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PREFACE.

——

Trz following work is an attempt to exhibit, in a moderate
compass, the theory and practice of Navigation and Nau-
tical Astronomy ;—to supply an elementary manual avail-
able for cducational purposes at home, and which the young
navigator may profitably consult in the exercise of his
professional duties at sea.

To those already acquainted with the subject, cven a
cursory exawmination of the following pages will suffice to
show, that I have ventured to depart from the plan adopted
in existing treatises in several important particulars. I
have, for instance, been much more sparing in the employ-
ment of logarithms, by the aid of which numbers it is
usually recommended that every nautical calculation should
be performed.

But having long entertained the conviction that the indige
criminate use of logarithmns in the simpler operations of
trigonometry is injudicious—since in suchoperations they save
neither time nor trouble—I have resolved here to dispense
with them in all those cormputations of navigation, in which
the right-angled triangle only enters into consideration,
and it is with the right-angled triangle almost exclusively
that the practical business of navigation has to do.

In the introductory chapter, I have sufficiently prepared
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the learner for this innovation—if innovation it be considered;
and I am not without hopes that persons whose practical
experience in these n.atters qualifies them to form a correct
judgment, will assent to the change thus introduced. Petty
multiplications and divisions can be more expeditiously, and
more satisfactorily, performed, without the aid of logarithms
than with it ; and that sort of assistance which rather retards
than expedites the end in view, isin fact no assistance at all.

‘With the exception of this change in the mode of con-
ducting the numerical operations, there will be found little
of peculiarity or novelty in the treatment of the navigation
proper, unless indeed it be in the uniform blending together
of theory and practice. The custom of making a book on
navigation to consist of only a collection of authoritative
rules, either without any theory at all, or with the investi-
gations thrown together in the form of a supplement or
appendix, to be studied or not, as the learner pleases, is one
which I think should now be abandoned. More attention
is being paid to professional training, better provision for it
is supplied, and a higher standard of qualification demanded,
than was the case fifty or sixty years ago. And our élemen-
tary scientific text-books must harmonise with this improved
state of our educational system: it is not enough now that
a candidate for professional distinction knows what his
book tells him ; he must know what it proves to him—the
why as well as the how. But it is more especially from an
impartial examination of the second part of this treatise—the
part devoted to Nautical Astronomy—that I indulge hopes
of a favourable reception of my book. In this more ad-
vanced and more difficult portion of the subject, I have
dispensed with formal “rules” in g]l cases where verbal
precepts and directions would be long and tedious; and
instead, have mapped out, as it were, a blank form of the
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route which the calculation is to take. Mathematical
formulw of any complexity are but ill adapted to verbal
translation. By a person even but slightly acquainted with
algeliraical notation, the formula itself will, in general, be
preferred for a working model, to the rule derived from it ;
but a blank form is preferable even to the symbolical expres-
sion, inasmuch as this, though indicating all the numerical
operations, suggests nothing as to the most convenient way
of ordering those operations. Blank forms have, in particular
problems, been recommended, and even partially adopted
before : but, I believe, not till now systematically given to
replace rules; and I have no doubt that they wil prove
acceptable in actual practice at sea.* I would also invite
attention to the manner in which the problem of finding the
latitude from a single altitude of the sun off the meridian is
discussed, more especially to the practical inferences at
page 147. Less consideration than it deserves iz given to
this problem in former treatises, on account of an affirmed
ambiguity in the calculated result. I think it is here shown
that the ambiguity complained of is more imaginary than
real. ‘

The chapter “ On Finding the Time at Sea,” page 183,
has also, 1 thmk some claim to notice; as I believe I have
_mtroduced a practical improvement in the working of this
important problem. I would more particularly refer to
what is contained between page 192 and the end of the
chapter. To the subject of the sixth chapter, “ On Finding
the Longitude at Sea,” I have also—as it deserves—devoted
much careful consideration: the part of this chapter to
which every person critically disposed will turn, will of
course be the article, on Clearing the Lunar Distance.

* Steps 1, 2, in the form at p. 148, should stand side-by-side : the
narrowness of the page here renders this arrangement impracticable.
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Besides the well-known logarithmic process of Borda—here
a little modified—1I have also given a method in which
logarithms may be @ltogether dispensed with; in which
subsidiary tables, and auxiliary arcs are not nceded; and
in which (besides a littlo common arithmetic) the whole
operation is performed with the aid of only a single small
table—a table of natural cosines.

Should, however, the computer prefer to use logarithms
where I have employed common arithmetic, it is of course
optional with him to do so; I have exhibited both modes of
proceeding, and if any one takes the trouble to count the
number of figures brought into operation in each method,
he will find that, on the average, the arithmetical process will
not require above half-a-dozen more than the logarithmic:
and one advantage of the former is, that the work is more
readily revised. This work, in all its details, it is better to
preserve rather than to record a mere abstract; and even
after the lapse of several hours, if a recurrence to it should
lead to the detection of any numerical error, it will not
be too late to put all to rights.

There is no merit in devising formulw and rules for
clearing the lunar distance; dozens of them may be easily
cduced from the same fundamental expression. I have
carefully examined and compared all those which different
authors have selected, and steadily resisting all bias of judg-
ment in favor of that here proposed, I have been forced to
the conclusion that it has a claim to adoption. The method
most in esteem at present, is that first given by Krafft of
St. Petersburg, which requires a table of versed and suversed .
sines, and another special table of * Auxiliary Arcs.”” This .
latter table is somewhat complicgted, and will seldom
furnish the arc required to within a second or two of the
truth; but the method is nevertheless the most simple and
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convenient hitherto proposed: whether the dispensing with
all such special tables, and thus securing accuracy to the
nearest second, will entitle the processs have recommended
to a favorable comparison with that just mentioned, others
must of course determine.

The tables which are to accompany this work, in con-
junction with the logarithmic tables already published in
the present series of Rudimentary Treatises, will compre-
hend all those which are indispensably necessary in Naviga-
tion and Nautical Astronomy-—and no more than are
necessary. The table of natural cosines will give degrees,
minutes, and seconds; and will be 8o arranged that the
“ Argument”’ will always appear at the top of the page, so
that the extract to be made will always be found by running
the eye down the page: there will never be any necessity
to proceed upwards, a plan which will of course facilitate
the references.

The logarithmic tables just adverted to may be bound up
with those now in preparation, but it will be better to keep
them distinct. A very little familiarity with them will
enable the computer at once to put his hand on that onz of
the two collections which contains the particular table he
wants, which table it will be more easy to find in a small
volume than in a large one: the two volumes of tables will
be distinguished one from the other by difference of colour
in the covers.

I have only further to add, that most of the astronomical
examples in this book are accommodated to the Nautical
Almanac of the current year, 1858 ; they all refer to dates
in advance of the time when they were framed, and are
therefore of course a..ll hypothetical.

J. R. YOUNG.
May, 1858.



*+* The Index, or Table of Contents, will be found at the end of the
Volume.

¢&r The NAVIGATION TABLES, to accompany this Work, will shortly
be published : Price, 1s. 6d.



NAVIGATION AND NAUTICAL ASTRONOMY.

INTRODUCTION.

As this rudimentary treatise is intended principally for the
instruction of persons having only a very moderate acquaintance
with mathematics, we shall devote a few introductory pages to the
practical computations of the sides and angles of plane triangles,
a portion of the general doctrine of Trigonometry that is indis-
pensably niccessary to the thorough understanding of the rules and
operations of NAVIGATION.

Although the path of a ship at sca is always traced upon a
curved surface, and is usually a line of a complicated form, yet it
fortunately happens that all the essential particulars respecting
this curved line—essential, that is, to the purposes of Navigation
—are derivable from the consideration of straight lines only, all’
drawn upon a plane surface; and the most complicated figure
with which we have to deal, in Navigation proper, is merely the
plane triangle.

And it may be as well here, at the outset, to apprise the
beginner that he is not to suppose that the substitution of the
straight line on a plune surface, for the spiral curve on a spherical
surface, in the various computations of navigation, is a contriv-
ance forced upon us on account of the difliculties attendant upon
the discussion of the more intricate form of the latter, and that
simplicity is attained at the expense of accuracy, by substituting
a straight linc on a plane, for a curve line on a sphere, It will be
shown in the proper place (Chapter IL), that this substitution
involves no error at all—that with the curvilinear form of a ship’s
path we have in reality nothing to do—that, in in:agination, the
curve may be straightened out, and that everything connected
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with the course, the distance sailed, and the difference of latitude
made, may be accurately embodied in a plane triangle.

The learner will thus readily perceive that a familiarity with
the rules for calculatide the sides and angles of plane trianglesis a
preliminary indispensable to the attainment of a sound practical
knowledge of navigation ; and we therefore earnestly invite his
attention to what is delivered in the following introductory
chapter, written with an especial view to the declarcd object of
the present rudimentary treatise.

PRELIMINARY CHAPTER.

O~ Toi COMITTATIONS 0F THE SIDES AND ANGLES oF PLANE
TriancLES.—Every triangle consists of six parts, as they are
called—the three sides, and the three angles. As lines and angles
are magnitudes quite distinet in kind, we cannot dircctly combine
a line and an angle in calculation, any more than we can combine
a mile and a ton. To obviate this difficulty, and to convert all
the magnitudes with which trigonometry deals into linear magni-
tudes only, employed in connection with abstract numbers, certain
rigonometrical lines, or nwmnbers having reference to the angles,
.are always used in the computations of trigonometry, instead of
the angles themsclves. It will be shown presently what these
trigonometrical quantities are, and how completely they cnable us
to conduct investigations concerning the sides and angles of
triangles, without the latter kind of magnitudes ever direetly
D, entering the inquiry: previously to this,
x| 75 however, it will be necessary to explain
\\/. how angles themselves are measured.
\/ \n About the vertex A, of any angle
A B A C,as a centre, let a circle BCD E T be
described: the intercepted are B C will
vary as the angle B A ('; that is to say,
that if the angle change to B A C’, whether
greater or smaller than the former, ther will the intercepted are
change from B C to B C', so0 as to give fhe proportion

angle BAC: angle BAC'::arc BC:are BC,

Ty
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as is obvious from prop. xxxiii. of Fuclid’s sixth book. And this
is true whatever be the magnitude of the cirele, or the length of
the radius AB.

The circumference of the circle is conceiffed to be divided into
360 cqual parts, called degrees; so that, from the above pro-
portion, an angle at the centre, subtended by an are of 40 degrees,
is double the angle at the centre subtended by an are of 20 degrees,
three times the angle subtended by an are of 10 degrees, and so
on ; and this is true whatever be the radius of the cirele described
about A.

The degrees of one circle differ of course in length from the
degrees of another circle, when the two circles have different
radii:—a degree being the 360th part of the circumfcrence,
whether the cirele be small or great; yect it is plain, that if a
circle, whether larger or smaller than that before us, were
described about A, the are of it, intercepted by the sides A B, A €
of the angle, would be the same part of the whole circumference
to which it belongs, that the are B C of the circle above is of the
whole circumfereftee to which & belongs: in other words, the
angle at the centre would subtend the same nwmber of degrees,
whatever be the length of the radius of the circle on which those
degrees are measurcd :—the degrees themselves would be unequal
in magnitude, but the nunmber of them would be the same.

By viewing an angle in reference to the nwumber of degrees in
the circular arc which subtends it, as here explained, we arrive at
a simple and effective method of estimating angular magnitude:
ihe circular degree suggests the angular degree, which we may
regard as the unit of angular measurement—the angular degree
being that angle the sides of which intercept one degree of the
circle. Angles are thus measured by degrees, and fractions of a
degree—the measures applied being the same in kind as the quan-
tities measured, just as in all other cases of measurement.

For the more convenient expression of fractional parts, a degree
is conceived to be divided into sixty equal portions, called minutes,
and cach of these into sixty equal parts, called seconds; further
subdivisions are usually regarded as unnecessary, so that when-
ever it is thought requisite to express an angle with such minute
accuracy as to take note of the fraction of a second, that fraction
is actually written as such.

The notation for degrecs, minutes, and sceonds, will be readily
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perceived from an instance or two of its use: thus, 24 degrees
16 minutes 28 seconds would be expressed, in the reccived nota-
tion, as follows: 24°16’ 28"; and 4 degrees 9 minutes 12 scconds
and three quarters of a second, would be written 4° 9’ 12”3,

If we were required actually to construct an angle from having
its measurement in this way given, and were precluded from the
use of any peculiar meehanical contrivance for this purpose, we
should first draw a straight line, as A B, in the preceding diagram;
then, with the extremity A as centre, and with any radius that
might be convenient, we should deseribe a circle B D F, &e.: the
circumference of this circle we should divide into 360 equal parts,
or the half of it, B E F, into 180 equal parts, or the fourth of it
(the quadrant), B D, into 90 equal parts; we should then count
from B as many of these parts, or degrees, as there are ifi the
measure of the angle, adding to the are, made up of these degrees,
whatever fractional part of the next degree, in advance, was
expressed by the minutes and seconds: the whole extent (B C) of
are, subtending the angle to be constructed, would thus be dis-
covered; and by drawing A C, the required sfngle B A C would
be exhibited. But the practical difficulties of all this would be
very considerable, if not insurmountable; they nced not, however,
be encountered, as instruments for constructing angles, and for
measuring those already constructed, are easily procurable: the
common protractor, with which all cascs of mathematical instru-
ments is furnished, enables us speedily to effect the business with
sufficient accuracy for all ordinary purposes. It is simply a semi-
circular are divided into degrees, as above described, with the
centre marked on the diameter connecting its extremities,

But the construction, or measurement, of angles upon paper, is
a mechanical operation with which we have nothing to do in
calculations respecting triangles; and we have adverted to it
solely for the purpose of giving greater clearness and precision to
the student’s conception of angular measurement; to satisfy him,
in fact, that the numerical expression for the value of any angle—
using the notation explained above—does really convey an accurate .
idea of the amount of opening it refers to, and furnishes a sufficient
datum for tho actual construction of the angle, supposing no merely
mechanical difficulties to stand in the way. Referring again
to the diagram, at page 2, we have further to remark, that what
must he added to anv arc. or subtracted from it. to make it berome
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a quadrant, or an arc of 90°, is called the complement of that are:
thus, C D is the complement of the arc BC; and D ¥, taken sub-
tractively, is the complement of the arc B E. In likec manner,
what must be applied to an arc to make it ademicircumfcrence, or
180°, is called the swpplement of that are: thus, C D F is the
supplement of the are B C, and E I the supplement of the are
B C E. The same terms apply to the angles subtended: thus,
the angle C A D is the complement of the angle B A C; and the
angle D A L, tauken subtractively, is the complement of the angle
B A E. Inlikc manner, the angle C A F is the supplement of
the angle B A C, and the angle E A I' the supplement of the
angle B A L,

Tor example, the complement of 24° 12/, whether we refer to
arc or angle, is 65 48’, and its supplement is 155- 48".

The Trigonometrical Sines, Cosines, Se.

It has already been observed, that as an angle and a straight
line cannot possibly be combined in any numerical caleulation, it
is necessary to employ either lines or abstract numbers instead of
angles in all the rules and investigations of trigonometry, the
quantities thus employcd being, of course, such as to always suggest
or indicate the angles themselves : we deduce them as follows :—

The SiNk.—I'rom the extremity C, of the are I C subtending
the angle B A C at the centre of the
cirele, let a perpendicular Cm be drawn
to the radius A B: this perpendicular
is the sine of the are B C.  The sine of
an are is, therefore, a line which may
be thus defined :—It is the perpendi-
cular, from the end of the are, to the
radius drawn to the deginning of that
arc:all the ares considered are supposcd to have their origin at B.

Just as from the measure of an arc we derive the measure of the
angle it subtends, so from the sine of an arc we dcduce the sine of
the angle. It would not do to regard, without any modification,
the sinc of an arc as the sine of the angle it subtends, because,
though the angle remam unchanged, the subtending arc—and
consequently the sine 0f it—may be of any length whatever, in
the absence of all limitation as to the length of the radius. In
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order, therefore, that every angle may have a fixed and determi-
nate sine, the radius is always regarded as the linear representa-
tion of the numecrical unit or 1, upon which hypothesis it is plain
that the sine of an ®ngle will always be the same fraction, since
i c s always cqual to (.L, (Lue. 4. vi), so that the fraction
alluded to is no other th.m the ratio of the sinc of the arc to the
radius. Itis this ratio or fraction that is called the trigonoinctrical
sine, or sine of the angle; it is an abstract number : the sine of
the arc is called the linear or geometrical sine:—it is « straight line.

The CosiNe.—The cosine of the are B C is the portion Am of
the radius intercepted between the centre and the foot of the sine
of the are. The trigonometrical cosine, or the cosine of the angle
B A C, which the arc subtends, is the numerical representation of
A conformably to the scale A B = 1. In other words, it is the

ratio or fractlonA ' or Am,
AC AC
The TavarxT.—The tangent of the are B C is the straight line
» L B T, touching the arc at its commencemcnt B,
\\{, _~ " and terminating in T, where the prolonged
n 3 "['3 radius through the end Cof the are meets it. The

/ l\\l trigonometrical tangent, or tangent of the angle
4 L; 3 B AC, is the numerical value of the same line
onthe hypothesis that A B=1. In other words,

it is the ratio j{“]'l, for AB:BT: BT thotng tangent.

The CorANGENT.—The cotangent of the are L C is the line D¢,
touching the complement of that arc at 1D, and {erminating in A (!
prolonged. The trigonometrical cotangent, or ecotangent of the
angle B A C, is the numerical value of the same line, on the hypo-

thesis that A B = 1. In other words, it is the ratio 1]\')_1_) for

1

AD:D¢::1: &)]t) the trigonometrical cotangent.
4

The Secant.—The secant of the arec B C is the line A T from
the centre up to the tangent: its numerical value on the hypo-
thesis of AB =1, is the trigonometrical secant, or secunt of

the angle B A C. This numerical valwe is the ratm for

AB’
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The Cosecax1.—The Cosecant of the arc B C is the line At
from the centre up to the cotangent : the trigonometrical cosecant,
or cosecant of the angle B A C is the numerical value of At ou

the hypothesis that A D =1; this value" is the ratio _1)’ for
AD: A¢::1: j—:% The learncr will perceive that cosine, eotan-
gent, and cosecant are nothing morc than the sine, tangent, and
secant of the complement of the arc or angle, the commencement of
the complemental arc being considered as at D. Tt is also further
obvious that any geomctrical sine, cosine, &e., it divided by the
radius of the arc with which it is connected will give the sine,
cosine, &e., of the angle which that arc subtends at the centre:
these trigonometrical quantities, though all purc numbers, may,
as already cxpiained, be represented by /ines—the same lines as
those cmployed in connection with the are, provided only we
agree fo regard the radius of that arc as the linear representation
of the unit 1. The advantage of thus regarding the radius as
unit is that we can investigate the relations among the trigone-
metrical quantities dcfined above without introdueing the radius
as a divisor, since a unit-divisor may always be suppressed, and
may avail ourselves of the aid of geomctry for this purposc.
Thus, referring to the right-angled triangles in the preceding
diagram we have from Iiuclid, Prop. 47, Book L.
Om® + AP=AC, AT"=AD"+ BT", A**=AD*+Dr

that is, the radius being regarded as =1, and the angle beicg
represented by A,

sin® A + cos® A=1, sec’ A==1 + taw” A, cosce? A=1 + cot* A. ..(1)
Again, because the sides about the cqual angles of equiangular
triangles are proportional, the triangles ACm, ATD, AtD farnish
the following proportions, namely : —
cos A: sinA::1: tan A
sin A: cosA:: 1: cot A
cosA: 1 ::1:sccA
tan A: 1 1: cot A
sinA: 1 ::1:cosecA
. _sinA o __COsA )
- tan A_m otA= sin A’ (

1 1
—_ =. c0seC A= —— .. (3
scc A= cos A’ oot & fam & % sin A’ O]
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From the relations (1) we see that

sin A==+/ (1—cos? A), cos A==+/ (1—sin? A), sec A=+/ (1 +tan® A)
cosec A=~/ (1+cot?A). . .. .. (4)
And from these, in conjunction with (2) and (3), we further seo
that when either the sinc or the cosine of an angle is known, all
the other trigonometrical values may be computed from it. More-
over, from (3) it appears that the following pairs of values are the
reciprocals of each other, namely—

See A, cos A ; tan A, cot A; sin A, cosec A.

But it would be out of place here to discuss the rclations among
the trigonometrical values at any greater length: for a more com-
prehensive view of the general theory of thesc quantities, the
lcarner is referred to the rudimentary treatise on Trigonometry.

On the T'rigonometrical Tubles,

The numerical values of all the trigonometrical lines, conform-
ably to the hypothesis, that radius =1, are carefully computed,
for all angles from A = 0° up to A=90° and arranged in a table.
Such a table is called a table of nafural sines, cosines, &e., to dis-
tinguish it from a table of logarithmiic sines, cosines, &e., to be here-
after advertcd to. In the construction of such a table it is unncces-
sary to compute for angles above 90°, for, as a little reflection, on
reference to the diagrams in which the trigonometrical lines are
exhibited, is sufficient to show, the sine, cosine, &e. of an are or
angle above 90°, is a line of the same length as the sine, cosine, &e.
of an arc or angle as much below 90°, so that the sine, cosine, &ec.,
of an arc or angle has the same lincar and numerical value as the

‘I sine, cosine, &e. of the supplement of that
. P arc or angle, and this is a tru.th that the
? ‘ /\\ lcarner must always keep in remem-
\ \ brance: thus sin 120°=sin 60°, sin 135°
VAR
an

,

/

/

)

o
e
¥
Fo_..
Il

. =sin 45°, and so on. Similarly of the
s ——B cosines, tangents, &e., only here it is to
N be noticed that the cosine of a supple-

AN mental are lies in an opposite direction to
AN the cosine of the aroc itself, remembering
\ that all areshere considercd are supposed
NT” to have onme common origin or com-

mencement :—the origin B in the preceding diagrams. For in-
¢ npa if DT he mada ~amal $a D the are BE will he the

\
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supplement of the arc BC, both arcs commencing at B, and it is
this arc BE that we are to deal with as the supplement of BC, and
not the equivalent are FC. The cosine of the supplement of BC is
therefore Az, a line which, though the samc¢®in length, is directly
opposed in situation to the cosine Am of the are BC, This opposition
of direction we have means of indicating algebraically: the opposite
signs -+ and — furnish these means, so that instead of writing

cos 120°=cos 60°, we should write cus 120°= — cos 60°.

Similarly for the tangents: the tangent of BC is drawn from I
upwards to meet the dotted linc marking the prolongation of the
radius through C; but the tangent of the supplemental are B I
is drawn downwards to meet the dotted line marking the prolonga-
tion of the radius 1 A—agrecably to the definition of the tangent.
The two tangents though equal in length, being opposite in direc-
tion, we accordingly write tan 120°=—tan 60°. It is sufficient,
however, that we know whether the cosiie be plus or minus, in
order to enable us to pronounce upon the algebraic sign of any other
of the trigonometrical quantities belonging to an are or angle
between 0° and 180°: thus the equations (2), page 7, give us
tangent and cotangent, and the others secant and cosecant.
It is not our business to explain here how the natural sines,
cosines, &c., are computed ; as may be easily imagined, the work
is of a very laborious character, but tables having been constructed
once for all, there is no occasion for a repetition of the labour.

As to the use of such a table in facilitating calculations respect-
ing the sides and angles of plane triangles, we offer the following
explanations :

Referring to the diagram at page G, we sec that AmC, ABT
are two similar right-angled triangles. In the first of these, 1is
the numerical value or representative of A C; in the second, 1 is
the numerical representative of A B, the other sides being esti-
mated according to this scale : the numerical values of these sides,
for all values of the angle A, from A = 0° up to A = 90°, the
values increasing minute by wminute, are arranged in the table,
the values of m C, Am, under the heads of sine and cosine of the
angle A ;.‘and the values of BT, A T under the heads of tangent
and secant of the same angle.

It follows, therefore, whatever right-angled triangle we may
have to consider in actual practice, that the numerical values of

E 3
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the sides of fwo right-angled triangles, similur to it, will always
be found already computed for us in the table. For instance,
suppose we were dealing with a right-angled triangle of which
the angle at the base s 34° 27’ we turn to the table for 34° 27,
this particular value of the angle A, and against it we find, under
the head Sine, the number for mC, and under the head Cosine,
the number for Am ; and we know already that the number for
ACis1. Thus we know completely the numcrieal values of all
the sides of a triangle AmC similar to that proposed for consi-
deration : these values, as furnished by the table, are
mC=156569, Am="82462, and AC=1;
or, using the trigonometrical names by which these are called,
sin 34° 27/="56569, cos 34° 27'="'82462, and rad =1.
Now although these tabular numbers are all abstract numbers,
yet there is no hindrance to our regarding them as so many feet,
or yards, or miles, provided only we take care to regard the radius
as 1 foot, yard, or mile.
Again referring to the table for the particulars connected with
the other similar triangle A BT, we find
B T=+68600, AT=1:21268, and AB=1
or, using the language of the table,
tan 84° 27'="65600, sec 54° 27'=1:21268, rad =1,
Suppose the hypotenusc of the triangle proposed to us is 56 feet,
then comparing our triangle with the tabular triangle A Cm, of
which the hypotenuse is 1 foot, we know that, as the hypotenuse
of the proposed triangle is 56 times the hypotenuse A C, the per-
pendicular of the former must be 56 times Cu., and the base 56
times A : henee
56 sin 34° 27/==thc required perpendicular,
and 56 cos 34° 27'=the required base.
The work is as below— ’

sin 34° 27'="56569 cos 34° 27/="824062
56 56
389414 494772
282845 412310
The perpendicular—=31 '67867 feet The Lase==46°17872 feot.

Wa sea hv thia illnetratian that af the tern fahnlar frianelec
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AmC, A BT, we do not take either, at random, to compare with
the triangle under consideration:—we select that of the two in
which the radius (1) corresponds to the side whose length is given,
Such a sclection is always to be made. 1. for instance, the buse
of a right-angled triangle be given—say equal to 47 fect, and it
be required, from this and the angle at the base—say 34° 27, as
before, to compute the perpendicular and hypotenuse, we then
refer to the table for the triangle A BT ; because in this it is the
base that is 1: we thus have
47 tan 34° 27'=the required perpendicular,
and 47 see 34° 27'=the required hypotenuse,

the work being as follows :

tan 34° 27/="68: 47 soe 047 27'=47=cox 347 27’
47 -8246147 (57 ft. the hypotenuse.
4802 41230
2744 7700
57722

The perpendicular 82:242 fict.

These illustrations will, we think, suffice to convey to the
learncr a clear idea of the use of a table of natural sines, cosines,
&e., in the solution of right-angled triangles; and we may, there-
fore, proceed at once to discuss the several cases that occur in
practice. To oblique-angled triangles we shall devote a distinct
article ; but it may be well to apprise the learner, that nearly
all the ealculations concerning the course and distance sailed of a
ship at sea, involve the consideration of right-angled triangles
only.

Solution of Right-angled Triangles.

Of the six parts of which every triangle consists—the sides and
the angles—any #hree, except the three angles, being given, the
remaining three may be found by caleulation. Iu a right-angled
triangle one augle is always known, namely, the right-angle, so
that it is sufficient for the solution that any two of the other five
parts (except the two acute angles) be given. In a right-angled
triangle, therefore, the given parts must be cither

1. A side and one of the acute angles;
or 2. Two of the sides.

The reason why a knowledge of the three angles of a triangle
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will not enable us to find the sides, is that «/ triangles that are
similar to one another, however their sides may differ, have the
three angles in any one respectively equal to the three angles in
any other; so that wifn the same three angles, an infinite variety
of triangles may be constructed.

It follows, therefore, that in every practical example that can
oceur, the given quantitics must be such ‘as to place the example
under one or other of the following four cases :

I. The hypotenusc and one of the acute angles given.
II. The base or perpendicular, and an acute angle given.
1II. The hypotenuse and one of the other sides given.
IV. The base and perpendicular given.
We shall consider these four cases in order.

I. The hypotenuse and one of the acute angles given. In

the right-angled triangle in the margin, let the hypotenuse A B
g and the angle A at the base be given,
| and let the numerical values of the

.7 " three sides be denoted by «, 1‘1, ¢, these

e . small letters corresponding to the large
e ____,___‘ic, letters denoting the opposite angles.
o ‘We are to compare this triangle with the

tabular triangle having the same base angle A, and of which the
hypotenuse is 1: the perpendicular of this tabular triangle will be
sin A, and its base cos A (see diagram, p. 5). And since our
given hypotenuse is ¢ times that of the tabular triangle, the
perpendicular of our triangle must be ¢ times that in the table,
and the base, ¢ times the tabular base; that is to say, for the
required perpendicular and base we shall have

a=csin A, and b=c cos A.

If, however, the vertical angle BB were given instead of the base
angle A, then, since these angles are the complements of each
other, we should have sin A=cos B, and cos A=sin B, so that

a=c¢ cos B, and b=¢ sin B,
Hence we deduce the following rule :

RuLE 1. For the Perpendicular.—Multiply the given hypotenuse
by the sine of the angle at the base, or by the cosine of the ver-
tical angle.

2. For the Buse.—Multiply the given hypotenuse by the cosine
of the angle at the base, or by the sine of the vertical angle.
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EXAMPLES.
1. In the right-angled triangle A B C arg given the hypotenuse

¢ =48 feet, and the angle A =37° 28/, to find the perpendicular
«, and the base b, as also the angle B.

sin 37° 28’=-6083 cos 37° 28’="7937
A +B=90° 48 48
=37° 28/ 48664 63496
- B—p52° 32 24332 31748
«=29-1984 feet. b=38-0976 feet.

2, Given ¢=63 yards, and A=24°19; to find ¢ and b, as
also B.

sin 24° 19'="-4118 cos 24°19°2=°9113
A +B=90° 63 63
A=24° 19’ 12354 27339
- B—tp 4T 24708 54678
a=259434 yards. 4==574119 yards.

3. Given the vertical ang angle B=33° 12, and the hypotcnuse
=98 feet, to find the remaining parts of the triangle.

cos 33° 12'="8368 sin 83°12'="35476
98 93
66944 438083
75312 49284
«__82:0064 feet b=>536048 feet.

Also A=90° — 33° 12/'=56° 48/,
In the foregoing operations only four decimal places have been

taken from the table—a number of places amply sufficient for all
the purposes of Navigation.

Nore.—The learner will not forget that when one acute angle
of aright-angled triangle is given, the other is virtually given,
being the complement of the former; whenever therefore a side
and an acute angle are given, we may always regard the angle
adjacent to the given side as given. Now it will save the neces-
sity of all reference to diagrams and formulw or rules, if with the
vertex of this adjacent angle as centre, and the given side as
radius, we conccive an arc to be described, and notice whether
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the required side becomes a sine, a cosine, a tangent, or a secant ;
for, whichever of these it is, that is the name of the trigono-
metrical quantity to be taken from the table, for a multiplier of
the given side, in order to produce the required side. The table
is, of course, to bc entered with that angle whose vertex is thus
taken for centre.

4. The hypotcnuse of a right-angled triangle is 38 feet, and
the angle at the base 27°42': required the other sides, and the
vertical angle.

Ans. a=17-662 feet, b—=33-645 fect. B=062°18".

5. The hypotenuse is 76 fect, and the vertical angle 43° 18:
required the perpendicular and base.

Ans. a=55'313 feet, 1=052-121 feet.

6. The hypotenuse is 521 feet, and the vertical angle 36° 6':
required the other sides.

Ans. a=420-97, 6=3506-97 feet.

II. Basc or perpendicular and onc of the acute angles given.—
Let the base AC and the angle A be given: then we have to com-
pare our triangle with that one of the two similar tabular triangles,
whose base (the radius) is 1. The perpendicular of this tabular
triangle will be tan A, and its hypotenuse sec A. (See diagram
P. 6). And since our given base is b times that of the tabular
triangle, our required perpendicular must be b times that of the
tabular one, and our required hypotenuse also b times that of
the tabular one, henee the required perpendicular and hypotenuse

will be
«=Db tan A, and e=D sce A.

If it be the vertical angle B that is given instead of the bass
angle A, then since

cot B=tan A, and coscc B=sec A,
we shall have
«=0b cot B, and ¢=0 cosec B.

In the Tables, the secants and cosecants are frequently omitted,
because from the fact that secant is 1 divided by cosine, and cosc-
cant 1 divided by sine, they may be dispensed with. (See p. 7.)
Making, therefore, these substitutions for secant and cosecant
above, and remembering also that cotangent is 1 divided by tan-
gent, the values of 2 and ¢ may be expressed thus:
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« T btan A, and ¢ = L

cos A
a= b , and ¢= _b_
tan B sin'3

and thesc expressions furnish the following rules:

Rule 1. Lor the perpendicular. Multiply the given base by the
tangent of the base angle: or divide it by the tangent of the ver-
tical angle.

2, Tor the hypotenuse. Divide the given base by the cosine of
the base angle : or by the sine of the vertical angle.

Nore.—As cither of the two sides may be considered as Jase,
if the perpendicular be given, namely, CB instead of AC, we have
only to conceive the triangle to be turned about till base and per-
pendicular change positions, and then to apply the rule. (Sec
also the Note at p. 13, the directions in which will enable the
learner to dispense with formal rules).

1. At the distance of 85 feet from the bottom of a tower, the
angle of elevation A of the top is found to be 52> 30': required
the height of the tower.

Here the base and the base angle are given to find the perpen-

dicular, as in the margin. Henee tan 52° 30'=1-3032
the height of the tower may be 85
concluded to be 1103 fect. 65160
104256
- Height=110-7720 feet.

If the angle of elevation A, be taken not from the horizontal
planc of the basc of the tower but from the eye, by means of a
quadrant or other instrument, then, of course, the height of the
eye above that plane must be added. If in the present casc the
height of the eye be 51 feet, then the height of the tower will be
116 feet.

2. Required the length of a ladder thut will reach from the
point of observation to the top of the tower in the last example,
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Here the base and base anglo are given to find the hypotenuse,
as in the margin. 'We con- cos 52° 30'=-60,88)85 (140

clude, therefore, that the 609
length of the ladder must 241
be 140 feet nearly. 243

The division in the margin is what is called eontracted division,
which saves figurcs, and which may always be cmployed for this
purpose whenever the divisor has several decimals. (See the
Rudimentary Arithmetic.) The lcarner may casily prove the
correctness of the two results in this and the former example by
applying the principle of the 47th proposition of Lueclid’s fifth
book, namely, that in a right-angled triangle the hypotenuse is
cqual to the square root of the sum of the squarcs of the other two
sides: thus—

85 110-8 Symare of perp.=12277
85 110°8 Square of base = 7225
125 8864 19502(140
G80 12188 1
7225 12276°64 24) 95
96

°. Hypotenuse = 140 ft. nearly.

Minute decimals are of course disregarded in all practical opera-
tions of this kind.

3. From the top of a ship’s mast, 80 feet above the water, the
angle of depression of another ship’s hull was found to be 4°: re-
quired the distance between the ships.

The angle of depression is the angle between the horizontal
line from the mast-head, and the slant line from the same point
to the distant ship. The complement, thercfore, of this angle is
the angle B of the triangle ABC (p. 12), where A is the distant
ship, and B the mast-head whence the angle of depression is
taken. The angle B, therefore, is 90°—4°=86°, and the perpen-
dicular or side, BC, adjacent to this being glvcn, we have for AC
the value b=« tan B=80 tan 86°, and the tan 86°=14-3007

work is as in the margin, from which it ap- 80
pears that the distance is 1144 feet. 1144-056

4, From the edge of a ditch 18 fect wide, and which surrounded
a fort, the angle of elevation of the top of the wall was found to
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be 62° 40’; required the height of the wall, and the length of a
ladder necessary to scale it.
Here A=62° 40" and b =18: to find ¢ and ¢.

tan 62° 40'=1-9347 cos 62° 40’=')4‘5\9‘2)18 (392=c.
18 1378
154776 422
19347 413
a=34"8246 fect 9
- 9

Hence the height is 348 feet, and the length of the ladder 39-2
feet.

5. A flagstaff, known to be 24 feet in length, is observed to
subtend an angle of 38’ at a ship at sea, and the angle of elevation
of the cliff on the edge of which the staff is planted is also observed
to be 14°.  What is the distance of the ship from the cliff ?

The distance or base of the triangle being b, it is plain that,—

b tan 14° 38'=the hcight of the top of the staff,
and ¥ tan 14°= . ' cliff,
- b (tan 14" 38'—tan 14°)=length of staff=21 fect.
24
= . . feet
tan 14° 38'—tan 14°
tan 14~ 38'='26110
tan 14° =-24033
011,77)24 (2039 fect, the distance.
2354
46
30
11
11
6. Given the base 73 feet, and the angle at the base 52° 34, to
find the perpendicular and hypotenuse.
Ans, perp.=95365 ft., hyp.==120-097 ft.
7. Given the base 327 feet, and the vertical angle=35°43’;
required the perpendicular and hypotenusc.
Auns. perp. 4548 ft., hyp. 560 feet.
8. From the top of a castle 60 feet high, standing on the edge
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of a cliff, the angle of depression of a ship at anchor was observed
to be 4° 52'.  From the bottom of the castle, or top of the clift,
the angle of depression was 4° 2/, Required the horizontal dis-
tance of the ship, and ‘the height of the cliff.*

Ans. dist. of ship 4100 feet, height of cliff, 289 ft.

9. The basc of a right-angled triangle is 3464 feet, and the
opposite angle 54° 36’; required the perpendicular and hypo-
tenuse. Perpendicular 2462 {t., hyp. 425-1 ft.

IIT. The hypotenusc and onc of the other sides given.—Repre-
senting the perpendicular, base, and hypotenuse by «, b, and ¢, as
before, we have seen (p. 12) that:—

«=c sin A, and b=¢ cos A.
-, sin A:%‘, and cos A-_—._"é
and these expressions give the following rule :—

RuLE. — Divide the perpendicular by the hypotenuse, the
quoticnt will be the sinc of the angle at the base. Divide the basc
by the hypotenuse, the quotient will be the cosine of the angle at
the base. A reference to the table will, in either case, give the
angle itself. An angle being thus found, the remaining side of
the triangle becomes determinable by cither of the foregoing rules.
Or, without first finding an angle, the remaining side of the
triangle may be computed from Lnclid 47, I; for since by that
proposition, a®40?=¢>.

-, a= v/ {¢*—¥) and b= v (5—a®)

or, which is thesame, ¢ =/ ? (c+0) (c—10) ; and b=/ 1 (¢+a)(c—a) }

EXAMPLES.

1. In a right-angled triangle are given the perpendicular e=
192 feet, and the hypotenuse c=240: to find the angles A, B, and
the base .

The work is as follows :—

For the ungle A. For the base .
240)192(+8=sin 53° 8' cos 63° 8'="6
192 and 240 X *6=144=1.

SA=53° 8, -, B=90°—53° 8'=36° 52/, and =144 feet.
* The learner will recollect, from Euclid, 29, I., that the angle of

depression of a point A from an elevated point B, is equal to the angle of
elevation of B from A.
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To find the base b, without first computing the 907'3&(14-1»
angle A, we have 1

b= (c+u) (c—a) ; =+ {432,048 % =wvzorse  2A107

96
Tho opcration for this square root is in the ‘.’8—1)_1_136
margin, 1156

2. Given the hypotenuse ¢=34-68 feet, and the base b=333,
to find the angles A, B, and the perpendicular «.

For the angle . For the perperdicular «.
54,68)35°6  +(6492=cos 49° 31 sin 49° $1'="7606
52808 5468
2602 7606
2187 3280x
500 . 32808
492 38276
13 a=11-589608 fuct,
11
SoA=49° 31, L B=90° — 13- 31'=40°2%", and «=41-6 fect,
In computing «, as above, it is plain that several 54-68
more decimals arc calculated than are at cll necessary ; 6067
the contracted method, as exhibited in the margin, 38276
dispenses with these superfluous figures (sce the Ru- 3281
dimentary Arithmetic). 32
41-589

To find « independently of the angle A, we have

u== 3 (c+D) (c—D % ==«’% 90-18+19°18 ; =1/172)-5524.

The extraction of this square root is 1729-6524(41+589

exhibited in the margin. And the 16
agreement of the two results is a suffieient  81) 129
confirmation of the accuracy of all the 81
operations. 825)4865

4125

8308) 7402+
66464
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3. Given the hypotenuse ¢=200 feet, and the base b=118 feet,
to iind the angles A, B, and the perpendicular a.
Ans. A=53° 51", B=36° 9, a=161"5 feet.
4. Given the hypotenusc ¢=645 feet, and the perpendiculara=
407°4 feet, to find the angles A, B, and the base .
Ans. A=39° 10/, B= 50° 50’, b=500 feet.
IV. The base und perpendicular given.—The letters denoting
the sides and angles being as before, we have alrcady seen
(p. 14) that—

a=0btan A -, tan A = _% l

and c=+/ («? +12)

b
Alsol=atan B .. tan B= —;J

The rule therecfore is as follows : —

RuLe.—Divide the perpendicular by the base; the quotient
will be the tangent of the angle at the base; or, divide the base
by the perpendicular ; the quoticnt will be the tangent of the
angle at the vertex. An angle being found, the hypotenuse may
be computed as already taught; or, from the general expression
for ¢, above, without the aid of an angle.

LXAMPLES,

1, Given the base =353, and the perpendicular «=41-6, to
find A, B, and ¢.

For the angles A and B. For the hypotenuse.
35°5)41°6(1°1718 = tan 49° 31 ¢=b-=cos A.
855 90° 08, A="6,492)35"5 (5468
61 ~B=40°29" 32460
555 5040
235 2597
2485 T3
65 L A=49° 31, B=40° 29’, ¢c="54GS ft. 339
365 bt
295 51
2840 -

The same value of ¢ will be given by the formula ¢ =+/ (a? + I*)

2. Given @=7564 yards, and 0=3987 yards, to find A, B,
and . Ans., A=62°12', B=27°48’, ¢=8550} yards,
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3. Given the base of an isosceles triangle equal to 71 feet, and
the altitude equal to 416 feet: required the other parts.

Ans., base angles each =49°31", vertical angle =80°
58, each of the equal sides 5468 feet.

The preceding rules and practical illustrations exhibit, with
all necessary fulness, the arithmetical operations which we would
recommend always to be adopted by navigators and surveyors
in the solution of right-angled triangles. Persons engaged in
calculations of this kind, almost invariably usc logarithms; the
work is certainly thus made to appear, in general, somcwhat
shorter, but a little experience will prove that this greater brevity
is attended with an inercased consumption of time. The object
of logarithms is not so much to save figures as to save time and
trouble, and this lattcr object they signally effect in all the
computations of trigonometry, except in those confined to right-
angled triangles; and as before remarked, it is with right-angled
triangles, almost exclusively, that seamen have to do in caleu-
lating the coursc, distance, &e., of a ship at sea.

Keeping, therefore, the special purposes of the present rudi-
mentary treatise in view, we shall discuss the subject of oblique-
angled triangles with less amplification. The following article
on logarithms must, however, be previously studied, not only
on account of the use of these numbers in the solution of oblique-
angled triangles, but also because a familiarity with logarithms
is indispensable in the operations of nautical astronomy.

On Logarithms.-

Logarithms arc a set of numbers contrived for the purpose of
reducing the labour of the ordinary operations of multiplication,
division, and the extraction of roots, and they are of especial service
in most of the practical inquiries of trigonometry and astronomy.

In what has been delivered in the foregoing article, the
arithmetical operations referred to, multiplication and division,
have entered in so trifling a degree, that no irksomeness can
have been experienced in the performance of them, and, therefore,
the want of any facilitating principle cannot have been felt.

But the learner will readily perceive that if the work of any
of the examples just given had involved the multiplication toge-
ther of two or three sines or cosines, or successive divisions,
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by these, the calculations would have become tedious, and the
risk of error,in dealing with so many figures, increased. Now
as it is the main object of logarithms to convert multiplication
into additiorn, and division into subtraction, the value of these
numbers in compulations such as those just mentioned is obvious.
‘We shall in this article briefly show how the conversion alluded
to is effected.

Two principles fully established in algebra will have to be
admitted. (Sce Rudimentary Algebra).

1. That if N represent any number, and .« and ¥ any expo-
nents placed over it, agrecably to the valuation for powers and
roots, then,

N¥x N¥:=N++7, and N+--N¥=N+—v

2, That N being any positive number greater than unity, and
» also any positive number chosen at pleasure, we can always
determine the exponent x so as to satisfy the condition, N-=n.

This last truth being admitted, it follows that cvery positive
number (#) can be expressed by means of a single-invariable
number (N) with a certain suitable exponent (r) over it. TFor
example, let 10 be chosen for the invariable number N, andlet
any number, say the number 5862, be chosen for n. Algebra
teaches that the value of z that satisfies the condition 10°=5862
is #=3:768046, so that

RI68040

10000000 )
=5862

107" =5862, that is 10
so that if the power of 10, denoted Ly the numerator of the
exponcent, were taken, and then the root of that power, denoted
by the denmominator, were cxtracted, the result would be the
number 5862. It is the exponent of 10 just exhibited, namely,
3768046, that is called the logarithm of the number 5862.

In like manner, if any other value be chosen for », algebra
always enables us to find the proper exponent to be placed over
the base 10 to satisfy the condition 10"=2: thus—

10'."5)45“:32 .10 3'(”"}“:4761, 1()4'50052¢=73540
so that log 327=2-5145648, log 4761 =3677698, log 73540 =
4866524,
A table of the logarithms of numbers is nothing more than a table
of the exponents of 10 placed against the several numbers them-

~r
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selves. Any number above unity, other than 10, might serve
for the dase of a system of logarithms, but there are peculiar
advantages connected with the base 10 which have recommended
it to general adoption.

The actual construction of a table of logarithms, notwithstand-
ing the appliances of modern algebra, is a work of very consider-
able labour ; but this labour once performed, arithmetical com-
putations, that would otherwise be nearly impracticable, can
be casily managed by the aid thus afforded, as we shall now sec.
Adverting to the first of the above algebraical propositions, we
know that

10* % 10Y=10"+7, and 10°=-107r=10"7,

The first equation shows that the logarithm of the product of
two numbers is the sumn of the logarithms of the factors or numbers
themselves, and the second shows that the logarithm of the
quotient of two numbers is the difference of the logarithms of the
numbers themselves.

Hence if we have to multiply two numbers together, we look
in the table for the logarithms of those numbers, take them out
and add them ; the sum we know must be the logarithm of the
product sought, which product we find in the table against the
logarithm, If we have to divide one number by another, we
subtract the logarithm of the latter from that of the former, the
remainder is the logarithm of the quotient, against which in the
table we find inserted the quotient itself.

If several factors arc to be multiplied together, then the loga-
rithms of all arc to be added together to obtain the logarithm of
the product; and in the case of successive divisions, the log-
arithms of all the divisors are to be added together, and the sum
subtracted from the logarithm of the proposed dividend; the
remainder is the logarithm of the final quotient. The logarithmic
operation for finding a product, at once suggests that for finding
a power which is only a product raised from equal factors. If
the power arises from p factors each equal to », then it is plain
that p log » must be the logarithm of that power, that is log »*=
plogn. If instead of a power of 2 number we have to compute
a root, the pth root of n, then representing this root by r, that is
putting, i

1

. _1
n*==1y we have no= 7 ' logn = p log r : log r == log n.
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Even if the root were still more complicated, as for instance,
m

n?, then, as before, representing it by », we have

w

w'=r L wm=rr ' mlogn=plogr - logr="%logn

‘We thus derive the following practical rules for performing
the more troublesome operations of arithmetic by logarithms.

Multiplication.—Talke the log of each factor from the table and
add them all togcther: the sum will be the log of the product.
Refer to the table for this new log and against it will be found
the number which is the product.

Division.—Subtract the log of the divisor from that of the
dividend : the remainder is a log against which in the table will
be found the quotient.

Powers and Roots, Multiply the log of the number whose power
or root is to be found, by the exponent denoting the power or root,
whether it be integral or fractional ; the product will be a log
against which in the table will be found the power or root sought.
It may be proper to mention here that the decimal part only of
the logarithm of a number is inserted in the table; there is no
occasion to encumber the table with the preceding integer when
the log has one, as this may always be prefixed without any such
aid; and this is the principal advantage of making the number 10
the base of the table ; for since

10'=10, 102=100, 10°=1000, 10‘=10000, &e.,
we see at once, 1st, that the log of a number consisting of but
a single integer, however many decimals may follow it, being
less than 10, cannot have its log so great as 1; hence the integral
‘part of the log of such a number must be 0. 2nd, that the log of
a number consisting of two ‘integral places, with decimals or not,
that is, a number between 10 and 100, must lie between 1 and 2;
hence the integral part of the log of such a number must be 1.
3rd, that the log of a number having threc integral places,
or lying between 100 and 1000, must have 2 for its integral part.
Hence when any number is proposed, we have only to count how
many integer places therc are in it: the figure expressing the
number of places, minus 1, will be the integral part or charac-
teristic as it is sometimes called, of the log of the proposed number,
and the proper decimals may then be united to it from the table.
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Thus, as 235°6 consists of thrce integer places, the integral part
of its log is 2 ; as 4368 consists of four places, the integer part of
its log is 3, and so on, By referring to the table for the proper
decimal parts we find

log 235:6=2"37217J, and log 4368=23-G40283.

The tables here referred to are those published in the Rudi-
mentary Series, under the title of ‘‘ Mathematical Tables,” to
which is prefixed a much more comprchensive account of loga-
rithms and their construction than is suitable for this place, and
to which, therefore, the learner is referred for all additional infor-
mation necessary.

Rules and Formule for the solution of obliquc-angled Triangles.

The present article will be entirely practical. The space which
this introductory chapter has alrcady occupied forbids that further
extension of it which a full discussion of the theory of oblique-
angled triangles would demand, and which, in fact, is already
accessible to the learner in the Rudimentary Trigonometry (chap-
ter iii.). We might, indeed, have been justified in omitting the
preliminaries on which we have been dwelling altogether, and have
contented ourselves with a general reference, on these points, to
the work just mentioned. Dat books on Trigonometry not having
any special practical object in view—as we have in the present
treatise—arc generally deficient in that amount of mere arith-
metical illustration which he who is in training for actual praetice
so much requires. And in such examples as are given in these
books the writers usually consider cach case as one in which the
utmost attainable accuracy of result is to be secured, and they
accordingly calculate their angles to seconds. Such refinements
are worse than useless in Navigation; they tend to mislead the
calculator, and to beget a false confidence in his conclusions: there
are always errors in the data, practically unavoidable, which
render the results of the computations founded upon them at best
but approximations to the truth. It is the business of Nautical
Astronomy to supply the short-comings of Navigation, and to
rectify its inaccuracies.
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Rules and Formule for Obligue-ungled Triangles.

In the solution of oblique-angled triangles there are three cases,
and only three cases, to be considered. The data or given parts
must be either,—

1. Two angles and an opposite side, or two sides and an opposite

angle.

2. Two sides and the included angle.

3. The three sides ; to find the other parts.

1. Gliven cither two angles and an opposite side, or two sides and
an opposite angle.

Rure. If two sides are given, then the side opposite the given
angle is to the other side as the sinc of that given angle to the
sine of the angle opposite the latter side. If two angles are given,
then the sinc of the angle opposite the given side is to the sine of
the other given angle as the given side to the side opposite the
latter angle.

This is more briefly expressed by the precept that the sides of
triangles are to one another as the sines of the angles opposite to
them : or by the formula

a:b::sinA:sinB
where a, b stand for any two sides, and A, B for the angles oppo-
site to them (Rudimentary Trig. p. 52). The first and third
terms of this proportion are always the two given parts opposite to
each other: when an angle is to be found, the first term of the

proportion is a side ; when a side is to be found, the first termis a
sine.

Nore. It is proper to apprise the learncr before he proceeds to
logarithmic operations, that the log sines, log cosines, &c., are
all computed on the hypothesis that the numerical value of the
trigonometrical radius is net 1 but 10°; so that the log of this
radius is 10. In consequence of this change, every log sine, log
cosine, &ec., is the logarithm of the natural sine, cosine, &c.,
inereased by 10.

Example. Given two sides of an oblique-angled triangle, 336
feet and 355 feet, and the angle opposite the former 49° 26': re-
quired the remaining angles?
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Here are given ¢=336, =355, and A=49" 26, to find B,
As a=336, of which the log is 2-52634 to be subtracted.

: b=355, y 255023
: :sin A, 497260, ’ 988061
12:43084

sin B, 53° 23’ ,, ’s 9:90450 Remainder.

" In this operation the log at the top is subtracted from the sum
of the two logs underneath, since, in logarithms, addition supplies
the place of multiplication, and subtraction that of division.
But, by a simple contrivance, the subtractive operation may be
dispensed with, and the whole reduced to addition. The following
is the plan adopted to bring this about; the subtractive log
2+52634, being before us in the table, instead of copying it out,
figure by figure, we put down what each figure wants of 9, until
we arrive at the last figure (in the prescnt case 4), when we put
down what /¢ wants of 10. Thus, commencing at the 2, we write
down 7; passing to the 5, we write down 4, to the 2, we write 7 ;
to the 6, we write 3; to the 3, we write 6; and arriving at the 4,
we write 6; so that, instcad of the logarithm 2:52634, we write
down 747366, which is evidently what the logarithm itsclf wants
of 10; in fuct, in procceding as just directed, we have been
merely subtracting, in a peculiar way, 2-52634 from 10, the re-
mainder being 7:47366 : this remainder is called the arithmetical
complement of 2:52634 ; and a little practice will render it quite
as easy, by looking at the successive tigures of any log, to write
down the arithmetical complement of that log as to copy out the
log itself. Now, if, in the foregoing work, wo had omitted to.
introduce the subtractive log 2:52634, our result 1243084 would
have been erroneous in crcess by 2:526:34 ; and if, in addition to
suppressing this subtraction, we had actually added the comple-
ment 747366, the result would obvivusly have crred in excess by
10, an crror very easily allowed for by the dismissal of 10 from the
total amount. And this is the plan always adopted, so that instead
of the above, the work would stand as below:
As =336, arith. comp. 7-17366
1 b=355 e W 55023 w
: 1sinA,49°26° . . . 988061
: sinB, 3302 . . . 0:90450
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The result, 10 being suppressed, is the same as before, and a
row of figures is dispensed with.

‘We shall give another example, worked out in this way.

2. Given one side of a plane triangle 117 yards, and the angles
adjacent to it 22° 37’ and 114° 46’: required the other parts ?

The sum of the two given angles being 137° 23, the third angle
is 180°—137° 23'=42° 37, the angle opposite the given side.
Hence we have A=42° 37/, B=22° 37, and a=117.

As sin A, 42° 37 arith. comp. 0°16935

:sin B, 22037 . . . . 958497
:a=117 . . . . 206819
b=66"15 e 1 8"201

It remains now to find the third side ¢, for which purpose we
have given A=42° 37/, C=114° 4¢’, and «=117.

As sin A, 42° 37 arith. comp. . 0-16935
sin C, 114° 46’ (supplement=66° ]4') 995810
:a=11% . .. 2:06819
¢=1569 C e e o 219564

Note. The case in which the given parts are two sides and an
angle opposite to one of them is, in certain circumstances, a case
of ambiguity : in other words, there may be two different triangles
having the same two sides and opposite angle in common, and the
remaining three parts in each different, so that we may be in
doubt as to which of the two triangles is that to which the given
parts exclusively refer.

A Thus let A B C be a triangle, and C A

N such that the arec A A’, described from C as

A/ \\ centre, and with C A as radius, may cut

L\“’\\ "~ B A prolonged in A’. It is plain that the

TT77 ¢ two triangles, A-B C, A’ B C, will have the

two sides C A, C B, and the angle B in the one, the same as
the two sides C A’, C B, and the angle B in the other.

The angle B and the side CA or C A’ opposite to it being
given, the rule would determine the sine of the angle A or
A’ oppomte the other given side. The angle connected with a
sine in the table is acute, but we know that the obtuse angle
which is its supplement has the same sine, so that in the am-
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biguous case the acute angle has no more claim to selection
than the obtuse angle. It is plain that in the above diagram the
angles B A C and A’ are supplements of onc another, inasmuch
as B A Cand C A A’ are, and C A A/, C A’ A are equal.

If, however, the given angle B be obtuse, then there can be no
ambiguity, since both the remaining angles must be acute.

Neither can there be any ambiguity if, B being acute, the side
opposite to it is greater than the other given side ; for the greater
side being opposite to the greater angle, the angle whose sine is
determined by the rule must be also acute, and less than the
given one.

It thus appears that the ambiguity can have place only when
the given angle is acute, and the side opposite to it less than the
other given side. In these circumstances all we can say is, that
the sought angle is cither that furnished by the tables or its
supplement. But in actual practice it can but seldom happen
that we arc so unacquainted with the form of our triangle, as to
be in doubt as to whether the angle in question is acute or
obtuse.

11, Given tico sides and the tncluded angle.
LCLE.—As the sum of the two given sides

Is to their difference,
So is the tangent of half the sum of the opposite angles
"To the tangent of half their difference.

Or, cxpressed in Algebraic symbols instead of words, the rule

is,—
" a4+ b:ia~biitam}(A+D):tand(A~D)

the given parts being «, b, and C, and consequently A + B, since
A4+ B=180°—C,or} (A + B) =90°— 4 C. The last term
of the proportion being found, a reference to the table gives us
4 (A ~ B), which added to 4 (A + B) gives the greater of the
two angles A, B; and subtracted from } (A + B) gives the less.
Example. Given two sides of a triangle equal to 47 and 85
respectively, and the angle between thewa 52° 40/, required the
remaining parts—
Here « = 85, b = 47, C = 52° 40/
o3 (A 4 B) = 90° — 26° 20" = 63° 40';
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Alsoa 4+ =182, and « — b = 38.

Asa + b =132 arith, comp. . 7'87943
ta—b=238 e e .. 1457978
srtand (A 4 B),63°40° . . . . . 1030543

D tan L(A—DB),80°11' . . . . . 976464
The greater angle A = 93° 51
The less angle B = 33° 29

‘We have now to determine the side ¢, as follows:—
As sin B, 33° 29" arith. comp. . . . . 25830
:sinC, 52°40° . . . . . . . . . 990043
b =47 e e e e ... L 167210
c=67""4 . . . . . . . . .183083

II1. Gewen the threc sides,

For the solution of this case it is better to work from a formula
than from any rule expressed in words. There are two formule
adapted to logarithmic computation, and these very readily fur-
nish a third, It is generally matter of indifference which of the
threc be employed, at least as respects accuracy of result; the
second of them is, however, a little preferable on the score of
brevity. In certain extreme and thereforc unusual instances,
however, one form is to be preferred to another to secure greater
precision, as will be noticed presently. Let s stand for half the
sum of the three sides, that is, let s = 1 (¢ + & + ¢) then—

sind A = 4/ =¥ =9 . . (1)
be
s (s — a) 0
—— . . (2
And dividing the first of thesc by the second, recollecting that
sine divided by cosine gives tangent, we have for a third
formula—
tmi A=y E=H = (5

s (s —a)

cos LA =«

1f the angle A, to be detcrmined, is foreseen to be so small as
to amount to only a few minutes, then 4 A had better be dcrived
from the first formula or the third instead of from the second,
because the cosines of angles differing but little from 0°, differ
themselves by so small a quantity that the five or six leading
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decimals may equally belong to several consecutive cosines, so
that if our table be limited to this extent of decimals, we shall
find a succession of small angles with the same cosine against
each, so that if we enter the table with this cosine, we shall be at
a loss which of these small angles to select.

If the angle A be very near 180°, and therefore 1 A very near
90°, then the second formula will be preferable to the first, because
very near 90° the sines differ from one another only in thcir
remote decimals.

These niceties, however, are only worth attention in cases
where the minutest accuracy is desirable: in Navigation any one
of the above formule is just as good as another,

ExayMpLE.—The three sides of a triangle are—

a =195, b = 216, ¢ = 291,
required the angle A P

By Formula (1). By Formula (2.).
a=195 a= 195
=216 arith. comp. 766555 b= 216 arith. comp. 7:66555
¢==291 arith, comp., 7-53611 ce=291 . . . . 753611
2)702 2)702
8=351 = 351 . + . . 254531

8—b=135 . . . . 213033 g—a= 156 . , . . 219312
s—c= 60 . ., . . 177815 2)19-94009

2)19-11014 s} A21°2 . . . 997003
sinfA21°2 . . . 953307 . —_—
—-—2— A A =42° 4
oo A=42° ¢

In each of the foregoing operations two arithmetical comple-
ments are introduced, consequently the result of the addition is
in each case too great by 20; but after the division by 2 the final
result is but 10 in excess, which additional 10 is necessary to
complete the logarithmic sine, and cosine of the table (see p. 26).
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THE PRINCIPLES OF NAVIGATION.

The business of navigation is to conduct a ship from any
known place on the surface of the globe, to any other she
may be intended to reach; as also to determine her posi-
tion at any period of the voyage. The subject is divided
into two distinct branches—Navigation proper, and Nautical
Astronomy. It is with the former branch only that we are
at present to be occupied: it comprehends all those opera-
tions, tributary to the ultimate object, which are independent
of an appeal to the heavenly bodies, and which are matters
of daily routine on shipboard.

If the direction in which a ship is sailing at any time, and
the rate of her progress through the water, could always be
measured with accuracy, there would be comparatively but
little need for astronomical observations in navigating a
vessel from one port to another ; but impelled by the wind
and the waves—forces proverbially fickle and inconstant—
the practical difficulties in the way of such accuracy of
measurement are insuperable; and therefore, as already ob-
served, the mariner must content himself with approxima-
tions only to the truth. But, fortunately for him, the tur-
bulence of the ocean can never disturb the tranquillity of
the skies ; and he knows that during all his own unavoidable
aberrations from kis proper path, the moon and the sun have
never for an instant deviated from theirs. How the relative
positions of these two bodies, or the position of the former in
reference to the stars among which she moves, can enable
the navigator to correct his own position, and thus, with
renewed confidence, to start afresh, is an inquiry to be
answered only by Nautical Astronomy.



CHAPTER 1.

DEFINITIONS.—INSTRUMENTS.

Ix Geography and Navigation the earth is regarded as a
sphere. It is known from actual measurements at various
parts of its surface to slightly differ from this: it is a little
flattened at the poles, as a body constantly rotating on an
axis may be expected to be. But the departure from
sphericity is so trifling, that no practical error of any
moment can arise from our treating the earth as a globe,
in laying down geographical positions, and in framing
directions for sailing over its surface. With a view to
these objects, certain lines are imagined to be traced on the
surface of the carth; and on the artificial globes, on which
the prominent features of this surface are depicted, the
imaginary lines alluded to are actually drawn. Their defi-
nitions, with those of certain remarkable points, are as
follows :—

Axts.—The axis of the earth is the diameter about which
its daily rotation is performed ; the direction of this rota-
tion is from west to east; it is completed in twenty-four
hours.

Pores.—The two extremities of the axis are called the
poles of the earth : that to which we, in these countries, are
nearest, is the North Pole, the other is the South Pole; as
they are the extremities of a diameter, they are 180°
apart.

Equaror.—The equator is a great circle on the earth
equally distant from the poles, dividing the globe into two

o3
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equal parts, or hemispheres,—the northern hemisphere and
the southern hemisphere. The poles of the earth are the
poles of the equator, cvery point in this latter circle being
90° (of a great cirele) distant from either pole. It must be
observed, that by a great circle is meant a circle of the
sphere, having for its centre the centre of the sphere: no
greater circle can be traced upon its surface; all other
circles are called small circles.

Merrpians.—Every semicircle drawn from one pole to
the other is called the meridian of every place on the earth
through which it passes. Of all the innumerable meridians
that may be imagined on the globe of the earth, one is
always selected by every civilised kingdom as a prineipal, or
first meridian ; it is usually that which passes through the
national observatory: in this kingdom the first meridian is
that of the Greenwich observatory, in France it is that of
the Paris observatory.

Latirupe.— The latitude of any place on the surface of
the earth is the distance of that place from the equator,
measured in degrces and minutes on the meridian of that
place. The latitude is north when the place is situated in
the northern hemisphere, and south when it is situated in
the southern hemisphere. The latitude of each pole is 90°,
that of any other spot must be less than 90°.

Pararrners oF Larirvne.—Every small circle on the
globe, parallel to the equator, is called a parallel of latitude;
every point on its circumference, being equally distant from
the equator, has the same latitude.

DirrereNcE oF Larrrupe.—The difference of latitude of
any two places is the are of a meridian contained between
the two parallels of latitude passing through those places.
If the places are both on the same side of the equator, their
difference of latitude is found by subtracting the less lati-
tude from the greater: if the placcs are one on each side of
the equator, their difference of latitude is found by adding
the two latitudes together.
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Loxarruvpe.—The longitude of any place on the earth is
the arc of the equator, intercepted between the first meridian
and the meridian of the place. If the place lie to the east
of the first meridian it has east longitude, if it lie to the
west it has west longitude. No place therefore can exceed
180° in longitude, whether east or west.

Drrrerexce or LoNc¢irupe.—The difference of longitude
of two places is the arc of the equator intercepted between
the meridians of those places; if the places lic both east, or
both west, of the first meridian, the difference of longitude
is found by subtraction ; but if one have east longitude and
the other west, the difference is found by addition.

Hozizox.—A plane conceived to touch the surface of the
earth at any place, and to be extended to the heavens, is
called the semsible horizon of that place. And a plane
parallel to this, but passing through the centre of the earth,
is called the rational horizon of that place. The horizon,
whether scnsible or rational, is thus a plane; but the re-
mote bounding eircle which, to an eye clevated above the
surface of the ocean, appears to unite sea and sky, is that
which marincrs more commonly regard as the horizon, and
call it the sea-horizon, or offing. The planc of this circle
obviously dips below the planes of the sensible and rational
horizons, and the amount of this depression is that which is
called the dip of the horizon.

Tur Comrass.—The straight line in which the plane of
the meridian of any place cuts the sensible horizon of that
place, is called the horizontal meridian, or north and south
line; and the horizontal straight line, perpendicular to this,
is the east and west line of the horizon. The sensible
horizon is artificially represented by a circular card, on the
under side of which is fixed a magnetised bar or NEEDLE,
in the direction of the north and south line, or horizontal
meridian. The card being so suspended as to always remain
horizontal, and to turn freely about its centre, the tendency
of the needle to point north and south causes the meridian
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line, on the upper surface of the card, to settle in the proper
direction ; and the intervals between the four points E. W.
N. 8.—the four cardinal points as they are called—being
subdivided, as in the annexed figure, the instrument is
placed securely in a brass circular box or bowl with a glass
cover, and hung upon brass hoops (gimbals), so that the
horizontal position of the card may not be disturbed by the
motion of the ship. This instrument is

Tue MariNERr’s Coapass.

The four quadrants into which the meridian line N. 8., and
the east and west line E.W., divides the rim of the card, are
each subdivided into eight equal parts called points, so that
each point is an arc of 11° 15, and this is further divided
into quarter points. The outer rim of the card is divided
into 860 degrees; the thirty-two points of the compass,
and the angles at the centre which the corresponding
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lines make with the meridian (neglecting quarters of
minutes) are exhibited in the following Table :—
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The compass is placed near the helm, and the line from
the centre, in the direction of the ship’s head, denotes the
angle which its track is making with the meridian, or north
and south line N.S. It is called a rkumb line. It must be
noticed, however, that the N.S. ling is not truly the hori-
zontal meridian ; the needle, which settles the position of
this line, deviates from the true direction; it does not point
accurately to the north, and the angle between the true
meridian and that in which the needle settles, called the
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magnetic meridian, is the variation of the compass. The
amount of this variation at any place may be discovered by
Nautical Astronomy. Another correction is in general requi-
gite: the iron in the ship necessarily influences the needle,
the disturbance thus occasioned is called the deviation of the
compass, the amount of which can be ascertained only by
special experiments. Since the introduction of iron vessels,
this local attraction has engaged a good deal of attention:
we shall advert to the subject more fully in a future chapter.

Courses.—So long as a ship sails on the same rhumb-
line, her track makes the same angle with the successive
meridians ; this angle, indicated by the compass, is called
the ship’s course. If the course be not corrected for varia-
tion, it is the compass-course ; when corrected, it is the frue
course. The compass course, be it observed, supposes the
needle to be previously freed from the effects of the local
attraction of the ship. The contrivances for this purpose
will be noticed hereafter. The variation, whether to the
right or left, when known, is easily allowed for: in what
follows in the next chapter we shall suppose the allowance
to be made, and the courses mentioned to be the true courses.

Leeway.—The course may also be affected by the leeway,
or the oblique motion of the vessel occasioned by the action
of the wind sideways, impelling the ship along a track
oblique to the fore-and-aft line; this angle of deviation from
the direction shown by the compass is the leeway; it is to
be estimated and allowed for, according to circumstances,
from the navigator’s observation and cxperience of the
behaviour of his ship.

RaTE oF SA1LING.—The rate at which a ship is sailing
on any course is measured by an instrument called the log,
or the log-ship, and a line attached to it called the Zog-line,
which is about 120 fathoms in length.

The log itself is a wooden quadrant, of which the circular
rim is loaded with lead, so that when it is kove, or thrown
into the water, it settles in an upright position, with its
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centre just above the surface, and the log-line is so fastened
to it that the face of the log is kept towards the ship, in
order that it may offer the greatest resistance to being
dragged along, as the line is being unwound from a reel by
the advancing motion of the vessel. The length of line thus
unwound in Zalf @ minute gives the distance runm, or rate of
sailing per hour, on the following principle :

The log-line is divided into equal parts, each part being
the 120th of a nautical mile. Now a nautical mile—that is,
the 60th part of a degree of the equator, or of a meridian,
is about G080 feet, so that each of the equal parts of the
log-line is 50 feet 8 inches. The several divisions are marked
by pieces of string passed through the strands of the log-
line and Znotted, the number of knots in any string indi-
cating the number of parts between it and the end of the
log-line ; that is, how many parts have run off the reel. If,
therefore, we take note of the number of knots reached in
half a minute, we shall learn how many 120ths of a mile
the ship has sailed in the 120th of an hour, which will, of
course, be at the rate of so many miles per hour. As the
knots thus give the miles per hour, sailors are in the habit
of calling the miles sailed per hour so many knots.

The marks on the log-linc do not commence at the log ;
a portion of line—about 10 or 12 fathoms, is suffered to
run out before the marking begins. This portion is called
the stray-line, which allows the log to seftle in the water
clear of the ship, before the half-minute commences; the
termination of the stray-line is marked by a piece of red
cloth, and at the instant this passes from the reel the half-
minute sand glass is turned, and the reel stopped as soon as
the sand is run out.

The above is the common log; bul there is an improved
instrament, called Massey’s log, constructed on a different
principle, and which is generally preferred.

The course and rate of sailing at any time being measured
by the instruments now described, a record is kept of the



40 PLANE SAILING.

progress and position of the ship from day to day. The
actual distance run, and the difference of latitude and lon-
gitude made from noon to noon being deduced from this
record, without the correcting aid of astronomical obser-
vations, we have the ship’s account by dead reckoning.

CHAPTER IIL

PLANE SAILING.—SINGLE COURSES,— COMPOUND COURRES.

PLANE sailing is usually defined to be the art of navigating
a ship on the supposition that the earth is a plane. This
definition is erroncous in the extreme: in all sailings the
earth is regarded as what it really is—a sphere. Every casc
of sailing, from which the consideration of longitude is
excluded, involves the principles of plane sailing; a name
which merely implies, that although the path of the ship is
on a spherical surface, yet we may represent the length of
this path by a straight line on a plare surface, and may
embody all the particulars necessary to be considered, lon-
gitude excepted, in a plane triangle.* This will sufficiently
appear from the following investigation of the theorctical
principles upon which plane sailing is founded. Let A, F,
represent two places on the spherical surface of the ocean,
the lines drawn from the pole P being meridians equidistant
from one another, and so close together that the intercepted

* Even when longitude enters into consideration, it is still with the
plane triangle only that we have to deal ; and the reason that the sailings
in which longitude is concerned—mid-latitude sailing and Mercator's
sailing—are not comprehended under plane sailing, is that those sailings
distinctly refer to, and are founded upor, the spherical figure of the surface
sailed over; but, as the investigation here given in the text shows, the
rules for plane sailing would equally hold good though the surface were a
plane. Notwithstanding this truth, however, it is still incorrect to say
that these rulesare founded on the supposition that the earth is a plane ;—
no such supposition is made.
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portions A B, BC, CD, &e., of the ship’s track, in sailing
from A to F, may each be regarded as a straight line.

The learner will at once see that we may conceive these
portions of such trifling length, that it would be impossible
to estimate them other than as straight lines :—they may be
conceived, for instance, as ouly a yard or two long. Let
also UZ be an arc of the
equator, and draw the parallels
of latitude as exhibited by the ;
dark lines in the figure. A
series of triangles, A 1I B,
BIC, CKD, &c., will thus be
formed on the surface of the
sphere, so small, that each
may be practically regarded
as a plane triangle, without
any sensible error. These
plane triangles are all equi-
angular; for the angles at
H, I, K, &c., are all right
angles, and the ship’s track
cuts every meridian which it crosses, while preserving the
same course at the same angle. Consequently, by Euclid 4.
VI., we have the continued proportion

AB:AH:: BC:BI::CD:CK, &e.;
and since, in a continued proportion, one antecedent is to
its consequent as the sum of the antecedents to the sum of
the consequents (Euc. 5. V.), we have
AB:AH:: AB+BC+CD+&c.: AH+BI+CK+&e.

Now AB+BC+CD+&c., is the distance sailed from A
to F on the course HAB; and AH 4BI4CK+ &e., is the
difference of latitude AO between A, the place left, and F,
the place arrived at.

Let now a right-angled plane triangle, similar to the little
right-angled triangle AHB, be constructed ; that is, a right-
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angled triangle in which 4 is the angle of the course, and
¢ — 3 let the hypotenuse A4 B represent the
' distance sailed, that is, the length of
// AT on the globe; then it is obvious that
, the perpendicular 4C will represent the
/ difference of latitude AO ; while the base
C B — the side opposite to the course
—will represent the sum of all the small
4 departures, HB, IC, K D, &c., from the
successive meridians which it crosses.
For since

AB:HB::BC:IC::CD: KD &e.

CAB:HB:: AB4+BC+CD+&e. : HB4+ICH+ KD+ &e.

But the plane triangle ABC is constructed so that
AB:IIB:: AB: CB;

and, moreover, so that AB=AB+BC+CD+&e. on the
globe, consequently

CB=HB+IC+KD+4&e.

This length CB is calied the Departure made by the ship
.in sailing from A to I : there is no line corresponding to it
on the globe ; it merely expresses the sum of all the inde-
finitely small departures made by the ship in passing over
the small intervals between the innumerable meridians con-
ceived to be interposed between PU, the meridian left, and
PZ, the meridian arrived at.

It is thus fully established that the distance sailed on any
oblique course, the difference of latitude made, and the
departure, may all be accurately represented by the sides of
a right-angled plane triangle, the angle oppositc to the
departure being the angle of the course. Of the four things
just mentioned ; namely—Distance, Difference of Latitude,
Departure, and Course, any two being given, the remaining
two may, therefore, be determined by the solution of a
right-angled plane triangle; and so far as these particulars
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are concerned, the results are obviously just the same as
they would be if the ship were to sail on a plane surface
instead of on a spherical surface ; the curve meridians being
replaced by parallel straight lines, and the perpendiculars
to these regarded as the parallels of latitude. We do not
make the supposition that the surface actually sailed upon
is a plane, with the meridians parallel straight lines; but
taking the surface as it really is—spherical, we find that, so
far as the particulars mentioned above are concerned, we
may replace it by such a plane surface. And this is the
only justification of the name, Plane Sailing.

In the examples in plane sailing which follow, the learner
is recommended to sketch the right-angled triangle in cach
case, regarding the top of the paper to be the north and the
bottom the south, so that the east will be on the right hand
and the west on the left. Having drawn a north and south
line, representing the portion of meridian duc to the differ-
‘ence of latitude ; he should draw from the latitude arrived
at, the base of the triangle for the departure,—towards the
right if the departure be east, and towards the left if it be
west; the hypotenuse will then represent the distance
sailed, and the angle it makes with the difference of latitude,
will be the course. The vertex of this angle is to be
regarded as the centre of the compass, or of the sensible
horizon at commencing the course; the angle will lie to the
right or left, according as the sailing is towards the easterly
or westerly side of the meridian started from. In all
collections of tables for the use of navigators, there is
inserted a Difference of Latitude and Departure Table,
usually called a Traverse Table; by entering which, with the
measured course and distance, we can get the corresponding
difference of latitude and departure by inspection. The
table usually extends up to distances of 300 miles, and may
be used for greater distances by cutting up the greater
distance into parts that will come within the limits of the
table.*

* See the Naviration Tables which aceomnany thic
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Examples in Single Courses.

1. A ship from latitude 49° 30’ N. sils N.-W. by N., a
distance of 103 miles: required the latitude in, and the
departure made ?

The course being 3 points, is 33° 45/, the angle contained
between the given hypotenuse 103 miles, and the required
diff. lat. ; hence by right-angled triangles, we have

For the diff. lat.
Diff. lat. = eos course x dist.
cos 3 points * = -8315

For the departure.
Dep. = sin course x dist.
sin 3 points = 5556

dist. = 103 dist. = 103
24945 16668
8315 5566

|
|
i
l
i
|
li

Diff, lat. N, = 856445 miles.

Dep. W. = 572268 miles.

By Inspection.—Referring to that page of the Traverse
Table headed “3 Points,”’ we find against the distance 103,
in the column marked ¢ Lat.”” the number 856, and in the
column marked ¢ Dep.” the number 57-2; we infer, there-
fore, that the difference of latitude is 85°G miles, and the
departure 572 miles,

Since 60 miles is a degree, a nautical mile being a minute
of the meridian, 85'6 miles=1° 25"-6, which added to 49°
80, the latitude left, gives 50° 55"-G N. the lat. in.

2. A ship sails from lat. 37°3' N, 8.W. by 8. } 8. a distance
of 148 miles ; required her latitude in and the departure made?

For the diff. lat. For the departure.
Diff. lat. = cos course x dist. Dep. == sin course x dist.
cos 3} points = 773 sin 3} points = 6343
dist, = 148 dist. = 143
6184 50744
3092 25372
773 6343
Diff. lat. S, = 114404 Dep. W. = S_)_?£8764
= 1° 54’
Lat. left . . 37° & Hence the departure is 93°9
Lat.in. . . 35° 9'N. miles W.
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By Inspection.—With the course 3} points, and distance
148, the Traverse Table gives diff. lat.=114'4, and dep.
=939.

Nore.—1In the foregoing computations we see that several
decimals in the results are superfluous. By using the
contracted method of multiplication—as at page 19, and
which is fully explained in the “ Rudimentary Arithmetie,”
the unnecessary decimals may be dispensed with; thus,
the four multiplications in the above examples, become con-
tracted into the following by reversing the multipliers :

8315 5556 773 6343
301 301 841 841
8315 5556 773 6343
249 167 309 2537
8564 5723 62 597
—_— 1144 9387

‘We have only to notice under what decimal place of the
multiplicand the units figure of the multiplier stands, in
order to determine the number of decimals in the product ;
thus, in the first operation the units figure is under the
second decimal, therefore two decimals are to be marked off
in the product. In like manner, two are to be pointed off
in the second operation ; one in the third ; and two in the
fourth.

8. A ship sails from lat. 15° 55' 5. on a 8.E. $E. course
till she finds herself in lat. 18° 49" S.: required the dis-
tance run and the departure made ?

Latitude left 15° 55’ S.
Latitude in . 18° 49'S.
Diff. lat. . 2° 54'=174 miles.

courses : it will be found at the commencement of the Navigation Tables
to accompany this work, and will save the trouble of searching in the

more extensive tables,
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For the distance. For the departure.
Dist. = diff. lat.~-cos course, Dep. = tan course x diff. lat.
cos 4} points=6,3,4,4)174 (2743 tan 4% points = 12185
12688 dist. == 174, reversed 471
4712 12185
4441 8530
71 487
. Dist.=274-3 miles. 254 Dep. E. = "12 02 miles.
k0

By Inspection.—In that page of the traverse table de-
voted to the course 4% points, and in the lat. column, is
found 1738, which is the nearest to the given diff. lat., 174.
And against this number, in the proper columns, are found
dist.=274, and dep.=211'S.

4. Yesterday at noon we were in lat. 38> 32’ N., and this
day at noon we are in lat. 36° 56' N. We have run on a
single course between 8. and E., at the rate of 5} knots an
hour : required the course steered and the departure made ?

Lat. from 38° 32’ N. 24 = number of hours.
Lat. in  36° 56’ N. 5k
Diff. lat. 1° 36" = 96 miles. 120

12

Dist.= 132 miles.

For the covrse. For the departurc.

Cos course == diff. lal. == dist. Dep. == sin course x dist.
96 8 . oo sin 43° 20’ = -6862
i3g =11 7273 =cos 43720 dist. 132, reversed 231
The departure may be found thus, 6362
v 5 (132 + 96) (132—96) 2059

/ ) 137

=4/] 228x36 ¢ = ~/8‘708 _

—90°58. Dep. E. = 9058 miles.

Hence the course steered is S. 43° 20' E., or S.E. by 8. § E.
nearly, and the departure is 90'58 miles Easterly.
This example may be solved by the traverse table, but



SINGLE COURSES. 47

not without some trouble; we should have to examine the
several pages in which the distance 132 is inserted, till we
came to that page in which, against this 132, stands 96, or
a number near to this (viz. 96:5), in the lat. column. At
the top of this page will be found the course nearly, namely,
43°, and in the dep. column the number 90.

5. A ship from lat 48° 40’ N. sails N.E. by N. 296 miles :
required the lat. in, and the departure made ?

Ans. lat. in, 52° 46" N. ; dep. E. 164°4 miles.

G. A ship from lat. 47° 30" N. has sailed S'W. by S. a
distance of 98 miles : required her lat. in, and the departure
made ? Auns. lat. in, 46°9' N.; dep. W. 54-45 miles.

7. A ship has sailed from lat. 37° 30’ N. to lat. 46° &' N,
on a S.E. by 8. course : required the distance run and the
departure made ?

Ans. dist. 98'6 miles ; dep. E. 54°S miles.

8. A ship from lat. 3> 16' N. sails S.W. by W.LW.,
until she has made 356 miles of departure: required her lat.
in, and the distance sailed ?

Aus. lat. in, 0° 17’ S.; dist. 415 miles.

9. A ship from lat. 36° 12" N. sails in a direction between
S. and W. till she arrives in lat. 35° 1" N., having made 76
miles of departure: required her course, and distance sailed ?

Ans. course S., 46° 57’ W. ; dist. 104 miles.

10. A ship in lat. 3° 52’ 8. is bound for a port bearing
N.W. by W. 1\, in lat 4° 30’ N.: what distance on that
course must the ship sail to reach the port, and what
departure will she have made during the voyage ?

Ans. dist. 1065 miles; dep. W. 939 miles.

11. A ship from lat. 50° 13’ sails between S. and E. 98
miles, till her departure is 82 miles: required her course,
and the latitude arrived at ?

Ans. course 8., 56°47' E.; lat. in, 49° 19’ N.

12. If a ship take her departure at six o’clock in the
evening from Cape Verde, in lat. 14° 45’ N., and sail
W.S.W. +W. at the rate of seven miles an hour until the
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next day at moon: what will be her distance run, her
departure, and the latitude in ?
Ans. dist. 126 miles ; dep. W.,
1206 miles ; lat. in 14° 8' N.

Compound Courses.

‘When a ship sails on different courses, as she usually
does in a voyage of any length, the zig-zag track she des-
cribes is called a compound course or a fraverse, and the
determination of the single course and distance from the
place left to that arrived at is called resolving the traverse.

In order to do this, the difference of latitude and departure
for each distinct course must be found, and the aggregate
of the several differences and departures taken for the single
difference and departure which would be made by sailing
from the place left to that reached on a single course. The
determination of this course, and the corresponding distance,
is then to be effected as in the preceding article.

In resolving a traverse it is usual to take the diff. lat.
and dep. due to each of the component courses from the
traverse tablc: and having prepared six columns, with the
suitable headings, as in the annexed example, to insert each
course, dist., diff. of lat., and departure, in its proper column.
This done, we have only to add up all the differences of
latitude marked N., and all marked S., and to take the dif-
ference of the two sums, and then to do the same with the
departures marked E.and W., to obtain the diff. lat. and
dep. due to the equivalent single course.

Ezxamples in Compound Courses.
1. A ship from lat. 51° 24/ N. during the last twenty-four
hours has run the following courses, namely :

1st. S.E., 40 miles. 4th. N.W. by W., 80 miles.
2nd. N.E., 28 miles. 5th. 8.8.E., 36 mile.
3rd. 8.W. by. W. 52 miles. 6th. S.E. by E., 58 miles.
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Required the lat. in, and the direct course and distance to
arrive at it ?
TRAVERSE TABLE."

COURSES. DIST. ’ DIFP. LAT. DEPARTURE.
N. S. E. w.
S.E 40 28-3 283
N.E. 28 19-8 19°8
S.W. by W. 52 28-9 43-2
N.W. by W. 30 167 249
8.8.E. 36 833 13-8
S.E. by E. 58 322 48-2
Direct course, S. 25°59'E. 865 1227 110°1 681
| 365 681
Direct distance, 9587 milcs, 862 42

The results of the above table show that the whole d;ff.
lat. made is 86'2 miles S., and the departure 42 miles E,,
and from these we compute the direct course and distance
as follows:

For the direct course. For the distance.
Tan course = dep. = diff. lat. Dist. = dep. -~ sin course,
8,6'2)42 (-4872 = tan 25° 59’ “43,81,1)42  (95°87 miles,
3448 39430
752 2570
689  Lattef . . .51oowN, 2191
624 Diff. lat. 862 m. 1° 26’8. 379
693 Latin. . . JacsyN. 30
21 29

* Before referring to the general traverse table, for the purpose of
extracting the several particulars to be entered in this, it will be a security
against putting any extract in the wrong column, if against each course
and distance we put a small mark, as & cross, in each columnn where an
entry connected with that course and distance is to be made, the mark
being put sufficiently near the margin of the column to leave room for the
entry to be placed against it. Thus: wherever N. occurs in the course,
& mark is to be placed opposite to that course in the N. column: wherever
8. occurs, a mark in the 8. column. When E. occars, mark in like
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‘Hence the course is S.8.E. } E. nearly, the distance is
95-87 miles, and the lat. in, 49° 58’ N.

Nore. The learner should be here apprised that the
balance of the departures, made in a succession of courses,
is not in strictness the same as the single departure made
in the single course from the place left to that ultimately
reached by the traverse sailing. Suppose a ship in any
latitude to sail due west or due east; then her entire dis-
tance will be also her departure. But if another ship were
to sail from a lower latitude on the same meridian to the
same place, it is obvious that her departure would exceed
that of the former ship; and if she sailed from a higher
latitude her departure would be less.

In a single day’s run the inaccuracy of taking the balance
of- a set of departures as the departure due to the single
equivalent course, is too small to lead to any practical error
of consequence. We shall advert to this matter again at
the close of the next chapter.

2. A ship from lat. 51° 25" N. has sailed on the following
courses, namely :

Ist. 8. 8. E. } E,, 16 miles. 3rd. 8. W. by W. 4 W., 36 miles.

2nd. E. S. E., 23 miles. 4th. W. 2 N., 12 miles,

5th, S. E. by E. 1 E. 41 miles,
Required the latitude in, and the direct course and distance
to reach it P
Ans. direct course 8. 18° 12 E. ; dist. 623 miles.

8. A ship from lat. 1° 12' 8. has sailed the following

courses and distances, namely :

1st. E. by N. 4 N., 56 miles, 4th. N. } E., 68 miles.
2nd. N. } E., 80 miles. 5th. E. 8. E., 40 miles.
8rd. S. by E. 4 E., 96 miles. . 6th. N. N. W. } W., 86 miles.

. 7th. E. by 8., 65 miles.

manner the E. column, and when W. occurs, the W. column. This done,
the traverse table may be referred to for the proper entries to be placed
against the marks.
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Required the lat. in, and the course and distance wade
good ? Auns. lat. in, 0° 48' N: course, N. 51° 47' E.;
dist. 193-8 1iles.
4. Since last novn the following courses and distances
have been run, namely :

Ist. 8. W. I W., 62 miles. dth, S0 W, WL, 20 milen,
2ud. 8. by W., 16 miles. Sth. 8. by E., 50 miles.
drd. W. | 8., 40 miles. Gth, 8.} L., 14 miles.

Required the difference of latitude made, and the course and
distance made good ?
Ang. diff. lat. 1° 55' 8. ; course, 8. 43° 14" W5
dist. 158 miles.
5. A ship from lat. 24° 32' N, sails the following courses :

Ist. S.W. by W., 45 wiles. drd. 8. W., 30 wmiles.
Und. E. 8. E.; 50 wiles. 4th, 8. L. by E., 60 miles. ,

Bth. 5. W. by 5. ] W., 63 wmiles.
Required her lut. in, her departure, and the direct course
and distance ?
Aus. lat. in, 2298 N.; dep. U; course, S.
dist. 149 miles.
6. Yesterday noon we were in lat. 3° 18" 8., and swce.
then we have run the following courses, namely :

Ist. N. N. K., 22 wiles, oth, N, W, by N. L W.; 50 wiles,

2ud. N, by W., 30 miles. 7th. N. E. } E., 42 niles,

srd. N.E. by E., 40 miles,  Sth. W. by S. { W., 45 miles,

4th. E. 8. K., 25 miles. 9th, N. W. by N., 20 wiles.

Sth. 8. 8. W., 18 miles. 10th, E. by N. & L, 62 miles.
Required our present lat. and dep., with the course and dis-
tance made good ¥ .

Aus, lat.1n, 1°39'8.; dep. 554 miles E. |
course, N. 80°32" E. or N.NE 1L,
neurly ; dist. 115 miles.



82 PARALLEL SAILING,

CHAPTER 11I.
PARALLEL SAILING.—~MID-LATITUDE SALLING.

Parallel Sailing.

‘WHEN a ship sails due east or due west, her track is on
a parallel of latitude, and the case is one of parallel sailing :
her distance run is then the same as her departure, her
difference of latitude is nothing, and Ler difference of longi-
tude is determined upon the following principles.

In the annexed figure, let I Q H represent the equator,
and B D A any parallel of latitude ;
/,/7"\ R then C I will be the radius of the

™. equator, and ¢ B the radius of the

\ \B
4 allel. Let B D be the distance
= pax
/ 2 \1
_\_J,Q/‘

sailed on this parallel, then the

U o] ) . . :
\\\' L difference of longitude made will be
N / measured by the arc I Q of the
|/ equator ; and since similar arcs are

—

S to each other as the radii of the
circles to which they belong, we have the proportion,
¢B: CI:: dist. BD : diff. long. IQ.

But ¢ B is the cosine of the latitude I B to the radius
C 1, that is, ¢ Bis C I times the trigonometrical cosine of
the latitude, so that the above proportion is—

C1l x coslat. : C1I :: dist. : diff. long.
. coslat. : 1 :: dist. : diff. long. . . . (1)
dist. sailed @

cos latitude
1f the distance ¢ between any two meridians be meuasurcd
on a narallel whose Intifinde is 2. and the distance 4’ hatwaon

... diff. long. =
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the same meridians be measured on another parallel whose
latitude is 7', then, calling the difference of longitude of the
two meridians L, we have from (1), by alternation:

ecosl :d ::1:L
cosl':d ::1:L
d cos I’
cos 7

coeoslicosl o dd o0 = e (3
that is, the intervals between any two meridians, measured
on different parallels, are as the cosines of the latitudes of
those parallels; so that if we know the length of a degree
on the equator, or on any given parallel, we may thus readily
find the length of a degree on any other given parallel.
The proportion (1) or the equation (2) suffices for the solu-
tion of every example in parallel sailing; and, just as.in
plane sailing, we may embody the necessary particulars in a
right-angled triangle. Thus, let the base represent the
_distance sailed, the hypotenuse the difference of longitude,
in linear measure, and the angle between the two the lati-
tude of the parallel; then, by right-angled triangles:

base ihat is, diff. long, = 1St sailed

hypo=  —— paptigdndl
P cos basc angle cos latitude

which is the equation (2).

‘We may, therefore, solve any problem in parallel sailing
like a problem in plane sailing, by inspection of the traverse
table: in order to this, we have only to regard the latitude
of the parallel as course, and the distance sailed on it as diff
lat.; the corresponding distance, in the traverse table,
will be diff. long. The perpendicular of our right-angled
triangle has no significance; it serves merely to connect
the other parts together.

Nore.—If logarithms be used in working any example in
parallel sailing, then, on account of the change in the radius
of the table, the 1 in the proportion (1) must be changed
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into 10", this being the numerical value of the logarithmic
radins. The proportion may be written thus:
cos lat. : radius :: dist. : diff. long.

where radius = 1 for the table of natural sines and cosines,
and log radius = 10 for the table of log sines and cosines;
so that, by logarithms, we should have:

log diff. long. = 10 + log dist. — log coslat. . . . (4).

‘We think, however, that in general logarithms should be
dispensed with, whenever the work by mnatural sines or
cosines requires only one reference to the table.

Examples in Parallel Sailing.

1. A ship in lat. 49° 32' N., and long. 10° 16' W., sails
due 'W. 118 miles ; required the longitude arrived at ?

&iff, long. — dist. == cos Iat.  cos 49° 32" = *6,4,90 ) 118 ( 182 miles.

N 649

Long. left 10° 16" W. 531

Diff, long. 182 miles 3° 2’ W. 519
Long. in 13°18'W. T

By Inspection.—Taking the latitude (or rather 49°) as a
course, and 118 as diff. lat., the corresponding distance in
the traverse table is 180; but if we take 50° lat. as a course,
and the same 118 as diff. lat. the corresponding distance in
the table will be 184;; half the sum of these, namely, 182, is
therefore about the true diff. long.

2. A ship in lat. 36° 58’ N., and long. 20° 25' W., is
bound to St. Mary’s, one of the Western Islands, in the
same latitude, and in long. 25° 18' W. "What distance must
she run to arrive at her destination ?

dist = eos lat. x diff. long. cos 36° 58’ = 799
qiff, long. reversed __§_§_§_2

Long. of ship . . 20° 25’ W. 1598
Long. of St. Mary’s 25° 18’ W, 639
Difl. long. . 4° 48’ — 288 miles. 6

Dist, == 280°1 miles.
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By Inspection.—Taking 37° as a course, and 288 as a
. distance, the corresponding diff. Jat. in the traverse table is
230, the distance required.

3. From two ports, both in lat. 32° 20' N, and 256 miles
apart, measured on the parallel, two ships sail due N, till
they arrive at lat. 44° 30' N. How many miles measured
on the parallel reached arc they apart ?

This cxample is to be worked by the proportion or
formula (3), and as there are two trigonometrical quan-
tities concerned, namely, cos 7, and cos 7/, we shall use
logarithms.

As cos?, 32° 20" arith. comp. -0732

cos I/, 44 30" . . . . 98532
d, 256 ... . 24082
d, 2161 ... . 2:8346

Hence, measured on the p’u“ﬂ]el arrived at, the ships are
216 miles apart.

The work of this example, without logarithms, as indi-
cated by the formula d' = d cos I’ < cos I, occupies more
figures than that above, but probably not more time. The
learner is recommended to solve it in this latter way, as an
additional exercise.

4. A ship in lat, 53° 86' N, and long. 10° 18' E,, sails
due W. 236 miles : required the longitude arrived at?

Ans long. in 3° 40" E.

5. A ship in lat. 57° 29’ N,, and long. 1° 47’ 'W., sails
due E. 125 miles: required the longitude in ?

Ans. long. in 2° 6’ E.

6. A ship in lat. 32° N. is bound to a port in the same
latitude, but lying 6° 24’ of longitude to the E.: what
distance has she to run ? Ans, dist. 3256 miles.

7. On a certain parallel 384 miles answers to 500 miles
of diff. long.: required the latitude of the parallel ?

Ans. lat. 39° 49'.

8. A ship from long. 81° 35’ W, sails W, 310 miles, and
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then finds by observation that her longitude is 91° 50' W.:
what is the latitude of the parallel on which she has
sailed P Ans, lat. 59° 41’

9. If a ship sail due E. 126 miles from the North Cape
in Lapland, and then due N. till she arrives at lat. 73° 26
N': how far must she sail due W. to reach the meridian of
the North Cape ? Ans. dist. 1113 miles.

10. In what latitude will a ship’s diff. long. be three
times the distance she sails on the parallel having that
latitnde ? Ans. lat. 70° 32’ nearly.

Mid-Latitude Sailing.

We have seen in the preceding article how the difference
of longitude which a ship makes, may be determined when
she sails on a parallel of latitude: we are now to consider
the more general problem, namely, to find the difference of
longitude made when the ship sails upon an oblique course.
For the solution of this problem, without astronomical
observations, Navigation offers two distinet methods: the

one to be here explained, called
N middle latitude sailing; and
i the other, to be discussed in
next chapter, called Merea-
for’s sailing.

Mid-latitude sailing is a
combination of plane sailing
and parallel sailing; it pro-
< cceds on the supposition that
what in plane sailing is called
~ the departure, namely, H B
+IC+KD+LE+ MF,
! made by a ship, in sailing on
" the oblique rhumb A T, is

equal to the distance TS, of
the meridians of A and ¥, measured on the middle parallel
of latitude between A and F, or between A and O.

»
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Assuming then that TS is equal to the departure made
by a ship in sailing from A to F, the rule for finding the
difference of longitude between A and F, may be deduced
as follows:

Tt has been seen in plane sailing that the difference of
latitude A O, the distance run A F, and the angle A of the
course may all be correctly represented in a right-angled
triangle A B C, as in the margin.

Now the side of the triangle marked departure is, in the
present hypothesis, the same as the bp
mid-latitude distance between the meri- f A .
dians sailed from and arrived at, so | \o.
that the difference of longitude made | \'%
by the ship is the same as if it had . e
sniled the distance CB on the mid- Wi gy,
latitude parallel. We have now there- P
fore a case of parallel sailing, the line 3 )

C B representing the distance ; so that, §§ /

as in that sailing, if we make C B the ]|

base of a right-angled triangle, and the R® -
angle at the base the latitude of the ‘
parallel, that is the mid-latitude, it is _¢

plain that the hypotenuse B D, will be the difference of
longitude.

‘We thus bave two connected right-angled triangles ; one,
the lower in the above diagram, constructed conformably
to the principles of plane sailing, the upper agreeably to
the principles of parallel sailing; and what is departure
in the lower triangle, is regarded as distance on the mid-
latitude parallel in the upper. The perpendicular CD is
superfluous except for the purpose of completing the
triangle.

Now, by right-angled triangles, we have from the upper

triangle,
departure |

Dift. long. = = —a7ts



58 MID-LATITUDE SAILING.

But from the principles of plane railing, or from the lower
triangle, we have

departure — dist. x gin course == Jiff, lat. x tan course.

Consequently,
Diff, long. = .. dep:u:ture _ dist. % sxfx course d{ﬁ_‘.ﬂ]M. x _t;’fn__cqx_xrse.
cos wmid-lat. cos mid-lat. cos mid-lat.

And thesc expressions embody the whole theory of parallel
sailing. They may be stated as proportions thus :

1. cos mid. lat. : rad. (1) : : dep. : diff. long.
2. cos mid. lat. : sin course : : dist. : diff. long.
3. cos mid. lat. : tan course : : diff. lat. : diff. long.

If logarithms be used, thenin the first proportion log rad.
=10.

Ezamples in Mid-Latitude Sailing.—Single Courses.

1. A ship from latitude 52° 6’ N., and longitude 35° 6' W.
sails N.W. by W. 224 miles: required the lat. and long.
arrived at ?

For the diff. lat. For the mid-lat.
Diff. lat.=dist. x cos course. : 60)124
150:25 points—.: 5556 9° 4/ N=diff. lat.
224 reversed 422 52° 6 N=lat. left.
11112 210 Nlat i
1111 f 54° 10’ N=Iat. in.
299 2)106° 16’==sum of latitudes,
Diff Iat, 124-46miles. | 58° 8/=} sum, or mid-lat.

For the diff. long. (By logarithms).
As cos mid-lat. 53° 8, arith. comp. 0-2219
sin course ‘S points. . . . 99198
::odist. . .224 . . . .23502

diff. long. . 3104 . . . . 24919
Or, nsing proportion 8 instead of 2, the work will be,
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As cos mid-lat. 53° 8, arith. comp. 0-2219

: tan course 5points . . . 101751
:: difft lat. . 12404 oo 20948
diff. long. . 3104 ... 24918

Hence the diff. long. is 5° 10’ W., which, added to 35°6' W,
gives 40° 16’ W. for the long. in, the lat. in being 54°10' N,

By Inspection. For course 5 points, and distance 224,
the traverse table gives dep. 1862, and diff. lat. 124-4.

Again, for the mid.-lat. 53° as course, and the half of
1862, namely 931, as diff. lat., the traverse table gives for
dist. 155, the double of which is 810, the diff. long.

Note. The above method of determining the difference
of longitude is not strictly accurate, since the departure is
not exactly equal to the mid-latitude distance between the
meridian left and the meridian reached. TFor a single day’s
run, however, the error is of no practical consequence, and
in low latitudes, more especially if the angle of the course
be large, that is, if the track of the ship be nearly due east
or due west, the method may be depended upon, even for
several days’ run. But by applying to the mid-latitude the
correction given in the table*, the method may always
be employed with safety; the table is used thus:—Take out
the correction under the given difference of latitude, and
against the given mid-latitude. A4dd this correction to the
mid-latitude ; call the sum the #rue mid-latitude, and employ
it, instead of the uncorrected mid-latitude in the caleu-
lation.

If the difference of latitude be not more than 1°, no cor-
rection will be necessary ; when it is 2° and under 3° add 1'.

The principle on which the table is constructed will be
explained at a future page. But it is ensy to show here that
some such table is necessary : thus—

Since diff. long. = dep. ~+~ cos mid-lat. = dep. x sec wmid-lat.

See ‘¢ Navigation Tables :” the table for correcting mid-latitude,
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it follows that if there be any error in estimating the de-
parture, that is, in regarding the mid-latitude distance
between the meridians as equal to it, there will be an error
still greater in the resulting diff. long. because secan? always
exceeds unity, so that in high latitudes the error in longi-
tude may be seriously wide of the truth.

In the next example, where the diff. lat. is large, we shall
work, for the diff. long. with the #rue mid-latitude.

2. A ship from lat. 51° 18’ N., long. 9° 50/ W., sails
8. 33° 8' W. a distance of 1024 miles: required the lat. and
long. in?

For the dif. lat. . Tor the true mid-la’.
Diff. lat. = dist. x cos course. : 6,0)85.7
cos 3378 . . 8374 14 17’ 8. = diff. lat.
' Wt T

37° 1’N.=lat. in,
33 2)88° 19’ = sum lats.

Gff, Tat. 8574 miles, 44° 9y = midat.
e . Correction 27’

167

l

1024 reversed . 4201 l 51° 18 N.=Ilat. left.
|
|

44° 36’ = true mid-lat.

e

For the diff. long.
As cos true mid-lat. 44° 36'}, arith. comp. 0:1476
: sin course 33° & . . . . . 97377 .
;i dist. . .102¢ . . ., . .80103
: diff. long. 786:8=18° ¢ . . 28956 |

i

If in this work the correction had been omitted, the did?i
long. would have been 7801, which is six miles in error.

9° 50'+13° 6'=22° 56' W. long. in.

3. A ship from lat. 52° 6' N., and long. 85° 6' W., sails
N.W. by W. 229 miles : required the lat. and long. arrived
at?

Ans. lat. 54° 13' N, ; long. 40° 23' W.
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4. A ship from lat. 49° 57" N., long. 5° 11' W, sails be-
tween S. and W., till she arrives in lat. 38° 27' N., when she
finds she has made 440 miles of departure: what was the
course steered, the distance run, and the long. arrived at ?

Ans. course, S. 32°32" W.; dist. §18 miles; long.
in, 15° 28' W.

5. A ship from lat. 37° N. long., 22° 56’ W., steers
N. 83° 19’ E,, till she finds herself in lat. 51° 18' N.: what
longitude is she then in?

Ans. 9°45' W,

6. A ship from lat. 37° 48’ N., long. 25° 10’ W, is bound
for a place in lat. 50° 13’ N, and long. 3° 838" W.: required
her course and distance ?

Ans. course, N. 51° 7" E. ; dist., 1187 miles.

7. A ship from lat. 38° 42'} N, long. 9° 8'% W, sails on
a W.S.W. course, a distance of 700 miles : required the lat.
and long. arrived at ?

Ans. lat. 37° 54’ N, ; long. 12° 33 W,

8. A ship from lat. 40° 41' N,, long. 16° 37' W., sails
between N. and E. till she arrives at lat. 43° 57' N., and
finds that she has made 248 miles of departure: requived
the course. distance, and long. in ?

Ans. course, 51° 41' E. ; dist. 316 miles ;
long. in, 11°'W.

Nore. From the principles discussed in the foregoing
article, it is evident, as was observed at p. 50, that the de-
termination of the direct course and distance from the
balance of the depariures on a compound course must involve
some amount of error. If, at the end of a series of courses,
it is found that the departures east just balance the
departures west, the custom is to conclude that the ship has
returned to the meridian left ; but it is plain from thé prin-
ciples of mid-latitude sailing, that if a ship in N. lat. sail
obliquely towards the N.E. quarter, and then, altering her
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course, sail towards the N.'W. quarter, till she reach the same
meridian :—it is plain that the mid-latitude distance between
the meridians, on the first course, must exceed that on the
second, and the correction taken from the table somewhat
increases this excess. It follows, therefore, that the result-
ant of the departures in a traverse will not be the correct
departure for the equivalent single course and distance,
although in a day or two’s run, the inaccuracy may be of no
practical consequence.

CHAPTER 1IV.
MERCATOR’S SAILING.—TRAVERSES BY BOTIL SATLINGS.

TrE principal object of mid-latitude sailing, as we have
just seen, is to render the results of ordinary plane sailing
available for the purpose of discovering difference of longi-
tude. The determination of longitude may, indeed, be
considered as the master problem of Navigation, and ac-
cordingly it has, more than any other, engaged the attention
of scientific and nautical men. But of all the methods of
solution hitherto proposed—excepting those dependent upon
astronomical observations—that which we are about to
cxplain is the most ingenious and satisfactory. - It was first
invented by Gerrard Mercator, a Fleming, who in 1556 pub-
lished a chart, constructed upon peculiar principles, from
which differences of longitude could be deduced.

The mathematical theory of this construction, however,
and the tables necessary for bringing MERCATOR'S SATLING
under the dominion of numerical computation, is due to an
Englishman, Edward Wright, who formed his table of Je-
ridional Parte after the manner now to be described.

Let A B, AC, and C B, in the annexed right-angled triangle,
represent the distance run, the difference of latitude and
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the departure made on any single course, A. We know
that the departure, C B, is not the representation of any
line on the surface of the sphere,
but the aggregate of all the minute

, /
departures shown in the diagram C'L—— /
at p. 56, united in one continuous /5

line. Let Abc be one of the ele-
mentary triangles in that diagram,
¢b being one of the elementary de-

partures, and A ¢ the elementary /
difference of latitude corresponding. /
Then since ¢ b is a portion of a 5755'
parallel of latitude, it will be toa ¥

similar portion of the equa.tor or of

the meridian, as the cosine of the latitude of the parallel is
to radius (or 1), as was proved at p. 52; and this similar
portion of the equator measures the dxﬁ'erence of longitude
between ¢ and b.

If, therefore, the elementary distance, A &, be prolonged
to ¥, till the corresponding departure c' &' becomes equal to
this difference of longitude, we shall have the following pro-
portion, namely :

ch i ¢'Yitcoslat. ofch : 1
But (Bue. 4, VL) ¢b : ¥:: Ac : AC
Socoslat.ofcb : 1::Ac:t A

Ac¢= t:—os“lﬁ%?& =Acxseclat.of c¢b.,. (1)
It thus appears that if the proper difference of latitude
A ¢, be increased to A ¢, so that A ¢'=A ¢x sec lat. of ¢, the
proper departure, ¢'b, will become increased to ¢’ ¥, so that
¢ ' =diff. long. of ¢ and . In other words, a ship having
made the small diff. lat. A ¢, and the corresponding depar-
ture ¢ b, must continue her course till her diff. lat. A ¢’ has
increased to A exsec lat. of ¢, in order that her increased
departure ¢’ ¥/ may be equal to the diff. long. made in sailing
from A to . Now it is evident that if all the elementary



64 MERCATOR’S SAILING.

differences of latitude are prolonged in this manner, the
sum of all the corresponding increased elementary depar-
tures will be the whole diff. long..made in sailing from A
to B. Consequently, to represent the diff. long. between
A and B, the diff. lat. A C must be prolonged till the length
A C' becomes equal to the sum of all the increased elemen-
tary differences of latitude, when the corresponding increased
departure, C' B, will represent the diff. long. made in sailing
from A to B. The business then, is to contrive means for
finding, from A C, the proper enlargement of it, A . 'Wright
proceeded as follows :

Taking the elementary differences of latitude each equal
to a nautical mile, or one minute of the meridian, com-
mencing at the equator, and calling the enlargements Mz-
RIDIONAL PARrTs, he knew, from the relation (1) above,
that—

Meridional Parts of 1'=scc. 1'.
2 =gec. 1'4-sec. 2'.
3'=see. 1'+sec. 2"+ sec. 3.
4'=sce. 1'4sec. 2'4-sec. 3/ 4-sec. 4.
&e. &e.

And from these equalities he calculated the proper en-
largement of the portions of the meridian, increasing minute
by minute, from the equator, by help of the table of natural
seeants, thus:

Lat. Sum of nat. secants. Mer. Parts,
Mer. Parts of 1'=1-0000000 =1-0000000
2/'=1+0000000 4 1:0000002 =2-0000002
3' =2:0000002 10000004 =3-000000¢;
4/ =3+0000006 + 10000007 =4-0000013
5'=4-0000013 4-1-0000011 =5-0000024
&e. &e.

It was by summing up the natural secants in this way
that the first table of meridional parts was constructed. Tf
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we enter such a table with the latitude of A (preceding
diagram), we shall find against that latitude the enlarged or
meridional latitude ; in like manner, entering with the lati-
tude of C, we also find the corresponding meridional latitude :
the difference of the two will be A C' the meridional difference
of latitude, or the sum of the two, if A and C are on opposite
sides of the equator.

It is plain that a table of meridional parts, constructed
after this method, will be the more strictly accurate the
sinaller the elementary portions of the meridian are taken ;
as, for instance, by taking them each half a minute in length,
instead of a whole minute, as indeed was subsequently
done. But Dr. Halley contrived means of constructing the
table in another way, which way involved no inaccuracy at
all; and the tables in existing use are all formed in this cor-
rect manner.* (See the Mathematical Tables.) ‘

Referring now to the diagram at p. 63, we have the two
following proportions for the solution of problems in Mer-
cator’s sailing, namely :

1. Asrad. (1) : tan course : : mer. diff. lat. : diff. long.
2, As proper diff. lat. (A C) : dep. :: mer. diff. lat. : diff. long.

And, as in former cases, we think it will sometimes be
more convenient to work examples in this sailing withont
logarithms than with them.

Eramples in Mercator’s Sailing. Single Courses.

1. A ship from lat. 52° 6’ N, and long. 35° 6¢' W., sails
N.W. by W. 229 miles : required her lat. and long. in?
By ex. 3, p. 60, the lat. in is found to be 54° 13’ N.; and

* For an account of Dr. Halley’s method, and for further details on the
progress of this part of Navigation, the inquiring student is referred to the
Navigation and Nautical Astronomy, in ¢‘ Orr’s Circle of the Seiences.”
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to find the diff. long. we proceed by Mercator’s sailing as
follows :

Lat. in . 54° 18’ N. Mer. parts 8887 Difl. long. = tan course » mer.

Lat. left 52° 6 N. ., 3675 &fF. Tat.
Tong. loft 35° 6'W. Mor. diff. lat. 212]*"“ d 1”"“*’“=1'4?’?f
Difl. long. 5° 17/ W.= 317 miles. | g
LODQZ. in. 40° 23" W, I 1497

" 299

Dift, Jong. . 31728 miles.

|
|

The longitude is therefore the same as that previously
found by mid-latitude sailing.
2. A ship from lat. 51° 18’ N, and long. 9° 50’ W, sails
S. 33° 8 'W. 1024 miles : required the lat. and long. in ?
" The lat. is found in ex. 2, page 60, to be 37° 1' N.

Lat. left 51°18' N. Mer. parts 3598 | Diff. long. = tan. course x mer,
Lat.in * 87° VN. ,, 92894 diff. lat.

—_— o Q/__.aFK
Mer, &iff, 1at, 104 |  tan 83° 8'=-6527

— ' 4021
Long. left  9° 50’ W, ! pro
Diff. long. 13° ¢'W.=786 miles. 1805
Long.in  22° 56’ W. ! 26

l Diff. long. 785°8 miles.

By Inspection. For the course 33°, and distance 256,
being one-fourth of the given distance, the traverse table
gives diff. lat. = 2147, four times which is 858, therefore
diff, lat. =14° 18’ 8., and hence the lat.inis 37° N. The me-
ridional difference between the two latitudes is 1205. For
one-fifth of this, namely 241, as diff. lat., and 33° as course,
the traverse table gives, under departure, 1569, five times
which is 784, the miles of diff. long. This makes the long.
in 22° 58, two minutes too great. When the number with
which we enter the traverse table is beyond the limits of
the table, it may be a little more convenient to divide that
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number by 10: in this way 1205 will give 120'5. The
nearest to this, under diff. lat. is 120’8, the corresponding
departure being 78°4, ten times which is 784 for the diff. long.
On account of small quantities being disregarded, the tra-
verse table does not always give results with the same accu-
racy as computation.

3. Required, the course and distance between Ushant, in
lat. 48° 28’ N., long. 5° 8 W., and St. Michael’s, in lat.
37° 44’ N, long. 25° 40' W. ?

Forthe coviae, For the distazicc.

tun course = diff. long -- mer difl. lat. ' Dist. = diff. lat. -~ cos course.
Difl. long.=20° 37'=1257 miles. i cos 547 2v="5K2,3)644 (1106 miles.
Ushnnt, lat.  48°2%  Mewr. pts. 5374 | 5825
St. Michael 3744’ » 244N '(,1__
D ] et gy
Diff, 1at. 644 m.=10° 44’ Mer. D. lat.=886, 582
.
) 85
8.8,611237(1+3962=tan 54° 27’ Otherwise by logarithms.
886 Diff. long. 1237 . . . 3:0924
351 Mer. diff, lat. 886 . . 2'9474-
2658 tan 542247 . . . . 1450
852 In strictness the angle, in both
7974 computations. is ahout 54° 28’4
546
582
14

By Inspection. The diff. long. and the mer. diff. lat.
being found as above, seek in the traverse table for the mer.
diff. lat., in that diff. lat. column having the diff. long. in
the corresponding dep. column. The page in which these
are found will give the course: with this course and the
true diff. lat. enter the table again for the distance. But
the traverse table is not well adapted for the solution of
examples of this kind; it usually gives but approximatc
results, and, as in the present case, the approximation may
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not be very closc. In thisexample the distance by the table
is 11 miles short of the truth as given by computation.

4. A ship from lat. 51° 9’ N. sails S.W. by W. 216 miles :
required the lat. in, and the diff. Jong. made ?

Ans. Iat. 49° 9’ N.; dift. long. 4° 40' W.

5. A ship sails from lat. 37° N. long., 22° 56' W., on the
course N. 83° 19' K, till she arrives at lat. 51° 18’ N.:
required the distance sailed and the long. arrived at ?

Ans. dist. 1027 miles; long. 9° 45’ W.

6. A ship sails from lat. 42° 54’ N. on the course S.E.3K..
till her diff. long. is 134 miles: required the distance sailed,
and the lat. in ?

Ans. dist. 182} miles ; lat. 41° 25’ N.

7. A ship sails N.E. by E. from lat. 42° 25’ N., and long.
15° 6' W, till she finds herself in lat. 46° 20’ N.: required
tlie distance sailed and long. in ?

Ans. dist. 423 miles; long. in 6° 54’ W,

8. A ship from lat. 51° 18’ N., long. 9° 50’ W., sails S.
33° 19’ W, till her departure is 564 miles: required her
long. in ? Auqs. long. 23° 2' W.

Componnd Courses by Mid-Latitude and Mercator’s Sailing.

In order to find the diff. lat. and the diff. long. made at
the end of aseries of courses, or a traverse, we must register
the particulars of each course in a traverse table, as at page
49, and proceed in one or other of the two following ways:

1. Having found the difl’ lat. and dep. made during the
traverse as at page 49, determine from these the direct
course and distance, and find the diff. long. due to this
single course by either mid-latitude or Mercator’s sailing,
ag in the foregoing articles.

2. Or: the several entries having been made in the tra-
verse table as before, find the balance of the diff. lat. columns
only ; we shall thus discover the latitude in; and for the diff.

lon~, wa nrocead thns -
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From the latitudes at the beginning and end of each
course find the corresponding mid-latitude, with which and
the departure made during the course, deduce the diff. long.
by mid-latitude sailing. The diff. long. being thus found
for each distinet course, the whole diff. long. due to the
traverse becomes known. But if Mercator’s sailing be ew-
ployed instead of the mid-latitude method, then there will
be no occasion for the insertion of any departures in the
table.

The following example, worked both by mid-latitude and
Mercator’s sailing, will sufficiently show how the tabulated
quantities arc to be arranged :

1. A ship from lat. 60° 9’ N., and long. 1° 7' W., sailed
the following courses and distances, namely :

1st. N.E. by N. 69 milcs. grd. N. by W. ! W. 78 mileh..
2nd. N.N.E. 48 miles. 4th. N.E. 108 miles.
5th. S.E. by E. 50 miles.
Required the direct course and distance, and the lat. and
long. in ?

TRAVERSE TABLE.

. Courses. || Dist. Dift lat. . Departure.
| - T
‘ ' N. s B W
N. K byN. - ¢9| 574 1883 !
| N. N. K. P48 | 444 L 18 |
| N.by W. L W. ¢ 98| 746 ;2206
| N. E. | 108 | 764 [ et
S.EyE | 50 27°8 1 41°6 |
. Diregt course N. 34° ' B. | 2528 l1747 |
Distance 272 iles. 278 i 226
225 1521

By the traverse table the difft lat. 225, and dep. 132:1,
gives for the course 34°, and for the distance, 272 miles.
The computation is as follows :
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For the coursc. \ For the distwice.

tan course = dep == diff. lLut. | dist = diff. lat. == cos course.
225)152°1(-6760 = tan 34" 4' *$,2,84)225 (272 wiiles.
1350 4 1657
1 i 505
1575 : 550
135 f 1
135 i -

For the difj. lony. by mid-latitude sailing.

Latitude lett . . 60° 9N, Diff, long. = dep. <~ cos mid-lat.
Diff. lat. 225 m. . 3° 45’ N. |  cos 62° 4’ =46 8.4)152°1 (325 mile~
Latitudein . . 63° 54 N. 14052
Sum of lats. . . 124° ¥ 1158
o 937
Y sum, or mid-lat.  62° 174 )—)-1-
Correction . . . 2') -
orreciion o 2 234
True mid-lat. . _(.ii ¢ Hence the diff, lung,:._— i:vy md-fat,
sailing is 825 miles E.

For the difj. long. by Mercator's sailing.
Latitude lefo 60° 9 N. mer. pts. 4545| Diff. long =mer. difl. Jat. « {an

Latitude in  63° 54’ N. 3 5026% course,
Meridional diff, lat. . . . 4811 tan course— 676
— 154
‘ 2704
541

{

! D, loug. . 3252 miles.

It thus appears that the diff. long. made during the tra-
verse is 325 miles, on the supposition, however, that the
traverse is correctly resolved into the single course and
distance as given above ;"in other words, that the balunce
of the departures is the same as the departure that would
be made by sailing on a single course from the place left
to that arrived at. But, as already shown, such is not the
case ; and consequently the diff. long. just determined, must
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be aftected with error. To avoid this error it is necessary
to proceed according to the second of the two methods
described above, that is, in one or other of the following
ways :
Work or tHy PrECEDING Examrrs oN m0onk Cosgecy
: PriNcIPLES.

Ist. By Mid-Latitude Suiling.

nd. By Mercator's Sailing.

Noue. The object of each of the following solutions i
to determine the difference of longitude correctly; the dif-
ference of latitude is always accurately ascertained as above ;
but to give a complete form to the work, the longitude
table is annexed to the traverse table for finding the difl.
lat. and the several departures.

I, Sotution Ly nid-laiidude sailing.

f TRAVERSE TABLL, LONGITUDE TAELL. :‘
| o i o
i - . ! : i Mid. | Dt !
Courses. !Dlst. Diff. lat. ‘Dcparture.: Lats. | Sums. | 3 ! long. i
. R S | P : - .
Lo | N | o oo | - :. l W
| NoE YN | 6957 61 & | 121015 78 !
CONNGE ) 48 g 61° 50 pnz 56" | 88 i
IN.Dy W. s W. | 78 74'u| 2206, 6375 | 124° 55 4,
CUNET oS g o e | 157 e | o 49 154 .
S.E byE. | 50 ‘_ws 416 68053 119801 G T 95
—— e e e VL PR, S — _i_—

2528 | 885 !

27y 4o |

Din. lat. jo2g | DIff. long. 336
Nore. As the diff. lal. wade on any single course does

not much exceed a degree, there is no need for any correction
of the mid-lats. The two columus for diff. long. are filled
up from the traverse table by this rule:—Take the mid-
lat. a8 & course, and seek the vorresponding departure in a
diff. lat. column, against which, in the disf. column will be
found the number of 1miles in the diff. long. In the table
the course 60° and dift. lat. 88'3 gives dist. 77, and the course
61°, with same diff. lat., gives dist. 79; we therefore take
78 for the course 60°%, as 60° 37’ nearly is. In like manner
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61° 28/, is regarded as the mean between 61° and 62\°, and
62° 27, as the mean between 62° and 63°, while 63° 43/, is
regarded as 64°, so also is 64° 7',

2. Solution by Mercator’s suiling.

TRAVERSE TABLE. I LONGITUDE TABLE.
Courses Dist.| Diftlat. || Lats | MO | Mer | 1ygjong
- S - | Parts. | D. L. - long.
S g R
N. | 8 6o | 4545 Bl ow.
N.E.byN. | 69 | 574 61°¢ | 4662 | 117 | TSB
N.NK. 48 | 444 61°50° | 4764 | 92 | 881
N.byW. 2 W. | 73 | 74 6 h | 4916 | 162 19z
N. E. 108 | 764 6421 | soss |17z | 1T
S.E by E | 50 28| 655y | 6023 | 65 78
£02'8 3857
278 492
Diff. lut. | 225 Diff. long. | 386°5

The two columns for diff. long. are, as before, supplicd
trom the traverse table. By entering the table with the
given course, we seek for the given mer. diff. lat. in a diff.
lat. column, and against it, in the dep. column, we find the
number of miles in the diff. long. To find the lat. and long.
in, we have

Latitude left 60° 9'N. Longitude left 1° 7 W.
Diff.1at.225 m, 3° 45' N.  Diff. long.336m. 5° 36' K.
Latitude in  63° 54' N. Longitude in 4° 29' E.

By the first mode of computation, in which the traverse
is reduced to a single course and distance, the longitude in
is 4° 18', which is 11’ in error.

In order now to find the more correct single course and
distance, we have

For the course. ; Lor the distance.
tan course =diff, long=-1ner. difl. lat. Dist. = diff. lat. = cos course.

Lat. left 60° 9’ Mer. parts 4545 | cos 34° 56'="8,1,9,8)225 (275 ml«
Lat. in 63° 54’ n 5026 1640

{

Mer. diff. Iat. . . . . . 481 610
pill
386 == 481 = 6985 - tan B4" 56, | bis
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IMence the correct course is N. 34° 56' E., and the dis-
tance 275 miles.

Nore. Itmay beinstructive to thelearner to notice here
that, agreeably to the general practice, in forming the co-
lumn headed “lats.”’, we have disregarded every decimal
below *5 in the diff. lat. columus, and have replaced every
decimal above *5 by unit: and in consequence of this, the
final Tatitude in the former column comes out 63° 53’ instead
of 63° 534, as it ought to do. Now, although a fastidious
attention to minute accuracy is seldom absolutely necessary
in operations of this kind, yet when precision can be attained
with very little extra trouble, it is always better and safer
to aim at it. By noticing the consecutive number in the
table, the intluence of the decimal may be much more accu-
rately estimated than by the rough general principle of
rejecting it altogether, or replacing it by unit. Thus, it is
plain that cach decimal in the column headed N. is very
nearly °5, or ¥, and that in the column 8. is very nearly equal
to unit: the more correct ¢ Longitude Table” above will
therefore be as follows:—

Loxarrvne TanLr.

; Mer. Parts. Mer. D, L. ¢ Dilf Long. ]

‘ l
Poeor 9 b 454s |k W.!
S R 10 A B T 111 118 | 789 |
L Glesl 1 4756 93 | 83 |
© 68 BL 1 4917 161 4878 |
Gd° 22 i 5090 173 173 *

8

L 63° 54

|

5026 o4 ’ 96+
N
1

Longitude left . l° W, 88T
Diff. Long. 3385 . 5> 3¥L E. . 48
Longitudein . . . 4" 31’} K, iJ&b

tv @ o .

‘We thus see that from not taking a more correet cstimate
of the decimals in the former work, the result was about:
2 miles of longitude too little. If the several courses and
distances in the above traverse be correct, the longitude
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now deduced canuot err from the truth by more than a small
fraction of a minute, provided an accurate table of Mer.
Parts has been used.
2. A ship from lat. 66° 14’ N, and long. 3° 12/ E., has
sailed the following courses, numely :—
I1st. N.N.E. ] E. 46 miles. Jrd. N. 5 WL 52 miles.
2nd. N.E.J E. .28 4th. N.E.by B. 1 E. 57 ,,
5th. E.S.E. 2.4 miles:
requu'ed the latitude and longitude in ?
Ans., lat. 65° 24/ N. lonnf 7° 53" E.
8. A ship from lat. 35° 14/ N., and long. 56" W., bas
sailed the following courses, namely :—

Ist. N.E.by N.1E. 56 miles. +th. S.8.E. 30 miles.
2nd. N.N.W. 88, 5th. 8. by W. 20
3rd. NW.by W. 46 ,, 6th. N.E.byN.60 ,

required the latitude and longitude in, and the correct single
course and distance ?
Ans., lab. in, 40° 2"} N ; long. in, 25° 20" W,
course, N. 1 "" I8.; dist. 110% miles.

Having now sufficiently dismssed Mercatm s sailing, we
are in a condition to explain the principles on which the
table for corrceting the mid-Jatitude referred to at page 59
i3 constructed.

Let 1 represcnt the proper difference of latitude.

U the meridional difference of latitude.

my the lat. iu which the dist. between the two meridiaus.— departure.
L the difference of longitude of those weridians.

Then for tan course, by plane, mid-lat., and Mercator’s
sailings, we have

{
RARUCER TSR

{an course .= -— - - - = i, v

departure T X 08wy L
¢ l T

Hence, by dividing the proper dift. lat. 7, by the meridional
diff. lat. ¥, we get cos m, and thence m, the latitude of the
parallel, the portion of which intercepted between the two
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meridians is exactly cqual to the departure, the length of
this intercepted portion being

L x eos m == departure (sce p. 57).

1t is the difference bebtween m and the latitude of the middle
parallel that is inserted in the tuble referred to at p. 59.

Nore. Before concluding the present chapter, it may be
as well to notice that, when in any cxample the diff. long. is
given, and {rom knowing also two of the quantities, coursc,
diff. lat., departure, or distauce, it is required to find the
lats. from and in, such example cannot be worked by DMer-
cator’s sailing. The proper diff. Iat. and the mer. diff. lat.
may be found, but not the lats. themselves: the problem
wust be solved by mid-latitude sailing, as in the following
instance.

Ex. A ship sails in the NW. quarter 248 miles, till her
departure is 135 miles, and her diff. long. 310 miles: re-
quired the lat. from and in?

By plane sailing the dil’ Iat. is found to be 208 miles=
3° 2¢, and from the equation last given above

o8 m = q‘flf_)::.l_jé = 4355 = cos G1°11".

Henee, the mid-latitude coiiccted is =04 11"; this 1s
greater than the mid-latitude unmodificd, by the correction
in the table, namely by 3'; there- pnid. lat. . 64> &
fore the mid-lat. is 61° &, and  half diff.lat. 1° 4t

proceeding as in the margin, we lat. from . 62° 24N,
readily determine the lats. from  lat. in . 65° 52'N.

and in. From ncglecting the tabular correction the lati-
tudes in other books are made too gre:.i.

Again, If, with the diff. long., oue lat. be given, and the
course, dist., or dep., mid-latitude sailing is not applicable
to the finding of the other lat. 1or example :

Ex. A ship from lat. 34° 29" N, sails 8. 41° W, till her
diff. long. is 680 miles: required her lat. in?
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Mer. dift. lat. = diff. long.=-tan course = 680 ~8693 =752
Lat. from, 31°29° N. . . Mer. Parts 2207
Mer. diff. lat. . . .782
Lat. in, 23° 6' N. Mer. Parts . . 1425
Hence the latitude arrived at is 28° 6’ N.

CHAPTER V.

CURRENT SALLING—PLYING TO WINDWALRD —TAKING
DEPARTURES.

1F a current act upon a ship, her rate of sailing is neccs-
sarily affected by it, and in general both her rate and the
direction in which she would otherwise move through the
water.

If the ship sail directly with or directly against the cur-
rent, her rate only will be affected ; but if she sail athwart
the current, both her rate of sailing and her course become
subjected to its influence.

The course, as determined from the compass (the usual
corrections being made), marks the direction of the ship's
head, and in this direction the ship moves a certain distance
in a certain time; but the current carries her a certain other
direction and distance in the same time, her actual motion
being compounded of the two. It is thus the same—as far
as position is concerned, disregarding the time of arriving
at it—as if' the ship had sailed the two distinct courses and
distances in succession, so that current sailing resolves itself
into a simple case of traverse sailing, as soon as the direc-
tion and velocity of the current are ascertained. The di-
rection of the current, or the point of the compass towards
which it flows, is called the set of the current; and its velo-
city, or rate, is called the drift.

The usual way of ascertaining the set and drift of a
current unexpectedly met with at sea, is to take a boat a
short distance from the ship; and, in order to keep it from
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being carried by the current, to let down, to the depth of
about one hundred fathoms, a heavy iron pot, or some other
sufficient weight, attached to a rope fastened to the stem of
the boat, which by this means is kept steady. The log is
then hove into the current, the direction in which it is
carried, or the set of the current, is determined by aid of a
boat compass; and the rate at which it is carried, or the
hourly drift of the current, is given by the number of knots
of the log-line run out in half a minute.

Ezamples in Current Sailing.

1. A ship sails N.W. a distance, by the log, of 60 miles,
in a current that sets S.8.W., drifting 25 miles in the
same time : required the course and distance made good ?

This is the same as the following question, namely :—

A ship sails the following courses and distances—

1st. N.W. 60 miles. 2nd. S.8.W. 25 miles:
what is the direct courso and distance ?

f Courses. | Dist. | Diff. lat. : Departure. ’
' ! H i
- S ST

i N S | E W'

CON.W. | 60 | 424 | | 424
. 8.8 W, 25 231 | | 96 i
|

!

Tor this diff. lat. and dep. the course by plain sailing is
N. 69° 88" W, and the distance is 55} miles.

2. A ship sailing at the rate of 7 knots an hour, is bound
to a port bearing 8. 52° W., but the passage is in a current
which sets 8.8.E., two miles an hour: it is required to shape
the course ?

Here one only of the two courses of the traverse is given,
together with the resulting direct course; to find the other
component course: we shall give two solutions, the second
by the traverse table.
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Let B A be in the direction of the port, and B the
place of the ship, B D in the direc.
tion of the current = 2, and B C
in the required direction = 7. Then
in the triangle A B C, there are
given the side B C =7, the side
; C A=B D = 2, and the angle
| . CAB=DB A=22° 30452 =71
t . \ T 80, to find the angle A B €. In
’ \./ order to this. we have (p. 20),
o .
BC:CA @ sin74° 30" : sin ABC.
thatis, 7 + 2 :: 9636 : sin ABC.
2 JOABC - 15059
7710272 ABS = 527
sin 15° 50 __77-;, ., course CBS'::(E?“’;‘SE)_
Otherwise.~Tn the fn'mgle A BC, let AC,BC, and
the angle C A B, measure the
— same as in the above diagram; and
 _~~ 5 let ¢ be perpendicnlar to A B
"~ then, by right-angled triangles,
ACsinA=Cmand BCsinB=Cm....(1).
Hence, entering the traverse table with A = 74°30'as a
course, and A C=2 as a distanee, we geb the dep. C m=19
Again, with the dep. C m =1-9, and the distance B C =
7, we get the course B = 16°, which added to A B 8 = 52°,
gives 68° for C B 8, ihe required course.
The learner will observe that the solution previously
given is at once derived from the equations (1): for from
these

o~

I
'

1
v
.

A

n

sin B =

Cm  ACsinA
BC = BC

3. A ship runs N. E. by N. 18 miles in three hours, in
a current setting W. by 8. two miles an hour: required the
course and distance made good ?

Ans. course 1% points, or N. by E. & E.: dist. 14 miles.
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4. A ship in 24 hours sails the following courses in a
current setting S.E. by 8. 1} miles an hour, namely :
_ 1st. S.W. 40 miles. 3rd. 8. by E. 47 miles.
2nd. W.S.W. 27 miles. Current, S.E. by 8. 36 miles.
required the direct course and distance made good ?
Ans.. course, S. 11° 50' W., dist. 117 miles.
5. The port bears due E., the current sets S.W. by S.
three knots an hour, the rate of sailing is 4 knots an hour:
required the course to be steered ?
Ans. course N. 51° E.
G. A ship sailing in a current has by her reckoning run
8. by B. 42 miles, and by observations is found to have
made 55 miles, of diff. lat. and 1S miles of dep.: required
the set and drift of the current ?
Ans. set 8. 62° 12’ W, whole drift 80 miles.,

Plying to Windward.

‘When a ship bound to a port has a foul wind, she can reach
it only by facking, that is, by crossing the wind on two or
more courses, making a zigzag instead of a direct track.
This is called plying to windward.

Having sailed a certain distance as near to the wind as
she can, the ship tacks about, recrossing the current of air
at the same angle; and thus she crosses and recrosses
always at the same angle, till she arrives at her port.

Starboard signifies the righthand side, and larboard the
lefthand side. 'When a ship plies with the wind on the
right the starboard tacks are aboard, and when the wind is
on the left the lerboard tacks are aboard. When a ship
sails as near as she can to the point from which the wind
blows, she is said to be close Lauled. The following exam-
ple will sufliciently illustrate the caleulations usually neces-
sary in plying to windward, a subject in which the learner
will perceive that some knowledge of oblique-angled trian-
gles is requisite.
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Examples in Plying to Windward.

1. Being within sight of my port bearing N. by E. { E.
distant 18 miles, a fresh gale sprung up from the N.E.:
with my larboard tacks aboard, and close hauled within six
points of the wind, how far must I run before tacking
about; and what will be my distance from the port on the
second board ?

In the annexed diagram A is the place of the ship, B

R, S , that of the port, A C the
Ve B o distance on the first board,
/ N\ @ and C B that on the second.
{ \_\/ \ \ © The direction of the wind is

A marked by w A, »' C.
\ € As the ship sails within 6

points of the wind, the arc w m
o must be=0 points, and if w 2/
be made also = G points, C B will be parallel to An'. As
w A C is 6 points, w' C A is 10, and since ' C B is
also 6, BC Ais4. Again, BANisll, andw AN is 4,
~wABis 25.-.C ABis 8t. Hence, inthe triangle A B C,
we have given the side A B = 18, and the angles A and C
equal to 8} and 4 points respectively, to find A Cand C B. _
sin 4 points : sin 8} points = sin 7} points :: 18 : B C,
sin 4 points : sin 3} points (B) :: 18 : AC.
sin 4 pts. (C) Arith. Comp. °1505 | sin 4 pts. (C) Arith, Comp. -1505

:sin 8 pte. (A) . . .9°9979 | :sin3fpts. (D) . . . 9:802¢
:tAB=18 . . . 12553 | ::AB=1S . . ., . 19553
:BO=2523 . . . .14037 | : AC=1615 . . . . 1-2082

Hence, the ship must sail 16 miles on the first tack, and
then 251 miles on the second, to reach her port. The course
on the second, or starboard tack, is G points — 4 points
== 2 points, or N.N.W.

2. If a ship can lie within G points of the wind on the
larboard tack, and within 5} points on the starboard tack,
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requived her course and distance on each tack to reach a
port lying S. by E. 22 miles, the wind o
being at 8. W ? Lo T
Let A be the place of the ship,and B "~ \
that of the port, and let the first course {i \ \
A C be on the starboard tack, the direc- \“ I
tion w A being that of the wind, and the \ .-~ |}
arc w m = 5% points. If the are wm’ ~&\
be made equal to 6 points, C B parallel N
to A/, will be the other course, or ‘o
that on the larboard tack. :

wAC=235 o' CA= 10,2 CB =06 . BCA = 4.
Also BAS =1, andwAS -4 - «AB=3, 8AC=

1Tence, in the triangle A B C, we have given the side AsB
= 22, and the angles A and C equal to } a point and 4%
points respectively, to find A C and C B.

sin 4} pts. (C) Arith, Comp. 1118 | sin 4} pts. (C) Arith. Comp. -1118
:sind pto(A) .. . . 80913 ‘ : sin 11 (or 5) pts. (BY . 9-9198
tAB=22 . . . .10474* PAB =22 L L0 L L 103424
-

SBC =979 . . . . 4455 |t AC=9366 . . . . 13740

The course C A S on the starboard tack is 1§ points, or
S.by E. } E, 23:66 miles: ihe course on the larboard tack,
being equal to the angle ' A N, is 6 points or W.N.W.
279 miles. 1t is obvious, that when a ship close hauled is
to reach her port on two tacks, she must steer on one tack
till the bearing of the port is the samc as the course on the
other tack. And, as the foregoing illustrations sufficiently
show, when the distance A Band the bearing of the port are
known, we may always work by the following rule :—As the
sine of the angle between the two courses is to the sine of
the angle between the given distance and either course, so
is that distance to the distance sailed on the other course.

8. A ship is bound to a port 80 miles distant, and dlrectly
to windward, which is N.F. hv N 1B and wwewo--



82 PLYING TO WINDWARD,

reach her port at two boards, each within 6 points of the
wind, and to lead with the starboard tack: required her
course and distance on each tack?
Ans. starboard tack, NNN.W. ¥ W, 1045 miles;
larboard tack, ES.E. § E., 104:5 miles.

4. Wishing to reach a point bearing N.N.W., 15 miles,
but the wind being at W. by N., I was obliged to ply to
windward ; the ship, close hauled, could make way within
G points of the wind: required the course and distance on
cach tack ?

Ans. larboard tack, N.by W., 17-65 miles;
starboard tack, S.W. by 8., 4°138 miles.

5. The port bears N. by B. 1 X, 18 miles; the wind
blows from N.E., the ship after running 48 miles on the
larboard tack within 6 points of the wind, tacks about:
required her course and distance to the port on the second
tack ? Ans. course N. 57° 35’ W., dist. 49:58 miles.

Nore.—Whether a ship, when close hauled, reaches a
point at two boards or courses, or, by morc frequent tacking,
at any number of boards, the actual distance sailed is just

. the same. Thus, suppose, first, the
B L ship A reaches the point B on two
r’._‘/ﬂc\\ boards A C, C B; the whole

- ~ distance sailed is A C+C B. Sup-

I - .. pose, secondly, that she tacks at
A 5% ¢D, running D 4 parallel to C B,
then tacking again, that she runs & e parallel to A C, and so
on till she arrives at some point ¢ in C B, and then sails on
her last course, ¢ B. Then, becausc the opposite sides of a
parallelogram are equald e =D E, and ¢' e=EC.. A D+
de+¢ ¢=A C. Inlikc manner Dd + ee=Cec.. C B=
D d+ e +cB. Hence, the distance AC +CB=A D+
Dd+4+deted+¢ c+eD.

‘When the port is directly to windward there may be some
advantage in working up to it by a succession of short
courses, a8 figured above; for the wind may change, and
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any change must be for the better,—and it is plain that at
whatever intermediate point on the above zigzag path the
ship may be, she is nearer her port B than she would be
by running the same distance along A C, C B.

Taliing Departures.

At the commencement of a voyage before the ship loses all
sight of land, the distance and bearing of some known head-
land, lighthouse, or other object, the last familiar spot likely
to be seen, is taken, and the ship is supposed to have taken
her departure from that place, the direction opposite to the
bearing and the distance being regarded as the first course
and distance, and are entered as such on the log-board.

The bearving being taken by the compass, it is customary
for experienced navigators to estimate the distance by the
cye, but the more correct method of taking a departure is
to observe two bearings of the object, measuring by the
log the distance sailed in the interim between the observa-
tions, as in the following examples :—

Ezxamples in Taking Departures.

1. Sailing down the Channel the Eddystone bore N.W.
by N.; aud after running W.S.W. 18 miles, it bore N, by
E.: required the course and distance from ;- o ¥
the Eddystone to the place of the last ; ; ‘
observation ? ' v

In the annexed diagram, A represents |
the place of the ship at the first observation, /

, |
B its place at the second, and C is the object ! J
P / /

1
observed. By the question the angle N A C B
is 8 points, and the angle N B Cis 1 point,
also the course of the ship S A B is 6 |
points. Consequently, for the number of points

in the angles A, B, of the triangle A B C, we have
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A=16—0—8="7B=16—10—1 =15 .~ C=4.

sin C, 4 puints, Arith. Comp. 150

» sin A, 7 points . . . .. 994916
c: AB==18 . . . . . 12553
:BC=2497 . . . . . 13974

As the course from B to the Eddystone Cis N. by E,,
the course from Eddystone to B must be directly opposite,
namely S. by W. IHence, the departure, or first course and
distance is 8. by W. 25 miles; the lat. and long. left being
that of the Eddystone.

2. Sailing down the Channel the Eddystone bore N.W.;
and after running W. by S. 8 miles, it bore N.N.E.: re-
quired the ship’s course and distance from the liddystone to
the place of the last observation ?

Ans. course S.5.W., distance 7-2 miles.

3. At three o’clock in the afternoon the Lizard bore
N.by W. § W, and having sailed ¥ knots an hour W. by
N. 1 N. till 6 o’clock, the Lizard bore N. E. § E.: required
the course and distance from the Lizard to the place of the
last observation ?

Ans. course S.W.2W ., distance 19°35 miiles.

4, In order to get a departure I observed a headland of
known latitude and longitude to bear N.E. by N.; and
after running E. by N. 15 miles, the same headland bore
W.N.W.: required my distance from the headland at each
place of observation ?

Ans. first dist. 83 miles; second, 10'8 miles.

The ship having taken her departure, and her voyage
being fairly commenced, she shapes her course according to
her destination, by aid of a Mercator’s Chart, in which are
marked the obstacles and places of danger she must avoid.
Her hourly progress, as measured by the log, and the
courses she steers from noon till noon, together with other
noteworthy particulars, are registered on the log-board,
which is a large black board properly divided into columns
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for these several entries : the result of the 24 hours traverse
—leeway, currents, &c., being allowed for—is determined
every noon, as in the foregoing pages, and the latitude and
longitude in, by dead reckoning, ascertained.

‘Whenever practicable, these are corrected by means of
astronomical observations, and the true latitude and longi-
tude found : the place of the ship may then be pricked off
on the chart, and from this place as a fresh starting point
the course is shaped for another stage in the journey. A
specimen of a ship’s journal will be given hereafter; but as
the determination of the latitude and longitude of a ship,
independently of the dead reckoning, or the latitude and
longitude by account, requires a knowledge of nautical
astronomy, we must now proceed to the second part of our
subject ; navigation proper terminating here.

END OF THE NAVIGATION.
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NAUTICAL ASTRONOMY.

CHAPTER 1.

DEFINITIONS—CORRECTIONS OF OBSERVED ALTITUDES.

NavTICAL AsTRONOMY is that branch of the general
scignee of astronomy which enables us to determinc the
situation of a ship at sca by mecans of celestial observations.
It is, therefore, cntirely occupied with the solution of one
important problem, namely, the finding the latitude and
longitude of any spot on the surface of the occan :—of a place
where the erection of a fixed observatory is impossible, and
at which even the astronomical telescope cannot be used.
1t is because we are thus precluded from the advantages of
an observatory, and of such instrumental aid as can be
always supplied and employed on land, that observations
at sea must be limited in their extent, aud peculiar in their
kind ; and it is on these accounts that a special system of
practical astronomy must be devised for sea purposes; and
hence the propriety of the name Nautical Astronomy. The
definitions which follow, however, have no exclusive appli-
cation.

Axis.—The axis of the heavens is merely the prolonga-
tion of the axis of the earth: the axis of the earth is the
diameter about which that body really turns from west to
east ; the axis of the heavensis that about which the heavenly
bodies appear to turn from east to west. In nautical
astronomy, as well as in many parts of general astronomy,
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we may regard these heavenly bodies to be, as they seem
to be, all equidistant from the centre of the earth, and
situated in the apparent concavity surrounding us, called
the heavens: the points where the axis pierces this con-
cavity are the poles of the heavens or the celestial poles.

The learner need scarccly be informed that these are not
determinate physical points fixed in space, like the poles
of the earth; we regard only the direction of these points,
not their lincar distance: linear distances of points or
objects in the heavens do not enter into consideration in
nautical astronomy, which takes note of anguwlar distances
only. The angular distance of two objects is the angle at
the eye between the visual rays, or straight lines, proceeding
one from each object, and meeting at the eye; and it is
plain that at whatever point in the straight line frdm,the
object that object be placed, the angular distance between
the two will remain unaltered. In astronomy the eye of
the observer is supposed to be at the centre of the earth,
which is also the centre of our imaginary concavity; and
the angular distance of any two celestial objects must be
the same however small or however great the radius of that
concavity is supposed to be. This angular distance is, in
reality, observed from the surface of the earth, but it is,
by a certain correction hereafter explained, always reduced
to what it would be if the eye were at the centre: the radius
of the earth is the only linear measure introduced.

FEquivocriarn.—The equinoctial, or the celestial equator,
i8 that great circle of the celestial sphere of which the plane
is perpendicular to the axis; it is therefore marked out by
the plane of the terrestrial equator being extended to the
heavens, the poles of which are the poles of the equinoctial,

MEerInIANS.—The celestial meridians too are, in like
manner, traced by extending the planes of the terrestrial
meridians to the heavens: they arc semicircles perpendi-
cular to the equinoctial, and terminating in the poles of that
oreat circle,
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and Napir.—The zenith is that point of the
celestial sphere which is directly over the head of the
spectator: a straight line from the centre of the earth,
through any place onits surface, if prolonged to the heavens,
would mark the zenitk of that place. And the point in the
celestial sphere diametrically opposite to this, is the nadir
of that place. The line joining the zenith and nadir is
evidently the axis of the rational horizon of the place; and
the points themselves the poles of the horizon.

Verrican Circres.—The vertical circles of any place
are the great circles perpendicular to the horizon of that
place; they are also ealled circles of altitude, because the
altitude of a celestial object is the height of it above the
horizon measured in degrees of the vertical circle passing
thrpugh it. It is plain that all vertical circles meet in the
zenith and nadir; and that the complement of the altitude
of any celestial body is the zenith distance of that body.
Small circles parallel to the horizon are called parallels of
altitude.

The most important of the vertical circles of any place
is that which coincides with the meridian: when an object
is upon this, its altitude is the greatest; it is the meridian
altitude of the object: when the object is on the opposite
meridian, or below the elevated pole, its altitude is the
least.

The vertical circle at right angles to the celestial mecri-
dian, and which therefore passes through the east and west
points of the horizon, is also distinguished from the others:
it is called the prime vertical. 'When an object is on the
meridian, it is either due south, or due north: when it is
on the prime vertical, it is either due east or due west.

AzivmurH.—The azimuth of a celestial body is the arc of
the horizon comprehended between the meridian of the
observer and the vertical on which the body is. The degrees
in this intercepted arc obviously measure the angle at the
zenith between the meridian and the vertical through the
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body. Vertical circles are also frequently called azimuth
circles.

AymrriTUDE.—This term is also applied to an arc of the
horizon,—the arc, namely, comprised between the east point
of the horizon, and the point of it where the body rises, or
between the west point, and where it sets. Like the
azimuth, the amplitude is measured by an angle at the
zenith ; the angle, namely, between the prime vertical and
that which passes through the body at rising or setting;
but, unlike the azimuth, the object must be in the horizon
when we speak of its amplitude: whereas, whatever be its
altitude, it always has azimuth.

Decrivarion.—The declination of a celestial object is
its distance from the equinoctial, measured on the celestial
meridian which passes through it; so that what is latitude,
as respects a point on the earth, is declination in reference
to a point in the heavens; and as circles of latitude (terres-
trial meridians) all meet at the poles of the earth, or of the
equator, so circles of declination all meet at the poles of the
heavens, or of the equinoctial. Also, parallels of latitude
on the terrestrial, become parallels of declination oun the
celestial sphere.

Porar Distaxce.—By the polar distance of a celestial
object is meant the arc of the declination circle, from the
object, to that pole of the heavens which is elevated above
the rational horizon. When the object is on the same side
of the equinoctial as the clevated pole, the polar distance
is evidently the complement of the declination, or, as it is
called, the co-declination: when the object and the elevated
pole are on contrary sides of the equinoctial, the polar dis-
tance is the declination increased by 90°.

The altitude of the pole, above the rational horizon of
any place, is always equal to the latitude of that place. For
the latitude is the distance of the zenith from the equi-
noctial, and therefore the distance between the zenith and
the elevated pole is the complement of the latitude ; and the
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same distance is equally the complement of the altitude of
the pole above the rational horizon ; this altitude is, there-
fore, equal to the latitude of the place. The depression of
the equinoctial below the horizon, or its elevation above
the horizon, in the opposite quarter, is the complement of
the latitude, or the co-latitude, which is thereforc measured
by the angle the equinoctial makes with the horizon.

The circles and terms now defined comprehend all thoso
in most frequent usc in Nautical Astronomy, and it is
always to be understood, whenever we have spoken of the
distance between two points, as measured on an arc of one
of these circles, that the angular distance, or the degrees
and minutes of that arc is uniformly meant, and not the
linear extent ot the arc. The circles referred to having no
definite radii, the arcs referred to can have no definite
length, though they subtend determinate and calculable
angles. We have now only to mention one or two other
circles of the celestial sphere occasionally referred to in
nautical observations.

Tre Ecrirrio.—This is the great circle described by the
sun in its apparent annual motion about the earth; it is
in reality the path actually described by the earth about
the sun in the contrary direction. The ecliptic crosses the
equinoctial at an angle of about 23° 27’} : this is called the
obliquity of the ccliptic; it, as well as the points of inter-
section, is subject to a small change. The two points of
intersection arc called the equinoctial points; the sun, in
its apparent annual path in the ecliptic, passes through one
of these points on about the 21st of March, and through the
other on about the 23rd of September. - At these limes the
days and nights are equal at all places where the sun rises
and sets, because any point in the eguinoctial, in the appa-
rent daily rotation of the heavens, is as long below the
horizon as above, since the horizon of every place divides
that and cvery other great circle into two equal portions,
The poles are the only places on the earth at which the
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sun, when in either of the equinoctial points, neither rises
nor sets: the equinoctial then coinciding with tbe horizon,
the sun revolves with its centre describing that circle, one
half of its disc above, and the other below it. The small
advance of the sun in its annual path is too minute in 24
hours to sensibly affect this statement.

The two points of the ecliptic, 90° distant from the equi-
noctial points, are called the solstitial points, as the sun’s
apparent motion at these points is so slow that he scemns
almost stationary: he passes through them about the 21st
of June and the 21st of December.

Crrestian LonNcitvpe.—The celiptic is the circle on
which the longitude of every heavenly body is measured:
the point from which longitude is measured is the vernal
cquinoctial point, which is called the first point of the gon-
stellation Aries; and, unlike terrestrial longitude, it is
measured in one continued dircction round the celestial
sphere; so that while terrestrial longitude can never exceed
180°, celestial longitude may be of any extent short of 3G0°.
The 860° of the ecliptic is conceived to be divided into
twelve equal parts, called signs; cach sign is therefore an
arc of the ecliptic of 30°. The names of the constellations
through which these signs pass, and the symbols by which
they are denoted, arc as follows :—

1. «op Aries (The Ram). ! 8 mnp Scorpio (The Scorpion).

2. 8 Taurus (The Bull). I 9. 2 Ragittarius (The Arrow).
3. II Gemini (The Twins). ‘ 10. v§ Capricornus (The Goat).

4. & Cancer (The Crab). ‘ 11. v Aquarius ( The Water-
5. § Leo (The Lion). bearer).

6. ny Virgo (The Virgin). i 12. 3C Pisces (The Fishes).

7. = Libra (The Balance). i

Of these, the first six signs are on the north of the equi-
noctial, and the others on the south. The belt of the
heavens about 16° wide, 8° on each side of the ecliptic, and
in which these constellations are situated. and within the
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limits of which the planets pursue their courses being called
the zodiac, the 12 signs are frequently called the signs of
the zodiac.

CeresTian Latitupe.—The latitude of a heavenly body
is measured from the ecliptic, north or south, on a circle
perpendicular to it; the circles of latitude all uniting in the
poles of the ecliptic.

Rricor Ascexsron.—The right ascension of a celestial
object is the arc of the equinoctial between the first point
of Aries and the point where the declination circle through
the object cuts the equinoctial. Thus, right ascension and
declination in reference to an object in the heavens, corre-
spond to latitude and longitude of a place ou the earth.
On the earth, longitude is measured from the first meridian
(that of Greenwich in this kingdom); in the heavens, longi-
tude and right ascension are both measured from the origin
of the signs,—the first point of Aries, or where the ecliptic
crosses the equinoctial, but always from W. to E.

‘We see from these definitions that, as in the terrestrial
great circles, every great circle of the heavens is accom-
panied by another great circle at right-angles to it; thus,
latitude and longitude, declination and right ascension,
altitude and azimuth, are all pairs of arcs perpendicular to
each other. Those great circles all of which are perpendi-
cular to another great circle, in other words, those great
circles that all unite in the poles of another, are frequently
called secondaries to the latter: thus, the meridians are
secondaries to the cquinoctial; the circles of celestial lati-
tude are secondaries to the ecliptic; and vertical circles,
or circles of altitude, are secondaries to the horizon. No
measures in the heavens are the degrees, minutes, &e., of
a small circle ;> the distance between any two objects taken
by an instrument is always the shortest distance ; and on
a spherical surface, the shortest distance between any two
points is the arc of the great cirele joining those points.
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On Time :—Apparent, Mean, and Sidereal.

The interval of time between two successive appearances
of the sun upon the same meridian, is the length of a day;
xnot of a day according to civil reckoning, or as measured
by the 24 hours of a clock, but of a Solar day. The interval
spoken of, is not uniformly of the same length ; for although
the earth performs each of its diurnal rotations in exactly
the same time, yet its annual motion of revolution round
the sun is irregular. Solar days, therefore, vary slightly in
length, and it is the mean of all these varying days that is
taken for the common day, and divided into the hours,
minutes, &c., as shown by clocks and chronometers, and re-
ferred to in the common business of life: the common d&y,
therefore, is the Mean Solar day, being the mean of all the
Apparent Solar days.

The Day, whether mean or apparent, is divided into 24
equal intervals, called hours ; and each of these into minutes
.and seconds; an hour, minute, &ec., of mean, or common
time, is not precigely the same as an hour, minute, &e., of
-apparent time; but the 24th part of the day is always called
.an hour. 'Wp thus see that the apparent day, though not
«of invariable length, is a natural day : it is the actual inter-
val between two consecutive passages of the sun over the
:meridian. But the mean day, though of invariable length,
is an artificial day ; it is not measured by the recurrence
.of any natural phenomenon. There is, however, a natural
.day, which, like the artificial mean day, is strictly invariable;
it is .called the Sidereal Doy, and measures the interval
between two successive appearances of the same fixed star
on the meridian, and is the .exact time occupied in one
.rotation of the earth on its axis. The distance of the fixed
(#tars 18 so.immense, that the earth’s change of place from day
.to day produces not the glightest effect upon their apparent
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positions ; whatever star be observed, and whatever part
of its orbit the earth be in, it is always found that the
interval between two consecutive passages of the star over
the meridian is uniformly the same in length: the interval is
23h. 56m. 4°09s. of mean time. In the reckoning of astro-
nomers, both the apparent and the mean day commences at
noon, the former at apparent noon, or when the sun is
actually on the meridian, the latter at meen noon, the
instant when the sun would Je on the meridian if his
motion in right ascension were uniformly equal to his mean
motion. But the sidereal day commences when the first
point of Aries is on the meridian. In each kind of day the
astronomical reckoning is carried on from Oh. to 24h. Bus
the nautical day, in keeping a ship’s account, is the same as
the civil day, the reckoning beginning at midnight, counting
12 hours till noon, and then 12 more till the next midnight,
when a new day begins. It will be observed, therefore, that
the astronomical day does not commence till 12h. of the
civil day have expired: thus, August 15, at 9 o'clock in the
morning, or a8 it would be recorded in the ship’s account,
August 15 at 9h. A.M., in astronomical reckoning would be
August 14, at 21h.,, that is, 8h. from the approaching noon,
when a new astronomical day, namely, August 15 com-
mences. It may be noticed here, that “a.M.” signifies
in the morming (dAnte Meridiem); and “ P.M.”” means ¢n
the afternoon (Post Meridiem).

Hour-aneLE.—The angle at the pole of the equinoctial
which a meridian passing through the centre of the sun
makes with the meridian of the place of observation is
called the sun’s zour-angle from apparent noon; this angle
converted into time at the rate of 15° to an hour gives the
apparent time at the place after noon, if the sun be west-
ward of the meridian, and before noon if it be eastward.
It is the time shown by a sundial. In observations for the
time at sea, it is the sun’s hour-angle that is usually the
object sought: so that the time deduced is apparent time,
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which is readily converted into mean time by help of the
table for the ‘Equation of Time,” given at p. 1 of the
Nautical Almanac, in which publication all the predicted
phenomena concerned in Nautical Astronomy are recorded,
like the common occurrences of life, in mean time.

The hour-angle for any other celestial objeet is, in like
manner, the angle at the pole between the two meridians,—
one through the zenith, and the other through the object;
which angle is evidently always the difference between the
right ascension of the meridian of the place, and that of
the object expressed in degrees.

On the Corrections 1o be applied to Observed Altitudes tv

obtain the True Altitudes.
on

Altitudes of celestial objeets are taken at sea by a quad-
rant or sextant, which measures the angular distance of the
object above the visibie horizon of the observer. This is the
albserved altitude: but it the eye, instead of being above,
were level with the surface of the sea, the angular elevation
of the object would be measured from the sensible horizon.
This is calied the apparent altitude, and is obviously less
than the observed altitude.  The higher the eye, the greater
of course is the excers of the observed over the apparent
altitude ; a correction is therefore nccessary to reduce the
former to the latter, and this corvection is always subtractive.

Corrrerroy ror Die.—Let I be the place of the ob-
server’s eye, and S the situation of the object whose altitudo
is to be found in angular measure, that is, the angle S E H,|
E M Dbeing the horizontal line Then, the observer’s
visible horizon being the tangent to the carth, from E,

* The scusible horizontal line is in strictuess drawn from A ; but the
nearest even of the heavenly bodics is so distant, that the length of A B
may be considered as nothing in comparison; that is, the angle at §,
subtended by A E, is immeasurably sall.
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the altitude given by the instrument will be the angle
g SEH'; the difference between

" these two, namely, the angle

H E IV is the Dip, or depres-

~ . . .. .

. sion of the visible horizon, and

* |<\ H i3 that which must be subtracted
- >{3\ from the observed in order to

( [/ >\ obtain the apparent altitude of
¢ "'

y Draw C B from the centre

S of the earth to the point of
contact B; then H E 1l', and the angle C, are each the
complement of C E B, and are therefore equal; that is, C
is equal to the angle of the dip.

Now (Eue. 36, II1.), if » be put for the radius of the
cirele, and  for the height A T of the eye, we have E B*=
224k h=2rh+7° DBut since A* is very insignificant in
comparison with 2 22, it may without appreciable crror be
rcjected, so that we shall have, E B= /2 rk. Now, from the
right-angled triangle EB C, we have EB=E Csin C =
(»+7%) sin dip; and, because the angle C is very small,
never exceeding a few minutes, the arc may be taken for
its sine; hence, equating the two expressions for E B, we
have

(redy dip= +/ 27k -, dip = "Ti’;"' or .“'.f_’i”' very nearly,
which is the length' of the arc, to radius 1, that measures
the angle of the dip due to the height % of the eye. This
are, for all values of % likely to occur in practice, is con-
verted into minutes, and the table of “ Corrections for Dip”
formed.

As the number of minutes in the arc which measures C
is the same, whatever be the radius of that are, it follows
that the number of minutes or nautical miles in the arc A B

is the number of minutes in the dip ; and since v erh is the
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length of the arc measuring C to radius 1, it follows that
+/ 27k is the length of the arc A B: this, therefore, being
calculated in nautical miles for successive values of %, the
table referred to may be constructed a little differently.

COBRECTION FOR SEMI-DIAMETER.— When the body
whose altitude is to be taken is either the sun or the moon,
the altitude furnished by the instrument is that” of either
the lowermost or uppermost point of the dise, called the
lower or upper Zimb of the body ; a correction, therefore, for
semi-diameter must be applied, after that for dip, in order
to get the apparent altitude of the centre. This correction
is the angle subtended at the eye by the semi-diameter of
the body observed ; it is given for every day in the Nautical
Almanac. The moon, however, being so much nearer to the
earth than the sun, her diminution of distance, in ascending
from the horizon towards the zenith, has a sensible effect
upon her apparent magnitude; her semi-diameter measures
more when she is in the zenith than when she is in the
horizon, for she is nearer, by a semidiameter of the earth
in the former case than in the latter, and there is a gradual
augmentation of her diameter as she gradually ascends.
The moon is only about sixty semi-diameters of the earth
off when in the horizon, so that her semi-diameter when in
the zenith, is about one-sixtieth part of the whole greater,
and the amount of augmentation for any altitu§ is found
by multiplying one-sixtieth of her horizontal serfii-diameter
by the sine of her altitude. In this way the table intitled,
‘ Augmentation of the Moon’s Semi-diameter,” is con-
structed. The number of seconds placed against the alti-
tude in this table must be added to the horizontal semi-
diameter, given in the Nautical Almanac, to obtain the
semi-diameter proper to that altitude.

‘With respect to the sun, his distance from the earth
is so great that the augmentation of his semi-diameter,
as he increases his altitude, is practically insensible.
Hence,
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For the apparent alt. of the Sun’s centre—To the observed
alt. apply the corrections for dip and semi-diameter.

For the apparent alt. of the Moon’s centre.—To the ob-
served alt. apply the corrections for dip, semi-diameter, and
augmentation.

CorrEgQrioN rokR RrrmacTiON.—As the lower parts of
the atmosphere surrounding the earth are compressed by
the weight of the upper, the density of the air diminishes
the higher we ascend. A ray of light, therefore, from any
celestial object, upon entering our atmosphere, meets with
an obstruction which becomes more and more sensible the
deeper into it the ray penetrates. The ray is thus bent
more and more out of its rectilinear course, and its path
through the atmosphere, instead of being a straight line,
is deflected into a curve concave to the earth. The direction
of the object from which the ray proceeds, being judged of
by the direction in which the ray arrives at the eye, is thus
erroneously inferred : we see the object raised above its real
place, and so, except when it is in the zenith, regard its
altitude as greater than it actually is. The ecorrection,
therefore, for this r¢fraction of the rays of light, is like that
for dip, always subtractive. The more obliquely the rays
enter the atmosphere, the greater is their refraction: when
they enter perpendicularly, they are not refracted at all:
hence whigp the object is in the horizon, the refraction is
greatest ; it diminishes as the object ascends, and becomes
nothing at the zenith. In different states of the atmosphere
the refraction for the same altitude, is of course different;
the table gives the value of the correction for the mean
state of the atmosphere, and to this is sometimes annexed
a second table modifying the corrections of the former
according to the actual condition of the atmosphere, as
shown by the thermometer and barometer at the time and
place of observation ; but this additional table is but seldom
made use of at sea. It is however given at p. 140, of the
mathematical tables accompanying this work.
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CorgeCTION FOR Pamavvax.—Before the altitude of any
celestial object can be employed for any practical purpose,
it must be reduced to what it would have been if taken not
from the surface, but from the centre of the earth, and
measured not from the sensible, but from the rational hori-
zon of the place of observation. In the case of a fixed star,
the distance is so immense, that the radius of the earth
dwindles in comparison to a point, and there is no measur-
able difference between an altitude taken from the centre
and an altitude taken, at the same time, from a point
directly above the centre, on the surtace. But as respects
the sun and moon, especially the latter, the angle at the
body subtended by the radius of the earth, and which is
called the Parallax in ultitude, is of appreciable magnitude.

Let 8 be the object observed, A the placo of observation,
A H the sensible, and C D the rational

Z~
—T—

horizon: the observed altitude when ! //V‘\
corrected for dip, semi-diameter, and B\
refraction, will be measured by the T\

angle 8 A H, which is the true altitude
of the centre above the sensible hori-
zon, and SCD will be the true altitude
of the centre above the rational horizon.

The difference between these two angles, since S LD =
S3BH,is :

S B H—S A H=A 8 C, the parallax in altitude.

And the true altitude S C D, of the centre above the
rational horizon C D, iy

SCD=SBH=SA H+AS U, the true altitude.

Hence while the correction for refraction is subtractive,
the correction for parallax is additive. The horizontal
parallax is the angle A Il C: this is given for every day
in the year in the Nautical Almanac; that for the sun
naver varies much from 9" hut that far tha mann shanaas
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considerably ; it is given both for noon and midnight,
Greenwich time.

From the horizontal parallax, the parallax in altitude is
easily computed ; for referring to the triangle S A C, we
have the proportion

SC: AC::sinSAC:smASC.
AC

or HC: AC::sinSAZ:sinASC= HCcosSAH.
AC
Butm = sin A H C, the hor. parallax, and cos S A H = cos alt.

Aud since the parallax in altitude A S C is always a very
small angle, we may substitute the secouds in the measur-
ing arc for the time : we thus have,

u Par. in alt. in seconds = Hor. Par. in seconds x cos alt.

And it is from this expression that the table for parallax
in altitude is constructed. In the table headed “ Correc-
tion of the Moon’s Altitude,’”” the joint correction for both
refraction and parallax is given; it exhibits the value of
parallax minus refraction.

The two corrections just explained (Refraction and Paral-
lax) applied to the apparent altitude of any point in the
heavens, reduces the apparent to the Zrue altitude of that
point, as if the observer’'s eye were at the centre of the
earth, and the angular clevation taken from the ratiomal
horizon. Hence,

For the true altitude of the cenire of Sun or 3oon.—~To the
apparent altitude apply the corrections for refraction and
parallax. As already observed the séars have no parallas.

In taking from the Nautical Alwmanac the measures
there given for semi-diameter and horizontal parallax, it
must not be forgotten that these measurcs are what they
would be if observed from the centre of the earth a¢ the
Greenwicl time recorded in the almanac. Now for the
moon, they vary slightly but perceptibly from hour to hour,
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so that for any intermediate time at Greenwich the corre-
sponding values must be found by proportion. The time at
Greenwich, and the instant of any observation or event
elsewhere, is the GrEENWICH DATE of that observation or
event; it is found by converting the longitude of the place
of observation into time at the rate of 15° to an hour, as
already noticed at page 94.

Having now explained all the corrections necessary to be
applied to an altitude observed at sea, in order to deduce
the true altitude, we shall proceed to a few examples: we
must first remark, however, that even the observed altitude
itself is affected with error; it is mot that which an instru.
ment entirely free from all imperfection would give. Such
an instrument was never coustructed by human hands. It
is scarcely too much tb say, that no chronometer, for in~
stance, whatever the care and skill bestowed upon it, ever
showed exact time; nor did any quadrant or sextant ever
accurately measure an altitude. But this imperfection is
of far less consequence than might at first be supposed :
it is of but little moment whether a time-keeper lose or
gain, provided only it lose or gain wnifvimly, because, from
knowing its error at any onc instant, we can easily, fram
the uniform increase of that error, compute its error at any
other instant, and thence obtain the correct time. So with
respect to the sextant or quadrant, the ¢ndex error, as it is
called, being kuown, and there are several ways of deter-
mining it as will be hereafter noticed, the proper allowance
for it can always be made, and the correct observed alti-
tude obtained, as in the examples following:

Examples of Correcting Altitudes taken at sea.

A Star.—1. If the observed altitude of a star be 42° 3¢,
and the height of the eye 18 feet, what will its true alti-
tude be, supposing the index error of the instrument to be
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Obeerved Alt, . . . . 42°36 0

. Index cor. . — 318" - oal
Dip . . . 411" } -0 T
Apparent alt. . . . .. 42° 28 31"
Refraction . . . . . —1 4"
True altitude . . .o.o42027 27"

2. The altitude of a star is 43° 12, the height of the eye
18 feet, and the index error +2' 24": required the true
altitude ? Aus. troe alt. 43° 9" 11".

3. The altitude of a star is 16° 83’, the height of the eye
17 feet, and the index error +8: required the true altitude?

Ang. true alt. 16° 28’ 42".

Tae Sux.—4. On a certain day the observed altitude of
the sun’s lower limb was 28° 16/, the height of the eye was
20 fect, the index error was —2’ 38", and the semi-diameter
of the sun, as given for that day in the Nautical Almanac,
was 16’ 4" : required the true altitude of the centre ?

Nore.—The sun’s horizontal parallax may always be
taken at 9". '

Observed alt. sun’s L. L. . . 928° 167 0"

Index cor. . . —2' 38"

Dip . . . — 47 24" } +9’ 2"

Semi-diam, . . +167 4" N

App. alt. centre . . . . 28°25 2"

Refrac. and par. . . N — 1/ 39"
True alt. centre . . . 28° 23 23"

5. The observed altitude of the sun’s lower limb on a
certain day was 16° 83/, the height of the eye was 17 feet,
the index error was 4 8’, and the semi-diameter of the sun,
as given in the Nautical Almanac for the day, was 16° 17"
required the true altitude of the centre? -

Ans, true alt. 16° 45’ 1",

6. The altitude of the sun’s upper limb was 47° 26/, the
height of the eye 20 feet, the index error —1’ 47", and the
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sun’s semi-diameter 15’ 49": required the true altitude of
the centre ? Ans. 47° 3’ 12",

Tae Moo~N.—7. The observed altitude of the moon’s
upper limb was 41° 28/, the index error was +2’, the height
of the eye 15 feet, the horizontal semi-diameter at the time
15’ 10", and the horizontal parallax 55 40": required the
true altitude of the moon’s centre ?

Observed alt. moon’s U. L. . . 41°92% 0"
Index cor. . . .+ 20"
Dip . . B L - LA S T 7 ¥
Semi-diameter
. —15'20"

+10"forAug.} rrans
App. alt. centre . . .. 41° 551
Refraction and par., or correction} + 407 50"

of moon’s apparent altitude o

True alt. moon’s centre . 41° 467 41 .*

8. The observed altitude of the moon’s upper limb was
46° 18’ 49", the index error — 6", the height of the eye 20
feet, the moon’s horizontal semi-diameter at the time 16’ 6,
and the horizontal parallax 59’ 7": required the true alfi-
tude of the moon’s centre ?

Ans. true alt. 46° 38’ 11",

9. The observed altitude of the moon’s lower limb was
36° 39’ 46", the index correction +2’' 17", the height of the
eye 22 feet, the moon’s horizontal semi-diameter at the
time 15’ 10", and the horizontal parallax 55’ 33": required
the true altitude of the moon’s centre ?

Ans. true alt. 37° 85’ 52",

Nore.—In the preceding examples the horizontal semi-
diameter and the horizontal paraliax of the moon, have
been considered as those due to the body at the instant of
observation. In the Nautical Almanac these quantities are
given only for every noon and midnight at Greenwich, and
they vary sufficiently, at least the latter, in the interval, to
render it necessary, if strict accuracy be required, to make
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allowance for that variation whenever the Greenwich time
at the instant of observation is intermediate between Green-
wich noon and midnight. But in finding the latitude at
sea, the omission of a single correction amounting only to
a few seconds is not of much practical consequence, so that
the allowance alluded to is usually disregarded. If the
latitude can be determined to the nearest minute, it is as
much as can be expected considering the difficulty of taking
an altitude at sea with precision; and indeed it is as much
as the safety of navigation requires. Still when the time
of an observation of the moon is some hours distant from
Greenwich noon or midnight, as we can easily allow for
those hours, by a simple inspection of the noon and mid-
night horizontal parallax in the almanac, we may as well
do so. When we come to treat of the problem of the
longitude, we shall take more exact account of the small
corrections of the moon’s altitude.

CHAPTER II.

ON TINDING THE LATITUDE AT SEA TROM A MERIDIAN
ALTITUDE.

TwE best method of determining the latitude of a ship
at sea, is that which is deduced from an observed altitude
of a celestial object when on the meridian of the place. It
is to be preferred on two accounts: first, because the obser-
vation can in general be made with greater aceuracy ; and
secondly, because the neccssary caleulations are easier and
fewer in number. The most desirable object to observe is
the sun, which is on the meridian at the ship’s apparent
noon, and accordingly the opportunity of taking, his sltitude
at that time should never be disregarded at sea. A star of
known declination is also a very suitable object; but when
the stars begin to appear the horizon generally becomes too
obscure to be gufficiently well defined, a hindrance, howerver,
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which may be sometimes removed by employing an Artificial
Horizon to be hereafter noticed. The moon is not so well
calculated to give the latitude with accuracy as the sun or a
star, because the moon’s declination changes considerably
even in an hour, and as the declination of the body observed,
as well as its meridian altitude, must be known, if there be
much error in the ship’s longitude by account, and conse-
quemtly in the Greenwich date of the observation, there will
be a proportionate error in the declination, and hence in
the latitude inferred. The declination of a star may be
regarded as constant, so that there will in this case be no
occasion for finding the Greenwich date of the observation,
and the declination of the sun varies so slowly, that even
a considerable error in the ship’s longitude, and therefore
in the Greenwich date of the observation, will occasion ng
error of consequence in the declination at the time of that
observation. The way in which the latitude of the place of
observation is deduced from the meridian altitude and decli-
nation of a celestial object is easily explained as follows:—
Let the circle in the annexed diagram represent the meri-

dian of the observer at Z his zenith, Se % __S»

and H H his rational horizon. Let I \r\{,
also EQ be the equinoctial, and N / \Q
the pole which is elevated above the g "
horizon. Then in reference to an A

object S, on the meridian, S Z will

"always be the co-altitude, S Qor SE |l ¢

the declination, and EZ or HN the latitude. Now with
respect to the elevated pole N, and the zenith Z, the object
must be situated in ome or other of the four positions
marked 8,, 8,,S;, S,; and taking these in order we have for
the latitude E Z,

EZ=ES, +8, Z, that is Iat. = dec. + zenith distance.
BEZ=EB8,—8,%Z, ,, lat. = dec. — zenith distance.
EZ=8,2—ES8, ,, Ilat. = zenith dist. — declination.
HN=HS, +8N, ,, Ilat = altitude + oo-d%clinaﬁon.
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In this last position, where the elevated pole is between
the object and the zenith, the object is said to be below the
pole: in the other positions it is situated above the pole.
‘When the zenith is north of the object, the zenith distance
of it is said to be north; and when the zenith is south of it,
the zenith distance is said to be south: hence, we have the
following rule for finding the latitude from the true altitude
when the object is above the pole. L

When the object is above the pole.—If the zenith distance
and the declination have the same name, that is, if dotk be
north or both south, their sum will be the latitude.

If the zenith distance and the declination have different
names, that is, if one be north and the other south, their
difference will be the latitude, of the same name as the
greater.

When the object is below the pole, the latitude is equal to
the sum of the true altitude and the co-declination, of the
same name as the declination.

As it is necessary to know the declination of the object
observed at the time of observation, or at the Greenwich
date of it, we must know how to convert degrees, minutes,
&ec., of longitude into time, from the relations 15° = 1h,
15'=1m,15" = 1% These relations suggest the following
rule :

Conversion of Longitude into Time.—Rule. Multiply the
degrees, minutes, and seconds, each by 2. Divide each
result by 30: the quotient, from the degrees, will be hours,
and twice the remainder will be the minutes: we shall thus
have the hours and minutes in the degrees. The quotient
from the minutes will be minutes of time, and fwice the
remainder will be the seconds: we shall thus have the
time 1n the minutes of longitude. And lastly, the quotient
from the seconds will be seconds of time.

Ezample 1. Convert 84° 44’ 34" into time.

The double of this is 68° 88’ 68", and dividing each deno-
mination separately by 8, cutting off the unit figure for
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the O suppressed in the divisor 80, and remembering to
double each remainder, the operation will stand thus

2)68° 8.8’ 68"
2 16
2 56
2 27

2h 18w  5Rs-27

The division of the seconds is carried on to decimals,
these being always used instead of thirds.
2, Convert 108° 24/ 22" into time.

3)21,6° 48’ 44"

712
1 36
1 47 s

™ 13m 37047

8. 84° 42’ 80" in time is 5t 38m 508,
4. 93° 87 41" 6 14m 30072,
5. 280° 32’ 10" " 150 29m s,

The preceding method of converting degrees, &e. ifto
time, will be found much more convenient than that in
common use.

In order to convert time into angular measure, multiply
the number of hours by 15', the product is so many degrees.
Divide the minutes and seconds by 4, and reckon every
unit of remainder as 15’, if minutes be the dividend, and as
15" if seconds be the dividend.

For example: let it be required to convert 3h 14m 23s
into angular measure, as also 5" 19™ 37°.

3 = 45° ; bb = 75°
14» = 3° 30’ ' 190 = 4° 45
23 = b 45" 37 = 9’ 15"

48° 857 45" i 79 54/ 16"
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Latitude from Meridian Altitude of the Sun above the Pole.

Rure 1.—From the longitude by account, find the appa-
rent time at Greenwich; that is, the Greenwich date of the
observation in apparent time.

2. From p. I of the month in the Nautical Almanac,
get the sun’s declination at apparent noon at Greenwich,
and from the hourly variation of the declination there given,
and the Greenwich date, find the proper correction for that
date : the declination at the time of observation will thus be
obtained.

3. To the observed altitude apply the proper corrections
for reducing it to the true altitude, which subtracted frome
90%will give the zenith distance.

4. Mark the zenith distance N. or 8. according as the
zenith is north or south of the sun; then if the declina-
tion and zenith distance have the same marks, their sum
will be the latitude: if they have different marks, their
difference will be the latitude, of the same name as that of
the, greater of the two quantities.

Note.—After the preliminary reduction of the declina-
tion to the time of observation, the first step in the work,
for obtaining the apparent altitude of the centre of the sun
or moon from the observed altitude, comprehends the unit-
ing of the three corrections for index error, dip, and semi-
diameter, into one: when the signs of these three items
are not all alike, the finding of the balance of them is a
little inconvenient. But both the index error and the dip
being always known before the observation, their combined
effect is also known, and may therefore be written down as
one correction.
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Examples. The Latitude from Meridian Altitude of the

Sun above the Pole. .

1. March 4, 1858, in longitude 86" 34/ W, the observed

meridian altitude of the sun’s lower limb was 46° 18’ 30"

(zenith N.), the correction for index and dip was —4' 6":
required the latitude ? :

1. For the app. time at Greenwich,
Longitude by account . . . 86° 3¢ W.

P

30)17.2° 6,8’
5 44

o

(Rreenwich date (app. time) . .. oh4em

The variation for this time must be subtracted, as the declination is
decreasing (See Nautical Almanac).

2, For the decl., Greenwich date.
Dec. app. noon, Nautical Almn,

6° 25" 46" 8. Diff. for 10 . |, —57"81
— 5 83" 5
Dec. . 6° 20" 13" 8. ind" . . 289"-05

in 30m, | 28"+91
in 14m 14"+45
inlv , | 98

Variation in 54 46w . . . 5 33" = — 333"-a;

3. For the Latitude.
Observed alt. sun'’s L. L. . . . 40° 48’ 30"
Index and dip. . . . —4 6"

’ "
Semi-diam. . . . +16" ¢" }_+ 12 . 3
App. alt. of centre . . . . 487 (33
Refraction — parallax . .o — 50"
True alt. of centre . . . . 45° 597 43"

20°

True zenith distance . . N 44" 0_’—1}7' N.
Declination (. Date . . . . 6°2013" 8.

Lamirene . . .. %4 ~4~" N.
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Norr.—There is no absolute necessity to find the Green-
wich date of the observation, in order to get the declination
at that date. Tf we double the hourly variation, divide by
30, and then multiply by the number of degrees and frac-
tion of a degree in the longitude, the proper correction of
the declination will be obtained : thus,

Hourly variation . . . . . 57"-81
2

3,0)11,5°62

3854
86 reversed . . . . P 68}

30832
2312
103

€ Cor. of declin. . . . . . 838" '57

The principle of this second method of correcting the
declination for longitude is easily explained. The hourly
variation is that due to 15° of longitude; hence, the double
of it divided by 30 is the difference of declination due to 1°
of longitude; and this difference multiplied by the degrees
of longitude of the ship, must give the proper correction
of declination. Any odd minutes in the longitude amount-
ing to less than a quarter of a degree, may be disregarded,
as they will not make 1" difference in the result.

2. May 29, 1858, in longitude 81° 17 W, the observed
meridian altitude of the sun’s lower limb was 65° 42’ 30"
(zenith N.), the index error was —1’9", and the height of
the eye 13 féet : required the latitude ?

1. For the app. time at Greenwich.

Longitude by account . . . 81° 17 W.
0

3,0[62° 84
2 4
1

Greenwich date . . .. 2 gm




CORRECTION OF DECLINATION. 111

2, For the declin., Greenwich date.

Noon Declin. . . 21°37' 24" N. Hourly diff. . +22":83
(‘or, for long. - +48" 2
‘Drouxamios . 21° 3% 12" N. o . . 4546

- in5m . . 1-90

Increase of declination in 2b 5» | 4 47":56

: 8. For the Latitude. .
Observed alt. sun's L. L. . . . 65° 42’ 30"

Index and dip . . . — 4’ 42" ' wn
Semi-diam. . . . . +1549" } +17 7
App. alt. of centre . . . .. 63°58% 37
Refraction — par. . . . . . — 23"
True alt. of centre . . . .. 65°58 15"
90°

True genith dist. . . . . . 24° @45"N.>*
Declin. Greenwich date . . .. 21°88"12"N.

LATITUDE . . . 45° 44’ 57" N,

The declination at the time of observation.is found by the
method in the Notke as follows :—

Noon declination . 21° 37’ 24" Diff, for 1b +22"°83
Cor, for longitude . — 48" 2
DeoruivaTioNn . 21° 38/ 12" 3,0)4,5:66
T 1522
81 reversed . 13}

4566

. 152 .
38

Cor. of declin, +47"*56
3. September 23, 1858, in longitude 94° E., the meridian
altitude of the sun’s upper limb was 76° 20’ (zenith 8.), and
the correction for index and dip was —4' 42" : required the

latitude ?
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1. For the app. time at Greenwich.

Longitude by account , . . 94° R
2

3.0)18.8
Greenwich date, before noon . . 6" 16m

2. For the declin., Greewvich date.

Noon declin. .o 0°3 24" 8, Diff, in 1%+ 58":47
Cor. for E. longitude . —6' 6" 6
DrorivaTION . 0°2' 42" N, in 6  350"-82
: in 15m  14"-62
w1
Cor. of declination . . 866" —6 6"
3. For the Latitude.
, Obsalt. U.L . . . . 75°20 0"
Ind. and dip . . — 47 42" L ayn
Semi-diam. . . L --15 59"} w4 )
App. alt. centre . . .. 74° 59 19"
Ref, — par. . . . . . — 14"
True alt. centre . . .. T4 59 5"
90°
Troe semith dist. . . . . 15° 0/55" 8,
Declination . . . .. 0° 242" N,
Latitone . . . 14° 68 13° 8.

In this example the Greenwich time of the observation
was 6 16™ before the noon of the 23rd. The hourly differ-
ence is subtractive, becausc the soutk declination, in pro-
ceeding from the noon of the 23rd towards the noon of
the 22nd, decreases. As the decreasc of S. declination
exceeds the S. declination at noon, the declination must
have changed from N. to S. in the interval.

In finding the correction of declination for lengitude,
the learner will in general find the second method to be a
ittle more easy and convenient than the first, and the
sork will be facilitated if he always prepare a blank form'
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of the operation previously to commencing it. Nor should
he neglect, when once the Nautical Almanac, or the book
of Tables is in hand, to make all the use of it he can in
anticipation of what he may want to extract: thus, at the
time of taking out the declination, he should also take out
the semi-diameter, putting it in its proper place in the
blank form. The following is a specimen of such a form,
when the second method of finding the declination at the
Greenwich date of the observation is used.

Blank form for the Sun.

0 ’ " n
Noon Declin. e e Diff, in 1t .
Cor. for long. e x2
DrorLIvATION N BXU) e
T S
Long. X

Cor. of decl, for long. ....

*.* The longitude is to be taken only to the nearest Zalf degree, or at
most to the nearest quarter,

Observed altitude (L. L. or U, L.)
Index and dip o }
Semi-diam,

App. alt. centre ..
Ref, — par. —.

True alt. centre

True zenith dist. e e e
Declination ve ee e

LATITUDPE

The same form will serve equally for a planet, as in the
following example :—
4. Jan. 29, 1858, in longitude 58° 87 K, the observed
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meridian altitude of Jupiter’s lower limb was 49° 18’ 85",
(zenith N.), the index error was + 4’ 10", and the height
of the eye 22 feet : required the latitude ?

Declin. on Merid. of G. . . 13°2'27" N. Diff, in 1%, +5"3
Correction for long. . . . —-21" 2

DrcLimarroxn . . 13°2' 6" N. 3,0)1,0°6

Long. reversed ., . 85}

28

Cor. for long, . . 20"°7

The correction of the declination is subtractive because the longitude
iF

Obs. alt. L. L. . . . . 49°18 35"
Tnd.and dip. . . . -—27"} g
Semi-digm. . . +19"f  7°
App. alt. centre . . . . 49° 187 27"
Ref. —par. . . . P — 49"
True alt. centre . . . . 49° 17 38"
90°
True zemith dist. . . . . 40°42'22"N.
Declination . . . . 13° 2 6"N.
Lamirupe . . . . 5% 44 928" N.

Latitude from Meridian Altitude of a fixed Star above
the Pole,

As already remarked, a star changes its declination so
slowly, that any correction for longitude is insensible. And
as moreover & fixed star has no parallax in altitude, nor
any diameter, the only corrections of the observed altitude
will be those for index error, dip, and refraction ; the rule,
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therefore, for deducing the latitude from a star is as
follows : —

Ruie 1. Correct the observed altitude for index, dip,
and refraction ; the result will be the true altitude, which
subtracted from 90° will give the zenith distance.

2. Mark the zenith distance N. or S. according as the
zenith is N. or 8. of the star; then, if the declination, taken
from the Nautical Almanac, and the zenith distance have
the same marks, their sum will be the latitude ; if they have
different marks, theiy difference will be the latitude.

Ezamples. Meridian Altitude of a Star above the Pole,

1. April 11, 1858, the weridian
altitude of Arcturus was observed
to be 46° 15’ (zenith N.), the index
correction was + 2' 10", and the
height of the eye 20 feet : required

2, May 1, 1858, the observed
meridian altitude of Spica was
28° 45’ (zenith N.), theindex grror
was — 2 20", and the height of the
eye 18 feet ; required the latitude ?

Observed altitude , 28° 45’ 0"
Index . — 2' 20"

the latitude ? i
Observed altitude . 46° 15’ 0"

—6'31"
Index . +2' 10" sy an Dip .—4'11"

' , } —or4 -
Dip . —#24") "7 Apparent altitude . 28° 38 29"
Apparent altitude . 46° 12’ 46" Refraction . —1' 46"
Befraction =5 | Trucaltitude . . 26° 36’ 43"
True altitude . 46° 11’ 50" 90°

%0° Zenith distance. . 61° 23’ 17" N.
Zenith dist. . 43°48' 10" N. | Star'sdeclin., May1 10° 25’ 26" 8,

Star’sdeclin. Ap. 11 19° 55" 5" N.

. 50° 57 51" N.
Lamrupe . . 68° 43’ 15" N.

LATITUDE .

Nore.—The time at Greenwich when & star or planet
passes the meridian of that place is very nearly the same as
the time at the ship when it passes the ship’s meridian; so
that, having the approximate time at the ship, we can ascer-
tain by a reference to the Nautical Almanac, what stars or
planets will be on the meridian of the ship about that time.
The time of the meridian transit of each of the planets is
actually given for every day of the year, and the time of a
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star’s transit is found by subtracting.the R. A. (right ascen-
sion) of the sun from the R. A. of the star, both of which
are given in time in the Nautical Almanac: should the
R. A. of the sun exceed that of the star, 24" must be added to
the latter. But several stars may be near the meridian of
the ship at the same time: to prevent mistake as to the
star actually selected from the almanac for observation,
we may previously find, approximately, what altitude the
star thus selected ought to have: in order to this, add the
star’s declination to the latitude by account if they are
of different names, and subtract if they are of the same
name : the result is the zenith distance or co-altitude of
the star. By these aids—the time and the altitude—the
star may be discovered some minutes before the time of
transit, its altitude taken, and the index gradually moved
as the star ascends, till it appears stationary, and is about
to descend, at which instant it is on the meridian.

Referring to the first of the preceding examples for an
illustration, we find from the Nautical Almanac, that on
April 11, the R. A. of Arcturus was 14% 9™ 145, and that of
the sun, 12 18m 428, The difference of these is 128 50™ 325
which is the time of meridian transit of the star. It may
’e looked for by aid of the approximate altitude, at about
L8 or 20 minutes to 1 o’clock in the morning, making ample
Mlowance for error in the ship’s time, and kept in contact
rvith the horizon till it ceases to rise. In the second ex-
mple it will be found that the observation was made at
1Oh 43m 198,

But in the case of'a star (not a planet), instead of making
. particular selection from the stars in the Nautical Alma-
mc and then finding its time of transit, it is better to fix
ipon the time, or rather upon the most convenient interval,
nd then seek in the almanac for the stars which pass the
aeridian in that interval, making our selection from among
hem. Thus, suppose it were required to find what stars
rill pass the meridian of the ship on Awvril 11.
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and 10 o'clock in the evening. Adding 8" to the R. A.
of the sun, we get the R. A. of the ship’s meridian at 8h
P.M., and adding 2% more, we get the R. A. of the meri-
dian at 10® .M. The stars whose R. A. lie between these
limits are those required. If the sum exceed 24h, the
excess is the R. A. of the meridian. On the day pro-
posed, the sun’s R. A. is 1t 18 42¢: hence, the R. A. of
each of the required stars lies between Ob 18™ 42°, and
11t 18m 42, Within these limits the Nautical Almanac
gives a Hydr®, 6 Ursee Majoris, e Leonis, = Leonis, Regu-
lus, &e.

The learner need scarcely be reminded that the sun’s
R. A. at Greenwich noon is not precisely the same as his
R. A. at any other Greenwich date ; but as the sun’s mean
motion in B. A. is only about 4™ a day, it would be negd-
less to allow for change of R. A. in the present inquiry.

‘When the horizon is too obscure for the observation of an
altitude, an artificial horizon is sometimes employed. This
consists of a shallow trough of quicksilver, protected from
wind and weather by a glass covering or roof. The observer
placing himself at a convenient distance from this, so that
the object and the reflected image of it may both be dis-
tinctly seen, the angular distance between the two is taken;
and since the angular distance of the image below the hori-
zontal plane is the same as that of the object itself above that
plane, the instrument, corrected for index error, will give
double the altitude, and there will be no correction for dip:
hence, dividing by 2, the apparent altitude of the object
will be obtained.

‘We shall now give a few examples for exercise in finding
the latitude from a meridian altitude of the sun or a star.

Examples for Ezercise.

1, April 27, 1858, in north latitude, and in longltude
87° 42 W., the observed meridian altitude of the sun's
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lower limb was 48° 42’ 30" (zenith N.), the index error was
+1’ 42", and the height of the eye 18 feet: required the
latitude P : Ans. latitude, 55° 86" 56" N.

2. August 14, 1858, in north latitude, and in longitude
51° W, the observed meridian altitule of the sun’s upper
limb was 47° 26’ (zenith N.), the index correction was
—1’ 47", and the height of the eye 20 feet: required the
latitude ? Ans. latitude, 57° 15’ 59" N.

3. Nov. 8, 1858, in south latitude, and in longitude
62° E., the meridian altitude of the sun’s lower limb was
57° 12’ 80" (zenith 8.), the index correction was + 1’ 36",
and the height of the eye 30 feet : required the latitude ?

Ans. latitude, 49° 7 56" 8.

4. Nov. 21, 1858, in north latitude, and in longitude
165° E., the meridian altitude of the sun’s lower limb was
observed to be 47° 88’ (zenith N.), the index error was
—1’ 15", and the height of the eye 17 feet: required the
latitude ? Ans. latitude, 22° 21’ 43" N.

5. March 2, 1858, the meridian altitude of Arcturus was
observed to be 47° 24’ 80" (zenith N.), the index error was
— 2’ 10", and the height of the eye 17 feet: required the
latitude ? Ans. latitude, 62° 87’ 41" N.

6. March 12, 1858, the meridian altitude of a Hydrwm
was observed to be 89° 24/ 30" (zenith N.), the index error
was — 2’ 10", and the height of the eye 17 feet: required
the latitude ? - Ans. latitude, 42° 40’ 4" N.

7. July 10, 1858, the meridian saltitude of Fomalhaut
was observed to be 63° 88’ 830" (zenith N.), the index cor-
rection was —2’ 30", and the height of the eye 24 feet:
required the latitude P Ans. latitude, 8° 562’ 47" S.

8. April 17, 1858, in longitude 15° W., the observed
meridian altitude of the lower limb of the planet Mars was
57° 40" 30" (zenith N.), the index correction was + 2, and
the height of the eye 17 feet: required the latitude ?

Ans,. latitude, 12° 24/ 57" N.

9. June 13, 1858, in longitude 72° 30’ E., the observed
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meridian altitude of the lower limb of Venus was 30° 40’ 10".
(zenith 8.), the index correction was -+ 4’ 20", and the
height of the eye 24 feet : required the latitude ?

Ans. latitude, 35°38'0" 8.

Latitude from Meridian Altigude of the Moon above the
) Pole.

As the declination of the moon varies much more rapidly
than that of any other heavenly body, it is given in the
Nautical Almanac for every hour in the day, together with
the average amount by which it varies in 10 of the suc- .
ceeding hour, that is, one sixth of the whole variation during
that hour.

"o find what the moon’s declination is, when her altitude
is taken, we must first determine the Greenwich date,4n®
mean time, of the observation: if the mean time at the ship,
as well as the longitude, be known, this of course is easily
done ; but if the ship’s mean time cannot be depended upon,
we must then refer to the Nautical Almanac for the Green-
wich time of the moon’s transit over the Greenwich meridian,
and thence by means of the daily variation in the time of
transit, and the longitude, find the ship’s time of her transit
over the ship’s meridian; we shall thus get the time at the
ship when the observation was made, and thence, by means
of the longitude, the Greenwich date of that observation.*

The Greenwich date in hours and minutes being thus

* It may be as well to remark here that the Greenwich date of any
observation at sea is at once shown by the chrunometer, provided con-
fidence can be placed in its regularity. Such is the perfoction to which
chronameters are now brought, that they may in general be depended upon
for the determination of the imean time at Greenwich throughout a long
interval. But an instrument of such delicate construetion is very easily
injured, and even variations of temperature will disturb in some degree its
uniformity of action. It is therefore considered as necessary to the safety
of navigation to be provided with methods of finding a ship’s position on the
ocean, independently of the chronometer.
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found, we refer to- the Nautical Almanac for the moon’s
declination at the Zowur, and correct it for the odd minutes
by means of the “ Diff. of Declin. for 10m* before alluded
to: the declination corresponding to the altilude will thus
be obtained.

‘We shall evidently get the ship’s time of transit over the
ship’s meridian by applying to the Greenwich time of transit
over the Greenwich meridian the correction furnished by
multiplying the daily difference of time in the Greenwich
transit by the longitude, and dividing the product by 860:
the following 'able, however, enables us to dispense with
this operation.

T'uble for finding the mean time of the Moow's transit vver a given

meridian from the time of the transit at Greenwich, and the
datly variation.

DarLy Varrarioy or THE Timk ov GREENWICH TRANSUT.

R i
l gc 40m 42m |4410{46m | 48m |50m [52m|54n |56 {681 60m | 62m | 64m |66m
s
Tol 1] 1) a1 v 1) 1] 1| 1] 2] 2] 2| 2l
20| 2] 2] 2} 2| 3] 3| 8, 8| 8| 3| 3| 8| 3] 4|
30| 3| 3| 4| 4| 4| 4| 4| 4| 4| 5| 5| 5| 5| 5
40| 4| 4' 5 5| 5| 5| 6| 6| 6| 6] 6| 7| 7 %
50 6 6] 61 6] 6] TL 71 i 71 S| 8] 81 9] 0
60| 6 7] 71 7] 8| 8| 8| 9 9| 9fr0(10]10{11
700 71 S| 8| 9| 9| 910|106 (20|21 |11 ]12]12]12
8ol 9| 9| 9l10f10(11{11{12]12]12[18(13|14{14
goj10f{10{11 |11 |12{12|138|13 |18 {14|14|15]|15{ 18
1001111 |12)12 (13|13 14|14 |15 |15 )6 |17 |17 )18
110(12]12(13 |14 |14 |16 |15]| 16|16 171818 |19 |19
1120181414 |15 |15)16|17({17{18 19|19 |20 20|21
130|1415[35]16|17/17 (18|19 [{19|20] 2121|2223
140115161717 |18[19 20| 20|21 |22 22|23 |24 25
150 |16 (171819 [19|20, 21| 2222|2324 |25 26]|26
160117118191 2021 |21 (22|25 |24(25|26{26 {2728
17011819 (20|21 |22|23|24|25(25|26]27]28|29]30
180 1920|2122 | 23|24 | 25| 26|27 | 28] 20|30 3132

Although the above Table may be regarded as sufficiently
accurate for the purpose intended, yvet the learner is not to
expect that the correction for longitude, which it gives by



LATITUDE FROM MOON’S ALT. ABOVE THE POLE. 121

inspection, has the same precision as if it were deduced from
direct computation; that is, by multiplying the daily varia-
tion by the longitude, and dividing by 860. Certain tables
are absolutely indispensable in Nautical Astronomy, but we
think it may be reasonably questioned whether the mariner
is not sometimes encumbered with a greater abundance
of this kind of aid than he really requires. As tables give,
in general, only approximations to the truth, the more
sparingly they are used, the greater will usually be the
accuracy of the work. The computation adverted to above,
is too trifling and easy to render a table to supply its place
of much value; and we insert it, as it occupies but little
room, more in compliance with custom than from necessity.
From the foregoing remarks, the learner will be prepared
for the following rule for finding the latitude of the ship
from a meridian altitude of the moon when above the pofe. *

Ruie 1. From the Nautical Almanac, take out the
time of the moon’s “ Meridian Passage” at Greenwich on
the given day, as also the daily variation.

2. From the longitude by account, and the foregoing
table, or by independent calculation, reduce the time of the
meridian passage at Greenwich to the time af the ship when
the altitude was taken.

3. From the time thus deduced, and the longitude, find
the time at Greenwick when the altitude was taken.

[Nore.—These three precepts may be disregarded if the
chronometer at the instant of observation be consulted.]

4. The time at Greenwich being ascertained, take the
moon’s declination for the Zour from the Nautical Almanac,
computing the correction for the odd minutes by aid of the
difference in declination for 10™.

5. From page 111 of the month take out the moon’s semi-
diameter, increasing it by the “ Augmentation” given in the
tables. The correction for index-error, dip, and semi-dia-
meter will reduce the observed altitude of the limb to the
apparent altitude of the moon’s centre.
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6. To the apparent altitude of the centre, add the correc-
tion, parallax in alt. minus refraction (See Table XVIL.),
and the true altitude of the centre will be obtained. This
subtracted from 90° will give the zenith distance, which is
to be marked N. or 8. according as the zenith is N. or 8.
of the moon. Then as in the case of the sun, take the sum
or the difference of the zenith distance and the declination
according as they have the same or different marks, and the
result will be the latitude.

Nore.—The moon’s semi-diameter and horizontal paral-
lax are given in the Nautical Almanac for every noon and
midnight : the corrections for any intermediate Greenwich
date may be easily estimated by taking the differences, and
then the proportional part of each difference for the number
of hours after noon or midnight.

Vo

Examples : Meridian Altitude of the Moon above the Pole.

1. May 17, 1858, in longitude 49° W., the meridian alti-
tude of the moon’s lower limb was observed to be 47°18’
30" (zenith 8.), the index correction was + 1’ 40", and the
height of the eye 20 feet: required the latitude.

1. For the mean time at Greenwich when the altitude was takei.

Moon’s transit at G., May 17 . 4" 20™5 Daily diff. . . 56m°4
Cor. for long. 49°W. . . . +7°7 Long (reversed) 94
Timeat ship when alt. was taken 4h 28m 2256
Long. 49° W. in time . . +38 16 508
Greeriwich date of observation . 7h 44™ 36,0)276,4(7™ Tcor.
‘ ) 252

244

9. For the Moow's Declination at T* 44™ at Greenwich.
Declination May17,at 70 23° 56 40"-7 N, Diff,in10™,—97":33

Decrease in 7h 44 . -7’ 8"'25 44
DrcLivaTIoN at 70 44", 23° 49 32" N. 38932
' e 3893

428"'25 = 7 8135
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8. For the Moow's Hor. Semi-diameter and Hor. Perallax at 70 44™.

Scmi-dia. at noon. 16 197 Diff. in12“-6“2 Hor. par. . . 54747 Dift. -2275
_t iner 31 il 1125
SEMI-DIA. at 7t 4im 16’ 16” in 1}* '8 Hor.P. at Th4gm 50' Bh 2:81
- in bk -1 47
Correction for 7h {im [ —4"* Cor, for Th 44m — 15" *
4, Lor the Latitude of the Skip.
Observed alt. of Moon’s L. L. . . . 47°18 30"
Index and dip . . . 2 44"1
i-diam. G/ 16" + 13" 44"
Semi. dmm. 161 "1 +16 28"1
Augmentation 12 B
App. altitude of moon’s centre . . L o4Te B2t 14"
Correction of moon’s altitude . . . +3856"
True altitude of centre . . . . 48°117 10"
90°
Zenith distance . . . . .. 41° 487 50" &
Moon’s declination . . . . . 23° 49’ 32" N.

LATITUDE . . . 17° 597 18" 8.

2. Oct. 4, 1858, in longitude 60° 42’ W., the observed
meridian altitude of the moon’s lower limb was 30° 30’ 40"
(zenith N.), the index correction was -+ 5’ 42", and the
height of the eye 16 fect : required the latitude ?

1. For the mean timc «t Greenwich when the altitude was takea.

Moon’s transit at G. Oct. 5 . 21 45 Diff. . . 46m4
Cor. for longitude 60° 42’ W. +7°8 Longitude. 60}
Timeatship . . .21 528 2784
Toung. 60° 42’ W. in time .+4 28 232
Greenwich date of observ. . 25 55°6 26,0)280,7 2(7"'8 eor.
thatis, Oct. 4 . . 1k 55=-6 252 v
287

* These small corrections for the horizontal semi-diameter and the
“‘horizontal parallax, need not be computed to the degree of nicety here
‘observed. It will be quite sufficient if the Greenwich date be taken to the
"nearest half-hour, the “Diff.” multiplied by it, and the product divided

by 12; thﬂs.—ﬁ""’xsq-l"~6"'2x~ 4";and 22"5 x—2-—15”
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2, For the Moow's Declination Oct. 4, at 1t 55m6 at Greenwick.

Declin. Oct. 4, at 2" . 7° 48’ 48"°3 N. Diff. in 10™ - 158" "5

Decrease in 4m:4* , . +1' 97 ‘44
Drcrin. at 1 55m-G , 7° 49’ 58" N. 6340
’ o 634

(i9" .74 =1 gvv-."-

3. Zor the Moow’s Hor. Semi-diamcter and Hor. Parallax at 10 56™.

Semidiam. at noon

SEMIDIAM, at 20

1556”1 Diff. in 12k — 375 Hor. . 58" 2076 Diff. 1277

6 in o —6 —gr1 —2"
15 5575 ‘ 1L P. at 2b 58’ 18”5

4. For the Latitude of the Ship.

Observed alt. of Moon's L. L. . . . 30° 30’ 40"
Index and Dip . + 17467

Semidiam. 15’ 56" ) y o } +17" 50"

Augnentation 8"y + 1604

Apparent alt. of moon’s centre . . . 30° 48 80"
Correction of moon’s app. altitud: .« +47 56"

True altitude of centre . . . . 31° 36’ 26"

90°
Zevith distance . . . . . . 58°23 34"N.
Moon’s declination . . . . 7°49' 58" N.

LaTiTUupE . . .. 66" 18 3-2" N.

Nore.—From the foregoing examples the learner will
perceive that the principal object of step 1 in the operation,
that is, of finding the Greenwich date, is to enable us to
get the declination with the necessary accuracy at the
instant the altitude was taken. As the declination may

* The Greenwich date, 1% 556, is 4m*4 short of 2b; and as the
declination decreases as the time increases, it is less at 2 than at the
Greenwich date ; so that the correction of the declination at 28, for the
preceding 44, must be added,
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increase or diminish by so much as nearly 3’ in 10 of time,
it is evident that the Greenwich date of the observation
should not err by more than a minute or two minutes of
the truth., This date, as already remarked, may in general
be got more readily, and with greater precision, from the
chronometer than from the longitude by account. Indced,
the longitude by account, should not be employed in this
problem, unless it be known to differ by less than 30’ of the
truth.

In step 3 of the operation tlere is no oceasion for much
precision in the Greenwich date : indeed, the correction for
it may always be roughly allowed for by a glance at the 12®
differences furnished by the Nautical Almanac, without
formally computing for it as above: it is often neglected
altogether as being of but little moment. The followipg,
is the blank form of the necessary operations.

Blank Form for the Moon.

1. Transit at G. I Daily diff. ..
Cor. for long. .. Degrees of long.  x. .
Ship’s date of obs. . 36,0)....(..m Cor.
Longitude in time
(. date of obs.. s LT

2. Declin, at abovekour . .°. ./, ." Diff. in 10™ . ."(divided by 101)
Cor. for minutes .+ .. MinutesinG.datex. .
Decurw, at G. date .. .. .. . . ."Cor.forminutes,

3. Moon's Semidian. from Naut. Alm. To be corrected for the G. date
by inspection.

Moon's Hor. Parallax from Naut. Alm. To be corrected for &. dute by
inspection.

* This may be got from chronometer.
*+ That is, remove the decimal point one vlace to the loft
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4, Obscrved altitude (L. L. or U. L.) S
Index and dip A }
Semidiam. + Augmen, ' ."
App. alt. of moon’s centre ..
Correction of app. alt. (Table XVIL.) +..

True altitude of moon’s centre

True zenith distance ve e e
Moon’s declination at G. date

LATITUDE

Ezamples for Exercise.

1. Aug. 30, 1858 ¥, in longitude 129° 30’ E., the observed
meridian altitude of the moon’s lower limb, was 41° 10’
(zenith N.), the index correction was —8' 40", and the
height of the eye 18 feet : required the latitude ?

Ans. latitude, 67° 7' 6" N

2. Nov. 25, 1858, in longitude 22° 30’ W, the observed
meridian altitude of the moon’s upper limb was 72° 12’ 80"
(zenith N.), the index correction was — 2 10", and the
height of the eye 20 feet: required the latitude ?

Ans. latitude, 40° 47’ 29" N.

3. Nov. 29, 1858, at 8h 46™, .M. Greenwich mean time,
as shown by the chronometer, the observed altitude of the
moon’s lower limb when on the meridian of the ship was
38° 15’ (zenith N.), the index correction was — 2’ 10", and
the height of the eye 20 feet : required the latitude ?

Auns. latitude, 50° 9’ 24" N.

4. Nov. 16, 1858, in longitude 82° 30’ E., the meridian

* The timc of the moon’s meridian-passage at Greenwich on August 29,
is 164 10™7, which, according to civil reckoning, is Aug. 30, at 4b 10=-7
A.m, The learner will not forget that on shipboard the civil reckoning of
time is employed ; in the Nautical Almanae, the astronomical reckoning.
See the work of ex. 2, p. 123.

* In this example the Greenwich date of the observation is given, namely,
Nov. 28, 20" 46™,
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altitude of the moon’s lower limb was observed to be 64°
48’ (zenith 8.), the index correction was + 6’ 40", and the
height of the eye 22 feet: required the latitude ?
Ans. latitude, 24° 42’ 58" S.
5. Dec. 13, 1858, in longitude 58° 45’ E., the observed
meridian altitude of the moon’s upper limb was 43° 25
(zenith 8.), the index correction was + 5 24", and the
height of the eye 24 feet : required the latitude ?
Ans. latitude, 48° 24’ 5" S.
6. Dec. 17, 1858, in longitude 18° 42" W., the meridian
altitude of the moon’s lower limb was observed to be 52°
35’ (zenith N.), the index correction was — 3’ 40", and the
height of the eyc 25 feet : required the latitude ?
Ans, latitude, 59° 5" 1" N.

Latitude from a Meridian Altitude below the Pole. * °

The sun is on the meridian of any place below the pole
at apparent midnight, that is, 121 after apparent noon at
that place ; so that 12" increased or diminished by the longi-
tude in time, according as the place is W. or E. of Green-
wich, will be the apparent time at Greenwich; that is, the
Greenwich date of the observation: the declination at this
time is found as in the examples already given, from the
noon-declination in the Nautical Almanac.

For & fixed star the change ‘of declination in 12" is insen-
sible, so that the declination will be the same as that given
in the Nautical Almanac.

For a planet the declination varies sensibly in 128, so
that, as in the case of the sun, the variation must be allowed
for.

In the case of the moon the ship-time of transit over the
mid-day portion of the meridian is to be found as in the
foregoing examples : this time increased by 12! and by half
the daily difference of time will be the ship-time of her
passage over the opposite portion of the meridian ; that is,
of her meridian passage below the pole. The proper cor-
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rection of this time for longitude being then made, the
Greenwich date of the observation, and thence, by aid of
the Nautical Almanac, the declination at that date, is to
be found as before. The rule, therefore, is as follows:

Ruie 1. Find the declination of the object at the instant
of observation, and thence its polar distance.

2. Apply to the observed altitude the proper corrections
for obtaining the true altitude.

3. To the true altitude add the polar distance: the sum
will be the latitude, of the same name as the declination.

Nore.—When above the pole, the object rises till it arrives
at the meridian, when, having attained its greafest altitude,
it begins to descend : when delow the pole, on the contrary,
the object descends lower and lower till it arrives at the
meridian, when having sunk to its lowest altitude it begins
to ascend. It is only by seizing the instant at which the
object appears stationary that its arrival at the meridian can
be detected at sea; but it may be as well to notice that,
rigorously speaking, this may not be the instant of the
meridian transit after all; for it must be remembered that,
besides the motion in altitude, there is also a motion in
declination, so that it may happen, especially in the case of
the moon, that this latter motion may cause the altitude to
be the greatest or least a little before or a little after the
meridian passage. With regard to the sun and planets,
this circumstance i® of no moment ; but under particular
sircumstances the meridian altitude of the moon, as fur-
nished by observation, on account of the rapid change in
leclination of that body, may differ from the altitude when
rwtually on the meridian by 1’ or 2. The moon, therefore,
s the least eligible object from which to deduce, the lati-
iude.

Ezxamples : Meridian altitude below the Pole.

1. July 2, 1858, in longitude 23° 10’ W, the observed
neridian altitude of the sun’s lower limb when below the
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pole or at apparent midnight was 7° 40/, the index correc-
tion was + 3’ 20", and the height of the eye 19 feet:
required the latitude ?

1. For the Declination at the instant of observation.
G. Noon declin. July 2 . ., 23° 3" 52"-2 N, Diff. in1* . —11"5

' 5y July3 . . 22°59 16"-3 N. 2
2)46° 3 8"5 30) 23

G. Midnight declin, July 2 23° 1’ 84" N. 766

Cor. for longitude W. . — 18" Long, (reversed) 32

Declin. at instant of obs. 23° 17 16" N. 1533

90° 230

Polar distance . . . 66° 58 44" Cor. of dec. forlong. 17"+6G3

. 2. For the Latitude of the Ship.
Observed alt, sun's L.L. . . . . . 7> 40’ u"
Inde'x lz.nd dip. —0' 57"} F147 40"
Semi-diameter + 15/ 46"

App. alt. of centre . . . . . . 7° 54’ 49"

Refraction—Parallax . . . . . . —¢ 30"

True alt. of centre . . . . . . . 7° 48 19"

Polar distance . . . . . . . . 66° 58 44"
LaTiropE . . . . . . 7447 8"N.

2. April 10, 1858, the observed altitude of the pole-star
when on the meridian below the pele was 41° 36, the index
correction was — 4/ 10", and the height of the eye 17 feet:
required the latitude?

Obs. alt. of pole star. . 41° 36’ 0"
Index cor. —4’ 10"}

. 16’ 14"
Dip. . .—4" 4"
App. altitude . . . . 41° 52" 14"

Refraction - . . . —1 58" Declin. Ap. 10 . $8° 3% 16" N.
True altitde . . . . 41° 51’ 9" 90°

Polar distance . . . . 1°26'44" Polar distance . 1° 26 44"
Lamitupe , . . 43° 18 53" N,
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8. May 15, 1858, in longitude 37° 42’ E., the observed
altitude of the moon’s lower limb when below the pole was
9° 25’; the index correction was -+ 2’ 8", and the height of
the eye 22 feet : required the latitude ?

1. Moon’s upper transit G. May 15 2b 12=-4 Daily diff. +66™°1
Half daily difference . . . . 83  Degreesoflong. 40

Moon’s lower transit . . . 14 45 36,0 ) 264,0 (7™ cor.

-

Corrections for long. B. . . —7

Ship's date of observation . . 14h 38w
Longitude in time . . , —2 31

Greenwich date of observation 12 7= (May be got from Chronom.)

2. Moon’s declin. at 122 |, 28° 14’ 6"-N. Diff.in 10™. . +18":85
Correction for 7= . . . +18" 7

+ Oeclin. at G. date * . 28°14/19" N. Cor. for T . . +13'195
90° I

Tolar distance . . . 61° 45 41"

3. Moon’s Ior. Semidiam. May 15 at 12 16’ 35". Hor. Par. 60’ 42".

4. Obscrved alt. moon’s L. L. e e - .. 9% 25 Q"
Index and Dip. — 2' 29") . 147 9o
Semidiam. + Aug. +16’ 38" )

App. alt. of moon’s centre . . . . . 9° 39" 9"
Corrcction of app.alt. . . . . . .. + 54/ 21"
True alt. of moon’s centre. . . . . . 10° 83 30"
Polar distance . . . . . . . . .. 61° 45 41"
Larrrope . . . . 72° 19°11"N.

Norr.—In order that a celestial object may be above
she horizon when it is below the pole, it appears that the
atitude of the place must exceed the polar distance, the
ixcess being the true altitude of the object. On account of
‘he varying state of the atmosphere near the horizon, the
efraction for altitudes below six or seven degrees, cannot
)e estimated with accuracy. And as the polar distance
f the sun is never much less than 67°, and that of the
100n never much less than 62° it follows that for a meris
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dian altitude of 6° or 7° the latitude, in the case of the
sun below the pole, must not be less that 73° or 74°, and in
the case of the moon, not less than 68° or 69°. Hence,such
meridian observations on either of these two bodies arc
restricted to high latitudes, and are therefore not generally
available at sea: but in the case of the fixed stars, oppor-
tunities occur in all latitudes of getting a meridian altitude
below the pole sufficiently great to allow of the tables
of refraction being used with safety. As the pole-star is
always above the horizon in latitudes north of the equator,
and on cloudless nights is always sufficiently visible, and
easily recognised, it is the star more frequently selected for
finding the latitude at sea, when north, than any other.
Some short useful tables are given in the Nautical Alma-
nac, (pp. 527-9) for finding the latitude from an altifpde
of the pole-star, whether it be on the meridian of the place
of observation or not: the following is the rule there given,
(p. 568) with an example of its application.

o find the latitude from an altitude of the Pole Star.—
Ruie 1. From the observed altitude, when corrected for
the error of the instrument, refraction, and dip, subtract
2’ : the result is the reduced altitude.

2. Reduce the mean time of observation at the place to
the corresponding sidereal time, by the table at page 530,
Nautical Almanae.

3. With the sidereal time found, take out the first correc-
tion (Naut. Alm., p. 527), with its proper sign. It the sign
be +, the correction must be added to the reduced alti-
tude ; but if it be —, it must be subtracted ; in either case
the result will give an approximate latitude.

4. With the altitude and sidereal time of observation,
take out the second correction, (p.528): and with the day
of the month, and the same sidereal time, take out the
third correction (p. 529). These two corrections edded to
the approximate latitude, will give the latitude of the place.

Example: March 6, 1858, in longitude 37° W., at 7t



132 LAT. FROM DECLINATION ALT. AND HOUR-ANGLE.

43m 35%, mean time, suppose the altitude of the pole-star,
when corrected for the error of the instrument, refraction,

and dip, to be 46° 17’ 28" :

Ship mean time . .
Long. 37° W. in time

Greenwich mean time .

Sidereal time at Grecnwich mean noon .

required the latitude ?
7 43m 35°
2 28 0

220 pom 428

Mean time at ship 7 43 35
Acceleration (page 530, N'mt Ahn ) for ‘.l()h 1""' 1 41
Sidereal time of observation . 6h 40m 58+
Reduced altitude e e e e .. .. 46”157 28"
With Arguwment €v 40m 58+  First Correction  — 10" 7"
Approximate Jatitnde . S A I
16° 17 .
. Arguments, h 41 }Sccoml Correction +17 6"
Arguments, March 6, 6% 41™  T%ird Correction +2/ 31"

. . . 46° 8 58" N.

To find the Latitude when the Declination, Altitude, and
Ilour-angle are given.

The hour-angle of a celestial object at any place and at

M ;"i.’,/ ~
/ N !
N i

\

\ Y
Zan

'S s

any instant is the angle
at the pole included be-
tween the meridian of
the place, and the meri-
dian through the object
at that instant. In the

annexed diagram, let Z be the zenith of the place, P the
elevated pole, and S the object observed, then ZS — co-
altitude, P S = polar distance, P = the hour-angle, and P %

= the co-latitude of the place.

To find this last quantity the three former are supposed
to be given, so that the solution may be effected by case 2
of oblique-angled spherical triangles (see Spherical Trigo-
nometry, p. 19.) But the following method by right-angled

triangles is the more easy.
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Draw S M, perpendicular to the meridian of Z, dividing
the oblique-angled triangle P Z 8, into the two right-angled
triangles P M S, ZM 8: then by Napier’s Rules (Sph.
Trig. p. 11.) we have:—

From the triangle P M 8, by taking P for middle part,
and P S, P M, for adjacent parts,

cos P=cot PStan PM , tanPM=cosPtan PS . . . . (1)

Aund by taking the hypotenuse P S for middle part, and
P M, S M for opposite parts,
cosPS= cosPMcosSM . ... (2
Again, from the triangle Z M 8, by taking the hypotenuse
7 S for middle part, we have
. cosiS=cosZMcosSM . ... (3)
Consequently, dividing (2) by (3), we have,

%:—-,i——z-= Z%z%% e ZM=cos PMecosZS scc PS . . \4).
Hence, P M being determined from equation (1), and
then Z M from equation (4), the sum of these or their
difference, according as M falls between P and Z, or not,
will give P 7 the co-latitude of the place. Bringing equa-
tions (1) and (4) together, the formule for computation are
therefore,
tan P M = cos hour-angle x cotan declination } A
cos Z M = cos P M x sinalt. x cosec declination - 4)

If the object observed off the meridian be the sun, the
hour-angle is the apparent time from the ship’s noon, that
is, from the sun’s passage over the meridian, converted into
degrees. The chronometer gives the mean time at Green-
wich of the observation, and we thence find, by help of the
longitude by account, the ship’s mean time of observation,
affected only by the error of longituge. This mean time,
by applying the correction for the equation of time, given
in the Nautical Almanac, becomes converted into apparent
time, and thus the time from the ship’s apparent noon, or
the hour-angle in time, becomes known.

But if the object be other than the sun, we must add the
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sun’s right ascension at the instant of observation, to the
apparent time after the ship’s preceding noon, the sum, or
its excess above 24", is the R. A. of the ship’s meridian:
the difference between this and the right ascension of the
object is obviously the hour-angle in time.

It is proper to observe that in determining the latitude
by computing the formul® (A), there may be a doubt as
to whether the point M would lie between the zenith and
the pole or not, and consequently as to whether the sum or
difference of P M, Z M is the co-latitude; but in general, the
latitude by account must be near enough to the truth to
remove all hesitation on this head. *

If, however, the object be near the meridian, this source
of ambiguity may be always avoided, and there is-one addi-
tional reason for preferring an observation near the meri-
dian to one more distant from it :—the higher the object
observed, the less likely is the refraction to be disturbed
from its mean state. In preparing for a meridian altitude
of the sun, it sometimes happens that although an observa-
tion can be well taken a few minutes before or after noon,
yet that the sun becomes obscured by clouds when actually
on the meridian. It is very useful, therefore, to know how
the latitude may be obtained from an altitude near the meri-
dian: a rule for this purpose may be investigated as follows:—

* When Z M is so small that whether added to, or subtracted from P M,
the result, in either case, differs so little from the estimated co-latitude, that
there seems no sufficient reason for preferring one to the other, the circum-
stance can occur only when the body is very near the prime vertical, that
is, nearly duc E. or due W. And when PM is so small as to make but
little difference whether it be added to or subtracted from Z M, the circum-
stance can occur only when the body is very near the six o’clock hour
circle. Except in one of other of these positions the observation may be
made ; and the latitude deduced with accuracy. It is necessary to notice,
however, when the latitude and declination are of contrary names, that the
co-declination is then measured from the depressed pole P’; so that P' M +
ZM — 90° is the distance of Z above the equinoctial, that is the latitude of
the ship ; and in this case there can never be any ambiguity.
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Referring to the triangle Z P 8, the fundamental theorem
of spherical trigonometry gives,
cos ZS=cos PZcos PS—sin PZsin PScos I

P_cos 4S8 —cos P2 c:;_s_l’hS
sin PZsnP S

Let » represent the zenith distance that S would have
when actually upon’ the meridian, and let 2’ be the difference
between this meridian zenith distance, and the zenith dis-
tance Z S, oﬁ' the meridian found by observation : then since
78 =1z + &, the above equation is,

_cos(z+2')—cos PZ cosPS

sin PZsinPS
Hence, subtracting each side from 1, and remembering
(Plane Trig. p. 27), that 1—cos P = 2 sin®} P, we have,

2 sin®lP = sinPZsinPS+eosPZeosPS—cos(z+2)

sinPZsinP S

cos (PZAP 8) —cos (2 +17)
= win PLsmPS (Plane Trig. p. 26).

Now the difference PZ ~ P 8, between the co-latitude
and the polar distance, must be equal to the meridian zenith
distance z, because that is also the difference between the
co-latitude and the polar distance : thercfore,

L. cosz-—cos (T + €08 5 — €08 = cos 2+ sin ¢ sin =
2sin i P=-- ,-__( = LI TR E T T

smPLsml’S sin PZsin PS

As the object 8 is near the meridian, and as objects near
the meridian usually make comparatively but slow advance
in altitude, the difference 2/, between the meridian zenith
distance, and that actually observed, may in general be
considered as sufficiently small to justify our regarding
cos 2’ as equal to 1, and thus writing the above equation,

sin z sin 2’

Qsin L P =— 2%
sin § I sin PZ sin P§

s.8inz =2s8in PZsin PS coseczsin 4 P
Now the arc 2’ being very small, the number of seconds
in it is very nearly equal to the number of times sin 1" is
contained in sin z': consequently we have very nearly,
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No. of secondsin 2’ = - -gin PZ sin PS cosecz sin® } P

sin 1"
= ,2—cos lat. cos declin. cosec z sin 2 } hour-angle.
sin 1"

In this way the correction 2, or the number of seconds
to be applied to the observed zenith distance off the meri-
dian, to reduce it to the zenith distance on the meridian,
may be obtained. But this zenith distance z must be
known approximately before the formula can be used; it is
supplied by the latitude by account; if this do not differ
from the true latitude by more than about 15', the true
latitude itself will be deduced with tolerable accuracy.
The method, however implied in the formul® (A), is the
more correct, though the work by those formule requires
more references to tables. But if the corrected latitude,
furnished by the method just discussed be used in place of
the latitude by account, and the operation performed anew,
the second result will have all the accuracy desirable; and
from glancing at the formula, it will be seen that, as all
the elements of the computation except cosee z, and cos lat.
are the same in the two operations, the additional work will
be very trifling, as the following example further shows:

‘We shall now give the result just obtained in the form of
a practical rule.

Latitude from an Altitude near the Meridian.

2 s 5615455, the formula
sin

above expressed in words furnishes the following rule.

Ruik 1. To the declination of the object, add the lati-
tude by account when one is N and the other S; but when
such 18 not the case, take the difference of the two: the
result is the meridian zenith distance by account.

2. If the object be the sun, the apparent time from noon
in degrees, &c., is the hour-angle. For any other object
add the sun’s R. A.at the instant to the apparent time since
the preceding noon, the sum, or its excess above 243, is the

Since the logarithm of
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R. A. of the ship’s meridian. The difference between this
and the R. A. of the object is the hour-angle.

3. Add together the five following logarithms : —

1. The constant logarithm, 5-615455.

2. log cosine of the latitude by account.

3. log cosine of the declination.

4. log cosec of the mer. zenith dist., deduced fromn
the latitude and declination.

5. 2 log sin of half the hour-angle.

The sum of these logs, rejecting the tens from the index,
is the log of a number of seconds called the ¢ Reduction,”
which subtracted from the true zenith distance off the
meridian, gives the true zenith distance on the meridian.
‘When this and the declination are of the same name, their
sum, when of different names, their difference is the latitude,
of the same name as the greater. * -

Nore.—As fractions of a second are disregarded in the
reduction, the logs used in finding it nced be taken from
Lhe tables only to the nearest minute.

Ezxamples : Sun near the Meridian.

1. In latitude 56° 40’ N. by account, when the sun’s
declination was 14° 12" N, at O® 16™ p.r., apparent time,
the sun’s true zenith distance was £2° 40’ N.: required the
latitude ?

Comstant log . . . . . . 5615455
Latitude by acct. . . 56°40'N. cos  9°739975
Declination . . . . 14°12"N.  cos 9:986523
.. Mer. zen, dist. acct. . 42° 28’ cosec 10°170593
Half hour-angle . . 2° ¢ 2 sin 17-085638
60) 396"  log  2-508184

Reduction . . . . —6’38" . 5-015455
Zenith dist. from obs. . 42° 40’ 0" N. I 9-738820
Cor. mer. zenith dist. . 42°33' 24" N. | 19:986323
Declination . . . . 14°12 o'N, | 10169903
+ 17-085638

Corrected latitude . . 56°45' 24" N, || ——
—_— l 2-596339 = log. 395"



188 SUN NEABR THE MERIDIAN.

The work on the right is a repetition of the operation
above, substituting the computed latitude for the latitude
by account; and as the former exceeds the latter by &', the
mer. zenith dist. by account, in the first operation, becomes
increased by 5'; that is, it is 42° 83'. As the reduction
395" differs from the former by 1", the more correct lati-
tude is 56° 45’ 26" N.

‘We shall now exhibit the work of the same example by
the formule (A) at page 133.

1. Tan P M = cos hour-ang. x cot dec.
Hour-angle. . . 4° 0’ cos  9-998941

Declin. . . . . 14° 1% cot 10596813
PM .. . . 75° 46 ian 10-595754
2. Cos ZM = cos P M cosec dec. sin. alt.
X PM . . . .75°46" cos 9°390708
) Declin. . . . 14°12"  cosec10-610289
Altitude . . . 47° 20/ sin  9:866470
IM « .. . 42°31°25" cos 9°867467
M . . . . 75°46 -
s Colat. = 33° 14’ 35"
90°

Latitvor . H6° 457 25"

As the latitude here deduced is exactly the same as that
above, we may infer that both results are strictly correct.

The student is strongly recommended to familiarise him-
self with both these methods of finding the latitude from an
observation of the sun off the meridian, remembering that
the first method is applicable only when the observation is
made near the meridian; the second method is generally
applicable, except under the circumstances pointed out in
the foot-note, p. 134. The reason that the first method is
somewhat preferable to the second, when the object is near
the meridian, is that the secords in the angles may be dis-
regarded in taking out the logarithms, or rather that each
angle may be taken to the nearest minute only. But the
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second method will always furnish a satisfactory test of the
accuracy of the result deduced by the first: we shall now
work out another example.

2. In latitude 48° 12’ N. by account, when the sun’s
declination was 16° 10" 8. at O» 20™ p.M., apparent time,
the sun’s true zenith distance was 64° 40’ N.: required the
latitude ?

Constantlog . . . . . . 5615455
Latitude by acet. . . 48°12' N, cos  9-823821
Declination . . . . 16°10’8. cos  9-982477

. Mer. Z.D, acet. . . 04° 22 cosec 10-044995
Y hour-angle . . . . 2°30 2xin 17-279360
60) 557" log.  2-746108
Reduction C e e . =917
ZD.obs. . . . . . 64°40" 0" N.
Mer. Z.D.. . . . . 64°30" 43" N.
Declin. .. . . . 16°10 0" S.
Lamitupe . . . . 48°20'43" N.
Constant log . . . . . . 5615455
Corrected lat. ... 48 ar cos  9°822546
Declination . . . . 16°10" cos 9-982477
M.ZD.. . . . . .6430 cosec 10°044452
Lhour-angle . . . . 2°30 2 sin 17-279360
Reduction . . . . . 555" log.  2-744290
557" oo the corr

Hence the corrected latitude
" is 48° 20 45" N.

The work of this example by the formule marked (A) is
as follows :—
1. tan P M = cos hour-ang. x cot dec.
Hour-angle . . . 5° 0 0" cos  9-998344
Declin. . . . . 16°10’ 0" cot 10-537758

PM . . . 73°46’29"} tan 10°536102
ZM . . . 64°34'15"% This is found on next page.

138° -?TO-’ 45" ( See foot-note, page 134.)
20° _
Lamrupr . . 4820’ 45" N. ag determined by the former
- method.

134

Correction of lat. PO 3
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2. Cos 2 M = cos P M cosec dec. sin alt.

PM . . . . .78°46729"]) cos 9-446249
Declin. . . . .16°10" 0" cosec 10°555280
Altitude . . . . 25°20’ 0" sin 9631326

M . . . L 04°34715" cos 97632855

As in these two examples the corrections have been sup-
posed to have been applied to the observed, to obtain the
true zenith distance, and as also the hour-angle in time is
considered to be known, we shall now work out a final
example in which are given the latitude by account, the
longitude, the observed altitude, and the Greenwich mean
time, as shown by the chronometer.

3. August 21, 18568, a.M,, in lat. 51° 40’ N. by account,
and long. 2° 9’ W., the chronometer known to be 3652 fast,
showing 11t 48w 32¢ Greenwich mean time, the observed
‘altitude of the sun’s lower limb was 50° 36’ (zenith N.), the
index correction was + 1’ 20", and the height of the cye 20
feet : required the true latitude ?

1. For the Hour-angle.

. mean time by Chron. . . . 11b 48m 32s
Error of Chron. . . . . . — 36
G. date, Aug. 20 . . . 12v4+11 47 56
Equa. of time G. date . . . . —2 59
Q. app. time, A2, . . . . 11 44 57
Long. 2° 9’ W. in time . . . - —8 36
App. time at ship, A.M. Aug. 21 . . 11h 36m 21+

.. Hour-angle = 23™ 392, or 5° 55/

2. For Declination and Equation of Time.

Declin. noon Aug. 21 - . . 12° 8'56"9 N.
Diff. for 1, 49"-71 ., for 12™ . +9 -9
Deowin, at G. date . . L1229 7 N,

Eq. of time, noon Aug. 21 . ., 2= 5858

Note. —The G. date being so near the noon of Aug. 21,
the correction for Equa. of time is inappreciable. "When the
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time from noon is considerable, the correction by means of
the « Diff. for 12"’ need be made only for the nearest hour.

3. Por the true Zenith Distance.
Observed alt. Sun’s L. L. . . . 50° 36" o"

Index cor. and dip. -—3' 4" } +127 47"

Semidiameter . . +15'51"

Apparent alt. of centre . . . 50° 48" 47"

Refraction—Parallax . . . . — 42"

True alt. of centre . . . . 50° 48" 5"
90°

True zenith distance off meridian . . 89°11'55" N.

4. For the Latitude of the Ship.

Constantlog. . . . . . . . . .. 5615455
Lat. by acet. . . 51° 40’N. cos 9792557
Declination . . 12° 9'N. [ 9990161
Jo MUZ.D. acct. . 39° 81’ N. cosec 10°196336
1 Hour-angle . . 2°57% 2 sin 17-425453

60)1047" . .. log. 3019967

Reduction . . . —17°27"
Z.D. off mer. . . 39°11'55" N, .

S Mer. 2D, . . 38°54"28" N.
Declin. ... 12097 7'N,

Larirupe . . 51° 8'35" N.

Constant log. . . . . . . v . . b615455

Corrected lat. . . . 51° 4’ cos 9798247
Declination . . . . cos 9990161
Corrected Mer. Z.D. . $8° 54/ cosec 10202066
4 Hour-angle . . . 2 sin 17-425458
Reduction e . . 1055" . . . log. 3-031387

1047" -

— 8" Correction of lat.
.’ CoRRECTED LATITUDR . . 51* 3" 27" N.

We shall test the degree of accuracy of this result by the
formula (A).
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Work of preceding Example by Formula (A), page 133. °
1. tan'’P M = cos hour-ang. x cot dec.
Hour-angle . . 5°55' 0" cos 9-997680
Declination .12 9t 7" cot 10°666895

PM . . .77°47 5"} tan 10°664575

2. Cos ZM = cos P M cosce dec. sin alt.

PM . . . T77°47 5"} cos 9325481
Declination . 12° 9 7"  cosec 10676738
Altitude . . 00° 48" 5" sin 9-889280
ZM . . . 38°50"14" cos 9-891499
PM . . . 77°47 5"}
38° 56/ 51"
90°

Truk Larrrvpe  51° 37 8"4

*We see from this result, that the former method, even
with the latitude by account, so much as nearly 37 miles
in error, gives the latitude true to within less than half a
mile, without computing the corrected reduction.

Nore.—If the sun did not change bis declination, equal
altitudes, taken one before and the other after noon, would
correspond to equal hour-angles, so that half the time
elapsed between taking these equal altitudes would be the
hour-angle at either observation. But on account of the

* The most troublesome part of a logarithmic operation is proportioning
for the seconds ; the computer will, in general, find the following the most
convenient mode of proceeding, namely : Disregard the seconds, and enter
the table with the degrees and minutes only, but againgt the log taken out
write the tabular difference. When all the logs with their differences have
been thus extracted, then compute in each case for the seconds, remem-
bering that for every co-quantity the proportional part will be subtractive.
The balance of these corrections for the seconds may then be incorporated
with the sum of the logs from the table. As regards arithmetical comple-
mnents, the eorrections for co-quantities are to be added, in other cases they
are to be subtracted. After the differences are all extracted from the
table, it maybe well to put the proper sign against each, to prevent mis-
take as to the additive and subtractive corrections.
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change in declination, this method of deducing the hour-
angle cannot be employed with safety, except under certain
circumstances. When the latitude and declination are such
that the sun passes the meridian near the zenith, half the
elapsed time between equal altitudes, a few minutes before
and a few minutes after noon, will give the hour-angle with
sufficient accuracy, because in these -circumstances, the
sun’s motion in altitude is so rapid, that the correction in
altitude, due to the motion in declination, is passed over
in a very short time; and the hour-angle, if the elapsed
time between the two obscrvations do not exceed about 30™,
may be safely inferred. In high latitudes, however, where
the sun’s motion in altitude is very slow, if the change in
declination be rapid, the hour-angles on contrary sides of
the meridian may be very unequal for equal altitudes.

‘Whatever minutes of latitude the ship may have movkd*
from or towards the sun, in the interval of the observations,
should be allowed for in taking the second altitude.

‘We shall now give the blank form for the foregoing ope-
rations.

Blank Form. Sun near the Meridian.

1. For the Hour-angle,

(3. mean time by chron. Lhom e
Error of chron.

G. date, mean time
Equa. of time G. date

G. apparent time
* Long. in time (— for W. + for E.)

App. time at Ship

*, Hour-angle = ..m™ . .5 or..° .. .."

* It must be remembered that the longitude here is assumed to be
correct ; whatever error there is iu it, there will be the same error in the
hour-angle when converted' into degrees and minutes : the seconds, how-
ever, in this angle may be disregarded.: .
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2. For the Declin. and Eq. of Time at G. dafe.

Noon declin. (Naut, Alm.) T A
Diff. for 1® P
Time in minutes from G. noon

(1) P R
Declin, at G. date L
Equa. of time G. preceding noon L

Diff, in 1 x No. of Lowrs since that noon

Equa. of time at G. date

3. For the True Zenith Distance off Meridiar.

Observed alt. (L. L. or U. L.) A
Index cor. and dip A ."}
Semidiameter e e :
Apparent alt. of centre e e
Refraction—Parallax —_
True alt. of centre ..

90
True Zenith distance off Meridian ..

4, For the Latitude of the Ship.
Constant log . . . . . . 5615455

Lat. by acct. L. ees L.

Declin. ce e e cos

.. Mer. Z.D. e e e COSEC . vu.. ..

4 Hour-angle ce ve w. 28in ...,
60)..." log .......

Reduction — " o

2.D. off merid. LS

Corrected M.Z.D.

Declination

Corrected Lat.

It will be sufficient to take the above logs to the nearest
minute ; as also those following.
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. . . . . . . 5+615455
Corrected Lat, cos
Declination cos
Corrected M. Z. D. cosec
} Hour angle 2 sin
Corrcoted Reduction ... " log

The difference between this corrected reduction and the
former, applied to the corrected latitude, will give the 1rUE
LATITUDE.

Nore.—The term “near the meridian” must not be
considered as always implying the same limit of distance.
If in ex. 8 above, the latitude by account had been nearly
equal to the declination, that is, about 12° N., the hour-
angle employed would have been much too large for safety.
For it is plain that in thesc circumstances, the sun’s motien
in altitude, even when very near the meridian, is rapid?
his zenith disthnce when on the meridian is small, but when
off it only a few minutes of time, the zenith distance is con-
siderable. Now in the investigation of the rule, it is
assumed that the difference between the two zenith dis-
tances is so trifling, that the cosine of that difference may
be regarded as 1 without any error of consequence: we see,
therefore, that in the circumstances here supposed, the
method would be objectionable.

Tt may be further noticed, too, that as a small error in
the hour-angle would correspond to a comparatively large
arc of altitude, a comparatively large displacement of the
pole would be necessary to make the erroneous hour-angle
and the true altitude agree; and thus the latitude inferred
would involve appreciable error. But, as already remarked,
when the sun arrives at the meridian too near to the zenith
for the present method to be trustworthy, on account of
the reasons stated above, the hour-angle may be determined
with sufficient accuracy by equal altitudes carefully taken
before and after the meridian passage:—half the interval
of time between the two observations being the hour-angle.
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As the sun’s motion in altitude when near the meridian
is obviously greater and greater as his meridian zenith
distance ‘decreases, the hour-angle, must in the present pro-
blem, be less and less. The following short table will show
within what time of the sun’s passage over the meridian of
the ship, the altitude “mnear the meridian” may always be
taken.

Sun’s Merid., Zenith Dist., or Difference of Lat. and Dcclination. |
60" |85 |

T R R el e T e e P o BTy

0b H0m{Oh Hom 1b

Jh Sm [ Oh Hm | gh Om [Qh 12m|Qh 15mIQh 20m|0k 25mI0h 30m|0h 35migh 40m

‘We shall now give a blank form, which may be followed
whether the sun be near to, or remote from the meridian.
Brank Form. Sun near to or remote from the Meridian.

85" The hour-angle*, declination, equation of time, ‘xd true alt. to be
found as in the last Form.

1. Hourangle ..°..".."cos....... | 2. PM A COS . ......
Declination .. .. .. cot....... | Declin, .. .. .. €OSCC. ......
PM= .. .. .. tan. ... l Alt. [N sin. ......
—_— i M= .. .. .. [ I

Then the sum or difference of P M, Z M is the co-LATI-
TUDE, when the lat. and declin. are of the same name. And
the sum minue 90° is the LATITUDE when they are of different
names.

As already noticed at page 184, the latitude by account
will in general be guide sufficient as to whether the sum or
difference of P M, Z M, is to be taken.

* If either P M or ZM be so small that the error in the
latitude by account may equal or exceed it, then, and then
only, can there be any doubt as to whether the sum or
difference of P M, Z M should be taken; and we shall be

* The hour-angle kere is, of course, to be computed to seconds of the
equinoctial. The declination and equation of time are taken from page II
of the Nautical Almanac ; and the ¢ Diff. for 1»” from page L.
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apprised that our observation has been made when the sun
is too near the six o’clock hour-circle, or too near the prime
vertical. But without any reference to the latitude by
account, whenever we know the position of the sun in refer-
ence to the six o’clock hour circle and prime vertical, all
ambiguity may be removed by the following simple consi-
deration, namely :—

No two perpendiculars to a great circle of the sphere can
cross each other except at the distance of 90° * : hence,

1. When the Latitude and Declination are of the same
name,

If the six o’clock hour circle, and the prime vertical, be
both on the same side of the sun, the difference between
P M, ZM must be taken: the result is the Co-LATITURE.,
If the sun be between the six o’clock hour circle and the
prime vertical, the sum of PM, Z M must be taken: the
result is the CO-LATITUDE.

2. When the Latitude and Declination are of different

names,

The sum of P M, Z M must be taken: the result, dimi-
nished by 90° is the Latirupe. [The sun, in this case,
arrives at the prime vertical before it rises.]

Should the sun be actually upon the six o’clock hour circle,
then P M will be O, and Z M will be the co-latitude. And
should it be actually wpon the prime vertical, Z M will be
), and P M will be the co-latitude. In the former case, the
rosine of the hour-angle will be 0; in the latter,

cos hour-angle = tan declination < tan latitude.
‘We think, with these precepts and directions, the mariner
ran have no difficulty in determining his latitude from a

* Perpendiculars to the meridian all intersect in the E. and W. point
f the horizon: these points are, therefore, the poles of the meridian.
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Single Altitude off the meridian, when his Zime is pretty
accurately known.

It will be observed that in the method just discussed,
there is no restriction as to whether the sun be near the
meridian or not; nor, being near the meridian, whether
it be near the zenith or not. When near the zenith, it
must, it is true, also be near the prime vertical; but on
which side of the prime vertical, will be ascertained by
noticing on which side the E. or W. point the altitude is
taken ; and also by noticing that the motion in altitude is
quickest when the body is crossing the prime vertical.

Whether the sun be near to or remote from the zenith, the
observation should always be made when there can be no
doubt as to on which side of the six o’clock hour circle, or
of the prime vertical, the body is. And what is here said

" in reference to the sun is equally applicable to any other
celestial object. '

In the following examples the learner is recommended,
for the sake of practice, o work out the solutions, by both
forms, of the cases in which the object observed is near the
meridian.

Eramples for Exercise.—Olject off the Meridian.

1. At 18™ 45¢ from apparent noon, in latitude 8°S. by
account, the sun’s true altitude was 74° 16" (zenith N.),
and his declination at that time 23° 27’ S: required the
latitude true to the nearest minute?

Ans. latitude, 8° 23’ S.

2. In latitude 48° 12’ N. by account, when the sun’s
declination was 16° 10’ 8., at O 16™ ».M., apparent time,
his true altitude was 25° 20’ (zenith N.): required the cor-
rect latitude ? Ans. latitude, 48° 24’ 5" N,

8. At 3t 5™ 36° r.M., apparent time, in north latitude, the
sun’s true altitude was 35° 4’ 7", and his declination 10° 54/
26" N.: required the latitude P

Ang lat KOC AQ7 98" XT
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4. At 10t 40™ A.M. apparent time, in mnorth latitude,
when the sun’s declination was 16° 12’ 10" N., his true alti-
tude, S. of E., was 44° 56’: required the latitude?

Ans. lat. 58° 47" 8" N,

5. In latitude 50° 40’ N. by account, when the sun’s
declination wag 11° 44/ 58" N., his true altitude was 50° 52
297 at 11k 47™ 578, A.M. : required the correct latitude ?

Ans. lat. 50° 47' 49" N.

6. At 9h 30™ A.M., apparent time, in north latitude, when
the sun’s declination was 12° 28’ 40" N, his true altitude
S. of E., was 41° 30’ : required the latitude ?

Ans. lat. 50° ¢’ 17 N.

7. At 7h 20w .M., apparent time, in north latitude, when
the sun’s declination was 18° 50° 10” N., his true altitude
N. of E., was 24° 20’ : required the latitude ?

Ans. lat. 19° 1¥ 53" N* °

8. What would have been the latitude in the last example
if the sun had been S. of E. at the time of observation ?

Ans. 70° 36’ 9” N.

9. Oct. 29, 1858, p.M., in north latitude, and longitude
4° 40/ W., the Greenwich time, as shown by chronometer,
which was 58 slow, was 2! 20™ 43¢, the observed altitude of
the sun’s lower limb was 46° 40, the index correction was
— 4/ 30", and the height of the eye 17 feet: required the
latitude ?

Ans. lat. 12° 50’ 34” N.

10. At 11 2m 323 p.M., apparent time, in longitude 0° 45
‘W., the observed altitude of the Pole Star was 51° 22, the
index correction + 3/, the height of the eye 26 feet ; and for
apparent noon at Greenwich, on the day of observation, the
Nautical Almanac gave the following particulars. (See the
Rule, page 136.)

Sun’s R. A, 6" 51m 1115; star’s R. A. 1! 1m 418; gtar’s
declin. 88° 26" §56”: required the latitude to the nearest
minute ? Ans. lat. 51° 47’ N.

11. Determine the latitude from the altitude of the Pole
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Star, as given, with the other particulars, in the example at
page 132.

Latitude from Two Altitudes of the Sun, and the Time
between the observations. '

It has been sufficiently shown in the foregoing article,
that when the #ime is known, the latitude of the ship may
always be found from a single altitude of the sun, provided
we know his declination at that time. But if either the
longitude by account, or the chronometer, be suspected of
error too great to justify confidence in the time at ship, as
deduced from them, then it will be necessary to enter upon
the more complicated problem of DouBLE ALTITUDES. .
* 1n this problem, the exact time, either at the ship or at
Greenwich, is not necessary : it is the ¢nterval of time only,
between the two observations, that it is requisite to know
with accuracy; and this the chronometer, or even a good
common watch, if the interval be not unreasonably long,
will always measure with the desired precision.

In order to facilitate the solution of this problem of
double altitudes, various tables have begn constructed, and
many rules and expedients devised; but we consider that
the direct mecthod, by Spherical Trigonometry, while it is
more accurate, is fully as short, and much less burthensome
to the memory.* Its investigation is as follows:

Let Z be the zenith of the ship, P the elevated pole, and
8, &’ the two places of the sun when the altitudes are taken,

* The celebrated Delambre, after having carefully examined all the rules
with which he was acquainted for the solution of this problem, came to the
conclusion that the rigorous process, by spherical trigonometry, was to be
preferred, as well for brevity as for accuracy of result. And another high
practical authority, Captain Kater, entertains the same conviction as to the
superiority of the direct over the indirect methods.—See ¢‘ Encyclopwedia
Metropolitana,” Art. Nautical Astronomy.
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then in the annexed diagrams the following quantities will
be given, namely—

The polar distances P8, P &' .
co-altibudes . Z8S,Z§ } to find the co-latitude Z P.
hour-angle. . SP§

There are thus three spherical triangles concerned, namely,
the triangles PS8’, ZS 8/, and 4 S P, the first two, having
the great circle arc
S 8, joining the two , AT
positions of the sun /B ’
for a common base,
and the third having
for base the co-lati-
tude Z P.

1. In the triangle P 8§, we may regard the two sides
P 8, P & as equal, since the change of declination in passing
from 8 to & is so small that S 8 may be safely considered
as the base of an isosceles spherical triangle, of which each
side is 1 (P8 + P §), that is half the sum of the actual
polar distances. Hence drawing the perpendicular P M,
which will bisect the angle P and the base S8, we shall
have given in the right-angled triangle P M 8, the side P,
and the angle SP M, to ind SM = 3 S§'.

2. In the triangle P 8§, there are now given the sides
PS,S8; or PS, 8, to find the angle PSS or PS'S.

3. In the triangle Z S &' we shall have given the three
sides to find the angle Z S §', and since the angle PS8’ is
known from the solution of the first triangle, we shall
thence have—

theangle PSZ = PSS - ZSS or PSS 4- ZS ¥

4. In the triangle P S Z we shall thus have given the
sides S P, 8 Z, and the included angle, to find Z P.

Thus by the solution of three spherical triangles, we shall
be able to determine the co-latitude of the ship without the
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aid of any but the common logarithmic tables, and the
result will be rigorously correct, if the data are so, except
in so far as it may be affected by the supposition that the
magnitude of the arc 88’ would remain unaltered by our
lengthening the shorter of the two polar distances by half
their difference, and shortening the other as much. It is
plain that the error of this supposition, always very small,
becomes less and less as the interval between the observa-
tions becomes diminished. As the solution of the third
triangle, in which two sides and the included angle are
given, may be cffected in various ways, we shall here give
the investigation of what appears to us to be the preferable
method.

From the fundamental formula of Spherical Trigonometry
we have—

cos ZP=cos SP cos SZ+sin ST sin S Z cos S

But sin Sl’:cosSPsmSP:cosSPt:m Sr
cos S P

coco8 P =cosSP (cosSZ+sinSZtan S P cos 8)

Now tan ST cos S must be equal to the cotangent of
some arc: call this arc a, so that

1‘,:‘.nSI’cosS=cot:a.=c":x}“z ... (D
sin a

then the preceding equation becomes

cosZP=GDSSPsinacosSZ+sinSZco§_a
sin a

in which we sce that the numerator of the fraction is equal
to sin (« 4+ S Z). Consequently we have finally

cole’:?ff_SM). B ¢3)
sina

If S P should be greater than 90°, tan S P will be nega-
tive ; so that when cos § is positive, the right-hand member
of (1) will be negative. In this case therafore (9} will ha
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cos 8P sin (82 —=)
sime

cos LP= N €]

provided we still take cos S P positively, that ds, use the

supplement of SP. If SP and S each exceed 90°, (1) will
be positive and (2) negative.

‘We shall now exhibit the work by the above method, in
an example, regarding the necessary preliminary corrections
for altitude, declination, and semidiameter, to have been

made.

ExayrrEs.— Latitude from two altitudes of the Sun, and
the clapsed time.

1. The two corrected zenith distances of the sun’s centre
arc
748 =173° 54" 13", and Z &’ = 47° 45’ 51",
the corresponding polar distances are

PS=81°42'N. and P 8= 81°45' N. ",  (PS+P§')=8§1°43' 30",

and the interval of time between the observations is 3b:
required the latitude ?

1. In the triangle P M S, to find the side S M.

PS81°43/30" . . . . . sin9995455

SPM22 380 0 . . . . . sin9-582840

SM22 15 11 . . . . . sin9578295
DY

P

S 88=44 30 22

2. In the triangle P 8 §’, to find the angle PSS’

$8’44° 30’ 22" Arith. Comp. sin 0°154201
PS8l 45 0 . . . . . sin9995482
SPS'45 0 0 . . . . . s5in9-840435

PSS’86 89 0 . . . . . sin9999258
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3. In the triangle Z S 8, to find the angle Z S 8'.
(LY 47° 45 Bl

%48 73 54 13 Arith, Comp. sin 0°017369

SS'44 30 22 Arith. Comp. sin 0154291

2)166 10 26

4 sum of sides = 83 5 18
Joum —ZS = 9 11 0 ., . . . . sin9203017
Joum — S8 =38 34 51 . . . . . sin9:794919

2)19-169596

LZSY =22 36 26 . . . . . sin 9684798

SOL88 =45 12 e e
PSS =8 39 0
8

S PSL=41 26

<
34

4, In the triangle P S Z, to find first a, and thence the side Z P.

P8 81°47 /.. tan10€36092 P8 . . . . .. cos 9150435
PRZ 41 26 8 .. cos 9'874888 ' a 11° 0’427 Ar. Comp. sin 0'718046
— (34 3 .
w=11 042 .. cotlo7iogeo | ZSFeSL 5496 . . . sin 0098288
Z8=T3 54 13 |oLat.=s8 40 55% . . . sin 07666
ZS+a=8¢ 54 55 Henco the Latitude is 48° 49’ 55",

|

Nore.—The first operation, namely, that for finding S ¥,
may be replaced by a process similar to that marked (4) just
given; because, in both cases, two sides and the included
angle of a triangle are given to find the third side; but, as
already remarked, a trifling amount of accuracy, in the
determination of S §', has been sacrificed to the superior
brevity of the work. It may not be amiss here to recom-
pute S§',in the manner in which Z P is computed above,
for the sake of comparing the two results.

* The sum of the three logarithms is the cosine of Z P, consequently it
is the sine of the latitude.
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P8 81°42 0" tan 10835002 PS8 ... L cos 9-159435
SP8 45 0°0 cos 9°840485H « 11° 39’ 26” Ar. C. sin 0°694528
PR 6 35 84 . . sin 9099232
a=11 39 26 cot 10°685477 Ftes6 35 sin HDvEss
PR=81 45 0 D BE'=44 30 23 . e. cos 9853195
3 = g — * o gnrgqr which differs from the former result
PS +a=093 24 26=8up.*of §6° 35’34 only by 1",

This example is well suited to test the general trust-
worthiness of the operation marked (1), as the interval
between the observations, 3 hours, is tolerably large, and
the change of declination, 1' an hour, is an extreme suppo-
sition.

In reference to the method of solution here exemplified
there are one or two remarks to be made which deserve the
student’s attention.

1. In the step marked (2) the angle PS8 §' is inferred
from its sine. Now to a sine belongs either of two an«rles—
the supplements of each other, and it may be matter of
doubt whether the angle taken from the table, in connection
with this sine, should, in the case before us, be acute, as we
have considered it to be in the above operation, or obtuse:
we proceed to show how the ambiguity may be avoided.

The fundamental formula of Spherical Trigonometry gives

cos P8 = cos PS cosSS +sin PSsin S cos PSS’
,_c8P§ —cosPScos 8
Socos PRY = T sinPSsin S8

Now, it is matter of indifference which of the two places of
the celestial object we mark S or §'; so that in this formula
we may always consider that cos P §' is numerically greater
than cos P S; and consequently numerically greater than
cos P8 cos S§. And since the denominator is necessarily
positive, the fraction necessarily takes the sign of cos P §'.
Consequently, cos P S §' always has the same sign as cos P §',
go that P 8’ and P S & are always either both acute or both

* Instead of taking the supplement, for the purpose of getting its sine
in the néxt column of the work, we may take merely the excess of P '+«
above 90°, namely 3° 24’ 26", and take out its cosine, which, of course, is
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obtuse: hence, if we always take for P §' that one of the
two polar distances, whose sine is less than the sine of the
other, the apgle P S 8’ will always be of the same species as
the side P §', that is, they will be either both acute or both
obtuse.

As respects the sun, however, these considerations need
not be attended to : whenever the two positions of that bedy
are on the same side of the equinoctial, both angles will be
either acute or obtuse,—acute when the declination is of
the same name as the latitude, and obtuse when it is of
contrary name. The sides of the polar triangle differ from
equality in so trifling a degree, that the angles referred to
may always be regarded as of the same species, except when
the sun actually crosses the equinoctial in the interval of
the observations; and even then, each angle will be so near
to 90° that, whether they be regarded as acute or obtuse,
can make no difference of importance.

2. In low latitudes it may happen that the arc S §,if pro-
longed, would cut the meridian between P and Z, as in the
second of the diagrams at page151. In this case the angle
P S 7 will not be the difference of the angles PS &, 4 3 &,
but their sum. 1t is plain that when the altitudes are both
on the same side of the meridian, P S Z can be the sum
only when the latitude is so low—the declination also being
of the same name—that the sun would cross the meridian
between P and Z; for if it crossed the meridian on the
other side of Z, the great circle arc S ', when prolonged,
would necessarily cut the meridian still further from Z on
that side: hence when the declination and latitude are of
the same name, and we know that the latter is greater than
the former, we may be sure that the difference, and not the
sum, of the two angles in question must be taken, when
both observations are on the same side of the meridian.
‘When, however, under other circumstances, in these low
latitudes, a doubt occurs, we may remove it by recomputing
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vice versd; and choosing that of the two results which
differs the least from the latitude by account. But a more
convenient way seems to be this; namely, to directly com-
pute the angle P 8 Z, from the tliree sides of the triangle
P S Z: the polar distance P S, the co-altitude Z S, and the
co-latitude by account P Z, the operation being similar to
that of step (3) above; the result will be an approximation
to what the step referred to ought to give. And we may
remark, that as an approximation only is to be expected,
seconds in the several arcs need not be regarded ; each may
be taken to the nearest minute only.

‘When the true co-latitude P Z is thus ascertained, we
may combine it with the polar distance P S, and the co-
altitude Z S, in imitation of the operation (3), to determine
the hour-angle Z P8, that is, the apparent time from ngon,
when the altitude nearest to the prime vertical was taken ;
and the correction for Equation of Time being applied, we
shall get the mean time from noon when S was observed.
‘We here suppose S to be that one of the two positions of
the sun which is the nearer to the prime vertical, since the
motion in altitude is quicker than when the sun is in the
other position, and consequently a small error in the altitude
has a less effect upon the hour-angle.

In the example worked at page 153, we have proceeded
on’the supposition that the altitudes of the sun have both
been taken at the same place; but as, at sea, the ship
usually sails on during the interval of the observations, it is
necessary to allow for the change of place, and to reduce the
first altitude to what it would have been if taken at the place
of the second observation.

This is called the correction for the ship’s run; it is ob-
tained thus :—From the sun’s bearing find the angle between
the ship’s direction, and the sun’s direction at the first
observation ; then considering this angle as a course, and
the distance sailed as the corresponding distance, find,

nither hv the traverse tahle ar hv comnutation ac in nlana
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sailing, the diff. lat.: this will be the number of minutes by
which the ship—or rather the ship’s zenith—has advanced
towards, or.receded from, the sun in the interval, and will
therefore be the number of minutes to be added to, or sub-
tracted from, the first altitude, to reduce that altitude to
what it would have been if taken by another person at the
place of the second observation, and at the time of the first.

2. February 8, 1858, in latitude 35° N. by account, when
the mean time at Greenwich, as shown by the chronometer,
was 112 17m 48 .M., the observed altitude of the sun’s lower
limb was 36° 10, and his bearing S.}E.: after running 27
miles, the observed altitude of the lower limb was 41° 20,
the time shown by the chronometer being 2 38m 18s p.u.
The error of the instrument was +2', and the height of the
eye,20 feet : required the latitude of the ship when the
second observation was made.

1. For the polar distances P S, P S, and the angle SP S’ between them.
First Observation.

G. Time, Feb. 7 . . . 23k 17m 4s
Noon Declin. 15° 18’ 4" 8. Diff, 1n —47"-26
Cor. for23v} .. —18 19 234
DEcLINATION . . 14 59 458, 1h78
90 9452
PS= 104 59 45 _ us
6,0)109,8:79
Cor. 18" 19"
Second Observation.
G. Time, Feb. 8 . . . 2b 38m 18
Noon Declin, 14° 59’ 10" S. Diff, 1» —47"-89
Cor. for 28, . — 2 2%
DeoLivarion . . 14 57 108. 9578
90 2395
PS=104 57 10 60)11,978
PS =104 59 45 o

2)209 56 65
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From Time of 1st Observation 23h 17m 4s  3h
Noon, Feb. 7 . . 2nd . . . 2638 18 2Im

Interval of Time . 3 21 14 14’.

45°
5 15
3 80"

Hence the angle SP §’, in degrees, = 50 18 30

2, For the true altitudes of the Sun’s gentre.

First alt. sun’s L. L. . . . . 86100 ¢
Index and Dip — 2 24"
Somi-dlameter 16 15 | ¢ *1 8
App. alt. of centre . . . . . 86 23 51
Refraction — Parallax . . . . —1 12
True alt. of centre . . . 86 22 39
Second alt. sun’s L.L. . . . . 41°20° 0"
Index, Dip, and Semi. . . . . +13 51
App. alt. ofcentre . . . . . 41 33 51
Refraction — Parallax . . . . — 59

True alt. of centre . . . 1 3'2‘ 5.’.

Since the angle between the sun’s bearing at the first
observation, namely, S.JE., and the course of the ship after-
wards, namely, N.E., is 11} points, the ship has sailed, in
the interval, within 4} points of the direction opposite to
the sun, a distance of 27 miles. With 27 miles dist. and
4} points course, the Traverse Table gives 18' for the cor-
responding diff. lat., so that the ship has receded 18'from
the sun during the interval of the observation. Conse-
quently 18" must be subtracted from the first true altitude
to reduce it to what it would have been if a second observer
bad taken it at the place of the second observation at the
time the first was made. The true altitudes at this latter
place are therefore

36° 4’ 39" and 41° 32’ 52"
S ZS= 53° 55’ 21" and ZB/= 48° 27" 8"
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8. Inthe triungle PM S, to ind SM = } §5”.
Each of the equal sides of the triangle S P §’, regarded as isosceles, is
L1(PS+PY)=104° 58 28", and SPM =} SPS =25" 9’ 15"
PS 104° 59/ 45" . . ., sin 9984952
SPM 25 9 156 . . . sin 9-628445

SM 24 14 28% . . . sin 9-613397

SSY= 43 2§ &7 -

4, Iu the triungle P S §’, to find the angle P S S’.
Ss 48° 28’ 57" Arith.Comp. sin 0°125661
P§ 104 57 10 . . . . sin 9-985039

SP§ 50 18 30 . . . . sin 9-886204
PSS $3 10 0 . . . . sin 9°996904

5. Inthe triaugle Z S S’y o find the angle Z S5
s 48> 277 8"

ZS 53 55 21 Arith. Comp. sin 0092470
Sy 48 28 57 Arith. Comp. sin 0:125661

2)150 51 26

% sum of sides="75 35 98
jsom —Z8 =21 30 7 . . . . sin 9-564113
3sum — 88 ==26 56 31 . . . . sin 9'656182

2)19-438426

JISS =31 35 20 . . . . sin 9719213
S IS =63 10 58 —
PSY =83 10 0

S PSZ =19 59 2

8. In the triangle P 8 Z, to find first « and thence the side Z P.

P8 104°50 45”... tan 10572074 | P8» . . . . . . . cos 9412878
PSZ 19 59 2 ...cos 9073030 e 15" 34’ 34" Ar. Comp. 8in 0°562063

T S e e sin 978
w= 15 54 34 ...cotlosaolos | 29— 3804 sin 97789409

Z8= 53 5521

LaT, = 35° 82" 35” . . sin 9'764410

ZB—a= 38 0 47 [See formula (3), Hence the latitude is 85° 32’ 85" N.
_— p. 168.]

* There are three references to the Tables with this are, namely, one in
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Nore.—The illustrations now given will convey to the
student a sufficient notion of the problem of Double Alti-
tudes ; and from the length of the computation inyolved in its
solution, he will be prepared for the statement that it is a pro-
blem resorted to at sea only from necessity. This necessity,
however, can but seldom occur ; so long as the chronometer
can be safely depended upon, and the longitude by account
is not grossly in error, the #ime at the ship can always be
obtained with sufficient precision to enable us to get the
latitude from a single altitude of the sun, as fully explained
at pages 136 and 146. And the latitude thus inferred from a
single altitude, and the sun’s hour-angle, is in general much
more trustworthy than the latitude deduced from double
altitudes, which should never be regarded as more than an
approximation. Trifling errors in the data of a problem
may accumulate to something considerable when they per-
vade a long course of operations. One of the two aliitudes
in the present problem we are pretty sure must be affected
with error :—the altitude, namely, which is corrected for
the run of the ship: there is, of course, some difficulty in
getting the sun’s bearing with precision, and there is a
further liability to error in the estimated distance sailed.*

other for cosine. These may all be taken from the table at one opening ;
but it will be better to take out only two—as sine and tangent ; then cosine
is ab once got by subtracting the tan from the sine, conceiving the latter
10 +sin PS8 = 19-984952

tan IS == 10372074
:.log cos=:10 + log sin — log tan, as s DS— 0412878
in the margin. oo

* If the sun’s true bearing or azimuth at either place of observation
could be taken with precision, there would be mno necessity for a second
altitude ; for we should then have a spherical triangle Z P 8 in which are
given the polar distance P 8, the co-altitude 7 8, and the angle Z, to find
the co-latitude Z P.

For the purposes of the problem in the-text, however, the #»ue bearings
of the sun and of one place of observation from the other, are noi neces-
sary :—the compass bearings arc sufficient, because the angle between the
two directions—which is all that is wanted—is unaltered in magnitude

to be increased by 10, for cos =5
tan
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The sun’s bearing can be taken with more accuracy when
low than when high; so that in this problem the bearing
is always faken with the less of the two altitudes; when
therefore it is the second that is the less altitude, and the
sun’s bearing is taken, the point opposite to that of the
ship’s course, from the former position, must be used in
reducing the second altitude to what it would have been if
taken at the same place as the first; and the latitude will
apply to that place. The following is the blank form of the
operations :—

Braxx Form. ZLatitude from Two Altitudes of the Sum.

1. For the polar distances P S, P S’, and the polar angle SP S’
between them.

First Observation.

G. Time L m s
Noon Declin. Lol Diff, in 10 M
Cor. for hours {r. noon e e Iours from noon X .
DECLINATION ..
90 60)...."
PS=.. - .- Correction . /- "
Second Observation.
G. Time LB m s
Noon Declin. Lo L Diff, in 1% .
Cor. for hours fr. noon e Hours from noon x . .
DECLINATION ce .
90
[ 60)...."
Y —— —
P¥=.. Correction LS

PS=..

2).. .. s

L(PS+PS)= .. .. .. @ used for PS, in step 3.

Interval of Time, converted into Degrees,
LS " =8PY - 48P8=..°../.."=8PM.

the sun, and thence to deduce the latitude as indicated in thir note, the
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2. For the true altitudes of the Suw’s centre.

Firstalt. (L. L.or U. L) ..°.. .." | Second alt. (L. L. or U..L.) LS
Index and Dip .. . .” Index and Dip .." .." )
Semi-diameter .. .. et Semi-diameter .. ..

App. alt. of centre e e e App. alt. of centre e e
Refraction — Parallax —. . .. Refraction — Parallax —_—— .,
True alt. of centre PETN l True alt. of centre .

The sun’s bearing when the less altitude was taken having
been observed, and the course of the ship, or the bearing of
the place of the greater altitude from that of the less being
known, find by addition or subtraction, the angle between
these two bearings. With this angle as a course, and the
distance between the two places as a distance, find the cor-
responding diff. lat. from the Traverse Table; and this diff.,
taken as so many minutes, add to, or subtract from, the less
altitude, according as the ship has advanced towards, or
receded from the sun. The less altitude being thus cor-
rected for run, subtract each altitude from 90°, and we shall
have

Z8= .. M and IR =..° ../ .."

3. In thetriangle P M S, to find | 4. In the triangle P 8§’ to find
SM and thence 2 SM =S 8. | the angle P § 5.

PS .0 sin ....... B8 ..°....” Ar. Comp.sin .......
SPM .. .. .. sin....... PS .. .. .. sin.......
SM .. .. .. sn SPY...... sin.......
2 PSS¥ .. sin ...,

J8S=. ...

Nore. As pointed out in the preceding page, the polar
distance, used in this third step, is taken equal to the half
sum of the actual polar distances.
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5. In the triangle Z S &, to find the angle Z S8 and thence PS Z.
Z8 .00

Z8 .. .. .. Arith Comp. S eseeeen
S8 .. .. .. Arith Comp. [511 RPN
2
{sumofsides .. .. ..
$sum—ZS .. .. .. sin .. ... .
dsum —S® .. .. .. 51 T
2) ..
3ZS8'= .. .. .. sm’ T
4288 = .. .. .. T
PSS = .. .. .. ; The sum or difference. (See p. 156.)
PSZ= .. ....

« & 6. Inthe triangle P S Z, to find first & and thence the latitude.

Py Lo tan ... | rg.cs0 COB .. vunnn
PRZ=.... .. €OS .. utunn } @ .. .. .. Ar.Comp.sin.......
— | Z8%a.. .. .. sin.......
&= .. .. .. [1e] 2N —
Z8=.. .. .. I— Lar, .. .. .. sin.......
Z8*a=.. .. .. (Secformulw,
—_— p. 1o2.)

If instead of the sun the object observed be a star, step 1
is of course dispensed with, as the declination is got at once
from the Nautical Almanac, and in step 2 there is no cor-
rection for semidiameter and parallax; the remainder of
the operation is the same. But instead of taking two alti-
tudes of the same star, a far more practicable and trust-
worthy method of finding the latitude is to take simultaneous
altitudes of #wo distinct stars. This mcthod has several
advantages :— _

1. No allowance is made for run of the ship, and thus all
error involved in the course sailed and the bearing of the
sun is avoided. '

2. There is no risk incurred of losing a second observa-
tion from unfavourable weather.

3. The hour-angle, or the angle at the pole between the
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two polar distances, is given at once by taking the differ-
ence of right ascensions of the two stars; so that neither
the Greenwich date nor the time at ship requires to be
known.

As, however, the polar distances of the two stars may
differ considerably, the side 8 §’ cannot here be computed as
in the case of the sun or of a single star: it must be found,
in the triangle S P8, in a way similar to that in which Z P
was found in the triangle PS 7. But after what has been
done, an example will suffice to make the operation intel-
ligible.

It is proper to notice, however, that if there be but one
observer, so that the altitudes, instead of being both taken
at the same instant, must be taken in succession, the prac-
tical operation must be managed as follows :—The altitude
of one star must be taken, and the time noted by a watch ;
the altitude of the other star must then be taken, and the
time noted. After a short inferval, the altitude of the
second star must again be taken, and the time noted: we
shall thus learn the second star’s motion in altitude in a
given time; and may thence, by proportion, find what its
altitude was when the first star was observed; so that we
shall have the altitudes of both at that instant.

Latitude from the Altitudes of two Stars taken at the
same time.

Ez. In latitude 38° N. by account, the altitudes of
a Pegasi and « Aquile, taken at the same instant, on the
same side of the meridian, were respectively—

29° 49' 27" and 57° 29’ 507,

the index correction was —15”, and the height of the eye
41 feet: also, the Nautical Almanac gave the following
particulars :—
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« PEGASI. & AQUILA.
Declination 14° 22’ 50" N. Declination - 8° 28’ 2" N.
Right Ascension 22% 57 6° Right Ascension 19" 43™ 15¢
Required‘the latitude ?

1. For the polar distances PS, PS', and the polar angle SP S
between them.

14° 22’ 50" 8 28" 2"
90 90
PS'=175 87 10 PS*=81 31 58
) T eh 6 36 45°
Right Ascensions i 19 43 15 18m | s 15
e 9 n
SPS intime= 3§ 13 51 Sro.. 12 45

- SPS = 48" 27’ 45"

, 2. For the Stars’ true zenith distances Z S’, Z 8.
Observed alt. of 8’

29° 49’ 27" ....of S 57°29 50"
Index and Dip —6 33 —6 33
Apparent alt. 20 42 54 57 23 17
Refraction . —1 42 — 37
True altitude 29 41 12 57 22 40

90 90

Z§'= 60 18 48

Z8S= 32 37 20

3. In thetriangle PSS', to find 88,

Py
SPY

i

(-4
PS
PS+a=

Py
@

PS+e
8§ =

75° 37 107 tan  10-591091
48 27 45 cs 9821586
21 8 238 cot 10412677
81 31 58 ———
102 40 21

75° 877 10" . . . cos 9-395084
21 8 23 Ar. Comp. sin 0-442022
102 40 21 sin  9-989290
47 47 14 . cos 9°-827296
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4. Inthetriangle P S8’y to find the angle PSS’
S8 47° 47 14" . Arith. Comp. sin 0-130384
PS'T5 87 10 . . . sin 9-986175

SPS8' 48 27 45 .. . sin 9-874R05

PSS’ 78 13 32 . . . sin 9+990764

5. In the triangle Z 8 8’y to find the angle ZS S’ and thence PS Z.
Z8760° 18’ 48"
28 32 37 20 . Arith, Comp. sin 0-268333
SS 47 47 14 . Arith, Comp. sin 0-130384

2)140 43 22

70 21 41
Ysam—ZS—37 44 21 . . .  sin9-786799
jeum—S§'=292 34 27 . . . sin9584194
2)19-769710
1ISS'= 50 5 41 . . . sin9'884855

SV L8R =100 11 2
PSS’ = 78 13 3

S PSZ = 91 57 50

6. In the triangle P 8 Z, to find « and thence the latitude.

PS 81° 31’ 58" . . tan 10827204
PSZ 21 67 50 . . cos 9°967276
a= 9 7 9 . . cot 10-794480

48=32 37 20

Z8+a=—41 44 29

PS 81° 31" 58", . . cos 9°168008
@ 9 7 9 Ar, Comp. sin 0:800021
I8 + 41 44 29 . . . sin 9-823324

Lar. 38 12 29 . . . sin 9-791353

The blank form for the foregoing operation is as follows:—



168 BLANK FORM: ALT. OF TWO STARS.

Braxx ForM. Latitude from Altitudes of two Stars taken
at the same time.

=5 That star is to be marked S of which the sine of the
polar distance is the Zess.

1. For the polar distances P S, P8’, and the polar angle SP S'.

Declin, of 8 . .° .. . ." of 87 ..7 ..o "
90 90
Polar dist. Pszi.m:ﬁ.m_.—._ PS'=..

RAOfS .. n
,, of 8/ ce e

SPS’intime .. .. .. S, SP® = ..° .. ..

3
2. For the true zenith distances Z S, Z.S’.
Observed alt. of S ..° . .7 ,." of 8 ..° L0 L
Index and Dip P v e
Apparent alt. ce ae e e .
Refraction —_—e .. —_— .
True altitude o e ew .o .
90 90
ZS = P I8 =.. .
3. In the triangle PS8’y to find S 8.
s Lol [ 310 IR PR L COS. . La. ..
sSPS .. .. .. COS .. ..... o« .- «. .. Ar.Comp.sin... .
R cot . vnurn. o sin.......
Py = L SR =., .. .. COR ..t
Sda=.. .. .. {(Seeformulme,

. p. 152.)

The remaining steps, namely, 4, 5, and 6, are the same as
those in the form at page 163.
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Ezamples for Exercise in Double Altitudes.

1. In latitude 1° 34’ N. by account, two corrected zenith
distances of the sun’s centre were 54° 89, and 19° 59';
the corresponding declinations were 5° 31’ 6” S, and
5° 28' 54" S.; the interval of time between the observa-
tions was 28 20m: required the latitude ?

Ans. lat. 1° 29’ 28" N.

2. In latitude 35° 27’ N. by account, when the mean
time at Greenwich, as shown by the chronometer, was 11t
17m 48 A, M., the observed altitude of the sun’s lower limb
was 36° 14/, and his bearing 8. 3 E. After running N.E.
27 miles, the observed altitude of the lower limb was
41° 24/, the time at Greenwich being 8 35 18s p.ar, The
error of the instrument was —4/, and the height of the eye
20 feet. The Nautical Almanac gave—

Declin. at G. noon preceding Ist observation, 15" 38" 9%, DIff. in 1%, — 4675

” G, following s ” 15 1y 32 ” — 4772
Sun's semidiameter 16° 14'.

Required the latitude of the place where the second obser-
vation was made ? Ans., lat. 85° 20’ 2” N.

8. In latitude 53° 30’ N. by account, the corrected zenith
distances of Capella and Sirius, both observed at the same
time, were—

Cupella, Sirius.
Zenith distance Z 8 == 29° 14’ 24" Zenith distance Z S = 72° 5" 48"
Polar distance P8 =44 11 39 Polar distance P S=:106 28 40.

Also the difference of their right ascensions was 11 33™ 458

required the latitude ? Ans., lat. 58° 19’ 23” N,
4. In latitude 28° 10" 8. by account, the sun being ob-

scured ab noon, its altitude was taken shortly afterwards,

she chronometer atjthe instant showing 9" 49m 20s; and

vhen the same;chronometer showed 10! -Li™ 458 the alti-

ude was again taken. In the first observation the altitude

1
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of the upper limb was 45°33'; in the second the altitude of
the lower limb was 42° 8' 80", the sun’s bearing at the time
being N. 1 E. The ship’s run in the interval was N.W.
£ W. 6 miles; the allowance for index error and dip was
—4'30", and the Nautical Almanac gave for the Green-
wich noon of the day—

Sun’s declination 16° 34' 4" N. Diff. in 1b, 42"8
Sun’s semidiameter 15 5§2".

Required the latitude to the nearest minute at the place
where the first observation was taken ?
Ans., Iat. 28°0' 8.

Nore.—In the foregoing examples a single altitude of
the celestial object observed, has uniformly been regarded
as the altitude at the time; but as it is not always easy to

“take an altitude with precision, it is customary, where much
accuracy is required, to take several altitudes—usually
three or five—in pretty rapid succession, that is, within a
minute or two of each other, and to note the corresponding
times : the intervals should be as nearly equal as practicable.
The mean of the altitudes is then taken as the altitude
corresponding to the mean of the times.

The learner is to understand, however, that in taking a
set of altitudes, it is not the chronometer which is directly
consulted for the corresponding times: the chronometer is
never removed and carried about, but a good seconds watch
is always employed. The mean of the times by watch, cor-
responding to the mean of the altitudes, being found, the
watch is then carried to the chronometer, and its error on
the chronometer ascertained; this error being allowed for,
we have the time by chronometer corresponding to the
mean of the altitudes; or the error is found immediately
before the observations are taken,
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CHAPTER III
ON THE VARIATION OF THE COMPASS.

TrE angle by which the compass-needle—when unin-
fluenced by local circumstances—deviates from the true
north and south line, is called the variation of the compass
at the place through which that north and south line passes.
The variation is different at different places, and is seldom
long constant even at the same place. At London the
variation was formerly easterly—in 1659 it was zero, the °
needle then pointing due north and south: it then slowly
deviated from the plane of the geographical meridian to-
wards the west, the deviation increasing till the year 1819,
when the westerly limit, 24° 42, appears to have been
attained. Since then it has been slowly but irregularly
returning, the variation at present being about 23° West.
On shipboard the angular departure of the compass-needle
from the plane of the geographical meridian, is the combined
effect of the variation properly so called and the local attrac-
tion of the ship itself, which in iron vessels must of course
be considerable. Contrivances have been introduced to
neutralise this local attraction; an account of the most
efficient of these will be found in the article on * The Com-
pass,” in Mr. Grantham’s “ Iron Shipbuilding,” in Weale’s
Series of Rudimentary Treatises.

To ascertain at any place the amount by which the com-
pass direction deviates from the direction of the true north
and south line, is obviously a matter of much practical im-
portance ab sea: the following article will be devoted to the

consideration of it.
12
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Variation determined from the observed Amplitude of a
celestial object.

In order to discover to what extent the compass is in
error, it is plain that we must possess some means inde-
pendent of that instrument of finding the frue bearing of an
object ; the difference between this and the compass bearing
will be the variation, or the error of the instrument.

Af sea, the object must be one of the heavenly bodies: if
it be in the horizon, that is, just rising or setting, the
bearing is its amplitude ; if it be above the horizon, the
bearing is its azimuth. When the object is rising, the true
amplitude is always measured from the E. and when it is
setting from the W., and towards the north or south
according as the declination is N. or S.

*To compute the amplitude it is only necessary to know
the declination of the object, and the latitude of the place.
For let P be the elevated pole,
and Q Q' the equinoctial; Z
the zenith, and H H' the hori-
zon ; then if S be the body at
rising or setting, the perpen-
dicular SD to Q Q will be
its declination, the opposite
angle O, at the east or west
point of the horizon, will be
the co-latitude of Z, and the
hypotenuse O S will be the true amplitude; so that in the
right-angled spherical triangle O D S we have sin S D =sin
O S x sin O, that is sin declin. = sin amp. x cos lat.

sin.amplitude= sin declination
cos latitude
Since refraction causes objects to appear in the horizon
when they are on the average about 33’ below it, the com-
pass bearing should be taken when the sun’s centre, or the
star selected, is about 83’4 dip above the sea horizon ; so
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that allowing 16’ for the sun’s semidiameter, the observed
altitude of the sun’s lower limb should be about 17’ + dip.
It is to be observed that if the true amplitude found by
calculation, and that taken by the compass, be both N. or
both 8., their difference will be the variation ; but if one be
N. and the other 8. their sum will be the variation. The
variation is E. when the true amplitude is to the right, and
‘W. when it is to the left of the compass amplitude, that is
to say, it is E. or W, according as the sun’s true direction
is to the right or left of the compass direction. It will be
sufficient if the variation is found to the nearest minute.

ExamprEs.— Variation of the Compass from an Amplitude.

1. February 20, 1858, the rising amplitude of Aldebaran,
taken at sea with the azimuth compass in true latitude 27° .
86' N., was B. 23° 30’ N.: required the variation of the
compass ?

Declination of Aldcbaran, Feb, 20, 1858, (Naut. Alm, p. 279.) 16° 13’ 21" N.
log sin amplitude =log sin declin. —log cos latitudo + 10

Declin. 16° 13" 217 . . . . sin 9°44618
Latitude 27 36 0 . . . . cos 9'94753
True amplitude E. 18 22 33 N. . . . sin 940865

Compass amplitudo E. 23 80 0 N.
L T The magnetic or compass E. has
Variation & 7 21"E.  peeded £° 7 277 from the truc E.

or 5 7}%E. towards the S., henee the magnetic
N. must have deviated this amount
E. from the true N.

2. July 10, 1858, the star Rigel was observed to set 9°
50’ to the N. of the W. point of the compass, in true lati-
tude 48° 10’ N.: required the variation of the compass ?

Declination of Rigel, July 10, 1858, 8° 21’ 54" S.

Declin. 8°21"54" , . . . sin 916280
Latitude 48 10 0 . . . . cos 9°:82410

Troe amplitude W. 12 35 56 8. . . . sin 9-33870

Compass amplitude W. 9 50 0 N,

Variation 22° 25’ 56" W., or 22° 26’ W., the true am-
— plitude being to the left.

the true amplitude being to the right.
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8. February 15, 1858, in latitude 43° 36' N. true, and
longitude 20° W. by account, the setting amplitude of the
sun’s centns was observed to be W. 6° 45' N, at 62 50™ p.m,
apparent time : required the variation of the compass ?

1. For the declination at time of observation.

App. Time at Ship . . . . 6 50
Lopg. in time W. . . , .+1 20

App. Time at Greenwich . . 8 10

Sun’s Noon Declin. 12° 39’ 57":5 8. Diff, 1t —51"-82
Cor. for 8% 10 . —7 3 8L
DecLivaTion . 12 32 54 S, 41456
B . 864

42320

2. For the True Amplitude.

Declin. 12°°8% , . . . sin 9-33704
Latitude 43 36 . . . . cos 9°85984

True amplitude W. 17 28 8.. . . . sin 9-47720
Compass amplitude W, 6 45 N,

Varumox . 24 13 W., the true amp. being to the left
of the compass.

The blank form for these operations is the following :

Braxk ForM.—Variation of Compass from Sun’s
Amplitude.

[The true amplitude is always measured from the E. when
the object is rising, and from the W. when it ig setting;
and towards the N. or 8. according as the decﬁna,tion is
N.or8.]
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1. For Suw's declination at time of Observation.

Time at Ship R A
Long. in Time
Greenwich date . e
Sun’s Noon Declin. at G. LS Diff, 1% Lt
Cor. for Time from Noon ce e No. of hours x. .
DEeoLINATION ce e e Cor. ..."

2. For the true Amplitude, and thence the Variation.

Declination P sin ...,
Latitude ce e €O8 « oo
True amplitude ce e sin . .. .
Compass amplitude ce e
VARIATION e e When the amplitudes are poth

N. or both S. this is the diff. of
the two, otherwise it is their sum ;
E. if the true a.m'i). is to the right,
and W. if to the left, of the com-
pass amp,

Examples for Exercise.

1. Jan. 1, 1858, the rising amplitude of Spica, in latitude
16° 21’ S. true, was observed by compass to be E. 16° 8' N.:
required the variation of the compass ?

Ans. variation 26° 55' E.

2. In latitude 21° 14’ N. true, when the declination of the
sun, reduced to the time at the ship, was 19° 18’ 6" 8, its
rising amplitude was observed to be E. 85°20'S.: required
the variation of the compass ?

Ans. variation 14034’ W.

8. March 11, 1858, at about 5 56™ a.M. apparent time,
the sun’s rising amplitude was observed to be E. 6° 36' N.;
the true latitude of the ship was 10°2'8., and her longitude
by account 168° E.: required the variation of the compass ?

Ang. variation 10° 38’ E.
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4. Nov. 15, 1858, at about 6 45™ p.M. mean time, the
sun’s setting amplitude was W. 15° 40’ 8. ; the true latitude
of the ship was 31° 56’ N., and her longitude by account
75° 80’ W.: required the variation of the compass ?

Ans. variation 6° 27' W.

5. Sept. 18, 1858, at about 5" 50m A.M. mean time, the
sun’s rising amplitude was E. 12° 10’ N.; the true latitude
was 47° 25' N,, and the longitude by account 72° 15’ W.:
required the variation ?

Ans. variation 9° 9'% B.

Variation determined from the observed Azimuthk of a celestial
object.

« @

Azimuth like amplitude is an arc of the horizon : it is the
measure of the angle at the zenith included between the
meridian of the observer and the vertical through the object
observed. In N.latitude the horizontal are is here regarded
as measured from the S. point of the horizon, and S. latitude
from the N. point; towards the E. if the altitude be in-
creasing, and towards the W. if it be decreasing.

In the diagram at page 172, let S’ be the object : the arc of
the horizon which measures the angle H Z §' is the true
azimuth. To determine it, we have given the three sides of
the oblique-angled spherical triangle Z &' P ; namely, the co-
altitude P Z, the polar distance P &', and the co-altitude
Z §': the angle P Z §' may therefore be found by an opera-
tion similar to that marked (5) at page 160: the supplement
of this angle is the true azimuth. As the operation referred
to gives half the angle P Z §, or } Z, and that the supple-
ment of Z is 2(90°—1 Z), we havé only to change sin in
the final result to cos.
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(]
ExavmeLEs. TVariation of the Compass from an Azvmuth.

1. April 20, 1858, at about 9% a.M. apparent time, the
altitude of the sun’s lower limb was 36° 50/, and his bear-
ing or azimuth, by compass, at the same time, S. 31° E.
The true latitude of the ship was 50° 12’ N., and the
longitude by account 13° W.: required the variation of the
compass,, the correction of the altitude for index and dip
being —4/ 31"?

1. For the Suw’s polar distance at time of observation.
Time at Ship, Ap. 19 . . 21t (=
Long. in Time W. . . . +52

App. Timeat G. . . . . _‘.’.1 52
Declin. Noon, Ap. 19, 11° 10’ 15"2 N. Diff, +51"6s
Cor.for 226 , . ., . +18 56 22
DecriNaTION . . 11 29 11 N. 10328
90 1033
Polar distance P =78 80 49 6,0)113,6°1
- +18 56"

2. For the true co-altitude.
Observed altitaude L. L. . 36°50" 0"
Index and dip -4’ 31"
11
Semidiameter + 15 57 26
Apparent alt. of centre . 37 1 26
Refraction — Parallax . -1 10

True altitude . . . 87 0 16, Co-ALTITUDE Z8'=52° 59’ 44"

138
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3. For the true Azimuth, and thence the Variation.
Polar distance 78° 30' 50"

Co-altitude 52 59 40  Arith. Comp. sin 009768
Co-latitude 89 48 0 'Arith. Comp. sin 0-19375
2)171 18 30

$4sum . . ., 85 39 15
3 sum - co-alt. 32 39 35 . . . . . sin 973211
4 sum - co-lat. 45 51 15 ., . . . . sin 985586
2)19-87940
4 Azimuth 29 30 0 « « « . cos 993970
2

True Azimuth . 59 0 E. The variation is E. or W., accord-
Compass Azimuth 8. 31 0 E. ingas the true azimuth is to the
]

VARIATION 2"(') o \%f right or left of the observed azi-
0 7 muth, just as in an amplitude.

2. June 9, 1858, at about 5" 50 A.M. apparent time, in lati-
tude 50° 47' N. true, and longitude 99° 45’ W. by account,
the bearing of the sun by compass was S. 92° 36’ E., when
the altitude of his lower limb was 18° 85’ 207; the index
correction was + 8' 10", and the height of the eye 19 feet :
required the variation of the compass ?

1. For the polar distance at time of observation.

Time at Ship, June 8, . . ., 17h 5Qum
Long. in Time W. . . 6 39

App. Time at G, June 9, . . 0 29

Declin. Noon, June 9, 22° 55’ 38" N.

Dif. +12"-08
Cor. for 29= , . , +6 .

DecuiNATION . 22 56 44
90
PorAR Distaxcs 67 3 16
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2. For the true co-altitude.
Observed alt. L.L. . . . . . 18° 35 2q"

Index and dip ~ -1" 7" } . +14 40
Semidiameter  +15 47
App. alt. of centre ., . . , . 18 50 0

Refraction — Parallax . -2 41
True altitude . . . . 18 47 19

90
Co-ALTITUDE . . . . 71° 12/ 41"

8. For the true azimuth and thencethe variation.
Polar distance . . 67° 3 16"
Co-altitude .+ 71 12 40 Arith. Comp. sin 002378

Co-latitude . . . 39 18 0 Arith. Comp. sin 0-19911
°

2)177 28 56
Ysum . . . . 88 44 28
3 sum - co-alt. . 17 31 48 . . . . . sin 9°47886

1 sum - co-lat. . 49 381 28 . . sin 9-88120

2)19-58295

3 Azimuth . . 51° 46’ 50" . . . . cos 979147
2

True Azimuth 8. . 103 34 E.
Compass Azimuth S. 92 36 E.

VarATION . . 10 58 W., the true azimuth leing to the
- left of the observed.

The computation marked (3) in each of these two examples
has been conducted in imitation of that at page 160. But
there is another form for finding an angle A, from the three
sides @, b, ¢, of a spherical triangle, which is somewhat
shorter than that above, namely, the form—

cos § A= o S8 S (s-0)
sin b sin ¢

s being half the sum of the sides. If we call the altitude 4,
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the latitude 7, and the co-declination or polar distance p;
and put s for the ¥ sum of these three, the formula, after an
obvious transformation, will give—
v o8 s cos (s-p)

cos @ cos I

The work of step (3) above, by this formula, is as follows: —

sin § Azimuth =

Polar distance . . 67° 38 16"
Altitude . . . 18 47 20  Arith. Comp. cos 0:02378

Latitade . . . 50 47 0 Arith. Comp. cos 0-19911
2)136 87 56

Lsum . . . 68 18 48 . . . . . cos 9:56765

4 sum- Pelar dist. 1 15 382 . . . . . cos 9:99990

2)10-79044

, hAdmuth . . . 51 46 50 . . . . . sin 9-89522
It is this method of working the step which we shall indicate
in the following blank form :—

Braxk Foru. Variation of the Compass from an Azimuth.
[The azimuth is to be estimated from the S.in N. lat.,
and from the N. in 8. lat. : towards the E. when the altitude
is increasing, and towards the W. when it is decreasing.]

1. Forthe declination. | 2. For the true altitude.
Time at Ship -h.mo Observedalt. (L Luor U.L) ..° .. .7
Long. in time s e i Index and dip o
Greenwich date .. ..* Semi-diameter .. .. } Tt
G. Noon Declin. ..2..s .| App alt. of centre IR
Diff. in 1* L Refraction —Parallax —_— .

No. of hours x . . TRUE ALTITUDE -

. " -
Correction . .."= N Note. When the object is a star, the decli-

DECLINATION ee ee s nation is got at once from the Nautical Alma-
90 nac; and the altitude requires no correction
for semidiameter and parallax.

POLARDISTANCE .. .. ..

* The Greenwich date, mean time, may be obtained from the chro-
nometer, nroperly corracted for sain orlo &
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8. For the true Azimuth, and thence the Variation.

Polar distance P A .
Altitude eh ee e Arith. Comp. cos ......
Latitude e e e Arith., Comp. cos ......
2)..

4 sam e ee e COS o v voa

4sam~~ Polardist. .. .. .. COS 4o wvnw

2)e e

1Azimuth .. .. .. sin ...

2

True Azimuth ce e &5 When the true azimuth is to
Compass Azimuth .. .. the left of the compass azimuth,
VARIATION subtract ; when to the right, add.

Nore.—When the object observed is on the meridian, its,
bearing by compass will be the variation, which will be W.
if the meridian be to the left of the compass bearing, and
E. if it be to the right.

Ezamples for Exercise.

1. July 20, 1858, in latitude 21° 42’ N. true, and longi-
tude 62° E. by account, the sun’s observed azimuth was
8.100° 16' E., at 72 4™ 5.M. apparent time ; the altitude of his
lower limb was 28° 86', allowing for index error, and the
height of the eye 24 feet: required the variation of the com-
pass ? Ans, variation 3°42' W,

2. October 28, 1858, in latitude 36° 18’ 8. true, and longi-
tude 15° 30’ E. by account, the sun’s observed azimuth was
N. 86° 34’ W., at about 6 30™ p.M. mean time ; the altitude
of his lower limb was 12° 35, allowing for index error, and
the height of the eye was 30 feet : required the variation of
the compass ? Auns. variation 10° 36' W,

3. November 8, 1858, in latitude 25° 32’ N. true, and
longitude 85° 'W. by account, the sun’s observed azimuth was
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S. 58° 32° W, at about 4" 15™ .M. mean time; the altitude
of his lower limb was 15° 87, the index correction was
+1' 207, ané the height of the eye 15 feet: required the
variation of the compass ? Ans. variation 5° 26' E.

4. May 21, 1858, in latitude 52° 12 N. true, the sun’s
azimuth by compass was 8. 82° 58’ W., and the altitude of
his lower limb was 23° 46'. The chronometer showed the
Greenwich time of the observation to be 172 56™ 34#, May 20.
The index correction was +2' 30", and the height of the eye
12 feet: required the variation of the compass ?

Ans. variation 9° 24’ E.

Nore.—The object of the preceding articles on the varia-
tion of the compass is to determine the angular departure of
the N. point of the instrument from the true N. point of
the horizon, at the time and under the circumstances in
which the amplitude or azimuth is taken. If no provision
have been made for neutralizing the influence of the ship
itself on the needle, the variation thus determined will be
compounded of variation proper and of the deviation from
the position in which the needle would otherwise settle,
caused by the local attraction. In iron ships this local at-
traction is of course considerable, and it is a great deal
influenced by the position in reference to the meridian in
which the ship is built. To determine the extent to which
the deviation affects the variation proper, experiments must
be made before the ship proceeds to sea, by turning her head
in different directions, and comparing her compass with
another compass on shore. To free the variation from the
local disturbances thus ascertained, artificial magnets, and
small boxes of iron chain, are recommended by the Astro-
nomer Royal to be employed in the manner directed by him
in a pamphlet to be had of the publisher of the present
treatise. An account of the necessary operations for Com-
pass Correction will also be found in Mr, Grantham’s work
on “Iron Ship-Puilding,” before alluded to.
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CHAPTER IV.
ON FINDING THE TIME AT SEA.

THE determination of the time at sea is a problem of the
first consequence. It is indispensably necessary to the dis-
covery of the correct longitude, which indeed is nothing
more than the interval between the ship’s time and Green-
wich time at the same instant, converted into degrees and
minutes. As in most of the other problems of Nautical
Astronomy, so here :—of the quantity sought we have
generally some approximate value, more or less incorrect,
and this is turned to account in the operation for finding
the true value. At first sight the statement would appear
contradictory, that erroneous data could aid in conducting
to correct conclusions; but Nautical Astronomy abounds in
instances where very material errors in the values with
which we work have no practical influence upon the results
arrived at. The reason is, that these erroneous values never
enter directly into the mathematical portion of the inquiry :
they merely serve the purpose of suggesting to us certain
other quantities with which they are connected—which are
actually employed in the computation—and which are such
as to be incapable of error beyond a very limited extent.
The ship’s longitude by account, and her estimated time,
never enter into the trigonometrical calculation df any
nautical problem, claiming accuracy of result: but for the
preparatory reductions for the sun’s declination, or the
equation of time, they may be used with every confidence ;
and it is only for such like purposes that they are used.
These quantities vary so little in a considerable interval of
time, that an error in time of one hour—equivalent to an
error of 15° of longitude—will not affect the sun’s de-
clination to the extent of 1'; and as to the equation of time,
the error will not average 1% ’
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Time deduced from an Altitude of the Sun.

Referringeto the diagram at page 172, if S be the place of
the sun at the time of observation, there will be given in the
spherical triangle P Z 8, the co-latitude P Z, the co-altitude
Z 8, and the polar distance P 8, to find the hour angle
Z P 8, which measures the apparent time from noon.

As at page 179, putting @ for the altitude of 8, p for its
polar distance, ¢ for the latitude of Z, and s for the half sum
of all three, we shall have for the hour angle P.

sin § P~/ %88 sin (s—a)
- sin p cos ¢

which is derived from the formula following (Spherical Trig.
p- 18) :—

sin § A=+/ sin (s— D) sin (s-¢)

sin b sin ¢

by obvious substitutions.

The hour angle P being thus found, and converted into
time, we shall have the apparent time at the ship ; and by
applying the equation of time, shall thence get the mean
time at the ship, as in the examples following.

Nore.—It will prevent confusion, and consequently all
liability to mistake, if the time at a place at any instant
be always measured from the noon at the place preceding
that instant ; that is, if it be always converted into time
p.M. , Thus, 10" 20™ aA.M. in civil reckoning, means
10t 20™ past the preceding midnight: it is better to regard
it as 22h 20™ past the preceding noon, pushing the date one
day back, so that 10t 20™ A, M. Jan. 4, is the same ag 22 20
Jan. 3.

Examrres. Time from an Altitude of the Sun.

1. In latitude 50° 80’ N. true, and longitude 110° W. by
account, the mean of a set of altitudes of the sun’s lower
limb was 11° 0’ 60", the mean of the corresponding times
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by the wafch was 4" 45™ p.M., the index correction was
—38' 20", and the height of the eye 20 feet: required the
mean time at the ship, and the error of the watgh ?

From the Nautical Almanac at G. noon.

Sun’s Declin. 0° ¢ 56” S. Diff.in 1P, 458"}, Equa. of Time,
7m 425, Diff. +07-858. Semi-diameter, 15' 58",

1. For the true altitude a, and polar distance p.

Obs. alt. C e e e . . 11° 0’ BO"

Index and dip - 7/ 44" 1

Semidiam. +15 58 8

App. alt. centre Lo.o. .11 9 4

Ref. ~Parallax . . . . . -4 39

True alt. centre . . . . . 11 425
Equa. of time* 7m 498 Diff, in 1b, + -858"
Cor. for 120 ., ,  +10 12

Equa. oF Trme ' 52 10296

Time per watch ~ 4b 45m Qs p, m.
Long. 110W. +7 20

Mean timeat G. 12 b nearly.
Noon Declin, at G. 0° 6’ 56" S. Diff.in1h, +58"}

Cor. for 12b §m . . 411 47 124
DEeoLINATION . 0 18 43S 702
90 5
PorAr pisraNce 90 18 43 M'f’
117 47"

* This is taken from page I of the month in the Nautical Almanac :
there will be no sensible error in regarding the time as apparent instead of
mean. The Almanac itself directs whether the reduced equation is to be
added to or subtracted from the apparent time at the ship.
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2. For the mean time at the ship, and error of the watch.

Altitude . . 11° 4/ 25"
Latitude . . 50 80 O  Arith. Comp. cos 0-196489
Polar distance 90 18 43* Arith, Comp. sin 0000006

2)151 53 8
fsum . . .—7?5_“5—6__34“ . . . cos 9:385411
4 sum - alt. 64 52 9 . . . sin 9956812
2)19-538718
j} Hourangle 86° O’ 48" . . . sin9769359
9 -

.. Hourangle=72 1 36
In Time = 4" 48m 6* Apparent time at ship
Equation of time -7 52
4h 40m 145 Mean time at ship.
4 45 0 Meun time per watch.

0h 4m 46+ Watch fast for mean time at ship.

The student will readily perceive the object of finding the
error of the watch. The watch being assumed to be a suffi-
ciently good one to be depended upon for regularity during
the short time occupied in performing the foregoing calcula~
tion, when the operation is finished the watch—making the
proper allowance for the error—will still show what the time
is at the place where the observation was made: comparing
it, therefore, now with the chronometer—which is never
disturbed from its situation—we shall at once see by how
much ¢ differed from the time at the place of observation, at
the instant that observation was made; that is, we shall get
what is called the error of the chronometer on mean time at
the place. A memorandum being made of this error, so that
we may always be able to allow for it when consulting the

* The sine of this is cos 18’ 43". And whenever the polar distance
exceeds 90°, instead of the sine of it we may always take the cosine of the
excess, and thus avoid the trouble of subtracting from 180°. .
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chronometer, we may at any future instant learn the time
at that instant, at the place left,—provided, at least, the
chronometer can be depended upon for regulsrity during
the interval. Hence, by again finding the mean time at
ship, and as before the error of the chronometer on that
time, the difference of the errors will be the difference of
longitude in time between the two situations of the ship.
But we must defer further remarks on this subject till next
article.

Since the determination of the time at sea requires that
the altitude of the object observed should be taken with
more than ordinary accuracy, a single observation for this
purpose is seldom considered as sufficient ; it is, therefore,
usual to take a set of altitudes, and to employ the mean of
the whole, taking the mean of the corresponding times by
watch as the estimated time, as in the following example.

2. August 16, 1858, the following observations were
taken in latitude 36° 80' N true, and longitude 153° E. by
account : the index correction was —38' 5”,and the height of
the eye 27 feet: required the mean time at the ship, and
the error of the watch ?

Times per Watch. Alts. Sun’s L. L.
4b 40m 0% p.M. 24° 18/
41 10 24 2
42 5 23 48}
43 0 23 36
4 17 23 19}
5)210 32 5119 4

4 42 6 . . Meams . . 23 44 48

‘We are to proceed as if the observed altitude of the sun’s
lower limb were 23° 44/ 48", and the corresponding time
per watch 4 42™ 6 p.u.
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1. For the true altitude and polar distance.

[)
Obs, alt. L. L. . . 23° 44’ 48"
Index and Dip. - §& 12" }
Semi-diameter + 15 50 + 7 38
App. alt. centre 52 26
Ref, —Parallax . -2 2
True alt. centre 23 50 24
Equa. of Time 4m 17s Diff. - 49
Cor. for 18 hours -9 81
49
39
Equa. or Tixe 4 8 Add. 88
Time per Watch, Aug. 16 4% 42m 65 p.y.
Long. 153° K. -10 12 0
M. Time at G.. Aug. 15* 18 30 nearly
Noon declin, at G. 14° & 13" N.  Diff. -47"13
814
4713
Cor. for 18} hours -14 382 3770
DECLINATION m 236
90 6,0)87,1+9
PoLAR DISTANOB 76 9 19 -14’ 32"

* Agreeably to what is recommended in the NoT at p. 184, the time at
Greenwich, at the instant of observation, is measured from the Greenwich
noon preceding that instant, 24" being tacitly added to the time per watch,
to bring this about, and the date therefore put one day back. This is the
same a8 if we had actually subtracted the longitude in time from the time
per watch, getting for remainder (neglecting the 6%) — 5t 80m; that is,
5" 30m preceding the noon of Aug. 16, which is the same as 18k 30™ ajfter

the noon of Aug. 15.
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2. For mean time at ship and error of the waich.

Altitude . . 23° 50° 24"
Latitude . . 36 30 0 Arith. Comp. cos 0894837
Polar distance 76 9 20  Arith. Comp. sin 0-012804

2)136 29 44
} sum 68 14 52 . . . cos 9568911
1 sum - alt. 44 24 28 . . . 8in 9-844949
. 2)19-521501
3 Hourangle  85° 12/ 1" . . . sin 9760750
> kb

.. Hour angle =70 24

In Time = 4» 41m 36* Apparent time at ship.
Equation oftime +4 8

4 45 44 Mean time at ship.
4 42 6 Mean time per watch.

Oor  8m 385 Watch slow for mcan time at ship.

It may be remarked hLere that an error of a few seconds in
the polar distance—which, of course, is to be expected
—since the estimated time and estimated longitude are
both to some extent incorrect, will make no appreciable
difference in the value of the hour-angle deduced. The
polar ; distance is always a large arc—never much less
than 67°, and for large arcs the tabular differences of the
sines are always small. 'Whatever error there may be in the
polar distance, there will be half that error in the % sum,
and in the { sum — alt.; but as the logs connected with
these are log cos and log sin, their errors oppose one
another. [See, however, the remarks at page 190.] It ap-
pears, from the Hourly Diff. in the declination, that if the
combined errors of the time and longitude in the foregoing
example amounted to so much as 1" of time, or 15° of
longitude, the error in the polar distance would be 47”.
Suppose, for greater convenience of calculation, we assume
the error to be 44", and let us see what effect such an
error would have upbon the resnlting fima at +ha ahin
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Suppose, now, that this error gives a correction of +22” in
the polar dist., then, applying this correction as recom-

mended abgve, we have—
07199263
Polar distance  91° 36’ 52" Arith, Comp. sin 0°000172
4 sum . . 8 1 3 , . . cos8840593
dsum—alt. 66 23 13 ., . . sin9920538

2)18:960566

; Mour angle 17 35 21} . . . s&in 9-480288
2

.. Hour angle = 35 10 43 =2 20m 43 in time.

As this is 3® less than the apparent time before deduced,
it follows that the error of the watch is 31™ 57,

We take this opportunity of showing the practical advan-
tabe of using the logarithmic tables as recommended in the
foot-note at p. 142. Disregarding the seconds in the several
arcs, we shall take out the several logarithmic values to the
degrees and minutes only, writing against each the tabular
difference to 100": we shall then multiply each difference
by the number of seconds which has been reserved, cutting
off two figures from the right of the product for the division
by 100, and shall then incorporate the aggregate of these
quotients, previously marked 4+ or — as directed in the
foot note, with the sum of the logs extracted. In repeating
the operation, we merely have to increase three arcs by 22",
11", and 11" respectively: we shall therefore have only to
multiply the differences against the arcs by these numbers
in order, cutting off two figures as before. If the cutting
off be postponed till the sum of the products is found, strict
accuracy will be secured to the final figure of the result; and
this is the plan we shall adopt in what follows.
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(Tad. Digy. (Parts jor (Parts for
s Jor 1007.) seconds.) seconds.)
Arith, comp. . . cos 0°199263

Arith, comp. . . sin 0°000169,......6+ _180 22"+ 132

cos 8:841774 ... 8030 — 84840 11"— 33330

sin 9920520 .., 140 + 280 11" + 1540
18961726 Cor. =— 843,80 664)—381658( — 48"
Correction for seconds — 844 P=235° 11’ 31"
2)18-960882 - P=35° 10’ 43"

FP=17° 35 451"....sin 9-43044l... 664*

* This difference stands against sin 17° 35’ in the table, and is to be taken out with the angle 17° 35’
itself, as well as the difference between the sine of this angle and the sine arrived at above ; the latter
difference, with two zeros annexed, divided by the former difference, gives the seconds, in the usual way.

In the extra work for correcting } P, the parts for seconds amount to the half of — 816,58 ; so that
the half of 81658 divided by 664 will give the seconds of correction for § P, therefore the whole of
31658 divided by 664 must give the correction for P, as above. We have computed § P to the nearest
half-second mainly for the purpose of furnishing a better means of comparison between the two processes,

There can be no hesi-

The time consumed in performing the necessary work in
this way, is scarcely half that occupied by the operations
before given, more rigid accuracy is in general also secured,
the process can much more readily be revised if error be

suspected, and after the first set of references to the table,

no further references are necessary.
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tation about the proper sign to be written against the tabu-
lar difference : every sine is +, and every cosing is — ; but
complements always require a change of the sign that other-
wise would be written. It will be remembered in the above
that it was not the sine of 91° 36’ that was taken from the
table, but the cosine of 1° 86’; so that the tabular difference
6 would have been marked —, only it is the complement of
that cosine which is written down. It need scarcely be
remarked that when seconds are to be subtracted from the
ares, the signs are opposite to those which would be annexed
if the seconds were to be added. We shall now give the
blank form for computing the hour-angle, and for correcting
the first result in the manner here explained.

Braxk Forx. Time at Ship from the Latitude and Sun’s
) Altitude.

1. For the true altitude, polar distance, and equation of time.
Obs. alt. N
Index and Dip L
Semi-diam. e
App. alt. centre e e
Ref. — Parallax —.
True alt. centre

Equa. of Time LML Le Diff. —
Cor. for the hours .. x . . hours

Equa. or TME . .

Time per watch Sm s
Long, in time .

Mean Time at G. .+ .. .7 nearly.

Noon Declin. at G. LT Diff. —
Cor. for hours past noon e e X « « hours

DECLINATION L

90 60). . .."

PoLAR DISTANCE .. .. .. ... Cor.
* The Nautical Alm. directs whether the equa. of time iy additive or
subtractive.
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2. Forthe mean time at ship, and error of the waigh.

Alt. L2 " [Seconds reserved.] Diff.  Pts. for secs.
Lat. ve oo oo Comp.COS.evveee oaeat
Polardist. .. .. .. Comp.sin....... ....—*
2).. .. ..
1 sum e e e [ R
isum—alt... .. .. SiD. ... ve.+ cenn
veeee.. Corforsees. .....
Correction for seconds . B
) I
Lhourangle.. .. .. sin....... e +t=D
9 S

Hourangle=.. .. .. .. ,.m .5 Apparent time.

Equa. of Time

.+ .. Mean time at ship.
.. +. .. Mean time per watch.
. _ . _. . Watch { fast | for M. time at

ship,
Cor. of this time -« (See extra work below.)

True error of the watch.

[Eztra work for correcting the first result.]
~

Secs. of cor. Pts. for the secs.

"
.. cee e

DECIEEY

D).. . (.."=Cor. of former
hour angle = . .* in time.

* If the polar distance exceed 90°% the comp. cos of the excess is to be
taken, in which case this sign will be plus.

+ This difference is tobe taken out of the Table at the same time as the
4 hour angle.
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Note.~In taking an altitude, for the purposes of the
present problem, it is desirable that the object should be
as nearly due E. or due W. as possible, because in that
situation, a small error in the altitude will have the least
influence on the time: the nearer the object is to the
meridian, when between it and the prime vertical, the less
favourable is the observation to accuracy in the deduced
hour-angle. 'When, however, the place is between the
tropics, and the declination of the same name as the lati-
tude, the proximity of the sun to the meridian will not be
an objection: since under these circumstances, his motion
in altitude is sufficiently rapid for a good observatlon at
any point of his course.

Time deduced from an Altitude of a Star.

‘When instead of the sun, the object observed is a star,
though the trigonometrical computation for finding the
hour-angle remains the same, some of the preparatory work,
in step (1) of the foregoing form, is different. The deter-
mination of the sun’s hour-angle gave us at once the
apparent time: but a star’s hour-angle alone can give us
no information as to the time of observation; yet if the
star’s Right Ascension be also known, then, combining this
with the hour-angle, either by addition or subtraction, we
shall know the R. A. of the meridian ; and then again sub-
tracting from this the R. A. of the sun, we shall finally obtain
the sun’s hour-angle, and thence the time at the ship when
the star was observed. [See NorE, p. 197.]

The star’s R. A. at the time of observation, and the mean
sun’s R. A. at Greenwich noon, are both given in the
Nautical Almanac ; and therefore the latter being reduced
to the Greenwich time of observation, we shall have the
‘R. A. of each object at the same instant; and as just
explained, the star’s hour-angle at that instant being found,



TIME FROM ALTITUDE OF A STAR. 197

we shall have the R. A. 6f the mean sun and of the meri-
dian of the ship at the same instant, and therefore the mean
time. A single example will sufficiently illustrate what is
here said.

Nore.—Right ascension, be it remembered, is measured
from W. to E., or from the first point of Aries easterly
from 0° up to 360°, that is, in a direction contrary to the
apparent diurnal rotation of the heavens: when therefore
a star is to the W. of the meridian, its hour-angle must be
added to its R. A. to get the R. A. of the meridian; and
when it is to the E., its hour-angle must be subtracted.
‘With regard to the sun, whether it be W. or E. of the meri-
dian, its R. A., subtracted from the R. A. of the meridian,
will give the sun’s hour-angle from preceding noon.

The student must especially remember, that whenever ye
speak of one R. A. as being subtracted from another, with
a view to obtaining a third R. A,, it is always tacitly sup-
posed that 24k is added to the second when the first is
greater than it. And whenever one R. A. is to be added to
another to get a third, 24% is always suppressed from the
sum if it exceed that quantity. It is plain that there is no
displacement of a celestial object by increasing its R. A. by
24h, or by 360°if the R. A. be expressed in angular measure.

The hour-angle of a star, or planet, or of the moon, is its
least angular distance from the meridian, whether the object
be to the W. or E.; but the hour-angle of the sun is usually
measured wesfward, that is, from the preceding noon.

1

Ezample. Time from an Altitude of a Star.

April 22, 1858, in true latitude 42° 12’ N, and longitude
by account 44° 30’ E., when the mean time per watch was
8h 2m p, a1, the observed altitude of the star Arcturus, east-
ward of the meridian was 78° 48’ in artificial horizon: the
error of the instrument was + 7' 34”: required the error
of the watch ?
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1. Forthe true altitude, the polar distance, and the R. A. of mean sun.*
Observed Alt, . . . . 73° 48 o"
Index cor. . . . . . +7 34
2)73 55 34
Apparent alt. . . . . 36° 57 471"
Refraction . . . . .o =rir
TrUE ALT. . . . . 36°56" 30"

Nore.—When the artificial horizon is used, there is no correction for Dip.
The index correction being applied, the result is twice the app. alt.

Time per watch . . Sk Qm Qs R
Long. 44°} E, in time . 2 58 0

Mean Time at G. G 4 0 nearly.
R. A. mean sun at G., noon . . . 2h 1m 0s-51
Diff. for 1% +9%°86 -, for 61 . . . +5916

- R, A, MEAX 8UN AT TIME OF OBs. . . 2 2 0

SraR's B. A, 145 9m 14%, Dporrv,  19° 55’ 6" N.

.. PoLAR DISTANCE =70 4 54

2. For the mean time at the place, and error of the waich.

Altitude 36° 56" 30" ° Tab. Dif. Parts.
Iatitude 42 12 0 Comp. cos 0°130296 . . . 191 + 0
Polar dist. 704 54 Comp.sin 0'026881... 76— 4104
N4 13 A
% sum T4 86 42 . . . cos90'434156... 765 — 32130
% sum — alt, 37 40 12 . . . sin 0786089...273 + 3276
19-867872 — 329,58 Cor. for secs.
—330

2)19°367042
Il Hourangle 28 561 2 . . . sin@ﬁ_ﬂ. L O824+

. Houravgle 57 42 4= Sh 50 48 in Time E. of Meridian.
StarsR.A. 14 9 14

R. A. of Meridian 10 18 26
R. A. of mean sun 2 2 0

Mean time at place 8 16 26
Meantimeper Watch8 2 0

14 26 Wateh slow on mean time at place.

* The R. A. of the mean sun, at mean noon at Greenwich, is given at
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In this additional time the R. A. of the mean sun would
be increased by about 2, as appears by referring to the
“Diff. for 1% Hence the error of the watch is14m 248, *

In the following blank form we shall provide for the inser-
tion in step 2 of the tabular differences, as in the above
example. But since a star’s declination is constant for a
considerable interval of time, there will be no correction
required for change of polar distance; a correction, how-
ever, for change in the mean sun’s R. A. may be necessary,
as in the preceding example.

Brank ForuM. ZTime at Ship from the Latitude, and a
Star's Altitude.

1. For the true altitude, the polar distance, and the R. 4. of mean sun.

Obs. Alt. .00 00 Time per watch L m

In. and Dip .. . .”} Long. in time .
Refrac, —.. .. | Mcan time at G. <. «. .. nemly.

True Avz. L " |R A ofm.sunatG.noon ..b,.m,.» Diff. +9:36

Nore,—When the altitudo is | Cor. for time after G. noon +.. .. TimoXx
taken in the artificial horizon, e .
. . . R.A.OF M. SUNATT.OFOB. .. .. ..

there is no correction for Dip. . —
The index correction being Cor. ...
:ﬁ?{;};;::;? is twice the Star'sSR. A. ..bh . .om 8 Declin, . .° .. ..”(Naut.

P . 920 Alm.)

STAR’'S POLAR DISTANCE .. ..

The mean sun's daily advance in R. A. is uniformly 3= 56=55. .. ; conse-
quently his hourly increase in R. A. is 9*-86.

In the next step, if the polar distance exceed 90°, the
comp. cos of the ezcess is to be taken, when the sign annexed
to the “Diff.” will be +.

* The additional correction of the time here noticed is improperly
omitted in most books on Nautical Astronomy. For the purpose of
determining the longitude of the ship, it is of the first importance that the
ship’s time should be obtained with all possible accuracy. In the above
example, the corrected mean time at the ship is 8 16= 24,
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2. For the mean time at the ship, and error of the watch.

Altitude R R Tab. Diff. Pts. for Secs.
Latitude «e e+ «. Comp.cOS....... -
Polardist. “.. .. .. Comp.sin....... e

9.
4 sum __——‘ COS.evennn O
4 sum —alt. e e e sin....... .+

4Hourangle .. .. .. sin....... et

e E. ) of Meridian, IfE.
. . h m L]
- Hourangle .. .. .= b TN e foinct: i W, add,

R. A ofStar

R. A. of Meridian e e e
R. A, of Mean Sun .+« . (Subtract.)

r Mean time at 8hip
Meun time per Watch

. Errorof Watch

Note.—The error in the sun’s R. A., due to this error
in the time per watch, may now be allowed for, and the
watch still further slightly corrected.

In this and the preceding problem, the latitude is assumed
to be correct; but, in general, the error of a mile or so in
this datum will have but very little influence on the time.
We shall, by way of illustration, suppose the latitude in the
example solved above to be 1’ below the truth, and examine
into the effect of this error on the time. The tabular
differences, already before us, will enable us to do this with
but little trouble, as in the margin.

‘We are to conceive 60" added to the  Zab. Dif.  Parts.
latitude, and therefore 30" to the % 191 + 11460
sum, and also 30" to the % sum —alt., ~ 766— 22960
and to find the “ parts” for these addi- s+ 8190
tional seconds, just as the parts were 2) —38800

found for the seconds before. It ap- Cor. = —17
om th=- reenlt th + 17 i~ $a ha
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subtracted from 9:683521, thus reducing it to 9683504 =
sin 28° 50' 58" .*. hour-angle = 57° 41’ 56" = 8h 50™ 48¢ in
time, within about a quarter of a second. @he tabular
difference 382, against sin 28° 51’ 2", enables us to get the
correction for seconds due to the difference — 17, at once
thus — 1700 =~ 382 = — 4, the number of seconds to be
subtracted from 28° 51’ 2". If the latitude had been 60"
too great, then the signs of the *parts” in the margin
would all be changed .". 1700 =~ 882 = 4 = the number of
seconds to be added to 28° 51’ 2"; that is, the ¥ hour-angle
would have been 28° 51’ 6, and the hour-angle, 57°42’ 12"
which in time, is 8t 50m 49s,

If the latitude be assumed to be 2’ below the truth, then
each of the parts should be doubled, and half the sum
taken: but this half sum is obviously the same as fthe
whole sum — 33 00 above, hence — 8300 =~ 882 =9 = the
number of seconds of correction of the 3 hour-angle, which
angle is therefore 28° 50' 53", and consequently the hour
angle is 57° 41’ 46" = 8t 50™ 47%in time. Without cor-
recting the time in this way, through the correction of tke
hour-angle, we may at once apply to the former the correc-
tion for the seconds of arc in time: thus 18" = 15} of time;
but as fractions of a second of time are disregarded, as well
in the original result, as in the correction of it, the corrected
time might on this account still err by nearly a second.

It is easy to see, from what has now been said, how
readily the navigator may form an accurate estimate of his
error in the time, arising from a small error in the latitude
from which it has been deduced. But if the error of lati-
tude amount to several minutes, the correction for the time
found in this manner will be only approximative since the
tabular differences are not constant from minute to minute.
If instead of the latitude, it be the altitude that is supposed
to involve a small error, the correction of the time due to
that error may be found in a similar manner, but with even
less trouble, because the only arcs affected by the error will
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be the } sum, and the 4 sum —alt. Thus, if the altitude
Tab, Difi.  Pars. !)e increased by 1, the 4 sum will be
765—  oagsop | increased by 80, and the } sum — alt.
273 — 8190 | will be diminished by 30", so that the
9)s1140 | correction will be found as in the
Cor. — — 188 margin: and — 15600 = 382 = — 41"
’ = 8% in time nearly, so that a small
error in the altitude will have a much greater effect upon
the time than an equal error in the latitude: but in both
cases it appears that an error in excess (not exceeding 2')
will produce about the same error on the time as an equal
error in defect, the errors in the time having opposite signs.
Beyond 2’ of error, whether in the latitude or in ‘the alti-
tude, the correction of the time must be regarded as only
approximative.

Examples for Ezercise.

1. March 15, 1858, the mean of a set of altitudes of the
sun’s L. L., in lat. 16° 28’ 30" N, and long. 99° 80' W., by
account, was 10° 86" 20", the mean of the corresponding
times per watch was 6" 45™ a.M., the index correction of
the sextant was —2’ 80", and the height of the eye 22 feet:
required the mean time at the ship, and the error of the
watch ? Ans. mean time at ship 6" 56m 14s;

error of watch 11™ 14s slow.

2. April 26,1858, in lat.29° 47’ 45" S.,and long. by account
81° 7' E,, the mean of a set of altitudes of the star Altair
was 25° 14/ 20" to the E. of N., the mean of the times per
watch was 2@ 12m 30¢ a.M., the index correction was -+ 10
and the height of the eye 20 feet: required the mean time at
the ship and the error of the watch ?

Ans. mean time at ship 1t 51m ; error of watch 21 30¢ fast.

Note.—In a similar manner may the time be deduced
from an altitude of a planet; the only difference being that,
as in the case of the sun, the observed altitude is to be cor-
vectad for naralla~ and semi.diameter as well as for refraction.
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CHAPTER V.
ON FINDING THE EREOR AND RATE OF THE CHEONOMETER.

IN the preceding chapter we have discussed at some
length the interesting problem of determining the time at
sea, and thence the error of the watch. If the time thus
determined be compared with the time shown by the chrono-
meter, we shall in like manner, by taking the difference of
the two times, find the error of the chronometer on mean
time at the place of observation. It is still more important,
however, to know the error of the chronometer on mean
time at Greenwich; and this may be easily ascertained pro-
vided the longitude of the place of observation be pretty
accurately known ;. for, ag already secn, if the mean time at
the place and the longitude of that place be both known, the
exact time at Gtreenwich is very readily obtained, and the
difference between this time and that shown by the chrono-
meter is the error on Greenwich mean time.

All chronometers kave an error: this is always accurately
determined, usunally at an observatory—where a memorandum
is kept of its performance as a time-keeper. The purchaser
always receives a certificate stating how much the chrono-
meter was too fast or too slow, for mean time at Greenwich,
at the Greenwich mean noon at a specified date; and also
how much it gains or loses, on the average, in 24 hours of
mean time—that is to say, its daily rate.

The chronometer, accompanied with the proper certificate
of its error and daily rate, is taken to sea, and after any
interval of time, its daily rate being multiplied by the
number of days elapsed and the product—called the accu-
mulated rate—being combined with the original error, we
are enabled to apply the proper correction to the time
actually indicated by the chronometer, and thus to ascertain
the mean time at Greenwich,
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For example: Suppose on August 21, in longitude by
account 38° 45' W., when the mean time at the ship, as
found by the method explained in last chapter, was 7% 24™
?.M., that the chronometer showed 10b 2m 34s, and that
the following certificate from the Greenwich Observatory
stated—

Aug. 1, Mean Noon at G. Daily Rate.
Error of Chron, 2= 4*-75 Fast 25+6 Gaining.

Required the mean time at Greenwich corresponding to the
mean time at ship ?

Time at Ship Aug. 21 . . . 7h 24m P, M.
Long. 38° 45’ W. in time . . +2 8
Time at G. Aug. 21 . . . 9 59

1 ——
From Aug. 1 to Aug. 21, at 9% 50™ =204 9% 59=, or 204 10t = 204

Correction for Daily rate . . . — 236
20
For Accumulation in 204 . . . 52
ing . . . 1-08
For Accumulated rate . . . — 5308
For original error . . . . —2m 4075
Whole correction . . . —2 5783
Chronometer showed . . . 100 2m 34s
MEaN TIME AT G . . . 9b 59m 36s

Hence, assuming the mean time at ship to have been cor-
rectly determined, and the chronometer to have maintained
its rate, the longitude by account is 36 of time in error—
that is, it is 9’ too little ; so that the corrected longitude is
38° 54’ W. The whole correction of the chronometer for
the 20 days elapsed, that is, up to mean noon of Aug. 21
at Greenwich, being 2= 4#75 4 52* subtractive, we may
henceforth employ the following memorandum—
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Aug. 21, Mean Noon at G. Daily Rate.
Error of Chron. 2m 56575 Fast 2*6 Gaining.

But, although implicit confidence may be placed in the
original correction, yet we have no security that the daily
rate may not have changed. It is of importance, therefore,
from time to time to examine into this matter, and instead
of taking the invariability of the original rate for granted, to
ascertain the rate at subsequent periods anew. In order to
do this efficiently, the navigator must wait till his ship
arrives at some port or harbour, where it can remain for
several days.* If the place have the advantage of an
Observatory, the mean time there can always be obtained ;
if not, the mean time must be found by the methods
explained in the last chapter, using the artificial horizon for
taking the altitudes ashore, or else in the way hereafter
directed. The mean time at the place, upon comparison
with the mean time at the same instant as shown by the
chronometer, will give the error of the chronometer on mean
time at that place. A few days after this set of observations
for the mean time let another set be taken, and the mean
time again determined, and compared with that shown by
the chronometer: the error of the chronometer on mean time
at the place will be again ascertained ; the difference between
the two errors (or their sum, if of contrary names) will show
how much the time-keeper has gained or lost in the interval
between the two times of observation; from which we can
readily find, by proportion, what has been its average gain
or loss in 24 hours of that interval—that is, its daily rate.

Similar observations should be made at intervals as long

* The next best method to this, is to compare the Greenwich time, as
shown by the chronometer, with the Greenwich time as determined by
Lunar observations ; to be discussed in next chapter. The difference of the
times will show the error of the chronometer on Greenwich mean time ; and
subsequent observations being taken, and the difference of the times found
in like manner, the daily rate of the chronometer, in the interval of time
elapsed, may be inferred.
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as the ship remains at the place; and it is probable that
different daily rates will thus be deduced : it is the mean or
average of all these which must be regarded as ¢ke daily rate
of the chronometer; and on the day of the ship’s departure
a fresh memorandum is to be made of the error of the
chronometer on Greenwich mean time, at the corresponding
Greenwich date, and of the daily rate thus determined.

‘Whenever an astronomical clock can be referred to, the
necessity for taking observations for the mean time at the
place will of course be superseded: a daily comparison of
the chronometer with the mean-time clock will show the
daily rate of the former, which, if not uniform, will enable
us to determine the mean daily rate ; or the comparison may
be made at equal intervals of two or threc days.

The chronometer itself is not to be carried ashore for the
purpose of comparison: a good seconds watch is to perform
this office for it.

The following, from Woodhouse’s Astronomy, p. 804, will
serve as an illustration: the place is Cadiz :—

Days. Times of mean Noon. Chron. too slow.  Differences.
Sept. 8 11k 54m 18218 5w 4182
11 54 3082 5 29-18 — 1264
15 54 4693 5 1307 1611
18 54  59-46 5 054 1253
21 55 1197 4 48-03 1251
24 55 23-82 4 3618 11-85
— 6564

Here the sum of the differences in 16 days is 65564, and
accordingly the mean daily rate, estimated by dividing the
sum by the number of days, is — 4#-1025.

But both the error of the chronometer on mean time at
the place and its daily rate may be found without any
reference to that mean time at particular instants, as the
two following problems will show ;—
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1. To find the Error of the Chronometer by eqzml Altitudes
of a Star.

The declination of a fixed star is constant,* so is the time
during which the earth performs a rotation on its axis:
hence, if equal altitudes of a fixed star be taken, one before
and the other after its meridian passage, the meridian itself.
will bisect the angle at the pole between the two equal polar
distances, and therefore half the time elapsed between the
two observations—taken at the same place—will make
known the exact time when the star was on the meridian.
Now, the chronometer may surely be considered as sufficiently
regular to measure the interval between the observations
with the necessary accuracy, so that if the chronometer-times
of the two observations be added together, and half the #um
taken, the result will be the chronometer-time of the star’s
meridian passage.

But the R. A. of the star is the R. A. of the meridian on
which it is; and if from this R. A., increased by 24% if less
than the mean sun’s R. A., we subtract the latter for the
preceding Greenwich noon, we shall have the mean time at
the place at the instant of transit nearly, as at page 198.
And applying to this the correction for longitude in time,
we shall have the mean time at Greenwich nearly.

As in deducing this time the sun’s R. A. for the preceding
noon was employed, we can now, by means of the “Diff.
for 11"’ find what correction of this R. A. is due to the time
past that noon just determined, and apply it to the mean time
of transit nearly, to get the more correct time, just as the like
correction was applied at page 199. The difference between
the time just found and the chronometer-time of transit will
be the error of the chronometer on mean tlme at the place.
The following is an example :— .

* That is, it varies insensibly duting the mterv al of time between the
two observations here taken.
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Observations on the Star Arcturus, Nov. 29, 1858, in longitude 98° 80’ L.

Altitudes E. and W. Times shown
of Meridian. by Chron. Sum of Timecs.
4 10 };" ﬁ"‘ 54;' 80k 7m 425
43 30 ig 5’; i; 30 7 42
45 50 :g g 32 30 7 42

Hence the Chronometer-time of the star’s transit is 15"
3m 51s.

Arcturus R. A. Nov. 29 ... 14h 9m 130 (to be increased by 24%, as R. A. of
sun is greator.)
R. A. of mean sun at noon 16 20 48 Diff. forlh..... + 10*76
e e Bt
Moal Time of transit at place 21 48 95 nearly 1"’,‘,
Long. 98° 80’ E, in time 6 34 0 5380
Mean time at Greenwich 15 14 25 nearly 1076
209

Cor. for 154 . .. 164°09 = 2m 44+

Subtracting therefore this increase in the sun’s R. A. for
the 15%] past the noon, when the R.A. was as above, we
have

Mean timo of transit at place  21» 45m 41*  Mean time at G. 13h 11m 419
Mean time as shown by chron. 15 3 81 . . . . . . . 15 3 m
" Errorofch.on meanT.at place 6 42 10 Error onmean T. at G. 8 1

In taking the equal altitudes, the best mode of proceed-
ing is this: having selected the star, which should be at a
considerable distance from the meridian, that is, about three
or four hours, take its altitude roughly with the sextant, then
advance the index so that it may point to degrees and
minutes without any fractions of a minute: suppose, as in
the illustration just given, the index is advanced to 43° 10,
then waiting till the star has attained this altitude. let the
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time 11 55™ 47 be noted. Now advance the index to—say
43° 80’, waiting till this altitude is reached and again note
the time 11® 57= 575. In like manner advance the index
an additional 20/, and wait till the altitude 43° 50’ is attained,
noting the time 12k O™ 75, and so on till as many altitudes
and times before the meridian passage have been taken as
may be considered necessary.

Then without disturbing the index from its last position,
wait till this last altitude is furnished by the star on the
other side of the meridian, the time 18" 7m 85¢ being noted
and linked with the time when the equal altitude was
before taken : and proceeding in this manner, moving the
index 20’ the contrary way, after each observation, till
we arrive at the altitude 43° 10’ at first taken, the series of
observations will be completed, and the times corresponding
to each pair of equal altitudes will have been noted. If'the
chronometer have gone uniformly during the interval be-
tween the first and last observation, the mean of the times
corresponding to any pair of equal altitudes will be the
same as the mean of the whole, that is, it will be the same
as we should get by dividing the sum of all the times by the
number of pairs, and taking half the quotient. But should
there be a slight difference, the latter result is to be regarded
as the chronometer-time of the star’s transit.

The student will not fail to notice that this method of
equal altitudes has the advantage of not requiring any cor-
rections for the index error of the instrument, yet after the
first of the altitudes, when the star has passed the meridian,
is taken, the shifting the index of the sextant to its former
place may not be accomplished with strict precision, it would
therefore be better to take each of the altitudes, before the
meridian transit, with a different sextant; to take the first
altitude after the transit with the sextant last used, and the
remaining altitudes with the other sextants used in reverse
order. The indexes all remaining untouched, we have
sufficient security that the altitudes on one side of the
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meridian are really equal to the corresponding altitudes on
the other side, presuming the accuracy of the observations.

By the same method of equal altitudes may the time, by
‘chronometer, of the sun’s meridian passage be deduced,
but on account of the sun’s change of declination, in the
interval of the observations, a separate computation for the
influence of this change on the time becomes necessary :
we think the determination of the time from a single alti-
tude of the sun, as explained in last chapter, is to be pre-
ferred.

2. T find the Rate of the Chronometer by equal Altitudes
of the same Star, on the same side of the meridian, on
different nights.

I; has already been stated (page 94) that the interval
between two consecutive transits of the same fixed star over
the same meridian is uniformly 23% 56™ 4#09 of mean time :
consequently the return of any fixed star to the same meri-
dian is exactly 3 5591 earlier at every reappearance. And
on account of the strict uniformity in the diurnal motion,
not only is the star thus accelerated in its return to the
meridian, but equally in its return to any point in its
diurnal path. It follows, therefore, that if an altitude of a
star be taken, and the time by the chronometer be noted,
and then after the lapse of any number of days the same
altitude, on the same side of the meridian, be again taken,
and the time noted—it follows that if we divide the differ-
ence of these chronometer times by the number of days,
the amount by which the quotient differs from 3= 55¢:91,
will be the daily error of the chronometer. For example,
June 6, 1858, at 10t 30™ 12¢ by chronometer, and on June
12, at 10h 6™ 40%, a star on the same side of the meridian
had equal altitudes: required the rate of the chronometer ?
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June 6 Time by Chronom. 10 30= 12°

12, . 10 6 40
6 Days elapsed G) 23 32
" Duily diff bychron. 3 54'33
True daily diff. -8 5591
Rate of chronom. 0 158 Gaining

It is plain that the chronometer must be gaining when
the daily difference is less than it ought to be, and losing
when it is greater. As in all cases of taking altitudes for
the time, the nearer the object observed is to the prime
vertical the better, and in the present case it is probable
that a single altitude, if carefully taken, is preferable even
to the mean of several altitudes. If several be taken,the
altitudes must all be read off; and to do this without a
second or two of error, is no easy matter; but in the case
of a single altitude only, the reading off is unnecessary :
the index should be clamped for that altitude, and the
sextant left untouched till the second observation is taken,
which, if practicable, should be on a night when the state
of the atmosphere, as indicated by the barometer and ther-
mometer, is nearly the same as it was on the night of the
first observation. Of course here, as in the former problem,
there is to be no correction for index error.

If different stars are observed, each with a different
instrument, the mean of the rates, furnished by the several
pairs of observations, is likely to be the more correct rate.

In the foregoing remarks and directions we have said
nothing as to the choice of any particular star or stars,
merely observing that, whatever star be selected, its posi-
tion in the heavens should be as near to the prime vertical
as possible; its altitude, however, should never be less than
10 or 12 degrees, because of the changes to which the
refraction at low altitudes is subject; but it is not a matter
of entire indifference which star is selected ; for as the more
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rapid the motion of an object, the less does any small error
in marking its exact position affect the time corresponding
to that position, the nearer the star is to the equinoctial
the better: so that when its position is in other respects
favourable, that star which has the least declination should
always be chosen in observations for time.

CHAPTER VL
ON FINDING THE LONGITUDE AT SEA.

TuE longitude of any place on the surface of the globe is
ascertained as soon as we can discover the time at that
place and the time at Greenwich at the same instant,
gince we have only to convert the difference of the two
times into degrees and minutes, reckoning 15° to the hour
to effect the object. How to find the time at the place is
a problem that has been sufficiently discussed in Chapter
IV., and it is the office of the chronometer, when properly
corrected for error and accumulated rate, to furnish the
time at Greenwich. But the time at Greenwich as well as
the time at the place may also be found by direct observa-
tions of the sun and moon, or of the moon and a star inde-
pendently of the chronometer: that is, it can be found by
what is called & Zunar Observation. This method of finding
the Greenwich date of an observation and thence the longi-
tude of the place where the observation was taken will be
discussed in the next article: in the present we shall infer
that date from the chronometer.

Longitude by Chronometer.
After what has been taught in the two preceding chapters,
but little need be said here by way of explaining the prin-
ciples of this method; an example will best convey the
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mode of proceeding, the learner bearing in mind that when
the time at Greenwich is less than that at the place, the
longitude is E.: when greater, the longitude is W.

August 16, 1858, in E. longitude, observations were
taken of the sun, as recorded at p. 187. (Ex. 2), when the
chronometer showed 6! 36™ 40° .M. On July 14, the
error of the chronometer on Greenwich mean time had been
found to be 2™ 20 fast, and its daily rate to be 355 gaining :
required the longitude of the ship ?
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Nore.—The mean time at the ship is found by the calcu-
lation at page 189, the sun’s declination being corrected for
the Greenwich time, here inferred from the chronometer to
be 18t 32= 25¢3. In the operation at page 188, the Green-
wich time is estimated from the longitude and time by
account : neither of which is necessary here.

In correcting the chronometer-time for error and rate,
it will be observed that we have first applied the correction
for the time up to the noon of Aug. 15, and have then
corrected for the hours beyond this date. In strictness this
is the way in which the corrections should be applied.
If we had computed the gain upon 321 18h 36m 405, we
should have treated the time as if it had been accumulating
at a sort of compound interest. It is true that in general
this would not lead to any practical error, but if the origi-
nal eorrcetion, the number of days elapsed, and the daily
rate, be all considerable, there might be an error of a second
or so in the Greenwich time.

Braxx Fory.—Longitude by Chronometer.

[Date]* Time by Chron. Lhm s Daily rate

Original crror Loy Dayselapsed x ...
Accum. in days elapsed .. ..} o i

Time correctod to noon of Date e oo« Acoum, rate L, sez,m
Correction for time past noon .. = Daily rate X time pust

T Noou--%h,
MEAN TIME AT GREENWICII PR

‘With the mean time at Greenwich thus determined, and
the altitude, observed at the above chronometer-time, find
now, by the proper form (pages 194 or 199), the corre-
sponding mean time at ship: we shall then have

¥ The day is considered to commence at the preceding Greenwich noon,
and the time shown by the chronometer is the approximate time after that
noon, '
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Mecan time at ship LBm s } Take the difference: if G. time is the
Mean time at Greenwich less, the long. is E., otherwise it is W.
Longitude in time ve < .. LoNarTuDE=..° ,." ..”

which is E. or W. according as Greenwich time is less or
greater than ship-time. .

Ezamples for Ezercise.

1. June 2 the true altitude of the sun’s centre was 30° 2,
when the chronometer showed 5% 1m 0%; the latitude was
40° 5" N. The chronometer on May 20 was 45° slow for
Greenwich time, and its rate 2%1 losing. The sun’s decli-
nation at the time of observation was 22° 9’ 17" N., and the
corresponding equation of time was 2™ 313, to be subtracted
from apparent time: required the longitude of the ship ?

Ans. longitude, 7° 29’ 49" W'

2. May 19, in the afternoon, in latitude 42° 16' N., the
mean of a set of altitudes of the sun’s lower limb was 43° 55/,
the mean of the corresponding times by chronometer was
7h Om 565, On March 17, at noon, the chronometer was
1= 18* too fast for Greenwich mean time, and its rate was
758 gaining : the sextant had no index error, and the height
of the eye was 25 feet :

Sun’s Decl. G. meai noon. Fquation of Time (sub. from app. time).
19° 47’ 43” N, Diff. for 14, + 31723 3w 4925  Diff, for 1b, — 0513

required, the longitude of the ship ?
Ans. longitude, 55° 44’ 45" W.

8. August 20, 1858, in latitude 50° 20’ N., when the
chronometer showed 2t 41™ 12s, the observed altitude of the
star Altair was 36° 59' 50" W. of the meridian; the index
correction was +6 28", and the height of the eye 20 feet.
On Aug. 1, at noon, the chronometer was 17™ 45° slow on
Greenwich mean time, and its daily rate was 4*38 losing;
required the longitude of the ship ?

Ans. longitude, 141° 35’ 80" E.
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Longitude by Lunar Observations.

In the foregoing article we have explained how the longi-
tude at sea may be determined by aid of the chrono-
meter, an inktrament of human contrivance, and consequently
liable to those accidents and derangements to which all the
constructions of man, are exposed. It is true, as we have
previously shown, the errors and irregularities of the chro-
nometer may from time to time, as suitable opportunities
occur, be discovered and corrected; but such opportunities
frequently offer themselves, only at wide intervals, and
during these intervals the mariner has to assume that his
time-keeper has uniformly maintained its rate, as last deter-
mined, and that through whatever changes of climate or
fluctuations of weather he may have passed, and whatever
hidden influences may have been in operation, nothing has
disturbed this assumed regularity. And in truth, under
ordinary circumstances he may make this assumption with
safety ; as far as skill and mechanical ingenuity are con-
cerned, the chronometer may be regarded as a masterpiece
of artistic construction, but of so delicate a character that
the greatest care is necessary to preserve it in the condition
in which it leaves the workman’s hands. It is accordingly
kept in an apartment by itself—the chronometer-room—out
of which it is never taken during a voyage ; it is imbedded in
soft cushions, and, like the compass, suspended upon gimbals,
so that the motion of the ship may not affect it by jerks and
vibrations, and the atmosphere around it is, as far as possible,
maintained, by means of lamps, at the same temperature, so
that it may not suffer in its action from varying heat and
cold. But notwithstanding all these precautions, it is
evidently most desirable to be provided against accidental
injury, and even against possible imperfections of construc-
tion; to have, in fact, some means to resort to beyond the
reach of accident, and where all defect of workmanship is
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an absolute impossibility. Such means can be furnished
only by the unerring mechanism of the skies.

The sun, moon, and stars supply to the mariner a celes-
tial chronometer; and when all other resources fail him, he
may read off his time from the dial-plate of heaven; but to
decipher its indications requires some degree of scientific
knowledge, and involves no inconsiderable amount of mathe-
matical calculation: in the present article we shall investi-
gate the theory, and exhibit the practical application, in as
simple a manner as we can, of the problem of finding the
time at Greenwich, and thence the longitude by the Luxir
OBSERVATIONS.

It may be well, however, in a few preliminary remarks,
to convey to the learner some general notion of the leading
features of this inquiry before entering upon the mathe-
matical details. *

And first we may observe that of all the heavenly bodies the
moon is that whose apparent motion is the most rapid, and
consequently that whose change of place in a small portion of
time is most easily detected. The best way of estimating
the change of place of a moving body in a given interval of
time, is to measure its distance at the beginning and at the
end of the interval from some object directly in the path it
is describing : the further the object to which the motion is
referred is situated out of this path, the less does the moving
body advance towards it or recede from it in a given inter-
val of time, and consequently the more difficult is it to
estimate accurately the difference of distance when that
interval is small.

Now, the immediate object of a Lunar Observation is to
measure the angular distance at any instant between the
moon and some known object, either directly in or very
nearly in the path she is describing. The theory of the
moon’s motion is now so well understood, that what her
distance will be from such known object at any future
instant can always be predicted, and although her motion
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is not strictly uniform, yet it is sufficiently so, that if the
distances from the object at two instants three hours apart
be previously computed, her distance at any intermediate
instant can be found by proportion, and conversely an in-
termediate distance being found by observation to have
place, we can in like manner, by proportion, discover the
intermediate time corresponding to that distance. Now,the
distance of the moon from each of the several stars lying
in or very near her path, as also her distance from the sun,
are carefully computed for every three hours of every day
in the year, and for several years in advance, and the results
are all inserted in the Nautical Almanac; these “ Lunar
Distances” occupy from page XIII. to page XVIIL of
every month.

An observer at sea, wishing to know the time at Green-
wich, measures with his sextant the distance of the moon
either from the sun, or from one or the other of these
selected stars, and after reducing the observed to the true
distance, in a way hereafter to be explained, he refers to
the Nautical Almanac for that distance, recorded there on
the given day, which is the nearest distance preceding, in
order of time, to that he has obtained, against which will
be found the Zowr, Greenwich mean time, when that recorded
distance had place, and he further knows that his distance
occurred at a more advanced period of Greenwich time.
To find how much more advanced, he takes the difference
between the recorded distance at the hour just found, and
the recorded distance at the third hour afterwards, as also
the difference between Zis distance and that in the Almanac
at first found : then as the former, difference is to this, so is
3t to the additional time required. But a shorter way of
computing the proportional part of the time will be ex-
plained hereafter. '

From this brief sketch of the course to be pursued, the
learner will perceive that there is nothing laborious in
finding the time at Greenwich by a Lunar Observation
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except the work that may be necessary for reducing the
observed to the true distance; and this, it must be con-
fessed, involves some amount of calculation. As the object
is to clear the observed distance from the effects of parallax
and refraction, the operation is called the problem of

Clearing the Lunar Distance.

In the annexed diagram let Z be the zenith of the place
of observation, and let Z M, ZS be the two verticals on
which the objects are situated at the time; m,s, the ap-
parent places of the moon and sun, or of the moon and a
star, and let M, S, be their true places.

# As the moon is depressed by parallax, more than it is
elevated by refraction, its
true place, M, will be above
its apparent place, m; but
the sun or a star being, on

4
\ )
the contrary, more elevated s 2?
by refraction than de- / s

pressed by parallax, its true
place, S, will be below its apparent place, s.

The apparent zenith distances, Z m, Z s, are got at once, in
the usual way, that is, by applying to the observed altitudes
the corrcetions for dip, index error, and semidiameter, and
subtracting each apparent altitude thus obtained from 90°:
the apparent distance between the two objects, m, s, that
is, the great-circle arc mm s, is the observed distance itself : and
the problem is to compute from .these the frue distance,
that is the great-circle arc M S.

In the spherical triangle Zm s all the three sides will be
given: hence the angle Z, or rather cos Z, may be found in
terms of these known quantities. In the spherical triangle
Z M 8 two of the sides, Z M, Z S, being the true co-altitudes,
—obtained by applying the corrections for parallax and
refraction to the apparent altitudes, and subtracting each

L2



220 INVESTIGATION OF FORMULX.

result from 90°—are known; so that the expression for
cos Z, in the triangle Z M 8, will involve the true distance M S
as the only unknown quantity. Consequently, by equating
the two expressions for cos Z, we shall have an equation in
which M 8 is the only unknown, and this may therefore be
determined by the ordinary operations of algebra. Let
the apparent altitudes and the apparent distance be repre-
sented by the small letters a, o', and d; and the true alti-
tudes and the true distance by the capital letters A, A’,
and D: then (Spherical Trig. p. 5) we have first from the
triangle Z m s, and then from the triangle Z M 8,

cos d —sin « sin @'

cos Z = — S
€08 @ COS @
cos D —sin A sin A’
oS = ———————
cos A cos A
cos D—sin Asin A’ cosd—sinasina’
cos A cos A’ ~ cosacosa
. . cos Acos A’ .
.. cos D = (cos d sin @ sin a') ——— —— +5in A gin A’
CO8 & CO8 &
cos Acos A" .
= {cos d +cos (a +a’) — cos a cos a’} - 2" +sin A sin A’
CO8 @ COS @/

But (plane Trig. p. 30)

cos d +cos (@ +a') = 2cos§{a+a'+d}cos{;{(a+a,')~(l }

=2cos8cos (s ~d)

by putting s for § (a+a'+d). Consequently

2 cos 8 cos (s ~sd) cos A cos A’

cos D= - —cos A cos A’ +gin A sin A
co8 a cos @
"~ 2cosscos (s ~ d)cos A cos A’
= ( ) — cos (A +A)
COB & COS &

Subtract each side of this equation from 1, then since
1—cos D=2s5in?}D,and 1 +cos (A+A’)=2cos?} (A+A’)

we shall have, after dividing by 2,
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sin?} D=oost§ (A-+ A) — 2280 D) cos h cos A
cos 8 cos (8 ~vd) cos Acos A’

= cos? %(A"l'A'){ 1— cos @ cos @’ cos? (A + A’)

Now, let the fraction within the brackets be represented
by sin® C, then the expression becomes

sin?4 D =cos? 1 (A + A’) cos®C
»c.sindD=cos} (A+A’)cosC

Hence the formule for finding the true distance D are
the following, namely,

sinC=+

cos 8cos (8~ d) cos A cos A’
cos a cos a’ cos® § (A +A') } . I
sind D—=cos } (A+A’)cos C

It may be satisfactory to the learner to mention that in
assuming the fraction above to be equal to the square of
some sine (sin’ 3C), we do no more than assume that the
fraction is some positive quantity less than unit. And we
are justified in this assumption from the following con-
giderations :

1. The fraction is positive. For every factor in the deno-
minator is obviously positive, since neither of the altitudes
can exceed 90°. Every factor in the numerator is also posi-
tive; the only one of these about which there could be any
doubt is the factor cos s; but to prove that 2 s can never be
g0 great as 180°, conceive the arc measuring the lunar dis-
tance to be extended both ways to the horizon: the arc
thus completed would measure 180°, and the ends of it are
cut off by the perpendiculars to the horizon—the alti-
tudes—which are respectively less than those hypotenusal
ends, because in a right-angled triangle, whether spherical
or not, the perpendicular is less than the hypotenuse.

9. The fraction is not only positive, but it is less than
unit. For if it were equal to unit, sin? 4 D would be nothing ;
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and if it were greater than unit, sin® ¥ D would be negative,
which no sguare can be.”

The precading formul® were first given by a French ma-
thematician, M. Bords. The computation of the expression
under the radical requires, we see, nothing but cosines; the
result of this computation is, however, a sine, namely, sin C.
In the right hand member of the other expression there
occurs another cosine, cos C, and a cosine already employed ;
the final result being a sine. It weuld be as well, perhaps,
to postpone the change from cosine to sine till the very
last, 8o that in the arrangement of the work there should be
no interruption to the vertical row of cosines, in which case
the row of figures would terminate with two sines; that is,
it might be as well to use the formule under the following

slight change :—
. cos 8 o8 (8~ d) cos A cos A/
}. (D)

csC=+ cos @ cos u’ cos® § (A+A')
sin } D=cos i (A +A’)sin C

* Thesc remarks should not be regarded as superfluous. In following
the steps of a mathematical investigation, the learner should exercise that
caution and circumspection which is often necessary to prevent too unquali-
fied an interpretation of his symbols : for instance, in the inquiry above,
he wight hastily conclude, in the absence of such caution, that the formule
arrived at conveyed a general truth in spherical irigonometry ; the two
spherical triangles Z M 8, Z m s, being any whatever, partially super-
imposed, as in the diagram : the above remarks show that this would be
too unqualified an inference. The author of this work himself committed
a mistake of the like kind, many years ago, when writing on the present sub-
ject. Starting from the second expression for cos D above, namely from

__J2cosscos (s~ d)cos Acos A } ,
eos])_{ cos ¢ cos @' cos (A +A’) 1joos(A+A)

he replaced the quantity within the brackets by 2 cos® C — 1, that is by
cos 2 C, and thus got the following formuls for the true distance, namely,
e cos (s ~d) cos A cos A'}

008 C= cos @ cos a’ cos (A +A’)

cosD=cos2Ccos (A+A')
which are true however only under the limitation that A + A’is less than
90°  (* Young’s Trigonometry,” 1841, p. 184.)
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Referring to the two expressions for cos Z at page 220,
and subtracting each from 1, we have,

. . o
cos acosa’+smasma'-——cosd___cos (@ ~a)—cosd

l—cosZ=— =
cos @ cos @' €08 & cos o’
1 —cosf— cos A cos A’ +sin A sin A’ —cos D __co8 (A~ A)—cosD
cos A cos A’ cos A cos A’
. cos(a~va’)—cosd o8 (An~sA)—cosD
cosacosa’ cos A cos A’
A’
s.cosD= {cos d—cos (@ rva’) }coq A (lo_s___ +cos (A A)
cos ¢ cos o’

Now we know (Plane Trig. p. 30), that,
‘cosP+cosQ=20083 P+Q)cos} (PrQ)

Let & (P+Q)=A, and } (P~Q)=A’, then we shall have,
)
P=A+A,andQ=A~ A, orelseQ=A+A%andP =A~ A’
s.cos (A+A")+cos (ArvA’) =2cos Acos A
In like manner, cos (@ +a’) + cos (@ ~~ a’) = 2 cos & cos @/

. Hence, substituting in the above value of cos D, we have,

7 co8 (A+A)+cos(A~sA)

J cos (a+a) +cos (@ rv @) Feos (AnvA)... (I

cos D = {cosd—oos(a~a’)
If, instead of subtracting, we add each side of the two
expressions for cos Z to 1, we shall get, in like manner,

cos (A+A’) +cos (A~ A)
cos (a4a’)+cos (@& ~ a’)

cosD:{cosd+cos(a+a’)} —ocos (A+A")... IV

‘We shall now illustrate the use of these formule by an
example.

Application of the Formule for Clearing the Distance.

1. Suppose the apparent distance of the moon’s centre
from a star to be 63° 35' 14", the apparent altitude of the
moon’s centre, 24° 29' 44", and the true altitude 25° 17’ 45,



224 APPLICATION OF THE FORMULZE.

also the apparent altitude of the star, 45° 9’ 12", and its
true altitude 45° 8’ 15": required the true distance ?
Here d = 63° 85 14", 0 = 24° 29’ 44", ¢ = 45° 9’ 12".
A =25°17' 45", A’ = 45° 8' 15"
The work will be as follows:—

1. By the Formule (IT).

d 63° 35’ 14" Tabd. Diff. Parts,
a24 29 44 Comp. cos 00040919 . . . 96+ 4224
a’45 9 12  Comp. cos 0°151655 . . . 212+ 2544

2138 14 10 +6768
866 37 5 ....con9598660 ... 487— 2435
sr~vd 3 1 51 . ... co89°999398 . .. 11— 561
A25 17 45 . ... co89956268 ... 99— 4455
Ad5 8 15 .. .. cos9848472 ... 212— 3180
A+Ar70 26 0 39595372 —10631
— 39 parts for secs. — 38,63

2)39°595333

19-797667
4(A+A)35 13 0 .. —cos 99122104
C39 48 37.... cos9-885457 .. . 175)6500(37"
' - 525
C ... sin 9'806254 . . . 253 1250
+ 94 pts. for 37"

9-806348 +

s 4D=381 32 174.... sin9-718558 . . . 343)6100(17"}
~D=63 4 35 343

2670
2401

269

The minus sign is put before cos 4 (A + A’) to imply that
it is to be subtracted from the quantity over it; and the
plus sign is annexed to it to indicate its addition®to the
quantity similarly marked below.
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2. By the Formula (IV).

d 63° 35’ 14" nat. cos 444835 +
a24 29 44
ads 9 12

a+a’' 69 38 56 nat.cos 347772+
792607 . . . . . log 5899058
0 39 28 nat. cos 935704 +

A25 17 45 1283476  Comp. log 3:891612
A'45 8 15

A+A’70 26 0 nat. cos 334903 —
A~A’19 50 30 nat. cos 940634

sum 1275587 . . . . . log 6105693
787704+ . . . . log 5°896363
D63 4 35 nat. cos 452801

In the preceding operation we have not actually exhibited
the parts for the seconds. As never more than two cosines
are to be added together the parts for seconds should be
incorporated into each at once:* but in comparing this
method with the former, an estimate should be made of
what is here suppressed, in reference to the extracts from
the table of logarithms. (See p. 230.)

* In the Navigation Tables which are intended to accompany this work,
will be found a very convenient table of natural cosines, by aid of which
the trouble of correcting for seconds is scarcely worth mentioning. This
table may also be found useful for other purposes. The author has
before expressed his disapproval of the exuberant supply of tables with
which most of the books on this subject abound. * He is persuaded that a
reference to & variety of tables, in one and the same operation, begets con-
fusion and perplexity ; more especially when any of these require to be

~modified, in every case of practice, by supplemental tables in the margin.

He inclines to think that the navigator who has to work out an important

problem, such as that in the text—where even a small inaccuracy is of con-

sequence—would rather have a model to go by which should confine his

attention to a single table, the use of which he is well acquainted with,
L8
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It is some advantage in this second way of finding the
distance that the cosines of @ + o/, A + A’ always occur
in the sameccolumn, or in adjacent columns of the table:
so do the cosines of @ ~ a’, A ~ A’. Also the first and last
logs occur in like manner at the same column or in adja-
cent columns, as do the two middle logs. The table of
natural cosines, as given in the accompanying volume of
tables, is moreover more easily employed than the table of
log cosines. On these accounts some may possibly prefer
the method now given. Both the methods might be abridged
by the aid of special tables: but these are sometimes so
perplexing, inv&ving two or three small marginal tables of
corrections, and requiring so much tact and judgment in
the use, that we think the rigorous methods by the common
tables are to be preferred. Indeed as a general principle
the' fower the tables employed in the computations of
nautical astronomy the better. Even the logarithmic por-
tion of the foregoing work might we think be advisedly
replaced by common arithmetic: the operation would then
stand thus :—

even should he have to perform a few independent arithmetical operations,
than have his mind perplexed by turning from table to table for the several
items he is to put down ; more especially when these are not to be obtained,
after all, without certain changes and very careful and vigilant scrutiny.
Under this conviction, the author has here proposed a method which,
besides a little arithmetic, requires reference only to one table, very casy
to consult—a table of natural cosines.

It will, however, be understood that the preference here given to the
arithmetical operation in next page, instead of to the logarithmic work in
the last, is merely a matter of individual taste and opinion. The com-
putor who uses the method in the text, will employ logarithms or not, as
he thinks best. ’



d 63°

a 24

o’ 45
a+a' 69

an~ a’ 20
A 25

A’ 45
A+A'70
A~ AT19
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35'
29
9

38

39

17
8

26
50

14"
44
12

56

28

45
15

0
30

nat. cos 444835 +

nat. cos 347772 +

792607 Multiplier (to be reversed)

nat. cos 935704 +

1283476 Divisor.

nat. cos 334903 (7o be subtracted from quotient
nat. cos 940634

below)

1275537 Multiplicand
706297
8928759
1147983
25511
7653
89

12,8,3,4,7,6) 10109995 ( 787704

8984332 334903 (Subiract)
1125663 452801 nat. cos 63° 4 35" =D
10267,8_1 Should this nat. cos be nega-
98882 tive, the supplement of the
80843 angle answering to it in the
9039 tables will be D.
8984

55

An arithmetical operation like the preceding must not be
judged of by the eye, in a comparison of it with a logarith-
mic process ; in the latter the fingers are a good deal less
exercisedybut the mind a good deal more.

It may be proper to add here that the sign 4 or —
annexed to any quantity, implies that that quantity is to be
algebraically added to or subtracted from the next marked
quantity below it, whatever the prefized signs of the quan-
‘Whenever any of the cosines are negative,

tities may be.
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that is, when any of the angles exceed 90°, the negative
sign is, of course, to be prefixed. The numbers whose
logarithms age taken, are all regarded as positive: whether
the final result belongs to a positive or negative number,
is to be determined as in the common ¢ rule of signs’ in
multiplication :— only an odd number of negative quantities
can give a negative result. It may be further noticed that the
cosines are all treated as whole numbers, and not as decimals.

The operation by this second method is easily expressed
in a rule as follows :—

Ruwx for Clearing the Apparent Distance.

1. Write down, in order, the apparent distance, and the
apparent altitudes ; and take the sum and difference of the
latter two.

2. Underneath, write the true altitudes; taking in like
manner their sum and difference.

3. Referring now to the table of natural cosines, take out
the cosine of the apparent distance, as also the cosine of
each sum and difference.

4. Take the sum of the first and second cosines, then the
sum of the second and third, and lastly the sum of the fourth
and fifth.

5. These sums will give three nmumbers. Multiply the
first and third of them together, and divide the product
by the middle one, performing the operation either by logs
or by common arithmetic; the result—the cosine of the
sum of the true altitudes being subtracted from it—will be
the cosine of the true distance. If this cosine be negative
the supplement of the angle in the tables is to be taken.

Note.—In taking out the cosines, the best way of pro-
ceeding will be this: Having found the column headed with
the degrees, take first the seconds; and having written the
proper correction for these on a slip of paper, place this
correction under the cosine answering to the minutes, and
write down the result of the subtraction.
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‘We shall give another example worked by this rule, and
shall then sketch the blank form for each of the two
methods of finding the true distance.

2. Given the apparent altitudes ¢ = 29° 27’ 5", & =25°
50’ 51”; the true altitudes A = 29° 25’ 30”7, A’ = 26° 41’
35", and the apparent distance d = 99° 58 58”: required
the true distance ?

d 99° 58’ 58" mat.cos — 173352+
«?29 27 b
a' 25 50 51
a+a’'55 17 56 nat. cos 569295 +
895943 Multiplier (to be reversed)
ar~a’ 3 36 14 nat.cos 998023+

A20 25 30 1567318 Divisor
A'26 41 35 .
A+A’ 56 7 5 nat. cgs 557484
A~ A’ 2 43 55 nat.cos 998863

1556347 Multiplicand
349593

4669041
1400712
77817
14007
622

47

15,6,7,3,1,8)6162246( 393171
4701954 557484 (Subtract)

1460292 — 164313 =(nat. cos

1410586 09° 277 26" = D
49706
47019

2687
1567

1120
1097

23
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If instead of aectually multiplying and dividing, we take
the logarithms of the three numbers, the extracts from the
table will be,as follows :—

5597586 6195069 6192010
44 83 837
3 2477 1116
5597633 221 195
3-804843 = Comp. of 6195157 6192106
6192106 e
5594582 —log 398171
503 557484 (Subtract)
111) 79 (71 — 164313 = nat. cos 99° 27" 26"
777

1st Buaxnk Fory for clearing ghe Lunar Distance.

App. dist. L. L "nateeos ...t

App. alts. { o }'

Sum app. alts. .. .. .. mat.cos......+

.+« .. Multiplier
Diff. app. alts. .. .. .. matcos......+
True alts. { ottt } . ... Divisor

Sum true alts. .e .. mat.cos...... (To be subtracted from
Diff. truealts. .. .. .. matocos...... quotient below),

Sum . .. ... Multiplicand
Xeoeoooo

Divisor) Product (Quotient

e s e 0™

«+.. .. Dat. cosof TRUE

DisTANCE.

Nore.—The ¢ quotient” may be found as here indicated,
by common multiplication and division, using the contracted
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methods, or by taking the logarithms of the three numbers,
thus:—

Log Multiplier ceesaen
Comp. log Divisor [
Log Multiplicand cereee
Log Quotient <4« s..., 10 being rejected from the index.

28D Buank Forx for clearing the Lunar Distance (Borda's Method).

App. dist. A Tadb. Diff. Paxrts jor secs.
App. alt. e v .. Comp.cosS....... ek e
App. alt. e ve .. Comp.cos....... ceeet cee
4 sum e e COS e uvennn —_ e
3 sum ~o app. dist. .. .. .. [Tu): T —
True alt. N COS..uvunw B e
True alt. PO Co8. ... e — e
Sum true alts Cvee e eeeeae —_——..

. .. Parts for secs, PR

"
% sum true alts, e e ~COS....... +
Angle C ve ee ee COS....... R TR G
Angle C ceee s sin ...... -
4. .. Parts for secs.

& truc distance

Trur DisTaNch

By comparing the two forms the student will perceive
that if in the first the multiplication and division be per-
formed by logarithms, there will be the same number of
references to tables in each: but in the firsk method the
references are made with much greater facility, and con-
sequently the work is completed in less timc, and with less
trouble: and, as both methods arc gqually accurate—giving
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the true distance to the nearest second—the first method,
we think, claims the preference, on the ground of superior
simplicity. -

But it may be remarked, that whichever method be em-
ployed, an error of a few seconds—or of even so much as
one or two minutes—in taking the altitudes, will have but
very little influence on the resulting true distance, provided
the observed distance be taken with accuracy. This is a
valuable peculiarity ; because, in preparing to take the dis-
tance, the sextant can be previously set to a division on the
limb easily read off, the observer waiting till the anticipated
distance has place, at the instant of which the altitudes may
be taken by two other observers; and any small inaccuracy
either in the readings off or in the observations themselves,
will be of comparatively little consequence.

But, instead of a single observation, it is always best to
take the mean of several. For this purpose, after the first
anticipated distance is taken, with the corresponding alti-
tudes, the index of the sextant can be moved a minute or
two, according as the objects are approaching to or receding
from each other, and another observation of the distance,
with the corresponding altitudes, taken, and so on: the
mean of the distances, and the means of the corresponding
altitudes, are those from which the true distance is to be
computed. It is of much more importance to deduce the
distance from the mean of a set, than to so deduce the alti-
tudes, since strict precision in the latter is not indispensable :
indeed, as we have already remarked, the altitudes may be
each in error to the extent of even one or two minutes,
without materially affecting the result of the computation.*

* The reason of this may be explained as follows : The fraction in the
formula (ITI), hes for numerator and denominator numbers consisting of
six or seven places of figures each. If the last two or three figures of each
be equally increased or diminished, it iz plain the value of the fraction
cannot be materially altered ; and it is equally plain that a small alteration

[ %4 Aaain the frantinn nlnre vn
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It may happen, however, from the want of qualified
assistants, that both distance and altitudes must be taken
by the same observer. In this case, having set, his sextant
to the anticipated distance, shortly before this distance has
place, let him take the altitude of each object, with another
instrument, noting by the watch the corresponding times.
Let him again observe the altitudes and times shortly after
the distance is taken, having already noted the time of
the distance itself. Then, by proportion, as the interval
of time between the two altitudes of the same object is to
the interval of time between one of those altitudes and the
distance, s0 is the difference of the altitudes to the correction
to be applied to the one altitude spoken of, to reduce it to
what it would have been if taken at the instant of the
distance. Of course, a mean distance, and a mean altitude
of such object, ean be inferred from several, as before. But
the obscurity of the horizon may preclude the taking of the
altitudes altogether: in this case they will have to be deter-
mined by computation. The method of computing altitudes
will be explained hereafter.

Examples for Exercise.

1. The apparent distance d, the apparent altitudes a, @,
and the true altitudes A, A/, are as follows, namely :—
d = 838°57' 83", « =27°84' 5", a’ = 48°27' 32"
A = 28° 20" 48", A’ = 48° 26’ 49"
Required the true distance D P Ans. D =83° 20’ 54".
" 2. The apparent distance, the apparent altitudes, and the
true altitudes are as follows, namely :—

differs from unity by a very small fraction ; that is, it is equal to 1 +p,
p being very small. The formula is therefore

" cos d (1 +p)— cos (anva’)—p cos (arva’) + cos (AnvA’)
Now cos (a~va’) and cos (A~A’) have equal errors ; these errors, therefore,
here destroy each other, so that the only error remaining is that in cos (ar~va’)
maultiplied by the very small fraction ». And similarly of form (IV).
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d = 72°42'20", a = 20°18' 20", o’ =31°17' 20"
A = 20°10’48", A’ =32°2'14"
Required the true distance D ? Ans. D =72° 83’ 8".
8. The apparent distance, the apparent altitudes, and the
true altitudes, are as follows, namely :—
d = 56° 56’ 31", a — 58°4' 85", o’ = 23°3' 4"
A =58°3'59", A’ =23°51' 41"
Required the true distance D ? Ans. D =56° 16’ 27".
4. The apparent distance, the apparent altitudes, and the
true altitudes, are as follows, namely :—
d=108°14’ 34", @ = 24° 50, o’ = 36° 25’
A =25°41'39", A’ = 36° 23’ 50"
Required the true distance D ? Ans. D =107° 32' 1"
&. The apparcnt distance, the apparent altitudes, and the
true altitudes, are as follows, namely :—

d =33°30' 21", o = 28° 24' 59", a’ = 61°36’ 50"
A — 28° 93/ 14::’ Al —62°2' 0"

Required the true distance D ? Ans. D =388° 56' 48".

Determination of the Greenwich Time, ond thence the Longi-
tude, from a Lunar Distance.

As already stated (page 218), a variety of Lunar Dis-
tances are given in the Nautical Almanac for every day in
the year, and for intervals of every three hours. During
such an interval the motion of the moon in its path may be
considered as sufficiently uniform to justify our inferring,
without material error, what the distance would be on any
intermediate instant, by proportion, or on the other hand,
what the time would be corresponding to any intermediate
distance. But it is evidently troublesome to work a propor-
tion in which two of the terms are degrees, minutes, and
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geconds, and the third term hours. To save this trouble
in all such proportions, Dr. Maskelyne, a former Astro-
nomer Royal, calculated a table, called & table of Propor-
tional Logarithms: it will be found in the * Navigation
Tables which accompany this volume:—we shall here
explain the principles of its construction, and the use to
be made of it.

PrororrioNaL Logarrrams.—The number of seconds
in 8" is 10800, and if ¢ be the number of seconds in any
portion of time less than 3%, then log 10800 — log @ is what
is to be understood by the proportional logarithm of a.

Hence, contrary to common logarithms, the greater the
number @ the less will be its proportional logarithm. In
fact, these logarithms are analagous to what in common
logarithms are called arithmetical complements ;—the greater
the log the less ifs arithmetical complement. As— .

Prop. log @ = com. log 10800 — com. log @ = com. log -10—3@ s

proportional logarithms are complements of the common
logarithms—not to 10—but to com. log 10800. If a be
actually equal to 10800, then prop. log. @ = com. log 1 =0;
Jjust as in common logs, if a log be actually equal to 10, its
complement is 0.

‘We thus see that a table of proportional logarithms of the
numbers required is constructed by simply subtracting the
common log of each number from the common log of 10800,
that is, from 4-033424.

Let the difference between two consecutive lunar dis-
tances in the Nautical Almanac be D, and suppose the
difference between ah intermediate lunar distance determined
at sea, and that of the two distances in the Almanac, which
is the nearer to it, preceding, in order of time, to be 4 : then
to find what portion (2") of time must be added to the time
of this nearer distance to obtain the Greenwich time of the
observed distance, we have the proportion,
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D:d::8:2h
. log 2% = log 8" +1og d —log D
log 3t —1log 2t =log D—1log d
= (log 8% —1log d) — (log 3t — log D)
that is,
' P. log b =P. logd —P. log D,

where by 2%, d, and D, are meant the nwmber of seconds in
these several quantities.

The P.log D isinserted in the Nautical Almanac, between
the dlsttmces there given at the beginning and end of every
three hours, so that by subtracting this proportional log
from P. log d, taken out of the table of proportional loga-
rithms, the remainder will be a P. log, answering to which
in the table will be found the portion of time to be added to
the hour of the earliest distance, in order to get the Greenwich
mean time of the observed distance. For example: Suppose
it were required to find the Greenwich mean time at which
the true distance between the moon and a Pegasi would be
41° 14’ 58" on January 22, 1858. It appears, by inspecting
the distances in the Nautical Almanac, that the time must
be between noon, that is Ot and 8b; the nearest distance,
preceding in order of time the given distance, is therefore the

Distance at noon 40° 29’ 8" ., .. P, log of diff. 2987 —
Given distance 41 14 58

Difference. 0 45 50 . . . P.log 5941
Time after noon 1 31m 10* . . . P.log 2954

Baut, although the moon’s motion during the whole of the
8% is sufficiently uniform to render the interval of time, thus
determined by proportion, a close approximation to the true
interval, yet to obtain the interval exactly, a correction for
the moon’s variable motion during that interval must be
applied. The correction is found as follows :—

Take the difference between the P.logs against the two
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lies. Then with this difference, and the approximate interval,
found as above, enter the short table given at p. 526 of the
Almanae, and the proper correction will be found. Thus, in
the example above, the P. log at noon is 2987, and the
P. log at 3t is 2936 : the difference between these is 51.
Turning to the table at p. 526 of the Almanac, we find
opposite to 1t 31™ (the nearest to 1 31™ 10%), and under 51,
the correction 16*; which, edded to the approximate interval,
1t 31™ 10s, because the P.logs here are decreasing, gives
1 81™ 26¢ for the true interval from noon: hence the
Greenwich mean time is 1" 81™ 265

Proportional logarithms may be advantageously used in
many other inquiries in which common proportion would
else be necessary. And as in ordinary logarithms, we may
always avoid subtraction by taking the complement of the
P. log.to 10-0000, and then rejecting this amount in %he
sum. For example,—

The observed altitude of a celestial object at 3h 28m 44s
was 20° 8/, and at 8% 38 20¢, the altitude was 20° 45': what
was its altitude at 31 33m 47s?

Firstalt. . .20° 8 Time .3 28m4ds . . . . . b om g4
Second . . . 2045 ” 3 38 2 Time at req. alt. 3 83 47
Difforence . 042 Diff . .0 9 36 Difforence. .0 5 3

As 9m 36+ Arith. comp. P, log 87270

: 5 3 P. log 15520

: 4 P. log °6320

2
o 6" e

First alt. . 20° 8 0 P.log 9110

20° 25’ 6” Altitude at 3b 33m 47s

Having thus shown the use of proportional logarithms,
we may now proceed to detail the operations necessary for
obtaining the longitude by a LuNar OBSERVATION.

Longitude from a Sun-Lunar.

1. The first thing to be done is to get, either from the
ship’s account, or from the chromometer, the approximate
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Greenwich date of the observations; by means of which the
semi-diameters, horizontal parallax, declination, and equation
of time, at the instant of observation, may be ascertained
sufficiently near the truth for the purpose in view ; for these
quantities vary so little in even a long interval of time, that
a considerable error in the Greenwich date can affect their
value only in a very slight degree.

2. The next step in the work is, by applying the necessary
corrections to the observed, to obtain the apparent, and true
altitudes ; and the apparent distance of the centres.

8. These preparatory operations having been performed,
we shall then have data sufficient for finding both the mean
time at the ship, and the mean time at Greenwich, at the
instant the observations were made, as in the following
examples :— )

1. On February 12, 1848, at 4" 16™ p.m. mean time, by
estimation, in latitude 53°30' 8., and longitude by account
39° 30’ E., the following lunar observation was taken : —

Sunw’s L. L. Moov's L., L. Nearcst Limbs.
Obs. alt. 29° 17’ 26" 25° 40" 20" Obs. dist. 99° 27/ 30"
Index cor. —2 10 —1 10 —50
29 15 16 25 39 10 99 26 40

—

The height of the eye was 20 feet: required the longitude ?

Mean time at Ship, Feb, 12 . . . . 4h 16m
Longitude E. in time . . . . . 2 38

Estimated mean timeat G. . . . . 1 88
Referring now to the Nautical Almanac, we take out the
two semi-diameters, the sun’s declination, the moon’s hori-
zontal parallax, and the equation of time—
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Sun’s noon declin. at G. 13° 52’ 18" 8. Diff, for 1% —49"-87

Correction for 1b} —1 15 14 hours
Declination 13 51 388. Eg oF TiMB. 4987
90 +14m 33+ 2499
Porar Distaxce 76 8 57 — 7486

Moon’s Hor. parallax at G. noon 58’ 86"  Diff. for 12%, — 18"
Correction for 1b} — 1 of 12t —1"6 Sun’s semi-diam. 16" 13"

— e
Hor1zoNTAL PARALLAX 58 34 Moon’s semi-diam. 15 58

1. For the Apparent and True Altitudes.

SN Moox,
Obs, alt. L. L. 29°15"16” | Obs. Alt. Tu. L. 257397107
Dip — 4247, Dip. —4' 4"
Sowi 416 1 ) T Somi+ Avg. +16 5 J Fua
App. alt. centre 2927 5 App. alt. centre 25 50 51
Ref. — Parallax | — 135 | Par. — Refraction + 50 44
True alt. centre 29 25 30 True Alt. centre 26 41 35

2. For the Mean Time at Ship.

Alt. (sun) 29° 25 30" Tub. Diff. Pts. for secs.
Latitude 53 30 0 Comp. cos 0225612
Polardist. 76 9 0 Comp. sin 0°012814 52 — 0
2)159 4 30
jsum 79 82 15 cos 9°259268  1141— 17115
Y sum—alt. 50 6 45 sin 9-884889 176 + 7920
19-352583 — 9195
— 92 ——
2)19-382491
1 Hourangle29 25 7 sin 9-691246
9 —_—
Hour angle 58 50 14 =3 55m 21* Apparent time at Ship
Equation of Time +14 33

Meax TIXE AT SHIP . . 4 9 54
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3. For the True Distance, the Greenwich Time, and the Longitude.

Obs. dist. .99' 26'40” y App. dist. 99° 58’ 58” nat. cos — 173352 +
Sun’s semi-diam, + 16 13 1 {29 27 5
Moon's + Aug. +16 5 JAPP-alts  1g5 5 51

Sum app. alts. 55 17 56 nat.cos 560295 +

305043 Multiplicr

Diff.app.alts. 3 36 14 nat.cos 998023 +
1567318 Divisor

29° 25" 30”
26 41 85

Sum true alts. 56 7 5 nat.cos 557484
. Diff. truealts. 2 43 55 nat. cos 998863

True alts.

1556347 Multiplicand
% 849593
1567318)6162246( 93171
—b57484
TRUE DISTANCE 09° 27" 26" nat. cos —164318
nce at noon ( Naut. Alm.) 98 38 0 Prop. log (N. A.) 2725 —
Difference 49 26 Trop. log 5612
Mean time at Greenwich 1h 32m 35% Prop. log 2887
Mean time at ghip 4 9 b4
Longitude E. in time 2 87 19
=20
3m = 9° 15
19 = 4’ 45"
LonciTupe E. 39° 19 45"

If the estimated mean time at Greenwich, namely 1t 38m,
had been taken from the chronometer, we should now be
able to infer from the correct Greenwich time, namely
1k 32m 858 that the error of the chronometer on Greenwich
mean time is 5@ 258 fast.

Nore.—When the estimated time at Greenwich, upon
which the preparatory operations are founded, differs con-
siderably from the true mean time at Greenwich, it will be
prudent to glance at the results of those operations with a
view to diseoverine whether this differenca of time ean
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cause any appreciable modification of them; that is to say,
whether, 1st, the sun’s declination requires any additional
correction of consequence in reference to its influence on the
time at the ship—as fully explained at page 190; and,
2nd, whether the additional correction of the moon’s semi-
diameter can have any sensible effect on the distance.

In the example above, the 2m 858, by which the estimated
Greenwich time, namely, 2} hours, exceeds the true Green-
wich time, authorises an additional correction of — 2" in the
declination, and therefore of +2" in the polar distance ; this
correction, however, is readily seen to have no sensible
influence on the mean time at the ship. The change in the
moon’s semi-diameter, which diminishes only 4" in 12}, is
equally insensible.

It may be further remarked, that in determining the
interval of time from the proportional logarithms, we Mave
not here taken account of the correction of that interval for
the moon’s variable motion, which correction as noticed at
page 237 is given in the Nautical Almanac. We think it
right, however, to introduce it in the Blank Form to be
hereafter given, as in certain cases, especially in low lati-
tudes, it may considerably affect the longitude. The learner
will, of course, remember that an error of, say 2/,in the
longitude, does not place the ship 2 miles out. of its true
position, except it be actually on the equator :—the error in
distance would be 2 miles X cos lat., as shown at page 53 ;
such an error in the present case would but little exceed a
mile,

In the foregoing example the time at the ship has been
deduced from the sun, but if this body be too mnear the
meridian when the lunar is taken for its altitude to be safely
*employed for this purpose, the time must be inferred from
that of the moon. Now in this case it is desirable to find
the time at Greenwich before finding that at the ship, that
is, to perform the operation marked (3) above before that
marked (2), instead of after it, for the right ascension and
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declination of the moon change so rapidly that an error of
but 9 or 10 minutes in the time may cause an error of so
much as 4’ in the resulting longitude. It is desirable,
therefore, that when time is to be computed from the moon,
that the Greenwich date of the observation should be as
accurate as possible: we shall give an example.

2. May 22, 1844, at 11" 15, estimated time, in latitude
50° 48" N. and longitude 1° W. by account, the following
lunar observation was taken, the moon being E. of the
meridian :—

Sun's I. L. Moon’s L. L. Nearest Limbs.

Obs, alt,  57° 53 0" 22° 53' 2"  Obs. dist. 56° 26" 6"
Index cor, +380 —20 —35
57 53 30 92 52 42 56 25 31

height of the eye was 24 feet : required the longitude ?

1 time at ship, May 21 , . . 28 15m
itade W. in time . . . . 4

aated mean time at Greenwich 23 19, or 41™ before noon, May, 22,

srring now to the Nautical Almanac, we take out the
'wing particulars, the sun’s declination not being required,
e from the proximity of that body to the meridian it is
rosed to deduce the ship time from the moon.

Us semi-diam., May 21, midnight 151"8  Diff, for 12b +4" 4
+4 15 for 41m 25

s semi-diam. at 28% 19m May21 15 5 4 Cor. 4 ‘15

r's Hor. par. May 21, midnight 55’ 7"'6  Diff. for 12» +16"1
+152 for 41m 9

vs Hor. par. st 234 19™ May 21 55 92278 Cor. 15 -2

—— )
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Sun’s semi-diameter at noon, May 22, 15" 49”.

248

1. For the Apparent and True Altitudes.
[ )

Sox, Moonx.
Obs. alt, L. L. 57° 58’ 30” | Obs. alt. L. L.
Dip — 4’ 49" Dip. — 4 497
Nemi. + 15 49 } __"’ 1 -_°_ Semi. +15 54
App. alt. centre 58 4 30 | Augment. 60
Ref. — Parallax —31 l App. alt. centre
True alt. centre 55 8 59 | porallax —Ref
e ‘ True alt. centre

22° 52 49"
+10 22

23 3 4
+ 48 41

23 51 45

2, For the True Distance and Time at Greenwich.

Obs. dist.  56° 23' 81”4 App. dist.

Sun’s semi. + 15 49} 58 4 30

Moon's + Aug. +15 11 J APP- 8lts. {23 3 4
Sum 81

58 8 5o
alts. {23 51 45

81 55 44 nat. cos 140402
'ence 34 12 14 nat. cos 827043

967445 Multiplicand
947996

5804670

370701

87070

6772

387

87
9,72 1,7,2)6T60687( 695631
5839032 — 140402

Difference 35

980655
875855 ——

54800
48659

6141
5889

802
292

10

56° 56’ 81” nat. cos 545489 -

7 84 nat. cos 154260 +

- ®
699749 Multiplier.

1 26 nat. cos 818912 +

973172 Divisor.

e,

555229 = nat cos 5¢* 16" 25"
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True distance

56° 16’ 25"

Dist. at 218 (Naut, Alm.) 55 15 36 P.L.of Dif.

¢
Interval after 21%

.". Mean time at Greenwich 23h

N1

o qm42¢ . . P.L

0 49 . . PL

7m 42¢ May 21

3221 —
4712
1491

Having thus got the correct mean time at Greenwich when
the lunar distance was taken, we can now deduce the right
ascension and declination of the moon with greater precision,

as follows : —

Mean Sun's R. A.
Noon, 21st 8l 56m 5308 | 28b

Cor.for 23hTm42¢ + 3 48* | Cor. for Tm 42+

Moon's R. 4.

7h 55m 24° | 93h

Moow's Declin,
17° 5 12"N.
+ 16 | Cor.for7m42 —1 2

Sun'sR.A. 4 0 42 | Moow'sR.A.7 55 40 | MoomsDec, 17 4 10 N.

1

POLAR DISTANCE

3. For the Mean Time at Ship.

Altitude 23° 51’ 45"

Tab.

Latitude 50 48 0 Comp, cos 0199263 Diff.
Polar dist. 72 55 50 Comp. sin 0019597 65 —

2)147 35 385

1 sum 73 47 47%
i gum —alt. 49 56 21

3 Hour angle 36 28 44

. Hour angle 72 57 28, or
Moon’s R. A.

B. A. of meridian
Mean Sun’s R. A.

Mean time at ship, May 22 ‘

4h
7

8
4

0

or May 21 23
Mean time at Greenwich 23

Longitude W. in time

0

cos 9°446025 724 —
sin 9-883829 177+

19-548714
— 372

2)19-548342
sin 9-774171

51 50% E. of meridian
55 40

3 50

0 42

56 52 before noon
3 8
7 42

4 3¢

.". Loxarrupz W., f’ 8’ 80"

90
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If in this example the mean time at ship had been found
before the mean time at Greenwich, the resulting longitude
would have been about 4’ in error.

We shall conclude these illustrations w1th ‘one more
example.

3. September 2, 1858, at 4® 50™ 11%, as shown by the
chronometer, in latitude 21° 30’ N., the following lunar
observation was taken, the height of the eye being 24 feet : —

Obs. alt. Suw’'s L. L. Obs. alt. Moow's L. L. Obs. dist. N. L.

58° 40’ 30" 32° 52/ 20" 65° 327 10"
Index cor. +2 10 +3 40 -1 10
Required the longitude ?
Sun’s Noon Declin. at G.  7° 56’ 46"'5 N,  Diff. for 1»  —54"-96
Cor, for 4k 50m —4 26 5
— -
Declination 7 52 21 for 50 27480
90 for 10= 916
PoLAR pisTANCE 82 7 89 6 0)26 564
-—4’ 26"
Sun’s semi-diam, 15’ 53"8 Moon’s semi-diam. 16’ 17"
Equa. of time 25536 Diff. for 1 +0"'796
Cor, for 4» 50™ 8.85 b
EqQua, or TIME corrected 292 Sub. for 5 3980
for 10m 133
+3-847
Moon’s Hor. Parallax 597 35"°1 Diff, for 128 +5"-7
Cor. for &5t 2" for 6% +2"

Hor. PaAR. corrected . . 59 37

minutes and seconds may be easily obtained. But there is a table for fur-
nishing this difference in the Nautical Almanac, page 530.

The difference between the Moon’s R. A. at 23" and at the following
noon, i8 (by Naut. Alm.)+2® 6° the proportional part of which, for
7m 42 is + 16  Also, the difference between the two declinations is
— 8’ 1", the proportional part of which for Tm 42% is — 1’ 2",
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1. For the Apparent and True Altitudes.

Box. MooN.
Obs. alt. L.,L. 68° 42 40" | Obs. alt. L. L. 82° 56’ 0"
Dip — 4 49" Dip — 4 49"
Bemi. + 15 54 ! TS temi 410 W } +11 37
App. alt. 58 53 46 | Aug. + 9 .
Ref. — Par. —30 | App. alt. 33 7 37
True alt. 5§ 53 15 | Cor ofalt. _t8 %
— Truo alt. 38 66 38
2. For the Mean Time at Ship.
Sun’s alt. 58° 53/ 15" Tab. Parts
Latitude 21 30 0 Comp. cos 0°031322 Dif. for secs.
Polar dist. 82 7 39 Comp. sin 0004124 20 — 1131
2)162 30 54
} sum 81 15 27 cos 9°182196 1369 — 36063
$sum —alt. 22 22 12 sin 9°580392 511 + 6132
18798034 — 319,62
— 320
2)18°797714
4 Hourangle 14 30 313 sin 9398857
2
Hour angle 29 1 3 or 1" 56m 4* Apparent time at ship
Equation of time —29

MEAN TIME AT SHI* 1 55 35

[The hour-angle deduced above is rather small—too small
for the ship time derived from it to be depended upon as
accurate, except in particular circumstances. But, as noticed
at p. 196, when, as in the present example, the place of
observation is between the tropics, and the declination is of
the same name as the latitude, the hour-angle may be much
smaller than under other circumstances, without affecting
the accuracy of the result. When the sun’s hour-angle
exceeds 2!, as in genmeral it should, it may be found by
Tahla XVTIT of tha Mathematical Tahlea. fram twice tha
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3. For the True Distance, the G. Time, and the Longitude.
Obs, dist. 65° 31" 0"y App. dist. 66° 3’ 20” nat. cos 405850

Sun’s semi. + 16 b4 58 53 4D
Moon's + Aug. + 16 20 ) APP alts. {53 %7 7
Sum 92 1 22 nat. cos — 035207 +
370553 Multiplier.
L (68° 58 16" Difi. 25 46 S nut.cos 900566 +
Truc aits. 183 56 3 .
PR 865259 Divisor.
Num 92 49 18 nat. cos — 049228 —_—
Difl. 24 57 12 nat.cos 906652
§67424 Multiplicand.
355073
2572272
600197
4287
429

26

§,6,5,250)3177211( 867198
2595777 + 049228

§81434 416426 nat. cos 66° 28’ 27"

510165
62279
60568
1711
865
846
779
67
True distance 65° 23' 27"
Dist. at 8 (N. A.) 66 24 23 P. L, of Diff, 2537 —
"1 0 56 . . .P.L 4704
Interval of time 1h 49m 18 , . . P, L. 2167
Correction p. 526 (N.A.) +1 .
Mean time at Green. Shel 49 1Y
Mean time at ship 1 56 35
Longitude W. in time 2 63 44, LoNGITUDE43°26' W.

And the error of the chronometer is 52* fast on Greenwich
mean time.
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It now merely remains for us to give the blank form for a
sun-lunar.

BLANK ForM.— Longitude by Sun-Lunar.

Estimated mean time at ship ..b ..m
Estimated longitude in time .. .. (— for E. and + for W.)

Greenwich date .. «. (May be had from Chron.)
Sun's noon declin. at G. PR Diff. for 1+ ..”
Cor. for time past G. noon P X .. Hours past noon
Declin at G. date e e
90 6,0).....

POLAR DISTANCE e e s .. «.” Cor of declin.

Sun’s semi-diameter LS Moon’s semi-diameter L
Equa. of time (p. I, N.A.) .. ™ ,.» Diff. for 1  ,.”

Cor. for time past G. noon . X .. Hours past noon

EQUA. OF TIME AT G. DATR

-

.._.’-’ Cor. of Eq. of time

’

Moon’s Hor. Parallax . P Diff. for12h ..”
Cor. for time past G. noon .. X .. Hours past noon
HOR. PAR. AT G. DATE

12)...

T Cor. of Hor. Par.

1. For the Apparent and True Altitudes.*

Sow. Moonx.
See Blank Form, p. 113. | See Blank Form, p. 126.

2. For the Mean Time at Ship, from the Sun's Alt.
See Blank Form, p. 195.

* The blank forms for these it is scarcely necessary, at this stage of
the learner’s progress, even to refer to: the operations for deriving the
apparent and true altitudes, whether of the sun or of the moon, from the
observed altitude, are of such frequent recurrence, and, moreover, are so
simple and obvious, that there can be no necessity to consult a form for
them in working out the present problem,



BLANK FORM—SUN-LUNAR. 249

3. Hor the True Distance.

Correct the observed distance for the two sepi-diameters,
taking account of the augmentation of the moon’s semi-
diameter, the same as in step 1; the result will be the
apparent (istance, with which and the apparent altitudes
proceed as in the Form at p. 230 to find the true distance.

4. For the Longttude.

True distance SO
Next earlier dist. (Naut. Alm.) .. P. L. of diff. .... Diff fromnextD. L. ..

T i With this diff. and t

»
o -T2 interval of timo, find ¢

Interval of time hom s P. L. .... |correction of that inter.

Cor. p. 526 Naut. Alm. . — ; in the Table ut p. 526 N.

True interval of time Joom s ler time of earlier dist. in Naut. Alm.

Time of earlior dist. 4.

Mean time at G.

Mecan time at ship

.. .% LoXarrunr .0 .0 L

Longitude in tinae

Nore.—When from the sun being too near the meridian,
or from any other cause, the time at the ship must be
deduced from the altitude of the moon instead of from that
of the sun, then the true distance, and thence the mean
time at Greenwich, should be obtained defore the mean time
at s’ﬁp is computed, as in Example 2, The Blank Form for
determining the time from the moon’s altitude is the
following :—

Time at Ship from the Moon's Alitude, and Time at Greenwich,

Mean Suns R. A, l Moon's R. A. Moon’s Declin.
R. A. at G. uoon Boom R, AL ab the hour Shm el At the hour ..® ..’ .
Cor. for time past noon . |’Cor. for min. and soc. .. {Cor. .
R. A. at G. date . |R.AatG.date .. .. ..|Dec.G.dato.. .. .

’ - 90

POLAR DISTANCE
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3. For the Mean Time at Ship.

True alt. [ R Tab. Liff. Pis. for secs.
Latitude e v+ oo Comp.cos....... oot
Polar dist. e +. .. Comp,sin....... e —
2. o0 .
4 sum ee se e COB esonens e — P
{sam—alt. .. .. .. [07 AN vt
. — ” Cor.for secs. . . ...
Cor, for secs. e T
2.irnnn.
4 Hour angle ..* .. .." S ...e..
S Hourangle .. .. ..,orintime..b . .m . .2
Moon’s R, A. .
R. A, of meridian ce v oo (Sumif W, Difl. if E.
Mean sun’s R. A. e e e of Merid.)
Mean time at ship
Mean time at Green.

Longitude in time ve «o oo s Lowe, . .70 "

Nore.—In the work for clearing the observed distance
from the effects of parallax and refraction, the cosines,
although all decimals, may always be treated as whole
numbers, as in the examples already exhibited. It may
sometimes happen that when the cosines of the apparent
distance, and the sum of the apparent altitudes, have con-
trary signs, they may be so nearly equal that their algebraic
sum (in this case their numerical difference) may have a 0
in the place of the leading figure. It is best always to
actually insert this O in the resulting multiplier; and in
employing the multiplier, as such, to put the O in the unit’s
place, just as we should do if it were a significant figure,
commencing the work of multiplication, however, with the
next figure, rejecting, as in all other cases, the unit’s figure
af tha multinlicand Tt will eeneralley ha fannd that in tha
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subsequent division the first place of the quotient will also
be a 0, and that a significant figure can be given only after
cutting off the unit’s figure of the divisor. ¥ Attention to
these particulars is necessary in’ order to avoid writing the
figures of the quotient each a place to the left before its
true place.

These remarks are not to be regarded as pointing to any
distinction of cases, because there is no such distinction: all
that the computer has to bear in mind is, that each of
the three numbers, multiplier, divisor, and multiplicand,
is to consist of at least siz places; which number of
places is not to be diminished by suppressing leading zeros,
unless, indeed, the operations with these numbers be per-
formed by logarithms, when the leading zeros are, of course,
to be rejected.

Of the two factors marked multiplier and multlphcand
either may, of course, be placed under the other. It some-
times happens that the right-hand places of the latter are
occupied by zeros: when such is the case, it will be better
to make ¢ the multiplier, and the other factor the multipli-
cand; for in reversing this multiplier the zeros have no
influence. 'We shall now give an example or two for
exercise.

Examples for Exercise: Longitude from Sun-Lunar.

1. January 21, 1858, at about 11 A.M. estimated mean
time, in latitude 40° 16’ 8., and longitude by account
106° 30’ E., the following lunar was taken :—

Obs. alt. Sun’s L. L. Obs. alt. Moow’s U. L. Qbs. dist. N. L.
68° 17/ 16° 9/ 36" 70° 27/ 20"
Index cor. + 2/ Index cor. +4" Indexcor, —2' 15"

‘The beight of the eye was 17 feet: required the longitude to
the nearest minute ? Ans. longitude 105° 44/ E.
2. May 18,1858,at 42 30™ p.M. mean time by estimation,in
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latitude 14° 20’ N., and longitude by account 58° 80’ E., the

following lunar was taken :—

Ols. alt. Sun’s L. L.  Obs. alt. Moon’s L. L. Obs. dist. N. L.
83° 28" 20" 69° 18/ 10" 71° 86’ 40"
Index cor. —4/ 10" Index cor. +2' 20" Index cor. —1’' 30"
L]

The height of the eye was 24 feet: required the longitude to
the nearest minute ? Ans. longitude 56° 50" E.

8. September 11, 1858, when the chronometer showed
4h 30m Greenwich mean time, in latitude 48° 38’ 77 N., the
following lunar was taken :—

Obs. alt. Sun's L. L. Ols. alt. Moow's L. L. Obs. dist. N. L.
52° 8’ 28° 14/ 10" 50° 33" 23"
Index cor. +2/ Index cor. —2' 10" -1 5"

The height of the eye was 24 feet: required the longitude,
and the error of the chronometer on Greenwich mean time P
Ans. longitude 39° 15’ W.: error of chron. 6™ 56¢ fast.

Longitude by a Star-Lunar.

When the observed distance is that between the moon
and a fixed star, instead of between the moon and the sun,
the computations for the ship’s time become a little modi-
fied. In the case of a fixed star, we have nothing to do with
either parallax or semi-diameter, nor does the declination, as
given in the Nautical Almanac for the day of observation,
require any correction to adapt it to the instant when that
observation is made. But whenever #ime is to be deduced
from any celestial object other than the sun, Right Ascen-
sions must always enter into the work. The star’s hour-
angle at the instant of observation is obtained exactly as the
sun’s hour-angle is obtained, but the former, in itself, can
give us no information as to the time, which is necessarily
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the hour-angle of the mean sun at that instant, and which
in astronomical reckoning is always the time past the pre-
ceding noon. {

Now, without any direct observations on the sun, this
hour-angle at once becomes known, provided we know the
R. A. of the sun and the R. A. of the meridian at the instant
referred to. The R. A. of the meridian is obtained from that
of the star and the star’s hour-angle at the instant : 1f the
star be to the E. of the meridian, its R. A. (or this 4 241
diminished by its hour-angle is the R. A. of the meridian ;
and if it be to the W. of the meridian, its R. A. increased by
its hour-angle—or the excess of the sum above 24d—is the
R. A. of the meridian.

The R. A. of the meridian being thus obtained, we have
only to subtract from it (increased by 24", if necessary for

_this purpose) the R. A. of the mean sun in order to get the

mean sun’s hour-angle from preceding noon,—that is, the
mean time after that noon. These matters, however, have
been sufficiently dwelt upon in Chapter IV, and after what
has been done in the preceding article the student can
require no additional instructions to render the following
work of a star-lunar intelligible.

Examples : Star-Lunar.

1. August 7, 1858, at about half-past 3 o’clock in the
morning, in latitude 49° 40’ N., and longitude by account
61° 30’ W., the following star-lunar was taken :—

Obs. alt. Aldebaran E.

of Meridian. Obs. alt. Moow’s L. L. Obs. dist. N. L.
32° 17" 10" 32° 247 40" 41° 27" 50"
Index cor. —2 18 Index cor. +2 10 Index cor. —3 20

The height of the eye was 20 feet: required the longitude ?
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Time at ship, Aug. 6 . . . . 158 3om
Longitude W, in time . . . . 4 6
Estin? ted mean timeat@. . . . 19 36

Moon’s semi-diameter 16" 3" Horizontal parallax 60’ 8u”
Mean sun’s R. A, noon, Aug. 6 . 8" 38m 55562 Howrly diff.  + 9856
Correction for 19+ 36= . . . +3 13 10
Mean sun's R. A, atest. time . 9 2 9 88701

I 9856
Star's R. A. . . . . 4h 2Tm4ye Cor. for 19h 187-264
Star’s declination . 16° 187 207 for 30m 4928
90 for 6m 986
Polar distance . 75 46 34 198e=. 3m 13+

1. For the Apparent and True Altitudes.

NSTAK. Moon.

Obs. ai. 32° 14/ 52" | Obs. alt. 32¢ 26’ .50

Dip —4 94 | Dip —4 24
App. sit 92 10 og | Semi  +16 33} +12 19
Refraction —1 g2 | 4w 100
"“—8—"‘_ App. alt. 32 o 9
True alt. 32 56 | Cor. of ult. +49 29
True alt. 33 28 88

* This correction may be obtained from the Table given at page 530 of
the Nautical Almanac.

The Table here referred to shows by how much the mean sun’s right
ascension is incrcased in a given interval of mean time., In the above
example the quantities taken out of the Table would be the following :—

Increase of R. A, in 19u | . .3 Te273
in 36m . . 5 914

»” ki

in 19% 36m . . 3m13

bR} 2

In general the correction for the increase of the mean sun’s R. A., duc to
the time past Greenwich noon, may be more expeditiously found by help
of this Table than by working for it as above.

The hourly difference of the R. A., to four places of decimals, as given
in the Nautical Almanac, is 93'8565 : if the additional decimal be annexed
to those in the text, the decimals in the correction for 19h will agree with
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2. For the Mean Time at Ship.
Al, (Star) 82° & 56"

Latitude 49 40 0 Comp. cos 0°188939

Polar dist. 73 46 34  Comp, sin 0017669 61— 2074
2155 35 30

4 sum T 47 45 cos 9325534 973 — 48785
) sum—alt, 45 38 49 sin 9854233 2064+ 10004
19886375 — 35765
—358 —

919386017

29° 83 0" sin 9693009

2

Star's hour-angle 59 6 0, or3h 56w 24s B, of meridian

Star'’s R. A, 4 27 48
R. A. of weridian 0 31 24 to be increased by 24h
R. A, of mean sun Y 2 9

Mean time at ship 15 29 15

[As noticed at page 246, the hour-angle determined above
may be otherwise expeditiously found, so soon as the result
19-386017 is obtained, by entering Table XVIII (Mathe-
matical Tables) with 9-8386017 : thus—

Given number » 9:386017
Tab. numb. next less 9-384678 ... .. 8b fyu
Tab. difference 5568)  133900*(24*
11136
22540

Hence, the hour-angle in time is 3 56™ 245, as above. And
in this manner may the hour-angle in time be always
detexmined.]

* Two zeros arc always to be annexed to the remainder.
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3. For the True Distance, the G. Time and the Longitude.

Oba. dist. 41 24 307 App. dist. 41° 41’ 13" nat. cos 746791
Moon’s sewi. +Aug. -+ 16 43 32 10 28
APP. 888 1,0 59 g
Sum 64 49 37 nat. cos 426354 +
1172145 Mult.
B2 8 567 ifflerence 0 23 - . cos 999962 -+
True alts, {: 8 t:b Diflerence 0 28 41 nat. cos 999962 -}
33 28 38 o
— 1425316 Div,
Sum 65 87 84 nat. cos 412690 I—
Difference 1 19 42 nat. cos 999730

1412420 Multiplicand.
0412711
1412420
141242
98869
2825
141
a6

7

1.4,2,5,3,1,6)1655560( 1161539
1425316 — 412690

230244 748849 nat, cos, 41- 30’ 35"
142582 —————

True dist. 41° 30" 437 87712
Dist. at 18h 40 36 47 1. L.diff. 2204 86619
0 53 46 ...P.L. 5248 2193

Interval 1h 30m20¢ ... P.L goy 4%
Correction (N. A.)* +4 - 768
True interval 1b 30 24¢ after 18h ]E
18 56

Mean timeat G. 19 30 24 ._42
Mean timeatship 15 20 15 13

Long. W.in time 4 1 9. LoNairupe 60° 17" 15" W.

* Agin former cases, this correction is got from the Table at page 526
of the Nautical Almanac. The difference between the P. L. for 18 and
that for 21® is 13, the P. logs being decreasing ; and under this difference
in the Table, and against the interval 1* 30™, we find the correction + 4.
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2. September 18, in latitude 28° 45’ 11" 8., when the
chronometer showed 5t 12m 30* Greenwich mean time, the
following star-lunar was taken :—

Obs, alt. Antares W. of
Meridian. Obs. alt. Moon's L. L. Obs. dist. N. L.
52° 18/ 40" 41° 36’ 10" 56° 77 40"
Index eor. —3 10 Indexcor. +4 20 Index cor. +4 50

Required the longitude, and the error of the chronometer,
the height of the eye being 20 feet ?

Mean time at G. by chronometer 5b 12m 30
Moon’s semi-diameter 14’ 58" Horizontal parallax 54’ 44"
Mean sun’s R. A., noon, Sept. 18 . . 11b 48m 278:47

Correction for 5h 1225 (N. A., p. 530)* . +51-34
Mean sun’s R, A. at G. time by chron. 11 49 19
Sta'sR.A. . . . . . 16 g0m 45°
Star’s Declination . . . . 26° 7/ 2"S8.
90

Polar distance . . . . 63 52 58

1. For the Apparent and True Altitudes.

SraR. Moon.
Obs. alt. . . 52° 15 30" | Obs.alt. . . 41° 40’ 30"
Dip . . . —4 24 | Dip. —4 24"
App. alt. . . 52 11 ¢ | Semi. +14 58 } +10 44
Refraction . . — 45 Augm, +10 —
! ——— | App.alt. . . 41 51 14
! 52 2
Truealt. . . 02 10 21 | o ofalt, . .  +39 41
Truealt, . . 42 30 &5

* At the page of the Nautical Almanac here referred to, we have—

Correction for &b . . . . 4902824
12m . . . 19713
300 . . B . 0821

Cor. for 5412230+ . . . b5l 3368
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2. For the Mean Time at Skip.
Star’s alt. 52° 107 21"

Latitude 28 45 11  Comp.cos 0'057186 115 + 1265
Polar dist. 63 52 58  Comp.sin 0-046834 103 — 5974
)14t 48 80

}sum 72 24 15 o8 9480539 664 — 9960
boum—alt. 20 13 54 sin 9538538 571 + 30834
19123047 + 161,65
+162 —_—

2)19-123209*

21 22 19 sin 9-561604

2 —

Star's hour-angle 42 44 38 or 2 50™ 59* W, of meridian.

tar's B. A, 16 20 45

R. A, of meridian 19 11 44
R. A, of mean sun 11 49 19

Mean time at ship 7 92 25

[f, stopping here, we enter Table XVIII of the Mathematical Tables
with the number 9+123209, we shall get the hour-angle as at page 255,
thus—

Given number . . . 9123200
Tab. numb, next less . . 9°118468 . . . 2u 50

Tab. difference 8095)  474100(59
40475

69350

Hence the hour-angle is 2 50™ 59, as above, fractions of a second, being
disregarded.
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8. For the True Distance, the G. Time, and the Longitude.

Obs, dist, 56h 12m 30 | App. dist. 56° 27 88" nat. cos 552510
Moon’s seml, + Aug. +15 8 52 11 6
App. "R"{u 51 14
Sum 94 2 20 nat, cos—=070434 +
482076 Mult.
True alta. { :: ;3 r2; Difference 10 19 52 nat. cos ?E’»:I_SE+
= 913352 Div.
Sum 9 41 16 nat. cos — 081726 —_—
Difterence 9 39 26 nat. cos 985830
904104 Multiplicand
67028¢
3616416
728253
18082
633
54
0,1,8,3,5,2)4858468( 477195
3653408 -+ 081726
705060 558921 nat. eos 56° 1’ 8
630846 ——
True dist. 560 1 8 65714
Dist. at 3 5¢ 46 § P.L.ofdiff 2065 63935
115 0...P.L 2802 1719
Interval of time % 2rmggr ...P. L 0881 oo
Corr. (N. A. p. 526) 2 — 866
True interval 2 27w 280 after 3 =
8 m

Mean time at G. 5h 27m 28
Mean time at ship 7 22 25

Long. E. in time ‘l 54 57 .+, LoNGITUDE 28° 44° 15" E.

Meant.atG.byeh. 5 12 30

Error of chron. Tlns Slow on Greenwich mean time.

As this error is considerable, it will be proper to ascertain,
and allow for, its influence on the Sidereal Time, or the
R. A. of the mean sun. By turning to page 530 of the
Nautical Almanae, we find that the correction—or the
acceleration of R. A.—for 14m 580 is 4 2¢: hence the true
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mean time at ship is 7% 22™ 239, and consequently the true
longitude is 28° 43’ 45" E.

If the werk of the multiplication and division be per-
formed by logu-ithms, instead of by common arithmetic, as
above, the operation will be as at p. 230, or as follows :—

! Prop. Parts,

482076 ........ log 5:683047 63
904104 ........ log 5956216 54 } =70
. 1-88
913352 Arith, comp. log 4:039387 235 g - o
46 94)
477195 .. ...... log 5-678696 + 46

Braxk Form.—Longitude by Star- Lunar.
E-timated mean time at ship . .b . @
Estimated longitude in time .. .. (— for E. and + for W.)
Estimated Greenwich date .. .. (May be had from Chron.)
At G. date : moon’s semi-diameter . ./ . ." Hor, parallax . .* .."

Mean sun’s R, A., or sidereal time at G. noon ., .» ..™ ., .*
Cor. for . time past noon (Naut. Alm.p. 530) + .. ..

Mean sun’s R. A. at Greenwich date ce e
Star's R. A. Lho e
Star'sdeclination ..°.." .."

90

POLAR DISTANCE .. ..

1. For the Apparent and True Altitudes.

STAR. Moox.
Obs. alt. S8 00" | Obs. alt. R
Dip — . .. | Dip —.. ..
App-&lt. . e :Th SBmL .. ..} .. o
Refraction -, .. | Augm. e
T App. alt. v e e
True alt. Cor, ofalt e ..

True alt.
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2. For the Mean Time at Ship from Star's Altitude.

b, Parts
Star’s alt. SO .?If for secs,
Latitude .« «+« .. Comp. co8......, .
Polar dist. v «« .. Comp,sin....... .
9 .. .. .,
§ sum . COB....... oo — ceee
4 sum — alt, e e sin...... oot .
eeaen '
.. Cor. for sees B
Derens
e . sin......
g -l

Star's Hour angle . lor.h .m0 (—if?‘...or+if W.of
meridian)

Star'sB A, .. ..

- (to be increased by 24b, if
R. A, of meridian e '{less than R. A. of sun)
I(to be subtracted from R,
“' L A of mer)

Mean time at ship .. .. ..

R. A, of mean sun . .

3. For the True Distance.

Obs, dist. L0 "y App. dist. .0 L L.” nat.cos ...,
Moon's semi. +Aug. }App. alts. { R
Sum .. — nat. cos

Difference .. .. .. nat.cos

True alts. {
Sum ‘———“ nat. cos ... ue
Difference .. .. .. nat.cos......
...... Multiplicand
..... . Multiplier reversed
Divisor)Product(Quotient.
...... =nat, cos sum of true alts,(Sub.)

Remainder = nat. cos true distance.
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4, For the Greenwich Mean Time and Longitude.

True distance R T Difi.*

Nextpreeeding‘dilt. (Naut. Alm.) .. .. .. P.Lofdff.... ..
» ' PL.... =

Interval of time Thm s P.L....

Correction (Naut. Alm, p. 526)
True interval

Time of preceding dist.
Mean time at Greenwich
Mean time at ship N

Longitude in time e «« .. Loxareupr, ... ..

"

The difference between the above mean time at Green-
wich, and the time shown by the chronometer, will be the
error, of the chronometer on Greenwich mean time at the
instant of observation. If the error have been found at any
previous instant, the difference of the errors will be the
accumulated rate during the interval ; and this divided by
the number of days in that interval will be the daily rate.

Ezamples for Ezercise : Longitude by Star- Lunar.

1. August 5, 1858, in latitude 24° 18' N., and longitude
by account 11° 15' E., the mean time at ship per watch
being 11t 15™ ».M., the following star-lunar was taken :—

a Pegasi E, of
Meridian. Moon’s L. L. Dist. N. L.

Obs. alt. 46°35’ 0"  Obs.alt. 56°26’10% Obs. dist. 94°32’10"
Indexcor. +1 30 Index cor. —2 0 Index cor. +4 10

The height of the eye was 24 feet : required the error of the
watch on ship mean time, and the longitude P
Ans. error of watch 18m 22% fast ;
longitude 11° 9’ 15” E.

* This is the difference between the P. L. taken from the Nautical
Almanac, and the P. L. next following ; it is required, in conjunction with
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2. September 5, 1858, in latitude 8° 24’ 8., when the.
chronometer, known to be 7m 28 slow on Greenwich mean
time, showed 18" 40 8¢, September 4, the fo]}owing star-
lunar was taken early in the morning :—

Aldebaran E. of

Meridian. Moon's L. L. Dist. remote Limb,
Obs. alt. 36°30°0" Obs. alt. 57°28' 20" Obs. dist. 65°4’42"
Index cor. +4 0 Index cor. +2 20 Index cor. —2 10

The height of the eye was 20 feet: required the additional
error of the chronometer, and the longitude of the ship ?
Ans. additional error of the chronometer 7 slow;
longitude 66° 57’ 30” W.

In all the foregoing examples the mean time at the ship
has been deduced from the altitudes employed in clearing the
lunar distances ; but, as already remarked (pages 104, 242),
neither the moon nor a star is so eligible for the determina-
tion of #me as the sun; and even the sun, either from
proximity to the meridian, or to the horizon, may not be in a
favourable position for the purpose, when the distance
between it and the moon is taken. Now, as in determining
the longitude, it is just as important to know accurately
the time at the place of observation, as the time at
Greenwich, it is often necessary to observe for ship-time
either before or after the lunar distance is taken, and thence
to deduce the time at the place where, and at the instant
when, that distance was observed. And here, again, the
chronometer performs an important office: it furnishes us—
with all needful accuracy—with the interval of time between
observations for ship-time and those for the distance, which
interval is of course not affected by the error of the chrono-
theter, and only in a very minute degree by its daily rate ;
which, however, if known, may be allowed for.

If the time at ship be determined at a place A, and the

the approximate interval of time, for finding the correction of that interval
given at p, 526 of the Almanac.
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Junar distance be taken at another place B, the interval of
time between the two sets of observations—corrected for
the differenge of longitude between A and B—being added
to the times:t A, if the ship was at A before it was at B, or
subtracted in the contrary case, will give the time at B
when the ship was there; that is, when the distance was
taken.

The following skeleton form will sufficiently indicate what
steps are necessary to find the time at B when the distance
was observed there, from knowing the time when the ship
was at A, the interval between the chronometer times when
at A and at B, and the difference of longitude between A
and B.

Mean time by chronometer when at A S m s
. B

Interval of time by chronometer
Correction for gain or loss in that interval

Interval of time corrected for rate e .
Diff. long. of A and B in time e
Interval of time corrected for diff. long.
Mean time at ship when at A

. . B

at Greenwich when at B

Longitude of ship in time when at B

It has already been remarked, that although an altitude
from which the time at the place where it is taken is to be
deduced, should be measured with all practicable accuracy,
yet for the purpose of clearing the lunar distance merely, a
like precision'in the altitudes is not indispensably necessary.
But circumstances may arise, from an obscure horizon or othet
causes, which may preclude the observations for altitudes
altogether, though the distance may be readily taken. In

* If Bis to the east of A, this must be added : if to the west, it must
be subtracted.
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such circumstances, the altitudes for clearing the distance
must be determined by computation.

In order to compute the altitude of a celeshial object at
any instant, we must know the object’s hour-mfgle with the
meridian at that instant, and this requires that we know the
time.

If the object be the sun, the time itself—corrected for
the equation of time—is the hour-angle; but if the object
be the moon or a star, the hour-angle will be the difference
between the R. A. of the object and the R. A. of the
meridian at the proposed instant; and to get these right
ascensions, the time at the place for which the altitude
is required must be known.

To find the time at a place B, where a lunar distance is
taken, by mecans of the time at a place A, where altitudes
are taken, the foregoing blank form suffices. And for déber-
mining the time at A, ample directions have already been
given in Chapter IV.

The time at B when the lunar distance was observed, and
thence the hour-angle of each object with the meridian being
found, the declinations at the time, and the latitude of
B being also known, it will be easy to compute the cor-
responding true altitudes; and thence, by applying the
usual corrections for altitude the contrary way, to get the
apparent altitudes when the distance was observed ; so that
we shall have all that is necessary for the determination of
the true distance, and thence the longitude of the ship when
at the place where the distance was observed.

How the true and apparent latitudes of an object are to
be computed when the object’s hour-angle, its declination,
and the latitude of the place are given, may be explained as
follows :—

Computation of Altitudes.

Referring to the diagram at page 151, or to that at page
172, we have, in the spherical triangle P Z8, the following
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quantities given, namely :—The co-latitude P Z, the polar
distance P 8, and the hour-angle P, given, to determine the
co-altitude 7,8 ; that is, there are given two sides and the.
included angle of a spherical triangle to determine the third
side.

Formulw for the solution of this case have already been
investigated at page 152. If in imitation of what is there
done, we put—

cos a . (] )

tan ZPcosP=cota= — + +
sln a

we shall have—

cOBZS___cosZPsl.n(zzz+S]:’)
sina
KR sin alt. :—,c_oszrsl_n_(af.s.ri} P, (2)

sin a

I+ will be observed here that of the trigonometrical quan-
tities tan Z P, cos Z P, cos P, the only one that can ever
become negative is cos P. When such happens to be the
case, that is, when the hour-angle exceeds 90° (1) is nega-
tive, and therefore if in this case we take cos P positive, the
formula (2) will become

gin alt, % P sn.n (a—SP)
sin a

which may always be employed when the hour-angle exceeds
90°. 'We do not say that it must be employed, because the
form (2), as well here as at page 152, is applicable to all
cases; but then, in using it, where it may be replaced by
(8), the influence of the signs of the trigonometrical quan-
tities must not be overlooked. When cos P is negative,
cot a will be negative, so that the angle o will be the supple-
ment of that furnished by the Tables: this supplement,
added to S P, will always give an angle o’ + S P, such that
sin (a'4 S P) will be the same as sin (a=—S P); but by
using the latter the trouble of taking supplements is avoided.
‘When P exceeds 90°, « will necessarily exceed S P, otherwise
the sine of the altitude would be negative, which is impos-
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sible.*. And it may, therefore, be further observed that
S P can never be subtractive when the latitude and declina-
tion are of contrary names: in fact, for the bour-angle in
this case to exceed 90°, the object must be belowh the horizon.

Nore.—Since the altitudes employed in clearing the
lunar distance are not required to the same degree of
precision as those used in finding the time, it will be suffi-
cient if they are computed to within 20” or 30" of the truth.

Ezamples of Computing Altitudes.

1. Given the co-latitude Z P=>51° 5¢, the polar distance
SP=04°13’, and the hour-angle P=33° 30/, to find the
altitude of the star.

ZP 51° 46 07  tan 107103548 . . . . . . cos 9-791596
P 33 30 o cos 9°021107 « Ar. comp, sin 0°163184

« 43 22 80 cob 10024655 « + S P sin 9:979200

8P 64 13 0 TRUE ALT. 50° 12' 9" sin 9-033084

a4+ SP 107 35 30 Refraction + 35 -

ArP. ALT. 59 12 44
If the object had been the sun instead of a star, we should
have had to have subtracted 5" from this result for parallax,
so that the apparent altitude would have been 59° 12’ 39".
Although, as stated above, the true altitude need not be
computed to extreme nicety as regards the seconds, yet small
corrections such as this, to reduce the time to the apparent
altitude, must not be neglected : the relative measures of
the true and apparent altitudes must be scrupulously pre-
served, as the formula for clearing the observed distance
sufficiently implies. ~On this account, when the object
whose altitude is to be computed is the moon, the correction

* It may be remarked in reference to the formula (2) page 152, that
since, as there noticed, (2) would be negative if S P and S were each to
exceed 90°, such a case cannot exist ; for cos Z P is always positive.

N ©
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of altitude, applied to the true altitude as above, gives a
result which should be regarded as only the approximate
apparent altitude; because, in the Tables, this correction is
adapted to vhe apparent and not to the Zrue altitude; so
that, when the approximate apparent altitude is obtained
from the true, as above, we should again refer to the table,
entering it now with this close approach to the apparent
altitude, and take out the true correction of it : the correction
previously applied belonging to an altitude somewhat too
great. For example: Suppose that in the instance above, the
object had been the moon, and that its horizontal parallax at
the time had been 54’ 50”; then, referring to the table of
“ Correction of the Moon’s Altitude,” entering it with this
horizontal parallax, and with the true altitude, 59° 12' 97, as
if it were the apparent altitude, we find the corresponding
correetion to be 27 30", which must be regarded as an
approximate correction only, thus—

Moon’s true altitude . . . . 59° 127 9"
Approximate correction . . . —27 30
Approximate app. alt. . . . . 58 44 39
Cor. due to this app. alt. . . . - 27 51
. APPARENT ALTITUDE . . . 58— 4i 18

And even this is a second too great, as the Table shows;
so that the correct apparent altitude is 58° 44' 17",

In the case of the sun or a star, the approximate correc-
tion will seldom differ by so much as asecond from the true
correction ; and therefore need not in general be modified.

2. September 2nd, 1858, in latitude 21° 80’ N., and longi-

tude, 43° 18’ W., by account, the distance between the sun
" and moon was taken, but the moon being near the horizon it
was resolved to find its altitude by computation. The mean
time at the ship, as determined from altitudes of the sun, was
found to be 1k 55 85% : required the altitude of the moon ?
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[ ]
]
=]

Mean time at ship . . . . 1b 5pm g5
Longitude W. in time . . . . 2 53 12
@reenwich date of obs. 4 45 07

’ —

Mean Sun’s R, A., and R. A. of Meridian.

R. A. at Greenwich, noon . . . 10t 45m 22%61
Correction for 4% 48m 47+ . . 47 44

Mean Suw'sR.A. . . . . 10 46 10
Mean time at ship . . . . 1 55 385

R. A. of meridian . . . . 172v 7741‘—"25

Moow's R. A., Declination, lor. Parallax, and Howr-anglc.

R. A. al 4» Gh 18 28+ Declin. at 4"  28° 10 1" N
Cor. for 48 47 2 12 Cor. for 48m 47 —2 1§
Moon’sR. A. G. date 6 20 40 Declination 28 7 51
R. A. of meridian 12 41 45 90
Moox’s Hour-aNgLE 6 21 5 Porar Disr. 61 52
or 95° 16’ 15"
Moon's Hor. Parallax 59’ 35"1 Diff. for 124  45"-7
Correction +2 for 5h +2
Hor. Par. G. date 59 87

Comypudation of the Moow’s Altitude.

Latitude 21" 30" 0~ cot. 10404602  ........... 9564075
Hourangle 93 16 13 cos 8965134  a Ar. comp. sin 0°011501

« 76 52 20 cot 9367736 @ — S P sin 9413085
ardist. 61 52 9 S
Polar di o 27 7 Teew aum 5’ 35" 30" sin 8:988659

a—NP 1% 0 11 1st correction  — 50 22 I—

Approx.app.alt. 4 41 8

ond correction  —49 4

4 46 26
Srd correction — 1
APP, ALT. 4 46 22

The following is the blank form for these operations :——
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Bravk Fory: Obmputation of the Moon’s Altitude.
1. For the Greenwich Date. ‘

L3

¥ean time at ship L m s
Longitude in time ch ee e
GREENWICH DATE OF ODS. ce e e

2. For the Mean Sun’s R. A., and R. A. of Meridian.

R. A. at Greenwich, noon L

Cor. for G. date (Naut. Alm. p, 530) e e

Mean sun’s R. A, at G. date P

Mean time at ship e ee .. }(A dd)
R. A. OF MERIDIAN S

8. For Moon'’s R. A., Declination, Ilor. Par., and Hour-angle.

R. A. at hogir of G. date  ..b ..m .» Declin. at howr °
Cor. for minutes and secs, . Cor. for mins. and sces.

Moon’s R. A. at G. date .. .. ..Y (Sub.less Declin. G. dato

R. A. of meridiun .. } JSrom. 90

greater,
Moon’s hour angle e Y ") PoLAR DIST. PRSI

Hovur-aNaLe in degrees .
Moon's hor. parallax ~ ~ ..’ .. Diff. for 128 T
Cor. for time past noon .. for time past noon

Hor. PAR. AT G. DATE T

o ”

4. Lor the Moow's True and App. Altitude.

Latitudc L et
Hourangle .. .. ..gcos..

« . cot
Polar dist. .. .. .. TRUE ALTITUDE
at SPt e e e 18t correction
A% The corrections on the Approx, app. alt. .
right arc taken from the 2nd correction — .. .. tobeapplied to truc alt.

table of ‘‘Corrections of the .
Moon’s Altitude,” which is App. altitude o

entored first Wb the true 8rd correction — .. tobe applied to app. alt.
alt. and then with the cor- APP. ALTITUDE e
rected app. alt. -

* If this remainder exceed 128, subtract it from 24%,
+ The lower sign to be used only when the hour-angle exceeds 90°, which
can never happen when the latitude and ‘declination have contrary names,
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Braxx ForM: Computation of a Star's Altitude.

1. For the Greenwick Date. :
Mean time at ship LB m e
Longitude in time ce e e
GREENWICH DATE OF OBS. e e e

2. For the Mean Suw’s R. 4., R. A. of Meridian, Star's Hour-angle,
and Polar Distance.

R. A. at Greenwich, noon LB m s
Cor. for @. date (Naut. Alm., p.530) .. .. ..
Mean sun’s R. A. at G. date A,
Mean time at ship e e e }(Add)
R. A. of meridian’' . w « o1 (Sub. less fgom
R. A. of the star (Naut. Alm.) ce e } greater)
StAR’S Hour-ANGLE in Timne P T > U
Star’s declin. (Naut. Alm.) N T
90
PoLAR DISTANCE R

Tatitude L0 cot evinnn gin.......
Hour-angle

[ 2
Polar dist. e e e TRUE A:;I_I-';;)E LW aln“".
«* SPt o Refraction  + .. .. T

Arp, ALTITUDE .. ..

If the object be the Sux, the mean time at ship, when
the observation for the lunar distance was taken, corrected
for the equation of time at that instant, will be the apparent

* If this remainder exceed 124, subtract it from 24%,
*¢ The lower sign has place only when the hour-angle exceeds 90°.
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time af ship; that is, the sun’s hour-angle : this being found
the computation for the true altitude will be the same as (3)
above, from which the apparent altitude is obtained by
adding the refraction diminished by the sun’s parallax in
altitude. The preparation for the step (3), in the case of
the sun, is therefore as follows :—

Lor the Suw's Lour-angle.

Mean time at ship S m s
Longitude in time ..

REENWICH DATE OF OBS. . .

Sun’s noon declin. Lo Diff. for 1b L
Cor. for Greenwich date P Cor. for G, date .. .."
DECLINATION AT G. DATE . .
«' 90
POLAR DISTANCE e
Equation of time at G., noon - Diff, for 1u LB
.o Cor, for &. date . .®
Equa. of time at G. datc Lam oLt
Mean time at ship L
Sun's HOUR-ANGLE [ ) S

Then proceed to calculate the true altitude as in step 3
for a star, adding refraction minus the parallax to the truc,
to obtain the apparent altitude.

Lzxamples for Exercise: Computation of Altitudes.

1. In example 3, page 245, it is required to compute the
true and apparent altitudes of the sun when the lunar dis-
tance was taken,

Ans. True altitude 58° 53’ 10" ; apparent altitude 58° 53’ 40".

2. August 16, 1838, in latitude 86° 30’ N., and longitude

* If this exceed 12", subtract it from 24b,
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153° B.. by account, when the mean time at ship was 4
45™ 44¢, required the true and apparent altitudes of the sun ?
Ans. True altitude 28° 50’ 24" ; apparent altitude 28° 52’ 26",
3. April 26, 1858, in latitude 29° 47’ 45" S., afid longitude
by account 81° 7’ K., the distance between the moon and the
star Altair was taken, when the mean time at ship was 1» 51™
AWM., it is required to compute the true altitude of the
star to the nearest minute, and thence to deduce the
apparent altitude ?
Ans. True altitude 25° 8; apparent altitude 25°10' 8".

4. October 2, 1858, in latitude 46° 15’ N., and longitude
by account 56° 24/ E., a star-lunar was taken, when the mean
time at ship was 5 82m 12s a.M,, it is required to compute
the moon’s true altitude, and thence to deduce the apparent
altitude ?

Ans. True altitude 49° 22’ 17"; apparent altitude 48° 44?14/

Nore.—In computing altitudes as above for the purpose
of clearing the lunar distance, it will suffice if the true alti-
tude is obtained to the nearest minute ; but the corrections
for deducing from this the apparent altitude should be
applied with care, the seconds being always retained. In-
deed, if the truc and apparent altitudes are obtained with
strict precision, and we equally increase or diminish thesc
by even so much as a minute or two, the resulting true
lunar distance will be affected in but a very trifling degree
by the change, inasmuch as the relative values of the
altitudes will be disturbed but in a very trifling degree.
Also afew seconds,—any number, for instance, not exceeding
10”,—may be added to or taken from the apparent lunar dis-
tance, provided at the end of the work the resulting true
distance be corrected for the overplus or deficient seconds in
the apparent distance.

By so modifying the apparent quantities as to cause the
seconds in each to be a multiple of 10”7, we may save a little
trouble in taking the parts for seconds, when the logarithmic
method of clearing the lunar distance is employed: butin
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the mode of operation more specially dwelt upon in this
work, such changes would produce no advantage.

Having now discassed all the more important problems
of Nautical Astronomy, with as much fulness of detail as the
limits of the present rudimentary treatise permit, it merely
remains for us, in conclusion, to give a short account of
what at sea is called a “Day’s Work ;’ and to exhibit a brief
specimen of a Ship’s Journal, as promised at page 85.

CHAPTER VIIL
DAY'S WORK AT SEA: TIIE SHIP'S JOURNAL,

A already noticed at page 84, as soon as a ship has taken
her departure and her voyage fairly begun, the several
courses on which she sails, as indicated by the compass, her
hourly rate of sailing as determined by the log, together
with the other particulars, leeway, currents, &c., affecting her
progress, are all recorded in chalk on a large black board,
called the log-board. These are afterwards copied into the log-
book, and the courses being all corrected for lceway and varia-
tion of the compass, each corrected course, with the entire
distance sailed on 1it, being known, a reference to the
Traverse Table gives the corresponding difference of lati-
tude and departure. The difference of latitude and
departure due to the whole traverse is then found, and thence
the direct course and distance sailed, as explained at page 48.
Lastly, with this direct course and distance, the difference
of longitude made is found either by parallel, mid-latitude, or
Mercator’s sailing, and thus the position of the ship at the
end of the traverse is ascertained. These operations are
regularly brought up to noon of each day; they comprise
what is called a Day's Work, the result of which is the
position of the ship at noon by dead reckoning.



DAY'S WORKS.—THE SHIP'S JOURNATL. 275

‘Whenever astronomical observations for latitude or longi-
tude are made, a distinct record of the result of these is
inserted in the log-book ; but since the ship’s daily account
is always closed at noon, and a fresh accouht opened, a
latitude or longitude, determined by observations in the
interim, is brought up to the following noon, by applying to
it the latitude or longitude, by dead reckoning, made in the
interval between the observations and that noon; so that in
strictness, what is recorded as the result of observation at
noon, is often made up, in small part, of the dead reckoning.
The ship’s position at noon being determined in this manner,
the chart is referred to, and the place where she is being
pricked off, she takes as it were a fresh departure from a
known spot, and her course from it is then shaped, as at
first, in accordance with her ultimate destination. When
this is reached the log-book, thus completed, furnishes a
Journal of the voyage.

As a specimen, we shall here exhibit a page of such a
journal, subjoining the necessary day’s work.

Nore.—The initial letters, II, I, and I, stand for Hours,
Knots (or miles), and Fathoms respectively. The futhom is
not a fixed length of the log-line, like the Znof ; sometimes
it is the cighth part of the knot, or something beyond six
feet, but it is more convenient to take the tenth part of the
knot, which is alittle less than six feet, for the fathom; and
this is supposed to be its length in the following specimen* ;
so that, as the knot represents a mile, the fathom will
represent one-tenth of a mile.

The result of the day’s work preceding the day to which
the following page of the journal applics, is supposed to stand
thus :—

. 7 H of
. Course. 1’ Dist. ,’ Lat. acet. [Lat. cbs. |Long. acct. Bearing and dist. of

Long. Obs. Lizard at noon
IN.68° E. 57m. 35°19'N.I138° 20'N.: 24’11 W. N.49°3 E. Dist.
! | : 1074 miles,

In strictness & fathom is 6 feet.
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EXTRAOT FROM A JOURNAL OF A VoYAGE rroM ST. MICHAEL'S TOWARDS

' Remarks, Monday, Sept, 12,
—, P.M, !

'\lodcmtu and cle ar w c.\ther
' { Out tirst reef topsails, sot |
royals, and flying jib. '
Light breczes and clear i

i

i

{ (thtowmt,her Swell from |
i E. from 4 r.m., Ull S, for|

which allow a drift of 211
!

{l 1n royals and flying jib.

'.lm,sd.n Sept. 13, AM.

1
i
|
|
|
!
)
!
|
Modcrate and clear weather. i

{ Fresh breezes. In top- :

:Ntrong breezes and cloudy.
In socond reef topsails.

{Lon;z by chron, at 9, A.m.,
28"
{Flymg clouds, with light

|
|
|

i ( Fresh gales and squally. !
. | _Down jib and in spanker. .
| { Lat. at noon by mer. alt.
1 88°4¢" N.  Variation by .

ENGLAND,
H | ¥ ™| Couses - Winds. |TLeo-way. .
_.__. —t. "
1 ., 416 ] NNE E. 1
2 sl
R S N T 1
o 3Ny E = weather.
+ s
wiles.
5 6 0
[ G 1
7 H R 1 Tacked.
8 I3 7
9 b 0 i Ditto weather
10 5 3 0
11 5 S ,Ditto weather.
Midut.
106 e | BB | N il
2 |57
1
3 5 3 1 -
allant sail.
4 h 1 Le
.'('» :. 0 EN.E N. 1 I first reef topsails.
3 O O
7 4+ 08 i
8 4 % i
o I e i
| 10 4 4 showers.
b'n 3008 24
le.m 3 b

l azimuth, 20 W,

In order to complete this pa"c of the Journal the day 3
work must now be computed : the compass courses recorded
above being corrected for leeway—or the angle of deviation
which the action of the wind sideways -causes the ship to
make with the fore-and-aft line—the distance, diff. lat. and
departure due to each course, are to be taken from the
traverse table, and thence the whole distance, diff. lat., and
departure found, as also the compass course from the com-
mencement of the traverse to the end, as at page 49.

This compass course being corrected for variation, gives
the true course, with which and the distance we are to find
from the traverse table, or by computation, the true diff.
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lat., and thence by mid-latitude or Mercator’s sailing, the
diff. long. These differences, applied to the latitude and
longitude determined by yesterday’s work, make known
the place of the ship; and the latitude and dongitude of
the place next to be worked for, being also known, it will
merely remain, from these data, to find the bearing and
distance of the spot to be reached, and to shape the course
accordingly.  The day’s work is, therefore, as follows:—

Traverse Table.

Courses cor ! Difi. lat. | Departure. |
rected for \
Tieeway. yDist. | NO N
N, § K 96 o3,
N. b\ B F RTINS
L3 by 1L IS 64
SO by I gk | T0 A8 e Compnss course N, 89° 1
DN U 12°0 B NI T Variation 20 W.
S B3R, 116 G - -
8. K. l-v E. 157 LONT TRUT: COUIE Ne 69 E.
1.4 N, 141 14 RO
]'}. s :
E. 48, G'8 0T
W. (Rwell) 240 !

Compass course N. §9°E.

Distance 6% miles.

‘With the course 69°, and dlstance 63 miles, the traverse
table gives 22-6 for the difference of latitude: hence—

Lat. left 38° 20’ N. Meridional parts 2494 tan 69°= 2-6051

Diff. lat. 23 N, T o2
LA™ By AcoT. 38° 43' . . . 2593 52102

Mer. diff, lat. 29 23446
Longitude left. . . 24° 11V W. o Dift. Jong. 75'54§

Diff. long. . . 1 16 L.

LoNG. BY ACCT. . . 22 55 W,

The departurc made from 9" A.. till noon is nearly 14 miles :

with this and the mid-latitude about 38°%, the difference of
longitude is found to be about 17’ E.: hence—

Longitude by chronom, at 9» A,M. 23° 2'W,
Diff. long. up to noon . . 17 E.

LONG, BY OBSERVATION AT NooN . 22 45 W.
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Having thus got the latitude and longitude of the ship at
noon, we may from these determine the course and distance
to the port or place to be worked for—in the present
case the Lizard, in lat. 49° 58’ N., and long. 5°11' W, as
in ex. 3, p. 67.

Lat. ship (byobs.) 38° 46 Mer. parts 2527 Long. slﬁp. 22°45'W.
Lat. Lizard 49 58 Mer. parts 3471 ,, Lizard 511 W,
. Diff. lat, = 672 miles : Mer. diff. Int, 944 Diff. long. 17 34=1054m.

944)1054(1°1165 = tan 48° 9, and cos == *6672)672(1007

Therefore, the course is N. 48° 9' E., and the distance
1007 miles. Consequently, the work for the day being thus
completed, we write the following results at the bottom of
the page :—

RO e
. 1 v i . .
Course. | Dist. Lat. acet. ‘ Lat. obs. | Long. acct. Tong. obs. | Boaring and dist. of

U N " . Tizard N. 48°9" R,
N.69° E. [ 62m. | 38" 43 | 35° 40 22005 W. 1 22° 45 WL Dist. 1007 miles,

Nore.—In the foregoing day’s work the correction for
the variation of the compass, as it is given in degrees and not
in points, is applied to the direct course resulting from
resolving the traverse ; but when the variation is expressed
in points, like the leeway, each course may be corrected for
both before casting up the log. The direction of the wind
suggests the direction in which the leeway is to be estimated.
‘When the ship is on the starboard tack, the allowance for lee-
way is to the left, and when on the larboard tack it is to the
right. As regards variation, when it is westerly it must be
allowed to the left of the compass course, and when easterly
to the right. 'We shall only further add, that when the day’s
run is very considerable, and no observation for longitude
has been obtained, the difference of longitude made will be
more correctly determined by working for this difference
agreeably to the principles explained at pages 71, 72.
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107. METROPOLITAN BUILDINGS ACT, and THE METRO-
POLITAN ACT FOR REGULATING THE SUPPLY
OF GAS, with Notes, 2s. 6d.

108. METROPOLITAN LOCAL MANAGEMENT ACTS. 1s. 6d.

108*. METROPOLIS LOCAL MANAGEMENT AMENDMENT
ACT, 1862 ; with Notes and Index, 1s.

109. NH({SAI;I CES REMOVAL AND DISEASE PREVENTION

r \, s.

110. RECENT LEGISLATIVE ACTS applying to Contractors,
Merchants, and Tradesmen, ls.

118 DOMESTIC MEDICINE, for the Preservation of Health, by
M. Raspail. 1s. 64.

113. USE OF FIELD ARTILLERY ON SERVICE, by Lieut.-
Col. Hamilton Maxwell, B.A., 1s. 6d.

113*. MEMOIR ON SWORDS, by the same, 1s.

140. OUTLINES OF MODERN FARMING, by R. Scott Burn.
Vol. I.—8oils, Manures, and Crops. Z2s.

141. Vol. II. Farming
Economy, Historical and Practical. 3s.

144. COMPOSITION AND PUNCTUATION, by J. Brenan, 1s.

PHYSICAL SCIENCE.

1. CHEMISTRY, by Prof. Fownes, F.R.S, including Agricultural

Chemistry, for the use of Farmers. 1ls.
4, 5. MINERALOGY, with a Treatise on- Mineral Rocks or Aggre-

gates, by James Dana, AM., 2 vols. in 1. 2s.

7. ELECTRICITY, an Exposition of the General Principles of the
Science, by Sir W. 8. Harris, F.R.8. 1s. 6d.

7%, GALVANISM, ANIMATL, AND VOLTAIC ELECTRICITY ;
A Treatise on the General Principles of Galvanic Science, by
Sir W. 8. Harris, F.R.S. 1s. 6d.

8.9, 10. MAGNETISM, Concise Exposition of the General Prin-
ciples of Magnetical Science and the Purposes to which it has
been Applied, by the same, 3 vols. in 1. . 6d.
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SCIENTIFIC AND MECHANICAL WORKS. 3

11, ll*bELEgl‘RIC TELEGRAPH, History of, by E. Highton,

133. METALLURGY OF COPPER, by R. H. Lamborn. 2s.

134. METALLURGY OF SILVER AND LEAD, l:y Dr. R. H.
Lamborn. 2s. b

135. ELE(‘J;’;‘RO-METALLURGY, by Alexander Watt, F.R.S.S.A.
1s. 6d.

138. HANDBOOK OF THE TELEGRAPH, by R. Bond. 1ls.

143. EXPERIMENTAL ESSAYS—On the Motion of Camphor
and Modern Theory of Dew, by C. Tomlinson. 1s.

BUILDING AND ARCHITECTURE.

16. ORDERS OF ARCHITECTURE, and their sthetic Prin-
ciples, by W. H. Leeds. 1s.

17. STYLES OF ARCHITECTURE, by T. Bury. 1s. 6d.

18, 19. ARCHITECTURE, Principles of Design in, by E. L. Gar-
bett, 2 vols. in 1. 2s. °

22. BUILDING, the Art of, in Five Sections, by E. Dobson, C.E. 1ls.

23, 24. BRICK AND TILE MAKING, by E. Dobson, C.E., 2 vols.
in 1. 2s.

25, 26. MASONRY AND STONE-CUTTING, with the Principles
of Masonic Projection Concisely Explained, by E. Dobson,
C.E., 2vols.in 1. 2s.

30. DRAINING AND SEWAGE OF TOWNS AND BUILD-
INGS, Suggestive of Sanatory Regulations, by G. D. Dempsey,
C.E. Is. Gd.
(With No. 29, DrAINAGE oF Laxp, 2 vols. in 1, 2s. 6d.)

35. BLASTING ROCKS, QUARRYING, AND THE QUALITIES
OF STONE, by Lieut.-Gen. Sir J. Burgoyne, Bart., G.C.B.,
R.E. 1s. 6d.

36, 37, 38, 39. DICTIONARY OF THE TECHNICAL TERMS
used by Architects, Builders, Engineers, Surveyors, &c.,
4 vols. in 1. 4s.

In cloth boards, 5s.; half morocco, 6s.

42. COTTAGE BUILDING, or Hints for Improving the Dwellings
of the Labouring Classes. 1ls. .

44. FOUNDATIONS AND CONCRETE WORKS, A Treatise on,
by E. Dobson, C.E. 1ls.

45. LIMES, CEMENTS, MORTARS, CONCRETE, MASTICS, &c.,
by G. R. Burnell, C.E. ls.

57, 58. WARMING AND VENTILATION, by Charles Tomlinson,
2 vols. in 1. .
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4 SCIENTIFIC AND MECHANICAL WORKS.

111. ARCHES, PIERS, AND BUTTRESSES, the Principles of
their Construction, by W. Bland. 1s. 6d.

116. ACOUSTICS; Distribution of Sound, by T. Roger Smith,
Architect. 1s. 6d.

123. CARPENTRY AND JOINERY, a Treatise founded on Dr.
Robison’s Work. 1s. 6d.

123*. ILLUSTRATIVE PLATES to the preceding. 4s. 6d.

124. ROOFS FOR PUBLIC AND PRIVATE BUILDINGS,
founded on Dr. Robison’s Work. 1s. 6d.

124%. TRON ROOFS of Recent Construction—a Series of De-
seriptive Plates. 4s. Gd.

127. ARCHITECTURAL MODELLING, Practical Instructions in
the Art. 1s. 64d.

128, 120. VITRUVIUS ON CIVIL, MILITARY, AND NAVAL
ARCHITECTURE, translated by Joseph Gwilt, Architect,
with Tllustrative Plates, by the Author and Joseph Gandy,
2 wols. in 1. Bs.

130. GRECIAN ARCHITECTURE, Principles of Beauty in, by
the Earl of Aberdcen. ls.

132! ERECTION OF DWELLING-HOUSES, with Specifications,
Quantities of Materials, &c., by S. H. Brooks, 27 Plates. 2s.6d.

MACHINERY AND ENGINEERING.

33. CRANES AND MACHINERY FOR LIFTING HEAVY
‘WEIGHTS, the Art of Construeting, by Joseph Glynn. ls.

34. STEAM ENGINE, by Dr. Lardner. 1s.

43. TUBULAR AND OTHER IRON GIRDER BRIDGES, includ-
ing the Britannia and Conway Bridges, by G. D. Dempsey. 1s.

47, 48, 49. LIGHTHOUSES, their Construction and Illumination,
by Allan Stevenson, C.E., 3 vols. in 1. 3s.

59. STEAM BOILERS, their Construction and Management, by
R. Armstrong, C.E. 1s.

6£2. BAILWAYS, Principles of Construction, by Sir E. Stephen-
son. ls. 6d.

62*%, RAILWAY WORKING IN GREAT BRITAIN AND IRE-
LAND, BStatistics, Revenue, Accounts, &e., by E. D. Chatta-
way. ls.

(Vols. 62 and 62* bound in 1, 2s. 6d.)

67, 68. CLOCK AND WATCH MAKING, including Church
Clocks and Bells, by Edmund Beckett Denison, M.A., with
an Appendix, 2 vols.in 1. 3s. 6d.

78, 79. STEAM AND LOCOMOTION, on the Principle of connect-
ing Science with Practice, by John Sewell, L.E., 2 vols. in 1. 2s.
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SCIENTIFIC AND MECHANICAL WORKS. 5

78%*. LOCOMOTIVE ENGINES, a Treatise on, by G. Drysdale
Demspey, C.E. 1s. 6d.

79%. ILLUSTRATIONS TO THE ABOVE. 4s. 6d.

98, 98*. MECHANISM AND THE CONSTRUCTION OF MA-
CHINES, by Thomas Baker, C.E.; and TOOLS AND MA-
CHINES, by J. Nasmyth, C.E., with 220 Wood@uts. 2s. 6d.

114. MégHIll\T E(I;{.dY, its Construction and Working, by C. D. Abe),

E. 1s. 6d.
115. TLLUSTRATIVE PLATES TO THE ABOVE, 4to. 7s. 6d.
139. THEORY OF TIIE STEAM ENGINE, by T. Baker, C.E. ls.

CIVIL ENGINEERING, &ec.

13, 14, 15, 15*. CIVIL ENGINEERING, by Henry Law, 3 vols.;
with Supplement by G. R. Burnell, 4 vols. in 1. 4s.6d.

29. DRAINING DISTRICTS AND LANDS, the Art of, by G. D.
Dempsey, C.E. ls.

(With No. 30, DrAINAGE AND SEWAGE oF Towns, 2 vols. in 1, 2s. 6d).

31. WELL-SINKING AND BORING, by John G. Swindell,
revised by G. R. Burnell, C.E. 1s.

46. ROAD-MAKING, the Construction and Repair, by 8. C. Hu‘ghes
and IL. Law, C.Ii,, and Gen. Sir J. Burgoyne, Bart., G.C.B,,
R.E. 1s. 6d.

60, 61. LAND AND ENGINEERING SURVEYING, by T. Baker,
C.E, 2vols.in 1. 2s

63, 64, 65. AGRICULTURAL BUILDINGS, FIELD ENGINES,
MACIHTINERY, and IMPLEMENTS, by G. II. Andrews,
3 vols.in 1. 3s.

(6. CLAY LLANDS AND LOAMY SOILS, by Professor Donald-
son, A.E. 1ls.

77¢. ECONOMY OF FUEL, by T. 8. Pridcaux. 1s.

80%, 81*. EMBANKING LANDS FROM THE SEA, with
Examples of actual Embankments and Sea Walls, by John
Wiggins, F.G.S,, 2 vols. in 1. 2s.

82, 82¢. POWER OF WATER, as applied to the Driving of Mills.
and Giving Motion to Turbines, and other Hydrostatic
Machines, by Joseph Glynn, F.R.S.,, C.E. 2=

82#x  83% 83 bis. COAL GAS, its Manufacture and Distribution,
by Samuel Hughes, C.E. 3s.

82#xt, WATER-WORKS FOR THE SUPPLY OF CITIES AND
TOWNS, by Samuel Hughes, C.E. 3s.

117. SUBTERRANEOUS SURVEYING, & RANGING THE
LINE without the Magnet, by T. Fenwick, Coal Viewer, with
Improvements and Additions by T. Baker, C.E. 2s. 6d.

118, 119. CIVIL ENGINEERING IN NORTH AMERICA, by
D. Stevenson, C.E., 2 vols. in 1. X
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‘8 SCIENTIFIC AND MECHANICAL WORKS.
120. HYDRAULIC ENGINEERING, by G. R. Burpell, C.E,
2vols.in 1. 8s.

121, 122. RIVERS AND TORRENTS, from the Italian of Paul
Frisi, and a Treatise on NAVIGABLE CANALS, AND
RIVERS THAT CARRY SAND AND MUD. 2s. 6d.

125, 126. COMBUSTION OF COAL, AND THE PREVENTION
OF SMOKE, by Charles Wye leha,ms, MI.C.E. 3s.

SHIP-BUILDING AND NAVIGATION.
51, 52, 53. NAVAL ARCHITECTURE, Principles of the Science,
by J. Peake, N.A., 3 vols.in 1. 8s.

53*. SHIPS AND BOATS FOR OCEAN AND RIVER SERVICE,
th‘c::1 Principles of Construction, by Captain H. A. Sommer-
feldt. 1e.

33**, ATLAS OF 14 PLATES TO THE PRECEDING, Drawn
to a Scale for Practice. 7s. 6d.

§4. MASTING, MAST-MAKING, and RIGGING OF SHIPS,
by R. Klppmg, N.A. 1s.6d.

54*TRON SHIP-BUILDING, by John Grantham, C.E. 2s. Gd.

54%%, ATLAS OF 24 PLATES to the preceding Volume. 22s. 6d.

55, 56. NAVIGATION ; the Sailor’s Sca Book: How to Keep the

Log and Work it oﬂ' &e.; Law of Storms, and Explanation of
Terms. 2Zs.

80, 81. MARINE ENGINES AND TIIE SCREW, by R. Murray,
C.E, 2 vols. in 1. 2s. 6d.

83 bis. SHIPS AND BOATS, the Principles of Construction, by
W. Bland, of Hartlip. 1ls.

99, 100. NAVIGATION AND NAUTICAL ASTRONOMY, hy
Trofessor Young, 2 vols. in 1. 2s.

100*. NAVIGATION TABLES, compiled for Practical Use with
‘the preceding volume. 1s. 6d.

106. SHIPS' ANCHORS FOR ALL SERVICES, by G. Cotscll,
N.A. 1s. 6d.

ARITHMETIC AND MATHEMATICS.

32. MATIIEMATICAL INSTRUMENTS, AND THEIR USE,
by J. F. Heather, M.A. ls.

61*. READY RECKONER for the Measurement of Land, its
Valuation, and the Price of Labour, by A. Arman, School-
master. 1s. 6d.
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76, 77. GEOMETRY, DESCRIPTIVE, with a Theory of Shadows
and Perspective, and a Description of the Principles and
Practice of Isometrical Projection, by J. F. Hcather, M.A.,
2 vols. in 1. 2s. .

83. BOOK-KEEPING, by James Haddon, M.A. 1se

84. ARITHMETIC, with numerous Examples, by Professor J. R.
Young. 1s. 6d.

84*%. KEY TO THE PRECEDING VOLUME, by Professor J. R.
Young. 1s. 6d.

85. EQUATIONAL ARITHMETIC: Questions of Interest, An-
nuities, &c., by W. Hipsley. 1s.

85*%. EQUATTONATL, ARITHMETIC: Tables for the Calculation
of Simple Interest, with Logarithms for Compound Interest,
and Annuities, by W. Hipsley. ls.

86, 87. ALGEBRA, by J. Haddon, M.A,, 2 vols. in 1. 2s.

86%, 87*. ELEMENTS OF ALGEBRA, Key to the, by Professor
Young. 1s. 6d.

88, 89. GEOMETRY, Principles of, by Henry Law, C.E., 2 vols.
inl. 2s.

90. GEOMETRY, ANALYTICAL, by James Hann. 1s. °

91, 92. PLANE AND SPIIERICAL TRIGONOMETRY, by
Prof. James Hann, 2 vols. in 1 (Tke two divisions separately,
1s. each). 2s.

93. MENSURATION, by T. Baker, C.E. 1ls.

94, 956. LOGARITHMS, Tables of ; with Tables of Natural Sines,
Co-sines, and Tangents, by H. Law, C.E., 2 vols. in 1. 2s.6d.

97. STATICS AND DYNAMICS, by T. Baker, C.E. 1ls.

101. DIFFERENTIAL CALCULUS,by Mr. Woolhouse, F.R.A.S. 1s

101*. WEIGHTS AND MEASURES OF ALL NATIONS
Weights of Coins, and Divisions of Time; with the Principles
which determine the Rate of Exchange, by Mr. Woolhouse,
F.R.AS8. ls. 6d.

102. INTEGRAL CALCULUS, by H. Cox, M.A. 1Is.

103. INTEGRAL CALCULUS, Examples of, by Prof. J. Hann. 1s.

104. DIFFERENTIAL CALCULUS, Examples of, by J. Haddon,
MA. 1s.

105. ALGEBRA, GEOMETRY, and TRIGONOMETRY, First
Mnemonical Lessons in, by the Rov.T.P.Kirkman, M.A. 1s. 64.

131. M1ILLER’S, FARMER’'S, AND MERCHANTS READY-
RECKONER, showing the Value of any Quantity of Corn,
with the Approximate Value of Mill-stones and Mill Work. 1s.

136. RUDIMENTARY ARITHMETIC, by James Haddon, M.A.,
with Additions by A. Arman. 1s. 6d.

137. KEY TO THE ABOVE, containing Answers to all the Ques-
tions in that Work, by A. Arman. 1s. 64.
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NEW SERIES OF EDUCATIONAL WORKS.

[This Series is kept in three styles of binding—the prices of each
are given in columns at the end of the lines.]

- S

s | 28 ‘—;g

HISTORIES, GRAMMARS, AND DICTIONARIES. | § | 28 [2E
¢4 tl - Qm =

s.d.| sd.|s.d.

1, 2, 8, 4. CONSTITUTIONAL HISTORY OF
England, by W. D Hamilton . 40(50(|56
5, 6. OUTLINES OF THE HISTORY OF
Gree ¢, hy E. Tevien. M.A., 2 vols. in 1 26(36{40
7, 8. OUTLINES OF TIHE IIISTORY OF
Rome, by the same, 2 vols. in 1 26{36|40
9, 10. CHRONOLOGY OF CIVIL AND
Ecclesiastical History, Literature, Art, and
Civilization, from the earliest period to the

present, 2 vols. in 1 . 26(36|40
1. GRAMMAR OF THE ENGLISH LAN-

GuAGE, by Hyde Clarke, D.C.L. 10
11%. HAND-BOOK OF COMPARATIVE

Philology, by the same . 10

12, 13. DICTIONARY OF THE ENGLISH
Language.—A new Dictionary of the Eng-
lish Tongue, as spoken and written ; above
100,000 words, or 50,000 more than in any
existing work, by the same, 3vols.in1 .| 3 6

———————————, with the Grammar .

14. GRAMMAR OF THE GREEK LAN-
GUAGE, by H. C. Hamilton . 10

15, 16. DICTIONARY OF THE GREEK AND
Enghsh Languages, by H. R. Hamilton,
2 vols. in 1 20

17, 18. DICTIONARY OF THE ENGLISH
and Greek Languages, by the same, 2 vols. 20
inl.

— GREEK AND ENGLISH
and English and Greek, 4 vols.in 1 . .
—————————, with the Greek Grammar .

19. GRAMMAR or THE LATIN LANGUAGE,

the Rev. T. Goodwin, A.B. 10

20, 21. ]%ICTIONARY OF THE LATIN AND
English Lan, the same. Vol.I.[ 20

22, 23. DIC'I‘IONiuﬂY OI; THE ENGLISH
and Latin Languages, by the same. Vol.IL. | 1 6

—_——— 2vols.in1 . . .
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————————, with the Latin Grammar .
2. GRAMMAR OF THE FRENCH LAN-
GUAGE, by G. L. Strauss, Ph. Dr. . .110
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NEW SERIES OF EDUCATIONAL WORKS.

HISTORIES, GRAMMARS, AND DICTIONARIES.

Cloth

Half

25. DICTIONARY OF THE FRENCH AND
lish Langua, A. Elwes. Vol. L.
26. DICT ONA.RY OF THE ENGLISH AND
French Languages, by the same. Vol. IT.
,2vols.in 1 . .

_— w1th the French G*rammar

27. GRAMMAR OF THE ITALIAN LAN-
GUAGE, by the same .

28, 29. DICTIONARY OF THE ITALIAN
English, and French Languages, by the
same. Vol.

30, 31. DICTIONARY OF THE ENGLISH
Italian, and French Languages, by the
same. Vol. IT.

32, 33. DICTIONARY OF THE FRENCH
Italian, and Enghsh Languages, by t.he
same. Vol. I

3vols inl . . .
_— . with the Italian Grammar .

34. GRAMMAR OF THE SPANISH LAN-
GUAGE, by the same .

35, 36, 37, 38. DICTIONARY OF THE
Spamsh and English Languages, by the
same, 4 vols.in 1 .

———————, with the Spamsh Grammar .

39. GRAMMAR OF THE GERMAN LAN-
GUAGE, by G. L. Strauss, Ph. Dr. .

40. CLASSICAL, GERMAN READER, from
the best authors, by the same .

41, 42, 43. DICTIONARIES or Tne ENGLISII
German, and French Languages, by N. B
Hamilton, 3vols separately 1s. each

————————, with the German Grammar .

44, 45. DIGIIONARY OF THE HEBREW
and English Languages, containing the
Biblical and Rabbinical words, 2 vols.
(together with the Grammar, by Dr. Bress-
lau, Hebrew Professor .

46. DICTIONARY OF THE ENGLISH AND
Hebrew Languages. Vol. IIL. to complete
by the same . . .

— 3 vols. as 2 .

46%. GRAMMAR OF THE HEBREW LAN.
GUAGE, by Dr. Bresslau

47. FI%ENCH AND ENGLISH PHRASE
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10 GREEK AND LATIN CLASSICS.

Now in the course of Publication.

GREEK AND LATIN CLASSICS.

[ ]

A Series of Volumes containing the principal Greek and Latin Authors, accarn-
punied by Explanatory Notes in English, principally selected from the best and
most recent German Commentators, and comprising all those Works that are
essential for the Scholar and the Pupil, and applicable for the Universities of
Oxford, Cambridge, Edinburgh, Glasgow, Aberdeen, and Dublin; the Colleges at
Belfast, Cork, Galway, Winchester, and Eton; and the great Schools at Harrow,
Rugby, &c.—also for Private Tuition and Instruction, and for the Library.

LATIN SERIES.

1. A Now LATIN DELECTUS, Extracts from Classical
Authors, with Vocabularies and Explanatory Notes . s
2. CAESAR'S COMMENTARIES on the GALLIC WAR;
with Grammatical and Dxplanatory Notes in Enghsh
and a Geographical Index ~ . e e . 2s

3. SORNELIUS NEPOS; with Enghsh Notes, &e. . . ls.

4. VIRGIL. The Georgics, Bucolics, and doubtful Works ;
with English Notes . . . ls.

5. VIRGIL'S ZNEID (on the same plsn as the preoedmg) 2s.
6. HORACE. Odes and Epodes; with English Notes, and
Analysis and Explanation of the Metres . . la
7. HORACE. Satires and Epistles ; with English Notes, &.c 1s. 6d.
8. SALLUST. Conspiracy of Catiline, Jugurthine War .  1s. 6d.
9. TERENCE. Andrea and Heautontimorumenos . ls.6d.
10. TERENCE. Phormio, Adelphi, and Hecyra . . . 25
14. CICERO. De Amicitia, de Senectute, and Brutus . . 2s.
16. LIVY. Books i. to v.in two parts . . . . . Bs.
17. LIVY. Books xxi. and xxii. . . las.
19. Selections from TIBULLUS, OVID, and PROPERI‘IUS 2s.
20. Selections from SUETONIUS and the later Latin Writers .  2s.

Preparing for Press.
11. CICERO. Orations against Catiline, for Sulla, for Archias,
and for the Manilian Law.

12. CICERO. First and Second Philippios ; Orations for Milo,
for Marcellus, &c.

13. CICERO. De Ofliciis.
5

. JUVENAL and PERSIUS. (The indelicate passages ex-
punged.)

18. TACITUS. Agricola; Germania; and Annals, Book i.
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GREEK AND LATIN CLASSICS. 11

GREEK SERIES,

ON A BIMILAR PLAN TO THE LATIN SERIES,y

1. INTRODUCTORY GREEK RDADDR On the same
plan as the Latin Reader . . . . 1s.
2. XENOPHON. Anabasis, i. ii. ili. . . . . . Is.
3. XENOPHON. Anabasis, iv. v. vi. vil. . . . . 1s.
4. LUCIAN. Select Dialogues . . . . . . s
5 HOMER. 1liad,i.to vi. . . . . . . 1s.Gd.
6. HOMER. TIliad, vii. to xii. . . . . . 1s.6d.
7. HOMER. 1Iliad, xiii. to xviil. . . . . . 1s.06d.
8. HOMER. Iliad, xix. to xxiv. . . . . . 1s. 6d.
9. HOMER. Odyssey, i. to vi. . . . . . s 6d.
10. HOMER. Odyssey, vii. to xii. . . . . . Is. Gl
11. HOMER. Odysscy, xiii. to xviii. . . . s 64
12. IOMER. Odyssey, xix. to xxiv.; and IT_ymns . . . 2
13. PLATO. Apologv, Crito, and Phwedo . . . . 2\'
14. HERODOTUS, 1. ii. . . . . . 1s.6d.
15. IIERODOTU.S ii. iv. . . . . 1s.b6d.
16. HERODOTUS, v. vi. and part of vii. . . . 1s.6d.
17. HERODOTUS. Remainder of vii. viii. and ix. . .. 6d.
18. SOPHOCLES; Edipus Rex . . . . . 1s.
20. SOPITOCLES; Antigone . . . . . e,
23, 24. EURTPIJ)ES Hecuba and Modea . . . 1s. 6d.
26. EURIPIDES; Alcostis . . . . . . s
30. ASCHYLUS; Promctheus Vmctus . . . . . ls.
40. ARISTOPHAN.Eb Acharnians . . . . s Gd.
41. THUCYDIDES,i. . . . . . . ls.

DPreparing for Press.

19. SOPHOCLES ; (Edipus Co- 33. ZESCHYLUS; Choéphorz.
lonzus. 34. ASCHYLUS ; Eumenides.
21. SOPHOCLES; Ajax. 35. AASCHYLUS; Agamemnon.

22. SOPHOCLES; Philoctetes.  36. ZZSCHYLUS; Supplices.
25. EURIPIDES; Hippolytus. 37. PLUTARCH ; Select Lives.

27. EURIPIDES ; Orestes. 38. ARISTOPHANES; Clouds.

28. EURIPIDES. Extracts 39. ARISTOPHANES; Frogs.
from the remaining plays. 42. THUCYDIDES, ii.

29. SOPHOCLES. Extracts 43. THEOCRITUS; Select
from the remaining plays. Idyls.

31. ASCITYLUS; Pers:e. 44. PINDAR.

32. ZASCHYLUS ; Septem 45. ISOCRATES.
contra Thebes. 46. HESIOD.
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12 EDUCATIONAL WORKS.

LE PAGE'S FRENCH COURSE.

““The sale of many thousands, and the almost universal adoption of these
clever little books by M. L PaGE, sufficiently prove the public approbation
of his plan of teaching French, which is in accordance with the natural
operation of a child learning its native langunage.”

LE PAGE’S PETIT LECTUER DES COLLEGES; or, TEE FRENCH
READER POoR BEGINNERS AND ELDER Crasses, A Sequel to “ L’Echo
de Paris.” 1In1 vol.,, 12mo. cloth. In Preparation.

LE PAGE’S FRENCH SCHOOL. Part I. L'ECHO DE PARIS;
being a Selection of Familiar Phrases which a person would hear daily
if living in France. Price 8s. 6d. cloth.

LE PAGE’S FRENCH SCHOOL. Part II. THE GIFT OF FLUENCY
IN FRENCH CoNvVERSATION. With Notes. Price 2s. 6d. cloth.,

LE PAGE’S FRENCH SCHOOL. TART III. THE LAST STEP
10 FRENCH; with the Versification. Price 2s. 6d. cloth.

LE PAGE’S FRENCH MASTER FOR BEGINNERS ; or, Easy Lrssons
IN FRENcH. Price 2s. 6d. cloth.

LE PaGE’S PETIT CAUSEUR; or, First CHATTERINGS IN FRENCH,
Being & Key to the Gift of French Conversation. Price 1s. 6d.

LE PAGE’S NICETIES OF PARISIAN PRONUNCIATION. Price 6d.

LE PAGE’S JUVENILE TREASURY OF FRENCH CONVERSATION,
With the English before the French. Price 3s. cloth.

LE PAGE’S KEY TO L’ECHO DE PARIS. Price 1s.

LE PAGE’S FRENCH PROMPTER. A HaANDBOOK FOR TRAVELLEES
on the Continent and Students at Home. Price 4s, cloth.

LE PAGE’S READY GUIDE TO FRENCH COMPOSITION. Frencn
Grammar by Examples, giving Models as Leading-strings throughout
Accidence and Syntax. Price 3s. 6d. cloth.

Fifth Edition, improved and corrected, in 1 vol. 12mo., neatly
bound, price 2a. 6d.,

TATE'S ELEMENTS OF COMMERCIAL ARITHMETIC;

Containing a Minute Investigation of the Principles of the Science, and
their general application to Commercial Caleulations, in accordance
with the present Monelary System of the World. By WILL1AM TaTk,
Principal of the City of Loudon Establishment for finishing Young
Men for Mercantile and Banking Pursuits.

KEY TO THE ABOVE, 12mo., bound, 3s. 6d.

VIRTUE BROTHERS & CO., 1, AMEN CORNER.












