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Nucleon properties in the Polyakov quark-meson model
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We study the nucleon as a nontopological soliton in a quark medium as well as in a nucleon medium in terms of
the Polyakov quark-meson (PQM) model with two flavors at finite temperature and density. The constituent quark
masses evolving with the temperature at various baryon chemical potentials are calculated and the equations of
motion are solved according to the proper boundary conditions. The PQM model predicts an increasing size of
the nucleon and a reduction of the nucleon mass in both hot environment. However, the phase structure is different
from each other in quark and nucleon mediums. There is a crossover in the low-density region and a first-order
phase transition in the high-density region in quark medium, whereas there exists a crossover characterized by
the overlap of the nucleons in nucleon medium.
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I. INTRODUCTION

QCD as a theory of strong interaction is applied to under-
stand how the conversion from hadrons to the quark-gluon
plasma (QGP) is related to a restoration of the chiral symmetry
and a deconfinement. This is a topic of great interest related
to the physics of heavy-ion collisions (HIC) at ultrarelativis-
tic energies as well as to the processes in the interior of
compact stars [1–3]. However, because of the property of
confinement at low energy scales, even though remarkable
achievements have been made currently in lattice QCD [4,5],
the analytical and numerical calculations directly from QCD
are hindered. We still lack the capabilities to describe the
low-energy nonperturbative phenomena in the framework of
QCD theory, especially when baryons are involved in the
hadron phase. Therefore, it is usually to apply effective models
to study the nonperturbative structure of the QCD vacuum,
such as the Nambu–Jona–Lasinio (NJL) model [6,7], the
linear sigma model with quarks (or the quark-meson model)
[8,9], the Brueckner–Hartree–Fock (BHF) theory [10], and the
relativistic mean-field (RMF) model [11,12].

The quark-meson (QM) model is the simplest purely quark
model which incorporates the chiral symmetry and allows for
its spontaneous breaking. At finite temperature and density,
based on a nontopological soliton model, the QM model
shows a significant success in describing meson and nucleon
properties both in vacuum and in a thermal medium [13–19].
Whereas the bulk thermodynamics and QCD phase structure
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obtained in the QM model with the mean-field approximation
deviate from the lattice QCD simulations and the experimental
data. Furthermore, the nontopological soliton model based
on the QM model seriously predicted that there is only a
first-order phase transition in whole phase plane and the
critical temperature is relatively small around Tc ∼ 110 MeV.
To cure these problems, the confinement effect associated
with the Polyakov loop dynamics was implemented in the
QM model [20–25], and the nontopological soliton solutions
in the Polyakov quark-meson (PQM) model including the
renormalized fermionic vacuum were solved in Ref. [26]. In
these works, it was shown that the inclusion of the Polyakov
loop is necessary and important compared with lattice QCD
simulations. Quite encouragingly, after assuming that the
thermal medium in the hadron phase can be approximately
replaced by a uniform quark medium, the PQM model really
gives a reasonable critical deconfinement temperature about
177 MeV for zero baryon chemical potential and a standard
QCD phase diagram in agreement with the lattice data and the
predictions of other phenomenological models [2,3].

In this work, we continue to study a nontopological soliton
solution of the PQM model at finite temperature and density
but with hot matter considered as a nucleon medium rather
than a as quark medium, as adopted in our previous studies
[17,26]. In this case, we merely take into account the nuclear
degrees of freedom in the hadron phase before the QCD
phase transition. The active quark degrees of freedom will be
excluded at the nuclear matter density. On the other hand, in
the hadron phase, at first, the quarks get constituent masses
due to the spontaneous chiral symmetry breaking and they
have to bind together to form a nucleon as the bound state or
soliton due to the confinement. Then, similar to the approach of
the constituent quark model [27–29], the meson fields which
mimic nucleon interactions, act on quarks inside a nucleon
and change the nucleon properties in the nuclear medium. In
particular, the σ meson is considered as the amount related
with the change of the chiral condensate in nuclear medium.
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Therefore, it is natural to get the reduction of the constituent
quark mass inside the nucleon in a nucleon medium.

Besides our current works, based on an alternative topolog-
ical soliton model of the nucleon [30,31], the modifications
of baryon properties due to the restoration of chiral symmetry
in an external hot and dense thermal medium have been pre-
viously investigated in a chiral soliton model with or without
explicit vector mesons [32]. In these studies, the nucleon now
arises as a topological soliton of the NJL model or the Skyrme
model [33,34], but the parameters of which are chosen to be
the medium-modified meson values evaluated within the chiral
perturbation theory or the NJL model [35,36], respectively.
Actually, these two different parameters settings correspond
to two different ways for the nucleon to be embedded in a hot
thermal medium. In the former case, the nucleon is treated
as a baryon-number-one topological soliton immersed in a
medium of hot pion gas [37], while in the latter case, the
nucleon is to be dipped in a medium of hot quark matter
[38,39]. Our present study will extend these previous works to
a more realistic scenario by considering the thermal medium
in a hadron phase as hot nucleon matter. In such a hybrid
nontopological soliton model, similar to the approach of the
RMF model, the nucleons as a B = 1 soliton in a hot medium
are coupled directly to the meson fields in order to respect
to some extent confinement before the phase transition. This
kind of extension will make the present model more suitable for
a self-consistent thermodynamical description of the hadron-
quark phase transition.

The paper is organized as follows: first we introduce the two
flavors of the Polyakov-loop extended quark-meson model and
fix its parameters in Sec. II. In Sec. III, we study constituent
quark masses at finite temperature and density in present a
model when a hot medium is considered as the quark and
the nucleon medium. The types of the QCD phase transition
are also discussed in this section. In Sec. IV, after obtaining
the constituent quark mass for the valence quark, we solve
the nontopological soliton as a nucleon in quark and nucleon
mediums, respectively. Nucleon properties, such as the mass
and radius, are also investigated carefully and extensively.
The QCD phase structure is also addressed at the end of this
section. We conclude with a summary and discussions in the
last section.

II. MODEL FORMULATION

We use the QM model with Nf = 2 flavor quarks coupled to
a spatially constant time-dependent gauge field as background,
representing Polyakov loop dynamics to formulate the PQM
[20]. The associated Lagrangian is given as

L = ψ[iγ μDμ − g(σ + iγ5 �τ · �π )]ψ + 1

2
(∂μσ∂μσ

+ ∂μ �π · ∂μ �π ) − U (σ,�π ) − U (�,�∗,T ). (1)

Here, the chiral part of the Lagrangian with quarks and mesons
has SUL(2) ⊗ SUR(2) symmetry, which is spontaneously bro-
ken in the vacuum. U (�,�∗,T ) represents the temperature-
dependent effective potential and is constructed to reproduce
the thermodynamical behavior of the Polyakov loop for the
pure gauge case, in reasonable agreement with the recent lattice

QCD results, and it has the Z(3) center symmetry like the pure
gauge QCD Lagrangian.

A possible form of the Polyakov loop potential is the poly-
nomial parametrization based on a Ginzburg–Landau ansatz
[20,40],

U (�,�∗,T )

T 4
= −b2(T )

4
(|�|2 + |�∗|2) − b3

6
(�3 + �∗3)

+ b4

16
(|�|2 + |�∗|2)2, (2)

with the temperature-dependent coefficient b2 defined as

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (3)

The parameters in this formula are adjusted to the lattice data
for the pure gauge theory thermodynamics and are listed as

a0 = 6.75, a1 = −1.95, a2 = 2.625,

a3 = −7.44, b3 = 0.75, b4 = 7.5. (4)

The remaining parameter T0 for deconfinement in the pure
gauge sector is fixed at T0 = 208 MeV for two flavors [20,23],
in agreement with the lattice data. Another possible logarithmic
parametrization for the effective potential of the Polyakov
loop is also provided by the work in Ref. [41]; however, the
particular choice made for this work does not influence the
main conclusions of our work.

Following the standard procedure in the mean-field approx-
imation as given in the work of Ref. [9], one can obtain the
expression for the grand canonical potential as the summation
contributions of pure gauge field, meson, and quark and
antiquark evaluated in the Polyakov loop,

	MF(T ,μ,σ,�,�∗) = U (σ,�π ) + U (�,�∗,T ) + 	
reg
ψ̄ψ

+	th
ψ̄ψ

.

(5)

The pure mesonic potential including σ and �π is defined as

U (σ,�π ) = λ

4
(σ 2 + �π2 − ϑ2)2 − Hσ − m4

π

4λ
+ f 2

π m2
π . (6)

Here, λ is quartic coupling of the mesonic fields, ϑ is the
vacuum expectation value of scalar field when chiral symmetry
is explicitly broken, and the constant H is fixed by the PCAC
relation which gives H = fπm2

π . The third term in Eq. (5)
denotes the renormalized contribution of the fermion vacuum
loop, which reads [22,23],

	
reg
ψ̄ψ

= −NcNf

8π2
M4

q ln

(
Mq

�

)
, (7)

where Nf = 2, Nc = 3 and the modified quark dispersion is
Eq = ( �p 2 + M2

q )1/2. The constituent quark (antiquark) mass
Mq is defined as Mq = gσv together with σv ≡ (σ 2 + �π 2)1/2.
Furthermore, the quark-antiquark contribution in the presence
of the Polyakov loop dynamics is written as

	th
ψ̄ψ

= −2Nf T

∫
d3 �p

(2π )3
[lng+

q + lng−
q ]. (8)
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The expressions g+
q and g−

q are defined as the trace over color
space,

g+
q = [1 + 3(� + �∗e−(Eq−μ)/T )e−(Eq−μ)/T + e−3(Eq−μ)/T ],

g−
q = [1 + 3(�∗ + �e−(Eq+μ)/T )e−(Eq+μ)/T + e−3(Eq+μ)/T ].

(9)

Here, μ denotes the quark chemical potentials and is one-third
of the baryon chemical potential, μ = μB/3.

In the PQM model, one can get the chiral condensate σ , and
the Polyakov loop expectation values �. �∗ is a function of T
and μ by searching the global minima of the grand canonical
potential, i.e., the derivative thermodynamical potential in
Eq. (5) with respect to σ , �, and �∗,

∂	MF

∂σ
= 0,

∂	MF

∂�
= 0,

∂	MF

∂�∗ = 0. (10)

We take the values fπ = 93 MeV, corresponding to the
pion decay constant and mπ = 138 MeV is the pion mass in
our numerical computation. Unlike the pion, the mass of the σ
meson still has a poorly known value, but the most recent result
of the Particle Data Group considers that mσ can vary from 400
to 550 MeV with full width 400–700 MeV [42]. The coupling
constant g is usually fixed by the constituent quark mass in
vacuum within the range of 300 ∼ 500 MeV, which gives g �
3.3 ∼ 5.3. To confront with the static properties of nucleon in
vacuum, we take mσ = 472 MeV and g = 4.5 as the typical
value. It has been proved in Refs. [17,26] that this parameter set
can successfully describe the properties of nucleon in vacuum.

III. CONSTITUENT QUARK MASS IN QUARK
AND NUCLEON MEDIUM

We study the constituent quark masses at finite temperature
and density based on two different scenarios. First, the quarks
inside the nucleon are embedded in a homogeneous back-
ground thermal medium filled with unbound quarks having a
constituent mass Mq . Second, the quarks of the nucleon are
immersed in a medium of nucleons owing to confinement,
which should be relevant in hadron phase before the QCD
phase transition.

These two treatments correspond to different roles played
by the meson fields in the thermal medium. In the former sce-
nario, the meson fields are coupled directly to the constituent
quarks, and the chiral condensate leads to a modification of the
meson properties. Hence, we are able to directly calculate the
meson masses and the constituent quark mass for a given chiral
condensate in vacuum as well as in a thermal quark medium.
However, for the latter scenario, similarly to the quark-mean
field (QMF) model for nuclear matter [29], in the hadron level,
the mesons are coupled to the nucleons of the Fermi sea. The
nucleon effective mass and the mean σ̄ field are determined
by the scalar number densities of the nucleons [12,43], but in
the quark level, the quarks get their constituent masses due to
spontaneous chiral symmetry breaking, and the σ̄ mean field is
interpreted as the amount related with the change of the chiral
condensate in nuclear medium.

FIG. 1. Constituent quark masses Mq as functions of temperature
for μ = 0 MeV and μ = 320 MeV. The solid curves are for μ =
0 MeV and the dash-dotted curves are for μ = 320 MeV.

A. Quark medium

In this section, we consider a thermal medium as a Fermi
sea of quarks. In this case at finite temperature and density,
the single quarks from the Dirac sea are allowed to be excited
and occupy levels in the positive part of the Fermi sea but
leaving antiquarks in the Dirac sea. After obtaining the grand
canonical potential 	MF(T ,μ,σ,�,�∗) in the presence of the
renormalized fermionic vacuum term, one can easily get the
chiral condensate σ , and the Polyakov loop expectation values
� and �∗ as a function of the temperature for zero and nonzero
quark chemical potentials by solving the coupled gap equations
(10).

The results for the constituent mass Mq as a function
of temperature for different quark chemical potentials are
presented in Fig. 1. The temperature behavior of the constituent
masses show that the system experiences a smooth crossover at
zero quark chemical potential, while there is a first-order phase
transition for some larger quark chemical potential due to the
fact that the constituent mass makes a jump across the gap of
the mass near the critical temperature. Usually, the temperature
derivative of the constituent mass for a u quark or a d quark
has a peak at a specific temperature, which is established as the
critical temperature for the chiral phase transition. Hence, for
zero quark chemical potential, the chiral restoration occurs at
T c

χ � 201 MeV, whereas for a relatively larger quark chemical
potential μ = 320 MeV, the critical temperature moves to the
lower region around T c

χ � 106 MeV.
For the QCD phase diagram, thus, at the low quark chemical

potential region, it is a crossover between the hadronic phase
and quark gluon plasma phase, but at the large quark chemical
potential region, the PQM model predicts that the phase
transition is of first-order and there should exist a so-called
QCD critical endpoint (CEP) as the endpoint of the first-
order phase boundary [20,23,26]. Finding the signature of the
QCD phase transition and the CEP at high-baryon-density
region are the main goals of the beam energy scan (BES)
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programs at the Relativistic Heavy-Ion Collider (RHIC) [44]
and the Super-Proton Synchrotron (SPS) facilities [45]. We
believe that the experimental confirmation of the existence of
the CEP will be an excellent verification of QCD theory in the
nonperturbative region and a milestone of exploring the QCD
phase structure [1,2,46].

B. Nucleon medium

In the previous section, we considered a thermal medium
as a quark medium with the constituent quark embedded in it.
This consideration is acceptable especially for the quark phase
after the QCD phase transition in the high-energy region where
the quarks are set to be free and the single quarks from the
Dirac sea are allowed to be excited and occupy levels in the
positive part of the spectrum leaving antiquarks in the Dirac
sea. However, because of confinement, only the nucleons and
mesons are taken as the active degrees of freedom in hadron
phase. Thus, as an alternative to the previous consideration,
in this section we would rather treat the thermal medium as
a Fermi sea of nucleons. In this case, the quarks in a nucleon
are directly coupled to the scalar and vector meson fields. The
nucleon properties change according to the strengths of the
mean fields acting on the quarks. In other words, the quarks
get constituent masses due to spontaneous chiral symmetry
breaking in the vacuum and nearly-zero-mass pions are taken
as the Nambu–Goldstone bosons, but in nuclear medium these
constituent quark masses are changed accordingly to the mean
σ̄ field, which simulates the interactions between nucleons in
a dense medium. Therefore, it is natural to get the reduction of
the constituent quark mass in the nucleon inside of nuclei or
nuclear matter.

To realize the above phenomenological viewpoint, we begin
with the PQM model of the quark many-body system. In
vacuum, the Lagrangian in Eq. (1) is reduced to a simple QM
model as the Polyakov-loop variables setting to zero, and the
thermodynamic grand potential in Eq. (5) becomes the purely
mesonic potential equation (6). When the chiral symmetry is
spontaneously broken in the vacuum, the expectation values of
the meson fields are 〈σ 〉 = fπ and 〈π〉 = 0, and the constituent
quark mass M0

q in vacuum is defined to be

M0
q = gfπ = 418.5 MeV. (11)

After obtaining the constituent quark mass in vacuum, the
next step is to generate the nucleon system under the influence
of the meson mean fields in nuclear medium. Following
the constituent quark model [27] or the QMF model [28,29],
the quarks in a nucleon are directly coupled with the scalar σ̄
mean field, which mimics the attractive parts of the nuclear
interaction between nucleons in nuclear matter or nuclei.
Assuming the meson mean fields are constant within the small
nucleon volume, the constituent quark mass influenced by the
σ̄ mean field is modified as

M∗
q = gσv = M0

q + gσ̄ , (12)

where the chiral condensate in a nucleon medium is
σv = fπ + σ̄ .

Unfortunately, the scalar σ̄ mean fields cannot be self-
consistently determined for a given temperature and density

in the present PQM model, since the scalar σ field and its
vacuum expectation value cannot serve as the chiral partner of
the pion, the generator of the nucleon mass, and the mediator
of scalar attraction for nucleons, simultaneously, as discussed
in Refs. [47,48]. To avoid this problem, in this work we
take a simplified approximation by requiring that the chiral
condensate is a function of the scalar σ̄ mean field in Eq. (12)
for a nucleon in nuclear medium, this kind of the scenario is
also adopted in the QMF model [28,29].

To perform the calculations of the scalar σ̄ mean fields in
nuclear matter, we use the RMF model based on local renor-
malizable Lagrangian densities containing nucleons, neutral
scalar (σ̄ ), and vector ω, ρ mesons. The simple Lagrangian
density of the RMF model in nuclear matter is described as

L = ψ̄N [iγμ∂μ − (MN + gσN σ̄ ) − gωNγ μωμ

− gρNγ μ�τN · �ρμ]ψN − 1

2
m2

σ σ̄ 2 − 1

3
g2σ̄

3 − 1

4
g3σ̄

4

+ 1

2
m2

ωω2 + 1

4
c3ω

4 + 1

2
m2

ρρ
2, (13)

where the arrows denote the isospin vectors of ρ meson
and τN the isospin Pauli operator of nucleon. The coupling
constants between mesons and nucleon, and the strengths of
self-interaction of mesons, gσN , gωN , gρN , g2, g3, and c3 are
determined by the empirical saturation properties of infinite
nuclear matter and experimental data of stable finite nuclei. In
this work, the TM1 parameter set is used, which has achieved a
lot of successes in description of the nuclear many-body system
[49].

The equations of motion about nucleons and mesons can
be obtained from the Euler–Lagrange equations. However,
in these equations of motion, the quantum fields cannot be
solved exactly for complicated many-body system. The no-
sea approximation and mean-field approximation are adopted
to consider the mesons as classical fields in RMF model.
Furthermore, in the infinite nuclear matter, the system has the
translational invariance. Finally, the equations of motion of
nucleon and mesons are given as

[�α · �k + βM∗
N + gωNω + gρNρτN,3γ

0 ]ψNk = εNkψNk, (14)

and

m2
σ σ̄ + g2σ̄

2 + g3σ̄
3 = −gσN 〈ψ̄NψN 〉,

m2
ωω + c3ω

3 = gωN 〈ψ̄Nγ 0ψN 〉,
m2

ρρ = gρN 〈ψ̄NτN,3γ
0ψN 〉, (15)

where M∗
N is the effective nucleon mass related to the σ̄ field,

M∗
N = MN + gσN σ̄ . (16)

At finite temperature, the scalar density and vector density are
expressed, respectively, as

ρs = 〈ψ̄NψN 〉 = γ

∫
d3�k

(2π )3

M∗
N√

k2 + M∗2
N

[f +
N (T ,k)+f −

N (T ,k)],

(17)
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FIG. 2. Constituent quark masses M∗
q in nuclear medium as

functions of temperature for μB = 0 MeV, μB = 800 MeV, μB =
930 MeV, and μB = 960 MeV. The solid curves are for μB = 0 MeV,
the dashed curves are for μB = 800 MeV, the dotted curves are for
μB = 910 MeV, and the dash-dotted curves are for μB = 960 MeV.

and

ρ = 〈ψ̄Nγ 0ψN 〉 = γ

∫
d3�k

(2π )3 [f +
N (T ,k) − f −

N (T ,k)], (18)

where γ is the summations of spin and isospin and γ = 4
for symmetric nuclear matter. f ±

N (T ,k) are the Fermi–Dirac
distributions to nucleon and antinucleon defined as

f ±
N (T ,k)

= 1

1 + exp
[(√

k2 + M∗2
N + gωNω + gρNτN,3ρ ∓ μN

)/
T

] .

(19)

Here, μN is the nucleon chemical potential. These equations
about nucleons and mesons can be solved self-consistently
with numerical methods.

As long as the scalar σ̄ mean fields are solved in the RMF
model with the TM1 parameter set, the results for M∗

q are
presented in Fig. 2 at finite density as a function of T . The
behavior of the constituent quark mass as a function of the
temperature characterizes a crossover for both zero and high
baryon chemical potentials. As described as in the case of the
nucleon in a quark medium in the previous section, the tem-
perature derivative of the constituent quark mass usually has a
peak at some specific temperature, which is established as the
critical temperature for the QCD chiral phase transition. Then
for zero baryon chemical potential, the QCD phase transition
occurs at T c = 194.8 MeV. This value is very close to that of
the quark medium. It means that the use of the quark medium
instead the nucleon medium is a reasonable approximation for
low baryon densities. Whereas, for high baryon densities, this
is not true. For quarks in the quark medium, the corresponding
phase transition is rather sharp and the constituent quark mass

shows a discontinuity at the critical temperature. There is a
first-order QCD phase transition for larger quark chemical
potential. However, when the quarks are embedded in the
nucleon medium, the constituent quark mass as a function
of the temperature shows a rather smooth behavior for high
baryon chemical potentials, therefore, it is impossible to define
the critical temperature of a crossover based on the judgment
of peaks in the temperature derivative of the constituent quark
mass, as done in the case of a quark medium. Thus, an
alternative way to define the critical temperature for QCD
deconfinement phase transition should be addressed carefully
and properly.

IV. NUCLEON AS A NONTOPOLOGICAL SOLITON
AT FINITE TEMPERATURES AND DENSITIES

We now solve the B = 1 nontopological soliton as a nucleon
in a quark medium and a nucleon medium. The starting points
for these two circumstances are the PQM model in vacuum
[13,14], where the Polyakov loop variables �, �∗ are zero and
the thermodynamic grand potential 	MF reduces to a purely
mesonic potential,

	M(σ,�π ) = U (σ,�π ) + 	
reg
ψ̄ψ

. (20)

In the mean-field approximation, the quarks in a nucleon
satisfy the following Dirac equation:

−i �α · �∇ψ(r) − gβMqψ(r) = εψ(r), (21)

where due to the spontaneous chiral symmetry breaking, the
constituent quark mass is defined as

Mq = g

√
σ (r)2 + �π (r)2. (22)

The ground state of the nontopological soliton is that three
quarks occupy the same lowest Dirac state with energy ε. To
obtain the solutions of minimum energy, we adopt a hedgehog
ansatz, where the meson fields are spherically symmetric and
valence quarks are in the lowest s-wave level,

σ = σ (r), �π = r̂π (r), (23)

ψ =
(

u(r)

i �σ · r̂v(r)

)
χ, (24)

where χ is a state in which the spin and isospin of the quark
couple to zero:

(�σ + �τ )χ = 0. (25)

The mean-field equations of motion for the quark and meson
fields are then
du(r)

dr
= −[ε + gσ (r)]v(r) − gπ (r)u(r), (26)

dv(r)

dr
= −

(
2

r
− gπ (r)

)
v(r) + [ε − gσ (r)]u(r), (27)

d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂	M(σ,�π )

∂σ
= Ng[u2(r) − v2(r)], (28)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂	M

(
σ,�π)

∂π
= −2Ngu(r)v(r).

(29)
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At r = 0, dσ/dr and v must vanish, while as r → ∞, σ tends
to its vacuum value fπ , and u, v, and π tend to zero. Using the
asymptotic forms of these equations, the boundary conditions
on the fields are given by the following equations from the
requirement of finite energy:

v(0) = 0,
dσ (0)

dr
= 0, π (0) = 0, (30)

u(∞) = 0, σ (∞) = f π , π (∞) = 0. (31)

The quark functions should satisfy the normalization condition

4π

∫
r2[u2(r) + v2(r)

]
dr = 1. (32)

This set of equations does not have analytic solutions but is
readily solved numerically. Various numerical packages are
available for the solution of such equations; one which has
been widely used in this field is COLSYS [50]. The model has
two adjustable parameters g and mσ which can be chosen
to fit various baryon properties, such as the baryon mass
MN , the root mean square (rms) charge radius of proton rcp,
the magnetic moment μp, and the axial to vector coupling
constants gA/gV , which have been measured experimentally.
To calculate all these physical quantities, we use the following
definitions:

E = MN = Nε + 4π

∫
r2

[
1

2

(
dσ

dr

)2

+ 1

2

(
dπ

dr

)2

+ π2

r2

+	M(σ,�π )

]
dr, (33)

〈
r2
cp

〉 = 4π

∫ ∞

0
r4[u2(r) + v2(r)]dr, (34)

μp = 8π

3

∫ ∞

0
r3u(r)v(r)dr, (35)

gA

gV

= 20π

3

∫ ∞

0
r2

(
u2(r) − 1

3
v2(r)

)
dr. (36)

A. Quark medium

First we consider the case of a B = 1 soliton in a thermal
quark medium filled with quarks having the constituent mass
Mq . In this case, the soliton or the nucleon is treated as a
localized bound state of three constituent quarks with the
interactions of mesons. As long as the unbound constituent
quarks are allowed to be inserted into the nucleon, the mean-
field values for the σ and π fields and thereby the constituent
quark masses in Eq. (8) at finite temperature and density could
be also obtained by minimizing the relevant thermodynamic
ground potential 	MF in Eq. (5) with respect to σ and �π .
Therefore, a new set of coupled equations for σ and pion fields
should be rewritten as

d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂	MF

∂σ
= Ng[u2(r) − v2(r)],

(37)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂	MF

∂π
= −2Ngu(r)v(r).

(38)

Accordingly, the boundary condition for σ (r) in Eq. (31)
should be modified as r → ∞, σ (r) approaches to the ex-
pectation value σv , where the thermodynamic grand potential
	MF has an absolute minimum.

In the PQM model, because there is only one minimum
in the effective Polyakov-loop potential by fixing the chiral
order parameters at their expectation values as long as the
temperature T is smaller than the critical temperature T0

for deconfinement in the pure gauge sector. Both Polyakov-
loop variables � and �∗ cannot develop a bag-like soliton
solutions for T < T0. Hence, the Polyakov loop variables
�, �∗ will always own their expectation values in whole
space, so that they do not increase the equations of motion
for the nontopological soliton solutions and should merely be
regarded as homogeneous background thermal fields on top of
which the chiral soliton is going to embed. Consequently, the
properties of a soliton emerged in a thermal quark medium can
be studied by solving a set of four coupled Euler–Lagrange
equations as well as the case of the PQM in vacuum where two
of these equations are the Dirac equation of the quarks in the
Eqs. (26) and (27). The others arise from the thermodynamic
grand potential as a set of gap motions for the σ meson and
pion fields in Eqs. (37) and (38).

In PQM model, the nucleon arises as a nontopological
soliton of the bounded constituent quarks, and the soliton
at finite temperature and density is a solution of the four
Euler–Lagrange equations of motion (26), (27), (37), and (38)
with the proper normalization condition and the appropriate
boundary conditions. This is unlike the case of the nucleon
in vacuum. The situation here will become more complicated
when we consider that the soliton is immersed in a thermal
quark medium. Since the unbound constituent quarks are
treated as the homogeneous background thermal fields with T
and μ, which will bring an additional contribution to the total
baryon density as long as they are allowed to penetrate into the
soliton by the requirement of the equations of motion of the
soliton in the Eqs. (37) and (38). Thus, to ensure the solitonic
baryon number is exactly one, the normalization condition (32)
should be modified accordingly as

4π

∫
r2[u2(r) + v2(r)]dr = 1 − Bm, (39)

with

Bm = 4π

∫
V

ρBr2dr. (40)

Here, ρB = − 1
3

∂	MF
∂μ

and V is the volume of the soliton with
the rms charge radius rcp.

As shown in our previous study [26], the effective potential
	MF in Eq. (5) with chiral symmetry breaking phase always
supports the existence of the stable soliton solution for the
meson fields for both the crossover and the first-order phase
transitions. However, the stability of the soliton solution should
be examined carefully by comparing the energy of the soliton
(bound state) with that of three constituent quarks in their free
states.

In Fig. 3, we plot the total energy of system MN and
the energy of three free constituent quarks 3Mq at zero and
finite chemical potential for different temperatures. These two
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FIG. 3. Total energy of system MN and the energy of the three
free constituent quarks 3Mq are given as functions of temperature T .
Here, one set is for μ = 0 MeV, and another set is for μ = 320 MeV.

chemical potentials correspond to the typical crossover and
the first-order phase transitions in the QCD phase diagram,
respectively. In Fig. 3, we can see that the critical temperature
for the deconfinement phase transition is lower than that of the
chiral phase transition for a crossover, but for the first-order
phase transition, the critical temperature for the deconfinement
phase transition is coincident with that of the chiral phase
transition.

At the end of this section, the proton charge rms radius rcp

of a stable soliton as a function of temperature for different
chemical potentials is plotted in Fig. 4. It is shown that
the size of the nucleon is going to swell up with slightly
increasing temperature at first. When T approaches the critical

FIG. 4. The proton charge rms radius of a stable chiral soliton
as a function of temperature T at μ = 0 MeV and μ = 320 MeV.
The solid curve is for μ = 0 MeV while the dash-dotted curve for
μ = 320 MeV.

temperature for the deconfinement phase transition, rcp grows
sharply and then disappears soon because of the delocalization
of the soliton in this model.

B. Nucleon medium

In this section, we now consider the soliton in the PQM
model with three valence quarks interacting in the nucleon
Fermi sea via the meson fields. As in the case of a quark
medium, only the σ field can develop a nonzero expectation
value in the nucleon medium, and the quarks in a nucleon have
the constituent quark masses in the form of Eq. (12). Therefore,
similarly to the cases in quark thermal medium shown in
Eqs. (37) and (38), the corresponding equations of motion for
the meson fields in nucleon medium can be directly rewritten
with a finite-temperature part of the relevant thermodynamic
ground potential 	MF in Eq. (5) now in terms of nucleons:

	NN = −γ T

∫
d3�k

(2π )3 [ln(1 + e−(EN −μB ))

+ ln(1 + e−(EN +μB ))], (41)

together with EN = [�k2 + g2(σ 2 + �π 2)]1/2 and the net baryon
density ρB = ρ = 〈ψ̄Nγ 0ψN 〉.

Accordingly, the scalar and pseudoscalar densities of va-
lence quarks and antiquarks representing the thermal medium
effects in the equations of motion for meson fields can be
formally expressed as

ρN
s = 〈

ψ̄NψN

〉 = gσγ

∫
d3�k

(2π )3

1

EN

[
1

(1 + e−(EN −μB ))

+ 1

(1 + e−(EN +μB ))

]
, (42)

ρN
ps = 〈

ψ̄N iγ5 �τψN

〉 = g �πγ

∫
d3�k

(2π )3

1

EN

[
1

(1 + e−(EN −μB ))

+ 1

(1 + e−(EN +μB ))

]
. (43)

These densities generate the source terms in the equations
of motions for the meson fields. Unlike the case in a quark
thermal medium, both the scalar and pseudoscalar densities
of nucleons and antinucleons in above equations cannot be
obtained self-consistently from the PQM model or the RMF
model. They have to be considered as input parameters with the
constraint that we require σ field to asymptotically approach
the expectation value σv in the physical vacuum as given in
Eq. (12), while other fields are set to zero.

Under the above treatment, the PQM model now is simpli-
fied as the classical chiral soliton model and the well-known
results already exhibited in the chiral soliton model in Ref. [17]
can be duplicated with the exception that the nucleons do
not penetrate into the solitons unless the nucleons start to
overlap with each other when the temperature is near the critical
temperature for the QCD deconfinement phase transition. Thus
the B = 1 soliton solution could be obtained by solving the
Dirac equations together with meson equations of motion
which contain the finite-temperature nucleon part, and there
will always exist a stable soliton solution for the meson
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FIG. 5. Total energy of system MN in a nucleon medium as a
function of temperature T for different baryon chemical potentials
μB = 260 MeV, μB = 450 MeV, and μB = 850 MeV.

fields in the chiral-symmetry-breaking phase. Moreover, such
a baryonic phase composed by the solitonic nucleons are stable
and they are satisfied with the energy requirement MN < 3Mq

in the hadron phase.
The results for the total energy of system MN in nucleon

medium as a function of the temperature T at various baryon
chemical potentials are presented in Fig. 5. The terminal point
for each curve corresponds to the critical temperature when
nucleons start to overlap each other, and this critical temper-
ature is set to be a critical temperature for the deconfinement
phase transition as described in the following discussions.
In Figs. 3 and 5, at low baryon chemical potential values,
the curves have similar trends for both nucleon and quark
medium which means that the use of quark medium instead
of nucleon medium is a reasonable approximation. However,
this is not true at higher baryon chemical potentials. At large
μB , both the constituent quark mass and the total energy of
system MN in the quark medium show discontinuities at the
critical temperature, whereas those of the nucleon medium are
quite soft against thermal fluctuations and the corresponding
deconfinement phase transition is a smooth crossover.

To illustrate the change of the soliton structure in nucleon
medium, we also plot the proton charge rms radius R of a stable
soliton as a function of temperature for different chemical
potentials in Fig. 6. All curves in Fig. 6 show a clear trend to
grow up with increasing temperature. When T is close to the
critical temperature, the radius expands quickly which can also
be taken as a sign for delocalization of the soliton. In contrast to
the case of a quark medium in Fig. 4, for high baryon chemical
potential, the largest soliton radius is smaller than that of low
baryon chemical potential. This means that the nucleons are
much easier to get overlapped when μB is large.

After obtaining the radius of the nucleon, we can now
investigate the phase diagram of the Polyakov quark-meson
model in a nucleon medium. Based on the above discussions,
the nucleon is taken as a classical stable soliton solution of

FIG. 6. Proton charge rms radius of a stable chiral soliton as a
function of temperature T for different baryon chemical potentials
μB = 260 MeV, μB = 450 MeV, and μB = 850 MeV.

the PQM model in the hadron phase, because the valence
quark in a nucleon will also interact with the meson mean
field due to the nuclear interaction between nucleons. The
constituent quark mass should develop a medium-modified
value at finite temperature and a baryon chemical potential as
shown in Eq. (12). In this prescription, the scalar σ meson field
simultaneously plays two roles: One is to provide the chiral
partner of the pion when dealing with the spontaneous chiral
symmetry breaking, and the other is the mediator of scalar
attraction for nucleons. Thus, in contrast to the case of the PQM
model in a quark medium, all valence quarks are going to bind
together to form nucleons due to local interactions with meson
fields in the hadron phase because of confinement. These
bound-state nucleons are stable against thermal fluctuations
contributed by the nuclear medium. Since the curves of the
constituent quark masses evolving with temperature are rather
smooth, especially for high baryon chemical potential, we
cannot use the traditional way used above to define the phase
boundary of the hadron phase by setting the derivatives of Mq

respect with T . Moreover, the studies of masses and radii of the
nucleon in the above do not remedy the situation. Therefore,
we introduce an alternative way to define the phase boundary
of the hadron phase in this work.

It is well known that one distinguished advantage of the
soliton model is to study the overlap of the nucleons. By using
this physical picture, in the beginning, the nucleon is well
separated from other nucleons, the average net baryon density
ρB is close to zero in the vacuum, and the net baryon density
inside the nucleon is almost a constant, which can be roughly
defined as

ρI = 1
4
3πR3

, (44)

where R is the radius of the nucleon or soliton in vacuum.
However, when a nucleon is trapped in a nucleon medium,
with increasing temperature and density, the net baryon density
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FIG. 7. Phase diagram in the T -μB plane in the Polyakov quark-
meson model based on the nontopological-soliton picture in a nuclear
medium. The solid line indicates that nucleons are starting to overlap
each other and it gives the phase boundary for the hadron phase.

inside the nucleon starts to decrease accompaniment for the
expansion of the nucleon, while the average net baryon density
nuclear medium given by the RMF model in Eq. (18) is going
to deviate at zero and rise very sharply. When the values of
the two net baryon densities cross each other, i.e., ρB � ρI ,
we believe that the nucleon get lots of chances to overlap. This
moment is also set as the CEP where hadron phase is changing
to the quark phase. The corresponding critical temperature is
defined as the one for the deconfinement phase transition. The
result of the T -μB phase structure from the PQM model in a
nucleon medium is plotted in Fig. 7. The solid line indicates
that nucleons are starting to overlap each other and it gives the
phase boundary for the hadron phase. Since the deconfinement
phase transition in this case is a crossover for both low and
high baryon chemical potential, we do not find the dramatic
structure change for the nucleon when T is close to the critical
temperature. By comparison with the results presented in our
previous study [26], in which the phase diagram is constructed
based on the picture that the nucleons are trapped in the quark
medium, for low baryon chemical potential and the phase
boundary for the deconfinement phase transition is very close
to each other. This means that the dramatic structure change for
the nucleon is also accompanied by the overlap of the nucleons
when T � Tc. However, for relatively larger baryon chemical
potential, if we treat thermal medium as a system of nucleons,
the overlaps are more likely to happen instead of the dramati-
cally fast structure change for nucleons when the temperature
is near the critical temperature for the deconfinement phase
transition.

V. SUMMARY AND DISCUSSION

We have investigated the nucleon as a B = 1 soliton in a
hot medium using the Polyakov quark-meson model in the
mean-field approximation. The constituent quark mass, the

mass, and the radius of the nucleon at finite temperature and
density are studied when the hot medium is taken separately
as a quark medium and a nucleon medium. Our results show
that both the effective nucleon mass and the proton charge rms
radius are not drastically altered according to the increasing
of the temperature for a nucleon in a quark medium or in a
nucleon medium, but when the temperature is closer to the
critical temperature, the effective nucleon mass decreases very
sharply and this also accompanies by the sudden increase
of the radius of the nucleon. Eventually, at some critical
temperature we no longer find a localized soliton solution
and nucleons lose their individual character, which signals a
deconfinement phase transition from nucleon to quark matter.
Note that the results in the present work agree qualitatively
with the work of Bernard and Meissner [36], in which they
investigated the static and dynamic properties of nucleons by
using a chiral soliton model with explicit vector mesons at finite
temperature.

Although the nucleon static and dynamics properties at
finite temperature and baryon chemical potential show some
similar behavior both in a hot nucleon medium and in a
hot quark medium, the phase structures are quite different
according to these two different scenarios. In the case of a
quark medium, there is a crossover in the low baryon chemical
potential and a first-order phase transition in the high baryon
chemical potential. However, in the case of nucleon medium,
there always exhibits a crossover in the whole T -μB phase
plane, and in contrast to the case of a quark medium where the
phase boundary is signaled by the dramatic structure change
of the nucleon, the deconfinement phase boundary in the case
of a nucleon medium is characterized by the moment when
nucleons start to overlap. Moreover, in comparison with the
QCD phase structure of the PQM model in a quark medium
shown in Ref. [26], when the baryon chemical potential is less
than 220 MeV, the dramatic structure change of the isolated
nucleon and the overlap of nucleons are going to happen almost
simultaneously, but when the baryon chemical potential is
larger than 220 MeV, the soliton model based on the PQM
model predicts that nucleons start to overlap with each other
near the deconfinement phase boundary, and valence quarks
inside the single nucleon are partly deconfined due to the fact
that nucleons can now share in valence quarks with others. How
to search, study, and identify this kind of “leaking” quark phase
would be interesting in future relativistic heavy-ion collision
experiments.

There are many avenues for further investigation: the
bulk thermodynamical description of the hadron-quark phase
transitions when considering the effect of the overlap of the
nucleon, including vector and axial-vector mesons, such as ρ,
ω, and a in the PQM model [51], nucleon properties based on
the nontopological model at finite nuclei in hadron phase, and
so on.

In particular, the most interesting study is to include the
vector and axial-vector mesons in the PQM model, because
such an extension can lower the soliton energy to a reasonable
and acceptable range of about 939 MeV [32,52,53], which
is often taken as a standard parameter in the RMF model.
In other words, in the present form of study, we still face a
self-consistent problem whereby the mass of a free nucleon

054313-9



YINGYING LI, JINNIU HU, AND HONG MAO PHYSICAL REVIEW C 97, 054313 (2018)

as a soliton is relatively larger than the TM1 parameter set
in our calculations. We believe that the work in this direction
will cure the problem and until then the equation of state can
be consistently applied to describe the hadron-quark phase
transition in dense matter.
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