
PHYSICAL REVIEW C 100, 014906 (2019)

Shear viscosity of ultrarelativistic Boson systems in the presence of a Bose-Einstein condensate
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We calculate for the first time the shear viscosity of ultrarelativistic Boson systems in the presence of a Bose-
Einstein condensate (BEC). Two different methods are used. One is the Grad’s method of moments and another
is the Green-Kubo relation within a kinetic transport approach. In this work we consider a Boson system with
isotropic elastic collisions and a gluon system with elastic scatterings described by perturbation QCD (pQCD).
The results show that the presence of a BEC lowers the shear viscosity. This effect becomes stronger for the
increasing proportion of the BEC in the Boson system and is insensitive to the detail of interactions.
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I. INTRODUCTION

The experiments of heavy-ion collisions at the Relativistic
Heavy Ion Collider (RHIC) and at the Large Hadron Collider
(LHC) [1–3] showed strong indications for the formation of a
new thermal state of matter composed of quarks and gluons,
the quark-gluon plasma (QGP). Theoretically, the color glass
condensate (CGC) effective field theory [4] can describe the
evolution of the initially freed gluons to a glasma [5–7],
which is still far from thermal equilibrium. The formation
of QGP from this nonequilibrium glasma is a dynamical
thermalization process, which is not understood yet from the
first principles within QCD. Efforts from recent investiga-
tions [8,9] showed that gluons in the glasma can be highly
overpopulated. As a fundamental consequence of quantum
statistics, a gluon BEC could appear. The gluon condensation,
if it occurs, will accelerate the thermalization process and
thus, is regarded as a promising mechanism for the fast
thermalization of quarks and gluons produced in heavy-ion
collisions at RHIC and LHC. Many recent studies have been
devoted to the nonequilibrium dynamics and BEC forma-
tion within either kinetic approach [10–19] or classical field
theory [20–23].

Whether or not gluon BEC can be formed in heavy-ion
collisions, is still under debate [13,24–27]. In this work we
will not touch this issue. We assume the existence of a gluon
BEC and would like to study its effect on the shear viscosity
of gluons.
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The shear viscosity is an important quantity manifesting
the transport property of the QGP. Extracted from the flow
measurements at RHIC and LHC by comparing with the
viscous hydrodynamic calculations, one found small numbers
of the shear viscosity over the entropy density ratio (η/s) of
the QGP [28]. To understand the nature of the small η/s is one
of the motivations for this work.

From kinetic theory we can realize that stronger interac-
tions will lead to faster thermalization as well as smaller shear
viscosity [29]. When the gluon condensation accelerates ther-
malization, it is expected that processes corresponding to the
gluon condensation will lower the shear viscosity. However,
quantitatively it is nontrivial to confirm this expectation, espe-
cially for massless Boson systems. In Sec. II we discuss the
description of BEC in kinetic theory from binary processes,
especially highlight the rate of condensation. The collision
rate of processes involving the BEC is infinitely large, while
the collision angle is zero. How these extreme processes affect
the shear viscosity is one key ingredient of this work.

In Sec. III we derive for the first time the shear viscosity
of massless bosons in the presence of a BEC analytically by
applying the Grad’s method of moments [30–33]. As a first
test case, we assume elastic collisions with constant cross
sections and isotropic distribution of collision angles. This
is customary in kinetic theory calculations. Later in Sec. V
we will relax this restriction. As a complementary method,
we numerically calculate the shear viscosity in Sec. IV for
the same system and with the same interactions by using
the Green-Kubo relations within the Boltzmann approach
of multiparton scatterings (BAMPS) [34]. The two indepen-
dent methods agree perfectly and confirm our analytic and
numerical calculations. In Sec. V we consider a realistic
gluon system, employing binary pQCD cross sections in the
presence of a gluon BEC within the numerical framework
BAMPS. We will summarize in Sec. VI. The details of
the thermodynamic integrals needed in Sec. III are given in
Appendix.
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II. KINETIC DESCRIPTION OF BOSE-EINSTEIN
CONDENSATION

In this section we give a brief description of Bose-Einstein
condensation by using the kinetic Boltzmann equation. The
detailed description can be found in Ref. [19].

The one-particle phase space distribution function f (x, p)
is decomposed into two parts f = f g + f c, where f g denotes
the distribution of gas (noncondensate) particles and f c =
(2π )3ncδ

(3)(p) denotes the distribution of the condensate par-
ticles with zero momentum. nc(x) is the local particle density

of the condensate. In this work we consider elastic collisions
only. This assumption is reasonable for systems with a con-
served particle number. For a gluon system, however, number-
changing processes may have to be taken into account. In
Sec. V we will give a short discussion about why we do not
consider number-changing processes of gluons in the present
work.

Denoting gas particles by g and condensate particles by c,
we consider g + g → g + g, g + c → g + g, and g + g → g +
c processes. The Boltzmann equations for gas and condensate
particles are then given as follows:
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where d�i = d3 pi/(2Ei )/(2π )3 and f g/c
i = f g/c

i (x, pi ) with
i = 1, 2, 3, 4 is the distribution function of ith particle. Elastic
collisions 34 → 12 and 12 → 34 are determined by the colli-
sion kernel |M34→12|2 and |M12→34|2, which are equal.

The rate of the Bose-Einstein condensation can be obtained
by the integration of the right-hand side of Eq. (2) over d�1

in the local rest frame. The details of the integration can be
found in Ref. [19]. The final result is

∂nc
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. (3)

The two terms on the right-hand side of Eq. (3) correspond
to kinetic processes for the condensation and the evaporation,
respectively. E = E3 + E4 is the total energy in the collision,
P = |p3 + p4| is the total momentum, and s = E2 − P2 is the
invariant mass. m denotes the particle mass at rest, which
is set to zero throughout this paper. We found [19] that in
order to describe the condensation of massless bosons with
a finite rate, the ratio |M34→12|2/s at s = 0 should be nonzero
and finite. For isotropic collisions, i.e., the distribution of the
collision angle is isotropic, we get |M34→12|2 = 32πsσ22,
where σ22 is the total cross section. We see that isotropic colli-
sions with finite cross sections can describe the condensation
process of massless bosons with a finite rate.

At thermal equilibrium, nc does not change with time. The
two integrals in the right-hand side of Eq. (3) cancel. More
important is that both integrals will be infinitely large, when
f g
i takes the fully equilibrated Bose-Einstein distribution func-

tion, f g
i = 1/(eEi/T − 1), where T is the temperature, because

for instance,
∫ ∞

m dE3 f g
3 is logarithmically divergent for m = 0

(which also holds for finite mass). This indicates that both
the rates of g + g → g + c and g + c → g + g are infinitely
large at equilibrium. Since the main purpose of this work is
to calculate the shear viscosity of a Bose gas in the presence
of a BEC, one may argue that the infinite collision rates of
g + g → g + c and g + c → g + g would naively lead to a
vanishing shear viscosity of the gas (noncondensate) particles.
However, the collision rate is not the only determinant of
the magnitude of the shear viscosity. Another determinant
is the collision angle. In processes g + g → g + c and g +
c → g + g with massless particles, all the momenta of the
noncondensate particles before and after the collision should
be parallel. The only change after g + g → g + c and g + c →
g + g processes are the magnitudes of the momenta, but not
their directions. This corresponds to zero collision angle. One
may argue again that those collisions would not contribute
to the shear viscosity. We see that the infinite collision rate
and zero collision angle are two extremes in the condensation
processes. How the counterbalance of these two extremes will
affect the shear viscosity is an interesting and nontrivial issue,
which will be addressed in the following sections with two
different methods. One is analytical from second-order kinetic
theory [33], while another is numerical from the Green-Kubo
relation within the transport approach BAMPS [34].

III. SHEAR VISCOSITY COEFFICIENT FROM
SECOND-ORDER KINETIC THEORY

Relativistic causal dissipative hydrodynamic equations can
be derived from the kinetic theory by applying Grad’s method
of moments [30]. A detailed prescription for the derivation of
shear viscosity from the second-order kinetic theory is given
in Ref. [33].
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In this work we use the general formula of the second-order
shear viscosity derived in Ref. [33] for a special case: a mass-
less Boson system in one-dimensional Bjorken expansion
[35]. The local equilibrium distribution function of bosons is
the Bose-Einstein distribution function:

fBE (x, p) = 1

euμ pμ/T − 1
, (4)

where uμ(x) is the four-fluid velocity. For a one-dimensional
Bjorken expansion, we have uμ = (t, 0, 0, z)/τ with τ =√

t2 − z2 [35]. In the local rest frame, uμ = (1, 0, 0, 0).
The shear viscosity is a material property. Its value does

not depend on the special form of the collective motion of
the matter. The assumption of the one-dimensional Bjorken
expansion will simplify the calculation of the shear viscosity,
because in this case the heat flux qμ vanishes in the local
rest frame [36]. In addition, for massless systems, the bulk
pressure 	 becomes zero [36]. Then, the formula of the
second-order shear viscosity from Ref. [33] is reduced to

η = − παβπαβ

2TC0πμνPμν
. (5)

παβ denotes the shear tensor. We express C0 explicitly as
given in Ref. [33]:
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15

∫
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(2π )3 p0
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(euν pν/T − 1)2
.

(6)
The integral can be easily performed and we obtain C0 =
π2/(8ζ [5]T 6), where ζ [x] is the zeta-function. The functional
Pμν that is

Pμν =
∫

d3 p1

(2π )3 p0
1

pμ
1 pν

1C[ fi(x, pi )] (7)

involves interactions between particles by means of the colli-
sion term in the Boltzmann equation (1). The viscosity is the
measure of the medium response to a small disturbance, which
leads the system to deviate slightly from local equilibrium.
The one-particle phase-space distribution function f (x, p) has
then the following form (the subscripts are omitted),

f (x, p) = fBE (x, p){1 + [1 + fBE (x, p)]φ(x, p)}. (8)

Using the relativistic Grad’s 14-moment approximation
[30,37] or variational method [31], φ(x.p) is approximated up
to the second order of momentum [33,36],

φ(x, p) = C0πμν pμ pν . (9)

Since we have assumed one-dimensional Bjorken expansion,
in the local rest frame, the shear tensor takes the form πμν =
diag(0,−π̄/2,−π̄/2, π̄ ). According to Eqs. (7)–(9), Pμν will
be calculated when putting πμν into φ(x, p). We will see in
Appendix that πμνPμν is proportional to π̄2 and thus, π̄ from
the numerator and denominator of Eq. (5) cancels out. The
shear viscosity does not depend on π̄ and can be evaluated ex-
plicitly, if the matrix elements of particle interactions, which
are involved in the collision term C[ fi(x, pi )], are given.

We now calculate for the first time the second-order shear
viscosity of the noncondensate particles in the presence of
a Bose-Einstein condensate. We assume isotropic collisions
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FIG. 1. The shear viscosity of a massless Boson system as a
function of nc/(nc + ng). The result from the second-order kinetic
theory, Eq. (10), is shown by the red dashed curve, while the results
from the Green-Kubo formalism are depicted by the symbols.

with a constant cross section. A constant cross section means
that the total cross section is independent of s. The assumption
is useful for testing the numerical framework, and is always
interesting, because in kinetic theory constant isotropic cross
sections are very often used. With this assumption, some
integrals in Eq. (7) can be carried out analytically. The rest
has to be computed numerically. We obtain

η = k
T

σ22
, (10)

where

k = 48ζ [5]2

π4

[
8

45
ζ [5] − 8

63
π2ζ [3] + 1.827

+ 4nc

5π2T 3
(12ζ [3]2 − 1.504)

]−1

. (11)

The result, Eqs. (10) and (11), is new and nontrivial. The
details of the integration are presented in Appendix.

The shear viscosity is proportional to the temperature
and inversely proportional to the total cross section. For the
absence of the condensate (nc = 0) we obtain k = 1.05. This
value is smaller than that (k = 1.2) when assuming Boltzmann
statistics (neglecting the Bose factors) [38]. This shows that
the Bose factors increase the collision rate, which lowers the
shear viscosity.

From Eqs. (10) and (11) we realize that the presence of
the BEC lowers the shear viscosity. Since the number density
of noncondensate particles is ng = ζ [3]T 3/π2, η(nc)/η(nc =
0) only depends on nc/ng. In other words, the larger the
proportion of the BEC in the system, the stronger is the effect
of the BEC on the shear viscosity. By keeping ng constant
(with a fixed temperature) and varying nc, the proportion of
the BEC in the system nc/(nc + ng) will change accordingly.
With T = 0.4 GeV and σ22 = 1 mb we show in Fig. 1 the
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shear viscosity as a function of nc/(nc + ng) by the red dashed
curve. We see a decreasing shear viscosity when increasing nc.

The main result of this work is that we find a finite
and nonzero contribution of the BEC (or g + g → g + c and
g + c → g + g processes) to the shear viscosity of massless
noncondensate particles. Remember [see Eq. (3)] that the rate
for the condensation (g + g → g + c) at equilibrium is infi-
nite. The logarithmic divergence comes from the integration∫ ∞

0 dE fBE , since fBE ∼ T/E at E → 0. Because the same di-
vergence appears in the rate for the evaporation (g + c → g +
g), the net rate for the condensation at equilibrium is zero. This
shows that the gain and loss term cancel, when the collision
term of the Boltzmann equation is integrated in momentum
space. In the case of the calculation of the shear viscosity [see
Eqs. (5) and (7)], the second moment of the collision term
instead of the collision term itself is integrated. The gain and
loss terms do not cancel, but lead to a net momentum transfer.
In the single gain and loss terms, there are still divergences
due to the same reason as in the calculation of the collision
rates. We sum all gain and loss terms with divergences and
find that the term corresponding to the momentum transfer in
processes 1 + 2 ↔ 3 + 4 is E2

1 − (E2
3 + E2

4 ). Since particle 2
is the condensate particle with E2 = 0, we have E1 = E3 + E4

due to the energy conservation. Therefore, E2
1 − (E2

3 + E2
4 ) =

2E3E4 and there are only integration with the mixed term and
no integration such as

∫ ∞
0 dE3,4 f 3,4

BE . The divergences in the
gain and loss terms cancel with each other. The net momentum
transfer is finite and nonzero.

Qualitatively, collinear collisions involving a massless
BEC particle (g + g → g + c and g + c → g + g processes)
lead to a redistribution of the magnitude of momentum, which
is obviously a momentum degradation among different nearby
fluid layers, although the collision angle in such collinear
collisions is zero. The redistribution of the magnitude of
momentum gives a nonzero momentum transfer and a nonzero
contribution to the entropy production. Therefore, collinear
collisions involving a BEC particle should contribute to the
shear viscosity, as demonstrated mathematically in Appendix.
In the next section we will use a different method to calculate
the shear viscosity in the presence of a BEC, in order to prove
the result shown in this section.

IV. SHEAR VISCOSITY COEFFICIENT FROM
GREEN-KUBO RELATIONS

According to the several works by Green and Kubo
[39,40], which are motivated by Onsager’s regression hy-
pothesis [41], transport coefficients can be related to the
correlation function of the corresponding flux or tensor in
thermal equilibrium. The Green-Kubo relation for the shear
viscosity is

η = 1

10T

∫ +∞

0
dt

∫
V

d3r 〈π i j (r, t )π i j (0, 0)〉, (12)

where i, j = x, y, z and 〈· · · 〉 denotes the ensemble aver-
age in thermal equilibrium. The sum over i and j gives
〈π i j (r, t )π i j (0, 0)〉 = 10〈π xy(r, t )π xy(0, 0)〉.

Different from the one-dimensional Bjorken expansion
assumed in the previous section, we consider here a homo-

geneous static system in global thermal equilibrium. At ther-
mal equilibrium, fluctuations are still present. Thus, π xy(r, t )
fluctuates around zero. The dissipation of fluctuations leads
to the relaxation of the correlation 〈π xy(r, t )π xy(0, 0)〉 that is
determined by the shear viscosity as indicated in Eq. (12).

In this work, fluctuations are realized in BAMPS [42],
where test particles are used to represent the particle phase
space distribution function. Although the number of test parti-
cles should be high enough to ensure the high accuracy of the
solution, it is still finite, which then leads to fluctuations of
π xy(r, t ). A calculation of the shear viscosity using Green-
Kubo relations within BAMPS (but without Bose statistics
and BEC) has been done in Ref. [34]. We follow this frame-
work, but employ the newly developed BAMPS including
Bose statistics and BEC [19]. The most details on the nu-
merical implementations can be found in Refs. [19,34,43]. In
the following we briefly present the numerical procedure and
show some new numerical implementations.

We consider a static box with volume V = L3, where L is
the side length. The densities of test particles in the box are
the physical particle number densities (ng and nc) multiplied
by Ntest , which then indicates the number of test particles per
real particle. The condensate test particles are approximated
as particles with energy being less than ε = 2.5 MeV [19].
The chosen cutoff ε is small enough, so that this approx-
imation will not destroy the initial equilibrium state [19].
Initially, the spatial coordinates of test particles are sampled
homogeneously in the box. While momenta of noncondensate
test particles are sampled according to the Bose-Einstein
distribution, energies of condensate test particles are sampled
according to a uniform distribution within the interval [0, ε]
and their momenta are isotropically distributed.

The time evolution of test particles in phase space is
the consequence of particle collisions and the free moving
between two successive collisions. In BAMPS, collisions
of particles are simulated in a stochastic way according to
collision probabilities corresponding to the collision rates that
can be calculated from the collision term in the Boltzmann
equation. Collisions are realized in each spatial cell with cell
length �L within time step �t . More details on the numerical
implementations of collisions g + g → g + g, g + g → g + c,
and g + c → g + g can be found in Ref. [19].

In our calculations we average π xy(r, t ) over the space in
the box. Thus, at each time t , π xy(t ) is evaluated as

π xy(t ) = 1

V

1

Ntest

N∑
i=1

px
i py

i

Ei
, (13)

where the sum is over all N noncondensate test particles in the
box. During the time evolution of test particles, π xy will only
change, once a collision among test particles occurs, since
collisions change the momenta of colliding particles and thus,
weakens the correlation 〈π xy(t )π xy(0)〉. When test particles
hit the wall of the box, they will be moved to the opposite wall,
so that they can still stay in the box. This periodic boundary
condition dose not change π xy, since the momenta of the test
particles do not change.

We calculate π xy(t )π xy(0) in one run and obtain the cor-
relation 〈π xy(t )π xy(0)〉 by the average over a large number
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FIG. 2. Collision rate per real particle as a function of energy.
The results are obtained by employing σ22 = 1 mb and Ntest = 2400.
The proportion of BEC accounts for 30%.

of runs with different randomly sampled initial conditions.
The correlation will be put into Eq. (12) to calculate the shear
viscosity. For more technical details refer to Ref. [34].

We present now a new numerical implementation. As
we have noticed in Sec. II, the collision rates involving the
condensate particle are infinitely large. With the energy cutoff
ε for the condensate particles, these collision rates are now
finite, but still large [19]. In addition, for noncondensate parti-
cles, the Bose factor (1 + f g

1 )(1 + f g
2 ) increases the collision

rates significantly, when the momenta of colliding particles
are small. Figure 2 shows the collision rate per particle with
energy E , calculated in one time step. We see that the
collision rate increases rapidly, when the energy becomes
small. Therefore, on average, particles with smaller energy
have larger probability to collide than particles with larger
energy within one time step. In BAMPS, we compute the
collision probabilities to randomly decide whether a collision
occurs. Since the collision probability is proportional to the
time step times the collision rate and the latter becomes huge
for particles with small energy, the time step should be chosen
quite small, in order to keep the collision probability smaller
than 1. This leads to a very time consuming computation,
because within one such small time step, particles with large
energy have tiny collision probabilities, but have as much
numerical operations as particles with small energy. There-
fore, the numerical handling for particles with large energy
is inefficient. In order to make the computation more efficient,
we introduce in this work two kinds of time step, a smaller and
a larger one. If the energy of at least one of the two colliding
particles is smaller than a cutoff, Ecut, the smaller time step is
used for calculating the collision probability. If the energies of
both colliding particles are larger than Ecut, the larger time step
is used. In this way we immensely reduce the computing costs.
In the calculations we choose Ecut = 0.5 GeV empirically.

We list here settings for the numerical calculations. The
length of the box is L = 3 fm. The cell length is �L =

2−10 1−10 1 10

2−10

1−10

1

10

210

Green-Kubo, 0% (multiplied by 10)
Green-Kubo, 30%
Grad, 0% (multiplied by 10)
Grad, 30%

]3
 [

G
eV

η

 [mb]σ

FIG. 3. Shear viscosity extracted from BAMPS using the Green-
Kubo formalism (symbols). The results from Sec. III are shown by
the solid and dashed lines.

0.25 fm. We set Ntest = 2400 and perform 200 independent
runs to make ensemble averages. The temperature of the
Boson gas is T = 0.4 GeV. We assume isotropic elastic scat-
terings.

Using the Green-Kubo relation, Eq. (12), the shear viscos-
ity has been calculated for five different cross sections, as
shown in Fig. 3. The squares depict the results (multiplied
by 10) without a BEC, while the circles depict the results in
the presence of a BEC with nc/(nc + ng) = 30%. The results
from the previous section, Eqs. (10) and (11), are shown by
the solid and dashed lines for comparisons. We see excellent
agreements between the results obtained by using the Green-
Kubo relation and the Grad’s method of moments.

We have also calculated the shear viscosity for two further
BEC proportions, nc/(nc + ng) = 15%, 50%. In these cases
the total cross section is set to be 1 mb. The results together
with those for nc/(nc + ng) = 0%, 30% are shown in Fig. 1
by the circles. Again, we see perfect agreements between the
results from two different methods.

V. SHEAR VISCOSITY OF GLUONS IN
THE PRESENCE OF A BEC

For a system of massless gluons, the presence of a gluon
BEC would lower the shear viscosity as expected from the
result in the previous sections. Since the gluon number is
not conserved due to number-changing processes such as two
gluons go to three gluons and vice versa, whether a gluon
BEC can be formed (grow) is still under debate [13,24,25].
Taking a first detailed look at the collision terms corre-
sponding to g + g ↔ g + c + c processes (which are domi-
nant compared to g + g + g ↔ g + c and g + g ↔ g + g + c),
we see that f g

4 f g
5 f c

1 f c
2 (1 + f g

3 ) − f c
1 f c

2 f g
3 (1 + f g

4 )(1 + f g
5 ) is

zero for massless gluons in equilibrium, while it is neg-
ative for massive gluons with the chemical potential μ =
m. This indicates that number-changing processes cannot
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destroy a massless gluon BEC, while they do for a massive
gluon BEC. Following the similar integration that leads to
Eq. (3), we find that the Bose-Einstein condensation with a
finite rate requires an additional condition: |M45→123|2/s2 at
s = 4mE − 3m2 should be nonzero and finite. For m = 0 both
the rates of g + g → g + c + c and g + c + c → g + g are
infinitely large, similar as the rates of g + g → g + c and
g + c → g + g. Therefore, the same numerical handle with
the divergence as done for binary collisions in the previous
section would be used when including these number-changing
processes. On the other hand, for m > 0, the net rate of
the g + g → g + c + c and g + c + c → g + g processes is
negative, when μ = m. Its value depends on |M45→123|2.
Assuming |M45→123|2 to be constant, the net rate becomes
negative infinite. In this case a BEC may not occur. Whether
a pQCD motivated |M45→123|2 will lead to a different result
needs more detailed calculations. This and the effect on the
shear viscosity will be discussed in a future work. In the
current work we assume the dominance of elastic scatterings
and ignore number-changing processes g + g ↔ g + c + c,
g + g + g ↔ g + c, and g + g ↔ g + g + c. For consistency
we also ignore g + g ↔ g + g + g processes, although these
processes do not destroy the global equilibrium and could be
included to calculate the shear viscosity [34,44,45]. Under
these assumptions we expect the (temporarily) presence of
a BEC in the early stages of relativistic heavy-ion collisions
and calculate in the following the shear viscosity of a gluon
gas in the presence of a BEC within BAMPS by using the
Green-Kubo relation.

We consider a gluon system in thermal equilibrium with
a BEC, which may be formed from a nonequilibrium and
overpopulated gluon system produced as an initial state in
ultrarelativistic heavy-ion collisions. A simplified form of
such an initial distribution of gluons is [8]

finit (p) = f0θ (Qs − |p|). (14)

Immediate equilibration would lead to the formation of a
BEC for f0 > 0.154 [10] according to the number and energy
conservation. It was shown in Ref. [19] that at equilibrium,

nc = ntotal

[
1 − ζ (3)

6

π3

(
15

4

)3/4( 1

f0

)1/4
]
, (15)

T =
(

15 f0

4

)1/4 Qs

π
, (16)

where ntotal = dG f0Q3
s /(6π2) is obtained from the initial dis-

tribution (14). dG = 16 is the degeneracy factor of gluons.
For Qs = 1 GeV and f0 = 1.0 we have nc/ntotal = 37% and
T = 0.443 GeV. If gluon scatterings were isotropic, one
could obtain the effect of the presence of BEC on the
gluon shear viscosity according to Eqs. (10) and (11) :
η(37% BEC)/η(No BEC) = 0.846.

Different from isotropic scatterings, the matrix element of
the elastic scattering of gluons has the following form:

|Mgg→gg|2 ≈ 144π2α2
s

s2

t
(
t − m2

D

) , (17)

which has been calculated by using the Hard-Thermal-Loop
(HTL) treatment [27,46]. s and t are the Mandelstam variables
and mD is the Debye screening mass. In thermal equilibrium
we have mD = √

4παsT [19]. We set αs = 0.3. The total cross
section is logarithmically divergent, which is regularized by
an upper cutoff of t [19].

Using BAMPS we evolve an equilibrium gluon system
with (or without) a BEC in a box. We set T = 0.443 GeV and
nc/ntotal = 37%, (or 0%). The numerical implementations for
pQCD scatterings are the same as established in Ref. [19].
We calculate the shear viscosity of gluons from the Green-
Kubo relation given in the previous section and obtain η/s =
0.438(with BEC) and η/s = 0.531(No BEC). Here, s denotes
the entropy density. At equilibrium, s = dG2π2T 3/45. The
gluon BEC has no contribution to the total entropy. We find
that the ratio of the shear viscosity with BEC over the shear
viscosity without BEC is 0.825, which is almost the same as
that calculated with isotropic scatterings. This suggests that
the effect of the presence of BEC on the shear viscosity is
insensitive to the detail of scatterings.

VI. CONCLUSIONS

In this paper we have calculated for the first time the
shear viscosity of ultrarelativistic Boson systems in the pres-
ence of a BEC. For a special case of massless bosons with
isotropic elastic collisions, the shear viscosity can be derived
analytically by applying the Grad’s method, see Eqs. (10)
and (11). We found that the presence of BEC or more
precisely, the interactions corresponding to the condensa-
tion lower the shear viscosity. The larger the proportion of
BEC in the Boson system, the stronger is the reduction
of the shear viscosity. This analytical result is confirmed
by comparing with the numerical result obtained by us-
ing the Green-Kubo relations within the transport approach
BAMPS. The agreement between these results in turn demon-
strated the correct numerical implementations in the BAMPS
simulations.

The advantage of the BAMPS simulations over the inte-
grals in the Grad’s method is that the computational expenses
in the BAMPS simulations are same for any form of the
matrix element of elastic scatterings, while the integrals in
the Grad’s method can be carried out or reduced to integrals
with lower dimensions only for simple forms of the matrix
element. In addition, the current BAMPS simulations can be
easily extended to apply to systems with massive particles.
For a gluon system, the matrix element of elastic scatterings
calculated from pQCD is more complicated than the isotropic
form. We, thus, use the BAMPS simulations to calculate the
shear viscosity of a gluon system in the presence of a BEC.
Our results showed that a potential formation of a BEC in
the early stage of heavy-ion collisions will reduce the shear
viscosity of gluons. The reduction of the shear viscosity due to
the presence of BEC is insensitive to the detail of interactions.
Thus, the analytical formula of the shear viscosity, Eqs. (10)
and (11), obtained for isotropic scatterings, can be used to
estimate the effect of the BEC on the shear viscosity of
gluons.
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APPENDIX: INTEGRATION IN EQ. (7)

In this Appendix we perform the integration πμνPμν in
Eq. (7) to obtain the result summarized in Eqs. (10) and (11).
With πμν = diag(0,−π̄/2,−π̄/2, π̄ ) we have

πμνPμν = 2πμν

∫
d�1 pμ

1 pν
1C[ fi]

= −π̄

∫
d�1(E2

1 − 3p2
1z

)
C[ fi]

= − π̄

4

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)|M34→12|2

× [
f g
3 f g

4

(
1 + f g

1

)(
1 + f g

2

) + f g
3 f g

4

(
1 + f g

1

)
f c
2 + f c

3 f g
4

(
1 + f g

1

)(
1 + f g

2

) + f g
3 f c

4

(
1 + f g

1

)(
1 + f g

2

)
− f g

1 f g
2

(
1 + f g

3

)(
1 + f g

4

) − f g
1 f c

2

(
1 + f g

3

)(
1 + f g

4

) − f g
1 f g

2 f c
3

(
1 + f g

4

) − f g
1 f g

2

(
1 + f g

3

)
f c
4

]
×(2π )4δ(4)(p3 + p4 − p1 − p2). (A1)

We put f g
i = f BE

i [1 + (1 + f BE
i )φi] in Eq. (A1) with

φi = C0πi,μν pμ
i pν

i = − π̄

2
C0

(
E2

i − 3p2
iz

)
. (A2)

The sum of integrals with zero power of φi vanishes, since the collision term vanishes at equilibrium. We calculate integrals
with first power of φi. Integrals with higher power are neglected. Therefore, πμνPμν is proportional to π̄2. π̄2 from παβπαβ and
πμνPμν in Eq. (5) cancel out. Thus, η does not depend on the magnitude of π̄ .

Some integrals can be carried out analytically. The rest has to be calculated numerically. The result is

πμνPμν = −
[

8

45
ζ [5] − 8

63
π2ζ [3] − A1 − A2 + 4

5π2

nc

T 3
(12ζ [3]2 + B)

]
π̄2C0σ22T 10, (A3)

where

A1 = 1

16T 10

∫
d�3d�4s4

(
E2

3 − 3p2
3z

)(
3β2

z − 1
)

f BE
3 f BE

4

∫ 1

−1
du′

1

(
1 − 3u′2

1

)
(E − Pu′

1)−4

× {(
1 + f BE

3

)
f BE [E − s/(E − Pu′

1)/2] + f BE
3 f BE [s/(E − Pu′

1)/2] − f BE [s/(E − Pu′
1)/2]2

}
, (A4)

A2 = 1

T 10

∫
d�1d�2s

(
E2

1 − 3p2
1z + E2

2 − 3p2
2z

)(
E2

1 − 3p2
1z

){T

P

[
f BE (E ) − f BE

2

]
ln

f BE [(E − P)/2]

f BE [(E + P)/2]
− 1

2
f BE (E )

}

× f BE
1

(
1 + f BE

1

)
, (A5)

B =
∫ 1

0
dx1

∫ 1

0
dx2

x1(ln x1)3

(1 − x1)2

(ln x2)2

1 − x1x2
. (A6)

Remember that E = E3 + E4 is the total energy and P = p3 + p4 is the total momentum. A1, A2, and B can only be calculated
numerically. In the following we carry out explicitly three integrals in Eq. (A1) as examples.

1. First integral

I1 = − π̄

4

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)|M34→12|22 f BE
3 f BE

4

(
1 + f BE

3

)
φ3(2π )4δ(4)(p3 + p4 − p1 − p2)

= 1

4
π̄2C0

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)(
E2

3 − 3p2
3z

)|M34→12|2 f BE
3 f BE

4

(
1 + f BE

3

)
(2π )4δ(4)(p3 + p4 − p1 − p2).

(A7)
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This integral corresponds to scatterings among noncondensate particles, g + g → g + g. Remember that |M34→12|2 = 32πsσ22

for isotropic elastic scatterings, where s = (p1 + p2)2 = (p3 + p4)2. We have assumed constant cross section σ22.
At first, we integrate over d�2 with help of δ(3)(p3 + p4 − p1 − p2) and obtain

I1 = π

2
π̄2C0

∫
d�3d�4

(
E2

3 − 3p2
3z

)|M34→12|2 f BE
3 f BE

4

(
1 + f BE

3

) ∫
d�1

E2
1 − 3p2

1z

2(E − E1)
δ[F (p1)]. (A8)

F (p1) indicates the energy conservation

F (p1) = E − E1 − E2 = E − E1 −
√

(P − p1)2. (A9)

Second we integrate over d�1. To do it, we rotate the coordinate system p̂ to a new one p̂′ with p̂′
z paralleling to P. In the new

coordinate system, E , |P| ≡ P, E1, and the angle between P and p1 are unchanged. p1z is transferred to

p1z = −p′
1xβx − p′

1yβy + p′
1zβz (A10)

where βx, βy, and βz are the cosine of angles between P and the old coordinate axes, p̂x, p̂y, and p̂z, respectively. It is easy to
prove that β2

x + β2
y + β2

z = 1. The integral over d�1 in Eq. (A8) is evaluated in the new coordinate system∫
d�′

1
1

2(E − E ′
1)

[
E ′

1
2 − 3(−p′

1xβx − p′
1yβy + p′

1zβz )2
]
δ[F (p′

1)]

=
∫

p′
1

2d p′
1 sin θ ′

1dθ ′
1dφ′

1

(2π )32E ′
1

1

2(E − E ′
1)

E ′
1

2[1 − 3(sin θ ′
1 cos φ′

1βx + sin θ ′
1 sin φ′

1βy − cos θ ′
1βz )2]δ[F (p′

1)], (A11)

where

F (p′
1) = E − E ′

1 −
√

P2 + E ′
1

2 − 2PE ′
1 cos θ ′

1. (A12)

By integrating over φ′
1, Eq. (A11) is equal to

3β2
z − 1

32π2

∫
dE ′

1d cos θ ′
1

E ′
1

3

E − E ′
1

(1 − 3 cos2 θ ′
1)δ[F (p′

1)]. (A13)

With

δ[F ] = δ(E ′
1 − Ē ′

1)

|∂F/∂E ′
1|

= E − E ′
1

E − P cos θ ′
1

δ(E ′
1 − Ē ′

1), (A14)

where Ē ′
1 = (E2 − P2)/[2(E − P cos θ ′

1)] is the solution of E ′
1 in F = 0, we perform the integral in Eq. (A13) over E ′

1 and obtain

3β2
z − 1

256π2
(E2 − P2)3

∫ 1

−1
d cos θ ′

1
1 − 3 cos2 θ ′

1

(E − P cos θ ′
1)4

= 1 − 3β2
z

48π2
P2. (A15)

Putting the integral over �1, Eq. (A15), and |M34→12|2 = 32πsσ22 into Eq. (A8), we have

I1 = 1

3
π̄2C0σ22

∫
d3 p3

(2π )32E3

d3 p4

(2π )32E4
f BE
3 f BE

4

(
1 + f BE

3

)(
E2

3 − 3p2
3z

)
s
(
1 − 3β2

z

)
P2, (A16)

where s = E2 − P2, βz = P · p̂z/P = (p3z + p4z )/P, and

P = (p3 + p4)1/2 = {
p2

3 + p2
4 + 2p3 p4[cos θ3 cos θ4 + sin θ3 sin θ4 cos(φ3 − φ4)]

}1/2
. (A17)

Integrating over φ3 and φ4 gives

I1 = 1

96π4
π̄2C0σ22

∫
dE3du3dE4du4 f BE

3 f BE
4

(
1 + f BE

3

)
E4

3 E2
4

(
1 − 3u2

3

)[
3E3E4u2

3u2
4 − (

3E2
3 − E3E4

)
u2

3

− (
3E2

4 − E3E4
)
u2

4 + (
E2

3 + E2
4 + E3E4

)]
, (A18)

where u3 = cos θ3 and u4 = cos θ4. By further integral over u3, u4, E3, and E4 we obtain

I1 = 1

96π4
π̄2C0σ22

∫
dE3dE4 f BE

3 f BE
4

(
1 + f BE

3

)
E4

3 E2
4

(
16

5
E2

3 − 32

15
E3E4

)
= 8

315
(2π2ζ [3] − 7ζ [5])π̄2C0σ22T 10.

(A19)
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2. Second integral

I2 = − π̄

4

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)|M34→12|22 f BE
2 f BE

3 f BE
4

(
1 + f BE

3

)
φ3(2π )4δ(4)(p3 + p4 − p1 − p2)

= 1

4
π̄2C0

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)(
E2

3 − 3p2
3z

)|M34→12|2 f BE
2 f BE

3 f BE
4

(
1 + f BE

3

)
(2π )4δ(4)(p3 + p4 − p1 − p2).

(A20)

The only difference of I2 from I1 is the additional multiplier f BE
2 (E2), which changed to f BE (E − E1) by the integral over �2

due to the energy conservation. We follow the integration in the previous section until Eq. (A15). Instead of Eq. (A15) we have
now

3β2
z − 1

256π2
(E2 − P2)3

∫ 1

−1
d cos θ ′

1
1 − 3 cos2 θ ′

1

(E − P cos θ ′
1)4

f BE (E − Ē ′
1)

= 3β2
z − 1

256π2
(E2 − P2)3

∫ 1

−1
d cos θ ′

1
1 − 3 cos2 θ ′

1

(E − P cos θ ′
1)4

f BE [E − s/(E − Pu′
1)/2] (A21)

which can only be calculated numerically.
3. Third integral

I3 = − π̄

4

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)|M34→12|22 f c
2 f BE

3 f BE
4

(
1 + f BE

3

)
φ3(2π )4δ(4)(p3 + p4 − p1 − p2)

= 2π3π̄2C0nc

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)(
E2

3 − 3p2
3z

)|M34→12|2δ(3)(p2) f BE
3 f BE

4

(
1 + f BE

3

)
× (2π )4δ(4)(p3 + p4 − p1 − p2). (A22)

The only difference of I3 from I1 is the additional multiplier f c
2 = (2π )3ncδ

(3)(p2). Thus, this integral corresponds to scatterings
between condensate and noncondensate particles, g + g → c + g or c + g → g + g. Remember that for these scatterings to occur,
|M34→12|2/s should be finite at s = 2mE , see Eq. (3). For isotropic scatterings |M34→12|2/s = 32πσ22 is finite for finite cross
sections.

We integrate first over d�1 with help of δ(3)(p3 + p4 − p1 − p2) and obtain

I3 = 4π4π̄2C0nc
|M34→12|2

s

∫
d�3d�4

(
E2

3 − 3p2
3z

)
2mE f BE

4 f BE
3

(
1 + f BE

3

)

×
∫

d�2
(E − E2)2 − 3(Pz − p2z )2

2(E − E2)
δ(3)(p2)δ[F (p2)], (A23)

where

F (p2) = E − E2 −
√

(P − p2)2 + m2. (A24)

m is the rest mass of particles. We will let m to equal zero at the end of the integration.
Using the identity ∫

dE2d3 p2δ
(
E2

2 − p2
2 − m2

) =
∫

d3 p2

2E2
, (A25)

the integral over �2 is expressed to∫
1

(2π )3
dE2d3 p2

(E − E2)2 − 3(Pz − p2z )2

2(E − E2)
δ
(
E2

2 − p2
2 − m2)δ(3)(p2)δ[F (p2)]. (A26)

The integration over p2 gives∫
1

(2π )3
dE2

(E − E2)2 − 3P2
z

2(E − E2)
δ
(
E2

2 − m2
)
δ(E − E2 −

√
P2 + m2) = 1

(2π )3

P2 + m2 − 3P2
z

2
√

P2 + m2
δ[(E −

√
P2 + m2)2 − m2].

(A27)
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Putting the integral over �2, Eq. (A27), into Eq. (A23), we have

I3 = 8π2π̄2C0σ22nc

∫
d�3d�4 f BE

4 f BE
3

(
1 + f BE

3

)(
E2

3 − 3p2
3z

)
2mE

P2 + m2 − 3P2
z√

P2 + m2
δ[(E −

√
P2 + m2)2 − m2]. (A28)

We define G = (E − √
P2 + m2)2 − m2. According to Eq. (A17) we obtain

δ(G) =
2∑

k=1

δ(φ4 − φ̄4,k )

|∂G/∂φ4| =
√

P2 + m2
∑2

k=1 δ(φ4 − φ̄4,k )

2mp3 p4

√
1 − A2 + 2Au3u4 − u2

3 − u2
4

, (A29)

where A ≡ (E3 − m)(E4 − m)/p3/p4 and φ̄4,1 and φ̄4,2 are two solutions of φ4 in G = 0, since cosine of α1 and α2 = 2π − α1

are equal. G = 0 also leads to P2 + m2 = (E − m)2. The integral over φ4 gives a factor of 2 because of two solutions and the
further integral over φ3 gives a factor of 2π . Then we have

I3 = 1

(2π )3
π̄2C0σ22nc

∫
d p3d p4

p3 p4

E3E4
E f BE

4 f BE
3

(
1 + f BE

3

) ∫
du3du4

(
E2

3 − 3p2
3u2

3

) (E − m)2 − 3(p3u3 + p4u4)2√
1 − A2 + 2Au3u4 − u2

3 − u2
4

.

(A30)

The upper and lower boundary of u4 are the solutions of 1 − A2 + 2Au3u4 − u2
3 − u2

4 = 0. Beyond these boundaries the square
root in Eq. (A30) is negative. We integrate over u4 and obtain

I3 = 1

(2π )3
π̄2C0σ22nc

∫
d p3d p4

p3 p4

E3E4
E f BE

4 f BE
3

(
1 + f BE

3

) ∫
du3

(
E2

3 − 3p2
3u2

3

)
π

{
(E − m)2 − 3u2

3 p2
3 − 3

2

[
1 − A

− (1 − 3A2)u2
3

]
p2

4 − 6Au2
3 p3 p4

}
. (A31)

We now let the mass m to be zero, which leads to A = 1, p3 = E3, p4 = E4. With these we perform the integration in Eq. (A31)
over u3, E3, and E4 and obtain

I3 = 1

8π2
π̄2C0σ22nc

∫
dE3dE4(E3 + E4)3E2

3 f BE
4 f BE

3

(
1 + f BE

3

) ∫ 1

−1
du3

(
1 − 3u2

3

)2

= 1

5π2
π̄2C0σ22nc

∫
dE3dE4(E3 + E4)3E2

3 f BE
4 f BE

3

(
1 + f BE

3

)

= 1

5π2

(
7π6

45
+ 36ζ [3]2 + 5!ζ [5]

∫ ∞

0
dx

1

ex − 1

)
π̄2C0σ22ncT 7. (A32)

The integral over x is logarithmically divergent, which will cancel with the corresponding term of the integral

π̄

4

∫
d�1d�2d�3d�4

(
E2

1 − 3p2
1z

)|M34→12|22 f c
4 f BE

1 f BE
2

(
1 + f BE

1

)
φ1(2π )4δ(4)(p3 + p4 − p1 − p2). (A33)
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