

»ii^7Al.P0S' A93943-B002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MICROCOMPUTER PROGRAM DESIGN CONSIDERATIONS

FOR THE NOVICE USER

by

David C. Moore

March 1987

Thesis Advisor Norman Lyons

Approved for public release; distribution is unlimited

T233313

unclassified
S£Cu«|''^ CiASSifiCATiON Of- Thi? page

REPORT DOCUMENTATION PAGE
•a REPOflT SECURITY CLASSIFICATION

unclassified
lb RESTRICTIVE MARKINGS

:a SECUR'TY Classification AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION'/ AVAILABILITY Of REPORT

Approved for public release;
distribution is unlimited.

4 PERFOHMiNG ORGANIZATION REPORT NUM8£R(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6.1 NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6t) OFFICE SYMBOL
{If spplicible)

54

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6< ADDRESS (Gry Statt tnd 2iPCodt)

Monterey, California 93943-5000

7b ADDRESS (Ofy, Sfjte, »nd ZIP Code)

Monterey, California 94943-5000

li NAME OF FUNDING- SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
{If ipplicibi*)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS(C/ry, Sfjfe, .»n<y //PCodfJ 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

' Ti'^lE (include Security duificition)

NOVICE USER
MICROCOMPUTER PROGRAM DESIGN CONSIDERATIONS FOR THE

': PERSONAL AUTmOR(S)
Moore, David C.

33 -YPE Of s^EPOfU
>Iaster s Thesis

3t5 ^'ME COVERED
FROM TO

14 DAT, REPORT iye»r. Month Day)
l?frf|g"r'cff

IS PAGE COuNT
131

'6 Supplementary notation

cosATi cooes
F EiO GROUP SUB-GROUP

18 SUBJECT TERMS [Continue on reverie if neceisary and identify by block number)

novice user; computer interface design/
considerations; computer interface

'9 ii.8STRACT [Continue on reverse if neceisary and identify by block number)

The purpose of this thesis is to present the issues and considerations
related to the development and implementation of a user interface for
a microcomputer-based application program. The interface design goal
is to enable a novice user to fully utilize all application program
functions without prior training or reference to a user's manual.

The results of the empirical evaluation of the user interface are
presented together with an analysis in support of the effectiveness of
a proposed interface design methodology and interface design considera
t ions

.

;0 D S'R'3UTiON/ AVAILABILITY OF ABSTRACT

XSv-NCLASSiEiEQ/UNLiMITEO D SAME AS RPT DOTiC USERS

22a '.AME OF RESPONSIBLE iNOiViDUAL

Prof. Norman Lyons

21 ABSTRACT SECURITY CLASSIFICATION

unclassified
22b TELEPHONE f(nc/u<y* Area Code)

646-2666r4081

22c OFFICE SYMBOL

Code 54Lb

DDFORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF ThiS PAGE

unclassified

Approved for public release; distribution is unlimited

Micr^ocornputer^ P»~ogr"arn Design Corisider^at ior«s for- the
Novice User

by

David C. Moore
Lieutenant Commander, United States Navy

B.S., Ohio State University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1987

ABSTRACT

The purpose of this thesis is to present the issues and

considerations related to the development and implementa-

tion of a user interface for a microcomputer -based

application program. The interface design goal is to enable

a novice user to fully utilize all application program

functions without prior training or reference to a user's

manual.

The results of the empirical evaluation of the user

interface are presented together with an analysis in support

of the effectiveness of a proposed interface design

methodology and interface design considerations.

TABLE OF CONTENTS

I. INTRODUCTION g

II. USER INTERFACE ISSUES 12

A. USER INTERFACE EVOLUTION 12

B. THE PRESENT INTERFACE STATE 13

III. RESEARCH INTERFACE DESIGN CONSIDERATIONS ... 17

A- THE APPLICATION PROGRAM 17

B. APPLICATION PROGRAM DESIGN THEORY 18

C. INTERFACE DESIGN PHILOSOPHY ig

D. THE USER COMMAND INTERFACE 22

E. INTERFACE DIALOG DESIGN 24

F. THE ESCAPE MECHANISM 31

G. ERGONOMIC CONSIDERATIONS 31

H. DISPLAY COLOR CONSIDERATIONS 33

I. DESIGN SUMMARY 35

IV. EVALUATION OF THE RESEARCH INTERFACE 38

A. EVALUATION METHODOLOGY 33

B. EVALUATION SESSION OBSERVATIONS 41

C. POST-SESSION QUESTIONNAIRE ANALYSIS ... 43

D. EVALUATION SUMMARY 45

V. CONCLUSION: APPLICABILITY OF FINDINGS SO

APPENDIX A INTERFACE EVALUATION FORMS 52

APPENDIX B APPLICATION PROGRAM SOURCE CODE 56

APPENDIX C APPLICATION PROGRAM DISPLAY SCREEN
DESIGN SOURCE CODE 120

LIST OF REFERENCES 128

INITIAL DISTRIBUTION LIST 1 30

LIST QF TABLES

1. DESIRABLE INTERFACE ATTRIBUTES 14

2. INTERFACE DESIGN RULES 15

3. RESEARCH INTERFACE REQUIREMENTS SPECIFICATIONS . . 22

4. INTERFACE ATTRIBUTES SUPPORTED BY THE
RESEARCH INTERFACE 36

5. POST EVALUATION SESSION QUESTIONNAIRE
RESPONSE DISTRIBUTION 44

6. TYPE A AND B USER CHARACTERISTICS 47

LIST OF FIGURES

1. Research Interface Main Menu Display 25

2. Sub-Menu Display 26

3. User Assistance Request Display 29

4. System Error Detection Display 30

5. Assist Window Display 34

6. Evaluation Session Questionnaire 39

ACKNOWLEDGEMENTS

This author vould like "to express his appreciation to

Professor Norman R. Lyons for the professional guidance and

educational insights he provided.

Additionally, this author wishes to thank his wife,

Betty, for the support provided during this educational

experience.

a

I. INTRODUCTION

The relatively recent., widespread proliferation of

microcomputers into both the home and work place has

resulted in a shifting of computer operation and, in some

cases, programming tasks, from the traditional realm of

trained, professional operators and programmers directly to

the end user. Technological advances have reduced the

skills necessary to energize and physically communicate with

the hardware. However, the process of effectively

interfacing with the hardware via the constructs of software

of ever increasing complexity, often requires the new user

to obtain a detailed working knowledge of a particular

software system before the benefits of the system may be

realized.

This requirement seems contrary to the conjecture

expressed by Coombs and Alty CRef. l:p. 33 that the majority

of users do not wish to be extensively trained in computing

and employers certainly wish to minimize user training

costs.

The purpose of this thesis is to develop and evaluate

the effectiveness of interface techniques designed to elim-

inate any user, application-specific training prior to ap-

plication program use. In order to provide an appreciation

for the nature of interface design issues. Chapter 2

presents a review and analysis af Interface evolution and

the state of current thinking relating to Interface design.

Chapter 3 details the rationale and anticipated benefits of

specific interface design decisions and techniques employed

in the development of the research interface. In Chapter 4,

the interface evaluation methodology and evaluation results

are presented, discussed and analyzed. Finally, Chapter 5

suggests that the concept of including an interface require-

ments specification into the system design and development

process is essential to the production of viable applica-

tions for novice users.

The scope of this research was intentionally limited to

one application program's interface in order to more fully

evaluate the effect of the employed interface. By this

action, the empirical evaluation results and ensuing conclu-

sions would not be general in nature and thus avoid a

recapitulation of the generalized findings and recommend-

ations currently presented in available literature.

Additional limitations imposed upon the design of the

specific interface were based on the fact that the target

microcomputer system's hardware consisted of 512 kilobytes

of main memory, two 360 kilobyte diskette drives, a monitor,

keyboard and printer. Admittedly, this particular hardware

configuration precludes evaluation of such technically

feasible interfacing approaches as the use of light pens,

pressure sensitive screens or voice command. However, the

lO

target system's configuration seems consistent with the

assumption that the majority of general purpose

microcomputer systems in use share the same general

configuration and/or limitations.

11

II. USER INTERFACE ISSUES

As a result of -techriQlogical advances in the computer

field, a relatively new and immature field of study has

arisen to explore principles and methods for better adapting

computer systems to meet human needs. This fledgling field

has, as yet, no simple title nor well established repertoire

of concepts and techniques. The field is frequently

referred to as "interface design" and "dialog engineering"

CRef. 2:p. 33.

A. USER INTERFACE EVOLUTION

Prior to the widespread use of time sharing systems, the

vast majority of computers were operated in batch mode. As

a result of batch processing, end users only indirectly

interacted with the computer via operations personnel.

Consequently, there was no reason for "user friendly" inter-

faces since the operators were trained professionals,

knowledgeable of the requisite interface procedures.

Although the introduction of time sharing systems,

enabling direct user interaction, generated an acknowledged

need for "user friendly" interfaces, the pursuit of user

interface design attributes was relegated to academia. This

relegation was due to the fact that time sharing systems

were achieved through the layering of complex and costly

12

soft-ware onto exist.ing, bat.ch oriented minicomputers and

mainframes, and hardware and software providers did not find

it economically feasible to reconstruct new, coordinated

systems for existing machines [Ref. 3ipp. 333-3393.

The advent of the microprocessor has had a profound

impact on the computer industry. One of the most signifi-

cant impacts was the dissolution of the long adhered to

premise that computers were expensive and should be built

with the minimum number of circuits, thus assuring

efficiency CRef. 4:pp. 110-1233. Consequently, it now

became both technologically and financially feasible to

consider the user's needs in the hardware and software

design process.

B. THE PRESENT INTERFACE STATE

With the realization that it was now technically

feasible to incorporate interface considerations into the

design of a microcomputer system, such diverse professions

as educationalists, psychologists and ergonomic specialists

began contributing to the area of interface design.

However, their findings and recommendations have not

produced significant advances in interface design since

these non-computer oriented professionals are rarely invited

to participate in the design effort. On those occasions

when they have become involved in the system design process,

their contributions have been somewhat diminished due to a

13

lack of knowledge and appreciation of the machine's capabil-

ities to make things easier for the user [Ref. 3: p. 339].

Since the mid-1970s there have been many studies and

much written with respect to guidelines for the development

of effective user interfaces. Unfortunately there is no

well defined standard or authority and a fair amount of

inconsistency from source to source CRef. 5: pp. 25-253.

Although there may be inconsistencies between any two

given studies, analysis of the various studies in aggregate

has allowed later researchers to develop more comprehensive

guidelines based upon previous, incomplete studies and the

resolution of individual inconsistencies. Table 1 presents

a highly generalized summary of desirable, interface attri-

butes identified by Shneiderman CRef. 6: pp. 216-244]. Gaines

and Shaw CRef 5ipp. 30-44] have taken the process one step

farther and proposed more specific, interface design rules.

These rules, together with the general interface attributes

which they support, are presented in Table 2.

TABLE 1. DESIRABLE INTERFACE ATTRIBUTES

DESIRABLE INTERFACE ATTRIBUTES

1. Easy to learn.
2. Easy to use.
3. Easy to remember.
4. Prompt response times.
5. Reliable.
6. Courteous.
7. Helpful.

14

TABLE 2. INTERFACE DESIGN RULES

IHTERFACE DESIGN RULE SUPPORTED ATTRIBUTES

Use interface prototype or related system
when discussing the interface with users.

Develop interface using user's model.

User should dominate computer.

System response/activity should be clear
consequence of user's actions.

System should adapt to user's expertise.

Provide for uniformity and consistency.

Ensure requisite information/memory aids
are available to user throughout system.

User manuals should be based on actual
user dialog.

Train through experience.

Make immediate, clear responses to inputs.

Validate data on entry.

Provide a reset/abort command.

Make corrections through re-entry.

Easy to learn/remember

Easy to learn/remember

Easy to use

Easy to learn, helpful,
reliable

Easy to use

Easy to learn/remember

Easy to use, helpful

Easy to learn, use and
remember, helpful

Easy to learn/remember

Courteous, prompt

Reliable, courteous

Easy to use, reliable

Reliable

Although Shneiderman ' s interface attributes and Gaines'

and Shaw's rules provide general direction for interface

design, there remains much leeway for system design and

programming personnel as to the actual implementation and

interpretation of these attributes and rules. Peterson's

and Silberschatz ' s observation seems to concisely sum up

15

the current state of user Interface design:

Users desire certain obvious properties In a system. The
system should be convenient to use^ easy to learn, easy to
use, reliable, safe, and fast. Of course, these specifi-
cations are not very useful In the system design, since
there Is no general agreement on how to achieve these
goals. CRef. a:p. 4413

16

III. RESEARCH INTERFACE DESIGN CONSIDERATIONS

Due -to the myriad of possible, in-teractive computer

applications, the specific application program and user

group will often dictate the manner and degree of implemen-

tation of the generalized guidelines found in literature

concerned vith interface design.

A. THE APPLICATION PROGRAM

Although this research project is concerned with the

user interface, it was deemed necessary to develop an appli-

cation program with which to interface and to provide direc-

tion to the interface development.

The actual methods employed by the application program

to satisfy the user's functional requirements are not ger-

mane to this research effort. Therefore only a brief

description of the program's overall function is provided to

establish a frame of reference.

The application program was developed specifically for

the accountant of the Army Emergency Relief organization

<AER) at Fort Ord, California. AER's function is to provide

no interest loans to military personnel (primarily army) who

satisfactorily demonstrate a valid need for financial

assistance. The accountant's primary function is to record

disbursement of the loan, post loan repayments to applicable

17

loan accounts and general ledger, and advise higher

authority of any financial deviations or problems with

respect to individual loan accounts. A secondary function

requires the AER accountant to provide statistics of varying

natures to higher authority upon request. Since a service

member may have multiple, concurrent loans, the nominal size

of AER's data base is an the order of 1900 to 2100 members

and 2900 to 3200 loans. The AER application program basic-

ally provides for maintenance of individual loan accounts,

general ledger and statistical information.

B. APPLICATION PROGRAM DESIGN THEORY

Much has been, and continues to be, written regarding

computer program design and development. While various

design and development methodologies are advocated in the

literature, all have the expressed goal of producing good,

working programs. Unfortunately, it seems as if the

majority of methodologies stress design and development of

the functional elements of a program with the user interface

being of secondary concern. In other words, once the func-

tional aspects of a program have been defined and designed,

the interface is designed to fit the functional design

structure.

The theory underlying the methodology used in the design

and development of this research project is essentially a

reversal of current design and development methodologies.

18

The -theory proposes definition and design of the interface

prior to, or at least concurrent with, functional design.

This development approach is intended to place the interface

issue at the forefront. Thus, functional design is driven

not only by requirements specifications, but by interface

considerations as veil. While this approach may increase

the difficulty and complexity of functional element design,

the actual, internal methods employed are usually of little

concern to the user. Assuming the system meets the user's

functional specifications, the interface becomes the primary

user issue. As noted by Eason and Damodaran with respect to

users' perceptions of a computer system:

It is of little interest to him [the user] that the sys-
tem is a technical masterpiece, or that it serves another
user very well; if it serves his task needs poorly, it
stands condemned as a poor system. CRef. 7tp. 116]

Since the goal of this research is to develop a system

requiring no user training prior to use of the application

program, interface issues are of paramount concern. In the

following sections of this chapter, the issues pertaining to

the design and implementation of the research interface are

presented and discussed.

C. INTERFACE DESIGN PHILOSOPHY

Traditionally, the design of a "core" program to satisfy

the user's functional requirements would be relatively

straight forward. The goal is well defined? design the

"core" program to perform the specified requirements. Since

19

the actual workings of this portion of the program are

invisible to the user, one need only consider the technical

aspects of the task; the user is of secondary concern.

However, the approach taken in the design of the

research program requires that "core" related design

decisions be made with respect to both the requirements

specifications and interface considerations. Since a

project's requirement specifications serve as the benchmark

against which a program's functionality is assessed, the

same approach was used with respect to interface design.

Unlike the requirement specification, which may be

stated in such measurable metrics as response times and

throughput rates, the interface specification is much more

nebulous. The exact meanings of terms such as "easy to use"

and "friendly" are highly individualistic and ambiguous. As

a result, it is left to the designer or programmer to

produce their interpretation of these ambiguous terms.

In order to develop an interface requirements

specification, the attributes of a novice computer user were

analyzed.

The term "novice user" is assumed to apply to an

individual who is not, nor desires to become, an expert in,

or familiar with, computer technology, but uses a computer

to assist in the performance of assigned tasks. A generally

accepted attribute of the novice user is the overall percep-

tion of the computer as a tool to assist in the performance

20

of a task. If the user deeme the tool inappropriate for the

task at hand or the effort to use the tool exceeds the

return, the tool will experience little to no use.

Based on the attributes of a novice user, several

assumptions were generated which formed the basis for the

formulation of user interface specifications. First, the

novice user's interests and aspirations lay outside the

computer field and only limited time and effort could be

expected to be devoted to mastering the application system.

Second, the user would view the resulting system as a means

to an end and not an end in itself, thus desiring to

minimize time and effort devoted to system operation and

output interpretation. Finally, the user would desire

immediate answers to questions about the system without

lengthy and time consuming reference to user and technical

manuals.

As a result of the analysis and assumptions, an

interface requirements specification was developed in the

form of a questionnaire, against which candidate interface

designs were evaluated prior to implementation. The

contents of this questionnaire are presented as Table 3.

Only after an interface design idea met the requirements

of the interface specification were the technical implemen-

tation issues addressed. Basically, the design philosophy

was to adapt the program to the needs of the user versus

forcing the user to adapt to the needs of the program.

21

TABLE 3. RESEARCH INTERFACE REQUIREMENTS SPECIFICATION

INTERFACE REQUIREMENTS SPECIFICATIONS RESPONSE

1. Does the interface contain references, concepts or words No
words unique to the computer field?

2. Does the interface require user inputs/actions which ! No
have no identifiable counterpart or rationale in the
corresponding manual process?

I No

3. Does the interface contain all necessary information to f Yes
accomplish the desired operation?

4. Does the interface require the minimum, necessary user j Yes
actions to complete the operation?

5. Is the interface consistent with previously developed Yes
interfaces?

6. Does the interface provide for immediate and positive Yes
error detection and correction/recovery?

D. THE USER COMMAND INTERFACE

Since the target computer system's primary input device

was the keyboard^ there appeared only three viable command

entry modes: a menu system, a command language or a

combination of the two. The selection of a menu system for

the research interface reflects the observation of Reid

that

:

Menus have been recommended for occasional and novice
users as they reduce the amount of information the user
needs to remember. CRef. 9: p. 1113

As with many concepts, there are some disadvantages

associated with a menu driven system, which, if not handled

effectively, can negate the concept's overall usefulness.

22

The mere fact. that. the display screen of a computer system

encompasses a finite area limits the number of options which

may be displayed on a given screen.

If a system offers more options than can be displayed on

one screen, it may be tempting to reduce the space occupied

by each option description- However, if the option

descriptions become too cryptic, the primary advantage of a

menu system is lost as the user now must acquire and

remember the meaning of each option.

Another alternative would be a system of layered menus,

where the selection of an option from the primary or main

menu would produce another menu and so on until the menu

containing the desired operation was encountered. The main

problem associated with this approach is one of navigation.

As one progresses through successive menu layers, it becomes

difficult to determine one's location in the system relative

to a known point of reference, in this case the main menu

[Ref. 9:p. 1113. Loss of a frame of reference can

disorient and confuse the user, as humans are accustomed to

using the space and objects around them for organization and

establishment of frames of reference CRef. 10:pp. 1-3].

The research program has 47 different options. Since

all 47 could not be displayed on a single screen without

becoming too cryptic, a system was required that preserved

the advantages of a menu driven system and avoided the

potential disadvantages. The resulting main menu consists

23

of the 10 general operations depicted in Figure 1, through

which all 47 options are accessible. Limiting the main

menu to 10 operations provided enough room for non-cryptic

operation identification. However, this action necessitated

a layering of subordinate menus. To avoid the navigation

problem, these subordinate menus are presented as windows or

panels on top of the main menu. The intent of this approach

is to create the illusion that the user is still in the main

menu section of the program, thus preserving the user's

frame of reference. Figure 2 shows an example of operation

three's subordinate menu. Since many of the available

operations use the same input/output displays, there are

only six display screens, including the main menu, in the

system. Depending upon which option is selected the user

will see one of five input/output screens. The only place

the user can go from an input/output screen is back to the

main menu. Thus there is no navigation problem for the user

to contend with? the user is either viewing the main menu or

an input/output screen.

E. INTERFACE DIALOG DESIGN

For the purposes of designing the research interface,

the term dialog was defined as two-way communication.

Stoner notes that two-way communication is a complex process

where a receiver provides feedback to the sender of a

message [Ref. 11 ip. 496-4993. In the cfase of the research,

24

1

.«

r^ u
CO

.^
U)

c
r^

CD lA i- c (0 o
LU — (U a> o OJ
U. ^ C3) y- E _J

^
(0 •a

—1

z
<

k-

^

CO o </)

O 3 Q. «^

CO — — i3 a> c «r
z (0 (0 (0 U) GC 3 to
o i- k. — o (»

3 — a> a> N^ a X3 o .—

z 1— c c o ^ 0) o
LU <

CD (3

tfl

o
<

*-^ ^^

UJ c a. « —
z a. ^ ^ 4> — — 3— O o u E <u <u o CM
< 0) lU <u o CO 1

«—

S cc i_ l_ irt (U ifi

LU i_ l_ i_ QC <0 c
£ I o o 3 <0

0) h- u o ^ u - l_

lO

o '«« ^J> (O 3
O o

t-
>< ^ ^

>^ 03 « Q S - c
CO — — •-* —• —

a. a. - •^^ c U) 1 Ul
O) Ul Hi <o CO • — — «o r—
c — — O O I- ••^ c
- Q o a. Q. Q. (0 ca
•-• <-• k.

c
3 (£> 00 <:> O

CO 1-

h-
o r— - '^-.

o
o

c
3

*•—

O fvj—_—
< C

<a

o
o

1

•o

CO

— 0) o o —
<a f —1 < <a

o
c

i>

T3
0)

a.

0)

c
OJ

(0 CO O ^ o —
c z a> —1 — ^
— o c k. — o «—

U- — m o «> QC o
»— o a LU c

T3 < _i . - < 3
c
(0

cc

Z
b-)

0)

>s
+-• ^

Q. — c 1- — ^-

c o 1 Q) k- (0 a-
(0 c CL E o ^ c CO
o 1— 01 LU >, o c — CM
_J z o LL. « <u —

3 _l CO Q. • X3 0)

QC o
o s

z
<

0)

QC

0)

O
Q

liJ

< o LU cc c O
< z t— c (0 < CO

^

o
IB <0 o o

Hi

1

X
CO

»_ L- - - o
z 0) 0) «- s c
< ^ ••-» Kl a> a>

o c c o — lU ^-

_I LU LU CL > cc c
lO
GO

•~ OJ CO ^ in

3
•~

o

<0

TJ C
O

U) —

^M

C 05 >N
•^^ w- OJ

d) ^^ —
O Q. h- a.
— O — <o

3 —
3 ^ o Q
O O
>s OJ o 3

<1> f C
C V
^ 4-' o S
3 3 CO
— o LU c
4) X3 —
»- OJ U) 0)

40 Z— C 4)

— o k. 4)

— — Q. O
$ -^ ^ 05

<a >•-

0) e k. k-

£ - 0) <U

- o X3 —•

-^- ^»- E c
c 3 —

>% - Z
c JZ

o a> C o
\— o k-

*- o — a>

o £ »- <u

0> lA

O >- k. a>

CO o <1> QC
LU •«- a.

O
o» o
C r- T3 r-

— U. (1>

(A k. 4>

lO 1
— k.

0) u> 3
>_ <— a> o>
Q. U- O

li-

•• i/> 0)

CC <rt ^
LU a> »-

CD i-

S CL k.

UJ <i>

z -^

LU c
cc LU

0)

(A

Id

25

Irt

'

r>- u
00

-•-' •-> c
(>~

CQ U) k- c lO o
UJ - <u 0) o CM
LL. •^ O) »- E _J

^
(0 z

<
^

'~ CO _j oc
CD 3

o (/>

^' '
C/) — — i3 0) c ^
2 (0 (0 10 <rt QC 3 UO

O k- >- - o C7>

3 — v <u >*- Q o o •—

Z 1— c c o ~^ 4) o
LU

2
<
cr

a> a> i/> *- <
C3 *^ ^"^ U

LU c Q. <u -
z Q. *^ ^ (U — — 3
— o u (J E a> <o O eg

< 0) t> (U u CO 1
»—

S oc k- i_ lO 0) lO

lU »_ i_ k. QC «J c
E X o o 3 03

o t— O o i3 o -t- i-

- o ^ ^^ U) </) 3 «o t-
(A >> >s — — O o
>> 03 10 O 2 — c
CO — — -•-' *-' —

a. a. ^ - c in 1 U)
O) (/> U) U) w — — (A «—

c — — O O I. •*^ c- Q Q Q. o. Q. ca (0

- •*-» k-

c
3 (O r>- OO CJ» O

CO l—

o •— —• ••-

o c *- CM
(J

<

(0

— c>-

u C^' 4>

c z E
(0 CO CO «
c z . CO z
- o c iei
Li.

1- o O-
>«

.o
X3 < _l -^

c (X <A .. C -^^ ••-•

IS LU z - •^ a> £ E
Q- — C «J E >s >s o

c O 1 <u o •-• c^ Q. CO
(0 c QC E Q. o LU
o I— to LU >, — — —
_J z o Li. a O — (0 Q) k.

3 —1 CO a. *^ < 3 3 o
oc o Z Oi T3 r)
LU o 5 < QC <u *^ — — CO
< o LU QC u. a> > >

< z h- c — jL — — •

(0 irt c •o -o CM

' o
(0 (0 o

-o

10 c c
^

k- k_ CQ ^-

z 0) (U ^-' 3 c c
< -•-» *- <o O (0 03 OS

o c c o >N
—I LU LU a.

o
o

II II

eg OO
<M CO

>>
03

a.
(A

D C
O

w —

-C 03

03

O Q.
*- O

3 ^ /-%

O O t—
>> OS — >>

4> 3 03

C O —
k- .^^ Q.
3 3 o <n

^ O ^ .—

V ^ Q
»_ (0 o

CO 3
— c LU C
— o 43
.— _ u> s
S *- <« 1

03 (1> ^
43 E k. 3
£ ^ Q. CO
- o <^
** >^

c C^- .

>> - 03 OsJ

c t_

03 <a — 43

k. U3 k-

•^ o <U 3
« £ •o O)

o ^ 3 Ll_

CO o O
LiJ -^ >^

O) o o
C r- o
- u.
«o k_

tf> 1 03

03 £i
>- .- £
Q. Li. 3

Z
.. ^
QC <0 C
LU ll> O
CQ 1- —
5 Q. •4.*

LU <a

2
LU
QC

k-

43

a.

O
x:
u

26

application program, the user is considered the sender and

the program the receiver providing feedback.

When humans receive feedback, there is more involved

than simply content. The message is evaluated with respect

to the source, read between the lines for hidden meanings,

and words interpreted with respect to our understanding of

the word. CRef. 12:pp. 238-2463

Since feedback can convey more than physical message

content, a detailed analysis and design of the feedback

mechanism, with emphasis on human perceptions and

attributes, was seen as a means to convey the image of a

"friendly" system to the user.

The primary perception the interface was designed to

convey was system servility. By so doing, it was envisioned

that the novice user would view the system as a capable and

willing servant and not a system requiring user submission.

The resulting system prompts for user actions were

simply displayed as requests versus commands. Instead of

displaying a message such as: Enter the desired option, the

message was displayed as: Please enter the desired operation

number. The innocuous inclusion of the word "please"

changes the perception of the message from a command to a

request, and may even convey the impression of a personable,

polite computer.

The other type of system message analyzed was the error

message. To maintain the perception of system servility,

27

error messages of an informative nature were designed to be

almost apologetic as opposed to cryptic chastisements. An

example of an informational error message is the case where

the user requests display of information not held in the

system. The system responds with: "I'm sorry, I can't seem

to locate the desired account".

Error or abnormal situation messages requiring user

action, are presented as a system plea for user assistance.

The intended user perception of these messages is that the

user is in complete control of a personified system. Figure

3 is depicts the abnormal situation message displayed when

the system cannot determine to which loan the payment is to

be applied. Figure 4 is the window displayed when a printer

fault is detected.

The final type of error response coded into the system

consists of a short, audio "beep" when illegal keyboard

entry is detected. Whenever a key is depressed, the system

immediately analyzes the input to determine compatibility

with the type of input field. If it is a valid entry, the

character is displayed, otherwise the "beep" sound is

produced. The user receives instantaneous feedback and does

not waste time and effort entering an entire data string

only to be informed after entry that it is an invalid input.

Although the audio signal alone does not identify the

exact error, the accompanying field windows are designed to

contain all requisite information to enable the user to

28

.-«/»/-<>(»%

O »- CM «r to
*- O O O O K-svg

o o o o — ?«?;i$

0) CM CM eg C\J 9)WW w 1
(U Z 0)

r: — < x:

5 c*- O J
03 E -^ _j >, o

0) E >< E «= to

E >. Q. >sO < LU
(0 oj Q. —

— Q. DC LL — >-

— C -O — <rt o
a>«JOc-»-<uoo
*-_-(oc-LUQ.a:
£ -.- O 0) -^ Q. z

oj*- 3—1 E-ooi—
40 ^ >N -^ O z(0*--— (0 c*-2<
9j«)i_ — Q.4)0 O --

— O -^ O >- TD O-J cQ.Q.coa}-a:Q <u

O C > C Z Q «^ zs

O 3 O 3 n - c CT
Z O 0) c

a. II II II II < o - t- ._

_i o CO m k.

LU <CDOQ-llU - 3 0)

I < o Q

CO

1 o E oo CO
UJ J <=

0) to

z -
a. z

<
O
UJ

O) 0) •f —i Q
CO m

(0 a> 00
iO

c *-
o
o

_i CM CM

un <u c . o O
1

E 3
>N O CO £ c

o O
CO 03 E >N ZJ o o
CM Q- < Q. O

« E
in CM

^~~

Q. >-

cc <
_ 4) m *- -a <X>

4) ^ ^ E o ^^ ^
o E m >» ^ o o
0) 3 CM Q. - — z
QC Z

O
4) (U

<
1

Q.

•-» h- *- v o O
c 00 c u o O
a> 0) c .

E 4> CO I- (0 o o
>, -' UJ 1- — un CO

<e (S 11. 3 (0 T CM

, a> ^
O CQ

O cc •-
- o

o
O
O

c c c c
x: o « 3 o O
o k. O O Ul CM
-J *- z -i E iO CO

^

c
9> C

<

0) E <a c
o >s o 0} 1- r- CJ

o 03 -1 o z
_J

<0

0)

3
CT
a>

cc

9>

o
c
(0

<

CO

3
O)

29

~

«)

1

—

h- o
OO

••-» *-> c
N-

CO w L. C (0 O
LU — Q> a> O CM

u. -•-• O 1- E _l

*
03

•4^ 0)

z
<

^-

*" C/i _i cc

o •D

O
Q.

(/)

C/J ^ — ^ <U c ^•

z (0 (0 (0 <rt CC 3 LO

o t- u. — o O)

3 — <0 0) <•- Q T3 U «—

z 1— c c o »>. 0) o
LU <

cc CJ ^
i/>

O
<

LU c a. 0) ^
Z Q. -w -•-' a> — — 3

<
o u

0)

o E a> a> o CM
~*~~"

, ,

s cc '-

a> ,

E X o 4^ ' m c
0) 1— o a. C (0 o
• o >^ O) <u 0) 0) o
1/) >. c u ^ k_ — ^
>s 10 o X (0 ^ a. Q. o a>

cn
a.

k- 4> •~

- c
O) U) ^ 3 o ^ —
c — (0 >s a> O c U) in i-

— o — a> «w x: c ^^ - a
•^- jc c ^ <t »- S
c o> — — o O (U

D (O c L. >- k. 3 a. 3 x:

o — — 4) Z CL a> o -^

o —J
^
•*-» C

<
9>

c
o

en k.

< LU <u — lO £ — ^ k. H- 3
I E k. u> -^ •^ o - O

— o o. 0) u XI
(0 to k. C c M o -^
— a> Q. a> a £ CO -
o j^ ^ x: '^- L- LU 5
c c •*^ a> $ o: o
(0 CO — w >> c »»- <A a>

c z x: c (0 /^ a 10 c <A 3
- o •*^ •-' 0) o (0 o >% 0) c
u. — — — CO v 1- c k. —

t- — S a. LU k- — CL <a Q. -'

T3
c
(0

<
DC
LU

- - . . I

z — v —
Q. — c k_ — «-'

c O 1 (U k. (0 cr

(0 c a. £ o »> c CO

o 1— 0) LU >% o c — C\J

_J z o Ll. « OJ —
Z3 _J V) a. • T3 a>

LU
o

5
z
<

0)

CE O) O
Q

< o LU cc c O
< z h-

(0

(0

£1
< CO

^r

o
(0 (0 o

—

1

o 1

X
CO

k- h- . ^ o
z
<

<u (U

0)

c

o c c o — di f
—

i

LU LU Q. > cc c

GO

CJ CO ^ in
3
o

<a

Q.

T3 C
O

<Ji —

-C (0

«>

o C^^ O
(0

3 £ /-\ —
O o (— o.
>> (0 — m

<u 3 _
c O a
k- *-!

3 3 O c
^^ o •-» o
0) X3 .—
k. (0 o «^

CO o— c LU 1>— o ^
— — (O a>

i. »- (rt Q
(0 a>

4) E k. k-

b k- a. o
— o ^^ k_

f •- k.

c c- LU
>s — (U

C 1— E
03 a> — «>

k- <o *-»

•*-^ o <u <rt

(0 E XJ

CO
O u. 3
00 o O
LU >- >.

T
O) o o
c t— o a>—

Ll_ k.

<n k. 3
<f>

1 a> D9
<u X2 —
k. •— E Ll.

o. LJ. 3
z

cc >o c
LU lU o
CQ k. —
S Q. •^

LU 03

s. i-

LU 0)

QC Q.

o

o

x:

30

de-termine the necessary input. The audio signal is designed

primarily as a courtesy to inform the user of accidentally

depressed keys while protecting the system from input type

mismatches.

F. THE ESCAPE MECHANISM

Assuming a novice user will probably probe the system

during the familiarization process, it was decided to

install a mechanism which would immediately halt whatever

process the user was doing and return to the main menu. As

recommended by Gaines and Shaw

:

Provide a reset command that cleanly aborts the current
activity back to a convenient checkpoint. The user should
be able at any stage in a transaction to abort it cleanly
with a system command that takes him back to a well de-
fined checkpoint as if the transaction had never been in-
itiated. CRef. 5:p. 423

The system command selected for the research program was the

Esc key. In order to preserve simplicity and limit the

amount of system related knowledge required of the user, the

Esc key is the only "special function" key the user must

remember. To aid the user's retention, many of the system

prompts contain reference to the Esc key.

G. ERGGNOMIC CONSIDERATIONS

The primary issue in this area was to develop the

physical actions necessary for communicating with the system

which would not be ambiguous or meaningless to the novice

user while not frustrating or impeding the user as more

31

experience was gained. Analysis of this issue revealed two

primary areas warranting in-depth design consideration.

The first area considered was direction of the system.

The selection of a menu driven system with its enumerated

options seemed a viable method of direction for both the

novice and expert. Since the menu identifies the available

options, the novice user has all the requisite information

available to initiate the desired process. For the user who

has gained familiarity with the system, the process of op-

tion selection is fast, requiring only those keystrokes

necessary to select the option. There are no special keys,

complex keystroke sequences, or English-like commands to

confuse the novice or slow down the expert. To further ease

the selection process, the numeric keypad was placed in the

numeric entry mode by the program. While the horizontally

arranged, numeric keys across the top of the keyboard remain

functional, the numeric keypad allows all necessary opera-

tion selection and numeric data entry to be performed from

one keyboard location with a minimum of physical movement.

The decision to use numeric option selection codes was

influenced by the ability of humans to cognitively process

numbers faster < 27-39 msec/number) than letters or icons

(40-93 msec/item) [Ref. 13:p. 433. If the user is not an

accomplished typist, numeric entry should be easier and

quicker than having to search the standard "QWERTY" keyboard

for the desired letter.

32

The o-ther area considered involved the implemen-tat ion

of an on-line assislance facility. In order to provide rnax-

imum assistance to the novice user and not impede the

expert, help panels or windows describing the purpose or

required input field contents are displayed by default. By

so doing, the novice user requires no knowledge of a special

mechanism to invoke on-line assistance. Since there is no

invoking mechanism, there is no change of program mode from

the current process, to the assistance mode, then back to

the process. Thus the expert user may ignore the assistance

display and continue as if the display was not present. An

example of an assistance window is presented in Figure 5.

Since the target system's keyboard has a numeric keypad,

the system allows numeric entry from the numeric keypad for

purely ergonomic reasons of speed and physical eas'^' of data

entry. The numeric keys across the top of the keyboard may

also be used, however, the physical arrangement of the

numeric keypad reduces then time and movement necessary to

enter a desired numeric input-

H. DISPLAY COLOR CONSIDERATIONS

Colors in themselves were not seen as an information

transmittal medium. Color combinations were selected when

necessary to draw user attention. Light, complementary

colors were used overall to provide a soothing display. The

background is a very light blue, lines are in light yellow

33

C
Q
O
_i

O

0)

o
c c
(0 m
o —
-I (0

QQ

^. c CO t^

Q. o 00 OO •-'

"**

— o
o /f

- E^ o O >N
k- (0 UJ 3 Q.

« E Ul o < a>

(X r> k. CO ^^ •*-

UJ E o qj u)

o 3 *- O (0

a z c -J

LJ —
- J

_i
c

z <0 •^ c
< o ^^ - o
o — (£> U) _
—I

a>

O
_l ^ »- <o -

< -^ >N Q >
3 »- to UJ

o ••- O Q- ~" Xi ^
— o >«- (U c —
> '^- — > CO c
— OJ 00 o U) (0 (0 <u

Q a ^^ o •*^ L. •- >
Z — o — - c c I— c <u

— o a. 3 4) 0) >-

.. — u. Q >> DC a. <0

U- 0) V 9> ^ u 0)

LU ii ^ O <*- — — c • o —
— ^x* o a> o « OJ a> « — •-•

—1 Z QC O w- C3) — k.

UJ — >_ w 1 in •- a> k- •-» - o — <»

cr 0) c lA X3 C i) c o '— t- H
.*^ o O 0) 3 E c 0) o ^ D ^

>- c • z _1 2 u. UJ QC u. 3 < O
o a> >>

z L. II II II II II II II II II II II

LU —
<u o

C3 M Ol QC M
QC 0> — CJ CO ^ tf) (C <£> f— OO O) o J£

UJ (D «- o o o o o c o o o o »— w w
S — « «r ^ ^ »» V ^ ^ «» ^ T «r CO

UJ a. o •- •— r- »— •— •— »- .— »- T- Wm, E

> cc"^~^^

2
QC

i3

E
O

E o
^ ^

*** CO u>

< a> o
u.

0) a. OVI

k. (O C
0)

a> (O > •^ <a < O J3 ^ E
u 0) u. o — Q. « £ CO E
— k. z — x: 3 r>4 o
> O T3 — to iO » O Z w- o
b> o

< xz (U

> <u

4) C •~" ^
to £ * •t-^ k. « — (O a

O c >s r- •o c — c 00 c
-»- -» la k. •o — > 4> (0 o
o u a < o. c ••- O > —

- — -^- o a> 10 -J O ^
9> V — — o 4> CO a> Q Z —
e o a. — E CM k. <^ •o
(0 a a. — < o .— a O kO o
z < Z r - <

(O

o

c

(A

<0

<

C3)

34

and column headings are in white. The assistance windows

consist, of a red background with white and/or black fore-

ground characters. The choice of red for assistance window

backgrounds is not meant to imply an emergency situation,

but merely to contrast with the overall blue background and

thus draw attention to the window.

I. DESIGN SUMMARY

The purpose of this chapter is not to provide specific

interface implementations, as it is realized that the

specific application will largely determine the interface

structure. Rather, the intent is to propose some basic

philosophies that may be useful when designing an interface.

A summary of the research interface constructs and Table 1

attributes supported is presented as Table 4.

As previously noted, the primary philosophy behind the

majority of the research, interface, design decisions was to

adapt the system to the user and not require the user to

adapt to arbitrarily defined constructs of the system. It

is realized that there are unavoidable constructs to which a

user must adapt, such as using the keyboard for communica-

tion. However, adherence to this primary philosophy by

system designers and programmers should reduce or eliminate

the number of arbitrary constructs introduced into the

system.

35

TABLE 4. INTERFACE ATTRIBUTES SUPPORTED BY
THE RESEARCH INTERFACE

RESEARCH INTERFACE CONSTRUCT SUPPORTED ATTRIBUTE

1. Henu command system. Easy to learn/use/
remember.

2. Sub-menu display overlays. Easy to use, helpful.

3. Entry type checking upon individual Prompt response,
character entry with audio error signal. reliable.

4. Default display of assistance/instruction
vindovs.

Easy to use, helpful.

5. Content of assistance/instruction/error
windows.

Courteous, helpful.

6. Display coloration. Helpful.

7. No multi/special function keys other than Easy to learn/use/
the ESC key. remember, reliable.

8. Consistent displays and I/O requirements. Easy to learn/use/
remember, helpful,
reliable.

9. Activation of numeric keypad for option
selection and data entry.

Easy to use.

10. Use of ESC key to abort any process at any Easy to learn/use
operation at any time. remember, prompt

response, helpful,
courteous.

A supporting philosophy or concept suggests a

realization by design and programming personnel that the

user of the resulting system probably does not have an

interest in the computer field and views the system simply

as a means or tool to assist in the performance of a task or

function. The implication of this concept is that interface

36

constructs which are meaningful to development personnel,

due to their level of computer expertise, may be quite

meaningless or confusing to the end user. It is therefore

proposed that interface design decisions should be made

under the assumption that the user has no knowledge of the

computer field and with respect to user perceptions and

expectations.

37

IV. EVALUATION OF THE RESEARCH INTERFACE

In order to assess the validity of the assumptions and

theories underlying development of the research interface

and the results of their aggregation, it was deemed approp-

riate to evaluate the resulting interface on novice users.

The purpose of this chapter is to present the evaluation

methodology and results of the evaluation.

A. EVALUATION METHODOLOGY

The basic methodology required a novice user to attempt

ten predefined operations with the application system.

Although the application system provides for 47 different

operations, many are minor variations of a general opera-

tions. The ten operations selected for evaluation were

representative of ten general areas. The user was first

given a written description of the evaluation procedure and

a brief background scenario to establish the interaction

environment. The user's performance was then observed,

noting actions taken or not taken and problems encountered.

Upon completion of the ten operations, the user was given

the questionnaire reproduced as Figure 6 to record his

impressions and feelings about the evaluation session. The

background scenario and performance tasks used for the

evaluation process are presented as Appendix A.

38

EXPERIMENT QUESTIONNAIRE

Please answer the following questions by circling the response which
best describes your opinion.

1. I found the color schemes displayed on the computer screen:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

2. I found the 'Beep* sound when I made a typing error:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

3. The overall appearance and layout of the computer screens was:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

4. The appearance of the assist windows or panels was:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

5. The information contained in the assist windows or panels:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

6. The ability to return to the main menu at any time by pressing
ESC is:

A. A bad concept B. Okay in some situations, not all C. No opinion
D. Reassuring E. Highly reassuring

7. In general, I felt:

A. The program was very difficult to work with.

B. The program neither helped or hindered my accomplishment of the
various operations.

C. The program helped in my accomplishment of all the operations.
D. The program greatly helped in my accomplishment of all the

operations.

8. Assuming you are an experienced AER accountant and were given a

computer and this program, do you feel you:

A. Would desire extensive training before using this program?
B. Would desire some training before using this program?
C. Would require no training to use this program?

9. I would summarize ray feelings about this computer session as:

A. Frustrating B. Challenging C. No opinion
D. Satisfying E. Very Satisfying

10. The following is optional, however, any comments or recommenda-

tions regarding your session with the program would be greatly

appreciated.

Figure 6. Evaluation Session Questionnaire

39

As previously noted, the development objective of

allowing a novice user to use the system without prior

training is based on the assumption that the user is

familiar with the processes and procedures required for

manual accomplishment of the various tasks. In order to

maintain the validity of this assumption, evaluation session

users were selected from personnel assigned to the installa-

tion activity. The intention of limiting the scope of pro-

spective evaluation session users was to increase the

probability that the participants would posses enough

knowledge of the target user's Job functions to allow for a

meaningful evaluation of the system interface. The only

other user selection criteria was the requirement that

participants have no prior experience with a microcomputer

based system.

Due to the small size of the installation activity and

the restrictions placed on the selection of evaluation

session participants, a total of six participated in the

interface evaluation. While it may appear that six evalua-

tions are not statistically significant, the extremely high

data correlation of the individual results implies further

evaluations probably would not have generated significantly

different results.

40

B. EVALUATION SESSION OBSERVATIONS

Aggregate analysis of the observations recorded during

the Interaction sessions revealed two distinct behavior

patterns which resulted In the classification of the users

as type A and B.

Although all participants were Informed that any

actions^ short of physical violence, would not damage the

computer or the program and were encouraged to experiment,

this seemed to have had little Impact on their initial

actions. Each participant appeared to approach the first

task with extreme trepidation. Having correctly determined

the option number required for the operation, users were

observed to make several false starts before physically

selecting the option. Following each aborted keystroke the

participant would return to an examination of the main menu.

Once the selection was finally made and the input/output

screen appeared on the display screen, each participant was

observed to display one of two reactions. Users later

categorized as type A would immediately begin Intense

examination of the new display. Type B users would

Invariably allow themselves an audio and/or physical

expression of self satisfaction before turning their

attention to the new display.

Having correctly invoked the input screen for the first

operation, both user types successfully completed the

required input actions and returned to the main menu upon

41

completion. However, "type A users vere observed to proceed

with the data entry process at a slower pace than type B

users. When the audio, error signal was produced, signi-

fying illegal data entry, type B users recovered faster than

type A users, and were quicker to correct their mistake and

proceed. Type A users responded to the error signal by

returning to an intense examination of the display.

All participants exhibited a positive learning curve as

inferred by steady increases in task performance speed as

the session progressed. Although the sessions were not

timed, type B users tended to spend progressively less time

evaluating and reacting to each new display screen. Type A

users continued methodical examination of each display, with

an observable increase in data entry and option selection

speeds.

Analysis of the observations seems to suggest defini-

tive characteristics of the two user types. The two type A

users appeared uncomfortable with the trial and error

approach of operation accomplishment. Much time was spent

analyzing the displays as if searching for information which

would reduce the risk of the next keystroke. Type A users

seemed highly task oriented, resenting anything perceived as

barring task accomplishment. If these users experienced any

self satisfaction of increased confidence in their abilities

to interact with the system, it was not observable.

42

Type B users seemed to display an entirely different

approach to the tasks. They were more prone to experimenta-

tion and displayed obvious satisfaction upon successful com-

pletion of seemingly trivial tasks. Type B users appeared

to develop a familiarity with system constructs and charac-

teristics more rapidly than type A users. While type A

users seemed to view each new operation as disjoint from

previous operations, "type B users tended to recognize and

transfer the lessons learned from previous operations. Type

B user sessions tended to evolve into a friendly competition

between man and machine with the users frequently issuing

friendly, verbal challenges to the computer.

C. POST-SESSION QUESTIONNAIRE ANALYSIS

The tabulated responses to the post-session question-

naire (Figure 6) are presented in Table 4. As may be noted,

responses to the first six categories relating to interface

design constructs were awarded the highest ratings. This

positive feedback, coupled with the fact that all partici-

pants successfully completed all operations tends to suggest

that the interfaces associated with each operation were

sufficient to permit accomplishment. The responses to

question seven, dealing with overall ease of use, supports

the previous six responses in aggregate.

Responses to question eight, concerning prior training

desirability, were, initially, the most disturbing, as the

43

TABLE 5. POST EVALUATION SESSION QUESTIONNAIRE
RESPONSE DISTRIBUTION

Response
Category

Display Colors

Audio Error
Signal

i.

t-

Display Format.

Assist Windows

Window Content

ESCape
Construct

Ease of Use

Prior Training
Desirability

Overall
Impression

Response Letters from Figure 6
Low ^ ^ High

A

O

O

i.._.

]_.,.„..

O

O

O

B

O

T"

"'"i'"

O

O

O

c

O

O

O

t-

!

-i _i_
i i

! O !

D

6

6

6

6

-(-.._

! ^
t
—

..L.._ -S

» signifies no question provided

main objective of this research was the development of an

application program requiring no formal user training. The

validity of the four responses indicating a desire for

training prior to system use was questioned due to the fact

that all participants successfully completed all evaluatory

operations without prior training. To resolve this apparent

dichotomy, the participants were interviewed as to the

reasons for their responses.

44

The interviews disclosed -two basic reasons for the

responses. First, there was an assumption by the partici-

pants that the program had more capabilities than those to

which they had been exposed. Thus, prior training would be

necessary to enable effective realization of those unknown

capabilities. The other reason had to do with the applica-

tion for which the program was designed. The application

program was designed for the organization's accountant. As

recommended by Gaines and Shaw CRef. 5:p. 30], the system

was developed to emulate the user's model of the programed

functions. As a result many of the interfaces employ ac-

counting terminology and procedures. Though five of the

participants had a general knowledge of the account's

duties, none were well versed in the specifics of the

accounting field. As a result, one underlying reason for

the given response was an identified deficiency in the area

of accounting. This revelation diminished the usefulness of

the overall response for interface evaluation purposes, as

one of the assumptions upon which the interface design is

based is user knowledge of the functional aspects of the

application.

Of the responses to question nine, which requested a

subjective Judgement of the evaluation session in general,

four participants, classified as type B users, considered it

very satisfying. Of the two type A users, one Judged the

session as satisfying and the other as challenging. It was

noted that the individual evaluating the session a chal-

lenging, had a particularly difficult time understanding the

accounting terminology, requiring frequent explanations by

analogy throughout the session. The reasons given as to why

a rating of very satisfying was indicated by the type B

users, centered around self satisfaction at being able to

correctly perform the requested operations. Many remarked

upon termination of the evaluation session that once they

got started it was easy. For the type B users, the

perception of a computer as a complex, hands off machine, to

be used only by trained professionals appeared dissolved.

Considering these responses, it seems reasonable to

assume the aggregation of the various interface constructs

employed, produced an environment conducive for user, task

accomplishment and successfully established a master

-

servant relationship between man and machine respectively.

D. EVALUATION SUMMARY

Due to individual differences, it is extremely diffi-

cult, if not impossible, to derive clear-cut classifications

which characterize all users, in all circumstances, at all

times. Consequently, the categories of type A and B users

should be viewed as opposite ends of a continuum. The char -

acteristics and attributes of these extremes are presented

in Table 6.

46

TABLE 6. TYPE A AND B USER CHARACTERISTICS

TYPE A USER CHARACTERISTICS TYPE B USER CHARACTERISTICS

Highly task oriented. Disregards
items not germane to task accomp-
lishment.

Each action carefully thought out
prior to execution.

Uncomfortable with the new and
unfamiliar.

Takes error messages personally.
Great care taken to avoid repeat
of same error.

Views each new task as separate
and unrelated to previously com-
pleted tasks.

Interested and exited by every-
thing. Experiments with various
items enroute to task accomplis-
ment.

Actions more Intuitive and im-

pulsive.

Considers new and unfamiliar as
a challenge to be mastered.

Error messages viewed as part of
learning process.

Similarities between new and pre-

viously completed tasks quickly
identified and used.

The results of the evaluation process are viewed as

overall supportive of the assumptions and theories under-

lying the interface design. User perceptions regarding the

program seem consistent with design intent. However,

several revelations became apparent during the evaluation

process which preclude concluding that the application

program, in its present form, can effectively support novice

user interaction without some prior training.

In retrospect, it appears the primary, interface devel-

opment assumption of user familiarity with the requirements

of the job, is not the only operative assumption. The fact

that the design goal was the development of a system

47

requiring no user manual or prior training^ inherently

assumes a user willing "to accept, the Montessori approach of

experience and learning through experimentation and

discovery. Task oriented type A users and/or prospective

users with neither the time nor inclination for experimenta-

tion will essentially render the system useless.

A seemingly minor but serious interface design error

lays in the assumption that a user's knowledge of a standard

typewriter keyboard could be transferred to the computer's

keyboard. It became immediately obvious at the start of the

evaluation sessions that the interface contained no

provision to inform the user of the requirement to press the

return or enter key upon completion of data entry. Although

this omission may be easily rectified with additional screen

documentation, it serves to illustrate the observation by

Gaines and Shaw in that

:

. . . it highlights a major pitfall into which we all occa-
sionally fall since the phenomenon of assuming that what
we personally know and have experienced is obvious is a

common one for all human behaviour. CRef. 5:p. 301

Thus it seems imperative that when designing systems for

little to no formal user training, extreme and methodical

care must be exercised when assessing the validity of

assumptions regarding user capabilities.

Although the formal evaluation sessions were completed,

visits to AER to perform minor maintenance on the production

version of the program provided some additional, unexpected

observations. The users classified as type B continued to

48

show great, interest, in the application program. They were

observed probing the various system capabilities and

literally, generating pretenses to interact with the

program. Requests were made of the accountant, who was to

be the primary user, for meaningful data to input. The

system was in constant use. This sudden activity was viewed

as significant, considering the computer had been present in

the organization for over a year as well as several

standard, general application software packages. Further

investigation revealed that none of the type A users have

used or shown any interest in the computer since the

evaluation sessions.

The results of the evaluation sessions coupled with the

post-evaluation period observations, seem to support the

overall success of the research project and the underlying

methodology and assumptions presented in Chapter 3.

49

V. CONCLUSION: APPLICABILITY QF FINDINGS

The overall success of the research int.erface is attrib-

u-ted, primarily, to the successful incorporation of theories

and ideas relevant to human behavior obtained from sources

external to the traditional realm of computer science. The

development and use of the interface requirements specifica-

tion then aided in the consistency of application of the

theories and ideas. Additionally, by placing the interface

requirements specifications on equal footing with the

requirements specifications, a system of potentially complex

interfaces was reduced to one which invites and encourages

the novice user.

It is realized each application program has its own,

unique interface requirements, and the applicability of this

particular interface requirements specification to other ap-

plication programs may be questionable. However, the con-

cept of an interface requirements specifications during the

design and development process seems a viable process to

produce a system that not only satisfies the user's func-

tional requirements, but meets the unstated, psychological

and ergonomic needs of its users.

Since computers have moved from the laboratory into the

mainstream of human existence, it not only seems logical but

50

necessary for design and development, personnel to augment

their computer related knowledge with more in-depth know-

ledge ol the disciplines concerned with the study of human

characteristics and attributes of the user.

51

APPENDIX A

INTERFACE EVALUATION FORMS

The purpose of this experiment, is to evaluate a new
computer program. You will be asked to perform a series of
operations. Your ability to perform the various operations
will be observed and noted.

**** IMPORTANT •»» j

Please understand, your ability or inability to per- i

f

form the requested operations IS NOT a reflection on
j

reflection on you, but an indication of the effec- j

tiveness or ineffectiveness of the program. j

1
Remember, it is the program which is being evaluated, i

i

f

L _.

NOT you. j

- ...J

Please try and complete each operation without asking
for assi -tance. However, should you find it impossible to
proceed without an answer to your question, do not hesitate
to ask. Feel free to experiment or when in doubt, try some-
thing you think appropriate. Feel free to voice any com-
ments, positive or negative, during the session. This is
NOT a timed experiment. You may proceed at your pace. Take
all the time you need to comprehend what is presented on the
computer's screen. Finally, NOTHING you may do, short of
physical violence, will break, blow-up, or otherwise damage
either the computer or the program.

BACKGROUND

This program was developed for the Army Emergency
Relief (AER) organization's accountant. For the purpose of
this experiment, imagine you are that accountant.

The overall function of AER is to provide no-interest
loans to military personnel, primarily army, who have a

bonafide need for financial assistance. As the accountant,
you are not directly involved in the process of loan appli-
cation or approval. Your duties commence upon approval of
the loan.

52

Once the loan is approved, you es-tablish an Army
Emergency Relief Individual Loan Ledger (DA Form 1108). The
DA Form llOQ contains information about the individual and
is used to record loan repayments and the outstanding loan
balance. In addition to keeping the DA Form llOB's up to
date, you are responsible for accurately keeping track of
all funds associated with your particular AER organization.
You keep track of these funds by means of the AER General
Ledger. The General Ledger is composed of various accounts,
each with its own account code.

Another of your functions as the accountant is to
provide information, upon request, about individual loan
accounts, loan accounts in general and the General Ledger to
other AER personnel as required for the performance of their
duties.

Please let me know when you are ready to begin the
computer session. If you have any questions about anything
please ask.

53

COMPUTER PROGRAM OPERATIONS

1. SGT Harris has just given you an approved loan package
for you t.o establish a loan account. The package's
content are as follows:

Personal Information

Duty Station:

Terry, A. Johnson
471-23-7391
E-4, Active Duty
No previous AER loans.
145 S. Treelawn Ave
Rusty Spur, Idaho 75634
A Company, 7th Infantry,
Ft Qrd, CA

Loan Information: Loan Amount: $340.00
Allotment Amount: $ 68.00
Reason for Loan: Initial Rent

and Deposit
Allotment to Start: March 1987
Allotment to Stop: July 1987

Seeing that all is in order, you sign check number
634152 and give it to SGT Harris for delivery to
Johnson.

Please establish the loan account.

2. SGT wTones is in the process of taking a loan applica-
tion and asks you to verify that William Q. Tell, SSN

:

423-45-1928, has only had one previous AER loan.

What is your response?

3. The AER officer is on the intercom in a panic, as Col
Evans is on the outside line, wanting to know how many
personnel assigned to Ft Ord received loans last month.

What is your response?

4. Going through the mail, you come across a check for
$54. 23 from the Chapter 13 Bankruptcy Court Trustee for
payment on the loan account of Ohso Broke.

Please apply the repayment.

54

5. Alfred Martin, 364-29-5647, has just come in as part of
his discharge check-out process and wants to pay off
the remainder of his loan. He hands you $40. 00, says
thanks and keep the change. If there is any money left
over after applying the repayment to the outstanding
loan balance then you must apply the excess money to
either General Ledger Account 2001 (Contributions) if
the excess money is $5. 00 or less, or to Account 2004
(Over Payments).

Please process this transaction.

6. Another letter contains a check for $100. OO with a note
from an individual who was helped by AER several years
ago and now, out of financial difficulty, wants to con-
tribute this $100. 00 so others may continue to receive
the services of AER.

Please post this contribution to the General Ledger.

7. Beverly Anderson Just stopped in to inform you that she
Just got married and would like her account to reflect
her married name of Pruitte.

Please make the change.

8. You have just been informed that Daniel Washington,
432-74-1423, was involved in a fatal automobile acci-
dent over the weekend. Under these circumstances, AER
regulations require you to declare all outstanding loan
balances of the deceased uncollectible.

Please update Washington's account.

9. Looking over the last computer print out of the General
Ledger, you notice that there is a mistake in the
totals. You have traced this mistake to account code
2006 for FEB 87. Instead of entering -23. 67 you
entered 23. 67.

Please correct this error.

10. How many loans were given out in DEC 86 and what was
their total amount?

55

APPENDIX B

APPLICATION PROGRAM SOURCE CODE

The following, undocumented, application program source
code is written in Borland International, Inc. , Turbo
Pascal^ " , version 3.0.

Since the application program was not the object of
research, but merely a necessary, temporary tool for the
researcher, no documentation was deemed necessary.

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases
of interest. While every effort has been made, within the
time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without
additional verification is at the risk of the user.

56

File Name: AER. PAS

{$1 GLOBAL. AER}

(SI REGISTER. CPU}
{$1 CONVERT. PAS}
{$1 FILEOPS.PAS}
{$1 SCREENIO. PAS}
{$1 LEDGER. PAS}
{$1 HARDCOPY. PAS}
(SI AERPROCS. PAS}
(SI OVERLAYS. OVR}

begin { Main Program }

PortW[$03Da] := $09; { Set video biinli mode off }

ClrScr; Esc := False;
KBSB : = KBSB or $20; { Activate Num_Lock }

Load_Display_Screens_into_Memory

;

UpDate_Loans; if ESC then Exit;
ESC : = True;
Viev_Change_or_Delete; { Load overlay procedure }

ESC := False;
repeat

Fill_Field(3,2,CSDate)

;

for I •.= to 6 do Fill_Field<3, It3,String_Int<Loan_Totals[I], 4))
;

Fill_Field (3, 10, String_Int < Index_Stats. Next_Name_Ptr, 4))

;

Fill_Field<3, 11, String_Int (Loan_Stats. Prev_Record, 4)
)

;

KBSB := KBSB or $20; (Activate Num_Lock }

repeat
PF_Key := True;
Screen_Input(3, 13, 13)

;

if ESC then (terminate program }

begin
KBSB := KBSB and $DF; (set Num_Lock OFF }

Close_Files; Exit
end;

if Not<PF_Key) then
begin

Selection : = Integer_Value<Field_Contents< 3, 13)
)

;

if Not (Selection in [1..10]) then Buzzer
end

else
begin

Display_Window(3, Selection »• 14);

I := Key_Depressed

;

Display_Screen := Prepared_Screen;
if I <> 13 then Selection : = 0;

ESC := False
end

until Selection in [1..103;

57

File Name: AER. PAS (cont)

if Selection = 1 then Loan_Entry (1

)

else if Selection = 2 then Loan_Entry (2)

else if Selection = 3 then
begin

repeat
Screen_Input (3, 14, 14)

;

I := Integer_Value<Field_Contents(3, 14)
)

;

if Not <<I in [1..3]) or (ESC)) then Buzzer
until <I in [1..3]) or (ESC);

if Not ESC then Record_Payroents(I

)

end
else if Selection = 4 then Viev_Change_or_Delete
else if Selection = 5 then Loan_Entry (4

)

else if selection = 6 then Display_General_Stats
else if Selection = 7 then Display_Financials(1

)

else if Selection = 8 then Loan_Entry (3)

else if Selection = 9 then Display_Financials(2)
else if (Selection = 10) and (Printer_OK = 0) then

begin
repeat

Screen_Input(3, 12, 12)

j

I := Integer_Value(Field_Contents(3, 12)
)

?

if Not ((I in tl..lO]) or (ESC)) then buzzer
until (I in [1..103) or (ESC)j

if Not ESC then Seek_Records(I

)

end

;

Prepare_Screen (3)
;

Display_Screen := Prepared_Screen;
Correcting := False;
ESC : = False

until Selection = 13

end. { Main Program }

58

File Name: GLOBAL. AER

const
Hi_Lite = $40; { Input field color = black on red }

Display _Memory = $6800; { $8000 for monochrome monitors }

Index_AER = 'Index. AER';
Accounts_AER = 'Accounts. AER'

;

LoansAER = 'Loans. AER';
GrdStats_AER = 'GrdStats. AER'

;

LEDGER_FRM = 'Ledger. FRM '

;

Valid_«onth = ' JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC;

type
Identification_Record = record

Hash_Case_Nr_Ptr : integer;
Hash_Name_Ptr : integer;
Next_Case_Nr_Ptr : integer;
PreviQus_Case_Nr_Ptr : integer;
Next_Name_Ptr : integer;
Previous_Narae_Ptr : integer;
SSN -. real;
Name : string[25];
Grade_and_Status : byte;
Accounts_Ptr : integer;

end; (Identification_Record }

Accounting_Record = record
Acct_Status : byte;

Loan_Nr : byte;
Repay_Method : byte;

Allot_Info : real;
Loanlnfo : real;
Balance_Info : real;
Next_Record : integer

;

Prev_Record : integer;

!; { Accounting_Record iend

Total_Account = record
Rec_Loc : integer;
Loan_Data : Accounting_Record;

end; {Total_Account}

{ 2 bytes)
{ 2 bytes

J

{ 2 bytes)
{ 2 bytes)
{ 2 bytes)
{ 2 bytes)
{ 6 bytes)
(26 bytes)
{ 1 byte)

{ 2 bytes)
(47 bytes)

{ 1 byte)

{ 1 byte)

{ 1 byte)

{ 6 bytes)
{ 6 bytes)
{ 6 bytes)
{ 2 bytes)
{ 2 bytes)
(25 bytes)

{ 2 bytes)
(25 bytes)

Entire_Account = array[1..15] of Total_Account

;

Qty_Amount = record
Oty : integer;
Amt : real;

end; (Qty_Amount)

{ 2 bytes)
{ 6 bytes)
{ a bytes)

59

File Name: GLOBAL. AER <cont)

AER_Accounts = record
Entry_Year : byte; (Last digit of applicable year) (01 bytes)
AXOOO : array 11.. 6] of real; {Account Totals} (36 bytes)
A2000 : arrayCL.lO] of Real; (Receipts) (60 bytes)
A3000 : array [9. .16 3 of Real; (Disbursements) (48 bytes)
A6000 : array[17. . 213 of real; (Loan Balance Summary) (30 bytes)
A20TY : array[1..53 of integer; (Quantity Totals) (10 bytes)
A3QTY : array [10. . 133 of integer; (Quantity Totals) (08 bytes)
A60TY : array f 17. . 193 of integer; (Quantity Totals) (06 bytes)

end; (AER_ Accounts) (199 bytes)

General_Stats = record
Year : byte; (001 byte)

Grade_Stats : array C 1. . 2, 1. . 93 of Qty_Amount; (144 bytes)
Loan_Cats : array[1..113 of Qty_Amount; (088 bytes)
Duty_Station : array [1.. 33 of Oty_Amount; (024 bytes)

end; (General_Stats) (256 bytes)

scrnline = array (1. . 1603 of byte;

Scrnarray = array [1.. 253 of scrnline;
ScreenData = record

Screen_Image : Scrnarray;
Field_Posits : ScrnLine;
Window_Info : ScrnLine

end; (record Screen_Data}

String3 = string[33;
Strings = string[53;
String9 = string[93;
Stringll = string[113;
String25 = string[253;
String40 = string[403;
StringSO = stringtSOl;

var
Index, Index_Stats : Identification_Record;
Loan, Loan_Stats : Accounting_Record;

Index_File : file of Identification_Record;
Loan_File : file of Accounting_Record;
Stats_File : file of General_Stats;
Accounts_File : file of AER_Accounts;

Selection, CurMon, CurDate, Code, I, J : integer;
Screen : array 11.. 6 3 of Screen_Data absolute $6000:0000;
Display_Screen : scrnarray absolute Display_Memory :$0000;
Prepared_Screen : ScrnArray;
Rec_Pos : array(1..153 of integer;
Stats_Code : arrayCO. .63 of byte;

60

File Name: GLOBAL. AER <cont)

Loan_Totals : arrayCO.

.

lOJ of integer;
PF_Key, Print_On, Correcting, ESC : boolean?
KBSB : byte absolute S0000:$0417;
Grade : String3;
Scan_Code : byte;
Status : char

;

Date, CSDate : String9;
Window_Contents : array [1. . 6, 1. . 130 3 of StringSO absolute $5000:0000;

File Name: REGISTER. CPU

type
CPU_Registers = record

AX, BX,CX,DX,BP, SI,DI,DS, ES,Flags : integer
end

;

var
Regs : CPU_Registers;

Function Key_Depressed : byte;

begin
if ESC then Exit;
Regs. AX := 0; intr ($16, Regs) ; Key_Depressed := lo<Regs.AX);
if lo(Regs.AX) = 27 then ESC := True else ESC := False;

if hi (Regs. AX) = 78 then Key_Depressed := 13

end; { Function Key_Depressed }

61

File Name: CONVERT. PAS

Function Integer_Value<Str_Val : String40) : integer;

var
Temp_Int_Val : integer;

begin
vai(Str_Val, Temp_Int_Val, Code)

;

if Code = then Integer_Value := Terap_Int_Val

else Integer_Value : =

end; { Function Integer_Value >

Function SSN_Str < Real_SSN i real) : Stringll;

var
Temp_Str : Stringll;
SI : integer;

begin
Str(Real_SSN:9:0, TeiBp_Str) ;

for SI := 1 to 9 do
if Teinp_Str[Sl] = ' ' then Temp_Str[Sl] := '0';

insert (' -
' , Temp_Str, 4) ; insert < ' -

'
, Terap_Str , 7)

;

SSM_Str := Temp_Str
end; { Function SSN_Str }

Procedure Split_Date_and_Money <Date_Money : real;
var Date_Out : String9;
var Money_Amt : real)

;

var
Day, Hon, Year, Int_Date : integer;
Day_Str, Year_Str : string[23;

begin
Int_Date := trunc<Date_Money)

;

Money_Amt := frac<Date_Money) » 10000;
Year := Int_Date div 512;Str(aO ^ Year :2, Year_Str)

;

Mon := (Int_Date - 512 Year) div 32;

Day : = Int_Date - Year • 512 - Mon • 32;

if Day = then Day_Str : =
'

else Str(Day :2, Day_Str)

;

Date_Out := Day_Str^' ' copy < Valid_Month, 4»Mon-2, 3) *
'

' Year.Str
end; { Procedure Split_Date_and_Money }

62

File Name: CONVERT. PAS (cont)

Function Merge_Date_and_Money (Str_Date:String9j Money_Amt :real) : real;

var
Mon, Day, Year : integer;

begin
vhile length (Str_Date) < 9 do insert ('0' , Str_Date, 1

)

;

Day *. = Integer_Value(copy<Str_Date, 1, 2)) J

Mon := < (pes (copy <Str_Date, 4,3), Valid_Month) 2) div 4) » 32;
year := (Integer_Value(copy <Str_Date, 8, 2)) - 80) » 512;
Merge_Date_and_Money := Year * Mon «• Day < Money_Amt/10000.

end; (Function I1erge_Date_and_Money 1

Procedure Extract_Date_Data(In_Date:String9;
var Mon_Nr, Int_Date: integer)

;

var
Mon : string (33;

begin
while length< In_Date) < 9 do insert<' ' , In_Date, 1)

;

Mon := copy < In_Date, length(In_Date) -5, length(In_Date) -3)

;

Mon_Nr := <pos<Mon, Valid_Month) 2) div 4;

Int_Date := round (Merge_Date_and_Money (In_Date, 0. 0)

)

end; (Procedure Extract_Date_Data >

Function Encode_Grade_and_Status(Grd : String3; Stat : char) : byte;

var
Temp_Code : byte;

begin
Temp_Code : = ord(Grd[3]) -48;

if GrdCl] = 'E' then Temp_Code := $20 or Terap_Code

else if GrdflJ = 'W then Temp_Code := $40 or Temp_Code
else Temp_Code := $80 or Tei«p_Code;

if Stat = 'R' then Tei»p_Code := $10 or TeiBp_Code;

Encode_Grade_and_Status := Temp_Code
end; { Function Encode_Grade_and_Status >

Procedure Decode_Grade_and_Status<Code_Val : byte; var Grd : String3;
var Stat : char)

;

begin
if Code_Val and $20 = $20 then Grd := 'E-'

else if Code_Val and $80 = $80 then Grd := '0-' else Grd := 'W-';

if Code_Val and $10 = $10 then Stat := 'R'

else Stat := 'A';

if (Code_Val and $0F) = then Grd : = 'UNK'

else Grd := Grd chr < (Code_Val and $0F) i- 48)

end; { Procedure Decode_Grade_and_Status }

63

File Name: CONVERT. PAS (cont)

Procedure Hash(Raw_Value : String25; var Hash_Value : integer;
var SSN_Hash : boolean);

type
Ordering_Set = set of char;

var
Sub_Total, HI, H2, H3 : integer;
Soc_Sec_Nr : real

;

begin
while pos(' ',Rav_Value) <> do

delete (Ra¥_Value, pos(' ', Ravi_Value), 1)

;

while pos('-', Raw_Value) <> do
delete(Raw_Value, pos< '-', Raw_Value), 1)

;

Val(Raw_Value,Soc_Sec_Nr,Code)

;

if Code = then
begin

Hash_Value i= (round(frac(Soc_Sec_Nr/10000) »10000) mod 5000) !;
SSN_Hash := True; Exit

end
else

begin
SubTotal := 0;

if length <Raw_Value) > 7 then H2 := 7

else H2 := length < Raw_Value)

;

H3 := 102;

for HI := 1 to H2 do
begin

Sub_Total : =Sub_Total HG* < Ord (upcase< Raw_Value[HI 3)
) -65)

;

H3 := H3 div 2

end;
Hash_Value := abs<Sub_Total

) ; SSH_Hash := False
end

end; { Procedure Hash >

Function Real_Value(Str_Val : String40) : real;

var
Temp_Real_Val : real;

begin
if <Str_Val[4] = '-') and (Str_Val[7] = '-') then

begin
delete(Str_Val,4, 1); delete(Str_Val, 6, 1)

end;
val<Str_Val, Temp_Real_Val, Code)

;

Real_Value := Temp_Real_Val
end; (Function Real_Value }

64

File Name: CONVERT. PAS (cont>

Function String_Real (Real_In : real ;String_Size : integer) :Stringll

;

var
Teinp_Result : Stringll;

begin
Str(Real_In: 11 :2, TeiBp_Result) -,

if length <Temp_Result) > String_Si2e then
repeat

delete <Temp_Result, 1,1)
until length <Temp_Result) = String_Size;

String_Real := Temp_Result
end; { Function String_Real }

Function String_Int < Integer_In, String_Size : integer) : StringS;

var
Temp_ReBult : StringSj

begin
Str (Integer_In : 5, Terap_Result)

;

if length (Temp_Result) > String_Si2e then
repeat

delete <Terap_Result, 1, 1)

until length <Temp_Result) = String_Size;
String_Int := Tefflp_Result

end; { Function String_Int }

Function Date_Difference(Datel, Date2 : String9) : integer;

var
Date_Codel, Date_Code2, Monl, Mon2, year_Correct : integer;

begin
Extract_Date_Data(Datel, Monl, Date_Codel)

;

Extract_Date_Data<Date2, Mon2, Date_Code2)

;

Year_Correct : = abs< <Date_Codel div 512) - <Date_Code2 div 512)) '128;

Date_Difference : = <Date_Codel - Date_Code2 - year_Correct) div 32

end; (Function Date_Difference)

65

File Name: CONVERT. PAS (cont)

Function Nev_Status(Act i Char; LQan_Rec : AccQunting_RecQrd) : byte;

var
ADiff, PDiff, Inc : integer; ADate, PDate i string[9];
T_Reall, T_Real2 : real;

begin
if Act = 'D' then Inc : = -1 else Inc : = 1;

New_Status : = Loan_Rec. Acct_Status;
with Loan_Rec do

if Acct_Status in [1,3,5,6] then
Loan_Totals[Acct_Status3 := Loan_TotalsC Acct_Status] * Inc

else
begin

Split_Date_and_Money (Allot_Info, ADate, T_Reall)

;

Split_Date_and_Money<Balance_Info, PDate, T_Real2)

;

ADiff := Date_Difference(CSDate, ADate)

;

PDiff := Date_Difference(CSDate, PDate)

;

if ADiff > 4 then ADiff := 4; if PDiff > 4 then PDiff := 4;

if (Acct_Status = 4) and (PDiff > 0) then Nev_Status := $FF
else if Acct_Status = 4 then

Loan_Totals[4] := Loan_Totals[4] Inc
else if (Acct_Status=0) and <Adiff > 0) and (PDiff > 0) then

begin
Nev_Status := 2;

Loan_Totals[2] : = Loan_Totals[2] Inc;

Loan_Totals[7] := Loan_Totals[7] * Inc

end
else if Ac.ct_Status = then

Loan_Totals[0] : = Loan_Totals[0] * Inc
else

begin
if (Pdiff < 1) or (ADiff < 1) then

begin
Ne¥_Status : = 0;

Loan_Totals[03 := Loan_TotalsCO] Inc

end
else

begin
Loan_Totals[2] := Loan_TotalsC2] * Inc;

if PDiff > Adiff then
Loan_Totals[6*Adiff] := Loan_TotalsC6*Adiff

]

• Inc

else
Loan_Totals[6*Pdiff] := Loan_Totalst6^Pdiff

]

Inc

end
end

end
end; { Function Mew_Status }

66

File Name: FILEOPS. PAS

Function Strings_Equal < Input_String, Record_String : String25) : boolean;

var
Si, StrLen : integer;
Strl, Str2 : string[25];

begin
Strl := ";Str2 := ";
if length < Input_String) > length (Record_String) then

StrLen := length (Record_String

)

else StrLen := length < Input_String)

;

for SI := 1 to StrLen do
begin

if Input_String[Sl] <> chr(32) then
Strl : = Strl * upcase< Input_String[Sl])

;

if Record_String[S13 <> chr(32) then
Str2 := Str2 * upcase<Record_String[Sl 3

)

end;
if Strl = Str2 then Strings_Equal := True
else Strings_Equal := False

end; (Function Strings_Equal }

Procedure Get_Index_Record(Hash_0b3ect :String25; Var Rec_Ptr : integer
)

;

var
Hash_Val : integer;
Case_is_the_Key, Record_Located, No_Record : boolean;

begin
Hash (Hash_Object, Hash_Val, Case_is_the_Key)

;

seek(Index_File, Hash_Val) ;read(Index_File, Index)

;

if Case_is_the_Key then
seek < Index_File, Index. Hash_Case_Nr_Ptr

)

else if Index. Hash_Naffie_Ptr = then
begin

Rec_Ptr : = 0; Exit
end
else seek < Index_File, Index. Hash_Name_Ptr)

;

NoRecord := false; Record_Located : = False;

repeat
read(Index_File, Index)

;

if CaBe_is_the_Key then
begin

if SSN_Str< Index. SSN) = Hash_Object then
Record_Located := True

else if Index. Next_Case_Nr_Ptr = then

No_Record : = True
else seek (Index_File, Index. Next_Case_Nr_Ptr

)

end

67

File Name: FILEOPS. PAS (cont)

else
begin

if Strings_Equal <Hash_Object, Index. Name) then
Record_Located := True

else if Index. Next_Name_Ptr = then No_Record : = True
else seek (Index_File, Index. Next_Name_Ptr

)

end
until (No_Record) or <Record_Located)

;

if Record_Located then Rec_Ptr : = FilePoE(Index_File) - 1

else Rec_Ptr := 0;

end; { Procedure Get_Index_Record }

Procedure Write_Index_Record;

var
Templndex : Identification_Record;
Temp_Loan : Accounting_Record;
Record_Posit, Case_Hash_Val, Name_Hash_Val : integer;
SSN_String : Stringll;
Dummy : boolean;

begin
SSN_String : = SSN_Str (Index. SSN) ; Terap_Index := Index;
Get_Index_Record(SSN_String, Record_Posit) ; (check if record exists)
if Record_Posit <> then

begin
Index. Grade_and_Status := Temp_Index. Grade_and_Status;
seek< Index_File, Record_Posit) ; vrite< Index_File, Index)

;

seek<Loan_File, Index. Accounts_Ptr)

;

read<Loan_File, Terap_Loan)

;

if Temp_Loan. Next_Record <> then
repeat

seek<Loan_File, Temp_Loan. Next_Record)

;

read < Loan_File, Temp_Loan

)

until Temp_Loan. Next_Record = 0;

Loan. Prev_Record := FilePos(Loan_File) - 1;

Terap_Loan. Next_record := Loan_Stats. Next_Record;
seek (Loan_File, Loan. Prev_Record)

;

Mrite(Loan_File, Temp_Loan

)

end
else (record does not exist)

begin
Index := Temp_Index; Hash < SSN_String, Case_Hash_Val, Dummy)

;

seek (Index_File, Case_Hash_Val) ; read < Index_File, Temp_Index)

;

Index. Previous_Case_Nr_Ptr := Case_Hash_Val

;

Index. Next_Case_Nr_Ptr : = Temp_Index. Hash_Case_Nr_Ptr

;

Temp_Index. Hash_Case_Nr_Ptr : = Index_Stats. Accounts_Ptr

;

seek<Index_File,Case_Hash_Val) ; write< Index_File, Temp_Index)

;

if Index. Next Case Nr Ptr <> then

6a

File Name: FILEOPS. PAS (cont)

begin
seek < Index_File, Index. Next_Case_Nr_Ptr

)

;

read< Index_File, Temp_Index
)

;

Terap_Index. Previous_Case_Nr_Ptr :=

Index_Stats. Accounts_Ptr

;

seek< Index_Fiie, Index. Next_Case_Hr_Ptr
)

;

write< Index_Fiie, Temp_Index

)

end;
Index. Accounts_Ptr : = Loan_Stats. Next_Record;
Hash (Index. Name, Naine_Hash_Val, Dummy)

;

seek (Index_File, Name_Hash_Val) ; read< Index_File, Temp_Index
)

;

Index. Previous_Narae_Ptr := Name_Hash_Val

;

Index. Next_Name_Ptr := Temp_Index. Hash_Name_Ptr

;

Ten)p_Index. Hash_Name_Ptr : = Index_Stats. Accounts_Ptr
;

seek(Index_File, Name_Hash_Val) ; write< Index_File, Temp_Index)

;

if Index. Next_Naine_Ptr <> then
begin

seek < Index_File, Index. Next_Name_Ptr)

;

read < Index_File, Temp_Index)

j

Terap_Index. Previous_Name_Ptr := Index_Stats. Accounts_Ptr;
seek (Index_File, Index. Next_Name_Ptr)

;

write(Index_File, Temp_Index

)

end ;

seek < Index_File, Index_Stats. Accounts_Ptr)

;

read (Index_File, Temp_Index)

j

Index. Hash_Case_Nr_Ptr := Temp_Index. Hash_Case_Nr_Ptr

?

Index. Hash_Name_Ptr := Temp_Index. Hash_Name_Ptr

;

seek < Index_File, Index_Stats. Accounts_Ptr
)

;

vrite< Index_File, Index)

;

seek (Loan_File, Loan_Stats. Next_Record)

;

read (Loan_File, Terop_Loan)

;

Loan. Prev_Record := - Index_Stats. Accounts_Ptr

;

Index_Stats. Accounts_Ptr := Temp_Index. Accounts_Ptr

;

Index_Stats. Previous_Case_Nr_Ptr := Index_Stats. Accounts_Ptr

;

Index_Stats. Next_Name_Ptr := Index_Stats. Next_Name_Ptr * 1

end;
seek (Loan_File, Loan_Stats. Next_Record)

;

read < Loan_File, Teap_Loan)

;

seek(Loan_File, Loan_Stats. Next_Record)

;

Loan. Next_Record *. = 0;

vrite(Loan_File, Loan)

;

Loan_Stats. Next_Record := Temp_Loan. Next_Record;
Loan_Stats. Prev_Record := Loan_Stats. Prev_Record < 1;

seek< Loan_File, 0) ; ¥rite<Loan_File, Loan_Stats)

;

seek(Index_File,0) ; \»rite(Index_File, Index_Stats)

;

Flush<Index_File) ; Flush< Loan_File)
end; (Procedure Write_Index_Record }

69

File Hame: FILEOPS. PAS (cont)

Procedure Deiete_Loan(Loan_Record_Ptr : integer;

var Mext_Loan_Record : integer);

var
Temp_Loan : Accounting_Record;

begin
seek (Loan_File, Loan_Record_Ptr)

;

read(Loan_File, Loan)

;

Loan. Acct_Status := Nev_Status('D' , Loan)

;

Next_Loan_Record : = Loan. Next_Record;
if Loan. Next_Record <> then

begin
seek < Loan_File, Loan. Next_Record)

;

read (Loan_File, Temp_Loan

)

;

Teinp_Loan. Prev_Record := Loan. Prev_Record;
seek(Loan_File, Loan. Next_Record)

j

v»rite(Loan_File, Temp_Loan)
end;

if Loan. Prev_Record < then
begin

seek (Index_File, abs(Loan. Prev_Record)) ; read i Index_File, Index
)

;

Index. AccountB_Ptr := Loan. Next_Record

;

seek(Index_File, abs<Loan. Prev_Record)) ; write (Index_File, Index

)

end
else

begin
seek(Loan_File, Loan. Prev_Record)

;

read < Loan_File, Temp_Loan)

;

TeTBp_Loan. Next_Record : = Loan. Next_Record;
seek (Loan_File, Loan. Prev_Record)

;

write(Loan_File, Temp_Loan

)

end;
FillChar<Loan, 25,0)

;

Loan. Acct_Status := $FF;
Loan. Next_Record := Loan_Stats. NextRecord;
Loan_Stats. Prev_Record := Loan_Stats. Prev_Record - 1;

Loan_StatB. Next_Record := Loan_Record_Ptr

;

seek (Loan_File, Loan_Record_Ptr)

;

vrite<Loan_File, Loan)

;

seek(Loan_File, 0) ; write<Loan_File, Loan_Stats)

;

Flush<Loan_File)
end; { Procedure Delete Loan >

70

File Name: FILEOPS. PAS (cont)

Procedure Deiete_Account (Index_Entry_Ptr : integer);

var
Temp_Index : Identification_Record; Temp_Loan : Accounting_Record;
Next_Ptr, Record_Ptr, Case_Hash_Val, Name_Hash_Val : integer;
SSN_String : String25; Dummy : boolean;

begin
Str< Index. SSN: 9:0, SSN_String) ; Hash<SSN_String, Case_Hash_Val, Dummy)

;

Hash < Index. Name, Narae_Hash_Val, Dummy
)

;

Next_Ptr := Index. Accounts_Ptr;
repeat Delete_Loan (Next_Ptr, Next_Ptr) until Next_Ptr = 0;

Temp_Index := Index; Temp_Index. Name := 'EMPTY';
Temp_Index. Accounts_Ptr := Index_Stats. Accounts_Ptr

;

Index_Stats. Accounts_Ptr := Index_Entry_Ptr

;

Index_Stats. Next_Narae_Ptr := Index_Stats. Next_Name_Ptr - 1;

seek < Index_File, Index_Entry_Ptr) ; write(Index_File, Temp_Index
)

;

seek < Index_File, Index. Previous_Case_Nr_Ptr)

;

read (Index_File, Temp_Index)

;

if Index. Previous_Case_Nr_Ptr = Case_Hash_Val then
Temp_Index. Hash_Case_Nr_Ptr := Index. Next_Case_Nr_Ptr

else Templndex. Next_Case_Nr_Ptr := Index. Next_Case_Nr_Ptr;
seek (Index_File, Index. Previous_Case_Nr_Ptr)

;

write(Index_File, Temp_Index)

;

if Index. Next_Case_Nr_Ptr <> then
begin

seek (Index_File, Index. Next_Case_Nr_Ptr
)

;

read (Index_File, Temp_Index)

;

Temp_Index. Previous_Case_Nr_Ptr := Index. Previous_Case_Nr_Ptr

;

seek (Index_File, Index. Next_Case_Nr_Ptr)

;

vrite< Index_File, Temp_Index

)

end

;

seek (Index_File, Index. Previous_Name_Ptr)

;

read (Index_File, Terap_Index
)

;

if Index. Previous_Narae_Ptr = Name_Hash_Val then
Templndex. Hash_Name_Ptr := Index. Next_Name_Ptr

else Temp_Index. Next_Name_Ptr := Index. Next_Name_Ptr

;

seek (Index_File, Index. Previous_Name_Ptr)

;

write< Index_File, Terap_Index)

;

if Index. Next_Naffie_Ptr <> then
begin

seek (Index_File, Index. Next_Narae_Ptr)

;

read < Index_File, Temp_Index)

;

Temp_Index. Previous_Name_Ptr := Index. Previous_Name_Ptr

;

seek < Index_File, Index. Next_Name_Ptr)

;

vrite(Index_File, Temp_Index

)

end;

seek(Index_File, 0) ;)irite< Index_File, Index_Stats) ;

Flush(Index_File)
end; (procedure Delete_Account }

71

File Name: 3CREEHI0. PAS

Procedure Buzzer; { Produces audio error signal }

begin
sound < 800); delay < 100); nosound

end; { Procedure Buzzer }

Procedure Display_Window (Screen_Nr : integer; Windov_Hr : byte);

var
X, Y, 2, Offset, Window_Ptr : integer;
Window_Lines : byte;
DisplayString : StringSO;

begin
Window_Ptr := Windov_Nr»4 - 3;

with Screen [Screen_Nr] do
begin

Window_Lines := 0;

Z := Window_Info[Window_Ptr +• 31;

X := Windo\i_Info[Windov_Ptr]; Y := Window_Info[Window_Ptr ^ 1];

vhile Window_Lines < Window_Info[Window_Ptr ^ 21 do
begin

DisplayString := Windov_Contents[Screen_Nr, Z]

;

Offset := <Y - 1)»160 * 2»(X - 1);

inline<

$50/$51/$57/$56/$06/$9C/ (PUSH AX, CX, DI, SI, ES, Flags)
$2E/$Ba/Display_Meinory/ (CSiMOV AX, [Display_Memory]

)

$50/ {PUSH AX}

$07/ (POP ES>

$aB/$BE/0ffset/ {«0V DI, [BP«-Offset]

}

$aD/$B6/DisplayString/ (LEA SI, CBP^DisplayString]

)

$31/$C9/ (XOR C)i,CX)

$36/$aA/$0C/ {SS:MQV CL, [SI]}

$46/ {INC SI}

$FC/ {OLD)

$36/$A4/ (LI: SS:MOVSB}
$E2/$FC/ (LOOP LI}

$9D/$07/$5E/$5F/$59/$5a); (POP Flags, ES, SI, DI, CX, AX}

Z:=Z*-1;Y:=Y*-1; Windovr_Lines : = Windov_Lines < 1

end
end

end; { Procedure Display_Windov }

72

File Name: SCREEHIO. PAS (cont)

Procedure Prepare_Screen(Screen_Mumber : integer);

var
PI, PJ : integer;

begin
Prepared_Screen := Screen [Screen_Number] . Screen_Image;
PJ := 1;

vith Screen [Screen_Number] do
repeat

for PI := to ($7F and Field_Posits[PJ*2]) - 1 do
if not odd (PI) then
Prepared_Screen[Field_Posits[PJ*-13,Field_Posits[PJ] ^ PI] := $FF;
PJ := PJ ^ 3

until Field_Posits[PJ3 =

end; (Procedure Prepare_Screen }

Procedure Display_Input_Field<Screen_Num, Fld_Num : integer;
var End_Of_Field : integer);

var

Dl, D2, Ypos, Field_End : integer;

begin
Fld_Num := Fld_Num»3 - 2;

with Screen [Screen_Num 3 do
begin

D2 := -3;

gotoXY< (Field_Posits[Fld_Num]*l) shr 1,

Field_Posits[Fld_Num>l]
)

;

repeat
D2 := D2 3; Ypos: =Field_Posits[D2^Fld_Mum*l]

;

End_Of_Field := Field_Posits[D2*Fld_MuTn] *

($7F and Field_Posits[D2*-Fld_Num*2]) - 1;

for Dl := Field_Posits£D2*Fld_Num] to End_Of_Field do
if Qdd<Dl) then

begin
if Screen_IinageCYpos, Dl] in [32,45] then

Display_Screen[Ypos, Dl] : = Screen_Image[Ypos, Dl

]

else
begin

Dieplay_Screen(YPos, Dl] : = OFF;

Display_Screen[YPos, Dl^l] := Hi_Lite
end

end
until Field_Posits[D2^Fld_Nuin*-2] < 127

end
end; { Procedure Display_Input_Field)

73

File Name: SCREENIO. PAS <cont)

Procedure Screen_Input <Display_Nr :byte; Start_Fieid, End_Field : Integer)

;

var
OrigX, OrigY, X_Disp, Y_Disp, Field_Nr, Field_End, Dec_Pt : integer;
InType : byte;

Hon : string [4]

;

function Input_Error : boolean;

var
InChar : byte;

begin
Input_Error := True; InChar := lo(Reg8.AX);
if (InType in [65. .903) and < Inchar = 13) and (X_Disp < Field_End^2)

then Exit;
if (X_Disp = Field_End ^ 2) and (InChar <> 13) then Exit;
if (InType = 36) and (X_Disp = QrigX) and (InChar = 13) then Exit;
if (InType = 36) and (Not(Inchar in [13, 45, 46, 48. . 57])) then Exit
else if (InType in [78,1103) and (NotdnChar in [13, 48. . 57])) then

Exit
else if (InType = 99) then

begin
if (Display_Screen[Y_Disp, X_Disp-2] = 54) and

(NotdnChar in [73,82])) then Exit
else if (Display_Screen[Y_Disp, X_Disp-2] <> 54) and

(InChar <> 13) then Exit
end

else if (InType = 85) and (NotdnChar in C 13, 48. . 57, 65. . 90])) then
Exit

else if (InType = 89) and (NotdnChar in [13,56,57])) then Exit
else if (InType = 68) and

(NotdnChar in [48. . 57, 65. . 71, 74, 76, 77. . 80, 82. . 86, 89])) then Exit
else if (InType = 77) and

(NotdnChar in [65. . 71, 74, 76, 77. . 80, 82. . 86, 89])) then Exit
else if (InType = 71) and (NotdnChar in [69,79,87])) then Exit
else if (InType = 83) and (NotdnChar in [65,82])) then Exit
else if (InType = 90) and (NotdnChar in [69,79,82,87])) then Exit
else if (InType = 82) and (NotdnChar in [65,80])) then Exit
else if not (Inchar in [13, 32. . 126]) then Exit;
if (InType in [68,77]) and (NotdnChar in [48.. 57])) and

(Pos(Mon * chrdnChar), Valid_Month) = 0) then Exit
else Input_Error := False;

end; (internal function Input_Error }

74

File Name: SCREEHIO. PAS (cont)

procedure Rub_Out;

begin
if X_Disp = OrigX then Buzzer
else vith Screen [Display_Nr] do

begin
X_Disp := X_Disp - 2;

if Screen_Iraage[Y_Disp, X_Disp] in [32,453 then
X_Disp := X_Disp - 2;

if Display_Screen[Y_Disp, X_Disp] = 46 then Dec_Pt : = 0;
if Screen_ImageC Y_Disp, X_Disp] = 77 then

delete<Mon, length (Mon) , 1) ;

Display_ScreenCY_Disp, X_Disp] := $FFj
gotoXY((X_Disp*l) div 2, Y_Disp)

end
end; { internal procedure Rub_Qut >

procedure Display_Input < InChar : integer);

begin
if <X_Disp >= Field_End * 2) or ((X_Disp = OrigX) and

(InChar = 13)) then
begin

Buzzer; Exit
end;

vith Screen(Display_Nr 3 do
begin

if InType = 36 then
begin

if << InChar = 45) and (X_Disp <> OrigX)) or

(< InChar = 46) and < Dec_Pt <> 0)) or

((X_Disp = Dec_Pt * 6) and (Dec_Pt <> 0)) then
begin

Buzzer; Exit
end

else
if InChar = 46 then Dec_Pt := X_Disp

else
if (X_Disp = Field_End - 6) and (Dec_Pt = 0) then

begin
Dec_Pt := X_Disp * 2;

Display_Screen[Y_Disp,X_Disp3 : = InChar;

Display_Screen[Y_Disp, X_Disp*23 : = 46;

X_Disp := X_Disp * 4;

gotoXY((X_DiBp*-l) div 2, Y_Disp); Exit

end
end

75

File Name: SCREENIO. PAS <cont)

else if InType = 68 then
begin

if not (InChar in [48. .57]) then
begin

if X_Disp = OrigX then
begin

Display_Screen[Y_Disp, OrigX] := $20;
Display_Screen[Y_DiBp, 0rigX*-2] := $20

end
else if X_Disp = OrigX ^ 2 then

begin
Display_Screen(Y_Disp, X_Disp] :

=

Display_Screen[Y_Disp, OrigX]

j

Display_Screen[Y_Disp, OrigX] := $30
end J

X_Disp := OrigX * 6

end
else if < <Display_Screen[Y_Disp, OrigX] = 51) and

<Not<Inchar in [48,49]))) or

<Display_Screen[Y_Disp, OrigX] in [52. .57]) then
begin

Buzzer ;Exit
end

end;

if Screen_Iraage[Y_Disp, X_Disp] = 77 then
Mon := Mon » chr(InChar);

Display_Screen[Y_Disp, X_Disp] := InChar; X_Disp : = X_Disp ^ 2;

if Screen_Image[Y_Disp, X_Disp] in [32,45] then
X_Disp : = X_Disp * 2;

if X_Disp < Field_End * 2 then gotoXY< (X_Disp^l) div 2, Y_Disp)
end

end; { internal procedure Display_Input }

procedure Clear_Hi_Lite;

var
CI, C2, C3 : integer;

begin
if (X_Disp = OrigX) and

<Screen[Display_Nr].Field_Posits[3»Field_Nr] > 127) then
begin

repeat
Field_Nr := Field_Nr * 1

until Screen[Display_Nr]. Field_Posits[3»Field_Nr] < 128;

Exit
end;

76

File Name: SCREEMIO. PAS (cont)

if Screen[Display_Mr]. Screen_ImagetOrigY, QrigX] = 36 then
with Screen [Display_Nr] do
begin

if Dec_Pt = then
begin

Display_Screen[OrigY, X_Disp] : = 46;
Dec_Pt := X_Disp

end

;

CI := Dec_Pt ^ 4;
C2 := Field_End;
for C3 := OrigX to Field_End do

if 0dd<C3) then Prepared_Screen[OrigY, C3] := $FF;
for C3 : = CI downto OrigX do

if 0dd<C3) then
begin

if Display_Screen[Qrigy,C3] in [45, 46, 48. . 573 then
Prepared_Screen[Origy, C2] : =Display_Screen[OrigY, C3]

else Prepared_Screen[OrigY, C2] := 48;
C2 := C2 - 2

end
end

else
begin

for C2 := OrigX to Field_End do
if 0dd<C2) then

Prepared_Screen[0rigY,C2] := Display_Screen[OrigY, C2]
end

end; (internal procedure Clear_Hi_Lite }

begin { procedure Screen_Input }

if ESC then Exit;
Field_Nr : = Start_Field;
repeat

Prepared_Screen := Display_Screen

;

if Field_Nr > End_Field then Exit;
vith Screen[Display_Nr] do

if (Field_Posits[1603 = 1) and (Windov_Infof Field_Nr •4-3] <> 0)

and <Field_Nr <= 40) and < Not (Correcting)) then
Display_Window < Display_Nr, Field_Nr)

;

with Screen [Display_Nr] do
begin

X_Disp := Field_Posits[Field_Nr»3-2];
OrigX := X_Disp;
Y_Disp := Field_Posits[Field_Nr»3-l];
OrigY := Y_Disp

end;
Dec_Pt := 0; Mon := ' ';

Display_Input_Field(Display_Nr, Field_Nr, Field_End)

;

77

File Name: SCREENIO. PAS (cont)

repeat
Regs. AX: =$0000; intr<$16, Regs)

;

if <PF_Key) and (hi (Regs. AX) in [59. .68]) then
begin

Selection := hi (Regs. AX) - 58; Exit
end

else PF_Key := False;
if (hi(Regs.AX) in [72,75,77,80]) and (Correcting) then

begin
Scan_Code := hi (Regs. AX); Exit

end;
vith Screen[Display_Nr] do

InType := Screen_Iinage[Y_Disp, X_Disp]

;

if hi (Regs. AX) = 78 then Regs. AX := 13;

if InType in [68,71,77,82,83,85,90,99,117] then
Regs. AX := ord(upcase(chr (lo(Regs. AX))))

;

if lo(Regs.AX) = 27 then ESC := True
else if lo(Regs.AX) = 8 then Rub_Out
else if Input_Error then Buzzer
else if lo(Regs.AX) <> 13 then Display_Input (lo(Regs. AX)

)

until ((lo(Regs. AX) = 13) and (not (Input_Error))) or (ESC);
if ESC then Exit;
Clear_Hi_Lite;
Display_Screen := Prepared_Screen;
Field_Nr := Field_Mr *1

until Screen[Display_Nr].Field_Posits[Field_Nr»3-2] = 0;

end; { Procedure Screen_Input >

Function Field_Contents(Screen_Number, Field_Nr : integer) : String80;

var

Rl, End_0f_Field, X_Disp, Y_Disp : Integer;
Input_String : String80;

begin
if ESC then Exit;
Input_String := ";
nith Screen [Screen_Number] do

begin
X_Disp := Field_Posits[3»Field_Nr - 2];
Y_Disp := Field_Posits[3»Field_Nr - 1];

End_0f_Field := X_Disp * ($7F and Field_PositsC3»Field_Nr]
) -1

;

for Rl := X_Disp to End_Of_Field do
if (Odd(Rl)) and (Display_Screen [Y_Disp, Rl] <> $FF) then

Input_String: = Input_String«-chr (Display_Screen[Y_Disp, Rl]

)

end;

Field_Contents := Input_String
end; (Function Field_Contents >

78

File Name: SCREEMIO. PAS (cont)

Procedure Fill_Field<DispIay_Nr, Field_Nr :byte; Dispiay_String :String40)

;

var
Fl,X_Coord : integer?

begin
if ESC then Exit?
with Screen [DispIayNr] do

begin
Fl := Field_Nrj X_Coord := (Field_Posits[3»Fl -2] i- 1) shr 1;

gotoXY(X_Coord, Field_Posits£3»Fl - 13); write<Display_String

)

end
end; { Procedure Fill_Field >

File Name: LEDGER. PAS

Procedure Stats_Record_IQ(Action : char; LMon : integer;
var Work_Stats : General_Stats)

;

begin
if LMon = then

begin
seek(Stats_File, 12) ; read<Stats_File, Work_Stats) ; Exit

end;

Seek (Stats_File, LMon mod 12);

if Action in C'R'] then
begin

read(Stats_File, Work_Stats)

;

if <lo<CurDate div 512) > Work_Stats. Year) and
(LMon = Curmon) then

begin
if LMon = 1 then

begin
seek<Stats_File, 12)

;

¥rite(Stats_File, Work_Stats)
end;

FillChar<Work_Stats, 257,0);
Work_Stats. Year := CurDate div 512;

Seek <Stats_File, LMon mod 12);

write<Stats_File, Work_Stats)

;

end
end

else
begin

Seek <Stats_File, LMon mod 12); vrite(Stats_Fiie, Work_Stats)

;

Flush <Stats_File)
end

end; { Procedure Stats_Record_IO }

79

File Name: LEDGER. PAS (cont)

Procedure Record_Generai_Stats(Rec_Mon : integer);

var
Loan_Amt : real;
CatNDX,Rl : integer;
LCat : string[5];
Lgrd : string[3];
Dusta : string [343;

Stats_Rec : General_Stats;

begin
Stats_Record_IQ< 'R', Rec_Mon, Stats_Rec)

;

Loan_Arat : = Real_Value(Field_Contents< 1, 20))

;

LGrd := Field_Contents< 1, 2) ; DuSta := Field_Contents(l, 8)

;

for Rl := 1 to length (DuSta) do DuStaCRl] := upcase(DuSta[Rl])

;

Rl : = Integer_Value<copy (Lgrd, 3, 1))

;

vith Stats_Rec do
begin

if Field_Contents<l,3) = 'R' then
begin

Grade_Stats[2,9].0ty : = Grade_Statst2, 93. Qty ^ 1;

Grade_Stats[2, 93. Amt := Grade_Stats[2, 93. Amt • Loan_Amt
end

else if (Lgrd[13 = 'E') and <R1 <> 0) then
begin

Grade_Stats[l,R13.Qty := Grade_Stats[l, Rl 3. Qty * 1;

Grade_Stats[l, R13. Amt : = Grade_Stats[1, Rl 3 . Amt * Loan_Amt
end

else if (Lgrd[13 = 'W') and (Rl in [1..43) then
begin

Grade_Stats[2, R13.0ty := Grade_Stats[2, Rl 3 . Qty ^ 1;

Grade_Stats[2, R13. Amt : = Grade_Stats[2, Rl 3. Amt ^ Loan_Amt
end

else if Rl in [1..43 then
begin

Grade_Stats[2, Rl*4 3.Qty := Grade_StatsC2, R1^4 3 . Oty 1;

Grade_Stats [2, Rl *4 3 . Amt :
=

Grade_Stats[2, Rl*-43. Amt<-Loan_Amt

end;
if (pos('QRD', DuSta) <> 0) or (pos (' FOCA ', DuSta) <> 0) then

Rl := 1

else if (pos('DLI', DuSta) <> 0) or (pos ('PON ', DuSta) <> 0) then

Rl := 2

else Rl : = 3;

Duty_StationCR13.0ty : = Duty_Stationf Rl 3. Qty 1;

Duty_Station[Rl 3. Amt := Duty_StationCRl 3. Amt * Loan_Amt;
LCat := Field_Contents(l, 19)

;

CatNDX := Integer_Value(copy (LCat, 3, 2))

;

80

File Name: LEDGER. PAS (cont)

if CatNDX in CI.. 103 then
begin

if (CatNDX in [7.. 10]) or (LCatCS] = 'R') then
CatNDX := CatNDX * 1;

Loan_CatstCatNDX3.Qty := Loan_Cats[CatNDX3 . Qty ^ 1;

Loan_Cats[CatNDX3. Amt : = Loan_Cats C CatNDX 3 . Amt > Loan_Amt
end

end;

Stats_Record_IQ< '
W

' , Rec_Mon, Stats_Rec

)

end; { Procedure Record_General_Stats)

Procedure Ledger_Record_IG< Action i char; LMon : integer;
var Work_Account : AER_Accounts)

;

var
Prev_Month : AER_Accounts;
NDX, Rl, Ledger_Month : integer;
Al, A6 : real;

begin
NDX := LMon;
if LMon = then

begin
seek (Accounts_File, 12)

;

read < Accounts_File, Work_Account)

;

Exit
end;

Seek (Accounts_File, LMon mod 12);

if Action = 'R' then
begin

read(Accounts_File, Work_Account)

;

if (lo<CurDate div 512) > Work_Account. Entry_Year) and
(CurMon = LMon) then

begin
if LMon = 1 then

begin
seek< Accounts_File, 12)

;

write< Accounts_File, Work_Account

)

end;
FillChar (Work_Account, 199,)

;

Work_Account. Entry_Year := Curdate div 512;
seek(Accounts_File, LMon mod 12);

vrite< Accounts_File, Work_Account

)

end
end

81

File Name: LEDGER. PAS (cont)

else
with Work_Account do

repeat
AX000E2] := 0;AX000[3] : = 0;A2000[7] := 0;

for Rl := 1 to 6 do A2000E73 := A2000C7] * A2000CR1];
for Rl := 7 to 10 do AX000C2] := AX000[2] ^ A2000CR1];
for Rl := 9 to 16 do AXOOO(3 3 := AX000[3] ^ A3000CR1];
AXQ0O[4] := AXOOOCl] * AX000C2] - AX000C3];
AX000C6] := A3000[103 •A6000[173 -A2000C3] -A6000C 18]

-

A6000[193*-A6000[203«-A6000[213«-AXOOO[5];
Seek(Accounts_File, HDX mod 12);
yrite< Accounts_Fiie, Work_Account)

;

Flush(Accounts_File)

;

if NDX mod 12 <> Curmon mod 12 then
begin

NDX := NDX * Ij

Al := AX000C4]; A6 : = AXOOO[63;
seek (Accounts_File, NDX mod 12);
read<Accounts_File, Work_Account)

;

AX000[13 := Al; AXOOO[53 := A6
end

else NDX := -1

until NDX = -1

end; { Procedure Ledger_Record_IQ >

Procedure Ledger < Cat, Item, LDate : integer; PAmt : real);

var
Posting_Account : AER_Accounts;

begin
Ledger_Record_IO('R' , Ldate, Posting_Account

)

;

if (Cat = 6) and < Item = 15) then
begin

Cat := 3; Item : = 10
end

else if (Cat = 6) and (Item = 17) then
begin

Cat := 2; Item := 3

end
else if (Cat = 6) and (Item = 16) then Item := 17;

with Posting_Account do
if Cat = 2 then

begin
A2000CItera] := A2000[Item3 * PAmt;

if Item in [1..53 then A2QTY[Item3 : = A2QTY[Item3 ^ 1

end

82

File Name: LEDGER. PAS (cont)

else if Cat = 3 then
begin

A3000[Item3 : = A3000[Item] * PAmt;
if Item in tlO. .13] then A3QTY[Item] := A3QTYCItemJ 1

end
else (Cat = 6)

begin
AGOOOfltera] := AGOOOCItem] * PAmt;
if Item in [17.. 19] then AfcOTYtltera] := ASQTYCItem] ^ 1

end;
Ledger_Record_IO< '¥'

,

LDate, Posting_Account

)

end; (Procedure Ledger}

File Name: HARDCOPY. PAS

Function Printer_OK : byte;

var
PI : byte;

begin
Prepared_Screen := DiEplay_Screen;
repeat

Regs. AX := $0200;
Regs.DX := 0;

Intr($17,Regs)

;

if hi<Regs.AX) <> 144 then
if Print_On then

begin
Display_Windov<6, 11);

PI : = Key_Depressed
end

until (hi (Regs. AX) = 144) or (ESC) or (Not <Print_On))

;

if hi (Regs. AX) = 144 then
begin

Printer_OK := 0;

Print_On := True
end

else if (ESC) or (Hot (Print_On)) then
begin

Printer_OK := 1;

Print_On := False
end;

Display_Screen := Prepared_Screen

end; { Function Printer_OK }

83

File Name: HARDCOPY. PAS (cont)

Function Tab(Spaces : integer) : String25;

var
Tl : integer;
Temp_Space : String25;

begin
Temp_Space := '';

for Tl ". = 1 to Spaces do Temp_Space := Temp_Space • ' '
;

Tab : = Temp_Space
end; { function Tab)

Procedure Forin_110a;

const
LCat : array[l..ll] of string[25] = ('1401: N/R of Pay',

'1402: Loss of Funds' ,' 1403: Hedical/Dental '

,
' 1404 : Funeral',

'1405: Emergency Travel ',' 1406: Init Rent & Deposit',
'1406: Rent to Stop Evict. ',' 1407: Food', '1408: Utilities',
'1409: Auto', '1410: Other');

var
Fl, LCat_MDX : integer;
AmtL : real

;

Tb, Dbl_On,Dbl_Off, PStat :char;

SetTab, ClrTab, UL_Qn,UL_Qff : string[3];
PIO, P15, LCat_Str : stringCS];
P12, Pit : String[6];
Loan_Amt : string[73;
Pay_Amt : stringClOl;
Line, Linel : StringCaS];
OTH : string [21 3;

Grph, Box, BoxX, Act, Ret : string[25];
QTHl : string £27];
Rmks, Rmksl : string[40];

begin
LCat_Str := Field_Contents< 1, 19)

;

LCat_NDX := Integer_Value(copy <Lcat_Str, 3, 2))

;

if <LCat_Str[53 = 'R') or (LCat_MDX in C7..10]) then
LCat_NDX := LCat_NDX 1;

AmtL := Real_Value(Field_Contents< 1, 20)) ; Str < AmtL: 7: 2, Loan_Amt)

;

Pay_Amt := Field_Contents< 1, 12) • 'x' >

String_Int<l*Date_Difference(Field_Contents(l, 14),

Field_Contents(l, 13)),2);

0th := Field_Contents(l, 15); Othl := Field_Contents(l, 16)

;

Rmks := Field_Contents(1, 23) ; Rmksl := Field_Contents(1, 24)

;

PIO := chr(ia); P12 := chr (27) ^chr < 58) ; P15 := chr(15);
SetTab := chr (27) *-chr (68) ; ClrTab := chr (27) *chr (68) ^chr (0)

;

Tb := chr(9);

84

File Name: HARDCOPY, PAS (cont)

= 'ACTIVE' * Grph BoxX; Ret := 'RETIRED' * Grph

= 'ACTIVE' - Grph * Bostj Ret := 'RETIRED' *• Grph

Box

BoxX

UL_On := chr < 27) *chr<45) *chr (1) ; UL_Qff := chr (27) ^chr (45) ^chr (0)

;

Dbl_On := chr(14)j Dbl_Off : = chr(20);
Grph : = chr (27) chr (76) *chr (11) *chr (0)

?

BoxX : = chr () chr () chr () *chr (255) chr (195) chr (165) ^chr (153) ^

chr (1 53) ^-chr (165) *chr (195) *chr (255) ;

Box : = chr () chr () +chr () ^chr (255) <-chr (129) ^chr (1 29) ^chr < 1 29)
•

chr (129 > >chr (129) •chr (129) chr (255) ;

if Field_Contents(l, 3) = 'A' then
begin

Act
end

else
begin

Act
end;

if length (0th) = then 0th : =
' 'j

If length (Othl) = then Othl := ' ';

Line : = "
;

for Fl := 1 to 88 do Line := Line • chr (196);
Linel := line;
write (1st, P12, chr (27) chr (88) chr (6) •chr (96)) ;

write (1st, ClrTab, SetTab, chr (37) , chr (44) , chr (60
)

, chr (77
)

,

chr (95), chr (0))

;

writeln(lst,P12,chr(2ia) Line chr(191));
writeln(lst,chr(179),P10,Tab(14), 'ARMY EMERGENCY RELIEF INDIVIDUAL

LOAN LEDGER',P12, Tb, Tb, chr(179));

insert (chr (194) , Linel , 31) ; insert (chr (194) , Linel , 38)

;

insert (chr (194) , Linel , 54) ; insert (chr (194) , Linel, 71)

;

write(lst,P12)

;

writeln(1st, chr (195), Linel, chr (180));

writeln(lst,chr(179),P15, ' NAME OF SERVICE MEMBER' , P12, Tb, chr (179)

,

P15, 'GRADE',P12, Tb, chr(179),UL_0n,P15, Tab(7), 'STATUS' , Tab(a)

,

UL_0ff,P12,Tb, chr(179), P15, 'SOCIAL SECURITY NUMBER' , P12, Tb,

chr(179),P15, ' CASE NUMBER' , P12, Tb, chr (179))

;

vith Index do
with Loan do

begin
write (1st, chr (179) , P12, NAME, P12, Tb, chr (179)

,

Field_Contents(l,2),Tb,chr(179), ,P15, Act, ' ',Ret,

P12,Tb,chr(179), ' ' , PIO, SSN_Str (SSN) , P12, Tb, chr (179),

PIO, Dbl_On, Copy (SSN_Str (SSN) , 8, 4) ,
' /

')

;

if Loan_Nr < 10 then
writeln (1st, Loan_Nr : 1, Dbl_Off , P12, Tb, chr (179)

)

else writeln (1st, Loan_Nr : 2, Dbl_Off , P12, Tb, chr (179)

)

end;
Linel := Line;
insert(chr(197), Linel, 31) ; insert (chr (197), Linel, 38)

;

insert(chr(197), Linel, 54) ; insert (chr (197), Linel, 71)

;

writeln(lst,chr(195), Linel, chr(iaO))

;

85

File Name: HARDCOPY. PAS (cont)

writeln(lst,chr(179), P15,
' APPLICANT (If other than Service Member)', P12, Tb, chr(179)

,

PI 5, ' RELATION ' , PI 2, Tb, chr (1 79
)

, P15, Tab (6)

,
' REPAYMENT

' , P12,
Tb, chr (179) , P15, Tab (6) , ' DELINQUENT ' , P12, Tb, chr < 179

) , P15,
Tab<6), 'UNCOLLECTIBLE', P12, Tb, chr (179));

Linel : = copy (Line, 1, 50)

;

insert (chr (197), Linel, 16) ; insert (chr < 197) , Linel, 33)

j

delete (linel, 50,2)

;

writeln (1st, chr (1 79)

' , Field_Contents (1 , 6) , Tb, chr (179) , P15,
Field_Contents (1 , 7

)
, P12, Tb, chr (195) , Linel, chr (180)

)

;

Linel : = copy (Line, 1, 36) ; insert (chr (193) , Linel, 31
)

;

wr iteln(1st, chr (195), Linel, chr (ISO),P15, 'MONTHLY ALLOTMENT: ',P12, Tb,

chr(179),P15, 'DATE ' , UL_On, Tab(16
)
, UL_Off , P12, Tb, chr(179),

P15, 'AMOUNT ',P12, UL_0n,Tab(12),UL_0ff,Tb, chr(179));

write (1st, ClrTab, SetTab, chr (44) , chr (60) , chr (77
) , chr (95) , chr ())

;

\iriteln(lst,chr(179),P15, ' MILITARY ADDRESS OF SERVICE MEMBER', P12,
Tb,chr(179),P15, 'AMOUNT ' , P12, Pay_Amt : 10, Tb, chr (179) , P15,

'AMOUNT ',UL_0n,Tab(14),UL_0ff,P12,Tb,chr<179),P15, 'DA FORM
1106:', P12, Tb, chr(179));

writeln (1st, chr (179) , Field_Contents (1 , 8) , Tb, chr (179) , P15, ' START '

,

P12, Field_Contents(l, 13) , Tb, chr (179) , P15, 'LETTERS TO
BORROWER: ',P12, Tb, chr (179), P15, 'APPROVED ' , P12, UL_On, Tab(10),
UL_Off, Tb, chr(179))f

Linel := copy (Line, 1, 37)

;

writeln(lst,chr(195), Linel, chr(iaO),P15, 'STOP %P12,
Field_Contents(l, 14), Tb, chr (179) , P15, 'DATE ' , UL_On, Tab(16)

,

UL_0ff,P12, Tb, chr(179),P15, 'DA FORM 1105-3: ', P12, Tb,

chr(179))?
writeln(lst,chr(179),P15, ' HOME ADDRESS OF SERVICE MEMBER' , P12, Tb,

chr(179),P15, 'OTHER ', OTH, P12, Tb, chr (179) , P15, 'DATE ',UL_On,
Tab(16),UL_0ff,P12, Tb, chr(179),P15, 'POSTED ',P12, UL_On,

Tab (11), UL_Off , Tb, chr < 1 79))

;

writeln(lst,chr(179),Field_Contents(l,9),Tb, chr(179),P15,0THl,P12, Tb,

chr(179),P15, 'DATE ' , UL_On, Tab(16) , UL_Off , P12, Tb, chr (179),

UL_0n,Tab(15),UL_0ff,Tb, chr(179));

vriteln (1st, chr (179) , Field_Contents (1 , 10) , Tb, chr < 179) , Tb, chr (179) , Tb,

chr (179) , Tb, chr (1 79))

;

Linel := Line;
insert (chr (194) , Linel ,11)-, insert (chr (1 94) , Linel , 24)

insert(chr(193), Linel, 38) ; insert (chr (194), Linel, 52)

insert (chr (193) , Linel , 54) ; insert (chr (194) , Linel , 64

)

insert (chr (193) , Linel , 71) ; insert (chr (194) , Linel, 76

)

vriteln(1st, chr (195), Linel, chr (ISO))

;

write (1st, ClrTab, SetTab, chr (17) , chr (30) , chr (58) , chr (70
) , chr (82)

,

chr (95), chr (0), chr (13))

j

writeln(lst,chr(179), ' ',P15, 'DATE' , P12, Tb, chr (179) , P15, 'CHECK OR
RECEIPT', P12,Tb,chr<179),Tab(ll),P15, 'EXPLANATION', P12, Tb,

chr(179),' ',P15, 'AMOUNT OF LOAN', P12,Tb,chr(179), ' ',P15,

'AMOUNT OF L0AN',P12,Tb,chr(179), ' ', P15, ' BALANCE' , P12, Tb,

chr(179))

;

86

File Name: HARDCOPY. PAS (cont)

vriteln(lst,chr<179),Tb,chr(179),P15, ' NUMBER', P12, Tb, chr<179),
Tb,chr(179),Tb,chr<179),P15, ' REPAYMENTS' , P12, Tb, chr (179)

,

Tb, chr(179));
Linel := Line;
insert <chr< 197),Linel, 11) ; insert (chr(197) , Linel, 24)

?

insert(chr<197), Linel, 52) ; insert (chr (197) , Linel, 64)

;

insert(chr(194), Linel, 72) ; insert (chr (197) , Linel, 76)

;

insert (chr (194), Linel, 85)

;

vriteln(1st, chr (195), Linel, chr (180)
)

;

write (1st, ClrTab, SetTab, chr (17) , chr (30) , chr (58) , chr (70
)

, chr (78)

,

chr(82),chr(91),chr(95),chr(0),chr(13)

)

;

writeln(lst,chr(179),Field_Contents(l, 17), ' ', chr (179), PIO,

Field_Contents (1 , 18) , P12, Tb, chr (179) , Lcat C LCat_NDX] , Tb,

chr (179) , PIO, Field_Contents(1, 20) : 8, P12, Tb, chr (179
)

, Tb,

chr (179) , Tb, chr (179) , PIO, copy (Loan_Amt, 1, 4) : 6, P12, Tb,

chr<179),P10, copy (Loan_Aint, 6,2) :2,P12,Tb, chr (179)) ;

Linel := Line;
insert(chr(197), Linel, 11) ; insert (chr (197) , Linel, 24)

;

insert(chr(193), Linel, 52) ; insert (chr (197) , Linel, 64)

j

insert(chr(197), Linel, 72) ; insert (chr (197), Linel, 76)

;

insert (chr (197), Linel, 85)

;

writeln (1st, chr (195) , Linel , chr (80))

;

insert(chr(196), Linel, 52) ; delete(Linel, 53, 1)

;

vr ite (1st, ClrTab, SetTab, chr (17) , chr (30) , chr (70) , chr (78
)

, chr (82)

,

chr (91), chr (95), chr (0), chr (13))

;

if (length (Rmks) = 40) or (length (Rmksl) = 40) then Pit := P15
else Pit := P12-,

for Fl := 1 to 19 do
begin

if Fl in [1,2] then
begin

vriteln (1st, chr (179) , Tb, chr (179) , Tb, chr (179) , Pit, Rmks,

P12, Tb, chr (179) , Tb, chr (179) , Tb, chr (179)
, Tb,

chr(179),Tb,chr(179))

;

Rmks : = Rmksl
end

else
¥riteln (1st, chr (1 79) , Tb, chr (1 79

) , Tb, chr (179) , Tb, chr (1 79
)

,

Tb, chr (179), Tb, chr (179)
' , Tb, chr (179) , Tb, chr (179))

;

vriteln (1st, chr (195) , Linel , chr (196) , chr (180)

)

end;
vriteln (1st, chr (179) , Tb, chr (179) , Tb, chr (179) , Tb, chr (179) , Tb,

chr (1 79) , Tb, chr (1 79)

' , Tb, chr (179) , Tb, chr (1 79)
)

;

Linel := Line;
insert(chr(193), Linel, 24)

;

insert(chr(193), Linel, 11)

insert (chr (196) , Linel , 52

)

insert (chr (193), Linel, 64)

insert (chr (193) , Linel , 76

)

insert (chr (193), Linel, 72)

;

insert(chr(193), Linel, 85)

;

vriteln (1st, chr (192) , Linel , chr (217))

;

87

File Name: HARDCOPY. PAS <cont)

writeln<lst,PiO, Dbl_On, 'DA FORM 1108', Tab(21
)

,

copy (SSM_Str (Index. SSM) , fl, 11) , Dbl_Off , P12)

;

for Fl : = 1 to 4 do writelndst)
end; { Procedure Form_110a }

Procedure PrintHeader < Header_Ident : integer);

var
Hdr : string [803;

begin
if Header_Ident in [1..6] then

if Header_Ident = 1 then
Hdr := ' Chapter 13 Loans as of '

else if Header_Ident = 2 then
Hdr : = ' All Delinquent Loans as of '

else if Header_Ident = 3 then
Hdr := ' Uncollectible Loans Awaiting Approval as of '

else if Header_Ident = 4 then
Hdr := ' Paid-Off Loans as of '

else if Header_Ident = 5 then
Hdr := 'Transfer-In Loans Awaiting 1st Repayment as of '

else Hdr := ' Transfer-Out Loans Awaiting Approval as of ';

write<lst,chr<ia),chr<13)
)

;

if Header_Ident in [7. .9] then
writeln<lst,Tab<21), <Header_Ident-6> :2,

' Month Old Delinquent Loans as of ',CSDate)
else if Header_Ident = 10 then

writeln<lst,Tab<17),
'Delinquent Loans More than 3 Months Old as of ',CSDate)

else writeln (1st, Tab (16) , Hdr, CSDate)

;

writeln<lst,chr<27),chr<6a),chr<0),chr<27),chr(6a),chr(ll),
'"08>G',chr<0))

J

writeln (1st, chr < 9) , chr < 9) , chr < 9) , chr < 9) , chr < 9)

,

'LOAN ACCOUNT LAST');
writeln(lst,chr<9), 'NAME' , chr (9) , 'SSN' , chr (9)

,

'GRADE STATUS NR BALANCE PAYMENT');
writeln (1st)

end; (Procedure Print_Header }

Procedure Print_Report<Loan_Index : integer; Account : Entire_Account)

;

var
Grade : string[3];
S, Tb : char;
BDate : string [9];

Balance : real;
Box : string[153;

88

File Name: HARDCOPY. PAS (cont)

begin
Box := chr<27)i-chr(76)*chr(ll)*chr(0)>chr<0)«-chr(0)>chr<0)*chr(255)*

chr < 129) *chr < 129) *chr < 129) *chr (129) *chr (129) *chr (129)

chr<255)

;

write < 1st, chr (18) , chr < 27
) , chr (68) , chr () , chr < 27

) , chr (68
) , chr < 3

)

,

chr < 30) , chr < 43) , chr (48) , chr < 57
)

, chr (62) , chr (71
) , chr <)

,

chr(13))

;

Tb : = chr (9)

;

vith Index do
with Account[Rec_Pos[Loan_Index]]. Loan_Data do

begin
writedst, Box, Tb, Name, Tb,SSN_Str(SSN)) ;

Decode_Grade_and_Status(Grade_and_Status, Grade, S)

j

if S = 'A' then
write<lst, Tb, Grade, Tb, 'Active'

)

else write (1st, Tb, Grade, Tb, ' Retired ') *,

Split_Date_and_Money < Balance_Info, BDate, Balance)

;

writelndst, Tb, Loan_Nr, Tb, Balance:7:2, Tb, BDate)
end

end; { Procedure Print_Report)

Procedure Print_General_Ledger <Print_Record : AER_Accounts)

j

var
Tb : char

;

PI, P2 : integer;
Prt_Str : String80;
Lgr_Fmt : text;

begin
Tb : = chr (9) ; P2 : = 1

;

write < 1st , chr < 1 8) , chr < 27) , chr < 68) , chr <) , chr (27) , chr < 68) , chr (50)

,

chr < 60), chr (0), chr (13));

writeln<lst,Tab<25),Field_Contents<5, 10));

assign (Lgr_Fmt, LEDGER_FR«) ; reset <Lgr_Fmt)

;

for PI : = 1 to 46 do with Print_Record do
begin

if PI in Cl,3, 5, 17, 19, 29, 31,33, 35, 37, 45] then writelndst)
else

begin
readln (Lgr_FiBt, Prt_Str) ;

if PI in [2,6,20,34] then writelndst, Prt_Str

)

else if PI in [4,18,30,32,36,46] then

begin
writelndst, Prt_Str, Tb, Tb, AX000[P2] : 10:2)

;

P2 := P2 * 1

end
else if PI in [7. .11] then

89

File Name HARDCOPY. PAS (cont)

writeln<lst, Prt_Str, Tb, A2QTYCP1-63 :4, Tb,

A2000fPl-6] :10:2)

else if PI = 40 then
¥riteln< 1st, Prt_Str, Tb, A2QTYt33 :4, Tb, A2000C3] :10:2)

else if PI in [12.. 163 then
writelndst, Prt_Str, Tb, Tb, A2000[P1 -6 3 : 10: 2)

else if PI in [22. .253 then
writelndst, Prt_Str, Tb, A3QTY[P1 -123 :4, Tb,

A3000[P1-123:10:2)
else if PI = 38 then

writeln (1st, Prt_Str, Tb, A30TY[103 i4, Tb, A3000[10 3 : 10:2)

else if PI in [21, 26.. 283 then
vriteln<lst,Prt_Str,Tb, Tb,A3000[Pl-12 3:10:2)

else if PI in [41,423 then
writeln<lst, Prt_Str, Tb, A60TY[Pl-233 :4, Tb,

A6000[P1 -23 3: 10:2)

else if PI in [43,443 then
writelndst, Prt_Str, Tb, Tb, A6000[Pl-233 :10:2)

else iiriteln< 1st, Prt_Str, Tb, A6QTY[173 :4, Tb,

A6000[173: 10:2)
end

end;

Close (Lgr_Fmt)

;

for PI := 1 to 20 do writelndst)
end; { Procedure Print_Generai_Ledger }

File Name: AERPROCS. PAS

Function Valid_Account_Code< Account_Code

begin
if (Integer_Value<copy < Account_Code, 1,4))

< Integer_Value<copy < Account_Code, 1,4))
(Integer_Value < copy < Account_Code, 1,4))

Valid_Account_Code := True
else

begin
Valid_Account_CQde := False;
Buzzer

end
end; (Function Valid Account Code)

Strings) : boolean;

) - 2000 in [1..6,8. .103) or

) - 3008 in [1. .83) or

) - 6014 in [1. .73) then

90

File Hame: AERPROCS. PAS <cont)

Procedure Display_Account_Ident (Disp_Hr : integer);

begin
with Index do

begin
Decode_Grade_and_Status<Grade_and_Status, Grade, Status)

;

Fili_FieId<Disp_Nr,l,NaTne)
;

Fill_Field (Disp_Nr, 2, SSN_Str (SSN))

;

Fill_Fieid<Disp_Nr, 3, Grade)

;

if Disp_Nr <> 4 then
if Status = 'A' then Fill_Field<Disp_Mr, 4, 'Active ')

else Fill_Field<Disp_Nr,4, 'Retired')
end

end; (Procedure Display_Account_Ident

}

Procedure Display_Loans(Disp_Nr,» Start_Field, Disp_Start : integer;
Account : Entire_Account)

;

var
LDate, BDate, ADate : String9;
Dl : integer;
Loan_Amt, Balance, Allot_Amt : real;
Loan_Status : arrayCO. .63 of string[32];

'Delinquent
'Uncollectible <not yet approved)
'Paid-Off. Holding for 30 Days.

'Transfer-In. Awaiting 1st Pymt.

'Transfer-Out. Awaiting MANCOR.

begin
Dl : = Disp_Start;
Loan_Status[2]
Loan_Status [33

Loan_Status[4 3

Loan_Status[53
Loan_Status[6 3

repeat
with AccountCRec_Pos[Dl 3 3 . Loan_Data do

begin
Loan_Status[0 3 : = 'Current ';

Fill_Field(Disp_Nr, Start_Field, String_Int (Loan_Nr, 2))

;

split_Date_and_Money (Loan_Info, LDate, Loan_Amt)

;

Fill_Field(Disp_Nr,Start_Field*l,String_Real<Loan_Amt,7)) ;

Split_Date_and_Money < Balance_Info, BDate, Balance)

;

Fill_Field<Disp_Nr, Start_Field*2, String_Real(Balance, 7)
)

;

if Repay_Method and $7F <> then
Fill_Field<Disp_Nr, Start_Field*3, ' CH-13'

)

else if Repay_Method = then
Fill_Field<Disp_Nr,Start_Field*3, 'Allot'

)

else Fill_Field<Disp_Nr,Start_Field*3, 'P-Note' >

;

Split_Date_and_11oney (Allot_Info, ADate, Allot_Amt)

;

91

File Name: AERPROCS. PAS (cont)

if Acct_Status = 1 then
Fill_Field<Disp_Nr,Start_Field*4, 'Various'

)

else
Fill_Field<Disp_Hr,Start_Field«-4,

String_Real<Allot_Aint, 7)) ;

if abs(Loan_Amt - Balance) < 0.001 then
BDate := 'None Yet '

;

Fill_Field(Disp_Nr, Start_Field*5, BDate)

;

if (Acct_Status = 0) and (abs(Loan_Arot - Balance) < 0.001)
and <trunc(Allot_Info * 32.0) - CurDate > 0) then

Loan_StatusCO] := 'Repayments to start '

*

copy<ADate, 4, 9)

else if Acct_Status = 1 then
Loan_Status[13 : = 'CH-13 at ' *String_Int < Repay_Method, 3) i-

' cents on the dollar';
Fill_Field<Disp_Hr, Start_Field*6, Loan_Status[Acct_Status3)

;

Start_Field := Start_Field > 7; Dl := Dl * 1

end;

until <D1 = Disp_Start « 5) or (Rec_Pos[Dl] = 0)

end; { Procedure Display_Loans }

Procedure Get_Account<Key_Value : String25; var Nr_of_Loans : integer;
var Account : Entire_Account)

;

var
Record_File_Position : integer;

begin
Nr_of Loans := 0;

Get_Index_Record (Key_Value, Record_File_Position)

;

if Record_File_Position <> then
begin

FillChar < Account, 405,) ; FillChar (Rec_Pos, 30,)

;

FillChar(Stats_Code, 7,0)

;

seek < Loan_File, Index. Accounts_Ptr)

;

repeat
read (Loan_File, Loan)

;

Nr_of_Loans := Nr_of_Loans 1;

Account t Loan. Loan_Nr 3. Loan_Data := Loan;
Account t Loan. Loan_Nr 3. Rec_Loc : = FilePos< Loan_File) - 1;

Stats_Code[Loan. Acct_Status3 := Stats_Code[Loan. Acct_Status3
- 1;

Rec_PosCKr_of_Loans3 := Loan. Loan_Mr

;

seek (Loan_File, Loan. Next_Record

)

until Loan. Next_Record =

end
end; { Procedure Get_Account)

92

File Name: AERPROCS. PAS (cont)

Procedure Loan_Entry (Entry_Type : integer);

var

Cat : StringS;
LI, L2, WMon, LCat, Mon_Diff : integer;
ADate, LDate, BDate : StringS;
Account : EntireAccount

;

begin
repeat

Prepare_Screen < 1)

;

Dispiay_Screen := Prepared_Screen

;

if Entry_Type = 3 then
begin

gotoXYO, 17) ;vrite< 'Date of);
gotoXY<2, 18) ;vrite(' Grant ');

gotoXY(50, 17) ;write< 'Grant ');

Screen_Input (1^1,4);
Screen_Input<l, 8, 8)

;

Screen_Input<l, 17,20) ; if ESC then Exit
end

else if Entry_Type in [1,2] then
begin

Screen_Input<l, 1,4) ; if ESC then Exit;
Get_Account (Field_Contents < 1 , 4) , LI , Account)

;

repeat
Screen_Input(l, 5, 5) ;if ESC then Exit;
L2 := Integer_Value<Field_Contents(l, 5)

)

until L2 in fO. . 143;
if LI <> then

if L2 < Rec_Pos[Ll] then
begin

L2 := Rec_PosCLl];
Fi 1 l_Field < 1 , 5, String_Int < L2, 2)

)

end;
L2 := L2 * 1;

Screen_Input<l,6, 20) ; if ESC then Exit;

if Entry_Type = 1 then
begin

Fill_Field< 1,21, 'None Yet ');

Fill_Field<l,22, Field_Contents(l,20))

;

Screen_Input< 1, 23, 24)

end
else Screen_Input < 1, 21, 24)

end
else

begin
gotoXY<66,4) ; uriteCOld Loan Nr ')

;

93

File Name: AERPROCS. PAS (cont)

Screen_Input(l, 1, 4) ; if ESC then Exit;

Get_Account (Fieid_Contents (1 , 4) , LI , Account)

;

repeat
Screen_Input<l,25, 25); if ESC then Exit;
L2 := Integer_Value(Field_Contents<l, 25)

)

until L2 in [1. . 15];
if LI <> then

repeat
if Account [L2 3. Rec_Loc <> then L2 : = L2 * 1

until < Account [L2]. Rec_Loc = 0) or <L2 = 15);
Fill_Field<l,25,String_Int(L2, 1)) ;

Screen_Input< 1, 11,13); Screen_Input < 1, 17, 17)

;

Screen_Input < 1 , 20, 22

)

end

;

if ESC then Exit;
gotoXY < 5, 2) ; TextBackground < Red) ; TextColor (White)

;

write< 'Please VERIFY information. Press ',

chr<17),'—' if correct or ESC to stop entry.');
TextBackground < Blue) ; TextColor (Black)

;

repeat
if ESC then Exit

until Key_Depressed = 13;

FillChar(Index,47,0) ;FillChar (Loan, 25, 0)

;

with Index do
begin

Name := Field_Contents(1, 1)

;

Grade := Field_Contents< 1, 2)

;

Status : = Field_Contents<l, 3)

;

Grade_and_Status := Encode_Grade_and_Status (Grade, Status)

;

SSN := Real_Value(Field_Contents(l,4)

)

end;
vith Loan do

begin
Loan_Info : = Real_Value(Field_Contents(1, 20))

;

LDate : = Field_Contents(1, 17)

;

Extr act_Date_Data (LDate, WMon, Code)

;

if Entry_Type = 1 then Ledger (3, 10, WMon, Loan_Info)
else if Entry_Type = 3 then Ledger (3, 11, WMon, Loan_Info)

;

if Entry_Type <> 3 then
begin

Loan_Nr := L2;

Loan_Info := Merge_Date_and_Money (LDate, Loan_Info)

;

Allot_Info := Real_Value(Field_Contents(1, 12))

;

ADate := Field_Contents(1, 13)

;

Balance_Info := Real_Value(Field_Contents(1, 22))

;

if Entry_Type = 1 then BDate := LDate
else BDate : = Field_Contents(1, 21)

;

94

File Name: AERPROCS. PAS (cont)

if Entry_Type = 2 then
begin

Extract_Date_Data < BDate, WMon, Code)

;

Ledger(6, 16, WMon, Balance_Info)
end;

if Entry_Type = 2 then Acct_Status := 5

else Acct_Status : = Oj

Balance_Info :

=

Merge_Date_and_Money (BDate, Balance_Info)

;

if Field_Contents<l, 11) = 'A' then Repay_Method :=

else Repay_Method : = $80;
Allot_Info := Merge_Date_and_Money (ADate, Allot_Info)

;

Acct_Status : = Ne¥_Status< ' A' , Loan)
end

end; { vith Loan do }

if Entry_Type in CI, 2, 4 3 then Write_Index_Record

;

if Entry_Type in CI, 33 then Record_General_Stats< WMon)

;

if <Entry_Type in [1,23) and (Printer_OK = 0) then Form_110a;
Until lo<Regs.AX) = 27

end; { Procedure Loan_Entry }

Procedure Record_Payraents(Entry_Mode : integer);

var
Rl, LoanNr, Field, PMon, Nr_Loans : integer;
Match_Found : boolean;
PDate : stringC93;
Rcpt_Nr : String [83;

Allot_Amt, Payment : real;
Account *. Entire_Account

;

procedure Post (Loan_Nura : integer; New_Balance : real);

begin
if ESC then Exit;
Display_Screen := Prepared_Screen;
with Account[Loan_Nura3. Loan_Data do

begin
Acct_Status := Ne\i_Status('D' , Account [Loan_Num3 . Loan_Data) ;

if Ne¥_Balance =0.0 then
Acct_Status := 4

else if Acct_Status <> 1 then Acct_Status : = 0;

Balance_Info := Merge_Date_and_Money (PDate, New_Balance)

;

Acct_Status := Ne¥_Status< '
A

' , Account[Loan_Num3 . Loan_Data

)

end;
seek(Loan_File, Account [Loan_NuTn 3. Rec_Loc)

;

write (Loan_File, Account [Loan_Num 3 . Loan_Data)

;

Display_Loans(4, 12, 1, Account

)

end; { internal procedure Apply_to_Loan }

95

File Name: AERPROCS. PAS <cont)

procedure Appiy_Payment < Loan_Num : integer);

var
LDate, BDate : string[93;
VI : integer;
Balance, Nev_Balance, Ledger_Amt : real;
Ansver : string[2];
Transaction_Complete : boolean;

begin
if ESC then Exit;
if Loan_Num <> then

begin
Prepared_Screen := Display_Screen;
Fill_Field<4,4,String_Int(Loan_Nuin,2))

; gotoXY<4a, 2) ;

vrite('Press ' , chr < 17) ,
'—

i if Loan Nr ' , Loan_NuTn:2, ' is the');
gotoXY(4a, 3) ; write(' Correct Loan.');
gotoXY(4a, 5) ; write('If incorrect, press any other');
gotoXY<48, 6) ; write(' key to select correct loan.');
if Key_Depressed <> 13 then Loan_HuTn := 0;

Display _Screen := Prepared_Screen;
if ESC then exit

end;
if Loan_NuTB = then

begin
repeat

Loan_Nui!> := 0; Screen_Input (4, 10, 10) ; if ESC then Exit;
Answer := Field_Contents(4, 10)

;

Answerfl] := upcase< Answer C 1])

;

Fill_Field<4, 10, ' '); Loan_Num := Integer_Value< Answer)

;

if Loan_Num <> then
if Account [Loan_Num 3 . Rec_Loc = then Loan_Num :=

until <Answer[l] in ['A'..'C']) or (Loan_Num <> 0);
if Answer = 'A' then Ledger < 2, 1, PMon, Payment

)

else if Answer = 'B' then Ledger (2, 2, PMon, Payment

)

else if Answer = 'C then Ledger < 2, 4, PMon, Payment) ;

if Answer[l] in ['A'..'C'] then Exit
end;

repeat
Fill_Field<4,4,String_Int<Loan_Nuro, 2))

;

Transaction_Coffiplete := True;
with Account[Loan_Num] . Loan_Data do

begin
Split_Date_and_Money < Balance_Info, Date, Balance)

;

New_Balance := Balance - Payment;
if New_Balance <= 0.001 then Fill_Field<4, 8, ' 0.00')

else Fill_Field(4,a,String_Real<New_Balance, 7)
)

;

Prepared_Screen := Display_Screen;

96

File Name: AERPROCS. PAS (cont)

if Hew_Balance >= -0.001 then
begin

if Nev_Balance < 0.001 then New_Balance := 0.0?
Post <Loan_Nura, Nev_Baiance)

;

Ledger < 2, 3, PMon, Payment

)

end
else

begin
gotoXy(4a,2);
if Balance < 0.001 then

begin
write<'Loan Paid Off. Should I apply');
gotoXY(4a, 3)

;

vrite('the ', Payment :7: 2, ' repayment to:');
Ledger_Amt := Payment; Payment := 0.0

end
else

begin
Payment := Balance;
write< 'Applying ', Payment : 7: 2,

' to Loan. Should')

;

gotoXY<4a,3);
write<'I apply remaining ',

Abs(Mev_Balance) :7:2, ' to: '
)

;

Ledger_Amt := Abs(Nev_Balance)
end;

repeat
VI := 0; Screen_Input<4, 11, 11) ; if ESC then Exit;
Answer := Field_Contents(4, 11 >

;

VI := Integer_Value< Answer)

;

if VI <> then
if Accountf VI]. Rec_Loc = then VI :=

until (AnswerCl] in ['A','B']) or <V1 <> 0);

gotoXY(4a,2)

;

writeC ');

gotoXy(4a,3);
writeC ')}

Fill_Field<4,ll, ' ');

Prepared_Screen := Display_Screen

;

Post < Loan_Num, 0. 00)

;

if Payment <> 0.0 then Ledger (2, 3, PMon, Payment)

;

if Ansvertl] = 'A' then Ledger <2, 1, PMon, Ledger_Amt

)

else if Answer! 13 = 'B' then
Ledger < 2, 4, PMon, Ledger_Amt

)

else
begin

Transaction_Complete := False;
Loan_Num := VI;

end

97

File Name: AERPROCS. PAS (cont)

end { if Hew_Balance < 0.001 }

end (vith Account do}

until Transaction_Complete
end; { internal procedure Apply_Payinent

}

begin (Main Body Record_Payments }

PDate : = "
; Rcpt_Mr : = "

;

repeat
Prepare_Screen (4)

j

Display_Screen := Prepared_Screen;
if Entry_Mode = 1 then

begin
Fill_Field(4, 5, PDate) ; Fill_Field(4, G, Rcpt_Nr

)

end;
if Entry_Mode in [1,2] then Field := 2

else Field := 1;

if Field_Contents<4, 5) = '' then Screen_Input (4, 5, 6)

;

if ESC then Exit;
PDate := Field_Contents(4, 5) ; Rcpt_Nr : = Field_Contents<4, 6)

;

Extract_Date_Data < PDate, PMon, Rl)

;

Screen_Input<4, 7, 7) ; if ESC then Exit;
Payment := Real_Value(Field_Contents<4, 7))

;

Screen_Input<2, Field, Field) ; if ESC then Exit;
Get_Account < Field_Contents < 4, Field) , Nr_LQans, Account)

;

if Nr_Loans <> then
begin

Display_Account_Ident <4) ; Display_Loans< 4, 12, 1, Account)

;

Match_Found := False;
Rl := 0;

repeat
Rl := Rl * 1;

vith AccountCRec_Pos[Rl 3 3. Loan_Data do
begin

Split_Date_and_Money < Allot_Info. Date, Allot_Amt)

;

if abs(Allot_Amt - Payment) < 0.001 then
begin

Match_Found := True; Apply_Payment < Loan_Nr

)

end;

if ESC then exit
end

until (Match_Found) or <R1 = Nr_LoanB);
if Not <Match_Found) then Apply_Payment (0)

;

if ESC then Exit
end (if Nr_Loans <> }

else
begin

repeat
Screen_Input(4,9, 9) ; if ESC then Exit;

9a

File Name: AERPROCS. PAS <cont)

Rl := Integer_Value<Field_Contents<4,9)

)

until Rl in tl. .53;

Fill_Field<4,9, ' ');

Ledger < 2, Rl, PMon, Payment)
end

;

gotoXY<4a, 2) ;vrite< 'Press: ')

;

gotoXY<49, 4) ^vrite(' ' , chr (17), '—
' to post another payment')?

gotoXY(51, 6) ;write< 'ESC to return to main menu')
until Key_Depressed = 27

end; { Procedure Record_Payments >

Procedure Display_Financiais(Mode : integer);

type
String4 = string[4];
Input_Set = set of 1..4;

var
Disp_Acct : AER_Accounts;
Valid_Input : Input_Set;
WSDate, Test_Date : String9;
Acct_Code : string [4 3;

Dl, TMon, WMon, Acct_Cat, Acct_Item, Copt : integer;

procedure Total_Financials;

var
Temp_Fin : AER_Accounts;
End_Month, Tl, T2, T3 : integer;
A2 : array[1..10] of real;

A3 : array[9. .163 of real;

A6 : array[17. .213 of real;
A2Q : array [1.. 53 of integer;
A3Q : arrayClO. . 133 of integer;
A6Q : array t 17. . 193 of integer;
AX : arrayC1..63 of real;

begin
if CurMon = 1 then

begin
T3 := 0; End_Month := 12;

end
else

begin
T3 := 1; End_Month := CurMon

end;
Ledger_Record_IO('R', T3, Disp_Acct)

;

99

File Name: AERPROCS. PAS (cont)

for Tl := 2 t

begin
for T2
for T2
for T2
for T2
for T2
for T2
for T2
Ledger_
for T2
for T2

for T2

for T2

for T2

for T2
for T2

end (vith

end; (internal

o End_Month do with Disp_Acct do

1 to 10 do A2[T2] := A2000CT2];
9 to 16 do A3CT23 := A3000CT2];
17 to 21 do A6CT2] : = A6000tT2];
1 to 5 do A2Q[T2] := A20TY[T23;
10 to 13 do A3Q[T2] := A3QTYCT23;
17 to 19 do A6QCT2] := A6QTYCT23;
1 to 6 do AXCT2] := AX000CT2];

Record_I0< 'R', Tl, Disp_Acct) ;

= 1 to 10 do A2000[T2 3 : = A2000CT2 3 ^ A2CT2 3;

= 9 to 16 do A3000CT23 := A3000CT23 * A3CT23;
= 17 to 21 do A6000CT23 : = A6000(T23 ^ A6CT23;
= 1 to 5 do A20TYCT23 : = A2QTYCT23 ^- A2QCT23;
= 10 to 13 do A3QTYCT23 := A30TYCT23 * A3QCT23;
= 17 to 19 do A6QTYCT23 := A60TYCT23 ^ A6QCT23;
= 1 to 6 do AXOOO[T23 := AXOOOCT23 * AX[T23
Disp_Acct }

Procedure Total Financials }

procedure Write_Accounts;

begin
with Disp_Acct do

begin
gotoXY (30, 4) ; write < AXOOO [13:10:2);
for I := 1 to 10 do

if I in [1. .53 then
begin

gotoXY(24,4*-I); write(A2QTY[I3:4);
gotoXY(30, 4^1); write< A2000(13 : 10:2)

end
else

begin
gotoXY(30, 4*1);write(A2000[I3: 10:2)

end;
write<AX000[23:10:2);
write<AXOOO[53:10:2);
write<A30TY[103:4)

;

write<A3000t 103: 10:2);
write<A60TY[173:4);
write<A6000[173 :10:2)

;

write(A20TY[33:4);
write(A2000[33:10:2)

;

write<A60TY[183:4);
write < A6000C 18 3 : 10 : 2)

;

write(A60TY[193:4);
write(A6000[193: 10:2);
write(A6000[203 :10:2)

;

gotoXY<30, 15)

gotoXY (30,17)
gotoXY (24,18)
gotoXY(30, 18)

gotoXY(24,19)
gotoXY (30, 19)

gotoXY (24, 20)

gotoXY (30, 20)

gotoXY (24, 21)

gotoXY (30, 21)

gotoXY(24,22)
gotoXY (30, 22)

gotoXY (30, 23)

100

File Name: AERPROCS. PAS (cont)

gotoXY < 30, 24) ; write (A6000C 21] : 10 : 2)

;

gotoXYOO, 25) ;write<AX000[6] -.10:2)
;

for I := 9 to 16 do
if I in [10. . 13] then

begin
gotoXY<64, 1-5) ; write(A3QTYC I] :4)

;

gotoXY(70, 1-5) ; write< A3000[I] :10:2)

end
else

begin
gotoXY(70, 1-5) ; write(A3000C I] : 10:2)

end;
gotoXY<70, 12);write<AX000[3]:10:2);
gotoXY<70, 13) jvrite< AX000C4] :10:2)

;

gotoXY<77, 24)

end (with l1ain_Accountsi
end; (internal procedure Write_Accounts}

begin
WSDate := CSDate; Copt := 0; WMon := CurMon;
if Mode = 2 then Valid_Input := [1,23 else Valid_Input := CI.. 43;
repeat

if (<Copt <> 7) and (Mode = 1)) or (Mode = 2) then
begin

Prepare_Screen(5) ; Display_Screen := Prepared_Screen

;

Fili_Field(5, 10, 'GENERAL LEDGER FOR MONTH OF '

* copy (WSDate, 4, 6))

;

Ledger_Record_IO('R', WMon, Disp_Acct)

;

Write_Accounts

;

repeat
Screen_Input(5, 4-Mode, 4-Mode) ; if ESC then Exit;

Copt := Integer_Value(Field_Contents(5, 4-Mode))

;

if Not(Copt in Valid_Input) then Buzzer
until Copt in Valid_Input;

end;
if (Copt = Mode) or (Copt = 7) then

begin
Copt : = Mode

;

Screen_Input(5, 1, 1) ; if ESC then Exit;

Test_Date := ' ' * Field_Contents(5, 1)

;

Extract_Date_Data (Test_Date, TMon, Dl)

;

Code := Date_Difference (CSDate, Test_Date)

;

if (Not(Code in [0. .11])) or (Dl > CurDate) then

begin
Display_Window (6, 8)

;

if Key_Depressed = 27 then Exit
else Display_Screen := Prepared_Screen

end

101

File Name: AERPROCS. PAS (cont)

else
begin

WSDate := Test_Date;
WMon := TMon;
Ledger_Record_IO< 'R', WMon, Disp_Acct

)

end
end;

if (<Mode = 2) and (Copt = 1)) or (<Mode = 1) and <Copt =3)) then
begin

repeat
Screen_Input(5,6-Mode, 6-Mode) ; if ESC then Exit;
Acct_Code := Field_Contents<5, 6-Mode)

until Valid_Account_Code<Acct_Code)

;

Acct_Cat := Integer_Value< Acct_Code[1])

;

Acct_Item : = Integer_Value<copy < Acct_Code, 3, 2))

;

if Mode = 2 then
begin

Screen_Input(5, a,8) ; if ESC then Exit;
Ledger < Acct_Cat, Acct_Iten», WMon,

Real_Value(Field_Contents(5, 8)))

;

Ledger _Record_IQ('R', WMon, Disp_Acct)
end

else
begin

if Acct_Cat = 6 then
begin

if Acct_Itein = 16 then Acct_IteTB := 17

else if Acct_Item = 15 then
begin

Acct_Cat := 3; Acct_Item : = 10

end
else if Acct_Item = 17 then

begin
Acct_Cat := 2; Acct_Item := 3

end
end;

if <<Acct_Cat = 2) and <Acct_Item in [1..5])) or

<(Acct_Cat = 3) and <Acct_Item in CIO. .133)) or

(<Acct_Cat = 6) and <Acct_Item in C17. .193)) then
with Disp_Acct do

begin
Screen_Input(5, 6,6) ;if Esc then Exit;

if Acct_Cat = 2 then
A2QTY[Acct_Item3 :=

Integer_Value< Field_Contents (5, 6)

)

else if Acct_Cat = 3 then
A3QTY[Acct_Item3 :=

Integer_Value(Field_Contents<5, 6)

)

102

File Name: AERPROCS. PAS (cont)

else
A60TY[Acct_Itein] : =

Integer_Value(Field_Contents<5, 6)

)

end;
Screen_Input<5, 7, 7) ; if ESC then Exit;
vith Disp_Acct do

if Acct_Cat = 2 then
A2000[Acct_Item] :=

Real_Value(Field_Contents(5, 7)

)

else if Acct_Cat = 3 then
A3000[Acct_Item] :=

Real_Value(Field_Contents<5, 7)

)

else
A6000[Acct_Item] :

=

Real_Value(Field_Contents<5, 7))

;

Ledger _Record_IO('¥'
, WMon, Disp_Acct)

;

Ledger_Record_IO('R', WMon, Disp_Acct)
end

end { if Mode = 2 }

else if (Mode = 1) and (Copt = 2) then
begin

Display_Windov(5, 3) ; gotoXY<45, 1);
if CurMon <> 1 then

writeCOl JAN ',(80 « CurDate div 512) : 2, ' To ',CSDate)
else

vriteCOl JAN ',(79 * CurDate div 512) :2,' To 31 DEC ',

(79 * CurDate div 512) :2);

Total_Financials; Write_Accounts;
repeat

Screen_Input<5, 9, 9) ; if ESC then Exit;
Copt := Integer_Value(Field_Contents(5, 9))

;

if Not (Copt in [1,2]) then Buzzer;
if (Copt = 2) and (Printer_OK = 0) then

Print_General_Ledger (Disp_Acct

)

until Copt = 1;

Copt := 7

end
else if (Mode = 1) and (Copt = 4) and (Printer_OK = 0) then

Print_General_Ledger (DispAcct

)

until ESC
end; (Procedure Display_Financials >

103

File Name: AERPROCS. PAS (cont)

Procedure Display_Generai_Stats;

var
WSDate, Test_Date : String9;
Dl, Copt, TMon, WMon : integer;
Disp_Stats : Gerjeral_Stats;

procedure Write_Grade;

var
Wl, W2, Tot_Nr : integer;
TQt_ATDt : real;

begin
Tot_Nr := 0; Tot_Amt := 0.0;
gotoXY(a, 5)

;

for Wl := 1 to 2 do
for W2 := 1 to 9 do vith Disp_Stats. Grade_StatsC Wl, W2] do

begin
gotoXY < a, T«hereY) ; vr ite (Qty : 4)

;

gotoXY<13, whereY) ;writeln(Amt :10:2)

;

Tot_Mr := Tot_Nr * Qty;
Tot_Amt := Tot_Aint • Amt

end;

gotoXY(a,23) ; vrite<Tot_Nr :4) ;gotoXY< 13, 23) ; vrite<Tot_Amt : 10: 2)

end; (internal procedure Write_Grade >

procedure Write_Loan_Cats;

var
Wl, Tot_Nr : integer;
Tot_Amt : real

;

begin
Tot_Nr := 0; Tot_AiBt := 0.0;
gotoXY(45,5);
for Wl := 1 to 11 do

with Disp_StatB do
begin

gotoXY(45,TihereY) ;

write <Loan_Cats[Wl]. Qty :4) ; gotoXY(50, whereY)

;

wr iteln < Loan_Cats C Wl] . Amt : 10 : 2)

;

Tot_Nr := Tot_Nr * Loan_Cats[Wl] . Qty

;

Tot_Amt := Tot_Amt ^ Loan_Cats[Wl] . Amt

;

if Wl = 5 then
begin

gotoXY(45, whereY)

;

write< (Loan_Cats(6]. Qty Loan_Cats[7] . Qty) :4) ;

104

File Name: AERPROCS. PAS (cont

)

gotoXY(50, whereY)

;

vriteln< <Loan_Cats[6]. Amt * LQan_Cats[7] . Amt) : 10: 2)

end
end;

gotoXY(45, 17) ; vrite< Tot_Nr : 4) ;gotoXY(50, 17) ; vrite(Tot_Amt : 10:2)
end; (internal procedure Write_Loan_Cats }

procedure Write_Duty_Stations;

var
Wl, Tot_Nr : integer;
Tot_Amt : real;

begin
Tot_Nr := 0; Tot_Amt := 0.0; gotoXY(45, 21)

;

for Wl := 1 to 3 do with Disp_Stats. Duty_Station[Wl] do
begin

gotoXY<45,vhereY);
write(Qty:4)

; gotoXY<50, whereY) ; vriteln< Amt : 10:2)

;

Tot_Nr := Tot_Nr * Qty

;

Tot_Affit := Tot_Amt • Amt
end;

gotoXY(45,24) ; write< Tot_Nr :4) ; gotoXY< 50, 24
) ; vrite<Tot_Amt : 10:2)

end; (internal procedure Write_Duty_Station}

procedure Apply_Change(Chg_Cat : integer; Chg_Ident : String3);

var

Al, A2, Quantity : integer;
Amount : real;

begin
Screen_Input<6, 6, 6) ; if ESC then Exit;

Quantity := Integer_Vaiue<Field_Contents(6, 6))

;

Screen_Input(6, 7, 7) ; if ESC then Exit;

Amount := Real_Value<Field_Contents<6, 7))

;

if Chg_Cat = 3 then
begin

Al := 2;

A2 := Integer_Value(copy (Chg_Ident, 3, 1))

;

if Chg_Ident[l] = 'E' then Al := 1

else if Chg_Ident[l] = '0' then A2 : = A2 ^ 4

else if Chg_Ident[13 = 'R' then A2 := 9;

Disp_Stats.Grade_Stats[Al, A23.0ty := Quantity;
Disp_Stats. Grade_Stats[Al, A23. Amt := Amount

end

105

File Name: AERPROCS. PAS (cont)

else if Chg_Cat = 4 then
begin

Al := Integer_Value<copy (Chg_Ident, 1, 2))

;

if (Chg_IdentC3] = 'R') or (Al in [7. .10]) then Al : = Al * 1;

Disp_Stats. Loan_CatsCAl 3 . Qty := Quantity;
Disp_Stats. Loan_Cats[Al] . Amt : = Amount

end
else

begin
Al := Integer_Value<Chg_IdentCl])

;

Disp_Stats. Duty_StationtA13.Qty : = Quantity;
Disp_Stats. Duty_Station[Al]. Amt := Amount

end;
Stats_Record_IO('

W
' , WMon, Disp_Stats

)

end; { internal procedure Apply_Change }

procedure Total_Stats;

var
Tl, T2, End_Mon : integer;
Temp : General_Stats;

begin
if CurMon = 1 then

begin
Stats_Record_IO< 'R', 0, Disp_Stats) ; End_Mon := 12

end
else

begin
Stats_Record_IO< 'R', l,Disp_Stats) ; End_Mon : = CurMon

end;

for Tl : = 2 to End_Mon do
begin

Stats_Record_IQ< 'R' , Tl, Temp)

;

for T2 := 1 to 9 do vith Disp_Stats. Grade_Stats[1, T2] do
begin

Qty := Qty Temp. Grade_Stats[1, T23 . Qty

;

Amt := Amt • Temp. Grade_Stats[1, T2]. Amt
end;

for T2 : = 1 to 9 do Mith Disp_Stats. Grade_Stats[2, T2] do
begin

Qty := Qty Temp. Grade_Stats[2, T2] . Qty

;

Amt := Amt Temp. Grade_StatB[2, T2] . Amt

end;
for T2 := 1 to 11 do with Disp_Stats. Loan_Cats[T2] do

begin
Qty := Qty « Temp. Loan_Cats[T2] . Qty ;

Amt := Amt * Temp. Loan_CatsCT2] . Amt
end;

106

File Name: AERPROCS. PAS (cont)

for T2 := 1 to 3 do with Disp_Stats. Duty_Station[T2] do
begin

Qty := Oty * Temp. Duty_StationCT2] . Qty

;

Amt := Amt * Temp. Duty_Station[T2] . Amt
end

end
end; (internal Procedure Total_Stats }

procedure Print_Stats;

var
PI : integer;

begin
if Printer_QK = then

begin
Prepared_Screen : = Display_Screen;
Display_Window (6, 10)

;

Regs. AX := $0500; intr < $05, Regs)

;

for PI := 1 to 40 do Tiriteln< 1st

)

end
end; { internal procedure Print_Stats }

begin
WSDate := CSDate; WHon : = CurHon; Copt := 0;

Prepare_Screen<6)

;

repeat
if Copt <> 7 then

begin
Prepare_Screen (6) ; Display_Screen *. = Prepared_Screen ;

gotoXY<45, 1) ;clrEol; write('MONTH OF ' , copy < WSDate, 4, 9)
)

;

Prepared_Screen := Display_Screen

;

Stats_Record_IO('R', WMon, Disp_Stats)

;

Write_Grade; Write_Loan_Cats; Write_Duty_Stations;
repeat

Screen_Input<6, 1, 1) ; if ESC then Exit;
Copt := Integer_Value(Field_Contents(6, 1))

;

if Not (Copt in fl..6]) then Buzzer
until Copt in CI. .63

end

;

if Copt in [1,7] then
begin

Copt : = 1

;

Screen_Input(5, 1, 1) ; if ESC then Exit;
Test_Date : = ' ' * Field_Contents(5, 1)

;

Extract_Date_Data < Test_Date, TMon, Dl)

;

Code := Date_Difference< CSDate, Test_Date)

;

107

File Name: AERPROCS. PAS (cont)

if <Not(Code in CO. .11])) or <D1 > CurDate) then
begin

Display_Window(6, 8)

?

if Key_Depressed = 27 then Exit
else Display_Screen := Prepared_Screen

end
else

begin
WSDate := Test_Date; WMon : = TMon

end
end

else if Copt = 2 then
begin

gotoXY<45, 1)

j

if CurMon > 1 then
vrite<'01 JAN ',<<Curdate div 512) * 80) :2,' to %CSDate)

else
vriteCOl JAN ',((Curdate div 512) ^ 79) :2,' to ',

'31 DEC ',(<Curdate div 512) * 79) :2);

Total_Stats;
Write_Grade; Write_Loan_Cats; Write_Duty_Stations;
repeat

Screen_Input<6,9, 9) ; if ESC then Exit?
Copt := Integer_Value<Field_Contents<6, 9))

;

if Not < Copt in [1,23) then Buzzer;
if Copt = 2 then Print_Stats

until Copt = 1;

Copt := 7

end
else if Copt = 3 then

begin
Screen_Input <6, 3, 3) -,

Apply_Change<3, Field_Contents(6, 3)) ;If ESC then Exit;

Write_Grade
end

else if Copt = 4 then
begin

Screen_Input < 6, 2, 2)

;

Apply_Change<4, Field_Contents<6, 2)) ; if Esc then Exit;
Write_Loan_Cats

end
else if Copt = 5 then

begin
Screen_Input <6, 4,4);
Apply_Change<5, Field_Contents<6, 4)) ; if ESC then Exit;
Write_Duty_Stations

end
else if Copt = 6 then Print_Stats

until Copt = a

end; (Procedure Display_General_Stats }

108

File Name: AERPROCS. PAS (cont)

Procedure Seek_Records<Mode_Control : integer);

var

SI, S2, Line, Current_Ptr, Nr_Loans, Total_Tgts, Diff : integer;
PDiff, ADiff : integer;
Stat_Acct : byte;
ADate, BDate : string[9];
Amt : real

;

Account : Entire_Account

;

begin
if Loan_TotalsCMode_Control] = then exit;
Current_Ptr := 1; Total_Tgts : = 0; Line := 1;

if Mode_Control in [7. . 10] then Stat_Acct := 2

else Stat_Acct := J1ode_Control

;

repeat
Seek< Index_File, Current_Ptr) ; read< Index_File, Index)

;

if Index. Name <> 'EMPTY' then
begin

Get_Account <SSN_Str (Index. SSN) , Nr_Loans, Account)

;

if Stats_CodeCStat_Acct] <> then
for SI := 1 to Nr_Loans do

vith Account [Rec_Pos[SI]]. Loan_Data do
begin

if Mode_Control in [7.. 103 then
begin

Split_Date_and_Money < Balance_Info,

BDate, Amt)

;

Split_Date_and_floney < Allot_Info,

Adate, Amt)

;

PDiff := Date_Difference<CSDate, BDate)

;

ADiff := Date_Difference<CSDate, ADate)

;

if PDiff > ADiff then Diff := ADiff
else Diff : = PDiff;
if Diff > 4 then Diff : = 4

end
else Diff := 0;

if <(Stat_Acct = Acct_Status) and (Diff = 0)) or

< (Acct_Status = 2) and (Diff in CI.. 41)) then
begin

Total_Tgts : = Total_Tgts * 1;

if Line = 1 then
begin

Print_Header (Mode_Control)

;

Line := 6

end;

Print_Report (SI, Account)

;

Line : = Line * 1;

109

File Name: AERPROCS. PAS (cont)

if Line = 60 then
begin

for S2 := 1 to 7 do
vriteln< 1st)

;

Line := 1

end
end

end {with AccountfSl] do}

end; (if Index. Name <> 'EMPTY'}
Current_Ptr := Current_Ptr 1

until <Total_Tgts=Loan_Totals[Hode_Control]) or (Current_Ptr=5001
)

;

if Line > 1 then
while Line < 67 do

begin
writelndst) ;

Line := Line •> 1

end
end; { Procedure Seek_Records }

File Name: OVERLAYS. OVR

Overlay procedure Close_Files?

begin
close(Index_File)

;

close(Loan_File) ;

close<Stats_File)

;

close (Accounts_File

)

end; (procedure Close_Files }

Overlay Procedure Load_Display_Screens_into_Memory

;

var
FormFile : file of Screen_Data;
Windows : text;
LI, L2, L3 : integer;
Screen_Ident : string[2];
File_Name : string[14];

begin
if ESC then Exit;
Assign<ForraFile, 'FORMS. DTA') ; reset < FormFile) ; LI := 0;

while not EOF<FormFile) do
begin

seek (FormFile, LI)

;

LI := LI « 1; read (FormFile, ScreenCLl]

)

end;

110

File Name: OVERLAYS. OVR (cont)

cloBe(FormFile)

;

for L2 : = 1 to Li do
begin

if Screen(L2].Field_Posits[160] = 1 then
begin

Str (L2, Screen_Ident)

;

File_Name := 'WINDOW Screen_Ident '
. DTA ' ;

assign (Windows, Fiie_Name) ; reset (Windows) ; L3 := 1;

while not eof(Windows) do
begin

readln(Windows, Window_ContentsCL2, L33)

;

L3 := L3 1

end J

close (Windows)
end;

end
end; (Procedure Load_Display_Screens_into_MeTnory }

Overlay Procedure UpDate_Loans;

var
Ul, U2, U3, Nr_Accounts_Read, Nr_Recs : integer;
TeTnp_Real : real

;

Temp_StatuB : byte;
Diskette_In_Drive : boolean;

I

begin
Assign (Index_File, Index_Aer)

;

Prepared_Screen := Display_Screen

;

repeat
{$!-} reset<Index_File) {$1^};

Diskette_In_Drive : = <IOResult = 0);

if Not (Diskette_In_Drive) then
begin

ClrScr; gotoXY< 17, 10)

;

write<'I cannot seem to find the "B: Drive Diskette.');
gotoXYdO, 12)

;

write< 'Please verify that the "B: Drive" diskette is in ',

'the B Drive. '
)

;

gotoXY<15, 15)

;

write('Press any key when the problem has been corrected. '
)

;

repeat
until KeyPressed

end
until Diskette_In_Drive;
Display _Screen := Prepared_Screen;
Assign(Loan_File, Loans_AER); reset < Loan_File)

;

Assign<Stats_File, GrdStats_AER) ; reset (Stats_File)

;

Assign (Accounts_File, Accounts_AER) ; reset (Accounts_File)

;

111

File Name: OVERLAYS. OVR (cont)

read(Index_File, Index_Stats)

;

read(Loan_Fiie, Loan_Stats)

;

Nr_Recs := Loan_Stats. Prev_Record;
Print_On := True; Correcting := False;
Prepare_Screen< 3) ; Display_Screen := Prepared_Screen;
repeat

Screen_Input(3,2, 2) ; if ESC then Exit;
CSDate := Field_Contents(3, 2)

until length (CSDate) = 9;

Extract_Date_Data (CSDate, CurMon, CurDate)

;

Regs. AX := $2B00; Regs. CX := 1900 * Integer_Value<copy (CSDate, 8, 2)
)

;

Regs.DX := CurMon'lOO integer_Value (copy (CSDate, 1, 2))
;

intr($21, Regs)

;

I := Printer_OK;
ESC := False;
Textbackground(White) ;textcolor (Red^Blink) ;

gotoXYO, 2) ;write(' Working 1
');

Textbackground(blue) ; Textcolor (vhite)

;

FillChar(Loan_Totals, 22,0)

;

Boot_Up := True;
Ul := 0; Nr_Accounts_Read : = 0;

repeat
Ul := Ul 1;

seek(Loan_File, Ul) ; read(Loan_File, Loan)

;

with Loan do
if Acct_Status <> $FF then

begin
Nr_Accounts_Read := Nr_Accounts_Read ^ 1;

Terap_Status : = Nev_Status('A ', Loan)

;

if (Acct_Status = 4) and (Temp_Status = $FF) then
begin

if (Prev_Record < 0) and (Next_Record = 0) then
begin

seek (Index_File, abs (Prev_Record))

;

read (Index_File, Index)

;

Delete_Account (abs (Prev_Record)

)

end
else Delete_Loan < Ul , U3

)

end
else if Acct_Status <> Temp_Statua then

begin
Acct_Status : = Temp_Status;
seek (Loan_File, Ul)

;

write (Loan_File, Loan

)

end
end (if Acct_Status <> $FF}

until (Ul = 5000) or (Nr_Accounts_Read = Nr_Recs);
Boot_Up := False;
gotoXY(3, 2); write(' ')

end; (Procedure UpDate_Loans }

112

File Name: OVERLAYS. OVR (cont)

Overlay Procedure View_Change_or_Delete;

const
Header : arrayCL.a] of String[20] = (' Viev an Account',

' Record Chapter 13',

'Record Uncollectible',
'Record Transfer -Out '

,

'Delete Paid Off Loan',
'Delete Transfer-Out',
'Delete Uncollectible',
'Correct Loan/Account');

Descr : arrayCS. .7] of stringC14] =

< 'Uncollectible. ', 'Transfer-Out. '

)

var
Account : Entire_Account

;

Index_Hold : Identification_Record;
File_Key : string[25];
Fid, SI, S2, S3, S4, NDX, Action,
NrLoans, LoanNr, Percent, WMon : integer;
Strin : string[33;
UncDate : String9;
InReal : real;
Key_Hit : byte;

begin
if ESC then Exit;
Key_Hit := 1;

repeat
Prepare_Screen<2) ; Display_Screen : = Prepared_Screen;
if Key_Hit <> 13 then

begin
repeat

Screen_Input<2,8, 8) ; if ESC then Exit;
Fid := Integer_Value<Field_Contents<2, 8))

;

if Not <Fld in £1,2]) then Buzzer
until Fid in [1,23;
Fill_Field(2, 8, ' ');

repeat
Screen_Input<2,9,9) ; if ESC then Exit;
Action := Integer_Value(Field_Contents< 2, 9)

)

;

if Not < Action in [L.S]) then Buzzer
until Action in [1. .83;
Fill_Field<2, 9, ' ')

end;

gotoXY (60, 2) ; write (Header C Action 3)

?

Screen_Input<2, 3-Fld, 3-Fld) ; if ESC then Exit;
File_Key : = Field_Contents(2, 3-Fld)

;

Get_Account < File_Key , NrLoans, Account)

;

113

File Name: OVERLAYS. OVR (cont)

if NrLoane <> then
begin

Display_Account_Ident (2) j Display_Loans<2, 10, 1, Account)

;

if Not (Action in [1,83) then
begin

repeat
LoanNr := 0;

Screen_Input(2,6, 6) ; if ESC then Exit;
Strin := Field_Contents(2, 6)

j

if StrIn <> 'ALL' then
begin

LoanNr := Integer_Value<StrIn)

;

if Not(LoanNr in [1..15]) then
begin

Buzzer ; LoanNr : =

end
else if AccountCLoanNr] . Rec_Loc = then

begin
Buzzer j LoanNr : =

end
end

until (StrIn = 'ALL') or (LoanNr <> 0);
if NrLoans = 1 then StrIn : = 'ALL';
if StrIn = 'ALL' then

begin
SI := 1; LoanNr :=

end
else

begin
SI := 0;

repeat
SI := SI * 1

until Rec_Pos[Sl] = LoanNr
end;

Fill_Field(2, 6, ' ')

end; { if Action <> 1 >

if Action = 2 then (record ch-13 }

begin
repeat

Screen_Input(2, 5, 5) ; if ESC then Exit;
Percent := Integer_Value(Field_Contents(2, 5)

)

until Percent in CO. .1003;
Fill_Field(2,5, ' ');

repeat
\»ith Account [Rec_Pos[Sl 3 3. Loan_Data do

begin
S4 : = Nev_Status('D',

Account [Rec_Poe[SI 3 3 . Loan_Data)

;

AcctStatus := 1;

114

File Name: OVERLAYS, OVR (cont)

S4 := New_Status('A',

Account [Rec_Pos[Sl] 3 . Loan_Data)

;

Repay_Method : = Percent
end;

Display_Loans(2, 10, 1, Account)

;

SI := SI > 1

until (Rec_Pos[Si] = 0) or (Rec_Pos[Sl -1] = LoanNr) ;

end { if Action = 2 }

else if Action = 3 then { record uncollectible}
repeat

S4 := Nev_Status< 'D', Account[Rec_PosCSl]]. Loan_Data)

;

Account [Rec_Pos[SI]]. Loan_Data. Acct_Status := 3;

Display_Loans<2, 10, 1, Account)

;

S4 := Nev_Status('A', Account[Rec_PoseSl]]. Loan_Data)

;

SI := SI * 1

until <Rec_Pos[Sl] = 0) or <Rec_Pos[Sl-l] = LoanNr)
else if Action = 4 then { record transfer-out}

repeat
S4 := Ne¥_Status('D', Account [Rec_Pos[Sl 3 3. Loan_Data)

;

Account CRec_PosCSl 3 3 . Loan_Data. Acct_Status := 6;

Display_Loans(2, 10, 1, Account)

;

S4 := New_Status('A', Account[Rec_Pos[S13 3. Loan_Data)

;

SI := SI ^1
until (Rec_PosfS13 = 0) or (Rec_Pos[Sl -1 3 = LoanNr)

else if Action in [5. .73 then
begin

if Action = 5 then NDX : = 4

else if Action = 6 then NDX := 3

else NDX := 6;

gotoXY(l,21)

;

if (StrIn='ALL') and (NrLoans <> Stats_Code[NDX3) then
Write('Sorry, I can only delete accounts vhen ',

'ALL loans are declared ', DescrC Action 3

)

else
if (Account[Rec_PosCS13 3. Loan_Data. Acct_Status<>NDX) then

>irite('Sorry, Loan ' , Rec_PostSl 3 : 2,

' has not yet been declared ', DescrC Action 3,

' I cannot delete it. '

)

else
begin

if Action in [6,73 then
begin

gotoXY(l,22)

J

if Strin = 'ALL' then
write < 'Date Account Approved ',

DescrC Action 3

)

else
write('Date Loan ' , Rec_PosCSl 3 :2,

' Approved ', DescrC Action3)

j

115

File Name: OVERLAYS. OVR (cont)

Screen_Input(4^52, 52); if ESC then Exit?
UncDate := Field_Contents(4, 52)

;

Extract_Date_Data(UncDate, WMon,Code)

;

S2 := SI;

repeat
vith Account CRec_Pos[S2] 3. Loan_Data do

Split_Date_and_Money (Balance_Info,

Date, InReal)

;

Ledger (6, 25-Action, Wmon, InReal)

;

S2 := S2 ^ 1

until <Rec_Pos[S2 3 = 0) or
<Rec_PosCS2-13 = LoanNr)

;

end;

if Strln = 'ALL' then
Delete_Account<FilePos<Index_File) - 1)

else Delete_Loan(Account [LoanNr 3. Rec_Loc, Code)

;

Get_Account < File_Key , NrLoans, Account)

;

Prepare_Screen < 2)

;

Display_Screen := Prepared_Screen;
gotoXy(60, 2) ; vrite<Header CAction3)

;

if NrLoans <> then
begin

Display_Account_Ident <2)

;

Display_Loans(2, 10, 1, Account)
end;

gotoXY(5, 21);
if Strln = 'ALL' then

write < 'Account ',File_Key,
' has been removed from my memory. '

)

else
\»rite<'Loan Nr ', LoanNr: 2,

' has been removed from my memory. '

)

end
end

else if Action = 8 then
begin

KBSB := KBSB and $DF;

gotoXY<6, 22); write(chr (24)
) ; gotoXY(l,23);

write<'Use ',chr(27),' ',chr<26),
' keys to select item to correct. '

)

;

gotoXY(6, 24) ; write<chr <25)) ; Correcting := True;

Prepared_Screen := Display_Screen;
repeat

S2 := Key_Depressed;
until (hi (Regs. AX) in [72,75,77,803) or (ESC);

if ESC then Exit;
SI := 1;

repeat
Scan_Code := 0;

116

File Name: OVERLAYS. OVR (cont)

Screen_Input(2, S1,S1) ; if ESC then Exit;

if ((Scan_Code = 72) and (vhereY = 2)) or

<(Scan_Code = 75) and (whereX < 8)) or
((Scan_Code = 77) and (whereX in [38,51])) or

(<Scan_Code = 80) and <S1 > NrLoans»7 < 3)) then
begin

Buzzer

;

Display_Screen := Prepared_Screen
end

else if Scan_Code in [72,75,77,80] then
begin

Display_Screen := Prepared_Screen;
if <Scan_Code = 72) and <S1 > 15) then

SI := SI - 7

else if Scan_Code = 72 then SI := 1

else if <Scan_Code = 80) and <S1 > 10) then
SI := SI * 7

else if Scan_Code = 80 then SI := 11

else if Scan_Code = 75 then SI := SI - 1

else SI := SI > 1

end;

until Not(Scan_CQde in [72,75,77,80]);
if SI < 5 then

begin
Index_Hold := Index;
Index_Hold.Name := Field_Contents(2, 1)

;

Index_Hold.SSN :=

Real_Value<Field_Contents<2, 2))

;

Strin := Field_Contents<2, 3)

;

UncDate := Field_Contents(2, 4)

;

with Index_Hold do
Grade_and_Status :=

Encode_Grade_and_Status(StrIn, UncDate[l]
)

;

Delete_Account<FilePos(Index_File) - 1);

Index := Index_Hold;
for S2 : = 1 to NrLoans do

begin
Loan := Account [Rec_Pos[S2]]. Loan_Data;
Write_Index_Record

;

S3 i= New_Status('A',Loan)
end

end
else vith Account [Rec_Pos[< SI -2) div 73] . Loan_Data do

begin
S2
S4
S3

<Sl-2) mod 7;

Acct_Status;
Nev_Status('D',

Account[Rec_Pos[(Sl-2) div 7]] . Loan_Data)

;

117

File Name: OVERLAYS. OVR (cont)

if S2 = 2 then
Split_Date_and_Money (Loan_Info, UncDate, InReal

)

else if S2 = 3 then
Split_Date_and_Money < Balance_Info, UncDate,

InReal)
else if S2 = 4 then

begin
Strln := Field_Contents< 2, SI)

;

if StrlnCl] = 'A' then
begin

Repay_Method := 0;

S4 :=

end
else if Strlntl] = 'P' then

begin
Repay_Method : = $80;
S4 :=

end
end

else if S2 = 5 then
Split_Date_and_Money < Allot_Info, UncDate,

InReal)
else if S2 = 6 then

begin
Split_Date_and_Money < Balance_Info, UncDate,

InReal)

;

UncDate := Field_Contents(2, SI)

;

Balance_Info :=

Merge_Date_and_Money (UncDate, InReal

)

end;

if S2 in [2,3,5] then
begin

InReal := Real_Value<Field_Contents(2, SI))

;

if S2 = 2 then
Loan_Info :=

Merge_Date_and_Money < UncDate, Inreal

)

else if S2 = 3 then
begin

if InReal =0.0 then S4 : = 4

else if (Inreal > 0.0) and
(S4 = 4) then

S4 := 0;

Balance_Info :=

Merge_Date_and_Money (UncDate, Inreal

)

end
else

Allot_Info :=

Merge_Date_and_Money (UncDate, Inreal

)

end;

118

File Name: OVERLAYS. OVR (cont)

Acct_Status : = S4;

Acct_Status : = New_Status('
A

'

,

Account [Rec_Pos[(SI -2) div 7]] . Loan_Data)

;

seek < Loan_File,
Account[Rec_Pos[(Sl-2) div 73] . Rec_Loc)

;

write (Loan _File,
Account[Rec_PosC <Sl-2) div 7] 3 . Loan_Data)

;

flush(Loan_File)
end

;

Get_Account (SSH_Str < Index. SSN) , NrLoans, Account) ;

Display_Account_Ident(2)

;

Display_Loans<2, 10, 1, Account) ;

gotoXY(l,22) J ClrEol ; gotoXY< 1, 23)

;

ClrEol; gotoXY(1, 24)

j

ClrEol; Correcting := False;
KBSB := KBSB or $20

end; { if Action = 8 }

SI := 0;

if Action in [2. .43 then
repeat

SI := Si * 1;

seek(LQan_File, Account [Rec_PosCSl 3 3. Rec_Loc)

;

write (Loan_File, Account [Rec_Post SI 3 3. Loan_Data)
until Rec_PosCSl<-13 =

end { if NrLoans <> >

else
begin

gotoXY(14,21);
write< 'Sorry, I do not appear to have the ',

'requested account. '

)

end;

gotoXY(5, 23);
write< 'Press ' , chr < 17) ,

'—
' to continue the same operation (',

Header [Action 3, ').');

gotoXY<5, 25);
write ('Press any other key to select another operation ',

' (ESC to Exit). ')

;

Key_Hit : = Key_DepreBsed;
until Key_Hit = 27

end; { Procedure View_Change_or_Delete)

119

APPENDIX C

APPLICATION PROGRAM DISPLAY
SCREEN DESIGN SOURCE CODE

The following, undoc.uTnent.ed, application program source
code is writ-ten in Borland International, Inc., Turbo
Pascal^ " , version 3. O.

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases
of interest. While every effort has been made, within the
time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without
additional verification is at the risk of the user.

120

File Name: FORMDRAW. PAS

type
scrnline = array C 1. . 160] of byte?
Scrnarray = array CI.. 25] of scrnline;
Screen_Data = record

Screen_Iraage : Scrnarray;
Field_Posits : ScrnLine;
Windov_Info : ScrnLine

end; (record Screen_Data}
StringSO = stringCSO];
CPU_Registers = record

AX, BX,CX,DX,BP, SI,DI,DS,ES, Flags : integer
end;

var
Regs : CPU_Registers;
Screen : Screen_Data;
Windov_Data : array [1. . 25, 1. . 25] of StringSO;
Temp_String : StringSO;
Temp_Window_Info : scrnline;
scrn : scrnarray absolute $6800: $0000; ($B000 for monochrome)
Formfile : file of Screen_Data;
Windovs : Text;
I, II, 12, J, K, L : integer;
Diff, Display_Meffiory, Lines_of_Windows, scrnr, Nr_of_Screens

integer; Entry_Pt, Width, Xpos, Ypos, Last : byte;

Opt : char;
Delete, Change, Nev_Screen, Screen_Mode : boolean;
scrnr_str : Btring[2];

Procedure Screen_Dra¥<Mode : boolean);

var
Fore, Back : byte;
Attribute_Only : boolean;

begin
Fore := $0F; Back := $00; PortW[$03D8] := $09;

Attribute_Only := False;
repeat

I := nhereX; J := WhereY; Regs. AX := $0000; intr < $16, regs)

;

with regs do
if lo(AX) in [16, 17, 32. . 255] then

begin
if not Attribute_Qnly then scrn[J, 2»I-1] := lo<AX);

scrn[J,2»I] := Back or Fore;

I := I ^ 1;

Last := lo(AX)

end

121

File Name: FORMDRAW. PAS <cont)

else if lo(AX) = 1 then

begin
if Attribute_Only then Attribute_Oniy := False
else Attribute_Only := True

end
else if lo<AX) = 2 then

begin
for J := 1 to 25 do

for I := 1 to 80 do
scrnCJ, I»2] := (ScrnfJ, I»2] and $0F) or Back;

J := 1; I := 1;

gotoXYd, J)

end
else if (lo<AX) = 19) and (Change) and (Mode) then

begin
Screen. Field_Posits[I13 := 2»whereX - 1;

Screen. Field_Posits[Il<-l 3 := whereY;
II := II * 2

end
else if (lo(AX) = 19) and (Change) and (not (Mode)) then

begin
Screen. Window_Info[II] := vhereX;
Screen. Windov_Infot II!] : = whereY

end
else if do (AX) = 5) and (Change) and (Mode) then

begin
vith Screen do

Field_PositsCIl] := 2»whereX - Field_Posits[Il-2]

;

I1: = I1 < 1

end
else if (lo(AX) = 5) and (Change) and (not (Mode)) then

begin
vith Screen do

Window_Info[Il*23 := J - WindO¥_Info[11*1 3 > 1;

width := whereX
end

else if do (AX) = 4) and (Change) and (not (mode)) then
with Screen do

begin
Windov_Info[I13 := 0;

Window_Info[Il«-13
Window_Info[Il*23
Window_Info[Il*-33
Delete := True;
Exit

end

=

=

=

122

File Name: FORMDRAW. PAS (cont)

else if (lo<AX) = 3) and (Change) and (Mode) the
begin

with Screen do
Field_.PositsEIlJ :=

$80 or (2»whereX - Field_P
11 := n - 1

end
else if (hi(AX) = 72) and (J <> 1) then J := J -

else if (hi (AX) = 80) and (J <> 25) then J := J

else if (hi(AX) = 75) and (I <> 1) then I := I -

else if (hi(AX) = 77) and (I <> 80) then I := I

else if hi (AX) = 71 then
begin

I := 1;

J := 1

end
else if hi(AX) = 79 then I : = 80
else if hi (AX) = 73 then J := 1

else if hi(AX) = 81 then J := 25
else if (hi(AX) = 28) then I := 1

else if hi(AX) = 14 then
begin

scrnC J, 2» I -11 := $20;
I := I - 1

end
else if hi (AX) = 94 then

begin
if Not Attribute_Only then scrnC J, 2»I-1] :

scrnf J, 2» I] := Back or Fore;

I := I - 1

end
else if hi (AX) = 59 then Back • = $00
else if hi(AX) = 60 then Back = $10
else if hi(AX) = 61 then Back = $20
else if hi(AX) = 62 then Back = $30
else if hi(AX) = 63 then Back = $40
else if hi(AX) = 64 then Back = $50
else if hi(AX) = 65 then Back = $60
else if hi(AX) = 66 then Back .= $70
else if hi(AX) = 104 then Fore := $00
else if hi (AX) = 105 then Fore := $01
else if hi (AX) = 106 then Fore : = $02
else if hi(AX) = 107 then Fore := $03
else if hi(AX) = 108 then Fore := $04
else if hi (AX) = 109 then Fore := $05
else if hi(AX) = 110 then Fore := $06
else if hi(AX) = 111 then Fore := $07
else if hi (AX) = 112 then Fore : = Fore and $07

23);

Last;

123

File Name: FORMDRAW. PAS (cont)

else if hi<AX)
else if hi<AX)
else if hi(AX)
else if hi<AX)

begin
J := J *

113 then Fore
67 then Back ;

68 then Back :

96 then

Fore or $08
Back and $70
Back or $80

1;

gotoXYd-l, J) ;

if Not Attribute_Only then scrnC J, 2»I-1

]

scrn[J, 2»I] := Back or Fore
end

;

gotoXYd, J)

until lo<Regs.AX) = 27

end; (Internal Procedure Screen_Draw }

= Last;

procedure Display_Windo\i (Xcoord, Ycoord: byte;DisplayString : StringSO);

var
X, Y, Offset : integer;

begin
X : = Xcoord; Y : = Ycoord;
Offset := <Y - 1)»160 * 2»(X - 1);

inline<
$50/$51 /$57/$56/$06/$9C/ (PUSH AX,CX, DI, SI, ES, Flags}

$B8/$00/$B8/
$50/
$07/
$aB/$BE/0ffset/
$aD/$B6/DisplayString/
$31/$C9/
$36/
$8A/$0C/
$46/
$FC/
$36/$A4/
$E2/$FC/
$9D/$07/$5E/$5F/$59/$58

)

(LI

end; { Internal Procedure Display_Windov }

(MOV AX, B800 }

(PUSH AX)

(POP ES}

(MOV DI, (BP^Offset]}
(LEA SI, CBP^DisplayString]}
(XOR cx,an
(SS:

)

{MOV CL, CSI]}

(INC SI)

(CLD)

SS:MOVSB}
(LOOP Lll

(POP Flags, ES,SI,DI,CX, AX}

begin { Main Program }

assign<ForiDFile, 'FORMS. DTA') ; Nev_Screen := False;
{$!-} reset (FormFile) {$1*};

if lOresult <> then
begin

rei#rite< FormFile) ; FillChar (Screen. Field_Posits, 160, 0)

;

FillChar (Screen. Windov_Info, 160,0) ;scrnr : = 1

end

124

File Name: FORMDRAW. PAS (cont)

else
begin

cirscr

;

Nr_of_Screens := FileSize(FormFile)

;

vriteln< 'Number of Screens in FORMS. DTA: ' , Nr_of_Screens)

;

write < 'Screen, Windov or Quit (S, W or Q) '
) ;readln(opt)

;

if opt in ['q', 'Q'] then
begin

close(Formf ile) ;exit
end;

if opt in ['S','s'] then Screen_Mode := True
else Screen Mode := False;
write('Screen # to bring up '

) ;readln< scrnr)

;

if (scrnr > Nr_of_Screens) and (Screen_Mode) then
begin

writeln<'New Screen. Screen number is ',

Nr_of_Screens <• 1) ;

scrnr := Nr_of_Screens •» l;Nev_Screen := True
end

else
if (scrnr > Nr_of_Screens) and (not <Screen_Mode)) then

exit;
if Not Neii_Screen then

begin
write< 'Change control settings? '

) ;read(opt)

;

if (opt = 'y') or (opt = 'Y') then Change := True
else Change := False;
cirscr

;

seek (FormFile, scrnr-1)

;

read(FormFile, Screen)

;

if (Change) and (Screen_Mode) then
FillChar (Screen. Field_Posits, 160,0)

end
else FillChar (Screen, 4000, 0)

;

end;

Scrn := Screen. Screen_Image;
if Screen_Mode then

begin
II := 1; gotoXYd,!); Screen_Draw (Screen_Mode)

;

Screen. Screen_Image := Scrn
end

else
begin

for I:= 1 to 25 do
for J := 1 to 20 do
Windo\i_Data[I, J] : = 'Empty';

J := 1;

Str (scrnr, scrnr_str)

;

125

File Name: FORMDRAW. PAS (cont)

Teinp_String : = 'Windov' scrnr_str + '.DTA';
assign < Windows, Temp_String)

;

($!-} reset (Windows) {$!*•};

if lOresult <> then
begin

rewrite (Windows) jFillChar (Screen. Window_Info, 160, 0)

end
else while not eof(Windows) do

begin
if Screen. Window_Info[J»4-l 3 <> then

for I:= 1 to Screen. Window_Info[J»4-l] do
readln(Windows, Window_Data[J, I]

)

;

J := J * 1

end;
repeat

Delete := False;
scrn := Screen. Screen_Iinage;
gotoXY(l,25) ; write ('Window Number ? (0 to exit) ');

read(Il)

;

if II <> then
begin

12 := II; II := Il»4 - 3; gotoXY(20, 12)

;

Teffip_Window_Info := Screen. Window_Info;
if Screen. Window_Info[113 <> then

for I : = 1 to Screen. Window_InfoC 11*2 3 do
with Screen do

Display_Window(Window_InfoCI13,
Window_InfoC 11*1 3*1-1,

Window_Data[I2, 13)

;

Screen_Draw(Screen_Mode)

;

if Not (Delete) then
begin

Window_DataCI2, 13 := "; K := 1;

I := Screen. Window_Infof I2»4-23

;

repeat
Window_Data[I2, K3 := ";
J := (Screen. Window_Infot 12*4-33 shl 1) - 1;

L := J;

repeat
Window_DataII2,K3 := Window_Datat 12, K3 *

chr (scrnC I, J3)
*

char (scrn [I, J*l 3)

;

J := J * 2

until (scrn[I,J-23 in [186,187,1883) and
(J-2 > L)

;

I := I * 1;

K := K * 1

until scrn[I-l, J-23 = 188;

126

File Name: FORMDRAW. PAS <cont)

Screen. Windov_Info[4»I2-l] : = K - 1

end
end;

Entry_Pt : = 1;

for I := 1 to 40 do with screen do
if Windov_Info[4»I-ll <> then

begin
Windov_Info[4»I] := Entry_Pt;
Entry_Pt : = Window_Info[4»I-l] ^ Window_Infot4»I

]

end
until II =

end;

cirscr

;

vrite('Save to File ? (Y/N) ');

read (Opt)

;

if (Not (Screen_Mode)) and (upcase(Opt) = 'Y') then
begin

revrite(Windows)

;

for I := 1 to 25 do
if Screen. Window_Info[4»I-l] <> then

for J : = 1 to Screen. Windov_Info[4»I-l] do
writeln(Windows, Window_Data[I, J3)

;

close(Windows)

;

Screen. Field_Posits[1603 := 1

end;
if upcase(Opt) = 'Y' then

begin
if New_Screen then

Seek(FormFile, FileSize(ForinFile))

else
seek (ForraFile, scrnr-1)

;

write (forafile, Screen)
end;

close(ForffiFile)

;

cirscr
end. (Main Prograa }

127

LIST OF REFERENCES

1. Coombs^ M. J. and Alty, J. L. (Eds), Computing Skills
and "the User Interface, Academic Press, Inc., 1981.

2. Sime, fl. E. and Coombs, M. J. < Eds) , Designing i"or

Human-Computer Communication, Academic Press, Inc. ,

1983.

3. James, E. B. , "The User Interface: How We May Compute",
In Coombs, M. J. and Alty, J. L. (Eds), Computing
Skills and the User Interface, Academic Press, Inc.

,

1981.

4. Sutherland, I. E. and Mead, C. A., "Microelectronics
and Computer Science", In Scientific American < eds

)

Microelectronics, W. H. Freeman, 1977.

5. Gaines, B. R. and Shav, M. L. G. , "Dialog Engineering",
In Sime, M. E. and Coombs, M. J. (Eds), Designing for
Human -Computer Communication, Academic Press, Inc. ,

1983.

6. Shneiderman, B. , Software Psychology, Winthrop
Publishers, Inc. , 1980.

7. Eason, K. D. and Damodaran, L. , "The Needs of the
Commercial User", In Coombs, M. J. and Alty, J. L.

(Eds) , Computing Skills and the User Interface,
Academic Press, Inc., 1981.

a. Peterson, J. L. and Silberschatz, A., Operating System
Concepts, 2d ed. , Addison-Wesley Publishing Company,
Inc. , 1985.

9. Reid, P. , "Work Station Design, Activities and Display
Techniques", In Monk, A. (ed) , Fundamentals of Human-
Computer Interaction, Academic Press, Inc. , 1984.

10. Bolt, R. A. , The Human Interface Where People and
Computers Meet, Lifetime Learning Publications, 1984.

11. Stoner, J. A. P., Management, 2d ed. , Prentice-Hall,
Inc. , 1982.

12. Sayles, L. R. and Strauss, G. , Human Behavior in
Organizations. Prentice-Hall, Inc. , 1966.

128

13. Card, S. K. , Moran, T. P. and Newell, A. , The
Psychology of Human -Computer Interaction, Lawrence
Erlbaum Associates, Inc. , 1983.

129

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Dr. Tung X. Bui, Code 54Bd
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. T. R. Sivasankaran, Code 54S3
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Computer Technology Programs, Code 37
Naval Postgraduate School
Monterey, California 93943-5000

6. LCDR D. C. Moore
3206 Westbourne Dr.
Antioch, California 94123

130

DtTDLEY Kmx LT3TlAnv

^^^-iPOtlj^nA 33943-5002

Moore

Microcomputer program
design considerations forthe novice user.

30 Hdf Qi 37 3 7«

4
Thesis

M762 Mooire

c.l Microcomputer prograTO

design considerations for

the novice user.

