employed to determine the
perimeter and surface of any other portion of space termi-
nated by any other species of curve.

This remarhable” method is called by geometricians,
the method of limits. It gives a rigorous demonstration
of a great number of mathematical caleulations and prin-
ciples, which we have been accustomed to give as nearly
rigorous, or a» not differing sensibly from the truth.

If we wish to cut a surface, such as a piece of sheet
iron or of pasteboard, of a circular figure ABCD, fig.
3, we begin by tracing with tangents a polygon cireum-
scribed about a circle, and with a file, a plane, a pair of
scissors, or other suitable, instrument, we cut away the
angles @, b, ¢, d.... Then we form a polygon with double
the number of sides, and reduce the figure much nearer
to the form of the circumference of a circle. By con-
tinuing the same process, we at length form a polygon,
of which the sides are so numerous and so small, that the
summits and the angles become imperceptible, and the
circle appears perfectly regular.
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In the construction of doors, windows, archways, either
semicircular or gothic, the uprights AM, CN, figs. 4 and
5, are vertical, and at right angles to the horizontal ra-
dius AO = OC, fig. 4, and to AC, fig. 5; consequently
the uprights are tangents to the arch in A and in C.

In the elliptical arch ABCD, fig. 6, formed like the
handle of a basket, there are arcs of a circle, AB, BC,
CD, the centres of whigh, m, O, », are thus placed : —

1st. O, m, aml the point B, where the arcs AB and BC meet, are
all in one right line. 2nd. O, n, and the point C, where the arcs
BC and CD meet, are also all in one right line. 1f XBY, therefore,
is at right angles to OmB, and if ZCT is at right angles to On(’,
the two lines will be at the same time tangents—the former to the
arcs AB and BC in B, and the latter to the arcs BC and ('D in (.
As the arcs of circles thus drawn have the same tangent, there is no
angle, or sharp turning, or abruptness, at the point of their inter-
section.

Whenever it is required to substitute for a continued
curve the arcs of circles which are as near as possible of
the same form, and from which no interruption to conti-
nuity arises, the circles should mecet, so that at the point
of meeting they have the same tangent,

Planes, tangents to surfuaces.—Parallel to a given planc,
let us make, in the surface AGB, fig. 7, a succession of
plane sections, AB, CD, EF; they will gradually dimi-
nish as they approach the limits of the surface, and we
shall at length arrive at a point G, which alone will be on
a plane MN, parallel to all the sections.

Let us draw on the surface various curves, AGB, aGb,
passing through the point G; through this point, let
tangents to these curves be drawn. As no right line can
pass between the tangents and the curves, all the tan-
gents must be placed on the plane MN.

Thus every plane, forming in G a tangent to the sur-
face AGB, contains all the right lines, tangents in G to
all the curves drawn through this point on the same sur-
face. We must except, howcver, singular points, such
as the summit of the cone, &c.; but these points are
always exceptions on surfaces.
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Let us take the sphere, for an instance of the general
rule. The parallel sections AB, CD, EF, fig. 8, are
circles, the centres of which o, o), 0", are placed on a
right line o0v'0”,... G, perpendicular to the plane of all
the circles, and passing through the centre of the sphere.
If we draw a plane MN, through the extremity G, pa-
rallel to that of the sections, and consequently at right
angles to oG, it will be the tangent to the sphere.

Every other point, in fact, of the plane, will be further from the
centre of the sphere than G, and consequently out of the sphere ;
wherefore thé plane will only touch the sphere in the point G.
Every plane drawn through got will divide the sphere, according to
a circle of which goGi will be the diameter, and of which the tangent
in G will be perpendicular to got;. Now all the lines in G, perpendi-
cular to the right line goG, are in the plane perpendicular to this
right line, and pass through G ; the tangent plane MN, therefore,
contains all the tangents to the meridian circles having goG for a dia-
meter. It might be demonstrated with equal facility, that every
small circle drawn on the sphere through the point G, has its tan-
gent in G, placed on the plane MN.

The line gvG, fig. 8, perpendicular at G to the tan-
gent plane, is called normal for surfaces, as well as for
lines. .

Lct us apply these elementary principles to the different
species of surfaces we have already examined in the pre-
ceding Lessons.

Planes, tangents to cylinders—Suppose the cylinder
ABCabc, fig. 9, tcrminated by two bases, situated in
parallel planes, and having all their corresponding lines
parallel.  If Bb is an edge, the tangents MBN, and
mbn, to the two curves at B and b, will be parallel.
The same will be true of every other tangent m'd'n’, to
the curve «'b'¢, parallel to’the bases, & being on the edge
Bb. The serics of parallel tangents MBN, m'b'n’...mbn,
passing through the edge BU'), which is a right line, will
form a plane. This plane is a tangent to the cylinder
through the whole length of the edge.

Formation of plunes by tangents to the cylinders.—The
baker who rolls his rolling pin parallel to itself, forms of
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the paste a plane, which is by turns a tangent to cach
edge of the cylindrical surface of the roller.

The gardener obtains the same result for the paths and
greensward of the garden, over which he drags a rolling
cylinder. As the carth is gradually levelled, it becomes
a tangent to the cylinder, through the whole length of the
different edges of this surface.

The coachmaker suspends some carriages by a leathern
brace on each side, fig. 11. This brace is adapted to the
lower and cyhudncal form of the body of the carriage,
and is prolonged, so that its upper surface, a plane, forms
a tangent to the body of the carriage. When the body is
balanced before and behind, it advances or recedes on
this ‘tangent plane, which being the same on both sides,
prevents the transversal shaking, which is the most
harsh and disagreeable in carriages that are not sus-
pended.®

Construction of a cylinder by tangent plunes.—In the
Lesson which treats of cylinders, the method of working
a solid body, so that its surface shall be cylindrical, has
been mentioned, and to it we shall now again refer.
The bases are marked out on the two ends of the picce of
wood, stone, or whatever is to be made into a cylinder;
and then two polygons are circumscribed about these bases,
having their corresponding sides equal and parallel: with
a saw, a plane, or some instrument proper for making sur-
faces, small planes are worked by the parallel sides of these
polygons. By this means, we obtain a polygonal prism
circumscribed about the cylinder ; because its various
faces will be everywhere tangents to the surface of the
cylinder. As we cut away the edges of the prism to
form other planes, tangents to the, cylinder, we bring
the former to resemble the latter; and the more these
planes are multiplied, or the more frequently the edges

* This method of suspending carriages, is, we believe, no longer
practised in England, though still common on the Continent.
Tr. »
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are cut away, the more will the prism approach to the
rigorous geometrical form of a cylinder.

Planes, tangenis to the cone—If we draw an edge
SABC on the cone, fig. 12, all the tangents in A, B, C,
to the parallel sections Aa, Bb, Ce, arc parallel to one
another. "The whole of thesc tangents form the plane
PQMN, tangent to the cone through the whole length of
the edge SABC.

This property of the cone perrmts us, by ciscumscribing
its base with a polygon, to construct a pyramid, the faces of
which shall be tangents to the cone through their whole
length. By cutting® away successively with any proper
instrument the edges of this pyramid, we form new tan-
gent planes, multiply more and more the edges, and thus
form a surface, which represents a cone with any required
degree of precision.  (Sce Tenth Lesson.)

Planes, tungents to developable surfaces—The property
which the same tangent plane has of touching the cylinder
or cohe through the whole length of an edge, belongs also
to other species of: developable surfaces. Such surfaces
may at all times be considered as formed of a great num-
ber of extremely small conical faces, having, like those
of the cone, the same planc a tangent through the whole
length of cach edge.

We can make a developable surface pass through two given curves,
by circumscribing polygons about these curves, so that the same
plane will pass at the same time through one side of each polygon;
this plane will be the tangent to the developable surface. Cutting
away the edges formed by the intersection of these planes, we may
multiply the sides of the two circumscribing polygons, and, of course,
the small planes which are tangem.s to the developable surfaces re-
quired to be produeed

Cylinders, tangents to each other in the direction of one
of their edges.—Placing two right lined circular cylinders
ABCD, BCEF, fig. 10, close to each other, so that their
axes shall be parallel, and distant from each other by a
quantity equal to the sum of the radii of the bases, we
shall find that the two cylinders will touch each other in
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the whole length of the edge BC. The two surfaces will
have, therefore, through the whole length of this edge,
the same plane, tangent to both. Let us now suppose,
that we have before and behind these two cylinders, a
horizontal table, of which the upper part shall lie in the
direction of this plane. 1f we place a plate of metal on
one of the two tables, and force it through between the
cylinders, equally distant from each other, we shall flatten
this plate so that its two parallel faces will become tangent
planes, the upper face to the upper cylinder, and the lower
face to the lower cylinder. The flattening of metallic
plates, therefore, by means of revolving cylindrical rollers,
is founded on the property of planes being tangents to
cylindrical surfaces.

Cones and Cylinders, tangents in one direction.—When
a cylinder ABCD, and a cone ADE, fig. 13, pl. 14, have
the same edge AD, and at D, the same tangent MQ, the
plane drawn through MQ, and through the edge AD, is
a tangent both to the cone and cylinder, through the whole
extent of AD. The cone and the cylinder are, therefore,
through this extent tangents to each other.

Blacksmiths, tinsmiths, coppersmiths, &c., apply this
property in bending sheets of iron, tin, copper, &c., into
a cylindrical form. They place the plate of metal so
that the direction of the edges of the cylinder may lie also
in the direction of the conical point of an anvil, represent-
ed by ADE. Then with a hammer, the head of which
is hollewed cylindrically, they gradually bend the metallic
plate along the whole length of the right line, according to
which the cone touches the plate. They are thus sure to
form a cylindrical surface. In the same manner they form
a conical, or other developable sur{ace, by augmenting or
diminishing gradually, the curve of the metallic plate, ac-
cording as the hammer falls on the edge of contact AD,
nearer to or farther from the summit A.

Cylinders, tangents to other surfaces, and enveloping
them.—If we suppose that a right line, proceeds forward,
constantly parallel to its primitive direction, always remain-
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ing a tangent to any given surface, it will form a cylinder,
which will be a tangent to the proposed surface, through
the whole succession of the points of contact of the edges
of the cylinder and of this surface.

Cylinders enveloping the sphere.—Let us suppose, for
example, that we have a sphere abed, fig. 14, and that a
right liné, always remaining a tangent to the sphere, moves
parallel to an axis drawn through the centre of the sphere,
we shall, in this manner, form a rigfxt lined circular cylin-
der, which will touch the sphere through the whole extent
of a great citcle amen.  'We may make the sphere advance
or recede in the cylinder without its ceasing to touch the
cylinder in the direction of a circle, parallel to amcn, and
perpendicular to the axis of the cylinder.

In the arts, frequent use is made of this property.
Whenever a sphere is to receive a direction parallel to a
rectilinear axis XOY, fig. 14, it is made to move in a
cylinder which envelopes and touches it at every point.

Such is the principle on which all fire-arms, guns,
muskets, pistols, mortars, howitzers, ‘&c. are constructed.
The interior surface of these instruments is a right lined
circular cylinder, afd the balls, bullets, or bombs, which
they discharge towards a given object, are spheres, to
to which a precise direction is given by their being
compelled to move in the line of the axis of the cy-
linder.

To ascertain, 1st, that the diameter of the balls is not
too large, which would prevent them entering the fire-arm
destined to receive them; 2d, that it is not too small,
which might prevent the direction given to the ball being
that of the axis of the cylinder, or would destroy the ac-
curacy of the aim, poulds are employed, fig. 15, which
are themselves right lined circular cylinders, having very
short edges. The gunner taking hold of the handle ABab,
trys the ball in every direction, to see if it will pass through
the mould without leaving too great a space. This is
called ascertaining the calibre of balls.

Application to Shadows—Nature presents examples to
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us, at cvery moment, of cylindrical surfaces formed by
right lines parallel to one another, all being tangents
to the same surface. When any opaque object, termi-
nated by a curved surface, is illuminated by the sun, it
throws a shadow behind it. The rays which separate this
shadow from the part illuminated by the sun, are neces-
sarily the rays which touch the body without being inter-
cepted by it. They are, consequently, tangents to its
surface. The whole of the points, therefore, which limit,
in space, the shadow created by the object, form a cylin-
der, the whole of the edges of which are tangents to the
object. All the points of contact between the surface of
the object and the cylinder which limits the shadow trans-
mitted by the object, taken together, form a curve, which
is the line of scparation between the light and shadow on
the surface of the illuminated body.

When we require to determine with precision the sha-
dows transmitted by objects to a planc surface, we must
construct cylinders formed in this manner by tangents to
the surface of the objects parallel to the supposed direction
of the sun’s rays, and then we must detcrmine the inter-
section of this cylindrical surface with the surface of the
plane, to which the shadow is transmitted. This is an
important study for the draftsman and the architect.

If we make the illuminated object advance or recede,
parallel to itself, in the direction indicated by the sun’s
rays, cach of the points in it will describe a right line
parallel to the rays; thus, all the points of the object
which are on the cylinder,—the limit to the shadow trans-
mitted by the object,—-will follow the direction of the rays,
which will always continue to be tangents to the surface
of the object; and the same cy]mder will always be the
limit of the shadow transmitted by the object. This
cylinder, which constantly surrounds the object in all its
positions, is called, in relation to it, an enveloping surface.

Thus the right lined cylinder is the enveloping surface
of the sphere which moves in a right line, and always
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preserves the same radius.  The interior of the barrel of
the musket or cannon, and the eylinder it would form, if
produced, is the enveloping surface of the space traversed
by the ball.

We can form a cylindrical surface, which shall ‘be the
envelope-of a sphere of a constant radius, the centre of
the sphere moving in a right line. In fact, this takes
place when we fire a ball through a %oft and non-frangible
substance. *

Conversely, we can construct a sphere, by making a
cylinder revolve round a right line perpendicular toits axis,
and passing through it. In each position of the cylinder it
will touch the sphere in the direction of a meridian circle,
and the whole of these meridians will form the sphere
itself; supposing these meridians drawn very close to cach
other, we can substitute for the tangent cylinders, the
cylindrical sides comprised between two consecutive meri-
diang. We shall then, however, return to the method by
approximation given in the Eleventh Lesson.

By the same means we can construct, lst, surfaces of
any form whatever by other surfaces which they touch in
cvery point, and which are made to move in a direction
parallel to the edges of the cylinder; 2d, any surface
whatever employing a system of cylinders which touch it
at cach of their edges.

Application in Joinery—When the joiner or cabinet-
maker has to form mouldings for an object of a curvilinear
figure, he uses a plane, the iron of which represents the
profile or transverse section of the mouldings; the wood of
the instrument being of a cylindrical form, having this
profile for its base. He guides his plane in working, so
that it always forms a tangent to the shape which the
moulding is to have. In this motion, the cylindrical sur-
face of the plane becomes successively the tangent to the
moulding, through the whole extent of the profile given
by the plane-iron; and the moulding is-the enveloping
surface of the cylinder which constitutes the plane itself.
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Conical surfaces may be considered in the same manner,
and supply us with analogous results.

Let us suppose that we draw through a given point S,
fig. 16, all the tangents SA, SB, SC,...which can be drawn
to the sphere O, we shall form a right lined cone, tangent
to the sphere through the whole extent of the circle
ABCD, serving as a base to the cone. In fact, if we
make the great circle ABE, revolve round the axis SO,
drawn through S and through O, the centre of the sphere ;
Ist, the circle will generate the sphere; 2nd, SA, SB,
the tangents to this great circle, will generate the cone.

If we suppose that the centre O, moves on the axis SO,
augmenting or diminishing the radius of the sphere in
proportion to its distance from the point S, in consequence
of the properties of similar figures, the sphere will always
have for tangents all the edges SA, SB, SC,...of the cone
SABCD. This cone is, therefore, the envelope of the
space passed through by the sphere, of which the centre
moves in a right line, and the radius of which augments
or diminishes, in proportion to the distance of the centre
from a fixed point in the right line. .

By substituting for the sphere any other curved surface
whatever, we can, from any point at a distance from the
surface, draw all the right lines which form the edges of
a cone, touching it in each of these edges. If the point
taken for the summit of the conc is luminous, the cone
thus formed will mark, behind the object, the limit of the
shadow transmitted by this object to any surface whatever.
If we desire to draw in a rigorous manner the limit of the
shadow transmitted by the object on any surface, we must
determine the intersection of this surface with the cone
which is the limit of the shadow fransmitted by the illu-
minated object.

Erplanation of Eclipses.—By applying these principles
to astronomy, the cultivators of that science have succceded
in determining the form and duration of eclipses. Let us
supposc that the moon must pass almost in a right lin be-
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tween the carth and the sun. Regarding the sun and the
moon as two spheres, we may conceive a right lined circular
cone, which will be the envelope of both, and which would
mark in the heavens the limits of the shadow transmit-
ted by the moon. As long as the earth is completely
beyond the limits of this cone of shadow, the sun will not
be eclipsed, but whenever a portion of the earth comes
within the cone, this portion will bg deprived of the light
of the sun; on it the sun will be eclipsed.by the moon,
and there will be, as it is called, an eclipse of the sun.
If we ascertain the respective positions of the three
bodies, and the intersection of the surface of the earth
with the cone,—the envelope of the sun and moon,—at
every instant the eclipse may continue, this intersection
will mark a certain space on the earth. At those places
only, that are situated within this space, there will be at
the given time a total eclipse. If we trace also all the
intgrsections, during the time the same eclipse continues,
the points, which may be beyond these intersections, will
not be totally eclipsed, and those points, within the inter-
sections, will be eclipsed for a longer or shorter period.
Thus, by geometry, all the circumstances connected with
an eclipse of the sun are ascertained. With equal facility
also, it ascertains all the circumstances of an eclipse of the
moon.

If we suppose a right lined circular cone, which en-
velopes at the same time the surface of the earth and the
surface of the sun, when the moon enters into the coni-
cal shadow transmitted by the earth, there will be an
eclipse of the moon. If the whole of the moon is included
within the cone, the eclipse will be total ; and the eclipse
is partial; when only a part of the moon enters within
the cone. In the latter case, we can ascertain for any given
moment the form and extent of the eclipse, by ascer-
taining the intersections of the cones,—the envelopes of the
sun and the earth,—with the surface of the moon.

When we look at any object whatever, and extend to it,
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as we have just done to the sun, the visual rays which are
tangents to it, they determine on this object the limit of
the points visible to us, which is called the apparent limit
or visible outline of the object we are considering.

In painting, we draw on the surface of the picture the
apparent outlines of an object; they are the intersections
of this surface with that of a cone, all the edges of which
are tangents to the ohject, and the summit of which is at
the centre of our eye. A knowledge of the cones, there-
fore, which are the envelopes of objects, is indispensable
to place those objects in proper perspective, which are
not terminated exclusively by right lines.

When a luminous sphere oub, fig. 19, pl. 14, illumi-
nates an opaque sphere OAD, we may conceive, first, a
cone SuABb, which envelopes both spheres at the same
time, and which marks on the sphere OADB, the absolute
separation of the shadow and the light; we may conceive
afterwards, a second conc mnTNM, situated between the
two sphercs. In the spacc IMN, comprised within this
cone on the illuminated sphere, the whole of the luminous
sphere may be seen. But from any point within the space
AMNB, only a portion of the illuminated sphere can be
scen ; there is a partial shadow, therefore, which is called
the penumbra. When it is required to shade objects with
great precision, both the shadows and the penumbras must
be designated with care, which may be done by following
methods, analogous to those just puinted out.

If the two surfaces aob, AOB, bad no analogy, the
same cune could not envelope them, and be at the same
time tangents to both. It would then be a developable
surface, which may be constructed by supposing that a
plane remains a tangent to both surfaces, and presents
successively all the positions compatible with this con-
dition. In each position, let us join by a right line the
two points in which the plane is a tangent to the two
surfaces. The whole of these right lines will form a
developable surface, which will separate light from shade,
shadows from penumbras, according as it may be beyond
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the luminous object and the object illuminated, or as it,
may pass between the two objects. I regret that the
narrow limits of this course, and the exposition of elemen-
tary principles to which I must confine myself, do not
allow of my doing more than merely indicating all these
admirable properties of developable surfaces.

When a place is fortified, it is necessary that it should
not be possible to direct any projectile, from within gun-
shot, directly at the level parts of the works where their
defenders are to be stationed. A developable surface is
formed in imagination, which is at the same time a tangent
to the upper part of the fortification, and to the summits
of the ground within gun-shot around the place. This de-
velopable surface must at no point meet the plane where the
defenders are stationed, nor even a surface raised above
this plane the height of an ordinary man. When this
condition is fulfilled, the interior of the place is said to be
defiladed. The geometrical methods employed to obtain
this result arc called methods of defilading.

In the arts, frequent use is made of enveloping cones, to
give u particular foym to objects. The subotier, or wooden
shocmaker, (whose art is scarcely known in England, and
the mention of it only preserved, as a pleasing illustra-
tion,) employs a rectilinear cutting instrument to form
sabots, or wooden shoes; one end of the instrument is
fixed, and the other is provided with a handle, which he
seizes with his right hand ; with his left he holds in a fixed
position the piece of wood that 1is to be made into a shoe,
and he shapes it with the instrument. Each cut produces
a conical surface, which is a tangent to the sabot, in the
whole length of a certain curve. The whole of the curves
thus formed, produce at length the surface of the shoe,
which is the enveloping surface of all the cones described
by the instrument.

When the turner has to make any object of the figurc
of a surface of revolution, he takes at first a very narrow
chisel or gouge, and cuts notches almost down to the
outline of the required surface. He then tukes a broad
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chisel, which he holds in a direction that is a tangent to
the figure the ohject is to have. In each position, the
edge of the chisel describes a cone, and the whole of the
cones thus formed, making the chisel deviate every time,
a little from its position and dircction, present a succession
of conical bands every where tangents to the surface of
revolution, which is enveloped at every point, and in the
end produced by these cones.

The hoops: of casks and of masts composed of several
pieces are cones, tangents to the surfaces of revolution of
the masts and the casks,

Among the various mcthods of making surfaces, some
ensure the artist more or less continuity in different di-
rections, which renders them more or less advantageous,
according to the wants which the products are intended to
accommodate.

Let us now examine the enveloping surfaces which may
be formed by the flexion of certain lines to which the
enveloped surfaces are attached. )

Let us suppose that a fixed thread represents the axis
of a cylinder or a circular cone, or any other surface of re-
volution, and that we attach to this thread the centre of
every sphere enveloped tangentially by the cylinder, by
the cone, or by any other surface of revolution. Let us
now bend the thread in the direction of any curve, the
enveloping surface of all the spheres will be no longer a
cylinder, a cone, or any other surface of revolution, but
a surface composed of a series of circles, ecach of which
will be common to one of the spheres and to the envelop-
ing surface.

When we bend the axis of she cylinder, the enveloping
surface is formed of a series of cifcles, all equal to the
great circles of the equal spheres which were originally
enveloped by the cylinder. All thesc circles have their
plane at right angles to the curve formed by the bended
axis ; and their centre is on this axis. .

The worm of a still is an cnveloping surface of this
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species, formed, 1st, by bending the axis of the cylinder in
the direction of a cylindrical spiral; 2nd, by taking the
cnvelope of all the equal spheres which have their centre
on this axis.

In the winding arched-over staircase the circular arch,
is in the same manner the envelope of the equal spheres,
having their centre on the outline of a spiral, of which the
pace is equal to that of the steps of the staircase.

Each turn of a common rope of three strands is in like
manner the cnvelope of the space which would be passed
through by a sphere, the centre of which should move
in the direction of the spiral drawn through the middle of
the strand.

There are some caterpillars and other reptiles which are
formed of short cylindrical rings, the articulations of which
can be lengthened or shortened at the will of the animal.
When these animals wind and turn, their skin forms a
surface which continually varies in shape, but which never
ceases to have the figure of those geometrical surfaces just
described.

When the axis of a right-lined circular cylinder is bent
in the dircction of a circle, it is again transformed into a
surface of revolution, or into that annular surface examin-
ed in the Eleventh Lesson ; the mode of generating which,
and its projections, were then described.

If the enveloping surfaces of a sphere, having a con-
stant radius, are intersected by a plane at right angles to
the curve described by'the centres of these spheres, 1st,
the plane will be at every point at right angles to the en-
velope; 2nd, the section is a constant quantity, for it is
the great circle of equal spheres.

We may, withost committing an error appreciable by
our senses, supposc that the curve on which the centres of
the spheres is placed is a polygon of infinitely small sides.
The envelope will then be composed of a succession of
zones or cylindrical bands, which touch, in the direction of
the circles, the enveloped spheres. The whole of the cir-
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cles of contact form the enveloped surface, whatever may
be the number of the sides of the polygon, and cven if
this polygon becomes a continued curve.

When it is necessary to make a certain quantity of
water pass through a conduit or pipe of a circular scction,
the section of the pipe must be cqual at every point, if the
water flow with the same velocity at every point, and be
not anywhere impeded, The surface of the pipe must,
in this case, be the envelope of a sphere of a constant ra-
dius.

Every species of canal and pipe for the distribution of
water, must, in like manner, have for its section a curve or
a polygon, the superficies of which is constant. For the
sake of regularity and facility of execution, the same
figure is given to the section generally through the
whole length, except in cases where some insurmountable
difficulty does not allow it.

In treating of the centre of gravity, in the Second
Volume on MacHiNEs, 1 shall give an easy and simple
method of determining the volume of bodies, and of those
portions of spacc which are terminated bv the pipe or
canal surfaces just described, and which will admit of a
multitude of applications.

The smith, the plumber, the glass-maker, the potter,
the copper-smith, all make a number of articles which
have the form of canal-surfaces. They first form solid or
hollow prisms, which they bend to a certain extent ; and
their principal art consists in presérving, at every point of
the objects they bend, the constant form which the trans-
verse sections ought to have.

Ringlets, rings, necklaces, collars, corkscrews, spiral
-springs, pipes bent in the form of a“curve, syphons, ba-
rometer tubes, the veins of the human body, are all ex-
amples of the surfaces under consideration.

In speaking of the intersection of surfaces, it was stated
that double curved surfaces might be represented by a spe-
cies of rings, or cylindrical or conical drums, like the
trunks of columns; the inconvenience of this method for
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the surfaces of pipes, is, that there is a want of continuity
in the longitudinal dircction, and the transverse sections
are not constant.

There arc some towns in which the tin and copper-
smiths have a particular art in working metallic plates,
so as to give them a double curve, and preserve a re-
gular and constant scction at every point. The work-
men of Lyons, in this respect, forexample, are much su-
perior even to those of Paris. .

The engineer, in laying down the curved part of canals,
cmploys a particular geometrical method, the objects of
which are to preserve at every point a constant form in
the section, and to preserve the position of his plane every
where at right angles to the surface of the canal.

In place of supposing that a surface of constant dimen-
sions traverses a certain space, of which the envelope is
sought, let us suppose that a surface changes its size but
not its form.

The most simple case of this description is that already
examined of a sphere, fig. 16, which alters its radius, while
its ceutre moves in a right line.  Its envelope is a surface
of revolution.  Every sphere is touched, or enveloped, in
the direction of a parallel circle, by this surface of revolu-
tion; and the whole of the parallel circles form the sur-
face of revolution.

Lect us suppose that with the axis of the surface of revo-
lution the centres of these spheres are connected, and let us
bend this axis according to any curve. The new envelope
of all the spheres will vary in size with the spheres them-
sclves; but it will touch, it will envelope, every sphere in
the form of a circle. .

In nature we find*a great number of surfaces of this
description. The serpent, when he holds hintself straight,
has the form of a surface of revolution nearly approaching
to that of an elongated cone. He bends and twists him-
self in a great many directions; the surface of his skin
changes its formn at every instant, but it continually forms
the envelope of a series of spheres, which may be sup-
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posed to be enveloped tangentially by the surface of its
skin.

The figure of the serpent, when coiled or only curved
in that particular form which is called serpentine, is imi-
tated by the arts in such things as the musical instru-
ment which bears its name, fig. 17; as the trumpet,
fig. 18; the hunting horn, fig. 21; corkscrews, gimblets,
&ec. -

If we suppose the serpent winds itself up in a spiral
direction, having its tail at the centre, fig. 20, it forms a
surface very much resembling the figure of a great num-
ber of shells. :

The horns of most animals have at their extremity the
form of the surfaces we arc now trcating of, fig. 22. A
great number of musical instruments arc made of the same
form, such as bugle and French horns.

To make wind instruments which shall give a correct
and soft sound, their curved surfaces ought to be very con-
tinuous ; consequently, the means selected to make them
ought to be such as will preserve this continuity in the
longitudinal direction, along which the air is forced, as
well as in the transverse direction, the section of which
must always be circular.

The various methods alrcady pointed out of construct-
ing different surfaces, will enable the student to judge
which of them is the best for manufacturing wind instru-
ments, and may often cnable him to substitute a more
exact method than some of those now adopted.

It is not sufficient that we can give to objects a precise-
ness of form more or less pleasing by these ingenious
methods ; we must also, for the satisfaction of our sight,
give to the surface of numberlcss*commeditics, the pro-
duce of art'and industry, such a polish as scems by its
regularity and brilliancy to confer on them an additional
value. On this account, there is, in a multitude of arts, a
final operation, which consists in polishing, furbishing,
planishing, &c. &c.; and which is generally effected by
the polishing instruments describing, by their movements,
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surfaces which are tangents to the objects to be polished ;
so that the latter form the definitive envelope of the spaces
passed through by the former.

Let us take, for an example, the barrel of a musket.
A flat piece of wood, smoothly planed, is held tangentially
to the trunk of the cone formed by the exterior of the
barrel, and moved backwards and forwards on vne edge
of the cone; the space thus traveysed is a plane, the tan-
gent to the cone. By repeating the same operation for all
the edges of the cone, we have at length, by the time the
barrel is polished, the cone itself as the envelope of all the
tangent planes.

To polish a sphere, it may be made to advance or re-
cede in a cylinder, presenting all the parts of the sphere
alternately to the action of the cylinder. It may also be
placed on a lathe, the axis of which passes through the
centre of the sphere; and the sphere is then made to
revolve under a polishing iron, which is fixed in various
positions, being all tangents to this surfale. Thus the
sphere is polished by means of cones, of which it is the
envelope. .

Mirrors are polished by rubbing them with surfaces, of
which the tangent plane, in all their positions, is the very
plane which is required for the polished surface of the
mirror. The same may bc said of lenses, both plane and
spherical, which are used by opticians.

When the shipwright with his adze, dubs the planks of
the ship's side, at cach ‘stroke of his instrument he takes
away the superfluous wood, according to the figure of a
surface of revolution which is a tangent to the dubbed
surface. He may be said- to polish or smooth the ship.
The surface of the *vessel, when the operation is complet-
ed, is the envclope of the surfaces of revolution formed
by the motion of the adze.

The explanation which I have now given, though much
too brief in my opinion, will perhaps be sufficient to con-
vince workmen how very much the study of geometrical
forms, which are distinguished by lines and surfaces, is
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fruitful in direct, varied, and important applications in
most arts. It is from not having reflected on the forms
created by nature, or given to the produets of art, that we
do not see in them geometrical figures, or the geometrical
properties they possess, or the means which these cha-
racteristic properties supply of accuratcly deseribing or
correctly forming any object.

Whenever the workman and the artist shall become
sensible of the autility of examining the form of differ-
ent objects, he will make it a continual and almost invo-
luntary study. He will look at the products of indus-
try as a naturalist looks at nature,—with an attentive
and scrutinizing eye, recognising in every new object
some analogy with thosc great natural families and genera
with which he is already familiar, and observing diffe-
rences which serve to distinguish species, varietics, and
individuals. Such a study will not end, though even this
is not unimportant, in gratifying curiosity ; but it will have
for the impro®cment of the arts important consequences
which we scarcely dare to predict.

But we shall not attain to great perfection, nor even
carry our improvements to a considerable extent, unless we
adopt and practise continually the rigorous methods of
geometrical design. If artists study descriptive geometry
with care, they will find that it supplies them, not only
with the means of making accurate drawings, but also
complete demonstrations of those useful properties, which
in this brief Work are merely méntioned. Let us always
remember, that manufacturing industry will remain im-

rfect, and be little more than mere mechanical drudgery,
till a knowledge of the principles of the arts, of linear
design, and of descriptive geometry, s universally spread
through ‘our - workshops and manufactories, and made
the basis of manual operations. To labour without
thought is characteristic of the instinctive toils of ani-
mals. To man is given the high faculty of knowing
and explaining what his hands perform: and perhaps
we should all be more ready to note the principles of
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our operations, if we continually recollected that those
which appear to us from long habit, the most mechanical
and easy, had their origin in a close observation of
nature; and that many of the forms and objects now
produced by our most common workmen, were at one
time highly esteemed as the offspring of inventive or
philosophic genius.
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FIFTEENTH LESSON.

Curvature of Lines and Surfuces.

Ler us suppose that we move on a curve, while we
continue to look, at every point of our progress, in the
direction of the tangent to this curve. We must in this
case not only move forward, but turn at every moment
towards the bending part of the line that we follow.
The curvature of this line is proportional to the quantity
which we thus turn, divided by every small portion of
space through which we move.

If the curve be a circle, to traverse equal arcs we must
turn equal guantities; the curvature of the circle is the
same, therefore, at all its points.

If we move successively on two unequal circles, fig.
1, pl. 15, having R and r for their radii respectively,
then 3.14.... x2R will be , the circumference of the
large circle, and 31.4.... x2r will be the circumference
of the small circle. But when we move round a whole
circle, and always on the circumference, we always turn
equal to 360°, wherefore the curvatures of the two circles
C and ¢, are to one another as,

360 4 360
8. 1415 x 2R~ 3. 1415 x 2r

Pl

1
or:: —:—
r.

R
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Thus, in fig. 1, the circumference of the small circle is
more curved than that of the large circle, in the inverse
ratio of the lesser to the greater radius. The curvature
of circles is, therefore, in an inverse ratio to the length of
their radii. When a radius, consequently, is very large,
the curvature of the circle appears to be almost nothing.

Apphcatzon to the curvature of the Farth.—The radius
of the carth, for example, being more than six million
melres, its great circle is a million times less curved than
a circle with a radius of six metres, and eight million
times less curved than such a circle as the wheel of a car-
riage.*  Its curvature, thercfore, is not apparent to us in
short spaces, and only becomes perceptible when at sea,
or on vast plains.

A knowledge of the curvature of the carth enables us to
measure, by approximation, the height of mountains and of
the sca-coast, when we know also the distance of these
from the point where we are at the moment.

L]

Let AB, fig. 2, be the radius of the earth, and CD the mountain,
the summit of which, D, begins to disappear from the eye of a
voyager who has pruceoded from D and arrived at B. 1f we know
the distance BC, drawing the radius ACD, we can immediately,
measure C1.  When the angle BAC is very small, the arc BC is
very nearly equal to a perpendicular let fall from B on AD. We
shall then have, very nearly,

AB: BC:: BC:C(CD;
that is to say, that the radius of the earth is to the distance BC of

the mountain from the spot where the voyager is, as this distance is
to CD, the height of the moéuntain; consequently, CD = 291-3—-

Scamen, when they know the height CD of the masts,
the hull, or any other part of a vessel, judge of the dis-
tance she is from thgm by an inverse method, which, du-
ring war, is of very great importance.

We have just seen that the radius of different circles

* The measures of the original have been preserved in the trans-
lation, on account of the proportion involved in them. The actual
length of the radius of the earth is 7,290,901 yards. See page 51.

Tr.

T 2
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gives us a measure of their curvature, and we shall now
see that it also enables us to measure the curvature of all
other curves.

One of the happiest conceptions in geometry, is that of
measuring the curvature of curve lines by right lines.
Such a conception simplifies cxtremely all our operations
relative to this curvature.

Let ANA'Z, fig. 3, be any curve, the curvature of
which we desire to know. We take three by three the
points of it near one another ; and through three consecutive
points A, A’y A", we describe a circle ABC, which will
have the same curvature as the curve AZ, in the very
small arc AA’A”. We can do the same for every other
point, and thus determine the circles which have the same
curvature as the curve at its different points, and of course
we can ascertain the radii of these circles.

The circle ABC, which in one point A has the same
curvature as any curve AZ, is called the osculator circle of
this curve: the radius AO, of the circle, is the raaius
of curvature, as the centre of the circle is the centre of
curvature,

The radius being at right angles to the circumference of
the circle in A, and the circumference of the circle in A,
A’, and A”, being the same both for the circle and the
curve, it follows that the radius of the curvature is at
right angles, or normal to the curve, the curvature of
which it measures.

Let us suppose that from the different points AA'A",
fig. 4, situated close to one another, perpendiculars or nor-
mals to the curve AZ have been drawn, and that we have
ascertained the length AO of the radius of the curvature
at A ; the length AQ’ of the radius of the curvature at
A’, the length AO” of the radius of the curvature at A",
&c. ; we shall then have, the points A, A’, being on the
arc of the circle of which O is the centre, OA = OA’,
and for the same reason, O00OA = O’A", O"0'A =
0”A",...

Fasten, at the point A, the end of a thread of invariable
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length, and extend it in the direction AO, and in the
direction marked by the points O, (7, 0”,... which are the
centres of the curvature of AZ. Now make the point A
advance, heeping the thread extended, without allowing it
to glide along Q0’0" ¢ the part AO of the thread will
describe a small are of the circle AA’, which will be en-
tircly on the curve AZ, for its centre is the centre of
the curvature O of AZ, proceeding from the point A.

When we reach A’, the thread will besextended in a
right line from A’ to 0. When the point A advances to
pass from A’ to A", the thread, extended in a right line
from O, will describe the arc of a circle A’A”, of which
O’ will be the centre. In the same manner, the point
A, in passing from A” to A”, will describe an arc A”,
A", the centre of which is at O, &c.

When we know, therefore, a succession of points O, O,
0’,... very near onc another, being the centres of curva-
ture of the line AZ, we may, by means of a flexible
thread, invariable in its length, very easily draw the curve
AZ. This methud will be more rigorously exact, in pro-
portion as the centrgs O, O, O”,...arc at the least possible
distance from one another. It will be perfectly exact if
these points follow one another without any intervening
space, and form a continued curve.

Though this method be only used as one of approxima-
tion, the curve AZ, will be represented with much more
exactness and continuity, than by substituting for it a
polygon, formed by theé chords or the tangents to the
curve. With the new curve, all the ares of the circle
substituted for the curve AZ, agree longitudinally; there
arc no longer any angles, as at the summits of polygons,
nor straight sides stupplying the place of portlonb of the
curve.

We must, thercfore, employ this latter method té pro-
duce a form approaching to curves, which cannot be
exactly cxecuted, whenever the continuity of the curvature
is a matter of great importance.

We have scen that the thread AO0’0”,...will keep ex-
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tended while the point A, its extremity, describes the
curve AZ. If we examine the curve OPQ....X which is
described by the point originally marked on the thread,
we shall see that XO" equals the whole length of the
portion of thread originally bent in the direction 000"
. O™

The curve OPQX, which serves to develope the curve
000"....0", is said go be developing, and the latter
curve 1s developed, so that its length is every where equal
to the radius of curvature 00, PO, QO™”, .. XO", of
the curve OPQX.

In the arts, the developing curves, and particularly the
developing curve of the circle, fig. 5, are of great utility.
The engineer employs the latter to form cams in a proper
manner.

Let us suppose that a pile, AB, figs. 6, 7, 8. pl. 15, i<
so placed in a groove, that it can only move upwards and
downwards in some determined vertical direction; this
motion upwards and downwards is what the engincer has
to produce. .

For this purpose, a horizontal cylindrical beam C, is
so placed, that it cuts tangentially, on a short projecting
chin or plate DE, the under part of which is situated in a
right line with the centre of the beam (', when the pile-
driver has descended to the lowest point, fig. 6.

On the circumference of the beam, an arc of a circle is
fixed, OPQR, being the developing curve of the circum-
ference 00’070, of the circle, which serves as the basc
of the beam.

When this beam revolves, the point O first reaches the
position occupied by O, and . then the tangent OP of
the circle, becomes vertical, fig. 7. The projecting piece
ED, carrying with it the pile-driver, must, therefore, at this
point, have moved upwards one height = O’P. The beam
continuing to revolve, O” will reach the original position of
0, and then the projecting chin and the pile-driver, will
be raised from O to Q. Finally, the beam continuing to
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revolve, O™ will reach the original position of O, fig. 8,
and O”R will be vertical. The projecting piece D, being
no longer supported, does not prevent the descent of the
piledriver, which accordingly falls freely by its own
weight, and remains at rest, till the cam having finished
its revolution on the beam, returns to raise the pile-driver
again.

This movement has the great advantage of being un-
attended by jerks, and, as will be’ explained in treating
of mechanics, is executed without any loss of ‘power.

In the Thirteenth Lesson, we have examined the ellip-
sis, which is a very important curve. This curve ABC,
tig. 9, being symmetrical in relation to its axes, its de-
velope DEF, is, in relation to them, also symmetrical.
The greatest curvature of the ellipsis is at the extremity
of its longer axis, and its least curvature is at the ex-
tremuty of its shorter axis.

If we had occasion to construct a large ellipsis, fig. 9,
posSessing great continuity, we might draw the develope
DEF, and describe the curve ABC, by means of a thread
and a cord bent in the direction, sometimes of DE, and
sometimes of EF. °*

It is of consequence to remark, that cven if we take a
polygon for DEF, that is to say, a succession of lines
forming angles, the curve ABC, will not be rectilineal in
any one part, nor will it have any angles. It will, there-
fore, have two elements ®f continuity, which are not pos-
sessed by DEF. The curve of which ABC shall be the
developing curve, will have still more continuity ; for its
radii of curvature, augment or diminish by insensible de-
grees, cven when the radii of the curvature ABC, follow
each other without continuity, as in the construction of
the curve called basket handle (anse de panier).  See Les-
son Fourth, fig. 36, pl. 4.

Now you are aware that there are different species of
continuity, of which it is essential that you should dis-
tinctly classify the gradations in your minds.
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Ist. We can represent a curve by a succession of iso-
lated points very close to one another, fig. 10, pl. 15. Such
are dotted lines in drawing ; such are the lines marked by
a row of trees planted at a greater or less distance from
one another, either in a curve or in a right line, which
the eye easily imagines when these curves have any con-
tinuity, though in these cases the continuity is only indi-
cated by isolated points. The same is the case in those
plans, such for example as the plan of a ship’s bottom,
which demgnatc, by numerals, the position of a certain
number of points for each curve of the bottom.

2d. We can represent a curve by a series of right lines
which are chords to it; AA’, A'A”, A”A™,... fig. 11, or
which are tangents to it, AA’\",... fiz. 12. By this lat-
ter method there is a continuity in the succession of
points, but not in the direction from onc another; for at
each summit A’A”A",... of the polygon, the dircetion is
suddenly changed.

3d. We can substitute for the curve, a series of arcs of
circles AA', AA", A"A”,... fig. 4, having very nearly the
same radius of curvature as the line which they repre-
sent ; there is then continuity in the succession of points
and in their direction. If the arcs arc very small, we
have continuity both in the direction and in the curvature
of the curve. In this mannecr, architects, as already men-
tioned, draw the profile of elliptical arches, and engincers
draw the arches of bridges which are not circular.

In the arts there is a necessity, according to the import-
ance of the operation proposed, and degree of exactness
required for its success, to use these different degrees of
continuity, both in constructing objects and in giving
motion ; but it is for those who direct these operations, to
decide which of the above methods unites most advantages
for them ; which is the most simple of exccution, while it
is sufficiently exact.

Shipwrights make use of a mechanical method, when
they desire to give great continuity of direction and of
curvaturc to the lines, by the help of which they deter-
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mine the form of a ship’s bottom and afterwards construct
it, which we will explain. They first mark the isolated points
through which the curve is to pass; on each side of
these points they drive nails, so that a thin ruler or batten,
bent into the form prescribed by the situation of the nails,
may be held between them. A curve, drawn by means of
chalk or pencil, along the bent batten, passes of course
through all the points A, A’, A”,... fig. 13. A great de-
gree of nicety is nccessary in pel"forming this operation,
in order that the curvature of the line may be made from
one end to the other, by insensible deviations, and possess
that degree of continuity which contributes to lessen the
resistance of the water when the ship moves through it.
Shipwrights will find, in this respect, a great advantage
from studying gcometrical forms. Such study will en-
able them both to judge of the beauty of curves with
more promptness and certainty, and form them better.

The means proper for drawing large curves, canuot be
used for small designs drawn on paper; and in place of
using long wooden battens, small slips of whalebone are
employed.  Some of them, of an cqual thickness through-
out, serve to draw curves, the curvature of which only
varies a small quantity; others, gradually thinned to-
wards one or both ends, serve to draw parts of a curve,
or any curve, diminishing gradually like them from one
extremity to the other. The slips of whalchone are bent,
so that they pass through the points indicated on the
plane as belonging to -the curve to be made, which is
drawn by a pencil resting against the curved whalebone.
Pieces of lead P, I, P”,.. fig. 14, pl. 15, covered with
paper or cloth, and having the form of a triangle, that
they may be used with greater case, supply on the paper
the place of the nails used in larger plans, such as those of
the draftsmen in the mould loft.

In order to make the curves pass through the given
points, draftsmen very often employ an instrument which
they call a pistolet, fig. 15. As its curves are much varied,
it may generally be so placed as to draw by degrees a
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figure which offers no angle, and of which the curves are
at no point sharply interrupted.

Hitherto we have only spoken of curved lines drawn
on a planc surface; or lines, as they are called, of a single
curvature.

But some lines cannot be drawn on a plane, because
they are curved in two directions; such are spirals traced
on cones, on cylinders, &c.

For lines of double curvature, as well as for those of
single curvature, we can always take the points imme-
diately consecutive of which they consist, three by three,
and through these three points draw a circle, which will
be the osculator circle of the curve, in the extent of the
small portion of the curve comprised within the three
points. The plane of the osculator circle, is called the
osculator plane of the curve. No other, proceeding from
the portion marked by the three points, can approach
nearer to the curve of double curvature. By means of
osculator planes and circles, employing also a series of arcs,
which agree with each other tangentially, we may practi-
cally and by approximation, but with great continuity,
draw every species of curve with doublé curvature.

-Relative to such curves, there are many interesting
considerations which might be developed ; but they are not
sufficiently elementary, nor arc they susceptible of such im-
mediate and frequent applications in the ordinary business
of life, that they can be noticed here in the manner they
deserve. The curvature of surfaces is, on the contrary,
perpetually a subject of consideration, and indispensable
in many operations.

Curvature of the Sphere.—'The sphere is the surface,
of which the curvature is the most egsy to measure and
determine. Let us take any point A, fig. 16, of the
sphere, and draw from the centre O, the radius AO.
This radius will measure the curvature in A, of all the
sections made in the sphere, by a plane which contains
the radius AO. It will also measure the curvature of the
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sphere, which is the same in all directions, and at every
point of the surface. The radius of the sphere is, there-
fore, at all times the radius of its curvature, and that of
all the sections made by a plane in which this radius is
situated.

"The right lined circular cylinder, considered in the di-
rection of its base, has for its radius of curvature the
radius of the sphere which it cnvelopes, and which it
touches, according to the circumference of its base. But
considered in the direction of the edge AB, ﬁg 17, it has
no curvature, and if it were required to find the length
of the radius of the osculator circle of the cylinder in the
direction of its length, we should sce that the radius must
be infinite.

The same holds good of the right lined circular cone.
In the direction of its base, its radius of curvature is the
radius of the sphere which it envelopes ; in the direction
of its edge, the curvature of the line is nil.

Other species of cylinders and cones, and in general all
developable surfaces, have no curvature in the direction
of their rectilincar cdges, while in the direction of their
base, or perpendicular to the edges, they have a curva-
ture more or less marked.

In the cylinder and cone, the sections made according to
a radius AQ, of the basc, figs. 17 and 18, always have
their centre of curvature within the surface. Thus,
throughout the whole extent of the same edge AA’A,...
B of the conical and cylindrical surfaces, the radii of cur-
vature AQ, A'Q’', A"0", lie in the same direction, and are
parallel.

The same circumstance does not hold good for non-
developable surfaces, 1f, ‘for example, we attend to the
non-devclopable surface of a staircase, we shall always
find that in one direction, the curvature turns its concavity
downwards, while in the direction perpendicular to this, it
turns it upwards. :

"The hollow part or throal of a shiver in which the rope
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lies, fig. 19, pl. 15, has its least curvature in a direction
at right angles to the axis of the shiver, and its centre of
least curvature placed on the same axis; while in the di-
rection parallel to the axis, the throat has its centre of
greatest curvature in some point n, equi-distant from m
and p, the edges of the throat.

Here then are three classes of surfaces very distinct from
one another, when regarded in relation to their curva-
ture. o )

In the first class, the curvature of the lines which can
be traced on each surface, all lic in the same direction ;
this class includes the sphere, the ellipsoids, the surface
of an egg, of a chesnut, of the cocoon of the silk-worm, &c.

In the second class there is only one direction in which
the curvatures arc marked, and in the other, they are
nothing. This class only includes devclopable surfaces,
cylinders, cones, &c.

In the third class, one part of the curvature lies in one
direction, and another part in the opposite direction { so
that if we draw, froni any given point of the surface, the
normal to it, one part of the centres of curvature of the
sections is placed on this normal, on one side of the sur-
face, and the other part is placed on the other side.

The varied surface of the human body presents all the
three classes of surfaces. To the first class belong the
projecting forms of the extremities; the heel, the knee-
pan, the knee, the shoulder, the ends of the fingers; all
the double curvatures of which lie in one direction.

A part of the thighs, of the legs and arms, has no cur-
vature in one direction, and they belong to the second
class of surfaces. )

In all the joints of the arms, of the fingers, in the con-
nection of the head and the body, with the neck, &c. we
gee surfaces of the third description ; that is to say, hav-
ing two curvatures in opposite directions.

Amidst these general forms, the practised eye of the
sculptor and of the painter, discovers a multitude of sha-
dowings into one another, in the succession and gradation
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of the curvatures of the different parts of the body. As
he represents these nicer connexions correctly or not, or
as he reproduces them with more or less fidelity, he forms
those chefs-d'wuvre, the truth of which is the admiration
of enlightened judges; or he shapes out those rude
sketches, the gross negligence of which are offensive to
the cye of a man of taste.

The curvature of the various parts of the surface of our
body, depends on the form of the bones and of the muscles,
to which the skin is a smooth, polished, and continuous
covering. The intelligent artist should always take care,
therefore, that his representations reveal those hidden
forms beneath the skin, which shadow out themselves on
its surface.

The works of some artists are very faulty, by making
some parts of the body appear too projecting, too much
curved, or too much swelled, in order to designate more
distinetly these hidden anatomical forms, even when they
ought not to attract the notice of the eye. This affecta-
tion is only a spegies of charlatanism, quite unworthy of
the great masters.

The surface of dur face is endowed with a most va-
luable property of changing its form, in close connexion
with the changes in our momentary or permanent passions
or affections; such changes being intended to reveal to
the eye of others, the feelings that are passing within us.
Permanent affections, or long and frequently indulged pas-
sions, give somc particular curvature to the flexible parts,
and even to the aspect of the fixed parts, of which atten-
tive observation teaches us to recognise the slightest differ-
ence.  On this is founded the science of physiognomy.

Even our momentgry passions produce changes of form
more or less distinct, more or less fleeting, and the study
of them also is of great importance for the cultivation
of the fine arts; they offer an infinite variety, among
which the man of genius selects with unerring precision,
those forms which accord best with the graceful, severe,
profound, or terrible character of his works.
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There is one study recently introduced, of which I have
yet to speak. I mean the relation which is thought to
cxist between the exterior form of the head and the ca-
pacities of the mind. Besides a general regularity ob-
servable in the two principal curves of the cranium, in-
flections and local variations, more or less remarkable, are
observed in different individuals.

The parts more or less curved, more or less prominent,
have been called organs or bumps, and are considered to
be external signs of our faculties and our affections, which
are thought to be strong and intense, or weak and diffu-
sive, as the organs are more or less conspicuously deve-
loped.

It is casy to throw an air of ridicule and contempt
on such doctrines, particularly when they are promulgated
with a pedantic display of a new scientific nomenclature ;
but the careful observer of the laws of nature, is never in
haste to scatter censure or bestow profuse praise, when
important doctrines or novel principles are in question.
Even if it should De true that the desire of explaining
every thing, should have caused a too extensive cnumera-
tion of supposed indications of our’affections and pas-
sions, it would be sufficient that a small number of
intellectual powers were indicated, with more or less cer-
tainty, by the form of the cranium, in order to make the
varieties of its curves, highly worthy of occupying the
meditation of the wise.

The various parts which compoase the bodies of animals,
are formed either straight or curved, and have such a
volume as adapts them to certain motions and certain
modes of life. Comparative anatomy is the name of the
somewhat recent science, which has for its object to
observe the connexion between the forms of different ani-
mals, and their habits; and it will receive salutary pre-
cision, as well as give accuracy to its results, by referring
to geometrical measurements, not only the principal di-
mensions of each part of the bony skeleton, but also of
the size and the direction of the curvature of each element
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of the skeleton, particularly the parts in contact, or the
joints.

To carry geometrical precision and description into
comparative anatomy might not only benefit that science,
but might also lead to results useful to man. Animals
in order to satisfy their wants, execute, with singular per:
fection, many operations similar to some practised in
the arts, though we have not yet carried them beyond
mediocrity ; and in the means provxded by nature for the
actions of these animals, we might find many varied and
ingenious models.

Herbivorous animals have their teeth perfectly suited
for crushing vegetable food, and notwithstanding they
wear away by continual use, they always preserve the same
form: our mill-stones, however, which perform a similar
office, are speedily altered, and they must be continually
re-cut, in order to grind well. In this particular case,
therefore, art is much inferior to nature. Under the
influence of this idea, M. Molard, a member of the In-
stitute, has endeavoured to constr ruct machines for grind-
ing, after the modd of the grinding teeth of horses, in
which there is no longer any necessity to re-cut the
stones, in order that they may continue to perform the
grinding properly.

Industry, therefore, is interested, that anatomists, geo-
metricians, and mechanicians, should ascertain in concert,
the curvatures and the functions of the various parts of
animals. :

We must now, however, pass from these general con-
siderations, on the importance of the study of curved
surfaces, both to the arts and natural history, to consider
those geometrical characters which are adapted to give by
some simple means, the elements and the varieties of these
curvatures.

For surfaces of the first class we can always trace an
ellipsis, projected parallel to its plane ABCD, fig. 20,
which ellipsis will represent, proceeding from any point P,
the form of a trench of the surface, made parallel to the
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plane mu, tangent to the surface in P, and very close to
MN: PO being the distance of the point P, from the
intersecting plane MN, if we draw a series of circles
through P, and through the circumference of the ellipsis,
having their centres on the normal or perpendicular PO,
we shall have all the osculator circles of the scctions made
in the surface by the planes of these circles.

"The smallest of these circles will pass through the sum-
mits B, D, of the small axis of the ellipsis; the largest
will pass through the summits A, C, of the great axis of
the ellipsis. Fig. 20 double, pl. 15, represents all the
circles reduced to the same plane, which pass through the
normal POp, of fig. 0.

In the surfaces of the first class, therefore, all of which
have their curvature in the same direction, that of the
largest curvature AB, is perpendicular to the direction of
the least curvature CD.

For all surfaces, therefore, of which the double curva-
tures are in the same direction proceeding from cach poiut,
the direction of the largest curvature is perpendicular to
the direction of the least.

The outline of the ellipsis being symmetrical in relation
to its two axes, the osculator circles which pass through
this outline, and through the perpendicular or normal
POp, will also be symmetrical in relation to the axes
AC, BD, that is to say, in relation to the two directions
of the largest and least curvature.

Thus, the intermediate curvatures of the scctions per-
pendicular to the surface,—curvatures which proceed by a
continued gradation from the least to the largest, are dis-
posed symmetrically, in relation to the direction of the
largest and least curvature, proceeding from each point of
the surface.

A plane which divides the surfaces of the third class,
infinitely near to the tangent plane, gives a section, of
which the form is that of an hyperbola. The direction
of the axes of this hyperbola, gives the direction of the
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two axes of largest and least curvature. The interme-
diate curves are symmetrically disposed in relation to
these axes. In fig. 21, pl. 15, the sections made in the
hollow rim of a shiver, of which the two curves lie
in contrary directions, by two planes very near the
plane MN, tangent to the gorge of the shiver in P,
are represented.  These sections possess the form of two
indicating hyperbolus. If the teacher is provided with
this figure to exhibit, so much the better.

Surfaces of the second class may be’ considered as the
common lhnit of the two other classes. 'They share the
properties belonging to the other surfaces,—having their
largest and least curvature perpendicular to each other,
with all the intermediate curves symmetrically disposed
in relation to the principal curves.

I have given the name of indicators to those curves which
possess the property of indicating the nature and the re-
lations of the curvature of surfaces, and I have given an
aecount of all the means of using them, in order to discover
the essential properties of the curvature of surfaces. 1
can only rcfer, for further information, to my investiga-
tions on this subjeet, given in my Developpemens de Géo-
métrie, and to the applications I have made of them,
(Applications de Géomélrie), to the stability of floating
bodies, to the construction of vessels, to levelling roads,
and to the optical phenomena produced by the reflection
of pencils of light on any kind of curved mirrors.

Let us now suppose,.that proceeding from any point of
a surface, we always advance in the direction of its great-
est curvature, we shall trace a line; and all the lines thus
traced, will cover the whole surface, forming the system
of lines of greatest curvature.

On the other hand, if we advance, proceeding from any
point in the direction of the least curve, we shall form
another line, and all the lines thus drawn, will also cover
the whole surface. They form the system of lines of least
curvature.

w
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Finally, the lines of the greatest curvature will be at
every point perpendicular to the lines of least curva-
ture.

The lines of curvature have one property valuable for
the arts, which I shall content myself with merely indicat-
ing. If we draw from every point of the same line of
curvature, a line perpendicular to the surface, all these
perpendiculars together will form a surface, which will
necessarily be developable.*

In the cylinder, fig. 22, the lines of least curvature are
the rectilinear edges, of which the curvature is zero.  The
lines of greatest curvature are the sections, made in the
plaues at right angles to the axis, and the outline of these
sections is evidently at right angles with each edge. In
the cylinder, therefore, the lines of greatest, and those of
least curvature, are at right angles.

In the cone, fig. 23, in which also the edges are the lines
of least curvature, the lines of the greatest curvature are
found as follows. The point of one leg of a pair of cot-
passes is placed on fthe summit of the cone, and va-
rious curves are drawn with the other point, at different
openings of the compasses, but all at’ right angles with
the edges; for in developing the cone these curves be-
come circles, of which the edges of the cone will be the
radii.

In surfaces of revolution the meridians are lines of one
curvature, and the parallels are lincs of the other cur-
vature, the former being, as we know, every where at right
angles with the parallels.

The celebrated Monge applied in a very beautiful man-
ner these properties in stone-masonry.

When arches, having curved surfages, are to be con-
structed, they are divided into such small compartments
that each of them may be formed of one stone. :

* The demonstration of this principle, and of all the properties
relative to the curvature of lines and surfaces, is contained in my
Developpemens de Géométrie.
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After having prepared that part of the stone which is to
occupy one of these compartments, and having given it the
shape proper for the surface of the arch, (the intrados)
the sides or faces called the joints of the arch stones, which
are to meet one another, are then made of the proper
form. To adapt these stones in the best manner possible
to all the purposcs required of them, 1st, the faces of
the joints should have a simple form ecasily made ; 2d,
the whole of the stones when united, should have the
greatest possible solidity. The latter circumstance requires
that the faces of the joints should be every where at right
angles to the curve of the arch; and it is easy to see for
what reason. If the face of any one stone made an ob-
tuse angle with the curve of the arch, the face of the
adjacent stone would make an acute angle with it; and
when any pressure or weight came on the arch, the stone
terminated by the obtusc-angled edge, would break the
one terminated by the acute angle, or would make it
start but. The former circumstance,, giving facility of
execution, requires that the faces should be planes, or at
least developable surfages. When this form is adopted,
a picce of paper, pastcboard, or other flexible substance,
may be readily cut into the shape which the joint must
have; and it will enable the artisan, merely by bending
it properly, to sec if it is every where adjusted to the
joint, which may be made at right angles with the curve
of the arch by means of the common square.

But these conditions require that we should find at
every point, some developable surfaces at right angles
with the arch and with one another; they also require
that we should select for the faces of the joinings on the
surface of the arch, the Mnes of its curvature.

When we construct cylindrical surfaces, therefare, fig. 24,
we select for the joints in one direction, their parallel edges
at equal distances ; they are the lines of least curvature : in
the other direction, we select the curves at right angles
with these edges ; they are the lines of the greatest curva-
ture. The surfaces of the joints formed by the normals

v i
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to the surface, according to these edges and these curves,
are planes, which intersect one another at right angles.
In this case the labour of the stone-mason becomes as
simple as possible.

When conical surfaces are to be constructed, fig. 25,
such as those for arched doors and windows, wider at one
side of the wall than at the other, and snch as those for
embrasures, in casemates, the edges of the cone, and the
curves perpendicular to them, are in like manner chosen for
the lines of the joints.

When an arch is to be made, having the form of a
surface of revolution, fig. 26, a dome for example, regu-
lar compartments, formed by meridians and parallels, are
drawn on the surface. The lines at right angles with the
arch, in the direction of the meridians, form planes, which
are the vertical joinings of the arch stones.  The lines at
right angles with the arch, in the direction of the parallels,
form cones, which are the horizontal joinings of the stones,
and these joints are developable, because they correspond
to the lines of curvature. Finally, the conical joints are
intersected at right angles by the plane joints, which, for
cones, arc meridian planes.

I shall not extend farther this magnificent application,
so simple, so general, so fruitful in its principle and in its
consequences. It is well adapted, however, to convince us
of the importance to the arts, of the study of curved
surfaces, and their chief properties. The fine arts may
also derive great advantage from the study of them.

By the varied effects of light and shade, we form cor-
rect notions, at a single glance, not only of the illuminated
or projecting points, and of the well-defined edges of ob-
jects, but also of those apparent outlines, which give a dis-
tinct character and figure to every object. Delicate ming-
lings of light and shade, more or less strong, enable us,
even in those parts where neither point nor line is par-
ticularly remarkable, to distinguish the form and species
of objects, and the degree of curvature which belongs to
-each part of their surface.
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The study of this part of the science is useful to men of
all professions, as well as to artists ; it enables them rapidly
to form just and complete ideas of the true form of those
objects which they consider, whether it be for business or
amusement.

Let us examine the process by which the eve conveys
to us the idea of curved surfaces; and for this purpose,
Iet us suppose that a sphere ABC; fig. 27, Is illuminated
in a certain direction by the sun’s rays.

I begin by drawing the line of separation between the
light and shade, LLL, according to the principles laid
down in the Fourteenth Lesson. T mark with dark
strokes the part in the shade, and there remains illuminat-
ed only the part LLLBC, fig. 27. Thus the moon ap-
pears to us in its various phases, from the smallest illumi-
nated crescent, fig. 29, pl. 15, to the first quarter, fig.
28, when one half of the moon is illuminated, and the
othtr is in the shade; and afterwards, as it approaches
towards the full moon, in the form seén at fig. 27, it being,
when full, wholly illuminated ; waning again towards the
close, when, as in a total eclipse, ne part of it is illumi-
nated for the spectator. If I consider only the illuminat-
ed part LLLB, without the shadowings, there is nothing
to inform me that this part belongs to a sphere, rather
than to a surface depressed or projecting in the direction
of the visual ray. Let us sce how we judge of this differ-
ence. .

There is on the surface, supposed to be as brilliant as a
mirror, a certain point, O, fig. 27, whence the spectator
would perceive the image, of the sun or the luminous
body. This is the point, where the light reflected by the
surface is most brilliant, and it is called .the britliant
point. 'We must determine its position.

This may be easily done, if we can draw the normal in
O to the surface of the object. For, 1st, the two rays, the
incident and the reflected, are in the same plane as this
normal ; 2d, they make the same angle with it. Accord-
ing to these conditions, descriptive geometry~ teaches us
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the means of finding the brilliant points of various sur-
fuces, for any given position of the eye, and for the ge-
neral direction of the rays of light. In proportion as
these rays reach the surface and are also reflected under
a more oblique angle, there is more light lost, and the
surface appears less luminous. Around the point O, it
may be conceived that we can trace a series of lines, through
the whole length of wlich the object would appear to the
spectator equally illuminated ; such lines are said to be of
cqual tints. When they are traced, it will be sufficient to
apply a series of tints, stronger or weaker according to
the degree of light which corresponds to each line, and we
shall paint, with great exactness, the gradual diminution of
the light on the portion of the illuminated surface.

These lines, by their form and position, will enable us to
distinguish perfectly the nature of the surface and its
curvatures, They will have for the cylinder, for the
cone, and in general for all developable surfaces, a pe-
culiar character casily distinguished ; for the sphere, for
surfaces of revolution, and for annular surfaces, they will
have another character; and they ¥ill have a different
character for spiral surfaces, and for non-developable sur-
faces.

Though the lines to which we have just alluded are
not visible on objects, and though nature produces de-
viations in tints by insensible and infinite gradations, the
eye is not the less accustomed to study them, to per-
ceive their differences, and to recognise those general and
characteristic forms possessed by the infinite varieties of
light and shade, which belong to different species of sur-
faces. R

In this respect, however, a great difference is observed
among different classes of men, as their professions lead
them to pay attention to particular species of surfaces.
Thus, the coppersmith, the tinsmith, and the cooper,
distinguish with great facility, if surfaces, or the fractions
of surfaces, arc cylindrical, or conical, or in general de-
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velopable ; but they are not so capable of distinguishing
other forms.

The turner, whether he work in wood or metal, and the
potter, as well as all those persons who continually make
surfaces of revolution, will distinguish by a single glance,
and without touching an object, if a surface, or any por-
tion of a surface, is a surface of revolution, or if it is flat-
tened or clongated in any part ; but they are less skilful
in ascertaining other forms. .

The architect will form a correct opinion of the varied
form of cylinders and cones, similar to those which occur
in buildings, as well as of surfaces of revolution, such as
domes and columns ; but he will not be so capable of dis-
tinguishing accurately the form of such surfaces as he
seldom meets with in his peculiar pursuits.

It is of some consequence that all classes of the people
should be accustomed to ascertain, by a single look, the cha-
teristics of surfaces, and to decide whether or not they are
made correctly. Such a study would be onc means of pro-
moting the progress of industry and of the fine arts. This
subject, however, avill be treated in detail, when ap expla-
nation is given in the Third Volume, Ox Motive Pow-
ris, of the studies and observations which may add to
the acuteness of our senses, and multiply and enlarge the
means which they supply for directing our labours.

Sculptors ought to accustom themselves to distinguish,
by sight alone, whether the two curves at every part of a
surface which they have to reproduce, lie in the same or in
opposite directions,—to distinguish which is the direction
of the greatest, and which of the least curvature,—to
follow the direction of Both these curvatures on surfaces,
in order to reproduce the general character of those surfaces
which they conceive or copy, which alone can give the
character of truth to-their productions.

The painter, who is to represent, by colours and tints on
a surface which has only two dimensions, the religf of ob-
jects of three dimensions, ought to study profoundly the
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manner in which each species of surface influences the
various tints, in order to reproduce similar effects with his
pencil.

The engineer and draftsman must engage in the same
studies, to attain the same fidclity of imitation, and the
same truth of conception. ‘
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Tangent rays described 260 precision in mnaking . 170
Tangents in the arts 41, 43 ——— why made circular 42
—————— principles of . 250 Wind instruments, principles of 170
Tunks for ships . . 209 Wooden shoes, geumetrual form
Theatres, form of . .71 of . 265
—— scenery in, (-xplamed 168 Workmen, Atheman. great skxll
Fonnage, method of ascertain- of . . . 169
ing . . 127 and (n.)
THE END.
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* We warmly 1ecommend it to our readers. It ought to be in the hands of every
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utility and judgment in the sclection of their Books."—Medical Chiruzg. Rev. No. 5.

ELLMENTS of CHEMISTRY, including the recent Discoveries and
Doctrnes of the Science. By Epwarp Turyer, M.D,, F.R.S 1., Fellow of the Royal
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of the Royal Society of Gottengen 3 and Member, formerly President, of the Royal
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RATE OF WAGES, and the Condition of the LABOURING CLASSES. By J. R.
M*‘CurrocH, Esq. In 18mo. ls.

THE EVENTFUL LIFE of a SOLDIER, during the late War in
Turtugal, Spain, and France. Bya Sergcant of the —— Regiment of Infantry, In
12mo., price 7s.

 One of the most extraordinary, also most interesting books, published for many
years.”—Atlas.

¢ A genuine, natural, and vivid picture, &c. The story is various, adventurous, and
strongly interesting, 1n consequence of its truth and fidelity.”—Literary Gazette.

. ¢ The interest excited by the Soldier and his adventures, in many instances, equals
that of the ablest work of fiction."—Glole.

“ The most faithful picture ever given of the toils, privations, dangers, harassing
duties, and short-lived joys of a Soldier’s life."==Scotsman.

HUME'S PHILOSOPHICAL WORKS; now first collected ; beau-
tifully printed in Four large Volumes 8vo., 2L, 8s.

This edition contains ALL the ESSAYS; the TREATISE on HUMAN NATURE;
the DIALOGUES on NATURAL RELIGION ; the Account of the CONTROVERSY
with ROUSSEAU; the Author's LIFE of HIMSELF; and a PORTRAIT. The
successive editions which were revised by the Author have been carefully collated, and
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2  Published by W. Tait, Edinburgh, and C. Tait, London.

SCENES and SKETCHES of a SOLDIER’S LIFE in IRELAND.
By the Author of the * Eventful Life,” &c. 12mo, 5s.

This little work is one of uncommon interest. It is really the production of a Sol-
dier : one who like the Sol dier of the 71st Regiment, whose Journal was so very favour-
ably received, can select with judgment the most remarkable scenes and occurrences
that happened to fall within his observation, in the coursc of a varied and adventurous
life, and paint them .naturally and vividly. The character and feelings of the British
Soldiers, and of the Iiish Peasantry, both Catholics and Protestants, aie in this little nar-
rative pourtrayed to the.life, by an intelligent and candid observer.

LECTURES ON THE PHILOSOPHY OF THE HUMAN MIND.
By the late Tnosas Broww, M.D., Professor of Moral Philosophy in the University of
Edinburgh. Second Edition, corrected. In four vols. 8vo, 2/, 12s. 6d.

WORKS of PROFESSOR LESLIE, viz.:— ELEMENTS OF
NATURAL PHILOSOPHY. Vol. 1., including Mechanics and Hydrostatics. In 8vo,
with Engravings, 145, | «

GEOMETRICAL ANALYSIS, AND THE GEOMETRY OF CURVE LINES. In
8vo, with 24 Engravings, and numerous Cuts, 16s.

THE ELEMENTS OF GEOMETRY AND PLANE TRIGONOMETRY. Fourth
Edition. 8vo, 10s. 6d.

THE PHILOSOPHY OF ARITHMETIC; exhibiting a progressive View of the
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EULER'S LETTERS to a GERMAN PRINCESS, on different sub-
jects in Natural Philosophy. A new Edition, with Life and Notes, by Davip Buews-
TeR, LL.D,, Scc. RS.E. &c. &c. In two vols. }2mo. with Plates, 16+

- In this Edition the translation has received very essential improvements. The plate,
have been re-engraved, and much improved ; and a Life of the Author has been added,
together with various Notes, which the Editor trusts wil! be both interesting and uscful
to the reader.—Prefuce.

4 SUPPLEMENT to THE ETYMOLOGICAL DICTIONARY of the
SCOTTISH LANGUAGE. ByJoux Jamiesox, D.D., Fellow of the Royal Society of
Edinburgh,—of the Saciety of the Antiquaries of Scotland—of the Amencan Antiqua-
rian Socicty,~—and Associate of the First Class on the Royal Foundation of the Royal
Society of Literature. In two vols. 4to, 5i. 5s.

WATT'S BIBLIOTHECA BRITANNICA, or General Index to
British and Foreign Literature.  In 2 parts—Authors and Subjects. In 4 large and very
closely-printed vols, 4to.

*.* This is unquestionably one of the most intrinsically valuable bocks that have
been published in this country for many years. It is both a COMPLETE caTALOGUE
OF THE WORKS OF EVERV AUTHOR, and a KEY TO ALL THAT HAS BLEN WRITFEN
ON EVERY SUBJECT.

The work was originally published in Eleven Parts, at 1/. 1« each, and was com-
pleted only two years ago. The inder of the impression having been purchased by
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Mr. Dibdin, in speaking of Watt's book, says,  the uses and adrantage of that
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other FORMS of RELIGION which have existed, particularly in regard to their moral
tendency. By Wittiam Lavrence Brown, D.D. Principal of Marischal Collcge,
Aberdeen, &c. &c. 2 vols. 8vo. 18s. .
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31, 2s. 6d. Copies on LARGF. PAPER, -with PROOF Impressions, published at 51,
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