
NPS ARCHIVE
1997.09
EVANS, J.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Thesis
E758

PROJECT SCHEDULING TOOL

by

John Evans

September 1997

Advisor:

Second Reader:

Valdis Berzins

Luqi

Approved for public release; Distribution is unlimited.

LEY KNOX LIBRARY

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information it estimated to average 1 hoar per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this bnrden estimate or any other aspect of this collection of information, including suggestions for reducing this bnrden,

to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Snite 1204,

Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September, 1997

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

PROJECT SCHEDULING TOOL

6. AUTHORS Evans, John

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect

the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(mcurimum 200 words)

Optimally scheduling a team of developers on a large software project is an NP-complete problem. The
scheduling algorithm employed by the Evolutionary Control System (ECS) portion of the Computer-Aided

Prototyping System (CAPS) does near-optimal scheduling using an algorithm that runs in Order N 2 space and

time. The problem addressed by this thesis is to improve the performance of the algorithm and make it more

useful for scheduling software developers. The thesis accomplished three things: (1) Modified the algorithm to

run in order N time and space, preserving its near-optimal behavior; (2) implemented a calendaring package

that computes federal holidays for any year after 1970 and schedules tasks only on non-holiday workdays; and

(3) incorporated a more realistic capability model to better match programming tasks with each developer's

abilities.

14. SUBJECT TERMS
Scheduling, CAPS, ECS, Project Management

15. NUMBER OF
PAGES 266

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

PROJECT SCHEDULING TOOL

John Evans

B.S., Mathematics, New York State University, 1982

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
JNTEREY CA 93943-5101

ABSTRACT

Optimally scheduling a team of developers on a large software project is an NP-

complete problem. The scheduling algorithm employed by the Evolutionary Control

System (ECS) portion of the Computer-Aided Prototyping System (CAPS) does near-

optimal scheduling using an algorithm that runs in Order N2 space and time. The

problem addressed by this thesis is to improve the performance of the algorithm and

make it more useful for scheduling software developers. The thesis accomplished three

things: (1) Modified the algorithm to run in order N time and space, preserving its

near-optimal behavior; (2) implemented a calendaring package that computes federal

holidays for any year after 1970 and schedules tasks only on non-holiday workdays;

and (3) incorporated a more realistic capability model to better match programming

tasks with each developer's abilities.

VI

DISCLAIMER

The computer programs in the Appendices are supplied on an "as is" basis,

with no warrantees of any kind. The author bears no responsibility for any conse-

quences of using these programs.

vn

Vlll

TABLE OF CONTENTS

I. BACKGROUND 1

II. THE SCHEDULER 3

A. THE SCHEDULING MODEL 3

B. THE SCHEDULING ALGORITHM 4

C. ANALYSIS 5

D. SIMULATION 7

III. CALENDAR 9

IV. EXPERTISE LEVELS 13

V. CONCLUSIONS 15

A. SUMMARY OF DESIGN AND IMPLEMENTATION 15

B. FUTURE WORK 15

APPENDIX A. SCHEDTOOLS PACKAGE 17

APPENDIX B. SCHEDPRIMS PACKAGE 57

APPENDIX C. MAIN DRIVER 75

APPENDIX D. GENERIC LIST PROCESSING ROUTINES ... 97

APPENDIX E. CALENDAR PACKAGE 117

APPENDIX F. PROBABILITY PACKAGE 171

APPENDIX G. OPTIONS PACKAGE 181

APPENDIX H. CAPABILITY PACKAGE 193

APPENDIX I. TASK GENERATOR PACKAGE 225

LIST OF REFERENCES 245

INITIAL DISTRIBUTION LIST 247

IX

LIST OF FIGURES

1. Plot of scheduler run-time vs. number of tasks to schedule 6

2. Plot of Laxity vs. percent schedules found 7

XI

xu

LIST OF TABLES

I. Raw output of Scheduler 9

II. Standard Work Day 10

III. NRaD Schedule 10

IV. Sample developer file 13

V. Sample developer file with implicit capabilities 14

xui

XIV

ACKNOWLEDGMENTS

Thanks to Professors Berzins and Luqi for their time, and kind solicitude. It

is an honor to have been a student of theirs. Thanks to the enlightened management

of NRaD for setting up the distance-learning program, thus giving my classmates and

I the opportunity to earn an advanced degree from the Naval Postgraduate School.

And last, thanks to my family for allowing me to take from them the hundreds of

evenings and countless weekends necessary to complete this program. My debt to

them is immeasurable.

xv

XVI

I. BACKGROUND

Much research into the formalization and automation of software development

is underway. The need for such tools is obvious. It is fundamentally driven by Moore's

Law, which states that the power of computer systems will double every 18 months

—

a maxim which has held for the past twenty years, and is expected to continue for at

least the next ten. As computer systems grow inexorably faster and more powerful,

new software to take advantage of this increased power is needed. The new software,

however, is larger, and more complicated, and now requires larger teams of developers

to produce in a timely manner. Software tools to manage the complexity of developing

these larger programs are needed.

One such tool is the Evolutionary Control System (ECS) being developed at

the Naval Postgraduate School (NPS). The basis of the ECS is Salah Badr's Phd.

Thesis, A Model and Algorithms for a Software Evolution Control Sysiem[Ref. 1],

which itself was based on work by Luqi[Ref. 4] of NPS.

Salah's thesis delved into a broad array of issues related to managing large

projects and their concomitant complexity. One aspect of his thesis, which is the sub-

ject of this report, was the development and implementation of an on-line scheduling

algorithm that did three specific tasks:

1. Supported teamwork by concurrently assigning ready steps to available de-

signers.

2. Supported incremental replanning as additional information became available.

3. Minimized wasted design effort due to reorganization of the schedule by effi-

ciently scheduling workers to assigned sub-tasks.

Over time, however, certain limitations have become evident. The implemen-

tation of the scheduling algorithm was found to be 0(N2
) in space. This led to a

rapid exhaustion of memory resources on relatively small problem sets. Also, the

model of time used to schedule the developers was not realistic. It assumed that the

developers were available always, and did not take into account weekends, holidays,

or other commitments on a developer's time. Also, the capabilities of the developers

was split into just three broad categories: low, medium, and high. This too proved

unrealistic, as certain developers bring their own strengths and weaknesses to the

task at hand. It would be nice to take note, for instance, of a special ability such

as database expertise, and assign a programmer with this capability to a task that

require this knowledge. The changes made to Salah Badr's codes do exactly this.

II. THE SCHEDULER

The problem of optimally scheduling tasks for both the preemptive and nonpre-

emptive cases is NP-complete[Ref. 6]. Scheduling nonpreemptive tasks with arbitrary

ready times is also NP-complete in both multiprocessor and uniprocessor systems [Ref.

3]. For dynamic systems with more than one task, and mutual exclusion constraints

between tasks, Mok and Dertouzos [Ref. 5] showed that an optimal scheduling algo-

rithm does not exist.

Shiah, et al.[Ref. 2] came up with an heuristic scheduling algorithm that ran in

order kN time. Salah Badr extended the algorithm to consider arbitrary precedence

constraints between pairs of tasks. His scheduler forms the basis of the current ECS

scheduling algorithm.

The scheduling algorithm, as implemented by Badr, was recursive. It con-

sumed order N 2 memory for a set of N tasks. It attempted to improve performance

by limiting backtracking, but was still at least order N2
in time. It was based on

an algorithm described in the paper by Stankovic, et al.[Ref. 3] The requirement for

order N2 space limited the size of the problem domain. This thesis describes the

algorithm and the steps taken to make the algorithm run using only order N space.

It is based on the "myopic" algorithm [Ref. 2] and a radical restructuring of the data

structures in the Ada code.

A. THE SCHEDULING MODEL
The task set in the ECS scheduling problem is a variable set of evolution

steps S = {5i, Sz, . .

.

, Sn}, where N varies with time. This set of tasks needs to be

scheduled to a set of M designers D = {Di, D2, • , Dm}- The designers are of L

different expertise levels.

Tasks as used in the ECS are independent, nonperiodic and non-preemptive.

They can be characterized by the following:

1. Task arrival Time Ta\

2. Task deadline Tp;

3. Task worst-case computation time Tq\

4. Task expertise level Tj,;

5. Task priority Tp

Each task also has associated with it a precedence constraint given in the form

of a directed acyclic graph G — {S,E} such that (S{,Sj) € E implies that Sj cannot

start until Si has completed.

The priority, Tp, is a small positive integer that is assigned to each task to

reflect the criticality of its deadline. The priorites of different tasks should be com-

patible with the precedence constraints between the steps, i.e. no lower priority step

can precede a higher priority step:

ii(S2 ,S1)eE^TP(2)>=Tp(l)

if (52 , S1)eEA TP {1) >= TP (3) => TP {2) >= TP (3)

B. THE SCHEDULING ALGORITHM
The goal of the scheduling algorithm is to determine if there exists a schedule

for executing the tasks that satisfies the timing
,
precedence, and resource constraints,

and to calculate such a schedule if it exists. A schedule that meets these constraints

is termed feasible. It is not guaranteed to be optimal.

Scheduling a set of tasks to find a full feasible schedule is actually a search

problem. The search space is a tree. The scheduling algorithm starts at the root of

the tree, and using a predetermined heuristic, selects a candidate task to schedule. If

the remaining tasks can be added to the schedule, in the order given by the heuristic,

without violating the constraints, then the partial schedule is termed strongly-feasible,

and the task is added to the search tree as a vertex node, and the process is repeated

,

recursively, till a full, feasible schedule is found. If instead, after the candidate task is

selected, and any one of the remaining tasks added to the schedule violates the con-

straints, the candidate task is rejected, and the next elgible, candidate task (ordered

by the ranking function H(T)) is selected. The search process continues untill all the

tasks are scheduled, or no feasible schedule is found.

Instead of using all of the remaining tasks to determine if a partial schedule

is strongly-feasible, Stankovic, et al.[Ref. 2], limited the candidate tasks to check

to some number k. So, insteady of checking N, N — 1, . .
.

, 1 remaining tasks, or

N(N — l)/2 total tasks, they limited the search to k or at most kN tasks to check.

(This is where the term "myopic" comes in. Instead of looking at all the remaining

tasks, we "near-sightedly" examine the next k tasks.)

The set of tasks ready to be scheduled are ordered by the heuristic H(T). The

candidate heuristics are

1. Minimum deadline first (Min_D): H(T) = TD ;

2. Minimum processing time first (Min_P): H(T) = Tp\

3. Minimum earliest start time first (Min_S): H{T) — Teat \

4. Minimum laxity first (Min_L): H(T) = TD - (Teat + TP);

5. MinJD + Min_P: H{T) = TD + W xTP ;

6. Min_D + Min_S: H(T) = TD + W x Teat ;

According to Shiah et al.[Ref. 3], The MinJD + Min_S heuristic is superior in all

cases. It is supposedly used in Salah Badr's dissertation, but since his simulation

studies apparently used tasks with an earliest start time of it defaults to Min_D.

MinJD is used in the new implementation of the scheduling algorithm.

C. ANALYSIS
The scheduler as implemented by Salah Badr in Ada was Order N-squared

in space. The heart of the code was a call on a search function performing a recur-

sive search in tree-like fashion of potential schedules. In order to make the routine

150-

100-

Time
(seconds)

50

0-

Original data

First Cut

'Final cut

T T T
2000 4000 6000

Tasks to Schedule

8000 104

Figure 1. Plot of scheduler run-time vs. number of tasks to schedule

O(N) in space it was necessary to pull many of the large data structures out of the

recursive routine, make them global, and manage changes with other global data

structures. This necessarily complicated the code to a degree, but the result was an

O(N) algorithm in space.

Once the space problem was corrected, it became evident that the routine was

also 0(N2
) in time. But this was easily rectified by using the "myopic" algorithm.

Figure 1 shows the speed-up in processing speed vs. number of tasks to be scheduled

for different versions of the code. The original data came with the original code.

After the N2 space problem was resolved, and before the myopic version of the code

was added (first cut) we see that the code still runs in order N2
time. The final cut

shows the run-time for the final version of the code.

The original data collected goes upto only 4600 tasks because the storage

required was 0(N 2
) in the number of tasks to be scheduled. A number larger than

4600 tasks would cause the program to raise a storage-error exception.

100

80-

60-

Percent

Found 40

20-

0-

Laxity

Figure 2. Plot of Laxity vs. percent schedules found

D. SIMULATION
To test the new scheduler routine, a routine to generate tasks that always have

a feasible schedule was written. (Actually Badr had a routine to generate tasks, but

it generated lists of tasks that were "easy" to schedule—that is the alogorithm never

failed to find a schedule.) This routine varies the number of tasks, the number of

programmers to use, and the "laxity" of the schedule generated. (Laxity is denned

to be Td — (Test + Tp).) It also uses the Ada '95 random number generators to

generate uniform distributions of random variables. The graph in Figure 2 shows

the performance of the algorithm when 500 tasks per test case were generated, and

the laxity was varied between zero and 0.7. As you can see, the algorithm failed

miserably when there was zero laxity, and got progressively better as this constraint

was "relaxed."

III. CALENDAR

The scheduling algorithm as originally implemented treated time continuously.

Mapping this "continuous" time to calendar working time is a tedious task, especially

as the number of tasks to schedule increases. Also, real dates give a better idea of

the time-frames involved.

The algorithm to translate a "continous" time to calendar time works as fol-

lows: Consider the output of the scheduler in Table I for a simple set of 10 tasks.

The first column is the task id, the second column is the expertise level required

for the task (more on expertise levels, later), and the third column is the developer

assigned to the task. (In this case we have three developers: LI, Ml, HI.) The second

to last column is the start time and the last column is the end time in units of hours.

After translating the start times and end times to calendar times we get the

output in Table II For this data set the start date was set to July 3rd, 1997. The

translator also assumed that the work day is eight hours. At NRaD the the work

weeks are 5/4, i.e., 9 hours a day on Monday thru Thursday and 8 hours on Friday,

with every other Friday off. Using -nrad as an input switch to the program, we get

the new output shown in Table III.

The dates in Table III start on the seventh of July because July 4th is a federal

3 HIGH HI 3

2 MEDIUM Ml 4

1 LOW LI 6

4 HIGH HI 3 13

5 MEDIUM Ml 4 12

6 LOW LI 6 10

8 MEDIUM Ml 12 14

7 LOW LI 10 15

9 HIGH HI 13 19

10 MEDIUM Ml 14 24

Table I. Raw output of Scheduler

3 HIGH HI 07/03/1997+00 07/03/1997+03

2 MEDIUM Ml 07/03/1997+00 07/03/1997+04

1 LOW LI 07/03/1997+00 07/03/1997+06

4 HIGH HI 07/03/1997+03 07/07/1997+05

5 MEDIUM Ml 07/03/1997+04 07/07/1997+04

6 LOW LI 07/03/1997+06 07/07/1997+02

8 MEDIUM Ml 07/07/1997+04 07/07/1997+06

7 LOW LI 07/07/1997+02 07/07/1997+07

9 HIGH HI 07/07/1997+05 07/08/1997+03

10 MEDIUM Ml 07/07/1997+06 07/08/1997+08

Table II. Standard Work Day

3 HIGH HI 07/07/1997+00 07/07/1997+03

2 MEDIUM Ml 07/07/1997+00 07/07/1997+04

1 LOW LI 07/07/1997+00 07/07/1997+06

4 HIGH HI 07/07/1997+03 07/08/1997+05

5 MEDIUM Ml 07/07/1997+04 07/08/1997+04

6 LOW LI 07/07/1997+06 07/08/1997+02

8 MEDIUM Ml 07/08/1997+04 07/08/1997+06

7 LOW LI 07/08/1997+02 07/08/1997+07

9 HIGH HI 07/08/1997+05 07/09/1997+03

10 MEDIUM Ml 07/08/1997+06 07/09/1997+08

Table III. NRaD Schedule

holiday, and an NRaD off-Friday, this moves the off-Friday to the 3rd, so the first

work-day is actually the seventh. It appears complicated, but the Ada implementation

handles it quite easily. The format of MM/DD/YYYY+HR is used because daily schedules

are idiosyncratic. The notation "+HH" means start or finish at that many hours into

the workday. It should be easy to map this time format to any person's particular

schedule, but in the interest of time was not done here.

The calendar package will also compute non-federal holidays such as Easter,

election-day, and other useful dates. The present version runs in order N2 time. It

should be easy to convert to order N, but due to time constraints, this was not done

during the course of this thesis. The calendar package was originally added to the

10

scheduler, but it didn't make sense to take an order N2 algorithm, turn it into an

order N one, then turn it back to an order N 2 one with the addition of the calendar

package. Besides, the scheduler is used to come up with feasible schedules. Once one

is obtained, it can then be easily mapped to calendar dates. This separation of tasks

also preserves the modularity of the codes. The conversion routine to convert from

"continuous-time" to calendar dates (contocal) is in one of the appendices, as part

of the scheduler package.

11

12

IV. EXPERTISE LEVELS

Every programmer brings certain competencies to the tasks at hand. Some

are experts in Ada, others in Java, etc. So, the scheduler has been modified to handle

this.

In the Shiah, et al. paper[Ref. 3] on scheduling multiple tasks, resources are

represented by a vector data structure as follows:

EAT = (EATU EAT2 ,
..., EATr)

(EAT stands for earliest available time.) If a task is ready to be scheduled, and

it requires resource N, the earliest it can be scheduled is at time EATjq. If there

are multiple instances of a resource then the resources are represented as a matrix,

and the earliest time a task can be scheduled is the earliest time any one of the

multiple instances of that resource is available. In Salah Badr's thesis, he represented

developers as the resources, and since he classified them as (low, medium, high) he

could have multiple instances of developers. So the data structure to represent the

available resources (developers) was a matrix.

In this latest revision of the code, each developer is unique, there are no

multiple instances of a developer, so resources (developers) are representeted as a

vector. Each developer, though, has a capability attribute, which is a map of skills to

(low, medium, high). For example, one of the inputs to the new scheduler program

is a file of developers, as shown in Table IV.

Each developer has an implicit attribute which is their name. Also, if a capa-

bility is not given, it is assumed to be low. For example developer "Scott McNealy"

Bill Gates {ActiveX : High, Java : Low}

Scott McNealy {Java : High, Unix : Medium}
Bill Joy {Java : High, Unix : High}

Table IV. Sample developer file

13

Bill Gates {ActiveX : High, Java : Low, Unix : Low,

Bill Gates : High, Scott McNealy : Low, Bill Joy : Low}

Scott McNealy {ActiveX : Low, Java : High, Unix : Medium,

Bill Gates : Low, Scott McNealy : High, Bill Joy : Low}

Bill Joy {ActiveX : Low, Java : High, Unix : High,

Bill Gates : Low, Scott McNealy : Low, Bill Joy : High}

Table V. Sample developer file with implicit capabilities

is assumed to have low ActiveX skills, while developer "Bill Gates" is assumed to

have low Unix skills. If a task is to be scheduled that requires medium Unix skills

and low ActiveX skills then either developer "Scott McNealy" or "Bill Joy" could be

assigned. On the other hand, if a task requires high ActiveX skills, then only "Bill

Gates" would fit the bill. If a task came in that required high skills in both ActiveX

and Java, no developer would fit the bill, and the scheduler code would through an

Ada (noqualifieddevelopers) exception. If a job came in that required high or

medium skills in attribute "Scott McNealy" then only he could possibly be assigned

this job. Table V shows what the capabilities of each developer are with the implicit

capabilities added.

14

V. CONCLUSIONS

A. SUMMARY OF DESIGN AND IMPLEMENTATION
The scheduler as implemented can now handle large problems in a reasonable

time, i.e., ten thousand or more tasks. The scheduled tasks can now be mapped to a

realistic calendar, and the tasks are now associated with problem-solving skills

B. FUTURE WORK
The calendar implementation needs to be optimized. It currently runs in order

N2 time, but could easily be modified to run in order N time. At present the calendar

model does not consider individual variations in schedules. If a developer were to take

a day off, the model cannot handle that, as it is only aware of work days and holidays

for the general work-force. To allow individual schedules into the model a group

planning program of some kind would be needed. A kludge to get around this in the

present implementaton, is to create pseudo-tasks lasting the period of time off, and

requiring only that particular developer perform it. This causes some inaccuracies

because the current scheduler in non-preemptive, but in real life time off could be

scheduled in the middle of a task. This weakens the algorithm because it can fail to

find feasible schedules in which tasks are interrupted by time off.

Another enhancement that would be useful is the identification of critical

paths. All schedules have critical paths, that is a sequence of tasks with the least

laxity. It would be nice to enhance the scheduler to identify these critical paths. The

project manager could then can focus his attention on those tasks in the critical path,

as these would be the jobs that puts his schedule most at risk.

15

16

APPENDIX A Project Scheduling Tool

Schedule Tools

[Ada '95—Version 1.0]

September 18, 1997

Section Page

Introduction 1 19

Schedule Tools 11 22

Schedule Tools Body 40 28

Check In Degree 60 36

StrongFeasible 65 39

AssignStep 70 42

Branch And Bound 71 43

System-dependent changes 91 51

Index 93 52

17

WEB OUTPUT APPENDIX A

This page intentionally left blank

18

§ APPENDIX A INTRODUCTION

1. Introduction. Here is the Ada code for utilites used in Salah Badr's scheduler

program. His program was written by him May 25, 1993. It was translated by myself,

John Evans of NRaD, into Donald Knuth's WEB format for literate programming. To
compile and link the code in its present format you will need the Ada version of the WEB

tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/hterate/

2. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

get the book Literate Programming, by Donald Knuth, published by the Center for the

Study of Language and Information, Stanford University, 1992. Another good source of

information is the Usenet group comp.programming. literate. It has information on tools

and answers to Frequently Asked Questions (FAQs).

3. Who should use the WEB paradigm for programming? Well, not everybody. Here are

a few paragraphs from Donald Knuth's book that explains it best.

4. Retrospect and Prospects. Enthusiastic reports about new computer languages,

by the authors of those languages, are commonplace. Hence I'm well aware of the

fact that my own experiences cannot be extrapolated too far. I also realize that,

whenever I have encountered a problem with WEB, I've simply changed the system;

other users of WEB cannot operate under the same ground rules.

5. However, I believe that I have stumbled on a way of programming that produces

better programs that are more portable and more easily understood and maintained

than ever before; furthermore, the system seems to work with large programs as

well as with small ones. I'm pleased that my work on typography, which began as

an application of computers to another field, has come full circle and become an

application of typography to the heart of computer science; I like to think of WEB as

a neat "spinoff" of my research on IgX. However, all of my experiences with this

system have been highly colored by my own tastes, and only time will tell if a large

number of other people will find WEB to be equally attractive and useful.

19

INTRODUCTION APPENDIX A §6

6. I made a conscious decision not to design a language that would be suitable for

everybody. My goal was to provide a tool for system programmers, not for high

school students or for hobbyists. I don't have anything against high school students

and hobbyists, but I don't believe every computer language should attempt to offer

all things to all people. A user of WEB needs to be good enough at computer science

that he or she is comfortable dealing with several languates simultaneously. Since

WEB combines T^X an(l Pascal with a few rules of its own, WEB programs can contain

WEB syntax errors. TgX syntax errors, Pascal syntax errors, and algorithmic errors;

in practice, all four types of errors occur, and a bit of sophistication is needed to

sort out which is which. Computer specialists tend to be better at such things than

other people. I have found that WEB programs can be debugged rapidly in spite of

the profusion of languages, but I'm sure that many other intelligent people will find

such a task difficult.

7. In other words, WEB seems to be specifically for the peculiar breed of people who
are called computer scientists. And I'm pretty sure that there are also a lot of

computer scientists who will not enjoy using WEB; some of us are glad that tradi-

tional programming languages have comparatively primitive capabilities for inserted

comments, because such difficulties provide a good excuse for not documenting pro-

grams well. Thus, WEB may be only for the subset of computer scientists who like

to write and to explain what they are doing. My hope is that the ability to make
explanations more natural will cause more programmers to discover the joys of lit-

erate programming, because I believe it's quite a pleasure to combine verbal and

mathematical skills; but perhaps I'm hoping for too much. The fact that a least

one paper has been written that is a syntactically correct ALGOL 68 program en-

courages me to perservere in my hopes for the future. Perhaps we will even one day

find Pulitzer prizes awarded to computer programs.

8. Donald Knuth goes on to write about his hopes for the future of WEB programming.

In an interview with Donald Knuth by Amazon Books on the release of a new edition of

Volume 1 of The Art of Computer Programming (July 1, 1997) he was asked:

Amazon.com: What do you see as the most interesting advance in programming since

you published the first edition?

Donald Knuth: It's what I call literate programming, a technique for writing, docu-

menting, and maintaining programs using a high-level language combined with a written

language like English. This is discussed in my book Literate Programming.

9. In the same book, Literate Programming, there is a chapter called How to read a WEB.

But it is actually quite straightforward.

20

§10 APPENDIX A INTRODUCTION

10. Very briefly, each "Module" within angle brackets (< >) is expanded somewhere

further down in the document. The trailing number you see within the brackets is where

you can find this expansion. This provides a type of PDL (program descriptor language)

for your program and greatly aids modularity and readability. It is also a highly effective

method of top-down programming. The first module here is expanded further down, and

contains most of the structure in standard Ada packages.

(Package boiler-plate 12

)

21

SCHEDULE TOOLS APPENDIX A §11

11. Schedule Tools.

12. Here, finally, is the boilerplate. The Ada WEB tool atangle reads this and knows to

write out two separate files, the specification and the body. (The Ada WEB tool aweave

will write out just one documentation file.)

(Package boiler-plate 12)
=

output to file schedtools .ads

with TextJO

;

use TextJO;
with genericsetjpkg;

with genericjmap-pkg

;

with GenericJist;

with SchedPrims

;

use SchedPrims

;

with capability]

use capability;

with ustrings;

use ustrings;

package schedtools is

(Instantiate generics 16)

(Specification of types and variables visible from schedtools 23
)

(Specification of procedures visible from schedtools 26
)

end schedtools

;

output to file schedtools. adb

with test-io-pkg;

use test-io-pkg;

with Ustrings; Use Ustrings; with Ada. calendar;

use Ada. calendar;

with calyr;

use calyr;

with capability

;

use capability

;

package body schedtools is

(Variables local to schedtools 41

)

(Procedures and Tasks in schedtools 42

)

end schedtools

;

This code is used in section 10.

22

§13 APPENDIX A SCHEDULE TOOLS

13. The scheduling tools in this package rely on some other packages. Here is how they

relate to each other.

Generic List Pkg SchedPrims Pkg

SchedTools Pkg

I
Scheduler

Library Dependence Structure.

14. The schedules are kept in in linked-lists. Salah Badr's original code had separate

routines for each linked list. In this version of the algorithm, I created a generic list type,

and make multiple instantiations of it for different record types. Details of the differing

records, comparisons, and display routines can be found in the schedprims package.

15. Since the main purpose of rewriting the code was to eliminate the order N2 space

requirement, I use linked lists to keep track of additions and deletions to the lists as the

search space is traversed. What follows are all the instantiations of new linked-lists.

16. Here I instantiate a list type to manipulate StepRecord types.

(Instantiate generics 16) =
package InputListl is new GenericJist(ElementType => StepRecord

,

DisplayElement =$ DisplayStepRecord ,
"<" => ComparelD);

use InputListl
;

subtype InputList is InputListl .List]

See also sections 17, 18, 19, 20, 21, and 22.

This code is used in section 12.

17. Here I instantiate a list type to manipulate StepRecord types, but to restore deletions,

in case the recursive procedure BranchAndBound needs to back out changes.

(Instantiate generics 16) +=
package DeletedlnputListl is new GenericJist(ElementType => StepRecord

,

DisplayElement => DisplayStepRecord ,"<" =^ CompareRecursionLevel)\

use DeletedlnputListl
;

subtype DeletedlnputList is DeletedlnputListl .List;

23

SCHEDULE TOOLS APPENDIX A §18

18. Here I instantiate a list type to manipulate StepRecord types for the ReadyQueue
,

which requires that the records be sorted in Deadline first order.

(Instantiate generics 16) +=
package ReadyListl is new GenericJist(ElementType => StepRecord

,

DisplayElement => DisplayStepRecord ,"<" =$> CompareDeadline ,"=" => IsEqual);

use ReadyListl
;

subtype ReadyList is ReadyListl .List;

19. Here I instantiate a list type to manipulate StepRecord types for deletions to the

ReadyQueue , which requires that the records be sorted in RecursionLevel first order.

(Instantiate generics 16) +=
package DeletedReadyListl is new GenericJist(ElementType =4> StepRecord

,

DisplayElement => DisplayStepRecord ,"<*' =$> CompareRecursionLev el);

use DeletedReadyListl
;

subtype DeletedReadyList is DeletedReadyListl .List;

20. Here I instantiate a list type to manipulate StepRecord types for additions to the

ReadyQueue , which requires that the records be sorted in RecursionLevel first order.

(Instantiate generics 16)
+=

package AddedReadyListl is new GenericJist(ElementType => StepRecord
,

DisplayElement => DisplayStepRecord ,"<" =$> CompareRecursionLevel);

use AddedReadyListl
;

subtype AddedReadyList is AddedReadyListl .List;

21. Here I instantiate a list type to manipulate StepRecord types for the ReadyQueue
,

which requires that the records be sorted in Deadline first order.

(Instantiate generics 16) +=
package ScheduleListl is new GenericJist(ElementType => ScheduleRecord

,

DisplayElement => DisplayScheduleRecord ,"<" =s> CompareStartTime);

use ScheduleListl
;

subtype ScheduleList is ScheduleListl .List;

22. Here I instantiate a list type to manipulate StepRecord types for the ReadyQueue
,

which requires that the records be sorted in Deadline first order.

(Instantiate generics 16) -f

=

package CalendarListl is new GenericJist(ElementType => CalendarRecord
,

DisplayElement => DisplayCalendarRecord ,"<" => CompareStartTime);

use CalendarListl

;

subtype CalendarList is CalendarListl .List;

24

§23 APPENDIX A SCHEDULE TOOLS

23. Made global and visible.

(Specification of types and variables visible from schedtools 23) =
maxjrecursion : natural <— 0;

recursion^level : natural <— 0;

See also sections 24, 25, 33, and 59.

This code is used in section 12.

24. When the laxity of the input schedule is "tight," it may be impossible to find a

schedule. (Finding a schedule is, after all, an NP-Complete problem.) In this case the

routine will give up after some amount of effort. In this implementation, I give up if the

number of "backtracks" is FeasFactor times the total of number of tasks to be scheduled.

If this number is exceeded then the exception NoFeasibleScheduleFound is thrown.

(Specification of types and variables visible from schedtools 23) +=
NoFeasibleScheduleFound : Exception]

FeasFactor : natural <— 10;

25. Made global and visible.

(Specification of types and variables visible from schedtools 23) +=
StepList : InputList

;

ReadyQueue : ReadyList;

DeletedReadyQueue : DeletedReadyList;

DeletedlnputQueue : DeletedlnputList;

AddedReadyQueue : AddedReadyList

;

Schedule : ScheduleList;

Calendar : CalendarList;

FinalSchedule : ScheduleList;

26. Print all the records in the Step list.

{ Specification of procedures visible from schedtools 26)
=

procedure PrintAllStepRecords (L : in InputList);

See also sections 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, and 39.

This code is used in section 12.

27. Print all the records in the Step fist.

(Specification of procedures visible from schedtools 26)
+=

procedure PrintAUStepRecords (L : in ReadyList);

28. Print all the records in the Schedule list.

(Specification of procedures visible from schedtools 26) +=
procedure PrintAUScheduleRecords (L : in ScheduleList);

25

SCHEDULE TOOLS APPENDIX A §29

29. Print all the records in the Schedule list.

(Specification of procedures visible from schedtools 26)
+=

procedure PrintAUCalendarRecords(L : in out ScheduleList);

30. Print all the records in the Schedule list.

{ Specification of procedures visible from schedtools 26
)
+=

procedure SaveAUScheduleRecords (L : in out ScheduleList);

31. Creating new step from a file and linking it to the step list.

(Specification of procedures visible from schedtools 26) +=
procedure CreateNewStepList(L : in out InputList);

32.

(Specification of procedures visible from schedtools 26)
+=

Procedure CreateDeadlineFirstSchedule (mr : in out natural; num-developers : natural);

33.

(Specification of types and variables visible from schedtools 23) +=
type DesignerMatrix is array (POSITIVE range <>) of natural;

34. Creating a new schedule record

(Specification of procedures visible from schedtools 26) +=
procedure CreateScheduleRecord(Rec : out ScheduleRecord; S-ID : in

natural; TIME1 : in natural; TIME2 : in natural; S-LEVEL : in

cap-map.map; Developer : in ustring);

35.

(Specification of procedures visible from schedtools 26)
+-=

procedure LevelMinmum(MATRIX : in DesignerMatrix; LEVEL : in

cap-map.map; J : in out natural);

36. checking the in^degree of the successors of the assigned step. This works with

deadline heuristic

(Specification of procedures visible from schedtools 26) +=
procedure CheckInDegree(Rec : in StepRecord; Queue : in out ReadyList;InList : in

out InputList
; finish-t : in natural);

37.

(Specification of procedures visible from schedtools 26) +=
procedure StronglyFeasible [Queue : in out ReadyList ; MATRIX : in

DesignerMatrix; FEASIBLE : in out boolean);

26

§38 APPENDIX A SCHEDULE TOOLS

38. Assign a step to a designer according to its deadline and its expertise level

(Specification of procedures visible from schedtools 26) -f-=

procedure AssignStep (Current : StepRecord ; MATRIX : in out DesignerMatrix]

Sch : in out ScheduleList] Finish : in out natural] FEAS : out boolean)]

39.

(Specification of procedures visible from schedtools 26) -f-=

procedure BranchAndBound(S-List : in out InputList; R- Queue : in out ReadyList]

FSched : in out ScheduleList] MATRIX : in DesignerMatrix; Found : in out

BOOLEAN);

27

SCHEDULE TOOLS BODY APPENDIX A §40

40. Schedule Tools Body.

41. Global variable used to identify different tasks.

(Variables local to schedtools 41)
=

StepID : natural <— 1;

data-file , data2-file : file-type

;

FOUND : boolean +- FALSE;

FEASIBLE : boolean <- TRUE;

debug : boolean <— false;

debug2 : boolean <— false;

StartTime : Time;

dailyhours : WorkHours <— (ConvertHoursToDuration(S), ConvertHoursToDuration(8),

ConvertHours ToDuration (8), ConvertHours ToDuration (8),

ConvertHours ToDuration (8));

NRaD : boolean <— false;

See also sections 55 and 56.

This code is used in section 12.

42. Print all the records in the STEP list.

(Procedures and Tasks in schedtools 42)
=

procedure PrintAUStepRecords {L : in InputList) is

begin

StepRecordHeading; Display (L);

end PrintAUStepRecords

;

See also sections 43, 44, 45, 47, 49, 52, 53, 57, 58, 62, 66, 70, and 71.

This code is used in section 12.

43. Print all the records in the STEP list.

(Procedures and Tasks in schedtools 42)
+=

procedure PrintAllStepRecords (L : in ReadyList) is

begin

StepRecordHeading ; Display (L);

end PrintAUStepRecords

;

44. Print all the records in the STEP list.

(Procedures and Tasks in schedtools 42)
+=

procedure PrintAUScheduleRecords (L : in ScheduleList) is

begin
ScheduleRecordHeading ; Display (L);

end PrintAUScheduleRecords;

28

§45 APPENDIX A SCHEDULE TOOLS BODY

45. Print all the records in the STEP list.

{ Procedures and Tasks in schedtools 42) +=
procedure SaveAUScheduleRecords (L : in out ScheduleList) is

input : Ustring;

size : natural;

cur : ScheduleRecord

;

begin

(Get output file name 46
)

put-line ("Openinguyouruoutputufile. "); create (data2-file , out_file , S(input));

size <— ListSize(L); rewind(L)\

for i £ 1 . . size loop

if i = 1 then
getCurrent(L, cur);

else

getNext(L, cur)]

end if;

SaveScheduleRecord (cur , data2-file);

end loop;

end SaveAUScheduleRecords
;

46.

(Get output file name 46)
=

puL/me(MPleaseuEnteruOutputuFile|jName: u "); getJine (input);

This code is used in section 45.

47. Print all the records in the STEP list.

(Procedures and Tasks in schedtools 42) +=
procedure PrintAUCalendarRecords (L : in out ScheduleList) is

size : natural;

cur : ScheduleRecord

;

cal : CalendarRecord

;

dur : Duration;

begin
CalendarRecordHeading

;

(Convert ScheduleList to CalendarList 48) Display (Calendar);

end PrintAUCalendarRecords
;

29

SCHEDULE TOOLS BODY APPENDIX A §48

48.

(Convert ScheduleList to CalendarList 48)
=

MakeEmpty(Calendar); size *— ListSize(L); Rewind(L);

for i £ 1 . . size loop

if i = 1 then
GetCurrent(L, cur)]

else

GetNext(L, cur);

end if;

(fur <— ConvertHoursToDuration(cur.StartTime);

cal.StartTime <— DurationTo Calendar Time (StartTime , dailyhours , dur , NRaD);

rfur <— ConvertHoursToDuration(cur.FinishTime);

cal .Finishtime <— Durationto CalendarTime (StartTime , dailyhours , rfwr, NRaD);
cal.StepId <— cur.StepId; cal.Designer <— cur .Designer]

cap_map .assign(cal .StepLevel, cur .StepLevel); InsertlnOrder (Calendar , cal);

end loop;

This code is used in section 47.

30

§49 APPENDIX A SCHEDULE TOOLS BODY

49. Creating new step from a file.

{ Procedures and Tasks in schedtools 42
)
+=

procedure CreateNewStepList (L : in out InputList) is

sr : StepRecord

;

input : Ustring;
do. alternate : boolean <— false;

(Variables local to CreateNewStepList 51

)

begin

MakeEmpty(L);

StepId <— 1;

putJine ("PleaseuEnteruuINPUTuFILEuNAMEu");

get-line (input);

puL/me("Openinguyourudataufileu M
);

open (data-file , in.file , S(input))

;

while -iend-of-file (data,file) loop

sr. StepId <— StepID;

if do. alternate then
DeadTime <— get.date (data.file);

else

nat-io .get(data.file , sr .Deadline);

end if;

nat.io .get (data.file , sr .Priority);

naLio .get (data-file , sr .EstimatedDuration);

if do-alternate then
Earlytime <— get.date (data-file);

else

nat-io .get (data.file , sr .EarliestStartTime);

end if;

getf.set (data.file , sr .Predecessors);

g etf.set (data.file , sr .Successors);

declare

yrcap : cap.map.map;

begin

get.capability (data.file
,
yrcap); cap.map .assign (sr .ExpLevel

,
yrcap);

end;

sr.InDegree «— nat.set. size (sr .Predecessors);

if do. alternate then
(Convert calendar times to absolute times 50

)

else

StartTime <- Tz'me_O/(1997,7,3,0.0);

end if;

AddToEnd(L,sr); StepID <- StepID + 1;

end loop;

31

SCHEDULE TOOLS BODY APPENDIX A §49

CLOSE(data-file);

end CreateNewStepList;

50.

(Convert calendar times to absolute times 50)
=

if StepID = 1 then
StartTime <— Earlytime;

end if;

dur <— CalendarTime ToDuration (StartTime , dailyhours , Deadtime , NRaD);

sr.Deadline <— ConvertDurationToHours(dur);

dur <— CalendarTime ToDuration (StartTime , dailyhours , EarlyTime , NRaD);

sr .EarliestStartTime *— ConvertDurationToHours(dur);

This code is used in section 49.

51.

(Variables local to CreateNewStepList 51 } =
<fur : Duration;

EarlyTime
,
DeadTime : Time;

This code is used in section 49.

52.

(Procedures and Tasks in schedtools 42) +=
procedure RelnitializeMatrix (MATRIX : in out DesignerMatrix) is

begin
for i G 1 . . matrix' length loop

matriz(t) <— 0;

end loop;

end RelnitializeMatrix

;

32

§53 APPENDIX A SCHEDULE TOOLS BODY

53. Creating new step.

(Procedures and Tasks in schedtools 42)
+=

Procedure CreateDeadlineFirstSchedule(mr : in out natural ; num_developers : natural)

is Current : StepRecord;

Feasible : boolean «— True;

eat : designermatrix (1 .. num^ developers);

begin
Kntr <— ListSize (StepList); (Initialize the lists for intensive list-processing 54)

Rewind (StepList); GetCurrent(StepList , Current)]

for i E 1 . . Kntr loop

if Current .InDegree = then

DeleteCurrent(StepList); InsertlnOrder (ReadyQueue , Current);

if i < Kntr then
GetCurrent(StepList , Current);

end if;

else

if i < .fifra^r then

G etNext (StepList , Current);

end if;

end if;

end loop;

Feasible <— True; Found <— False; RelnitializeMatrix(EAT);

StronglyFeasible (ReadyQueue , EAT , Feasible);

if Feasible then
puLline ("CallinguBranchAndBounduRoTitine. ");

BranchAndBound (StepList , ReadyQueue , Schedule , EAT , FOUND);
puLline

(

"ReturnedufromuBranchAndBounduRoutine .
"

);

end if;

if ^FOUND then
puLline

(
M SORRYuTHEREuISuNOuFEASIBLEuSCHEDULE

M
);

end if;

mr <— max-recursion

;

end CreateDeadlineFirstSchedule

;

54. If this is not the first time this routine is called then it behooves us to clean up the

old lists from previous processing. If this is the first time, no harm done.

{ Initialize the lists for intensive list-processing 54)
=

MakeEmpty (ReadyQueue); MakeEmpty (Schedule); MakeEmpty (DeletedReady Queue);

MakeEmpty(DeletedlnputQueue); MakeEmpty (AddedReady Queue);

This code is used in section 53.

33

SCHEDULE TOOLS BODY APPENDIX A §55

55.

(Variables local to schedtools 41) +=
kntr : integer <— 0;

56.

(Variables local to schedtools 41) +=
counter : natural <— 0; ®{.Used for tracking backtracking <8}

57. Creating a new schedule record

(Procedures and Tasks in schedtools 42) +=
procedure CreateScheduleRecord(Rec : out ScheduleRecord; S-ID : in

natural] TIME1 : in natural; TIME2 : in natural; S-LEVEL : in

cap-map .map ; Developer : in ustring) is

begin

Rec.StepID <- S_ID; Rec.StartTime <- TIME1; Rec .FinishTime <- TIME2;
Rec.Designer <— Developer; cap_map .assign(Rec .StepLevel, S-LEVEL);

end CreateScheduleRecord

;

58.

(Procedures and Tasks in schedtools 42)
+=

procedure LevelMinmum(MATRIX : in DesignerMatrix; LEVEL : in

cap-map .map ; J : in out natural) is

rnin : naturaZ;

n : natural;

begin

j <— 0; rnin «— natural' last; n *— 1;

if is_ qualified (level ,n) then

J «— 1; nim «— ma£riz(l);

end if;

for m G 2 . . matrix' length loop

if ma£riz(m) < mm then
if is_ qualified (level ,m) then
mm <— matrix (m); j *— m;

end if;

end if;

end loop;

if j = then
raise noqualifieddevelopers

;

end if;

end levelminmum;

34

§59 APPENDIX A SCHEDULE TOOLS BODY

59.

(Specification of types and variables visible from schedtools 23)
+=

noqualifieddevelopers : exception;

35

CHECK IN DEGREE APPENDIX A §60

60. Check In Degree. Checking the in^degree of the successors of the assigned step.

This works with deadline heuristic

61. Presently changes the start-time of any successors. Will need to modify when I

convert the updates from a recursive local variable to a global one. Also deletes a scheduled

task from the INPUT-LIST . Then it updates the queue of "ready" tasks.

^TX
Precedence Graph

36

§62 APPENDIX A CHECK IN DEGREE

62. This procedure loops through the entire InputList finding the successors of Rec.

Once found it updates the EarliestStartTime . Also, if the InDegree reaches zero this

means it no longer is waiting on a predessor to be scheduled, it is "ready" to be sceduled

—

that is, moved from the InputList to the ReadyQueue

.

Note: It appears that the Predecessor field of the StepRecord is ignored. Only the

successor field is used.

(Procedures and Tasks in schedtools 42) +=
procedure ChecklnD egree(Rec : in StepRecord; Queue : in out ReadyList ; InList : in

out InputList
;
finish-t : in natural) is

Current : StepRecord;

t : natset .set <— Rec. Successors;

k, kntr : natural;

FOUND : boolean <- FALSE;

deleted : boolean <— false;

begin

if natset .size(t) ^ then

Rewind (InList); kntr <— ListSize (InList); GetCurrent(InList , Current);

for i € 1 . . kntr loop

k <— Current .Stepld;

if natset.member (k,t) then
if Current.EarliestStartTime < finish-t then

Current .EarliestStarttime *— finishA;

end if;

Current.InDegree <— Current .InDegree — 1;

if Current.InDegree — then

(Move record from input list to ready list 64

)

else

Update Current (InList , Current);

end if;

end if;

(Get next record 63

)

end loop;

end if;

end ChecklnDegree;

37

CHECK IN DEGREE APPENDIX A §63

63.

(Get next record 63)
=

if i < kntr then
if deleted then

GetCurrent(InList, Current); deleted <— false;

else

GetNext(InList , Current);

end if;

end if;

This code is used in section 62.

64.

(Move record from input list to ready list 64)
=

Delete Current(InList); Current .recursionlevel <— recursion-level;

InsertlnOrder (Queue, Current); InsertlnOrder (AddedReadyQueue , Current);

Current.InDegree <— Current .Indegree + 1;

InsertlnOrder (DeletedlnputQueue, Current); deleted <— true;

if debug then
puL/me("MovinguRecordutouDeletedInputQueue."); Display (DeletedlnputQueue);

end if;

This code is used in section 62.

38

§65 APPENDIX A STRONGFEASIBLE

65. StrongFeasible. Checking the feasibility of the schedule with each step in the

ready queue.

39

STRONGFEASIBLE APPENDIX A §66

66. Definition: A partial feasible schedule is said to be strongly-feasible if all the

schedules obtained by extending the current schedule with any one of the remaining tasks

are also feasible. Thus, if a partial feasible schedule is found not to be strongle-feasible

because, say, task T misses its deadline when the current schedule is extended by T, then

it is appropriate to stop the search since none of the future extensions involving task T
will meet its deadline. In this case, a set of tasks can not be scheduled given the current

partial schedule. (In the terminology of branch-and-bound techniques, the search path

represented by the current partial schedule is bound since it will not lead to a feasible

complete schedule.)

(Procedures and Tasks in schedtools 42) +=
procedure StronglyFeasible {Queue : in out ReadyList; MATRIX : in

DesignerMatrix; feasible : in out boolean) is

temp : natural;

J : natural <— 1;

L : natural <— 1;

min : natural <— 0;

kntr : natural <— 0;

myonum : natural <— 0;

Current : StepRecord]

MyopicNum : constant natural <— 7;

begin

if debug then
puLZme("StronglyFeasible>uStart u ");

end if;

feasible <— True] kntr <— ListSize {Queue); (Compute myopic number 67)

Rewind
(
Queue);

for t£ 1 .. myonum loop

if ->feasible then
exit;

end if;

if i = 1 then
G etCurrent

(
Queue , Current)]

else

GetNext{Queue , Current);

end if;

LevelMinmum(MATRIX , Current.ExpLevel, J); min «- MATRIX (J);

(Debug code set 1 68
)

if min > Current.EarliestStartTime then
temp <— min;

else

temp «— Current .EarliestStarttime;

end if;

temp «— temp + Current.EstimatedDuration; (Debug code set 2 69)

40

§66 APPENDIX A STRONGFEASIBLE

if temp > Current .Deadline then

feasible <— False;

end if;

end loop;

end StronglyFeasible
;

67. Without this tidbit of code, the algorithm goes from order n to order n2
.

(Compute myopic number 67)
=

if kntr > Myopic-Num then

myonum <— Myopic-Num;

else

myonum <— kntr;

end if;

This code is used in section 66.

68.

(Debug code set 1 68)
=

if debug then
pu2("StronglyFeasible>uIdu=u

n
); naLio .put (Current. Stepld , 1);

pw<("uuminu=u "); naLio .put (min , 2); put(n
. uCurrent . EarliestStaxtTimeuu=u "

);

naLio .put (Current .EarliestStartTime ,2); putJine(" .u")?

end if;

This code is used in section 66.

69.

(Debug code set 2 69)
=

if debug then

pui("StronglyFeasible>u
M

); naLio.put (i, 2); put (" . utempu=u
M

);

naLio .put (temp ,2); put (" . uuCurrent .Deadlineu=u ");

naLio .put(Current .Deadline ,2); puLline(" . u ")',

end if;

This code is used in section 66.

41

ASSIGNSTEP APPENDIX A §70

70. AssignStep. Assign a step to a designer according to its deadline and its expertise

level: BRANCH AND BOUND CASE

(Procedures and Tasks in schedtools 42)
+=

procedure AssignStep (Current : in StepRecord; MATRIX : in out

DesignerMatrix; Sch : in out ScheduleList; Finish : in out natural] FEAS : out

boolean) is

J : natural;

MIN : natural]

temp : natural <— 0;

tempi : StepRecord <— Current;

Dummy : ScheduleRecord
;

begin

LevelMinmum(MATRIX , Current.ExpLevel, J); MIN <- MATRIX (J);

if MIN < Current .EarliestStartTime then
temp <— Current .EarliestStartTime; finish <— temp + Current .EstimatedDuration;

if finish > Current.DEADLINE then
FEAS <- FALSE;

else

FEAS <- TRUE; MATRIX (J) <- finish; CreateScheduleRecord (Dummy,
tempi .StepID , temp, finish, tempi .ExpLevel

,
geLdeveloper^name (j));

AddToEnd (Sch, Dummy
)

;

end if;

else

temp <— MIN; finish <— temp -f Current.EstimatedDuration;

if finish > Current.Deadline then
1^45 <- FALSE;

else

F£4S <- TRUE; MATRIX (J) ^finish; CreateScheduleRecord (Dummy,
tempi .StepID , temp, finish, tempi .ExpLevel

,
geLdeveloper^name (j));

AddToEnd (Sch , Dummy
)

;

end if;

end if;

end AssignStep;

42

§71 APPENDIX A BRANCH AND BOUND
71. Branch And Bound.

(Procedures and Tasks in schedtools 42)
+=

procedure BranchAndBound (S-List : in out InputList; R-Queue : in out ReadyList

;

FSched : in out ScheduleList; MATRIX : in DesignerMatrix; Found : in out

BOOLEAN) is

(Variables local to BranchAndBound 73
)

begin

(Update some recursion stuff 72
)

if IsEmpty (iL Queue) then
if do-verbose then

ScheduleRecordHeading ; PrintAUScheduleRecords (FSched); newJine;

end if;

put
(

MBacktrackingu :=U
M

); tesLio-pkg .put (counter); newJine

;

®{.Copy(F-Sched,FinalSchedule); <a"}Found <— True;

if debug then
put-line ("Founduauvaliduschedule . ");

end if;

elsif -ifound then
OrigSize <— ListSize(R^Queue);

for i INI . . OrigSize loop

(Update backtrack counter 74
)

(Copy linked lists and the designer matrix onto the stack 80

)

(Get appropriate iL Queue record 76
)

if debug then
pM<(MBranchAndBouiid>

l
jCiirreiitu=u "); DisplayStepRecord

(
Current);

put ("BranchAndBound>uList Size (R_Queue) uisu
M

);

naLio .put (ListSize (iL Queue)); putJine (" . u ");

end if;

AssignStep (Current , MAT , FSched , FinishTime , Feasible);

ChecklnDegree
(
Current , iL Queue , S-List , FinishTime);

(Delete appropriate iL Qweue record 78
)

if debug then
puLline ("Afteruassigningustep, ubutubeforeutestinguforuFeasibility : '|);

PrintAUStepRecords (iL Queue); PrintAUScheduleRecords(F^Sched);

end if;

StronglyFeasible (iL Queue , MAT , Feasiblel);

if Feasiblel then

BranchAndBound (S-List , R_Queue , FSched , MAT , Found);

(Update recursion stuff again 79
)

end if;

(Free up local linked lists 83
)

if Found then
exit;

43

BRANCH AND BOUND APPENDIX A §71

end if;

end loop;

if recursion-level < 1 then

if debug then
j)ML/me("BrajichAndBound>uFinisheduunwindingutheustack

.

");

end if;

end if;

end if;

end BranchAndBound

;

72.

(Update some recursion stuff 72)
=

if (diag-sched V diagstep V diag-ready-queue) then

do-verbose *— true;

end if;

recursion-level <— recursion-level + 1;

if recursion- lev el > max-recursion then
max-recursion +— recursion-level;

end if;

This code is used in section 71.

73.

(Variables local to BranchAndBound 73) =
do-verbose : boolean <— false;

OrigSize : natural;

See also sections 75, 77, 82, 85, 88, and 90.

This code is used in section 71.

74.

(Update backtrack counter 74) =
if i ^ 1 then

counter <— counter + 1;

end if;

TotSize <— ListSize(R_ Queue) -f ListSize(S-List) + ListSize (F-Sched);

if counter > (FeasFactor * TotSize) then
raise NoFeasibleScheduleFound

;

end if;

This code is used in section 71.

75.

(Variables local to BranchAndBound 73) +=
TotSize : natural;

44

§76 APPENDIX A BRANCH AND BOUND
76.

(Get appropriate R-Queue record 76) =
appropriate «— i — (OrigSize — ListSize (R-Queue));

if debug then
pu<("BranchAndBoinid>uGettingunumberLi"); naLio .put (Appropriate ,1);

pu2(" urecorduinuReadyuQueu.e. "); put(n (iu=u
n
); naLio .put(i, 1);

pu£(" , u0rigsizeu=u
M
); naLio .put (Origsize , 1); puLline(n

) . ");

end if;

GetNth(R- Queue , appropriate , Current);

This code is used in section 71.

77.

(Variables local to BranchAndBound 73) +=
appropriate : natural;

78.

(Delete appropriate R-Queue record 78) =

if debug then

putJine
(
"Deletinguappropriat

e

uR_Queueurecord .

");

end if;

GetNth(R- Queue , appropriate , Current); Delete Current(R- Queue);

Current .RecursionLev el <— Recursion. Level;

InsertlnOrder (DeletedReadyQueue , Current);

if debug then
puLline ("FinishedudeletinguappropriateuR_Queueurecord. ");

end if;

This code is used in section 71.

79.

(Update recursion stuff again 79) =
recursion-level «— recursion-level — 1;

This code is used in section 71.

80. As far as I can see the step list is never modified, so why is it copied? Aha! It is

modified in procedure check-in-degree

.

(Copy linked lists and the designer matrix onto the stack 80)
=

(Do diagnostics 81

)

<&{.Copy(S-List,InList); Copy(R-Queue, Queue); Copy(F-Sched, Sched);

^yMAT *- MATRIX;
This code is used in section 71.

45

BRANCH AND BOUND APPENDIX A §81

81.

(Do diagnostics 81)
=

if do-verbose then
puL/me(M=== M

);

pti<("Recursionuleveluisu "); naLio .put (recursion-level); putAine(" . u ")j

end if;

if diagstep then
PrintAllStepRecords (S-List);

end if;

if diag- ready_ queue then

PrintAllStepRecords (R_QUEUE);
end if;

if diagsched then
PrintAUScheduleRecords (Fsched);

end if;

This code is used in section 80.

82.

(Variables local to BranchAndBound 73) +=
diagstep : boolean <— false]

diag^ready- queue : boolean <— false;

diagsched : boolean «— false;

83.

(Free up local linked lists 83) =
Q{.MakeEmpty(InList); MakeEmpty (Queue); MakeEmpty(Sched);

G}(Restore R-Queue 84)

{ Restore S-List 86

)

(Restore FSched 89
)

This code is used in section 71.

46

§84 APPENDIX A BRANCH AND BOUND
84.

(Restore R-Queue 84) =
if -'Found then

if debug then
pML/me(MRestoringuR_Queue. ");

end if;

Dsize <— ListSize(AddedReady Queue);

if Dsize ^ then
GetNth(AddedReady Queue , Dsize , Current);

while Current .recursionlev el — recursion-level loop

Delete Current(AddedReadyQueue);

DeleteMatching(R- Queue , Current, Success);

if debug then
^M^'Deletingurecordu"); puL/ine("FromuReadyQueue. ");

DisplayStepRecord
(
Current);

end if;

if —'Success then
put-Line ("Didunotufindumatchingurecord! ");

end if;

Dsize <— ListSize(AddedReadyQueue);

if Dsize — then
exit;

else

GetNth(AddedReadyQueue , Dsize , Current);

end if;

end loop;

end if;

Dsize <— ListSize(DeletedReadyQueue);

GetNth(DeletedReadyQueue , Dsize , Current); Delete Current(DeletedReadyQueue);

InsertInOrder(R_ Queue, Current); (Reset InDegree 87)

if debug then
puL/me(MFinishedurestoringuR_Queue. ");

end if;

end if;

This code is used in section 83.

85.

(Variables local to BranchAndBound 73) +=
Success : boolean

;

47

BRANCH AND BOUND APPENDIX A §86

86.

(Restore S-List 86)
=

if -iFound then
Dsize <— ListSize(DeletedlnputQueue)]

if Dsize ^ then
GetNth(DeletedInputQueue

,
Dsize , Current)]

while Current .recursionlevel = recursion-level loop
Delete Current(DeletedlnputQueue)] InsertlnOrder (S-List , Current)]

(Reset InDegree 87)

Dsize <r— ListSize(DeletedlnputQueue)]

if Dsize ^ then
GetNth(DeletedInputQueue , Dsize , Current);

else

exit;

end if;

end loop;

end if;

end if;

This code is used in section 83.

48

§87 appendix A BRANCH AND BOUND
87.

(Reset InDegree 87) =
if debug then
pu<("ResettinguInDegreeuforusuccessorsuof u : u "); DisplayStepRecord (Current);

end if;

Dsize <— ListSize(S-List); t «— Current .Successors ; Rewind (S- List);

for i £ 1 . . .Djize loop

if i — 1 then
GetCurrent(S-List , Current);

else

GetNext(S-List , Current);

end if;

fc <— Current .Stepld;

if debug then

pu£ ("Stepldu=u "
); pu£ (fc); pu£ (

" . uuNowucheckinguforumembership
.

");

end if;

if naLset .member (k,t) then
if debug then

puLline(" (Member) "); DisplayStepRecord
(
Current);

end if;

Current.InDegree <— Current.InDegree +1; Update Current (S-List, Current);

if debug then
DisplayStepRecord

(
Current);

end if;

else

if debug then
put-line (" (NotuMember) ");

end if;

end if;

end loop;

This code is used in sections 84 and 86.

88.

(Variables local to BranchAndBound 73) +=
< : natset .set;

k : natural;

49

BRANCH AND BOUND APPENDIX A §89

89.

(Restore F.Sched 89) =
if -iFound then

if debug then
jmL/ine ("RestoringuF_Sched. ");

end if;

Dsize <— ListSize(FSched); GetNth(F-Sched, Dsize, D Current);

DeleteCurrent(F-Sched);

if debug then
puLline

(

MFinishedurestoringuF_Sched. ");

end if;

end if;

This code is used in section 83.

90.

(Variables local to BranchAndBound 73)
+=

InList : InputList;

D Current : ScheduleRecord
;

®{.Queue : ReadyList;

Sched : ScheduleList;

<8}Dsize : natural]

Current : StepRecord]

MAT : DesignerMatrix{\ .. matrix' length);

Feasible : BOOLEAN «- TRUE;
Feasiblel : BOOLEAN <- TRUE;
FinishTime : natural <— 0;

50

§91 APPENDIX A SYSTEM-DEPENDENT CHANGES

91. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

92. I enclose the RCS Keywords here as well, since that is how I keep track of versions.

$RCSfile: schedtools.aweb,v

$Revision: 1.5

$Date: 1997/08/24 22:27:29

$Author: evansjr

$Id: schedtools.aweb,v 1.5 1997/08/24 22:27:29 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

51

INDEX APPENDIX A §93

93. Index. Here is a cross-reference table for the schedtools package. All modules

in which an identifier is used are listed with that identifier, except that reserved words are

indexed only when they appear in format definitions, and the appearances of identifiers

in module names are not indexed. Underlined entries of subprograms and packages corre-

spond to sections where this entity is specified, whereas entries in italic type correspond

to the section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 12.

AddedReadyList : 20, 25.

AddedReadyListl : 20 .

AddedReadyQueue : 25, 54, 64, 84.

AddToEnd: 49, 70.

appropriate : 76-78.

Appropriate : 76.

assign: 48-49, 57.

AssignStep: 38, 70, 71.

backtracking: 56.

boolean: 37-38, 41, 49, 53, 62, 66, 70,

73, 82, 85.

BOOLEAN: 39, 71, 90.

BranchAndBound : 17, 39, 53, 71.

cal: 47-48.

Calendar: 25, 47-48.

calendar: 12.

CalendarList: 22, 25.

CalendarListl : 22 .

CalendarRecord : 22, 47.

Calendar'RecordHeading : 47.

Calendar'TimeToDuration: 50.

calyr: 12.

cap_map: 34-35, 48-49, 57-58.

capability : 12.

checkAn_degree: 80.

ChecklnDegree: 36, 62, 71.

CLOSE: 49.

CompareDeadline : 18.

ComparelD : 16.

CompareRecursionLevel: 17, 19-20.

CompareStartTime: 21-22.

ConvertDurationToHours : 50.

ConvertHoursToDuration: 41, 48.

Copy: 71, 80.

counter: 56, 71, 74.

create : 45.

CreateDeadlineFirstSchedule: 32, 53.

CreateNewStepList: 31, 49 .

CreateScheduleRecord : 34, 57, 70.

cur: 45, 47-48.

Current: 38, 53, 62-64, 66, 68-71, 76,

78, 84, 86-87, 90.

dailyhours: 41, 48, 50.

data-file: 41, 49.

data2.file: 41, 45.

D Current: 89-90.

Deadline: 18, 21-22, 49-50, 66, 69-70.

DEADLINE: 70.

DeadTime: 49, 51.

Deadtime : 50.

debug: 41, 64, 66, 68-69, 71, 76, 78,

84, 87, 89.

debugt: 41.

DeleteCurrent: 53, 64, 78, 84, 86, 89.

deleted: 62-64.

DeletedlnputList: 17, 25.

DeletedlnputListl : 17 .

Deletedlnput Queue: 25, 54, 64, 86.

DeletedReadyList: 19, 25.

DeletedReadyListl : 19.

DeletedReadyQueue: 25, 54, 78, 84.

DeleteMatching: 84.

Designer: 48, 57.

DesignerMatrix: 33, 35, 37-39, 52, 58,

66, 70-71, 90.

designermatrix : 53.

Developer: 34, 57.

diag_ready_ queue: 72, 81-82.

diag.sched: 72, 81-82.

52

§93 APPENDIX A INDEX

diagstep: 72, 81-82.

Display: 42-44, 47, 64.

DisplayCalendarRecord: 22.

DisplayElement: 16-22.

DisplayScheduleRecord: 21.

DisplayStepRecord : 16-20, 71, 84, 87.

do-alternate: 49.

do-verbose: 71—73, 81.

Dsize: 84, 86-87, 89-90.

Dummy: 70.

dur: 47-48, 50-51.

Duration: 47, 51.

DurationTo Calendar Time: 48.

Durationto Calendar Time: 48.

EarliestStarttime: 62, 66.

EarliestStartTime: 49-50, 62, 66, 68, 70.

Early Time: 50-51.

Earlytime: 49-50.

ea< : 53.

£4T: 53.

ElementType: 16-22.

end.of-fi.le: 49.

EstimatedDuration: 49, 66, 70.

Exception: 24.

ExpLevel: 49, 66, 70.

FSched: 39, 71, 74, 80, 89.

F.sched: 81.

FALSE: 41, 62, 70.

False: 53, 66.

/a/ae: 41, 49, 62-63, 73, 82.

F£M5: 38, 70.

FeasFactor: 24, 74.

feasible : 66.

FEASIBLE: 37, 41.

Feasible: 53, 71, 90.

Feasible 1: 71, 90.

file-type: 41.

FinalSchedule: 25, 71.

Finish: 38, 70.

finish: 70.

finish-t: 36, 62.

FinishTime: 48, 57, 71, 90.

Finishtime: 48.

found: 71.

FOUND: 41, 53, 62.

Foumf: 39, 53, 71, 84, 86, 89.

Generic-list: 16-22.

Generic-List: 12.

generic-map-pkg: 12.

genericset-pkg: 12.

$e<: 49.

g et- capability : 49.

get-date: 49.

get-developer-name: 70.

getAine: 46, 49.

GetCurrent: 48, 53, 62-63, 66, 87.

getCurrent: 45.

getfset: 49.

getNext: 45.

GetNext: 48, 53, 63, 66, 87.

Ge*M/i: 76, 78, 84, 86, 89.

i: 45, 48, 52, 53, 62, 66, 71, 87.

Z/\T: 71.

in-degree: 36, 60.

in-file: 49.

InDegree: 49, 53, 62, 64, 87.

Indegree : 64.

7n£w*: 36, 62-64, 80, 83, 90.

input: 45-46, 49.

INPUT-LIST: 61.

InputList: 16, 25-26, 31, 36, 39, 42,

49, 62, 71, 90.

InputListl : 16.

InsertlnOrder : 48, 53, 64, 78, 84, 86.

integer: 55.

is-qualified: 58.

IsEmpty: 71.

IsEqual: 18.

tfTi^r: 53.

ifen*r: 55, 62-63, 66-67.

/asf: 58.

fentfta: 52, 58, 90.

/eve/: 58.

LEVEL: 35, 58.

LevelMinmum: 35, 58, 66, 70.

levelminmum: 58.

53

INDEX APPENDIX A §93

List: 16-22.

ListSize: 45, 48, 53, 62, 66, 71, 74, 76,

84, 86-87, 89.

m: 58.

MakeEmpty: 48-49, 54, 83.

map: 34-35, 49, 57-58.

MAT: 71, 80, 90.

MATRIX: 35, 37-39, 52, 58, 66, 70-

71, 80.

matrix: 52, 58, 90.

max-recursion : 23, 53, 72.

member: 62, 87.

min: 58, 66, 68.

MIN: 70.

mr: 32, 53.

myonum: 66-67.

MyopicNum: 66-67.

naUo: 49, 68-69, 71, 76, 81.

naLset: 49, 62, 87-88.

natural: 23-24, 32-36, 38, 41, 45, 47, 53,

56-58, 62, 66, 70, 73, 75, 77, 88, 90.

new-line: 71.

NoFeasibleScheduleFound: 24, 74.

noqualifieddev elopers : 58-59.

NRaD: 41, 48, 50.

num-developers: 32, 53.

open: 49.

OrigSize: 71, 73, 76.

Origsize : 76.

out-file: 45.

POSITIVE: 33.

Predecessor : 62.

Predecessors: 49.

PTintAllCalendarRecords: 29, 47.

PrintAUScheduleRecords : 28, 44, 71, 81.

PrintAUStepRecords: 26, 27, 42, 43,

71, 81.

Priority: 49.

Procedure : 32, 53.

pu*: 68-69, 71, 76, 81, 84, 87.

put-Line : 66, 84.

put-line: 45-46, 49, 53, 64, 68-69, 71,

76, 78, 81, 84, 87, 89.

Queue: 36-37,62,64,66,80,83,90.

R-QUEUE: 81.

R.Queue: 39,71,74,76,78,80,84.

ReadyList: 18, 25, 27, 36-37, 39, 43,

62, 66, 71, 90.

ReadyListl : 18 .

ReadyQueue: 18-22,25,53-54,62.

Rec: 34, 36, 57, 62.

recursionJevel: 23, 64, 71-72, 79, 81,

84, 86.

Recursion-Level: 78.

recursionlevel: 64, 84, 86.

RecursionLevel: 19-20, 78.

ReinitializeMatrix : 52, 53.

Rewind: 48, 53, 62, 66, 87.

rewind: 45.

SJD: 34, 57.

S-LEVEL: 34, 57.

S-List: 39, 71, 74, 80-81, 86-87.

SaveAUScheduleRecords : 30, 45 .

SaveScheduleRecord : 45.

Sch: 38, 70.

Sched: 80, 83, 90.

SchedPrims: 12.

schedtools: 12.

schedtools.adb : 12.

schedtools. ads : 12.

Schedule: 25, 53-54.

ScheduleList: 21, 25, 28-30, 38-39,

44-45, 47, 70-71, 90.

ScheduleListl : 21.

ScheduleRecord : 21 , 34, 45, 47, 57, 70, 90.

ScheduleRecordHeading : 44, 71.

set: 62, 88.

size: 45, 47-49, 62.

sr: 49-50.

StartTime: 41, 48-50, 57.

StepID: 41, 49-50, 57, 70.

Stepld: 48-49, 62, 68, 87.

StepLevel: 48, 57.

StepList: 25, 53.

StepRecord: 16-22, 36, 38, 49, 53, 62,

66, 70, 90.

54

§93 APPENDIX A INDEX

StepRecordHeading : 42-43.

StronglyFeasible: 37, 53, 66, 71.

Success : 84-85.

Successors : 49, 62, 87.

system dependencies: 91.

temp: 66, 69-70.

tempi : 70.

tesLio-pkg: 12, 71.

TexUO: 12.

Time: 41, 51.

Time.Of: 49.

TIME1 : 34, 57.

TIME2: 34, 57.

TotSize : 74-75.

tracking : 56.

*rue: 64, 72.

TRUE: 41, 70, 90.

True: 53, 66, 71.

Update Current: 62, 87.

Use: 12.

Used: 56.

ustring: 34, 57.

Ustring: 45, 49.

Ustrings : 12.

ustrings: 12.

WorfciZowrj : 41.

yrcap : 49.

55

NAMES OF THE SECTIONS APPENDIX A §93

Compute myopic number 67) Used in section 66.

Convert calendar times to absolute times 50) Used in section 49.

Convert ScheduleList to CalendarList 48) Used in section 47.

Copy linked lists and the designer matrix onto the stack 80) Used in section 71.

Debug code set 1 68) Used in section 66.

Debug code set 2 69) Used in section 66.

Delete appropriate R^Queue record 78) Used in section 71.

Do diagnostics 81) Used in section 80.

Free up local linked lists 83) Used in section 71.

Get appropriate R-Queue record 76) Used in section 71.

Get next record 63) Used in section 62.

Get output file name 46) Used in section 45.

Initialize the lists for intensive list-processing 54) Used in section 53.

Instantiate generics 16, 17, 18, 19, 20, 21, 22) Used in section 12.

Move record from input list to ready list 64) Used in section 62.

Package boiler-plate 12) Used in section 10.

Procedures and Tasks in schedtooh 42, 43, 44, 45, 47, 49, 52, 53, 57, 58, 62, 66, 70, 71

)

Used in section 12.

Reset InDegree 87) Used in sections 84 and 86.

Restore FSched 89) Used in section 83.

Restore i?_ Queue 84) Used in section 83.

Restore S-List 86) Used in section 83.

Specification of procedures visible from schedtooh 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38,

39) Used in section 12.

Specification of types and variables visible from schedtooh 23, 24, 25, 33, 59

)

Used in section 12.

Update backtrack counter 74) Used in section 71.

Update recursion stuff again 79) Used in section 71.

Update some recursion stuff 72) Used in section 71.

Variables local to BranchAndBound 73, 75, 77, 82, 85, 88, 90) Used in section 71.

Variables local to CreateNewStepList 51) Used in section 49.

Variables local to schedtooh 41, 55, 56) Used in section 12.

56

APPENDIX B Project Scheduling Tool

Schedule Primitives

[Ada '95—Version 1.0]

(Printed September 6, 1997)

Section Page

Introduction 1 59

Schedule Primitives 5 60

Schedule Primitives Body 24 64

System-dependent changes 39 70

Index 41 71

57

WEB OUTPUT APPENDIX B

This page intentionally left blank

58

§ APPENDIX B INTRODUCTION

1. Introduction. Here is the Ada code for utilites used in Salah Badr's scheduler

program. His program was written by him May 25, 1993. It was translated by John Evans

of NRaD into Donald Knuth's WEB format for literate programming. To compile and link

the code in its present format you will need the Ada version of the WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/hterate/

2. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming. literate. It has information on new tools and Frequently Asked

Questions (FAQs).

3. Since the original AWEB package was written for Ada '83, it does not properly format

new Ada '95 keywords protected and private . We remedy using the web format

commands below.

format protected = procedure

format private = procedure

4. As a way of explanation, each "Module" withing angle brackets (< >) is expanded
somewhere further down in the document. The trailing number you see within the brackets

is where you can find this expansion. This provides a type of PDL (program descriptor

language) for your program and greatly aids modularity and readability. It is also a highly

effective method of top-down programming. The first module here is expanded further

down, and contains most of the structure in standard Ada packages.

(Package boiler-plate 5
)

59

SCHEDULE PRIMITIVES APPENDIX B §5

5. Schedule Primitives.

(Package boiler-plate 5)
=

output to file schedprims.ads

with genericsetjpkg]

with generic..mapjpkg;

with textJo
;

use textJo;

with test-io.pkg;

use test_io_pkg]

with Ada. Calendar]

use Ada. calendar;

with capability;

use capability]

with ustrings]

use ustrings
;

package schedprims is

(Instantiate generics 9)

(Specification of types and variables visible from schedprims 6)

(Specification of procedures visible from schedprims 11

)

end schedprims
;

output to file schedprims .adb

with test-io-pkg;

with calyr]

use calyr]

package body schedprims is

(Variables local to schedprims 25
)

(Procedures and Tasks in schedprims 26

)

end schedprims
;

This code is used in section 4.

60

§6 APPENDIX B SCHEDULE PRIMITIVES

6. I make this a tagged record so that I can extend it in other packages that inherit this

one.

(Specification of types and variables visible from schedprims 6)
=

type StepRecord is tagged record StepID : natural;

Deadline : natural <— 0;

Priority : natural]

EstimatedDuration : natural <— 0;

EarliestStartTime : natural <— 0;

ExpLevel : capjmap .map;

Successors : natset.set;

Predecessors : natset.set;

InDegree : natural «— 0;

RecursionLev el : natural <— 0;

end record;

See also sections 7 and 8.

This code is used in section 5.

7.

(Specification of types and variables visible from schedprims 6) +E

type ScheduleRecord is

record

StepID : natural;

StartTime : natural;

FinishTime : natural;

Designer : ustring;

StepLevel : capjmap .map;

RecursionLev el : natural <— 0;

end record;

8.

(Specification of types and variables visible from schedprims 6) +E

type CalendarRecord is

record

StepID : natural;

StartTime : Time;

FinishTime : Time;

Designer : ustring;

StepLevel : capjmap .map;

end record;

61

SCHEDULE PRIMITIVES APPENDIX B §9

9. Here is the specification for generics.

(Instantiate generics 9)
=

package natset is new genericsetjpkg (natural ,5);

{ Instantiate instances of the generic map package. }

package natjmap is new generic-map-pkg(key => natural
,
result => natural)',

package set-map is new generic-mapjpkg (key => natural , result =$> natset. set
);

package expjmap is new generic-map-pkg(key => natural , result =>• ExpertiseLevel)',

See also section 10.

This code is used in section 5.

10. Here is the specification for generics.

(Instantiate generics 9) +=
package natjio is new integerjio (natural);

procedure putset is new natset .genericjput;

procedure getset is new natset.generic-input;

procedure getfset is new natset.generic-file-input;

package enujio is new textJo.EN\JMERAJ\ONJO(ExpertiseLevel);

11. This function is used to compare the ID of StepRecords

(Specification of procedures visible from schedprims 11) =
function CompareID(Ll ,L2 : StepRecord)retum Boolean;

See also sections 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23.

This code is used in section 5.

12. This function is used to compare the ID of StepRecords

(Specification of procedures visible from schedprims 11) +=
function IsEqual(Ll ,L2 : StepRecord)retum Boolean;

13. This function is used to compare the Deadline of StepRecords

(Specification of procedures visible from schedprims 11) +=
function CompareDeadLine(Ll ,L2 : StepRecord)retum Boolean;

14. This function is used to compare the Recursion of StepRecords

(Specification of procedures visible from schedprims 11) +=
function CompareRecursionLevel(Ll ,L2 : StepRecord)retum Boolean;

15. This function is used to compare the StartTime of StepRecords

(Specification of procedures visible from schedprims 11) +=
function CompareStartTime (LI ,L2 : ScheduleRecord)return Boolean;

62

§16 APPENDIX B SCHEDULE PRIMITIVES

16. This function is used to compare the StartTime of StepRecords

(Specification of procedures visible from schedprims 11) +=
function CompareStartTime(Ll ,L2 : CalendarRecord)return Boolean;

17. Printing a atep heading line before printing any records.

(Specification of procedures visible from schedprims 11) +=
procedure StepRecordHeading

;

18. Display a record given its LOCATION in the list.

(Specification of procedures visible from schedprims 11) +=
procedure DisplayStepRecord (rec : in StepRecord);

19. Printing a schedule heading line before printing any record.

(Specification of procedures visible from schedprims 11) -f=

procedure ScheduleRecordHeading
;

20. Printing a schedule heading line before printing any record.

(Specification of procedures visible from schedprims 11) +=
procedure CalendarRecordHeading

;

21. display a record given its LOCATION in the list.

(Specification of procedures visible from schedprims 11) +=
procedure DisplayScheduleRecord [Current : in ScheduleRecord);

22.

(Specification of procedures visible from schedprims 11) +=
procedure SaveScheduleRecord (Current : in ScheduleRecord \fd : file^type);

23. display a record given its LOCATION in the list.

(Specification of procedures visible from schedprims 11) +=
procedure Display CalendarRecord (Current : in CalendarRecord);

63

SCHEDULE PRIMITIVES BODY APPENDIX B §24

24. Schedule Primitives Body.

25.

(Variables local to schedprims 25)
=

debug : boolean <— false]

debug2 : boolean <— false;

This code is used in section 5.

26.

(Procedures and Tasks in schedprims 26)
=

function CompareID(Ll ,L2 : StepRecord)return Boolean is

begin

if Ll .Stepld < L2.StepId then

return True]

else

return False;

end if;

end CompareW

;

See also sections 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

This code is used in section 5.

27. Stepld's are suppose to be unique.

(Procedures and Tasks in schedprims 26) +=
function IsEqual(Ll ,L2 : StepRecord)retum Boolean is

begin

if debug2 then

pu<("Ll.StepIdu=u
M

); naLio.put (Ll .Stepld, 1); jm*(M
. u

M
);

pu*(ML2.StepIdu=u
n

); naLio .put (L2 .Stepld ,1); putJine{" . u ");

end if;

if Ll .Stepld = L2. Stepld then
return True;

else

return False;

end if;

end IsEqual;

64

§28 APPENDIX B SCHEDULE PRIMITIVES BODY

28.

(Procedures and Tasks in schedprims 26)
+=

function CompareDeadline(Ll ,L2 : StepRecord)retum Boolean is

answer : boolean
;

A, B : natural]

begin

A <— LI .Deadline ; B <— L2 .Deadline
;

if debug then
put("Ll .Deadlineu=u "); naLio.put(A)] puLline(n

. u ");

pMt("L2.Deadlineu=u
M

); nat_io .put(B)] putJine (" . u ")>

end if;

if A < B then
answer *— True]

else

answer <— false]

end if;

if debug then
pu<("CompareDeadline>u ");

if answer then

nat-io.put(A)] j>M<(" uisuLESSuthenu
M

); nat^io .put(B)] puLline(" . u ")]

else

naLio.put(A)] puf(" uisuNOTuLESSuthenu "); naLio .put(B)] putJine{" . u")i

end if;

end if;

return answer]

end CompareDeadline
;

65

SCHEDULE PRIMITIVES BODY APPENDIX B §29

29.

(Procedures and Tasks in schedprims 26)
+=

function CompareRecursionLevel(Ll ,L2 : StepRecord)return Boolean is

answer : boolean

;

A,B : natural]

begin
A *— LI .RecursionLevel ; B <— L2 .RecursionLevel;

if A < B then
answer <— True;

else

answer «— false;

end if;

if debug then
pu2("CompareRecursionLevel>u ");

if anaiyer then
naL»o.pitt(i4); jpu£("uisuLESSuthenu "); naLio.pu£(i?); puLline(" . u ");

else

not_to.pM<(>l); put("uisuNOTuLESSuthenu "); naLio.pM<(.B); pu£_Kne(" . u")i
end if;

end if;

return answer;

end CompareRecursionLevel

;

30.

(Procedures and Tasks in schedprims 26) +=
function CompareStartTime(Ll ,L2 : ScheduleRecord)return Boolean is

begin

if Ll.StartTime < L2 .StartTime then

return True;

else

return False;

end if;

end CompareStartTime;

66

§31 APPENDIX B SCHEDULE PRIMITIVES BODY

31.

(Procedures and Tasks in schedprims 26) -f

=

function CompareStartTime(Ll ,L2 : CalendarRecord)return Boolean is

begin

if LI .StartTime < L2 .StartTime then
return True;

else

return False]

end if;

end CompareStartTime;

32. Printing a step record heading line before printing any records.

(Procedures and Tasks in schedprims 26) +=
procedure StepRecordHeading is

begin
texLio .pM<(M STEP_IDuuDEADLINEuuPRIORITYuuPREDECEuuuSUCCESSuuE_LEVELUuIN_DEGREE*i;

texLio .7m*(M
ULIRECTJRSI0N

M
); texLio .newJine]

texLio .puty UUU- " " —UUU- ' " -UU UUUU --
"
-UU- "

"—UU"

'

v :

texLio .put ("uu ")i texLio .newJine
',

end StepRecordHeading
;

33. Display a record given its LOCATION in the list.

(Procedures and Tasks in schedprims 26)
+=

procedure DisplayStepRecord (rec : in StepRecord) is

begin

texLio .seLcol(4); tesLio-pkg .put(rec .Stepld)] texLio .seLcol (12);

tesLio-pkg .put (rec .Deadline); texLio .seLcol(23)\ tesLio_pkg .put (rec .Priority);

texLio .seLcol(31); puLset (rec .Predecessors); texLio .seLcol (41);

puLset(rec .Successors); texLio .seLcol (49); prinLcapabilities (rec.ExpLevel);

texLio .seLcol(Ql); tesLio..pkg .put (rec .InDegree); texLio .seL col (72);

tesLio-pkg .put(rec .RecursionLev el); texLio .newAine

;

end DisplayStepRecord

;

34. Printing a schedule heading line before printing any record.

(Procedures and Tasks in schedprims 26) +=
procedure ScheduleRecordHeading is

begin

iezLx'o.p^C'IDuSTART.TIMEuFINISH.TIMEuuS.LEVELuuuuuuuuuuuDEVEOPER");

texLio .newAine

;

texLio ,put(" u u uu~" uuuuuuuuuuu- " "
)j

texLio .new-line

;

end ScheduleRecordHeading

;

67

SCHEDULE PRIMITIVES BODY APPENDIX B §35

35. Printing a schedule heading line before printing any record.

(Procedures and Tasks in schedprims 26)
+=

procedure CalendarRecordHeading is

begin

texUo .pu«(,, IDuSTART_TIMEuFINISH_TIMEuuS_LEVELuuuuuuuuuuuDEVEOPER");

texLio .new-line

;

teXl-lO .ptlty (J LI UU UUUUUUUUUUU)\

texLio .new-line

;

end CalendarRecordHeading

;

36. Display a record given its LOCATION in the list.

(Procedures and Tasks in schedprims 26) +=
procedure DisplayScheduleRecord (Current : in ScheduleRecord) is

begin

texLio .seLcol(l); naLio .put(Current .StepID , 1); texLio .set- col [10);

naLio .put (Current .StartTime , 1); texLio .seLcol (20);

naLio .put(Current .FinishTime , 1); texLio .seLcol(35);

print-capabilities (Current. StepLevel); texLio .put ("u ");

texLio .put(S(Current .Designer)); texLio .newAine

;

end DisplayScheduleRecord

;

37. Display a record given its LOCATION in the list.

(Procedures and Tasks in schedprims 26)
+=

procedure SaveScheduleRecord (Current : in ScheduleRecord ;fd : file-type) is

package NaLlo is new Integer.Io (Natural);

use NaLio;

begin
texLio .seLcol(fd , 1); put(fd, Current. StepID ,1); texLio .seLcol(fd ,10);

put(fd, Current .StartTime ,1); texLio .seLcol(fd ,20);

put(fd, Current .FinishTime ,1); £ezLio..seLco/(/</,35);

prinLcapabilities (fd , Current. StepLevel); put(fd,"u "); put(fd, Current .Designer);

texLio .new-line (fd);

end SaveScheduleRecord

;

68

§38 APPENDIX B SCHEDULE PRIMITIVES BODY

38. Display a record given its LOCATION in the list.

{ Procedures and Tasks in schedprims 26)
+=

procedure Display CalendarRecord (Current : in CalendarRecord) is

begin

texLio .seLcol(2)\ tesLio-pkg .put(Current .StepID); texLio .seLcol (10);

calyr .print-date (Current .StartTime); texLio .seLcol(25);

calyr .print-date (Current .FinishTime); texLio .seLcol(AO)]

print-capabilities (Current .StepLevel)] texLio .put ("uu
M
)i

texLio .put(S(Current .Designer))', texLio .newAine
;

end Display CalendarRecord]

69

SYSTEM-DEPENDENT CHANGES APPENDIX B §39

39. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

40. RCS Keywords.

$RCSfile: schedprims.aweb,v

$Revision: 1.4

$Date: 1997/08/22 23:14:45

$Author: evansjr

$Id: schedprims.aweb,v 1.4 1997/08/22 23:14:45 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

70

§41 APPENDIX B INDEX

41. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 5. FinishTime: 7—8, 36—38

answer: 28-29. generic_file_input: 10.

boolean: 25, 28-29. genericAnput: 10.

Boolean: 11-16, 26-31. generic-map^pkg: 5, 9.

Calendar: 5. generic-put: 10.

calendar : 5. genericseLpkg: 5, 9.

CalendarRecord: 8, 16, 23,

;

31, 38. get-set: 10.

CalendarRecordHeading

:

20 ,35- getfset: 10.

calyr: 5, 38. ID: 11-12.

cap_map: 6—8. InDegree: 6, 33.

capability : 5. integer_io : 10.

CompareDeadline : 28. IntegerAo: 37.

CompareDeadLine : 13. IsEqual: 12, 27.

ComparelD: H, 26. key: 9.

CompareRecursionLevel

:

14 , 29. LI: 11-16, 26-31.

CompareStartTime: 15, 16, 30, 31. L2: 11-16, 26-31.

Current: 21-23, 36-38. map: 6—8.

Deadline: 6, 13, 28, 33 naUo: 10, 27-29, 36.

debug: 25, 28-29. NaUo : 37.

debug2: 25, 27. naLmap : 9.

Designer: 7-8, 36-38. naLset: 6, 9, 10.

Display CalendarRecord

:

23, 38- natural: 6-10, 28-29.

DisplayScheduleRecord

:

21, 36- Natural: 37.

DisplayStepRecord : 18, 33- newAine: 32-38.

EarliestStartTime: 6. Predecessors : 6, 33.

enu-io : 10. print-capabilities : 33, 3(

ENUMERATIONJO: 10. print-date: 38.

EstimatedDuration: 6. Priority: 6, 33.

exp_map: 9. private: 3.

ExpertiseLevel: 9-10. procedure: 3.

ExpLevel: 6, 33. protected: 3.

False: 26-27, 30-31. put: 27-29, 32-38.

false: 25, 28-29. putJine: 27-29.

fd: 22, 37. puLset: 10, 33.

file_type: 22, 37. rec: 18, 33.

71

INDEX APPENDIX B §41

Recursion: 14.

RecursionLevel : 6-7, 29, 33.

result: 9.

SaveScheduleRecord : 22, 37 .

schedprims: 5.

schedprims . adb : 5.

schedprims. ads : 5.

ScheduleRecord: 7, 15, 21-22, 30, 36-37.

ScheduleRecordHeading : 19, 34.

set: 6, 9.

seLcol: 33, 36-38.

set-map: 9.

StartTime: 7-8, 15-16, 30-31, 36-38.

StepID: 6-8, 36-38.

Stepld: 26-27, 33.

StepLevel: 7-8, 36-38.

StepRecord: 6, 11-14, 18, 26-29, 33.

StepRecordHeading : 17, 32.

StepRecords : 11-16.

Successors : 6, 33.

system dependencies: 39.

tagged: 6.

test-io-pkg: 5, 33, 38.

texUo: 5, 10, 32-38.

Time : 8.

True: 26-31.

ustring: 7-8.

ustrings: 5.

72

§41 APPENDIX B NAMES OF THE SECTIONS

(Instantiate generics 9, 10) Used in section 5.

(Package boiler-plate 5) Used in section 4.

(Procedures and Tasks in schedprims 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38)

Used in section 5.

(Specification of procedures visible from schedprims 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23) Used in section 5.

(Specification of types and variables visible from schedprims 6, 7, 8) Used in section 5.

(Variables local to schedprims 25) Used in section 5.

73

74

APPENDIX C Project Scheduling Tool

The Project Scheduler

[Ada '95—Version 1.0]

September 18, 1997

Section Page

Introduction 1 77

Main driver 5 78

Scheduler specification 22 83

Scheduler Body 32 85

Continuous Time to Calendar Time Translator 41 88

System-dependent changes 60 93

Index 62 94

75

m °UTPUT APPENDIX C
This page intentionally left blank

76

§ APPENDIX C INTRODUCTION

1. Introduction. Here is the Ada code for Salah Badr's scheduler program. It was

written by him May 25, 1993. Here it has been translated to Donald Knuth's WEB format

for literate programming. To compile and link the code in its present format you will need

the Ada version of the WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/Hterate/

2. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming. literate. It has information on new tools and Frequently Asked

Questions (FAQs).

3. The program consists of several packages that are declared right now; each of these

packages and either the specification and the body of the packages are sent to a separate

file. The main program itself is declared later. (Since the original AWEB package was

written for Ada '83, it does not properly format new Ada '95 keywords protected and

private . We remedy using the web format commands below.

format protected = procedure

format private = procedure

4. As a way of explanation, each "Module" within angle brackets (< >) is expanded

somewhere further down in the document. The trailing number you see within the brackets

is where you can find this expansion. This provides a type of PDL (program descriptor

language) for your program and greatly aids modularity and readability. It is also a highly

effective method of top-down programming.

77

MAIN DRIVER APPENDIX C §5

5. Main driver. This is the main routine that starts everything.

78

§6 APPENDIX C MAIN DRIVER

6. (Note: The following format is used by all the packages. We write the top-level code,

in macro-level descriptions, and it gets expanded into code further down. This way you

can write small, easily understood modules. It also lets you declare and describe variables

and types where you need them.)

output to file main.adb

pragma suppress (alLchecks);

with SchedTools

;

with scheduler;

use scheduler;

with textJo;

use text-io;

with capability;

use capability;

with ustrings;

use ustrings

;

procedure main is (Instantiate generic packages 8)(Variables local to main 9)

begin

loop

begin

SCHEDULER-MENU; get(SELECTOR); shipJine;

case SELECTOR is

when 1 =>

(Create new step list 10

)

when 2 =>

(Read in developer list 12
)

when 3 =>

(Schedule steps according to their deadlines 14

)

when 4 =$>

(Print all steps in the ready queue 15

)

when 5 =>

(Print all step records 19
)

when 6 =$>

(Print final schedule 16
)

when 7 =>

(Save final schedule 17
)

when 8 =>

(Print calendar schedule 18
)

when 9 =>

(Exit the program to the system 20
)

when others =>

(Exception handling for selector case 21

)

end case;

exception

79

MAIN DRIVER APPENDIX C §6

when storage-error =$

putJine ("Youuhaveuaustorageuerror .
"

);

pM<("Youruleveluofurecursionuisu "); natJo .put(recursionJevel);
putJine (" . u ");

when DataJError =>

pwUmeC'Valueuentereduiiotuiiiuproperuraiige

.

uuPleaseutryuagaiii .
M

);
NewJine ; SkipJLine

;

when SchedTools.NoFeasibleScheduleFound =>

Pw*-Knc("Unableutoufindufeasibleuschedule. ULJNeedutouincreaseulaxity.f
NewJine

;

when NoDevelopers =>•

putJine ("Noudevelopersutouscheduleutasksuwith. uuPleaseutryuagain. f;
NewJine]

end;

end loop;

end main;

7. As a way of explanation, each "Module" withing angle brackets (< >) is expanded
somewhere further down in the document. The trailing number you see within the brackets
is where you can find this expansion. This provides a type of PDL (program descriptor
language) for your program and greatly aids modularity and readability. It is also a highly
effective method of top-down programming. The first module here is expanded further
down, and contains most of the structure in standard Ada packages.

(Package boiler-plate 22
)

8.

(Instantiate generic packages 8) =
package natJo is new integerJo (natural);

use natJo;

This code is used in section 6.

9.

(Variables local to main 9) =
type selectorJype is new natural range 1 . .

9-

selector : selectorJype <— 1;

package selJo is new integerJo (selectorJype);
use selJo;

See also sections 11 and 13.

This code is used in section 6.

80

§10 APPENDIX C MAIN DRIVER

10. This routine has been modified to read in a file and build up the linked list of "steps."

(Create new step list 10)
=

if numAevelopers > then

MakeNewStepList(num_developers);

else

raise NoDevelopers
;

end if;

This code is used in section 6.

11.

(Variables local to main 9) +=
NoDevelopers : exception;

12.

(Read in developer list 12) =
pw<_/me("Pleaseuenterudeveloperufileuname: u ");

getJine{infile);

get.developers (S(infile)); num-developers *— getjfiumAevelopers\

This code is used in section 6.

13.

(Variables local to main 9) +=
infile : ustring;

num-developers : natural <— 0;

14.

(Schedule steps according to their deadlines 14)
=

PutJine ("Schedulingustepsuaccordingutoutheirudeadlines. ");

MakeDeadlineFirstSchedule (maxjrecursion , num-developers);

This code is used in section 6.

15.

(Print all steps in the ready queue 15) =
PrintReadyQueue

;

This code is used in section 6.

16.

(Print final schedule 16 } =
PrintFinalSchedule

;

This code is used in section 6.

81

MAIN DRIVER APPENDIX C §17

17.

(Save final schedule 17) =
SaveFinalSchedule

;

This code is used in section 6.

18.

(Print calendar schedule 18)
=

PrintCalendarSchedule
;

This code is used in section 6.

19.

(Print all step records 19)
=

newJine ; PrintStepList
;

This code is used in section 6.

20.

(Exit the program to the system 20) =
pu<("MaximumurecursionulevGluisu "

); notJo .put(max-recursion)] putJine(" . u ")5

put ("Currenturecursionuleveluisu "); natJo .put (recursion-level); putJine(" , u ");

jpwf("thankuyouu uByeu . . .Bye"); newJine; exit;

This code is used in section 6.

21.

(Exception handling for selector case 21)
=

put (

"

uBADuCH0ICE

.

UPLEASEUTRYUAGAIN"); newJine
;

This code is used in section 6.

82

§22 APPENDIX C SCHEDULER SPECIFICATION

22. Scheduler specification.

(Package boiler-plate 22) =
output to file scheduler. ads

•with genericsetjpkg]

"with genericjmapjpkg
;

with genericJist]

with schedprims
;

use schedprims
;

with schedtools
;

use schedtools
;

with TEXTJO;
use TEXTJO;
with tesLio^pkg

;

use tesLio-pkg]

package scheduler is

(Specification of types and variables visible from scheduler 23

)

(Specification of procedures visible from scheduler 24

)

end scheduler]

output to file scheduler. adb

with unchecked- deallocation;

package body scheduler is

(Procedures and Tasks in scheduler 33
)

end scheduler]

This code is used in section 7.

23. Here are variables global to the recursion.

(Specification of types and variables visible from scheduler 23)
=

recursion-level : natural <— 0;

max.recursion : natural <— 0;

This code is used in section 22.

24. Creating new step.

(Specification of procedures visible from scheduler 24)
=

Procedure MakeNewStepList(num^dev elopers : natural)]

See also sections 25, 26, 27, 28, 29, 30, and 31.

This code is used in section 22.

25. Creating new step.

(Specification of procedures visible from scheduler 24)
+=

Procedure MakeDeadlineFirstSchedule (max-recursion : in out natural]

num^developers : natural)]

83

SCHEDULER SPECIFICATION APPENDIX C §26

26.

(Specification of procedures visible from scheduler 24)
+=

procedure SCHEDULER-MENU;

27.

(Specification of procedures visible from scheduler 24)
+=

procedure PrintReady Queue;

28.

(Specification of procedures visible from scheduler 24)
+=

procedure PrintFinalSchedule;

29.

(Specification of procedures visible from scheduler 24) +=
procedure SaveFinalSchedule;

30.

(Specification of procedures visible from scheduler 24) +=
procedure PrintCalendarSchedule;

31.

(Specification of procedures visible from scheduler 24) +=
procedure PrintStepList;

84

§32 APPENDIX C SCHEDULER BODY

32. Scheduler Body.

33. Creating new step.

(Procedures and Tasks in scheduler 33)
=

Procedure MakeNewStepList (num-developers : natural) is

begin
CreateNewStepList (StepList);

end MakeNewStepList
;

See also sections 34, 35, 36, 37, 38, 39, and 40.

This code is used in section 22.

34.

(Procedures and Tasks in scheduler 33) +=
Procedure MakeDeadLineFirstSchedule{max_recursion : in out natural]

num^dev elopers : natural) is

begin

/mi_/me("StartuofuCreateDeadlineFirstSchedule. ");

CreateDeadlineFirstSchedule(max..recursion , num^developers);

pML/ine("EriduofuCreateDeadlineFirstSchedule. ");

end MakeDeadLineFirstSchedule
;

85

SCHEDULER BODY APPENDIX C

35. DISPLAY THE MAIN MENU.

(Procedures and Tasks in scheduler 33) +=
procedure SCHEDULER-MENU is

begin

newJine] seLcol(25)] pu<("MAINuMENU"); newJine; seLcol(25);

put(" "); newJine(2)\

seLcol(5)] put

newJine]

seLcol(5)] put

§35

newJine]

seLcol(5)] put

newJine]

seLcol(5)] put

newJine]

set^col(5)] put

newJine]

aeLco/(5); put

newJine]

seLcol(5)] put

newJine
;

seLcol(5)] put

newJine
;

seLcol(5)] put

" [l] uR®aduiiiustepulist");

" [2] uReaduinudeveloperulist");

" [3] uscheduleustepsuusinguBranchAndBound");

" [4] uPrintureadyuqueue");

" [5] uPrintustepulist M
);

" [6] uPrintufinaluschedule
M

);

" [7] uSaveufinaluschedule");

" [8] uPrintuCalendaruschedule");

'"
[9] uQuit"); newJine(3)] seLcol(5);

pu<("Enterutheunumberuofuyouruchoiceu : uu ");

end SCHEDULER_MENU;

36.

(Procedures and Tasks in scheduler 33) +=
procedure PrintFinalSchedule is

begin

PrintAUScheduleRecords (Schedule
);

end PrintFinalSchedule
;

37.

(Procedures and Tasks in scheduler 33) +=
procedure SaveFinalSchedule is

begin
SaveAUScheduleRecords (Schedule);

end SaveFinalSchedule
;

86

§38 APPENDIX C SCHEDULER BODY

38.

(Procedures and Tasks in scheduler 33) +=
procedure PrintCalendarSchedule is

begin

PrintAUCalendarRecords (Schedule
);

end PrintCalendarSchedule;

39.

(Procedures and Tasks in scheduler 33) +=
procedure PrintReadyQueue is

begin

PrintAllStepRecords (ReadyQueue);

end PrintReadyQueue
;

40.

(Procedures and Tasks in scheduler 33) +=
procedure PrintStepList is

begin
PrintAllStepRecords (StepList);

end PrintStepList]

87

CONTINUOUS TIME TO CALENDAR TIME TRANSLATOR APPENDIX C §41

41. Continuous Time to Calendar Time Translator. The purpose of this routine

is to take the output of the scheduler and translate the continuous time fields (StartTime

and FinishTime) to calendar dates.

output to file contocal.adb

pragma suppress (alLchecks);

with textJo
;

use texLio;

with getopt]

use getopt]

with Ustrings]

use Ustrings
;

with Ada. Calendar;

use Ada. Calendar]

with calyr]

use calyr]

with capability]

use capability]

procedure ConToCal is

(Variables local to ConToCal 45

)

package booLio is new enumerationJo [boolean)]

use booLio;

begin

(Get parameters to ConToCal 43)

(Open files 51

)

(Iterate through input file 53) end ConToCal]

42. The command syntax is as follows:

contocal [-nrad < boolean >] [-start < startdate >] infile outfile

43. The -nrad option is by default false, but when set to true will create a schedule that

respects NRaD off-fridays. An example invocation coule be:

contocal -nrad true -start 07/03/97+00 infile outfile

If no start is given then the default is the same as the example.

(Get parameters to ConToCal 43) =

(Get nrad 44

)

(Get start date 46
)

(Get input file 48
)

(Get output file 50
)

This code is used in section 41.

88

§44 APPENDIX C CONTINUOUS TIME TO CALENDAR TIME TRANSLATOR

44.

(Get nrad 44) =
if option^present (Z7("-nrad M

)) then

get-option(U(' l -iira.d n), param); get(S(param), nrad , Last);

else

nrad <— false;

end if;

This code is used in section 43.

45.

(Variables local to ConToCal 45)
=

param : Ustring;
Last : positive

;

nrad : boolean;

See also sections 47, 49, 52, 55, 56, and 58.

This code is used in section 41.

46.

(Get start date 46)
=

if option-present (U(n - start")) then

<7eLoph'on(£/(M -start"), param); StartDate <— geLdate (param);

else

StartDate <- Time.Of (1997, 7, 3, 0.0);

end if;

This code is used in section 43.

47.

(Variables local to ConToCal 45) +=
StartDate : Time;

48.

(Get input file 48) =
if name-present (1) then
geLname (infile , 1);

else

raise nofilename;

end if;

This code is used in section 43.

89

CONTINUOUS TIME TO CALENDAR TIME TRANSLATOR APPENDIX C §49

49.

(Variables local to ConToCal 45) +=
nofilename : exception;

infile , outfile : Ustring]

50.

(Get output file 50 }
=

if name-present{2) then
geLname (outfile , 2);

else

raise nofilename;

end if;

This code is used in section 43.

51.

(Open files 51)
=

open (data-file , in-file , S(infile)); create (data2-file , ouLfile , S(outfile));

This code is used in section 41.

52.

(Variables local to ConToCal 45) +=
data-file , data2-file : file-type

;

53.

(Iterate through input file 53)
=

while ->End-Of-File(data-file) loop

(Read in record 54
)

(Do time translations 57

)

(Write out new record 59

)

end loop;

This code is used in section 41.

90

§54 APPENDIX C CONTINUOUS TIME TO CALENDAR TIME TRANSLATOR

54. A typical input file would look like the following:

3 HIGH HI 3

2 MEDIUM Ml 4

1 LOW LI 6

4 HIGH HI 3 13

5 MEDIUM Ml 4 12

6 LOW LI 6 10

8 MEDIUM Ml 12 14

7 LOW LI 10 15

9 HIGH HI 13 19

10 MEDIUM Ml 14 24

The second to last column is the start time and the last column is the end time.

(Read in record 54)
=

kntr <— kntr + 1; j?u<(
MReadinguinurecordu

M
); put(kntr); puLline(" . u ")i

get (data-file, stepid)] get(data-file, Start)] get (data-file , Finish)]

get- capability (data-file , ExpLevel); get-line (data-file , Developer);

This code is used in section 53.

55.

(Variables local to ConToCal 45) +=
type ExpertiseLevel is (low , medium , high);

stepid : natural]

ExpLevel : cap-map .map

;

Developer : ustring;

start, finish : natural]

kntr : natural <— 0;

56.

(Variables local to ConToCal 45) +=
package exp-io is new enumeration-io (ExpertiseLevel)]

use exp-io]

package nat-io is new integer-io (natural);

use nat-io
]

57.

(Do time translations 57)
=

dur <— ConvertHours ToDuration (Start)]

StartTime <— DurationToCalendarTime(StartDate, dailyhours , dur, NRaD);
dur <— ConvertHoursToDuration (Finish);

FinishTime *— DurationTo CalendarTime (StartDate , dailyhours , dur, NRaD);

This code is used in section 53.

91

CONTINUOUS TIME TO CALENDAR TIME TRANSLATOR APPENDIX C §58

58.

(Variables local to ConToCal 45) +=
dur : Duration]

Start Tim

e

, Finish Tim e : Tim

e

;

dailyhours : WorkHours <— (ConvertHoursToDuration(8), ConvertHours ToDuration (8),

ConvertHoursToDuration(8), ConvertHoursToDuration{8),

ConvertHours ToDuration (8));

59.

(Write out new record 59)
=

set_col(data2-file , 1); put (data2-file, stepid, 1); seLcol (data2-file , 10);

print-date (data2-file , StartTime); set-Col(data2-file ,25);

print-date (data2-file , FinishTime); set-col (data2-file

,

40);

print-capabilities (data2-file , ExpLevel); put (data2-file, "u")?

put
(data2-file , Developer)] new-line(data2-file);

This code is used in section 53.

92

§60 APPENDIX C SYSTEM-DEPENDENT CHANGES

60. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

61. RCS Keywords.

$RCSfile: main.aweb,v

$Revision: 1.5

$Date: 1997/08/22 23:14:45

$Author: evansjr

$Id: main.aweb,v 1.5 1997/08/22 23:14:45 evansjr Exp evansjr

$Locker: evansjr

$ State: Exp

93

INDEX APPENDIX C §62

62. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 41.

alLchecks: 6, 41.

booLio: 41.

boolean: 41, 45.

Calendar: 41.

calyr: 41.

cap-map: 55.

capability: 6, 41.

ConToCal: 41.

contocal.adb : 41.

ConvertHoursToDuration: 57-58.

create: 51.

CreateDeadlineFirstSchedule : 34.

CreateNewStepList: 33.

dailyhours : 57-58.

Data^Error : 6.

data-file: 51-54.

datat-file: 51-52, 59.

Developer: 54-55, 59.

dur: 57-58.

Duration : 58.

DurationTo Calendar Time: 57.

End-Of.File: 53.

enumeration-io : 41, 56.

exp_io: 56 .

ExpertiseLevel: 55, 56.

ExpLevel: 54-55, 59.

false: 44.

fileAype: 52.

Finish: 54, 57.

finish: 55.

FinishTime: 41, 57-59.

generic-list: 22.

generic-map-pkg : 22.

genericset-pkg: 22.

get: 6, 44, 54.

geLcapability : 54.

get-date: 46.

get-developers : 12.

get-line: 12, 54.

get-name: 48, 50.

get-num-developers : 12.

get-option: 44, 46.

getopt: 41.

high: 55.

in-file: 51.

infile: 12-13, 48-49, 51.

integer-io: 8-9, 56.

kntr: 54-55.

Last: 44-45.

low: 55.

main : 6.

main

.

adb : 6.

MakeDeadlineFirstSchedule: 14, 25.

MakeDeadLineFirstSchedule : 34.

MakeNewStepList: 10, 24, 33.

map: 55.

max-recursion : 14, 20, 23, 25, 34.

medium: 55.

name-present: 48, 50.

naLio : 6, 8, 20, 56.

natural: 8-9, 13, 23-25, 33-34, 55-56.

new-line: 19—21, 35, 59.

NewJine: 6.

NoDevelopers: 6, 10-11.

NoFeasibleScheduleFound: 6.

nofilename: 48-50.

nrad: 44-45.

NRaD : 57.

num-developers : 10, 12-14, 24-25, 33-34.

94

§62 APPENDIX C INDEX

open: 51.

option-present: 44, 46.

out-file: 51.

outfile: 49-51.

param: 44-46.

positive : 45.

prints capabilities: 59.

print-date: 59.

PrintAUCalendarRecords : 38.

PrintAUScheduleRecords : 36.

PrintAUStepRecords : 39-40.

PrintCalendarSchedule: 18, 30, 38 .

PrintFinalSchedule: 16, 28, 36 .

PrintReadyQueue : 15, 27, 39 .

PrintStepList: 19, 31, 40.

private: 3.

Procedure: 24-25, 33-34.

procedure: 3.

protected: 3.

put: 6, 20-21, 35, 54, 59.

PutJine : 14.

putJine: 6, 12, 20, 34, 54.

ReadyQueue: 39.

recursion^ lev el: 6, 20, 23.

SaveAUScheduleRecords : 37.

SaveFinalSchedule: 17, 29, 37 .

schedprims : 22.

SchedTools : 6.

schedtools : 22.

Schedule : 36-38.

scheduler: 6, ££.

scheduler. adb : 22.

scheduler. ads : 22.

SCHEDULER-MENU: 6, 26, 35-

aeLto: 9.

selector: 9.

SELECTOR: 6.

selector-type: 9.

set-col: 35, 59.

skip-line: 6.

Skip-Line : 6.

S<ar<: 54, 57.

start: 55.

StartDate: 46-47, 57.

StartTime: 41, 57-59.

stepid: 54—55, 59.

StepList: 33, 40.

storage- error: 6.

suppress : 6, 41.

system dependencies:

test-io-pkg: 22.

TEXTJO: 22.

ieasLio: 6, 41.

Time: 47, 58.

Time-Of: 46.

trwe: 43.

unchecked- deallocation

:

ustring: 13, 55.

Ustring: 45, 49.

Ustrings: 41.

ustrings : 6.

WorkHours : 58.

60.

22.

95

NAMES OF THE SECTIONS APPENDIX C §62

(Create new step list 10) Used in section 6.

(Do time translations 57) Used in section 53.

(Exception handling for selector case 21) Used in section 6.

(Exit the program to the system 20) Used in section 6.

(Get input file 48) Used in section 43.

(Get nrad 44) Used in section 43.

(Get output file 50) Used in section 43.

(Get parameters to ConToCal 43) Used in section 41.

(Get start date 46) Used in section 43.

(Instantiate generic packages 8) Used in section 6.

(Iterate through input file 53) Used in section 41.

(Open files 51) Used in section 41.

(Package boiler-plate 22) Used in section 7.

(Print all step records 19) Used in section 6.

(Print all steps in the ready queue 15) Used in section 6.

(Print calendar schedule 18) Used in section 6.

(Print final schedule 16) Used in section 6.

(Procedures and Tasks in scheduler 33, 34, 35, 36, 37, 38, 39, 40) Used in section 22.

(Read in developer list 12) Used in section 6.

(Read in record 54) Used in section 53.

(Save final schedule 17) Used in section 6.

(Schedule steps according to their deadlines 14) Used in section 6.

(Specification of procedures visible from scheduler 24, 25, 26, 27, 28, 29, 30, 31

)

Used in section 22.

(Specification of types and variables visible from scheduler 23) Used in section 22.

(Variables local to ConToCal 45, 47, 49, 52, 55, 56, 58) Used in section 41.

(Variables local to main 9, 11, 13) Used in section 6.

(Write out new record 59) Used in section 53.

96

APPENDIX D Project Scheduling Tool

Generic List processing routines

[Ada '95—Version 1.0]

Section Page

Introduction 1 99

List Specification 8 100

List Body 29 104

System-dependent changes 50 113

Index 52 114

97

WEB OUTPUT Appendix D §

This page intentionally left blank

98

§ Appendix D INTRODUCTION

1. Introduction. The scheduler designed and implemented by Salah Badr uses lists

extensively. However, it has specific routines for each list used by the scheduler. This is

redundant, as well as error prone. In my design to eliminate some large data structures

that are slightly modified and duplicated in a very recursive and space consuming manner,

I have decided to use additional linked lists to keep track of additions and deletions at

each level of recursion. By keeping track of just the "changes" This will turn an N squared

space problem into one that is linear. (This is shown to be true, later.)

2. So since linked fists are used extensively, it pays to have a single generic routine.

The implementation is thus hidden from the user. This allows "information-hiding," and

increased modularity,

3. This code is written using Donald Knuth's WEB paradigm for literate programming.

To compile and link the code in its present format you will need the Ada version of the

WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/literate/

4. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming. literate. It has information on new tools and Frequently Asked

Questions (FAQs).

5. The program consists of several packages that are declared right now; each of these

packages and either the specification and the body of the packages are sent to a separate

file. The main program itself is declared later. (Since the original AWEB package was

written for Ada '83, it does not properly format new Ada '95 keywords protected and

private . We remedy using the web format commands below.

format protected = procedure

format private = procedure

6. As a way of explanation, each "Module" withing angle brackets (< >) is expanded

somewhere further down in the document. The trailing number you see within the brackets

is where you can find this expansion. It is top-down in appearance, and in actual fact.

7. All the modules follow the same, top-down format. I will group all the boiler-plate into

one module, for the compiler, but you will see it with the packages, as they are described.

(Package boiler-plate 8

}

99

LIST SPECIFICATION Appendix D §8

8. List Specification. This specification is a modification of the one presented in the

book Ada 95 Problem Solving and Program Design, by Michael Feldman and Elliot B.

KofFman. The implementation was left as an exercise for the student.

(Package boiler-plate 8) =
output to file generic.list .ads

with TEXTJO;
use TEXTJO;
generic

type Element Type is private
; { Any nonlimited type will do }

with procedure DisplayElement (Item : IN ElementType);

with function "<"(L1 ,L2 : Element Type)return Boolean;

with function "="(L1 ,L2 : ElementType)retum Boolean is <>;

package genericAist is

(Specification of types and variables visible from genericAist 9)(Specification of

procedures visible from genericAist 12)
private

{ Specification of private types and variables in genericAist 10
)

end genericAist]

output to file generic list .adb

(Packages needed by genericJist body 32
)

package body genericAist is

(Variables local to genericAist 30

)

(Procedures and Tasks in genericAist 33)

end genericAist]

This code is used in section 7.

9.

(Specification of types and variables visible from genericAist 9)
=

type list is limited private ;

ListEmpty : exception;

This code is used in section 8.

10.

(Specification of private types and variables in genericAist 10)
=

type ListNode; type ListPtr is access ListNode]

type ListNode is

record

Element : ElementType]

Next : ListPtr;

end record;

See also section 11.

This code is used in section 8.

100

§11 Appendix D LIST SPECIFICATION

11. Added Size field to original code.

(Specification of private types and variables in genericJist 10)
+=

type List is

record

Size : Natural]

Head : ListPtr]

Tail : ListPtr]

Current : ListPtr]

Previous : ListPtr]

end record;

12.

(Specification of procedures visible from genericJist 12)
=

function ListSize(L : in List)return natural]

See also sections 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28.

This code is used in section 8.

13. Returns True if L is empty, False otherwise.

(Specification of procedures visible from genericJist 12)
+=

function IsEmpty(L : IN List)RETURN Boolean]

14.

Pre: Element is defined; L may be empty.

Post: Element is inserted at the beginning of L.

(Specification of procedures visible from genericJist 12) +=
procedure AddToFront(L : in out List] Element : in ElementType);

15.

Pre: L is defined; L may be empty.

Post: returns a complete copy of the list L.

Raises: ListEmpty if the list is empty before the retrieval.

(Specification of procedures visible from genericJist 12 } +=
function RetrieveFront(L : in Zi.si)return ElementType]

16.

Pre: L is defined; L may be empty.

Post: The first node of L is removed.

Raises: ListEmpty if the fist is empty before the removal.

{ Specification of procedures visible from genericJist 12) +=
procedure RemoveFront(L : in out List)]

101

LIST SPECIFICATION Appendix D §17

17.

Pre: L is defined.

Post: L is empty.

(Specification of procedures visible from genericJist 12) +=
procedure MakeEmpty(L : in out List);

18.

Pre: Element is defined; L may be empty.

Post: Element is appended to the end of L.

(Specification of procedures visible from genericJist 12 } +=
procedure AddToEnd(L : in out List ; Element : in ElementType);

19.

Pre: Source may be empty.

Post: Returns a complete copy of Source in Target.

(Specification of procedures visible from genericJist 12) +=
procedure Copy {Source : in List; Target : out List);

20.

Pre: L may be empty.

Post: displays the contents of L's Element fields, in the

order in which they appear in L.

(Specification of procedures visible from genericJist 12) +=
procedure Display (L : IN List);

21.

(Specification of procedures visible from genericJist 12) +=
procedure InsertInOrder(L : in out List; Element : ElementType);

22.

(Specification of procedures visible from genericJist 12) +=
procedure GetNext(L : in out List; Element : out ElementType);

23.

(Specification of procedures visible from genericJist 12) +=
procedure Delete Current(L : in out List);

24.

(Specification of procedures visible from genericJist 12) +=
procedure DeleteMatching{L : in out List; Element : in ElementType; success : out

boolean);

102

§25 Appendix D LIST SPECIFICATION

25.

(Specification of procedures visible from genericJist 12) +=
procedure GetCurrent{L : in List ; Element : out Element Type);

26.

(Specification of procedures visible from genericJist 12) +=
procedure Update Current (L : in List ; Element : in ElementType);

27.

(Specification of procedures visible from genericJist 12) +=
procedure GetNth(L : in out List;N : in natural; Element : out ElementType);

28.

(Specification of procedures visible from genericJist 12) +=
procedure Rewind (L : in out List);

103

LIST BODY Appendix D §29

29. List Body.

30.

(Variables local to genericAist 30)
=

debug : boolean <— false;

See also section 31.

This code is used in section 8.

31.

(Variables local to genericAist 30) +=
procedure Dispose is new unchecked- deallocation (Object => ListNode

,

Name =>• ListPtr);

package naLio is new integerAo (natural);

32.

(Packages needed by genericJist body 32)
=

with unchecked. deallocation;

with Ustrings;
use Ustrings;

This code is used in section 8.

33.

(Procedures and Tasks in genericAist 33) =
function ListSize(L : in Zwi)return Natural is

begin

return L.Size;

end ListSize

;

See also sections 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, and 49.

This code is used in section 8.

34. Returns True if L is empty, False otherwise.

(Procedures and Tasks in genericAist 33) -f=
function IsEmpty(L : IN List)RETURN Boolean is

begin

if ListSize(L) — then
return True;

else

return False

;

end if;

end IsEmpty;

104

§35 Appendix D LIST BODY

35.

Pre: Element is defined; L may be empty.

Post: Element is inserted at the beginning of L.

(Procedures and Tasks in genericJist 33)
+=

procedure AddToFront (L : in out List] Element : in ElementType) is

Temp : ListPtr]

begin
Temp <— new ListNode] Temp .all.Element <— Element; Temp.all.Next <— L.Head]

L.Head <— Temp] L.Size <— L.Size + 1;

if L.Size — 1 then
L.Tail «- L.Head]

end if;

end AddToFront]

36.

Pre: £ is defined; L may be empty.

Post: returns a complete copy of the fist L.

Raises: ListEmpty if the list is empty before the retrieval.

(Procedures and Tasks in generic-list 33) +=
function RetrieveFront(L : in List)vetum ElementType is

Temp : ListPtr]

begin

if L.Head = null then
raise ListEmpty;

else { L.Head points to a node; remove it }

Temp <— L.Head; return Temp .Element]

end if;

end RetrieveFront]

105

LIST BODY Appendix D §37

37.

Pre: L is defined; L may be empty.

Post: The first node of L is removed.

Raises: ListEmpty if the list is empty before the removal.

(Procedures and Tasks in generic-list 33) +=
procedure RemoveFront(L : in out List) is

Temp : ListPtr]

begin

if L.Head = null then
raise ListEmpty;

else { L.Head points to a node; remove it }

Temp <— L.Head; L.Head <— L.Head .all.Next] {jump around first node}

Dispose (X =>• Temp)] L.Size <— L.Size — 1;

end if;

end RemoveFront]

38.

(Procedures and Tasks in generic-list 33) +=
procedure MakeEmpty(L : IN OUT List) is

ptr : ListPtr;

begin

While L.Head ^ null loop

RemoveFront (L)]

end loop;

L.Size <— 0; L.Tail <— null;

end MakeEmpty]

106

§39 Appendix D LIST BODY

39.

Pre: Element is defined; L may be empty.

Post: Element is appended to the end of L.

(Procedures and Tasks in generic-list 33
) +=

procedure AddToEnd(L : IN OUT List; Element : IN ElementType) is

ptr : ListPtr;

begin

if debug then
pM<("AddToEnd>uAddingutouenduofulist : u

n
);

DisplayElement (Element);

end if;

if L.Head = null then
L.Tail <— new ListNode'(Element, null); L.Head <— L.Tail]

else

ptr <— new ListNode' (Element, null); L.Tail.all. next <— ptr; L.Tail <— ptr;

end if;

L.Size <— L.Size + 1;

end AddToEnd;

40.

Pre: Source may be empty.

Post: Returns a complete copy of Source in Target.

(Procedures and Tasks in generic-list 33)
+=

procedure Copy (Source : in List; Target : out List) is

ptr : listptr;

begin
ptr <— Source.head; MakeEmpty (Target);

while ptr ^ null loop

AddToEnd (Target, ptr.all. element); ptr <— ptr .all.next;

end loop;

end Copy;

107

LIST BODY Appendix D §41

41.

Pre: L may be empty.

Post: displays the contents of X's Element fields, in the

order in which they appear in L.

(Procedures and Tasks in generic-list 33) -f=

procedure Display (L : IN List) is

ptr : ListPtr;

begin

if debug then

puLLine
(

nDisplay> M
);

end if;

ptr <— L.Head;

while ptr ^ null loop

DisplayElement (ptr .all.Element); ptr <— ptr .all.Next;

end loop;

end Display;

108

§42 Appendix D LIST BODY

42.

(Procedures and Tasks in generic-list 33) +=
procedure LnsertInOrder(L : in out List ; Element : ElementType) is

Current : ListPtr;

Previous : ListPtr;

Temp : ListPtr;

begin

if debug then
put (" Insert InOrder>"); put-Line ("Youruinput ulistuis: u

M
); display (L);

put (" Insert InOrder>"); put-Line ("Youruinputuelementuis: u ");

displayelement (Element);

end if;

if L.Head = null then
AddToFront (L, Element);

elsif Element < L.Head .all.Element then
AddToFront (L, Element);

elsif (L. Tail.all.Element < Element) V (L.Size — 1) then

AddToEnd(L, Element);

else

if L.size = 1 then
puL/me("InsertInOrder>uShouldunotubeuhere! "); raise ListEmpty

;

end if;

Temp <— new Zj.sfJVode^.E/emen^null); Previous <— L.Head;

Current <— Previous. all. next;

while Current .all. element < Element loop

Previous <— Current; Current <— Current .all. next;

end loop;

Temp.all.nezi <— Current; Previous .all. next <— Temp; L.Size <— L.Size + 1;

end if;

if debug then
pu< (" Insert InOrder>"); puLXme("Youruinput ulistuisunow: u "); display (L);

end if;

end InsertlnOrder

;

109

LIST BODY Appendix D §43

43. Must be used with ListSize and Rewind or you will never know when you are at the

end of the list.

(Procedures and Tasks in generic-list 33)
-+-=

procedure GetNth(L : in out List]N : in natural; Element : out ElementType) is

begin

if debug then
pu*(nGetNth>uGettingu "); naLio.put(N, 1); put(" 'thurecordu=>

M
);

end if;

if L.Head = null then
raise ListEmpty;

elsif N > L.Size then
raise ListEmpty;

elsif N — 1 then
L. Current <— L.Head] L.Previous <— L.Tail;

else

Rewind (L);

for i G 2 . . N loop

L.Previous <— L. Current] L. Current <— Zy.Currenf.all.nesf;

end loop;

end if;

Element <— L. Current.all. element]

if debug then
DisplayElement (Element)]

end if;

end GetNth]

44. Must be used with ListSize and Rewind or you will never know when you are at the

end of the list.

(Procedures and Tasks in generic-list 33) +=
procedure GetCurrent(L : in List] Element : out ElementType) is

begin

if L.Head = null then
raise ListEmpty;

end if;

Element <— X. Current .all. element]

end GetCurrent]

110

§45 Appendix D LIST BODY

45. Must be used with ListSize and Rewind or you will never know when you are at the

end of the list.

(Procedures and Tasks in genericJist 33)
+=

procedure Update Current (L : in List] Element : in ElementType) is

begin

if L.Head = null then

raise ListEmpty;

end if;

L. Current.all. element <— Element]

end Update Current;

46.

(Procedures and Tasks in generic-list 33)
+=

procedure Delete Current(L : in out List) is

Temp : ListPtr]

begin

if L.Head = null then

raise ListEmpty;

elsif L.Size = 1 then
Temp <— L. Current] L. Current <— null; L.Previous <— null; L.Head <— null;

L. Tai/ «- null;

else

Temp <— L. Current]

if L. Current = L.Tail then
L.Previous .all.nezf <— L. Current.all.next] L. Current <— L.Head]

L. Tail <— L.Previous
;

elsif L. Current = L.Head then
L. Current <— L. Current.all. JVez<; {jump around current node}

L.Head <— L. Current]

else

L.Previous .all.next <r- L. Current.all.next] L. Current <— X. Current. all.Next]

{ jump around current node }

end if;

end if;

if debug then
pM<("DeleteCurrent>Deleting=> M

); DisplayElement(Temp

.

all.Element);

end if;

Dispose(X => Temp)] L.Size <— L.Size — 1;

end Delete Current;

111

LIST BODY Appendix D §47

47.

(Procedures and Tasks in generic-list 33)
-}-=

procedure DeleteMatching(L : in out List]Element : in ElementType] success : out

boolean) is

kntr : natural]

Current : ElementType;

begin
success <— false;

if L.Head = null then

raise ListEmpty,

end if;

Rewind (L); kntr <— L.Size;

for i £ 1 .. fcnir loop

GetNext(L, Current);

if Current — Element then
DeleteCurrent(L); success <— true; exit;

end if;

end loop;

end DeleteMatching;

48.

(Procedures and Tasks in genericJist 33) -\-=

procedure Rewind (L : in out List) is

begin
L. Current <— L.Head] L.Previous <— L.Tail]

end Rewind]

49. Must be used with ListSize and Rewind or you will never know when you are at the

end of the list.

(Procedures and Tasks in genericJist 33) +=
procedure GetNext(L : in out List] Element : out ElementType) is

begin

if L.Head = null then
raise ListEmpty]

elsif L. Current = L.Tail then
L. Current <— L.Head] L.Previous <— L.Tail]

else

L.Previous <— L. Current] L. Current <— L. Current.all. next]

end if;

Element <— L. Current. all. element]

end GetNext;

112

§50 Appendix D SYSTEM-DEPENDENT CHANGES

50. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

51. RCS Keywords.

$RCSfile: list.aweb,v

$Revision: 1.4

$Date: 1997/08/06 16:54:30

$Author: evansjr

$Id: list.aweb,v 1.4 1997/08/06 16:54:30 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

113

INDEX Appendix D §52

52. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

AddToEnd: 18, 39, 40, 42.

AddToFront: 14, 35, 42.

boolean: 24, 30, 47.

Boolean: 8, 13, 34.

Copy: 19, 40.

Current: 11, 42-49.

debug: 30, 39, 41-43, 46.

Delete Current: 23, 46, 47.

DeleteMatching: 24, 47 .

display : 42.

Display: 20, 41.

DisplayElement: 8, 39, 41, 43, 46.

displayelement: 42.

Dispose : 31, 37, 46.

element: 40, 42-45, 49.

Element: 10, 14, 18, 20-22, 24-27,

35-36, 39, 41-47, 49.

ElementType: 8, 10, 14-15, 18, 21-22,

24-27, 35-36, 39, 42-45, 47, 49.

False: 13, 34.

false: 30, 47.

generic-list: 8.

generic_list .adb : 8.

generic.list .ads : 8.

GetCurrent: 25, 44-

GetNext: 22, 47, 49.

GetNth: 27, 43.

Head: 11, 35-39, 41-49.

head: 40.

i: 43, 47.

IN: 8, 13, 20, 34, 38-39, 41.

InsertlnOrder: 21, 42.

integerAo: 31.

IsEmpty: 13, 34.

Item: 8.

kntr: 47.

List: 11, 12-28, 33-49.

list: 9.

ListEmpty: 9, 15-16, 36-37, 42-47, 49.

ListNode: 10, 31, 35, 39, 42.

ListPtr: 10, 11, 31, 35-39, 41-42, 46.

listptr: 40.

ListSize : 12, 33, 34, 43-45, 49.

LI: 8.

L2: 8.

MakeEmpty: 17, 38, 40.

Name: 31.

naLio: 31, 43.

natural: 12, 27, 31, 43, 47.

Natural: 11, 33.

Next: 10, 35, 37, 41, 46.

next: 39-40, 42-43, 46, 49.

Object: 31.

OUT: 38-39.

Previous: 11,42-43,46,48-49.

private: 5.

procedure: 5.

protected: 5.

ptr: 38-41.

put: 39, 42-43, 46.

puLLine : 41-42.

puLline: 42.

RemoveFront: 16, 37, 38.

RetrieveFront: 15, 36 .

RETURN: 13, 34.

Rewind: 28,43-45,47,48,49.

size : 42.

Size : 11, 33, 35, 37-39, 42-43, 46-47.

Source: 19, 40.

success : 24, 47.

114

§52 Appendix D INDEX

system dependencies: 50.

Tail: 11, 35, 38-39, 42-43, 46, 48-49.

Target: 19, 40.

Temp: 35-37, 42, 46.

TEXTJO: 8.

true: 47.

True: 13, 34.

unchecked- deallocation: 31-32.

Update Current: 26, 45.

Ustrings: 32.

While: 38.

with: 8.

115

NAMES OF THE SECTIONS Appendix D §52

(Package boiler-plate 8) Used in section 7.

(Packages needed by genericJist body 32) Used in section 8.

(Procedures and Tasks in genericJist 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49) Used in section 8.

(Specification of private types and variables in genericJist 10, 11 } Used in section 8.

(Specification of procedures visible from genericJist 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28) Used in section 8.

(Specification of types and variables visible from genericJist 9) Used in section 8.

(Variables local to genericJist 30, 31) Used in section 8.

116

APPENDIX E Project Scheduling Tool

calyr

[Ada '95—Version 1.0]

Section Page

Introduction 1 119

Calyr Specification 9 121

Calyr Body 31 125

Test Driver 145 162

System-dependent changes 151 164

Index 153 165

117

WEB OUTPUT APPENDIX E

This page intentionally left blank

118

§ APPENDIX E INTRODUCTION

1. Introduction. This package computes federal holidays, and off-fridays for NRaD.
(We work five days one week, four the next—nine hours a day, except for Fridays.) The
input is just the year. If you do not work the 5/4 weeks then there is a switch (-nps true)

that you can use to turn it off.

2. This is based on a C program calyr, written by Bob Hall of Nrad in the eighties.

Bob was a brilliant, and prolific programmer at NRaD who retired in the early nineties.

One of his programs msgs, formed the basis of Eudora, a popular mail tool for PC's and

Macintoshes, and now owned by Qualcomm.

3. This program was written to work for dates after 1970. It should work till the year

2099. (A year 3000 problem!) To test it out compile the driver program and run it with

the following command line:

main [-year <year>] [-nps <boolean>]

For example:

main -year 1993 -nps false

4. This code is written using Donald Knuth's WEB paradigm for literate programming.

To compile and link the code in its present format you will need the Ada version of the

WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/Uterate/

5. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming. literate. It has information on new tools and Frequently Asked

Questions (FAQs).

6. The program consists of several packages that are declared right now; each of these

packages and either the specification and the body of the packages are sent to a separate

file. The main program itself is declared later. (Since the original AWEB package was

written for Ada '83, it does not properly format new Ada '95 keywords protected and

private . We remedy using the web format commands below.

format protected = procedure

format private = procedure

119

INTRODUCTION APPENDIX E §7

7. As a way of explanation, each "Module" withing angle brackets (< >) is expanded

somewhere further down in the document. Consider it a high-level PDL (Program De-

scriptor Language). The trailing number you see within the brackets is where you can find

this expansion. It is top-down in appearance, and in actual fact.

8. All the modules follow the same, top-down format. I will group all the boiler-plate into

one module, for the compiler, but you will see it with the packages, as they are described.

(Package boiler-plate 9

)

120

§9 APPENDIX E CALYR SPECIFICATION

9. Calyr Specification.

(Package boiler-plate 9)
=

output to file calyr. ads

with Vstrings;

use Ustrings

;

with TEXTJO;
use TEXTJO;
with Ada .Comman(LLine

;

use Ada .Command-Line;

with Ada. Calendar;

use Ada. Calendar;

package calyr is

(Specification of types and variables visible from calyr 11

}

(Specification of procedures visible from calyr 16
)

end calyr;

output to file calyr. adb

(Packages needed by calyr body 10
)

package body calyr is

(Types local to calyr 57

)

(Variables local to calyr 33
)

(Local Procedures 59
)

(Procedures and Tasks in calyr 39
)

end calyr;

This code is used in section 8.

10.

(Packages needed by calyr body 10)
=

with text-io;

use text-io;

See also section 32.

This code is used in section 9.

11.

(Specification of types and variables visible from calyr 11)
=

subtype Hour-Number is integer range . . 23;

subtype Minute-Number is integer range . . 59;

subtype Second-Number is integer range . . 59;

See also sections 12, 13, 14, and 15.

This code is used in section 9.

121

CALYR SPECIFICATION APPENDIX E §12

12.

(Specification of types and variables visible from calyr 11) +=
BadYear : Exception;

BadDay : Exception;

type fourarray is array (0 . . 3) of integer;

type threearray is array (0 . . 2) of integer;

13.

(Specification of types and variables visible from calyr 11) +=
type month is (Jan, Feb, Mar , Apr , May ,Jun, Jul, Aug, Sep , Oct, Nov, Dec);

type DayOfWeek is (Sun,Mon, Tue, Wed, Thu,Fri,Sat);

14.

(Specification of types and variables visible from calyr 11) +=
subtype WeekDay is DayofWeek range Mon .. Fri;

15.

(Specification of types and variables visible from calyr 11) +=
Type WorkHours is array (WeekDay) of Duration

;

16.

(Specification of procedures visible from calyr 16)
=

procedure print-holidays (yr : in Year-Number; do^nps : in boolean);

See also sections 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30.

This code is used in section 9.

17. Given a date (in Ada time format), hoLdy returns any special info about it.

status return values: not a special day

1 a non-work holiday

2 observation of a non-work holiday

3 other special day (not non-work)

4 an off-Friday or Thursday
di return values: di[0] weekday of holiday (0 to 6)

di[l] day identification index

di[2] 2: off-Friday; 1 : off-Thursday

0: not an offday

(Specification of procedures visible from calyr 16) +=
procedure hoLdy(yrdate : time;di : out threearray ; status : out integer);

122

§18 APPENDIX E CALYR SPECIFICATION

18. This function was taken from the book Numerical Recipes. It actually works on any

year, not the artificial limit imposed by Ada type Year-Number (1901 . . 2099).

(Specification of procedures visible from calyr 16) +=
function Julian- day (Month : Month-Number; Day : Day-Number] Year : Integer)return

long-integer;

19. This procedure calculates the Month, Day, and Year when given the Julian-day

.

(Specification of procedures visible from calyr 16) +=
procedure caldate (Julian : Long-integer; Month : out Month-Number; Day : out

Day-Number; Year : out Integer);

20. Computes whether this is an off-day or a work-day.

(Specification of procedures visible from calyr 16) +=
function IsWorkDay(YrDate : Time;NRaD : boolean <— false;

debugit : boolean <— /a/.»e)return boolean;

21. Function aid computing new dates based on work hours.

(Specification of procedures visible from calyr 16) +=
function DurationToCalendarTime(StartDate : Time ; dailyhours : WorkHours;

hrs : Duration; NRaD : boolean)return Time;

22. Inverse of above.

(Specification of procedures visible from calyr 16) +=
function CalendarTimeToDuration(StartDate : Time ; dailyhours : WorkHours;

EndDate : Time; NRaD : boolean)return Duration;

23.

(Specification of procedures visible from calyr 16) -\-=

function SameDay(Timel , Timet : Time)return boolean;

24.

(Specification of procedures visible from calyr 16) +=
function GetDayOfWeek(Today : Time)return DayOfWeek;

25. Straightforward transformation.

(Specification of procedures visible from calyr 16) +=
function ConvertHoursToDuration(hrs : na£ura/)return Duration;

26. Inverse of previous.

(Specification of procedures visible from calyr 16) +=
function ConvertDurationToHours(dur : Duration)retum natural;

123

CALYR SPECIFICATION APPENDIX E §27

27.

(Specification of procedures visible from calyr 16) +=
Procedure Split(Seconds : Day-Duration; Hour : out Hour-Number; Minute : out

Minute-Number; Second : out Second.Number)]

28.

(Specification of procedures visible from calyr 16) -\~=

procedure print- date (date : time);

procedure prinLdate(outfile : file-type] date : time);

29.

(Specification of procedures visible from calyr 16) +=
function get-date (str : in Ustring^return Time;

function get-date (infile : file-type)return Time;

30. Adds one day to the input parameter.

(Specification of procedures visible from calyr 16) +=
function IncrementDay(YrDate : Tzme)return Time;

124

§31 APPENDIX E CALYR BODY

31. Calyr Body.

32.

(Packages needed by calyr body 10) +=
with Ada. Strings. Unbounded; Use Ada .Strings .Unbounded ; with Ustrings;

use Ustrings
;

33. Number days in the month.

(Variables local to calyr 33)
=

ndm : array (Month-Number) of natural <- (31,28,31,30,31,30,31,31,30,31,30,31);

See also sections 34, 35, 36, 37, 38, 46, 48, 49, 50, 58, and 65.

This code is used in section 9.

34. Last day/previous month.

(Variables local to calyr 33) +=
Idpm : array (Month-Number) of natural *- (0,31,59,90,120,151,181,212,243,273,

304,334);

35. List of holidays.

(Variables local to calyr 33) +=
NumHolidays : constant natural *— 20;

holidays : constant array (1 .. NumHolidays) of Ustring <— (Z7("NewuYear 'suDay"),

C/"("MLuKinguDay"), ^("Presidents
'

uDay
M
), Ef("MemorialuDay"),

C/("IndependeiiceuDay
,,
),C/'(

,,LaboruDay"),t/(
,,ColumbusuDay"),

C7(
MVeterans' uDay

M),f/("ThanksgiviiiguDay
M),17("ChristmasuDay

M
),

^("Valentine'suDay'^^C'StuPatrick'suDay'^^CGooduFriday"),
[/"("Easter"), tf ("Mothers

'

uDay"), *7("ArmeduForcesuDay"), £/("FlaguDay"),

[/("Fathers
'

uDay"), [/("Halloween"), [/("ElectionuDay"));

125

CALYR BODY APPENDIX E §36

36. Index of Holidays.

(Variables local to calyr 33) +=
JNYD : constant integer <— 1;

JMLK : constant integer <— 2;

JPRS : constant integer <— 3;

JMEM : constant integer <— 4;

JIND : constant integer <— 5;

JLAB : constant integer *— 6;

JCOL : constant integer <— 7;

JVET : constant integer <— 8;

JTHX : constant integer <— 9;

JCHR : constant integer *— 10;

JVAL : constant integer <— 11;

JSPT : constant integer <— 12;

JGFR : constant integer <— 13;

JEST : constant integer <— 14;

JMOT : constant integer <— 15;

JAFD : constant integer <— 16

JFLG : constant integer <— 17

JFAT : constant integer <— 18

JHAL : constant integer *— 19

JELC : constant integer <— 20

37. Index of something.

(Variables local to ca/yr 33) +=
: constant integer <— 0;

: constant integer <— 1;

constant integer <— 1;

constant integer <— 1;

/PA5 :

7£5T :

/MEM
/COZ:
7F£T

constant integer <— 2;

: constant integer <— 2;

constant integer <— 0;

constant integer <— 1;

IHAL : constant integer <— 2;

IELC : constant integer <— 0;

{index for NEW YEAR'S DAY, etc.

}

126

§38 APPENDIX E CALYR BODY

38.

(Variables local to calyr 33)
+=

debug : boolean <— false;

debug2 : boolean <— false;

verbose : boolean <— true;

nps : boolean <— false;

already-leaped : boolean «— false;

package int-io is new integerAo (integer);

use mLio;

39.

(Procedures and Tasks in calyr 39) =
procedure hoLdy(yrdate : time; di : out threearray ; status : out integer) is

(Types and Variables local to hoLdy 41

)

begin

(Parse date 40
)

(Check if leap year 42
)

(Set year 43

)

(Set month 63
)

(Loop over holidays and Off-Fridays 67
)

end hoLdy;

See also sections 81, 88, 93, 101, 109, 118, 129, 131, 132, 133, 134, 136, 137, 139, 141, and 143.

This code is used in section 9.

40.

(Parse date 40)
=

Split(yrdate , Year , Month , Day , Seconds); hmn <— Calyr .month' val(Month — 1);

status <- 0; di(0) <- 0; di(l) <- 0; di(2) <- 0;

This code is used in section 39.

41.

(Types and Variables local to hoLdy 41)
=

Year : Year-Number;

Month : Month-Number;
Day : Day-Number;

Seconds : Day-Duration;

hmn : Calyr .Month;

See also sections 45, 64, 68, and 71.

This code is used in section 39.

127

CALYR BODY APPENDIX E §42

42. Simple-minded check. Must later look up what to do at end of century.

(Check if leap year 42)
=

if ((Year mod 4) = 0) A (-> already- leaped) then
already-leaped <— true] ndm(calyr .month'pos (Feb) + 1) <— 29;

for j E 3 . . 12 loop

ldpm(j) <— ldpm(j) + 1;

end loop;

end if;

This code is used in section 39.

43. The datatype hoi must be modified based on the year. The following code does just

that.

(Set year 43)
=

(Calculate weekday of Jan 1. 44)

(Calculate beginning date of 1st pay period in year 47

)

(Update ML King Day 51

)

(Update President's Day 52)

(Update Memorial Day 53
)

(Update Columbus Day 54

)

(Update Veteran's Day 55

)

(Compute Easter 56
)

This code is used in section 39.

44.

(Calculate weekday of Jan 1. 44) =
jul := Julian^ day (1,1, Year); fdy <— DayOfWeek'val((jul + 1) mod 7);

jul := Julian, day (Month, Day , Year); di(l) <— integer((jul + 1) mod 7);

This code is used in section 43.

45.

(Types and Variables local to hoLdy 41) +=
jul : long-integer\

46. Make global.

(Variables local to calyr 33) +=
fdy : DayOfWeek;

128

§47 APPENDIX E CALYR BODY

47. Funny C logic. Seems to work.

(Calculate beginning date of 1st pay period in year 47) =

tYear <— Year — 1970; tmp <— {Year — 1) rem 4;

if trap — then
tmp <— 1;

else

tmp <— 0;

end if;

bpp <— (11 — tYear — tmp — (t Year /A)) rem 14;

if bpp < 1 then

bpp <— bpp + 14;

end if;

This code is used in section 43.

48. Make global.

(Variables local to calyr 33) +=
bpp : integer;

tYear : integer;

tmp : integer]

49.

(Variables local to calyr 33)
+=

type hoLtype is

record

dy : fourarray
; { Day of week or date of holiday }

wn : fourarray
; { Week number (-1 -£ skip }

fl : fourarray
; { 1/0 -£ non-work/work holiday }

ix : fourarray
; { Index of holiday name }

end record:

129

CALYR BODY APPENDIX E §50

50. I know this is ugly, but it comes directly from C code.

(Variables local to calyr 33) +=
hoi : array (Month) of hoLtype *- (({l,DayOfWeek'pos(MON),-l,Q),(0,3,0,0),{l,

1, 0,0), (JNYD,JMLK, 0,0)), ((14, DayOfWeek'pos(MON), -1,0), (0,3,0,0), (0,1,

0, 0), (JVAL,JPRS,0, 0)), ((17, 0, 0, -1), (0, -1,-1,0), (0, 0, 0, 0),{JSPT , JGFR,
JEST,0)), ((0,0, 0,-l),(-l, -1,-1,0), (0,0, 0,0), {0, JGFR, JEST ,0)),

((DayOfWeek'pos(SUN),DayOfWeek'pos(SAT),DayOfWeek'pos(MON),-l),(2,

3, 5, 0), (0, 0, 1, 0), [JMOT, JAFD , JMEM

,

0)), ((14, DayOfWeek 'pos{SUN), -1,0),

(0, 3, 0, 0), (0, 0, 0, 0), (
JFLG , JFAT , 0, 0)), ((4, -1,0, 0), (0, 0, 0, 0), (1,0, 0, 0), (

JIND
,

0,0,0)),((-l,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)),((DayO/W^eeifeV5(MOiV),

-1,0,0),(1,0,Q,0), {1,0,0,0), {JLAB, 0,0, 0)),{(DayOfWeek'pos{MON),

DayOfWeek'pos(MON),Zl, -1),(2,-1,0,0),(1, 1,0,0), {JCOL,JVET ,JHAL,0)),

((DayOfWeek'pos(TUE), 11, DayOfWeek'pos{THU), -I), (-1,0,4,0), (0,1, 1,0),

(JELC, JVET, JTHX , 0)), ((25, -1,0, 0), (0, 0, 0, 0), (1, 0, 0, 0), (JCHR , 0, 0, 0)));

51. ML King Day became federal holiday in 1986.

(Update ML King Day 51) =
if Year > 1985 then

hol(JAN).wn(IMLK) ^ 3;

else

hol(JAN).wn(IMLK) ^ -1;

end if;

This code is used in section 43.

52. President's day is third Monday (after 1971).

(Update President's Day 52) =
hol(Feb).dy(IPRS) ^- DayOfWeek'pos(Mon); hol{Feb).wn(IPRS) <- 3;

if [Year < 1971) then
hol{Feb).dy(IPRS) +- 22; hol(Feb).wn(IPRS) «- 0;

end if;

This code is used in section 43.

53. Memorial Day is last Monday in May.

(Update Memorial Day 53) =
hol(May).dy(IMEM) +- DayOfWeek'pos(Mon); hol(May).wn(IMEM) <- 5;

This code is used in section 43.

130

§54 APPENDIX E CALYR BODY

54. Columbus Day is second Monday in October. Did not exist before 1971, I guess?

(Update Columbus Day 54)
=

hol(Oct).wn(ICOL) <- 2;

if Year < 1971 then
hol(Oct).wn(ICOL) <- -1;

end if;

This code is used in section 43.

55.

(Update Veteran's Day 55) =
hol(Oct).wn(IVET) <- -1; hol(Nov).wn(IVET) «- 0;

if Year < 1978 then
hol(Oct).wn(IVET) <- 4; hol(Nov).wn{IVET) «- -1;

end if;

This code is used in section 43.

56. Calls the function Easter. Also computes Good Friday.

(Compute Easter 56)
=

edt <— easter(Year)', hol(edt.mn).dy(IEST) <— edt.dt; hol(edt .mn).wn(IEST) <— 0;

edt.dt <— edt.dt — 2;

if edt.dt < 1 then

edt.dt <— edt.dt + n<im(3); edt.mn <— Mar;

end if;

hol(edt.mn).dy(IGFR) *- e^.it; hol(edt .mn).wn(IGFR) <- 0;

This code is used in section 43.

57.

(Types local to ca/yr 57) =
type caldat is

record

mn : Month]

dt : integer;

end record;

This code is used in section 9.

58.

(Variables local to calyr 33) +=
edt : caldat;

131

CALYR BODY APPENDIX E §59

59. Here is the function easter that returns the day and month Easter occurs for a given

year.

(Local Procedures 59)
=

function easter (Year : in Year_Number)retum caldat is

(Types and variables local to easter 60
)

begin

fde <- ndm(l) + ndm(2)] dt.dt <- pfm((Year - 1900) mod 19);

if dt. dt < then
dt.mn «— Mar; dt.dt < dt.dt]

else

dt.mn <— Apr] fde <— fde + ndm(3);

end if;

(Compute weekday for Paschal Full Moon 62

)

return dt]

end easter]

This code is used in section 9.

60. Here is the Paschal Full Moon table used to find Easter.

(Types and variables local to easter 60) =
pfm : constant array (0 .. 18) of integer <- (14,3,-23,11,-31,18,8,-28,16,5,-25,

13, 2, -22, 10, -30, 17, 7, -27);

See also section 61.

This code is used in section 59.

61.

(Types and variables local to easter 60) +=
fde : integer]

dt : caldat
;

62. Easter is the next Sunday following the Paschal Full Moon.

(Compute weekday for Paschal Full Moon 62) =
fde ^- (dt.dt +fde - (8 - DayOfWeek'pos(fdy))) rem 7;

if fde < then

fde <- (7 +fde) rem 7;

end if;

dt.dt «- dt.dt +7 -fde]
if dt.dt > ndm (month'pos (dt .mn) + 1) then

dt.dt «— dt.dt — ndm (month'pos (dt.mn) + 1); dt.mn <— month' succ(dt .mn)]

end if;

This code is used in section 59.

132

§63 APPENDIX E CALYR BODY

63. Used to determine off-fridays of month. Also, if November, figure out election day.

(Set month 63)
=

declare

Idm , ofr , ii
, jj : integer

;

begin

ofr <— bpp — 2;

if ofr < 1 then

ofr <— ofr + 14;

end if;

Idm <— Idpm(Month)', ofr <— ofr + (/dm/14) * (14) - Idm]

if ofr < then

ofr <— ofr + 14;

elsif ((Month >l)A(ofr > 14)) then

ofr <— ofr — 14;

end if;

ofrdy(0) <- tfJV5T; ofrdy(l) <- CWST; o/Wfy(2) <- f/iV5r; ofrdy (3) <- t/JVST;

if (Fear > 1979) then

j; - 0;

loop

if ((Kear ^ 1982) V (Montfi ^ 4) V (ofr / 2)) A ((Year ^ 1980) V (Month ^ 1))

then

ofrdy (jj) <- ofr; jj +- jj +1;
end if;

ofr +— ofr + 14; exit when ofr > ndm(Month);

end loop;

end if;

/dm <- (/dm - (7 - DayOfWeek'pos (fdy))) rem 7;

if /dm < then

fdm <— (7 + /dm) rem 7;

end if;

(Figure out election day 66

)

end;

This code is used in section 39.

64.

(Types and Variables local to hoLdy 41) +=
UNST : constant integer <— 64;

jj : integer]

ofrdy : fourarray
;

133

CALYR BODY APPENDIX E §65

65. Make global.

(Variables local to calyr 33) +=
fdm : integer;

66.

(Figure out election day 66)
=

if (hmn — Nov) A ((Year rem 2) = 0) then

ii <- hol(Nov).dy(IELC) -fdm + 1;

if ii < 1 then
ii <— ii + 7;

end if;

if ii < 2 then

hol{Nov).wn(IELC)^2]
else

hol(Nov).wn(IELC) - 1;

end if;

end if;

This code is used in section 63.

67. Main part of hoLdy

.

(
Loop over holidays and Off-Fridays 67) =
ii <- 0; jj <- 0;

loop

(Check for no more holidays 69
)

if (hol(hmn).wn(ii) > 0) then
ho i— 0; (Holiday with fixed week day or fixed date 70

)

(Exhaust any earlier off-Fridays 72
)

(Check if off- Friday moved back to Thursday 73

)

(Work, and normal and Sunday non-work, holiday 74

)

(Monday/Friday extra day 75
)

(Saturday non-work holiday 76
)

end if;

ii <— ii + 1;

((ugly)) exit when (ii > 3);

exit when ((hol(hmn).dy(ii) < 0) A (ofrdy(jj) = UNST));
end loop;

(December processing 77

)

This code is used in section 39.

68.

(Types and Variables local to hoLdy 41) -}-=

ii, ho : integer]

134

§69 APPENDIX E CALYR BODY

69.

(Check for no more holidays 69)
=

if hol(hmn).dy(ii) < then

if (integer (Month) < 12) V (ofrdy(jj) < ndm(12)) then

if ofrdy(jj) = Day then
di(2) «-2;

if status = then
status *— 4;

end if;

end if;

ij «- 33 + 1
; 6oto u^y;

else

exit;

end if;

end if;

This code is used in section 67.

135

CALYR BODY APPENDIX E §70

70.

(Holiday with fixed week day or fixed date 70)
=

if hol(hmn).wn(ii) > then

dw <— hol(hmn).dy (»»'); date <— dw — fdm + 1;

if date < 1 then

date <— date + 7;

end if;

date <— date + (7 * (hol(hmn).wn(ii) — 1));

if date > ndm(Month) then {Takes care of Memorial Day}
date «— (faie — 7;

end if;

else { Holiday with fixed date }

date <— hol(hmn).dy(ii); dw <— (date — (8 —fdm)) rem 7;

if dw < then

dw «— (7 + dw) rem 7;

end if;

if hol(hmn).fl(ii) > then {Take care of weekend holidays}

if dw — DayOfWeek'pos (Sun) then
ho <— 1;

elsif dw = DayOfWeek'pos (Sat) then
ho < 1;

else

ho <- 0;

end if;

end if;

end if;

This code is used in section 67.

71.

(Types and Variables local to hoLdy 41) -f=
date,dw : integer;

136

§72 APPENDIX E CALYR BODY

72.

(Exhaust any earlier off-Fridays 72)
=

while ((hol(hmn).fl(ii) > 0) A (({ho > 0)Aofrdy(jj) < date) V ((ho < 0) A (ofrdy (jj) <
(date - 1))))) V ((hol(hmn).fl(ii) = 0) A (ofrdy (jj) < date)) loop

if ofrdy (jj) = Day then

<fi(2)<-2;

if status — then
status <— 4;

end if;

end if;

jj +-ti +i;
end loop;

This code is used in section 67.

73.

(Check if off-Friday moved back to Thursday 73) =
if (ofrdy (jj) > l)A(hol(hmn).fl(ii) > 0)A((ofrdy(jj) = date)V (ofrdy (jj) = (date+ho)))

then

if (ofrdy (jj) — 1) = Day then

di(2)<-l;

if status = then
status <— 4;

end if;

end if;

jj «- ;; + lj

end if;

This code is used in section 67.

74.

(Work, and normal and Sunday non-work, holiday 74) =
if (ho > 0) A (date = Day) then

di(0) <— dw\ di(l) «— hol(hmn).ix(ii)\ status <— 1 + 2 * (di(l)/JVAL);

end if;

This code is used in section 67.

75.

(Monday/Friday extra day 75)
=

if (ho ^ 0) A ((date + ho) > 0) A ((date + ho) = Day) then
di(0) <— dw + ho; di(l) <— hol(hmn).ix(ii); status <— 2;

end if;

This code is used in section 67.

137

CALYR BODY APPENDIX E §76

76.

(Saturday non-work holiday 76)
=

if (ho < 0) A (date = Day) then

di(0) <— dw; di(l) <— hol(hmn).ix(ii)\ status <— 1;

end if;

This code is used in section 67.

77.

(December processing 77) =

if hmn = Dec then

(Is first of next year a Friday or Saturday and this is an off-Friday? 78

)

(Weekday of December 31 79

)

(December 31 a Friday the observe Saturday, January 1st 80) end if;

This code is used in section 67.

78.

(Is first of next year a Friday or Saturday and this is an off-Friday? 78) =
if jj ^ then

if (ofrdy(jj) = ndm(12)) then
tmp <— 1;

else

tmp <— 0;

end if;

if ((ofrdy (jj -1) = (ndm (12) -13))V(ofrdy (jj) = ndm (12)))A((ndm (12)-tmp) = Day)
then

jK(2)«-l;

if status = then
status <— 4;

end if;

end if;

end if;

This code is used in section 77.

79.

(Weekday of December 31 79)
=

dw <— (ndm (12) - (8 - fdm)) rem 7;

if dw < then
dw <— (7 + dw) rem 7;

end if;

This code is used in section 77.

138

§80 APPENDIX E CALYR BODY

80.

(December 31 a Friday the observe Saturday, January 1st 80)
=

if (dw = DayOfWeek'pos(Fri)) A ndm (12) = Day then

di(0) <r- DayofWeek'pos(Fri); di(l) <- hol(Jan).ix(INYD); status «- 2;

end if;

This code is used in section 77.

81.

(Procedures and Tasks in calyr 39) +=
procedure print-holidays (yr : in Year-Number; do_nps : in boolean) is

(Variables local to print-holidays 84
)

begin

nps <— do-nps] (Loop through months 82)

end print-holidays
;

82. Straightforward.

(Loop through months 82)
=

for mon £ Jan . . Dec loop

if -^verbose then
put (month' image (mon))] />«£(">");

end if;

(Loop through days of month 83

)

if -i verbose then
puLline (" u ");

end if;

end loop;

This code is used in section 81.

139

CALYR BODY APPENDIX E §83

83.

(Loop through days of month 83) =
for ii € 1 .. (ndm (month'pos (mon) + 1)) loop

hoLdy (Time-of (yr , month'pos (mon) + 1, ii, 0.0), di, status);

if -iverbose then
if (status > 0) then

put ("day

u

=u
M
); put(ii,l); put(" . uustatusu=u "); put (status, 1);

pu*(Huudiu=u-C");

for i G . . 2 loop

pu£(di(i),i);

if i < 2 then

jm*(V);
end if;

end loop;

puUine("}u ")]

end if;

else

(Print out first day of month 85

)

(Print out holidays, as necessarily 87

)

end if;

end loop;

This code is used in section 82.

84.

(Variables local to print-holidays 84)
=

status : integer;

di : threearray
;

See also section 86.

This code is used in section 81.

85.

(Print out first day of month 85) =
if ii = 1 then

put (month' image (mon)); put(ii,3); put(" u "); hfdm <— DayOfWeek' val(fdm);

put(DayOfWeek ' image(hfdm)); puLline ("");

end if;

This code is used in section 83.

86.

(Variables local to print-holidays 84) +=
hfdm .DayOfWeek;

140

§87 APPENDIX E CALYR BODY

87.

(Print out holidays, as necessarily 87)
=

if status > then

if ->nps then
if (di(2) >0) then

hfdm <- Day0fWeek'val(di(2) + 3); put(DayOfWeek'image(hfdm)); put(ii,3);

put("u"); puUine("Offday");

end if;

end if;

if status < 3 then

hfdm *— DayOfWeek' val(di(0)); put(DayOfWeek' image (hfdm)); put(ii,3);

put(" u ")', put (S(holidays (di(l))));

if status ^ 2 then

puUine("")\

else

put-line (" u (Observed)");

end if;

end if;

end if;

This code is used in section 83.

88.

(Procedures and Tasks in calyr 39) +=
procedure caldate (Julian : Long-integer; Month : out Month-Number; Day : out

Day-Number; Year : out Integer) is

(Variables local to caldat 90
)

begin
if (Julian > IGREG) then

(Correct for to Gregorian Calendar 89
)

else

ja <— Julian

;

end if;

(Now finish computation 91

)

end caldate
;

89.

(Correct for to Gregorian Calendar 89)
=

jalpha <- long-integer (((float (Julian - 1867216) - 0.25)/36524.25) - 0.5);

ja <— Julian + 1 + jalpha — long-integer (0.25 * float (jalpha) — 0.5);

This code is used in section 88.

141

CALYR BODY APPENDIX E §90

90.

(Variables local to caldat 90)
=

IGREG : constant long-integer <- (15 + 31 * (10 + 12 * 1582));

ja,jalpha : long-integer;

See also section 92.

This code is used in section 88.

91.

(Now finish computation 91)
=

jb <- ja +1524;

jc <- longJnteger ((6680.0 + {float (jb - 2439870) - 122.1)/365.25) - 0.5);

jd <— (365 * jc) + long-integer (0.25 * float (jc) — 0.5);

je <— long-integer (float (jb — ji)/30.6001 — 0.5);

Day <— Integer(jb — jd — long-integer (30.6001 * float (je) — 0.5));

TMonth <— Integer (je — 1);

if
(
TMonth > 12) then

Month <— Tmonth — 12;

else

Month <— Tmonth;

end if;

Year <— integer (jc — 4715);

if (Month > 2) then
Year <— Year — 1;

end if;

if Year < then
Year <— Year — 1;

end if;

This code is used in section 88.

92.

(Variables local to caldat 90) +=
jb,jc,jd,je : long-integer;

Tmonth : integer;

142

§93 APPENDIX E CALYR BODY

93.

{ Procedures and Tasks in calyr 39)
+=

function julian-day (Month : Month-Number; Day : Day-Number; Year : Integer)return

long^integer is

(Variables local to Julian-Day 94
)

begin

(Check for bad year 95
)

(Twiddle some variables before computing 96
)

(Compute Julian number 98
)

(Test whether to change to Gregorian Calendar 99
)

return jul;

end julian-day;

94.

(Variables local to Julian-Day 94)
=

jul : long-integer;

See also sections 97 and 100.

This code is used in section 93.

95. There is no year zero!

(Check for bad year 95) =
if (Year = 0) then

raise BadYear;

end if;

This code is used in section 93.

96. I translated this from C. I don't pretend to understand it.

(Twiddle some variables before computing 96)
=

if Year < then
TYear <— Year + 1;

else

TYear <— Year;

end if;

if Month > 2 then

jy *— TYear; jm «— Month + 1;

else

jy <— TYear — 1; jm <— Month + 13;

end if;

This code is used in section 93.

143

CALYR BODY APPENDIX E §97

97.

(Variables local to Julian-Day 94) +=
TYear,jy,jm : integer]

98. Probably taken from the book Astronomical Formulae for Calculators.

(Compute Julian number 98)
=

jul <— long-integer (365.25 * float (jy) — 0.5) + long-integer (30.6001 * float (jm) — 0.5) +
long.integer [Day + 1720995);

This code is used in section 93.

99. Gregorian Calendar was adopted on October 15, 1582.

(Test whether to change to Gregorian Calendar 99)
=

if long-integer (integer (Day) + 31 * (integer (Month) + 12 * Fear)) > IGREG then
ja «— integer(0.01 * float (jy) — 0.5);

jul <— jul + long-integer (2 — ja + integer(0.25 * float(ja) — 0.5));

end if;

This code is used in section 93.

100.

(Variables local to Julian-Day 94) +-=

IGREG : constant long-integer <- (15 + 31 * (10 + 12 * 1582));

ja : integer]

144

§101 APPENDIX E CALYR BODY

101.

(Procedures and Tasks in calyr 39) +=
function IsWorkDay(YrDate : Time]NRaD : boolean <— false]

debugit : boolean *— false)return boolean is

(Variables local to Is WorKDay 103

)

begin

status <— 1; workday <— false ; hoLdy(CurrenLTime, di, status)]

if debugit then

(Display hoLdy output 102)

end if;

dow <- GetDayOfWeek(YrDate)]

if status = then

(Make sure not a Saturday or Sunday 106

)

elsif nrad then

(Look if NraD off-Friday (or off-Thursday if Friday a holiday) 107

)

else

(See if federal holiday 108
)

end if;

if debugit then

(Print if workday 104
)

end if;

return workday]

end IsWorkDay]

102.

(Display hoLdy output 102) =
Split {Yrdate , Year , Month , Day , Seconds)] pui("Statusu=u

M
); put (status, 1)]

put("uudiu=ui")]

for i 6 . . 2 loop

put(di(i),i)]

if i < 2 then

P«t(V);
end if;

end loop;

pii£_7*ne(,,
},u

,,

)i

This code is used in section 101.

145

CALYR BODY APPENDIX E §103

103.

(Variables local to Is WorKDay 103) =
Year : Year-Number;

Month : Month-Number-,

Day : Day-Number;

Seconds : Day-Duration;

dow : DayOfWeek;

See also section 105.

This code is used in section 101.

104.

(Print if workday 104)
=

prints date (Yrdate);

if workday then
pwL/me("uisuauworkday .

");

else

j?uL/me("uisuN0Tuauworkday. ");

end if;

This code is used in section 101.

105.

(Variables local to Is WorKDay 103)
+=

status : integer;

workday : boolean;

di : threearray;

Current-Time : Time <— YrDate;

106.

(Make sure not a Saturday or Sunday 106)
=

if (dow ^ Sun) A (dow ^ Sat) then
workday <— true;

end if;

This code is used in sections 101, 107, and 108(2).

107. Make allowances for people (NRaD) working 5/4 weekly schedule.

(Look if NraD off-Friday (or off-Thursday if Friday a holiday) 107)
=

if status = 3 then
(Make sure not a Saturday or Sunday 106

)

end if;

This code is used in section 101.

146

§108 APPENDIX E CALYR BODY

108. If status > 2 could be Arbor Day, or other work holiday.

(See if federal holiday 108)
=

if status — 3 then

(Make sure not a Saturday or Sunday 106
)

end if;

if status = 4 then
(Make sure not a Saturday or Sunday 106

)

end if;

This code is used in section 101.

109.

(Procedures and Tasks in calyr 39) +=
function DurationTo CalendarTime{StartDate : Time ; dailyhours : WorkHours;

hrs : Duration; NRaD : boolean)retum Time is

(Variables local to DurationTo CalendarTime 111)

begin

(Find next work-day 110
)

(Remove slop 112
)

(Find next work-day 110

)

(If partial day, account for it 114)(Find next work-day 110
)

(Find last work-day 116)

(Figure out partial day 117)

return Current- Time;

end DurationTo CalendarTime;

110.

(Find next work-day 110)
=

while (-iIs WorkDay (CurrenL Time ,
NRaD)) loop

Currents Time <— IncrementDay
(
CurrenL Time);

end loop;

This code is used in sections 109(3) and 116.

111.

(Variables local to DurationTo CalendarTime 111) =
Current-Time : Time <— StartDate;

See also sections 113 and 115.

This code is used in section 109.

147

CALYR BODY APPENDIX E §112

112. If the start date was not a work day, and the the number of hours in Start Date is

greater then zero, remove it. (Maybe this should be an error.)

(Remove slop 112) =
Split (Current- Time , Year , Month , Day , Seconds);

if Current-Time ^ StartDate then

Seconds <— 0.0; Current- Time <— Time.of (Year , Month ,Day, Seconds);

end if;

This code is used in section 109.

113.

(Variables local to DurationTo CalendarTime 111) -f-=

Year : Year-Number

;

Month : Month-Number;

Day : Day-Number;

Seconds : Day-Duration;

114. If the StartDate has seconds l zero then this means we are starting a new task in

the middle of the day.

(If partial day, account for it 114)
=

yhrs «— hrs; yrday <— GetDayOfWeek (Current-Time);

if (dailyhours (yrday) — seconds) > yhrs then
Current-Time <— Current-Time + yhrs

;
yhrs <— 0.0;

else

Current-Time <— Current-Time — Seconds;

Current- Time <— IncrementDay (Current- Time);

yhrs <— yhrs — (dailyhours (yrday) — seconds);

end if;

This code is used in section 109.

115.

(Variables local to DurationTo CalendarTime 111) +=
yhrs : Duration;

yrday : DayOfWeek;

148

§116 APPENDIX E CALYR BODY

116.

(Find last work-day 116) =
yrday <— GetDayOfWeek (Current-Time);

while yhrs > dailyhours (yrday) loop

yhrs <— yhrs — dailyhours (yrday); Current-Time <— IncrementDay (Current-Time);

(Find next work-day 110
)

yrday <— GetDayOfWeek(Current- Time)]

if (yrday = Sat) V (yrday = Sun) then
put ("ERROR ! uERR0R ! uERR0R! "); newJine

;

pu/("Forusomeureasonufailedutoufindunextuwork-dayuforudateu=u")5
print-date (Current- Time);

if (->IsWorkDay (Current-Time , NRaD , True)) then

j>u<
(

"

u (N0Tuauwork-day .) ");

else

put (

"

u (ISuuauwork-day .) "
);

end if;

new-line; raise BadDay;

end if;

end loop;

This code is used in section 109.

117.

(Figure out partial day 117) =
if yhrs > 0.0 then

Current-Time <— Current-Time + yhrs; yhrs <— 0.0;

end if;

This code is used in section 109.

118.

(Procedures and Tasks in calyr 39)
+=

function CalendarTimeToDuration(StartDate : Time; dailyhours : WorkHours;

EndDate : Time; NRaD : boolean)return Duration is

(Variables local to CalendarTimeToDuration 121

)

begin

(Assert that input dates are correct 119

)

(Count work hours over total span of days 122
)

end CalendarTimeToDuration;

149

CALYR BODY APPENDIX E §119

119. The StartDate and EndDate must be valid work days and must have hours less

then or equal to the total number of hours worked in a day. If this is not true, raise the

BadDay exception.

(Assert that input dates are correct 119)
=

if ^Is WorkDay (StartDate , NRaD) V -^Is WorkDay (EndDate , NRaD) then

raise BadDay

;

end if;

Split (StartDate , StartYear , StartMonth, StartDay , StartSeconds);

dow <r— GetDayOfWeek (StartDate);

if StartSeconds > dailyhours (dow) then

raise BadDay

;

end if;

Split(EndDate , EndYear , EndMonth , EndDay , EndSeconds);

dow <- GetDayOfWeek (EndDate);

if EndSeconds > dailyhours (dow) then
raise BadDay

;

end if;

See also section 120.

This code is used in section 118.

120. Also check that EndDate I StartDate.

(Assert that input dates are correct 119) +=
if StartDate > EndDate then

raise BadDay
;

end if;

121.

(Variables local to CalendarTimeToDuration 121) =
StartYear

,
EndYear : Year-Number;

StartMonth, EndMonth : Month-Number;
StartDay

,
EndDay : Day-Number;

StartSeconds , EndSeconds : Day-Duration

;

dow : DayOfWeek;

See also sections 124 and 127.

This code is used in section 118.

150

§122 APPENDIX E CALYR BODY

122.

(Count work hours over total span of days 122) =
if SameDay(StartDate,EndDate) then

(Figure out duration for same day 123
)

else

(Count work hours for first day 125
)

(Count work hours for intermediate days 126
)

(Count work hours for last day 128
)

end if;

return hrs;

This code is used in section 118.

123. Easy. Just Subtract.

(Figure out duration for same day 123)
=

hrs <— EndDate — StartDate;

This code is used in section 122.

124.

(Variables local to CalendarTimeToDuration 121) +=
hrs : duration]

125.

(Count work hours for first day 125)
=

dow «— GetDayOfWeek(StartDate); hrs <— dailyhours(dow) — StartSeconds;

This code is used in section 122.

126.

(Count work hours for intermediate days 126)
=

Current-Time <— Time. Of (StartYear , StartMonth, StartDay ,0.0);

Current-Time <— IncrementDay (Current- Time);

while -^SameDay (Current-Time, EndDate) loop

if Is WorkDay (Current- Time , NraD) then
dow <— GetDayOfWeek(Current-Time); hrs «— hrs + dailyhours(dow);

end if;

Current- Time <— IncrementDay (Current- Time);

end loop;

This code is used in section 122.

127.

(Variables local to CalendarTimeToDuration 121) +=
Current- Time : Time;

151

CALYR BODY APPENDIX E §128

128.

(Count work hours for last day 128)
=

hrs <— hrs + EndSeconds
;

This code is used in section 122.

129.

(Procedures and Tasks in calyr 39) +=
function SameDay (Timet , Timet : Time)return boolean is

(Variables local to SameDay 130

)

begin

Split(Timel , Yearl , Monthl , Dayl , Seconds);

Split(Time2 , Year2 , MOntht ,
Day

2

, Seconds);

if (Yearl = Yeav2) A (Monthl = Month.2) A (Dayl = Day2) then

return true;

else

return false;

end if;

end SameDay;

130.

(Variables local to SameDay 130) =
Yearl , Year2 : Year_Number

;

Monthl ,Month2 : Month-Number;
Dayl ,Day2 : Day-Number;
Seconds : Day..Duration;

This code is used in section 129.

131.

(Procedures and Tasks in calyr 39) +=

function GetDayOfWeek (Today : Time)return DayOfWeek is

jul : longAnteger;

Month : Month-Number;
Day : Day_Number;
Year : Fear_iVuTn6er;

Seconds : Day-Duration;

fdy : DayO/T^eeife;

begin

Split (Today , Year , Month, Day , Seconds); jul := Julian- day (Month, Day , Fear);

/dy <— DayOfWeek'val((jul + 1) mod 7); return /dy;

end GetDayOfWeek;

152

§132 APPENDIX E CALYR BODY

132. Essentially converts hours to seconds.

(Procedures and Tasks in calyr 39) +=
function ConvertHoursToDuration(hrs : natural)retum Duration is

dur : duration]

begin
dur <— duration(hrs) * 3600.0; return dur;

end ConvertHours ToDuration
;

133. Essentially converts seconds to hours.

(Procedures and Tasks in calyr 39) +=
function ConvertDurationToHours(dur : Duration)retum natural is

hrs : natural]

begin

hrs <— natural (float (dur)/3600.0); return hrs;

end ConvertDurationToHours]

134.

(Procedures and Tasks in calyr 39) +=
Procedure Split(Seconds : Day-Duration; Hour : out Hour-Number] Minute : out

Minute-Number
;

Second : out Second-Number) is yrsecs : Day-Duration <— Seconds]

begin

Hour *— integer (yrsecs)/3600; yrsecs <— yrsecs — Duration(Hour * 3600);

Minute <— integer (yrsecs)/60] yrsecs <— yrsecs — Duration (Minute * 60);

Second <— integer (yrsecs)]

end Split]

135. Prints out the date.

mm Month number
dd Day number in the month
HH Hour number (24 hour system)

MM Minute number

SS Second number

cc Century minus one

yy Last 2 digits of the year number

The month, day, year, and century may be omitted; the current values are applied as

defaults. For example:

date 10080045

sets the date to Oct 8, 12:45 a.m. The current year is the default because no year is

supplied.

153

CALYR BODY APPENDIX E §136

136. This was written because there seemed to be an error in adding 86,400.0 seconds

to a day and then expecting the answer to come out right. Errors occured around April

7, 1997 and October 26, 1997. I believe it is a GNAT bug for version 3.09.

(Procedures and Tasks in calyr 39) +=

function IncrementDay (YrDate : Time)return Time is

jul : long-integer;

Year : Year-Number;
Day : Day-Number;
Month : Month-Number;

Seconds : Day-Duration;

begin
Split (Yrdate , Year , Month , Day , Seconds); jul <— julian-day (Month , Day , Year);

jul <— jul + 1 ; caldate (jul , Month , Day , Year);

return Time-Of (Year , Month , Day , Seconds);

end IncrementDay

;

154

§137 APPENDIX E CALYR BODY

137.

(Procedures and Tasks in calyr 39)
+=

procedure print-date (date : time) is

(Variables local to print-date 138)

do.alternate : boolean <— true;

begin

Split (date , Year , Month, Day , Seconds);

if Month < 10 then
ptrf(»o»);

end if;

put (natural (Month), 1); put("/");

if (fay < 10 then
put("0");

end if;

put (natural(Day), 1); pui("/"); put(natural(Fear), 4);

Split(Seconds , Hour, Minute , Second);

if do-alternate then

jm*("+»);

if J7our < 10 then
put("0");

end if;

jm£
(
natural (Hour) , 1)

;

else

ptrf(v);
if Hour < 10 then

put("0");

end if;

pu2(na£ura/(17our),l); pu<(": ");

if Minute < 10 then

ptrf("0");

end if;

pu<(nahtra/(MinM<e),l); pu<(M
:");

if Second < 10 then
ptii("O f1

);

end if;

pw<
(
natural (Second) , 1)

;

end if;

end prinLdate;

155

CALYR BODY APPENDIX E §138

138.

(Variables local to print-date 138) =
Year : Year-Number;

Month : Month-Number;

Day : Day-Number;
Seconds : Day-Duration;

Hour : Hour-Number;

Minute : Minute-Number;

Second : Second-Number;

This code is used in section 137.

156

§139 APPENDIX E CALYR BODY

139.

(Procedures and Tasks in calyr 39) +=
procedure print, date (outfile : file.type; date : time) is

(Variables local to fprinLdate 140
)

do. alternate : boolean <— true;

begin

Split (date , Year , Month , Day , Seconds);

if Month < 10 then

put (outfile, "0");

end if;

put(outfile, natural (Month) , 1); put(outfile , "/");

if day < 10 then
jm*(ou#iZe, M M

);

end if;

put(outfile, natural(Day), 1); put(outfile, "/"); put (outfile, natural (Fear), 4);

Split(Seconds , Hour , Minute , Second);

if do. alternate then
pw<(ou#iZe,"+ M

);

if .Sour < 10 then

ptrf(ouil/i/e,"0");

end if;

put(outfile, natural (Hour), 1);

else

put (outfile,
"
u ")i

if ^owr < 10 then
J}u*(ou*/lZe, M ,,

);

end if;

put (outfile, natural (Hour), 1); put(outfile , ": ");

if Minute < 10 then
jm*(ouf/i/e,"0 H

);

end if;

put (outfile , natural (Minute),!); put(outfile, "
: ");

if Second < 10 then
pu*(ou#iZe,"0 M

);

end if;

put (outfile, natural (Second), 1);

end if;

end print, date,

157

CALYR BODY APPENDIX E §140

140.

(Variables local to fprint-date 140)
=

Year : Year-Number;

Month : Month-Number;

Day : Day-Number;

Seconds : Day-Duration;

Hour : Hour-Number;

Minute : Minute-Number;

Second : Second-Number;

This code is used in section 139.

141.

(Procedures and Tasks in calyr 39) +=
function get-date (infile : file-type)return Time is

(Variables local to fget-date 142
)

begin
get (infile, ndum); Month *— ndum;
if debug2 then

jptrf("Moiithu=u
H

); put(Month, 1); puUine (".");

end if;

get-immediate (infile , chr); get(infile,ndum); Day <— ndum;

if debug2 then

pu*("Dayu=u "); put(Day,l); put-line (" .");

end if;

geLimmediate (infile , chr); get (infile , nJura);

if ndum < 100 then
if ndum < 50 then

Year <— n<ium + 2000;

else

Year <— ndum + 1900;

end if;

else

Fear <— ndum;
end if;

if debug2 then

^(MYearu=u
M
); put (Year, 1); puUine (".");

end if;

get-immediate (infile, chr); get(infile,ndum); Hour *— ndum;
return Time-Of (Year , Month, Day , ConvertHoursToDuration(Hour));

end geLdate;

158

§142 APPENDIX E CALYR BODY

142.

(Variables local to fget-date 142)
=

ndum : natural]

chr : character;

Year : Year-Number;

Month : Month-Number;

Day : Day-Number;
Hour : natural;

This code is used in section 141.

159

CALYR BODY APPENDIX E §143

143.

(Procedures and Tasks in calyr 39) +=
function get_date(str : in Ustring)return Time is (Variables local to geLdate 144)

begin

if debug2 then
j>u<("Paxsingustringu

" M
); put(S(str)); puLline ("*.");

end if;

tstr <— str; get(S(tstr), ndum, Last); Month <— ndum;

if debug2 then
jm*("Monthu=u M

); put(Month, 1); jmLftne(".");

end if;

tnd <— mdez(farr, "/"); tstr <— tail (tstr, length (tstr) — mrf);

get(S(tstr), ndum, Last); Day <— ndum;

if debug2 then
pu<(MDayu=u

M
); pui(Day,l); pudme(".");

end if;

m<£ <— index(tstr, "/"); fo£r <— tail (tstr , length (tstr) — ind);

get(S(tstr), ndum, Last);

if debugB then
j>u<("Parsingustringu '"); /)u<(5(£s<r)); putJine(" '

. "); pu^'^duniLj^");

put(ndum, 1); pu£_/me(" .

");

end if;

if ndum < 100 then
if ndum < 50 then

Fear «— ndum + 2000;

else

Fear <— ndum + 1900;

end if;

else

Fear *— nitim;

end if;

if debug2 then
pu<("Yearu=u

M
); pu*(Fear,l); puLline (".");

end if;

tnd <— tnde:c(£s£r, "+"); tsfr <— tail (tstr , length (tstr) — ind);

get(S(tstr), ndum, Last); Hour <— ndum;
return Time_0f

'

(Year , Month , Day , ConvertHoursToDuration(Hour));

end get^date

;

160

§144 APPENDIX E CALYR BODY

144.

{ Variables local to get-date 144)
=

ndum : natural;

Year : Year-Number;

Month : Month-Number;

Day : Day-Number;
Hour : natural;

Last : positive

;

tstr : ustring;

ind : natural;

This code is used in section 143.

161

TEST DRIVER APPENDIX E §145

145. Test Driver. This is the main routine that starts everything.

146.

output to file main.adb

with TextJO]
use TextJO]
with Ada. Calendar]

use Ada. Calendar]

with calyr]

use calyr;

with ustrings]

use ustrings
]

with getopt]

use getopt;

procedure main is

(Variables local to main 150
)

package yrAo is new integer_io(Year_ Number);

use yr.io
;

package booLio is new enumerationAo (boolean)]

use booLio]

begin

(Get options 147
)

print-holidays (yr , nps);

end main]

147.

(Get options 147)
=

(Get year 148
)

(Get nps 149

)

This code is used in section 146.

148.

(Get year 148) =
if option_present(U("—yeax")) then

geLoption(U(" -year"),param)] get(S(param), yr ,Last);

else

yr <- 1997;

end if;

This code is used in section 147.

162

§149 APPENDIX E TEST DRIVER

149.

(Get nps 149)
=

if option.present (£/("-nps")) then

geLoption (U (" -nps"), param)\ get(S(param), nps , Last);

else

nps <— false;

end if;

This code is used in section 147.

150.

(Variables local to main 150)
=

yr : Year-number]

param : Ustring;

Last : positive
;

nps : boolean]

This code is used in section 146.

163

SYSTEM-DEPENDENT CHANGES APPENDIX E §151

151. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

152. RCS Keywords.

$RCSfile: calyr.aweb,v

$Revision: 1.1

$Date: 1997/08/18 22:43:35

$Author: evansjr

$Id: calyr.aweb,v 1.1 1997/08/18 22:43:35 evansjr Exp evansjr

$Locker: evansjr

$ State: Exp

164

§153 APPENDIX E INDEX

153. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 9, 32, 146.

already-leaped: 38, 42.

Apr: 13, 59.

Aug: 13.

BadDay: 12, 116, 119-120.

BadYear: 12, 95.

booLio: 146 .

boolean: 16, 20-23, 38, 81, 101, 105, 109,

118, 129, 137, 139, 146, 150.

bpp: 47-48, 63.

caldat: 57, 58-59, 61.

caldate: 19, 88, 136.

Calendar: 9, 146.

CalendarTimeToDuration: 22, 118 .

Calyr: 40-41.

calyr: 9, 42, 146.

calyr. adb : 9.

calyr. ads : 9.

character: 142.

chr: 141-142.

Command-Line : 9.

ConvertDurationToHours: 26,133.

ConvertHoursToDuration: 25, 132 ,

141, 143.

Current-Time: 101, 105, 109-112, 114,

116-117, 126-127.

dailyhours: 21-22, 109, 114, 116, 118-

119, 125-126.

date: 28, 70-76, 137, 139.

day: 137, 139.

Day: 18-19, 40-41, 44, 69, 72-76, 78, 80,

88, 91, 93, 98-99, 102-103, 112-113,

131, 136-144.

Day-Duration: 27, 41, 103, 113, 121,

130-131, 134, 136, 138, 140.

Day-Number: 18-19, 41, 88, 93, 103, 113,

121, 130-131, 136, 138, 140, 142, 144.

DayofWeek: 14, 80.

DayOfWeek: 13, 24, 44, 46, 50, 52-

53, 62-63, 70, 80, 85-87, 103, 115,

121, 131.

Dayl : 129-130.

Day2: 129-130.

debug: 38.

debugit: 20, 101.

debug2: 38, 141, 143.

Dec: 13, 77, 82.

di: 17, 39-40, 44, 69, 72-76, 78, 80,

83-84, 87, 101-102, 105.

do-alternate: 137, 139.

do-nps: 16, 81.

dow: 101, 103, 106, 119, 121, 125-126.

dt: 56-57, 59, 61-62.

dur: 26, 132-133.

duration: 124, 132.

Duration: 15, 21-22, 25-26, 109, 115,

118, 132-134.

DurationTo CalendarTime : 21, 109 .

dw: 70-71, 74-76, 79-80.

dy: 49, 52-53, 56, 66-67, 69-70.

easier: 56, 59.

edt: 56, 58.

EndDate: 22, 118-120, 122-123, 126.

EndDay: 119, 121.

EndMonth: 119, 121.

EndSeconds: 119, 121, 128.

EndYear: 119, 121.

enumeration-io : 146.

Exception: 12.

false: 20, 38, 101, 129, 149.

165

INDEX APPENDIX E §153

fde: 59, 61-62.

fdm: 63, 65-66, 70, 79, 85.

fdy: 44, 46, 62-63, 131.

Feb: 13, 42, 52.

file-type: 28-29, 139, 141.

fl: 49, 70, 72-73.

float: 89, 91, 98-99, 133.

fourarray : 12, 49, 64.

Fri: 13-14, 80.

get: 141, 143, 148-149.

get-date: 29, 141, 143.

get-immediate: 141.

geLoption: 148-149.

GetDayOfWeek: 24, 101, 114, 116, 119,

125-126, 131 .

getopt: 146.

hfdm : 85-87.

hmn: 40-41, 66-67, 69-70, 72-77.

ho: 67-68, 70, 72-76.

hoi: 43, 50-56, 66-67, 69-70, 72-76, 80.

hoLdy: 17, 39, 67, 83, 101.

hoLtype: 49, 50.

holidays : 35, 87.

Hour: 27, 134, 137-144.

Hour-Number: 11, 27, 134, 138, 140.

hrs: 21, 25, 109, 114, 122-126, 128,

132-133.

i: 83, 102-

ICOL: 37, 54.

IELC: 37, 66.

IEST: 37, 56.

IGFR: 37, 56.

IGREG: 88, 90, 99-100.

JJL4Z: 37.

ii: 63, 66-70, 72-76, 83, 85, 87.

image: 82, 85, 87.

IMEM: 37, 53.

IMLK: 37, 51.

IncrementDay: 30, HO, 114, 116, 126,

136 .

ind: 143-144.

index : 143.

infile: 29, 141.

inLio : 38.

integer: 11-12, 17, 36-39, 44, 48, 57,

60-61, 63-65, 68-69, 71, 84, 91-92,

97, 99-100, 105, 134.

Integer: 18-19, 88, 91, 93.

integer-io: 38, 146.

INYD: 37, 80.

IPRS: 37, 52.

IsWorkDay: 20, 101, 110, 116, 119, 126.

IVET: 37, 55.

ix: 49, 74-76, 80.

j: 42.

;'a: 88-91, 99-100.

JAFD: 36, 50.

;'a/p/ia: 89-90.

JAN: 51.

Jan: 13, 80, 82.

jb : 91-92.

jc: 91-92.

/<?##: 36, 50.

JCOL: 36, 50.

j'd: 91-92.

je: 91-92.

J£ZC: 36, 50.

JEST: 36, 50.

JF.4T: 36, 50.

JFLG: 36, 50.

JGF#: 36, 50.

JHAL: 36, 50.

JIND: 36, 50.

;;': 63-64, 67, 69, 72-73, 78.

JLAB: 36, 50.

jm: 96-98.

JM£M: 36, 50.

JMLK: 36, 50.

JMOT: 36, 50.

/WTO: 36, 50.

JPRS: 36, 50.

J5PT: 36, 50.

JTHX: 36, 50.

Jul: 44-45, 93-94, 98-99, 131, 136.

Jul: 13.

Ju/ian: 19, 88.

166

§153 APPENDIX E INDEX

Julian: 88-89.

julian.day: 18, 44, 93, 131, 136.

Julian- day : 19.

Jun: 13.

JVAL: 36, 50, 74.

JV^T: 36, 50.

jy: 96-99.

Zaj*: 143-144, 148-150.

Idm: 63.

/a>m: 34, 42, 63.

length: 143.

long-integer: 18, 45, 89-94, 98-100,

131, 136.

Long-integer: 19, 88.

main : 146 .

main.adb : 146.

Mar: 13, 56, 59.

May: 13, 53.

Minute: 27, 134, 137-140.

Minute-Number: 11, 27, 134, 138, 140.

mn: 56-57, 59, 62.

77ion : 82, 83, 85.

MON: 50.

Mon: 13-14, 52-53.

Montfc: 18-19, 40-41, 44, 50, 57, 63,

69-70, 88, 91, 93, 96, 99, 102-103,

112-113, 131, 136-144.

month: 13, 40, 42, 62, 82-83, 85.

Month-Number: 18-19, 33-34, 41, 88,

93, 103, 113, 121, 130-131, 136, 138,

140, 142, 144.

Monthl : 129-130.

Montht : 129-130.

MOnthB: 129.

natural: 25-26, 33-35, 132-133, 137,

139, 142, 144.

ndm: 33, 42, 56, 59, 62-63, 69-70,

78-80, 83.

ndum: 141-144.

new-line: 116.

Nov: 13, 55, 66.

nps: 38, 81, 87, 146, 149-150.

NraD: 126.

nrad: 101.

NRaD: 20-22, 101, 109-110, 116,

118-119.

NumHolidays : 35.

Oct: 13, 54-55.

ofr: 63.

ofrdy : 63-64, 67, 69, 72-73, 78.

option-present: 148-149.

outfile: 28, 139.

param : 148-150.

pfm: 59-60.

pos: 42,50,52-53,62-63,70,80,83.

positive: 144, 150.

print-date: 28, 104, 116, 137, 139 .

print-holidays : 16, 81, 146.

private: 6.

Procedure : 27, 134.

procedure: 6.

protected: 6.

put: 82-83, 85, 87, 102, 116, 137, 139,

141, 143.

putJine: 82-83, 85, 87, 102, 104, 141,

143.

SameDay: 23, 122, 126, 129.

SAT: 50.

Sat: 13, 70, 106, 116.

Second: 27, 134, 137-140.

Second.Number: 11, 27, 134, 138, 140.

seconds: 114.

Seconds: 27, 40-41, 102-103, 112-114,

129-131, 134, 136-140.

Sep: 13.

Split: 27, 40, 102, 112, 119, 129, 131,

134, 136-137, 139.

StartDate: 21-22, 109, 111-112, 118-

120, 122-123, 125.

StartDay: 119, 121, 126.

StartMonth: 119, 121, 126.

StartSeconds: 119, 121, 125.

StartYear: 119, 121, 126.

status: 17, 39-40, 69, 72-76, 78, 80,

83-84, 87, 101-102, 105, 107-108.

sir: 29, 143.

167

INDEX APPENDIX E §153

Strings: 32.

succ: 62.

SUN: 50.

Sun: 13, 70, 106, 116.

system dependencies: 151.

tail: 143.

TEXTJO: 9.

TexUO : 146.

texLio : 10.

threearray: 12,17,39,84,105.

THU: 50.

Thu: 13.

Time: 20-24, 29-30, 101, 105, 109, 111,

118, 127, 129, 131, 136, 141, 143.

time: 17, 28, 39, 137, 139.

Time-Of: 126, 136, 141, 143.

Time-of: 83, 112.

Timet: 23, 129.

Timet: 23, 129.

TMonth: 91.

Tmonth: 91-92.

tmp: 47-48, 78.

Today: 24, 131.

true: 38, 42, 106, 129, 137, 139.

True: 116.

tstr: 143-144.

TUE: 50.

Tue: 13.

iFeor: 47-48.

TYear: 96-97.

Type: 15.

w^/y: 67, 69.

Unbounded : 32.

tfJVST: 63-64, 67.

foe: 32.

ustring: 144.

Ustring: 29, 35, 143, 150.

Ustrings: 9, 32.

ustrings: 146.

tiaZ: 40, 44, 85, 87, 131.

verbose: 38, 82-83.

Wed: 13.

WeekDay: 14, 15.

tiro: 49, 51-56, 66-67, 70.

workday: 101, 104-106.

Worfctfou™: 15, 21-22, 109, 118.

Year : 18-19, 40-42, 44, 47, 51-52, 54-56,

59, 63, 66, 88, 91, 93, 95-96, 99,

102-103, 112-113, 131, 136-144.

Year-number: 150.

Year-Number: 16, 18, 41, 59, 81, 103,

113, 121, 130-131, 136, 138, 140,

142, 144, 146.

Yearl : 129-130.

Year2 : 129-130.

yhrs: 114-117.

yr: 16, 81, 83, 146, 148, 150.

yrAo : 146.

YrDate: 20, 30, 101, 105, 136.

Yrdate :

yrdate

:

yrday

:

yrsecs :

102, 104, 136.

17, 39-40.

114-116.

134.

168

§153 APPENDIX E NAMES OF THE SECTIONS

Assert that input dates are correct 119, 120) Used in section 118.

Calculate beginning date of 1st pay period in year 47 } Used in section 43.

Calculate weekday of Jan 1. 44) Used in section 43.

Check for bad year 95) Used in section 93.

Check for no more holidays 69) Used in section 67.

Check if leap year 42) Used in section 39.

Check if off-Friday moved back to Thursday 73) Used in section 67.

Compute Easter 56) Used in section 43.

Compute Julian number 98) Used in section 93.

Compute weekday for Paschal Full Moon 62) Used in section 59.

Correct for to Gregorian Calendar 89) Used in section 88.

Count work hours for first day 125) Used in section 122.

Count work hours for intermediate days 126) Used in section 122.

Count work hours for last day 128) Used in section 122.

Count work hours over total span of days 122) Used in section 118.

December 31 a Friday the observe Saturday, January 1st 80) Used in section 77.

December processing 77) Used in section 67.

Display hoLdy output 102} Used in section 101.

Exhaust any earlier off-Fridays 72) Used in section 67.

Figure out duration for same day 123) Used in section 122.

Figure out election day 66) Used in section 63.

Figure out partial day 117) Used in section 109.

Find last work-day 116) Used in section 109.

Find next work-day 110) Used in sections 109(3) and 116.

Get nps 149) Used in section 147.

Get options 147) Used in section 146.

Get year 148) Used in section 147.

Holiday with fixed week day or fixed date 70) Used in section 67.

If partial day, account for it 114) Used in section 109.

Is first of next year a Friday or Saturday and this is an off-Friday? 78) Used in section 77.

Local Procedures 59) Used in section 9.

Look if NraD off-Friday (or off-Thursday if Friday a holiday) 107) Used in section 101.

Loop over holidays and Off-Fridays 67) Used in section 39.

Loop through days of month 83) Used in section 82.

Loop through months 82) Used in section 81.

Make sure not a Saturday or Sunday 106) Used in sections 101, 107, and 108(2).

Monday/Friday extra day 75) Used in section 67.

Now finish computation 91) Used in section 88.

Package boiler-plate 9) Used in section 8.

Packages needed by calyr body 10, 32) Used in section 9.

Parse date 40) Used in section 39.

Print if workday 104) Used in section 101.

Print out first day of month 85) Used in section 83.

169

NAMES OF THE SECTIONS APPENDIX E §153

Print out holidays, as necessarily 87) Used in section 83.

Procedures and Tasks in calyr 39, 81, 88, 93, 101, 109, 118, 129, 131, 132, 133, 134, 136, 137, 139,

141, 143) Used in section 9.

Remove slop 112) Used in section 109.

Saturday non-work holiday 76) Used in section 67.

See if federal holiday 108) Used in section 101.

Set month 63) Used in section 39.

Set year 43) Used in section 39.

Specification of procedures visible from calyr 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30) Used in section 9.

Specification of types and variables visible from calyr 11, 12, 13, 14, 15) Used in section 9.

Test whether to change to Gregorian Calendar 99) Used in section 93.

Twiddle some variables before computing 96) Used in section 93.

Types and Variables local to hoLdy 41, 45, 64, 68, 71) Used in section 39.

Types and variables local to taster 60, 61) Used in section 59.

Types local to calyr 57) Used in section 9.

Update Columbus Day 54) Used in section 43.

Update ML King Day 51) Used in section 43.

Update Memorial Day 53) Used in section 43.

Update President's Day 52) Used in section 43.

Update Veteran's Day 55) Used in section 43.

Variables local to main 150) Used in section 146.

Variables local to CalendarTimeToDuration 121, 124, 127)

Variables local to DurationTo CalendarTime 111, 113, 115)

Variables local to hWorKDay 103, 105) Used in section 101.

Variables local to Julian-Day 94, 97, 100) Used in section 93.

Variables local to SameDay 130) Used in section 129.

Variables local to caldat 90, 92) Used in section 88.

Variables local to calyr 33, 34, 35, 36, 37, 38, 46, 48, 49, 50, 58, 65
)

Variables local to fgeLdate 142) Used in section 141.

Variables local to fprint-date 140) Used in section 139.

Variables local to get-date 144) Used in section 143.

Variables local to print-date 138) Used in section 137.

Variables local to print-holidays 84, 86) Used in section 81.

Weekday of December 31 79) Used in section 77.

Work, and normal and Sunday non-work, holiday 74) Used in section 67.

Used in section 118.

Used in section 109.

Used in section 9.

170

APPENDIX F Project Scheduling Tool

Probability Functions

[Ada '95—Version 1.0]

September 4, 1997

Section Page

Introduction 1 173

Probability Primitives 5 174

Probability functions Body 9 175

System-dependent changes 15 178

Index 17 179

171

WEB OUTPUT APPENDIX F

This page intentionally left blank

172

§ APPENDIX F INTRODUCTION

1. Introduction. Here is the Ada code for routines used in calculating probaility

distributions. This code uses Donald Knuth's WEB format for literate programming. To
compile and link the code in its present format you will need the Ada version of the WEB
tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/literate/

2. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming, literate. It has information on new tools and Frequently Asked

Questions (FAQs).

3. The program consists of several packages that are declared right now; each of these

packages and either the specification and the body of the packages are sent to a separate

file. The main program itself is declared later. (Since the original AWEB package was

written for Ada '83, it does not properly format new Ada '95 keywords protected and

private . We remedy using the web format commands below.

format protected = procedure

format private = procedure

4. As a way of explanation, each "Module" withing angle brackets (< >) is expanded

somewhere further down in the document. The trailing number you see within the brackets

is where you can find this expansion. You can treat the modules names as a PDL (Program

Descriptor Language), a highly recommened way of writing and documenting code.

(Package boiler-plate 5

)

173

PROBABILITY PRIMITIVES APPENDIX F §5

5. Probability Primitives.

(Package boiler-plate 5)
=

output to file probability. ads

(Needed packages 6

)

package probability is

(Specification of types and variables visible from probability 7
)

(Specification of procedures visible from probability 8

)

end probability

;

output to file probability. adb

package body probability is

(Variables local to probability 10
)

(Procedures and Tasks in probability 11

)

end probability

;

This code is used in section 4.

6. Here is the specification for generics.

(Needed packages 6)
=

with Ada .Numerics .Float-Random
;

See also section 12.

This code is used in section 5.

7.

(Specification of types and variables visible from probability 7)
=

type booLarray is array (integer range <>) of boolean;

This code is used in section 5.

8.

(Specification of procedures visible from probability 8) =
function Uniform (Low , High : Float)retum float;

function Uniform (Low , High : Natural)retum Natural;

procedure sample(M,N : in natural; yrsample : out booLarray);

This code is used in section 5.

174

§9 APPENDIX F PROBABILITY FUNCTIONS BODY

9. Probability functions Body.

10.

(Variables local to probability 10)
=

debug : boolean <— false]

FirstTime : boolean <— true]

This code is used in section 5.

11.

(Procedures and Tasks in probability 11)
=

function Uniform (Low , High : Float)return float is

use Ada.Numerics.FloatJiandom]

PI : Uniformly^Distributed]

G : Generator]

answer : float
;

tmp : float
;

begin

Reset(G)] PI <— Random(G)] tmp <— (High — Low); answer <— tmp * (PI) + Low]

return answer;

end Uniform]

See also sections 13 and 14.

This code is used in section 5.

12.

(Needed packages 6)
+=

with TextJO]
use TextJO]

175

PROBABILITY FUNCTIONS BODY APPENDIX F §13

13.

(Procedures and Tasks in probability 11) +=
function Uniform (Low , High : natural)return natural is

use Ada.Numerics.Float-Random;

PI : Uniformly^Distributed;

G : Generator;

tmp , tmp2 : float
;

answer : natural]

package fitJo is new floatJo (float)]

use fitJo]

begin

if Low — High then

answer <— Xotu;

else

if First Time then
flese* ((7,68069); FirstTime *- false]

else

Reset(G);

end if;

PI <— Random(G)] tmp <— float (High — Zoiu + 1); £mp2 <— (<mp * PI) — 0.5;

if (debug) then

2>uJ("Randomugeneratedu
"

); put(Pl)] putJine(" . u ")]

pu<(M (high-low+l) utmpu=u "); put(tmp)] putJine(" , u ")]

pwi("(tmp*pl) utmp2u=u "); put(tmp2); putJine(" . u ")>

end if;

answer <— natural(tmp2) + Zotu;

end if;

return ansiwer;

end Uniform]

176

§14 APPENDIX F PROBABILITY FUNCTIONS BODY

14. Based on a routine from the September, 1987 Communications of the ACM.

(Procedures and Tasks in probability 11) +=
procedure sample(M,N : in natural; yrsample : out booLarray) is

t : natural;

k : natural;

begin

for j G 1 . . N loop

yrsample (j) <— false

;

end loop;

k<-N-M + l]

for j 6 k . . N loop

t <r— uniform(l,j);

if yrsample(t) then

yrsample(j) «— irue;

else

yrsample(t) <— true;

end if;

end loop;

end sample

;

177

SYSTEM-DEPENDENT CHANGES APPENDIX F §15

15. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

16. RCS Keywords.

$RCSnle: probability.aweb,v

$Revision: 1.1

$Date: 1997/08/03 21:35:14

$Author: evansjr

$Id: probability.aweb,v 1.1 1997/08/03 21:35:14 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

178

§17 APPENDIX F INDEX

17. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 6, 11, 13.

answer: 11, 13.

booLarray: 7, 8, 14.

boolean: 7, 10.

debug: 10, 13.

false: 10, 13-14.

FirstTime: 10, 13.

float: 8, 11, 13.

Float: 8, 11.

float-io: 13.

Float-Random: 6, 11, 13.

flUo : 13.

Generator: 11, 13.

High: 8, 11, 13.

integer: 7.

j: 14.

Low: 8, 11, 13.

natural: 8, 13-14.

Natural: 8.

Numerics: 6, 11, 13.

private: 3.

probability: 5.

probability. adb : 5.

probability. ads : 5.

procedure: 3.

protected: 3.

put: 13.

putJine: 13.

PI: 11, 13.

Random: 11, 13.

Reset: 11, 13.

sample: 8, 14.

system dependencies: 15.

TextJO: 12.

tmp: 11, 13.

tmp2: 13.

true: 10, 14.

uniform: 14.

Uniform: 8, H, 13.

Uniformly^Distributed : 11, 13.

yrsample: 8, 14.

179

NAMES OF THE SECTIONS APPENDIX F §17

(Needed packages 6, 12) Used in section 5.

(Package boiler-plate 5) Used in section 4.

(Procedures and Tasks in probability 11, 13, 14) Used in section 5.

(Specification of procedures visible from probability 8) Used in section 5.

(Specification of types and variables visible from probability 7) Used in section 5.

(Variables local to probability 10) Used in section 5.

180

APPENDIX G Project Scheduling Tool

getopt

[Ada '95—Version 1.0]

Section Page

Introduction 1 183

Getopt Specification 7 184

GetOpt Body 10 185

System-dependent changes 21 189

Index 23 190

181

WEB OUTPUT APPENDIX G

This page intentionally left blank

182

§ APPENDIX G INTRODUCTION

1. Introduction. This package provides some primitive command-line processing typ-

ical of Unix commands.

2. This code is written using Donald Knuth's WEB paradigm for literate programming.

To compile and link the code in its present format you will need the Ada version of the

WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/Hterate/

3. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

see the paper Literate Programming, by Donald Knuth in The Computer Journal, Vol 27,

No. 2, 1984; or the book Weaving a Program: Literate Programming in WEB by Wayne
Sewell, Van Nostrand Reinhold, 1989. Another good source of information is the Usenet

group comp.programming. literate. It has information on new tools and Frequently Asked

Questions (FAQs).

4. The program consists of several packages that are declared right now; each of these

packages and either the specification and the body of the packages are sent to a separate

file. The main program itself is declared later. (Since the original AWEB package was

written for Ada '83, it does not properly format new Ada '95 keywords protected and

private . We remedy using the web format commands below.

format protected = procedure

format private = procedure

5. As a way of explanation, each "Module" withing angle brackets (< >) is expanded

somewhere further down in the document. Consider it a high-level PDL (Program De-

scriptor Language). The trailing number you see within the brackets is where you can find

this expansion. It is top-down in appearance, and in actual fact.

6. All the modules follow the same, top-down format. I will group all the boiler-plate into

one module, for the compiler, but you will see it with the packages, as they are described.

(Package boiler-plate 7

)

183

GETOPT SPECIFICATION APPENDIX G §7

7. Getopt Specification.

(Package boiler-plate 7) =
output to file getopt. ads

with Ustrings]

use Ustrings
;

with TEXTJO;
use TEXTJO;
with Ada .Command-Line;
use Ada .Command-Line]

package getopt is

(Specification of types and variables visible from getopt 8
)

(Specification of procedures visible from getopt 9

)

end getopt]

output to file getopt. adb

(Packages needed by getopt body 11

)

package body getopt is

(Variables local to getopt 12
)

(Procedures and Tasks in getopt 13

)

end getopt]

This code is used in section 6.

8.

(Specification of types and variables visible from getopt 8)
=

This code is used in section 7.

9.

(Specification of procedures visible from getopt 9) =
function option-present (option : in Ustring)return boolean]

function name-present(Num : natural)return boolean;

procedure geLoption (option : in Ustring
;
param : out Ustring);

procedure geLname(name : out Ustring] Num : in natural)]

This code is used in section 7.

184

§10 APPENDIX G GETOPT BODY

10. GetOpt Body.

11.

(Packages needed by getopt body 11) =
with Ada. Strings. Unbounded] Use Ada. Strings. Unbounded] with Ustrings]

use Ustrings
;

This code is used in section 7.

12.

(Variables local to getopt 12)
=

debug : boolean <— false]

This code is used in section 7.

13.

(Procedures and Tasks in getopt 13) =
package natio is new integerAo (natural)]

See also sections 14, 15, 16, and 19.

This code is used in section 7.

14.

(Procedures and Tasks in getopt 13)
+=

function option-present (option : in Ustring)return boolean is

knt : natural]

ispresent : boolean;

begin

knt <— Argument-Count] ispresent <— false]

for i € 1 . . knt loop

if S(option) = Argument(i) then
ispresent <— true] exit;

end if;

end loop;

return ispresent]

end option-present]

185

GETOPT BODY APPENDIX G §15

15.

(Procedures and Tasks in getopt 13) +=
procedure get-option (option : in Ustring

;
param : out Ustring) is

knt : natural]

begin

knt <— Argument-Count\

for i £ 1 . . knt loop

if S(option) = j4r<7wme7i£(i) then

param <— U(Argument(i + 1));

end if;

end loop;

end get-option;

16.

(Procedures and Tasks in getopt 13)
+=

function name-present(Num : natural)retum boolean is

fcn£ , ic : natural
;

i : natural <— 1;

/fen£ : natural *— 0;

ispresent : boolean;

begin

ispresent <— false;

if debug then
putAine ("name_present>");

end if;

Aint <— Argument-Count;

while (i < fcni) loop

(If found option, skip it and its parameter 17

)

(if not option, must be name, return true if right number 18

)

end loop;

if debug then
put ("Argumentu "); natio .put(Num , 1);

if ispresent then
puLline

(

M
uisupresent

.

");

else

puLline ("uisuNuTupresent . ");

end if;

end if;

return ispresent;

end name-present;

186

§17 APPENDIX G GETOPT BODY

17.

(If found option, skip it and its parameter 17) =
ic *— Index (U(Argument (i)), "-");

if ic > then
i <— i + 2;

end if;

if debug then
puL/me("Skippingufirstuoption. ");

end if;

This code is used in sections 16 and 19.

18.

(if not option, must be name, return true if right number 18)
=

if ic = then

fknt <— fknt + 1;

if fknt — num then
if debug then

puLline ("Founduyouruinputijfileuname! ");

end if;

ispresent <— true; exit;

end if;

i «— i + 1;

end if;

This code is used in section 16.

19.

(Procedures and Tasks in getopt 13)
+=

procedure geLname(name : out Ustring\Num : natural) is

knt , ic : natural
;

i : natural <— 1;

fknt : natural <— 0;

begin

if debug then
puL/zne("get_name> M

);

end if;

knt *— Arguments Count]

while (i < knt) loop

(If found option, skip it and its parameter 17

)

(if not option, must be name, return if right number 20

)

end loop;

end geLname]

187

GETOPT BODY APPENDIX G §20

20.

(if not option, must be name, return if right number 20) =
if ic = then

fknt <— fknt + 1;

if fknt = num then

if debug then
puL/ine("Founduyouruinputufileuname! ");

end if;

name <— U (Argument (i)); exit;

end if;

i <— i + 1;

end if;

This code is used in section 19.

188

§21 APPENDIX G SYSTEM-DEPENDENT CHANGES

21. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

22. RCS Keywords.

$RCSfile: getopt.aweb,v

$Revision: 1.1

$Date: 1997/09/05 00:28:36

$Author: evansjr

$Id: getopt.aweb,v 1.1 1997/09/05 00:28:36 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

189

INDEX APPENDIX G §23

23. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

Ada: 7, 11. TEXT.IO: 7.

Argument: 14-15, 17, 20. true: 14, 18.

Argument-Count: 14-16, 19. Unbounded: 11.

boolean: 9, 12, 14, 16. Use: 11.

Command-Line: 7. Ustring: 9, 14-15, 19.

debug: 12, 16-20. Ustrings: 7, 11.

false: 12, 14, 16.

fknt: 16, 18-20.

get-name: 9, 19.

get-option: 9, 15.

getopt: 7.

getopt.adb : 7.

getopt .ads : 7.

i: 14, 15.

ic: 16-20.

Index: 17.

integer-io : 13.

ispresent: 14, 16, 18.

knt: 14-16, 19.

name: 9, 19-20.

name-present: 9, 16.

natio: 13, 16.

natural: 9, 13-16, 19.

num: 18, 20.

Num: 9, 16, 19.

option: 9, 14-15.

option-present: 9, 14.

param: 9, 15.

private: 4.

procedure: 4.

protected: 4.

put: 16.

put-line: 16-20.

Strings: 11.

system dependencies: 21.

190

§23 APPENDIX G NAMES OF THE SECTIONS

If found option, skip it and its parameter 17) Used in sections 16 and 19.

Package boiler-plate 7) Used in section 6.

Packages needed by getopt body 11) Used in section 7.

Procedures and Tasks in getopt 13, 14, 15, 16, 19) Used in section 7.

Specification of procedures visible from getopt 9) Used in section 7.

Specification of types and variables visible from getopt 8) Used in section 7.

Variables local to getopt 12) Used in section 7.

if not option, must be name, return if right number 20) Used in section 19.

if not option, must be name, return true if right number 18) Used in section 16.

191

192

APPENDIX H Project Scheduling Tool

Capabilities Package

[Ada '95—Version 1.0]

September 18, 1997

Section Page

Introduction 1 195

Capabilities specification 11 198

Capability Body 22 201

Test capabilities driver 70 217

System-dependent changes 80 219

Index 82 220

193

WEB OUTPUT APPENDIX H §

This page intentionally left blank

194

§ APPENDIX H INTRODUCTION

1. Introduction. Here is some code to test capabilities. It is written using Donald

Knuth's WEB format for literate programming. To compile and link the code in its present

format you will need the Ada version of the WEB tool.

It is available on-line via the world-wide-web at URL:

http://white.nosc.mil/~evansjr/literate/

2. WEB is a literate programming paradigm for C, Pascal or Ada, and other languages.

This style of programming is called "Literate Programming." For Further information

get the book Literate Programming, by Donald Knuth, published by the Center for the

Study of Language and Information, Stanford University, 1992. Another good source of

information is the Usenet group comp.programming. literate. It has information on tools

and answers to Frequently Asked Questions (FAQs).

3. Who should use the WEB paradigm for programming? Well, not everybody. Here are

a few paragraphs from Donald Knuth's book that explains it best.

4. Retrospect and Prospects. Enthusiastic reports about new computer languages,

by the authors of those languages, are commonplace. Hence I'm well aware of the

fact that my own experiences cannot be extrapolated too far. I also realize that,

whenever I have encountered a problem with WEB, I've simply changed the system;

other users of WEB cannot operate under the same ground rules.

5. However, I believe that I have stumbled on a way of programming that produces

better programs that are more portable and more easily understood and maintained

than ever before; furthermore, the system seems to work with large programs as

well as with small ones. I'm pleased that my work on typography, which began as

an application of computers to another field, has come full circle and become an

application of typography to the heart of computer science; I like to think of WEB as

a neat "spinoff" of my research on TpjX. However, all of my experiences with this

system have been highly colored by my own tastes, and only time will tell if a large

number of other people will find WEB to be equally attractive and useful.

195

INTRODUCTION APPENDIX H §6

6. I made a conscious decision not to design a language that would be suitable for

everybody. My goal was to provide a tool for system programmers, not for high

school students or for hobbyists. I don't have anything against high school students

and hobbyists, but I don't believe every computer language should attempt to offer

all things to all people. A user of WEB needs to be good enough at computer science

that he or she is comfortable dealing with several languates simultaneously. Since

WEB combines T^X and Pascal with a few rules of its own, WEB programs can contain

WEB syntax errors. T^X syntax errors, Pascal syntax errors, and algorithmic errors;

in practice, all four types of errors occur, and a bit of sophistication is needed to

sort out which is which. Computer specialists tend to be better at such things than

other people. I have found that WEB programs can be debugged rapidly in spite of

the profusion of languages, but I'm sure that many other intelligent people will find

such a task difficult.

7. In other words, WEB seems to be specifically for the peculiar breed of people who
are called computer scientists. And I'm pretty sure that there are also a lot of

computer scientists who will not enjoy using WEB; some of us are glad that tradi-

tional programming languages have comparatively primitive capabilities for inserted

comments, because such difficulties provide a good excuse for not documenting pro-

grams well. Thus, WEB may be only for the subset of computer scientists who like

to write and to explain what they are doing. My hope is that the ability to make
explanations more natural will cause more programmers to discover the joys of lit-

erate programming, because I believe it's quite a pleasure to combine verbal and

mathematical skills; but perhaps I'm hoping for too much. The fact that a least

one paper has been written that is a syntactically correct ALGOL 68 program en-

courages me to perservere in my hopes for the future. Perhaps we will even one day

find Pulitzer prizes awarded to computer programs.

8. Donald Knuth goes on to write about his hopes for the future of WEB programming.

In an interview with Donald Knuth by Amazon Books on the release of a new edition of

Volume 1 of The Art of Computer Programming (July 1, 1997) he was asked:

Amazon.com: What do you see as the most

interesting advance in programming since you

published the first edition?

Donald Knuth: It's what I call literate

programming, a technique for writing, documenting,

and maintaining programs using a high-level

language combined with a written language like

English. This is discussed in my book Literate

Programming.

196

§9 APPENDIX H INTRODUCTION

9. In the same book, Literate Programming, there is a chapter called How to read a WEB.

But it is actually quite straightforward.

10. Very briefly, each "Module" within angle brackets (< >) is expanded somewhere

further down in the document. The trailing number you see within the brackets is where

you can find this expansion. This provides a type of PDL (program descriptor language)

for your program and greatly aids modularity and readability. It is also a highly effective

method of top-down programming. The first module here is expanded further down, and

contains most of the structure in standard Ada packages.

(Package boiler-plate 11

)

197

CAPABILITIES SPECIFICATION APPENDIX H §11

11. Capabilities specification.

(Package boiler-plate 11) =
output to file capability .ads

with TEXTJO;
use TEXTJO;
with test-io-pkg

;

use test-io-pkg

;

with genericseLpkg;

with generic-map-pkg;

with ustrings;

use ustrings;

package capability is

(Specification of types and variables visible from capability 12
)

(Specification of procedures visible from capability 14
)

private

(Specification of private types in capability 21

)

end capability

;

output to file capability. adb

with unchecked^ deallocation;

with generic-map-pkg;

with Ada. Strings. Unbounded; Use Ada. Strings. Unbounded; with Ustrings;

use ustrings;

with Ada. Strings;

use Ada.strings;

with Ada. Characters. handling;

use Ada. Characters .handling;

package body capability is

(Variables and types local to capability 23
)

(Procedures and Tasks in capability 28
)

begin

(Initialize capabilities 42
)

end capability

;

This code is used in section 10.

12.

(Specification of types and variables visible from capability 12)
=

type deveLnum is private;

type A String is access String;

type ExpertiseLevel is (low , medium , high);

package cap-map is new generic-map_pkg(key => A string , result => ExpertiseLevel);

See also section 13.

This code is used in section 11.

198

§13 APPENDIX H CAPABILITIES SPECIFICATION

13.

(Specification of types and variables visible from capability 12) +=
badid : exception;

parsecapabilityerror : exception;

14.

(Specification of procedures visible from capability 14)
=

procedure create- developer (developer : in String;yrid : out natural)]

See also sections 15, 16, 17, 18, 19, and 20.

This code is used in section 11.

15.

(Specification of procedures visible from capability 14)
+=

procedure add- capability (id : in natural
;
yrcap : String] exp : ExpertiseLevel)]

procedure add. capability (yrid : in deveLnum] yrcap : cap-map .map);

procedure add- capability (yrtask : in out cap-map .map
;
yrcap : String;

exp : ExpertiseLevel);

16.

(Specification of procedures visible from capability 14)
+=

procedure copy- capability (yrid : in natural
;
yrcap : out cap-map .map)]

17.

(Specification of procedures visible from capability 14)
+=

procedure print- capabilities (id : natural)]

procedure print- capabilities (yrtask : cap.map .map)]

procedure print-capabilities (fd : file-type
;
yrtask : cap-map .map)]

procedure print-developers;

function get-developer-name (id : rca£ura/)return ustring;

18.

(Specification of procedures visible from capability 14)
+=

function is- qualified (yrtask : cap-map .map; id : natural)return boolean;

19.

(Specification of procedures visible from capability 14) +=
procedure get-capability(str : in String] yrcap : out cap.map .map);

procedure get- capability (fd : file-type ;
yrcap : out cap-map .map)]

199

CAPABILITIES SPECIFICATION APPENDIX H §20

20.

(Specification of procedures visible from capability 14) +=
procedure get-developers [infile : string)]

function geLnum- developers return natural]

21.

(Specification of private types in capability 21)
=

package capset is new genericset-pkg(Astring)',

type capability is new capset.set;

max-developers : constant natural <— 20;

type deveLnum is new natural range 1 . . max_developers
;

This code is used in section 11.

200

§22 APPENDIX H CAPABILITY BODY

22. Capability Body.

23.

(Variables and types local to capability 23)
=

debug : boolean <— false;

debug2 : boolean *— false;

gstring : Vstring

;

See also sections 24, 25, 26, and 27.

This code is used in section 11.

24. Maintain a global set of capabilities;

(Variables and types local to capability 23) +=
globalcaps : capset.set;

totaLdev elopers : natural <— 0;

25. Creating new step.

(Variables and types local to capability 23) -f

=

function "+"(str : string)return Astring is

begin

return new string' (str);

end "+";

26.

(Variables and types local to capability 23) +=
MAXCAPS : constant natural <— 30;

type cap-num is new natural range 1 . . MAXCAPS;
type cap-array is array (cap_nwm) of id^irm^f;

capabilities : cap-array *— (+"Ada",+"Database n
, +"XWindows", +"Graphics",

+ "Unix", others => null);

mycaps : caps et. set;

totaLcaps : cap_num <— 5;

27.

(Variables and types local to capability 23) +=
type cap^rec is

record

inuse : boolean <— false;

name : j4j<rm<7;

cmap : cap^map .map;

end record;

type developer- array is array (deveLnum) of cap.rec;

developers : developer- array

;

201

CAPABILITY BODY APPENDIX H §28

28.

(Procedures and Tasks in capability 28)
=

procedure create- developer (developer : in String;yrid : out natural) is

knt : deveLnum;

tmpcap : cap-map .map

;

begin

(Fetch an unused developer 29

)

(Assign capabilities to him 30
)

(Create capability out of his name 31

)

end create- developer

;

See also sections 33, 34, 35, 41, 44, 45, 46, 47, 48, 49, 50, 52, 62, 63, and 69.

This code is used in section 11.

29.

(Fetch an unused developer 29)
=

knt <— 1;

"while developers (knt). inuse loop

knt <— knt + 1;

end loop;

developers (knt). inuse <— true; total-developers <— totaLdevelopers +1;
yrid <— natural (knt);

This code is used in section 28.

30.

(Assign capabilities to him 30) =
<D{for i E 1 . . totaLcaps loop

cap-map .bind (capabilities (i), low , developers (knt). cmap);

end loop;

<D}

This code is used in section 28.

31.

(Create capability out of his name 31)
=

totaLcaps <— totaLcaps + 1; capabilities (totaLcaps) < \-developer;

cap-map .bind (capabilities (totaLcaps), high , developers (knt). cmap);

capset .add (capabilities (totaLcaps), globalcaps);

developers (knt).name <— capabilities (totaLcaps);

(
Add this capability to all the other developers 32

)

if debug then
print-developers

;

end if;

This code is used in section 28.

202

§32 APPENDIX H CAPABILITY BODY

32.

(Add this capability to all the other developers 32)
=

<fi-[for i G deveLnum loop

if (developers (i).inuse) A (i
=fi

id) then

if debug2 then

jpu<(
MAddingucapabilityu "); put (developer); put (" utoudeveloperu ");

put (developers (i).name .all); puLline(" . u")>

end if;

cap-map .bind (capabilities (totaLcaps), low , developers (i).cmap);

end if;

end loop;

€}

This code is used in section 31.

33.

(Procedures and Tasks in capability 28)
+=

procedure add- capability (yrtask : in out cap^map .map
;
yrcap : String;

exp : ExpertiseLevel) is

acap : Astring;

is-member : boolean;

knt : cap_num;

begin

(First convert to upper-case 37
) (See if already in capabilities array 38

)

if —>is-member then
totaLcaps <— totaLcaps + 1; capabilities (totaLcaps) <— acap;

cap-set. add (capabilities (totaLcaps), globalcaps); knt <— totaLcaps;

end if
;

cap_map .bind (capabilities (knt), exp
,
yrtask);

end add. capability

;

203

CAPABILITY BODY APPENDIX H §34

34.

(Procedures and Tasks in capability 28)
+=

procedure ad(L capability (yrid : in deveLnum; yrcap : cap.map .map) is

expl : ExpertiseLev el

;

id : natural]

begin

id <— natural (yrid);

for i E 1 . . totaLcaps loop

if cap.map .member (capabilities (i), yrcap) then

expl <— cap.map.fetch (yrcap capabilities (i));

addL capability (id , capabilities (i).all, expl);

end if;

end loop;

end add. capability

;

35.

(Procedures and Tasks in capability 28)
+=

procedure adcL capability (id : in natural
;
yrcap : String] exp : ExpertiseLevel) is

acap : A.s£rina;

is.member : boolean;

knt : cap.num;

yrid : deveLnum;

package enum.io is new enumeration_io (ExpertiseLevel);

begin
yrid <— deveLnum (id);

if —'developers (yrid). inuse then
raise badid;

end if;

(First convert to upper-case 37)(See if already in capabilities array 38
)

if -lis-member then
totaLcaps <— totaLcaps + 1; capabilities (totaLcaps) <— acap;

cap. set .add (capabilities (totaLcaps), globalcaps); (Add to all developers 40
)

else

(Update capabilities of this developer 39

)

end if;

end add. capability

;

204

§36 APPENDIX H CAPABILITY BODY

36.

(Convert to upper-case 36)
=

declare

tstr : string <— yrcap
;

name : ustring;

begin
name <— get-developer-name [natural (yrid));

if tstr ^ S(name) then
for j € 1 . . yrcap' length loop

tstr(j) *— to-upper(tstr(j))\

end loop;

end if;

acap < \-tstr;

end;

37.

(First convert to upper-case 37)
=

declare

tstr : string *— yrcap
;

begin
for j 6 1 . . yrcap' length loop

tstr(j) <— to..upper(tstr(j))]

end loop;

acap < \-tstr\

end;

This code is used in sections 33 and 35.

38.

(See if already in capabilities array 38) =
is-member <— false;

for i E 1 • • totaLcaps loop

if (capa6s7*ttej(i).all = acap .all) then
acap <— capabilities (i); fcn< <— i; is^member <— frae; exit;

end if;

end loop;

This code is used in sections 33 and 35.

205

CAPABILITY BODY APPENDIX H §39

39.

(Update capabilities of this developer 39)
=

if debug then
pu<("Updatingucapabilitiesuofudeveloper: u

M
);

put (S(geLdeveloper_name (natural (yrid))))] put(" uu "); put (capabilities (knt).a\\);

put(" u=>u ")] enumAo .put(exp); newAine]

end if;

cap-map .bind (capabilities (knt), exp, developers (yrid).cmap);

This code is used in section 35.

40.

(Add to all developers 40)
=

for i E deveLnum loop

if (i ^ yrid) then
if (developers (i).inuse) then

cap^map .bind (capabilities (totaLcaps), low, developers (i).cmap);

end if;

else

cap^map .bind (capabilities (totaLcaps), exp , developers (i).cmap);

end if;

end loop;

This code is used in section 35.

41. Copy everything but developer's name.

(Procedures and Tasks in capability 28) +=
procedure copy_ capability (yrid : in natural

;
yrcap : out cap_map .map) is

expl : ExpertiseLevel;

yr : deveLnum;

namel , name2 : ustring;

begin

yr <— deveLnum(yrid);

for i £ 1 . . totaLcaps loop

if cap-map .member (capabilities (i), developers (yr).cmap) then
namel «— U (capabilities (z).all); name2 <— geLdev eloper^name(yrid)',

if namel ^ name2 then
expl <— cap-map.fetch(developers(yr).cmap , capabilities (i));

ada\. capability (yrcap , capabilities (t).all, expl
);

end if;

end if;

end loop;

end copy_ capability
;

206

§42 APPENDIX H CAPABILITY BODY

42.

(Initialize capabilities 42) =
cap-set .empty (globalcaps

);

for i G 1 • • totaLcaps loop

(Convert to uppercase 43
)

capabilities (i) < \-S(gstring); cap-set .add (capabilities (i), globalcaps
);

end loop;

This code is used in section 11.

43.

(Convert to uppercase 43) =
declare

tstr : String <— capabilities (i').all;

chr : Character;

begin
for j £ 1 . . tstr' length loop

c/ir <— t5<r(j); tstr(j) <— to-upper (chr)]

end loop;

gstring <— ?7(fo£r);

end;

This code is used in section 42.

207

CAPABILITY BODY APPENDIX H §44

44.

(Procedures and Tasks in capability 28)
+=

function ts_ qualified (yrtask : cap_map .map ; id : natural)return boolean is

expl , exp2 : ExpertiseLevel]

answer : boolean «— true]

yrid : deveLnum;

begin

yrid <— deveLnum(id);

for i £ 1 . . totaLcaps loop

if cap-map.member (capabilii j),y) then

expl *— cap^map .fetch(yrtask , capabilities (i))]

if cap^map .member (capabilities (i), developers (yrid).cmap) then

ezpi? <— cap^map .fetch(developers (yrid).cmap , capafez7ifoe.s(z));

else

ezpi? <— /oiu;

end if;

if ezpjS < ezpl then
answer *— false] exit;

end if;

end if;

end loop;

return answer;

end w_ qualified]

208

§45 APPENDIX H CAPABILITY BODY

45.

(Procedures and Tasks in capability 28)
+=

procedure prints capabilities (yrtask : cap^map .map) is

exp : Expertiselevel]

package exp_io is new enumerationAo(Expertiselevel)\

use expAo\

kntl ,knt2 : cap-num]

begin

kntl <— 1; knt2 <— 1;

for i£ 1 .. totaLcaps loop

if cap-map .member (capabilities (i),yrtask) then

kntl <— kntl + 1;

end if;

end loop;

put("i")]

for i € 1 • • totaLcaps loop

if cap-map.member (capabilities (i),yrtask) then

put (capabilities (z').all); put(": u ")] exp <— cap-map .fetch(yrtask , capabilities (i))\

pu<(ea;p); fcntS <— A:nt2 + 1;

if knt2 < kntl then

ptrfO'.u");

end if;

end if;

end loop;

ptit("}");

end print- capabilities

;

209

CAPABILITY BODY APPENDIX H §46

46.

(Procedures and Tasks in capability 28)
+=

procedure prinL capabilities (fd : file_type ;
yrtask : cap_map .map) is

exp : Expertiselevel]

package expAo is new enumeration-io(Expertiselevel);

use expAo;

kntl ,knt2 : cap^num;

begin
kntl <— 1; knt2 <— 1;

for i 6 1 . . totaLcaps loop

if cap.map .member (capabilities (i), yrtask) then
fcnfi <— fcnf./ + 1;

end if;

end loop;

put(fd,H n
)]

for i G 1 . . totaLcaps loop

if cap.map .member (capabilities (i), yrtask) then

put(fd, capabilities (i).all); put(fd, ": u ")'i

exp <— cap-map.fetch (yrtask, capabilities (i))] put(fd, exp); knt2 <— knt2 +1;
if A;n^ < fcn*l then

pu<(/<*,",u M
);

end if;

end if;

end loop;

ptrf (/(*,»}»);

end prinLcapabilities

;

210

§47 APPENDIX H CAPABILITY BODY

47.

(Procedures and Tasks in capability 28) +=
procedure prinLcapabilities (id : natural) is

exp : Expertiselevel;

package expAo is new enumeration.™ (Expertiselevel);

use exp.io;

kntl , knt2 : cap.num;

grid : deveLnum;

begin
yrid «— deveLnum(id); fcni/ <— 1; fcrafi! <— 1;

for i E 1 • • totaLcaps loop

if cap.map .member (capabilities (i), developers (yrid). cmap) then

fcn</ *— fcn£.f + 1;

end if;

end loop;

put("{»);

for i E 1 • • totaLcaps loop

if cap-map .member (capabilities (i), developers (yrid). cmap) then

put (capabilities (i).all); put (" :u")j

erp <— cap.map.fetch(developers (yrid).cmap , capabilities (i)); puf(ezp);

fcn<2 «- Jbi*2 + 1;

if fcntS < fcn£.7 then

P«*(
M
.u

M
);

end if;

end if;

end loop;

ptrf(">")j

end print- capabilities

;

48.

(Procedures and Tasks in capability 28) +=
procedure print. developers is

name : ustring;

begin
for i E 1 . . totaLdevelopers loop

name <— get.developer_name(i); put (S'(name)); put(">u "); print.capabilities (i);

newAine;

end loop;

end print. developers
;

211

CAPABILITY BODY APPENDIX H §49

49.

(Procedures and Tasks in capability 28)
+=

function get-developer-name (id : natural)retum ustring is

yrid : deveLnum;

begin

yrid <— deveLnum(id); return U(developers (yrid).name .all);

end geLdeveloper-name;

50.

(Procedures and Tasks in capability 28)
+=

procedure geLcapability(fd : file-type
;
yrcap : out cap-map .map) is

(Variables local to fgeL capability 51

)

begin

chr <—";*;

while chr ^ *£" loop

get-immediate (fd , chr)]

end loop;

j <— 1; newstr(j) <— '{*;

while chr ^ '}' loop

j <— j + 1; get-immediate (fd , c/ir); newstr(j) <— c/ir;

end loop;

declare

newstr2 : String (1 . . j);

begin
for feGl..j loop

newa<r2(fc) <— newstr(k)\

end loop;

<3<r <— U(newstr2);

end;

if debug then
pui

(
"get_capabilitiesu (file)> ucallinguget_capabilitiesu (string) uwith

M
);

pwi('*ustringu=u
M

); pu2(5(£s<r)); new-line;

end if;

get-capability (S(tstr), yrcap
);

end geLcapability
;

51.

(Variables local to fgeL capability 51)
=

j : positive
;

c^r : character;

newstr : String (1 . . 80);

ta£r : w,s£7"in<7;

This code is used in section 50.

212

§52 APPENDIX H CAPABILITY BODY

52.

{ Procedures and Tasks in capability 28)
+=

procedure geLcapability(str : in String
;
yrcap : out cap_map .map) is (Variables local

to get-capability 53

)

begin

tstr <— U(str)] indl *— index (tstr ,"{"); ind2 *— index (tstr ,")•");

tstr <— U(slice(tstr , iWi , mrf-2));

if debug2 then
pu£

(

MParsingustringu
' n

); pu2(5(is£r)); puLl»ne("'.");

end if;

£a£r *— tail (tstr, length (tstr) — indl)] finished <— false; while -^finished loop

(Get capability name pairs 54) end loop; end geLcapability;

53.

(Variables local to get- capability 53)
=

tstr : ustring;

indl : natural]

finished : boolean
;

See also sections 56, 58, and 60.

This code is used in section 52.

54.

(Get capability name pairs 54)
=

(Check if finished 55
)

if -^finished then
(Get capability 57) (Get ExpertiseLevel 59) (Add new capability to map 61

)

end if;

This code is used in section 52.

55. Each name pair is separated by a colon ':'. It it is not there, then we are finished.

(Provided we didn't look past the brace '}'.

(Check if finished 55)
=

indt «- index (tstr, ":"); ind3 <- index (tstr , "}");

if (ind2 = 0) V (ind2 > ind3) then
finished <— true]

end if;

if ind3 = then
raise parsecapabilityerror

;

end if;

This code is used in section 54.

213

CAPABILITY BODY APPENDIX H §56

56.

(Variables local to geL capability 53) +=
ind2,ind3 -.natural]

57.

(Get capability 57) =
indl <— index.non^blank (tstr); tstr2 <— U (slice (tstr , indl ,ind2 —1));

if debug2 then
pwi("tstr2u=u "); put(S(tstr2))\ newJine]

end if;

tstr <— tail(tstr,length(tstr) — ind2);

if debug2 then
put("tstTu=ij"); put(S(tstr))\ newJine]

end if;

This code is used in section 54.

58.

(Variables local to geLcapability 53) +=
tstr2 : ustring]

59.

(Get ExpertiseLevel 59) =
indl <— index (tstr ," ,"); ind2 <— index (tstr ,"}•");

if indl = then
indl <— ind2] finished <— true;

end if;

tstr3 <— U (slice (tstr ,1, indl —1));

if debug2 then
pw<(,,tstr3u=u "); put (S(tstr3)); newJine]

end if;

enum-io .get(S(tstr3), exp ,Last)] tstr <— tail (tstr , length (tstr) — indl)]

if debug2 then
put('*tstTu=u

n
); put(S(tstr))] newJine;

end if;

This code is used in section 54.

60.

(Variables local to geLcapability 53) +=
tstr3 : ustring]

exp : ExpertiseLev el
;

package enumJo is new enumerationJo(ExpertiseLevel)]

Last : positive
;

214

§61 APPENDIX H CAPABILITY BODY

61.

(Add new capability to map 61) =
add- capability (yrcap , S(tstr2), exp);

This code is used in section 54.

62.

(Procedures and Tasks in capability 28)
+=

function get-nurti-developers return natural is

begin
return totaLdev elopers

;

end get-num- developers;

63.

(Procedures and Tasks in capability 28)
+=

procedure get-developers (infile : string) is

(Variables local to get-developer 65)

begin

(Open file 64
) (Read in developers 66

)

end get-developers;

64.

(Open file 64)
=

open
(data-file , in-file , infile);

This code is used in section 63.

65.

(Variables local to get-developer 65)
=

data-file : file-type;

See also section 68.

This code is used in section 63.

66.

(Read in developers 66)
=

while -iend-.of-file(data.file) loop

(Get developer's name and capabilities 67

)

end loop;

This code is used in section 63.

215

CAPABILITY BODY APPENDIX H §67

67.

(Get developer's name and capabilities 67)
=

geLline (data-file, newstr , Last); tstr <— U(newstr); ind2 *— index (tstr ,"{");

indl <— index-non-blank(tstr); name <— U (slice (tstr , indl ,ind2 —1));

tstr <— tail(tstr,length(tstr) — ind2 + 1);

declare

yrcap : cap-map .map

;

begin

get-capability (S(tstr), yrcap); create-developer(S(name), dummy)]

add. capability (deveLnum (dummy), yrcap);

end;

This code is used in section 66.

68.

(Variables local to get-developer 65) +=
Last : natural;

newstr : String(\ .. 132);

indl , ind2 : natural;

name, tstr : ustring;

dummy : natural;

69.

(Procedures and Tasks in capability 28) +=
procedure put-developers (outfile : string) is

data-file : file-type;

begin

create (data-file , out-file , outfile);

end put-developers

;

216

§70 APPENDIX H TEST CAPABILITIES DRIVER

70. Test capabilities driver. Here, finally, is the boilerplate. The Ada WEB tool

atangle reads this and knows to write out two separate files, the specification and the

body. (The Ada WEB tool aweave will write out just one documentation file.)

output to file testcap.adb

pragma suppress (alLchecks)]

with ustrings]

use ustrings
]

with texLio
;

use text-io]

with capability;

use capability]

procedure testcap is (Instantiate generic packages 71)(Variables local to testcap 73)

begin

(Test if items are in set 72
)

(Create a task map and see if any developers qualify 76

)

(Print out items in set 74

)

(Check qualifications 75

)

(Try reading in some capabilities 78
)

end testcap]

71.

(Instantiate generic packages 71) =
package nat-io is new integerAo (natural)]

use nat-io]

This code is used in section 70.

72.

(Test if items are in set 72)
=

create- developer ("BilluGates", myid)] add- capability (myid, "Breathing", High)]

create. <ieue/oper("ScottuMcNealy", myid2)] add- capability (myid2 ,
" Java" , high);

create- developer ("BilluJoy", myid3); add- capability (myid3 , "Unix", high)]

add. capability (myid3 , "Systemsuprogrannning" , high)]

This code is used in section 70.

73.

(Variables local to testcap 73) =
myid , myidt , myidS : natural

;

See also sections 77 and 79.

This code is used in section 70.

217

TEST CAPABILITIES DRIVER APPENDIX H §74

74.

(Print out items in set 74)
=

newJine; print-capabilities(myid); newJine; print- capabilities (myid2); newJine;

print- capabilities (myidS); new-line; print-capabilities (taskl); new-line;

This code is used in section 70.

75.

(Check qualifications 75)
=

if is. qualified (task 1 , myid) then
put-line ("BilluGatesuisuqualified. ");

end if;

if is-qualified (taskl , myid2) then
put-line ("ScottuMcNeallyuisuqualified. ");

end if;

if is-qualified (taskl , myid3) then

puL/me(,,BilluJoyuisuqualified. ");

end if;

This code is used in section 70.

76.

(Create a task map and see if any developers qualify 76)
=

add- capability (taskl , "Unix", medium);

This code is used in section 70.

77.

(Variables local to testcap 73) +=
taskl : cap-map .map

;

78.

(Try reading in some capabilities 78)
=

create-developer(n Jo}n\.uEvaiis" ,myid4); geLcapability (testcapstr , task2);

print-capabilities (task2); new-line
;

pu£_/ine("HereuisuBilluJoy 'sucapabilitiesuagain>"); print-capabilities (myid3);

puLline

(

"Hereuareuallutheudeveloper '

s

ucapabilit iesuagain
.

");

print- developers
;
get-developers ("developers . txt"); print- developers

;

This code is used in section 70.

79.

(Variables local to testcap 73)
+=

testcapstr : String <—

"{Unix : high , Ada : high , Xwindows : medium, SystemsuProgrannning :medium}"

;

task2 : cap-map .map
;

myidj : natural;

218

§80 APPENDIX H SYSTEM-DEPENDENT CHANGES

80. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make TESTCAP work at a particular instal-

lation. It is usually best to design your change file so that all changes to previous mod-

ules preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

81. RCS Keywords.

$RCSfile: capability.aweb,v

$Revision: 1.1

$Date: 1997/09/05 00:31:42

$Author: evansjr

$Id: capability.aweb,v 1.1 1997/09/05 00:31:42 evansjr Exp evansjr

$Locker: evansjr

$ State: Exp

219

INDEX APPENDIX H §82

82. Index. Here is a cross-reference table for the TESTCAP program. All modules in

which an identifier is used are listed with that identifier, except that reserved words are

indexed only when they appear in format definitions, and the appearances of identifiers

in module names are not indexed. Underlined entries of subprograms and packages corre-

spond to sections where this entity is specified, whereas entries in italic type correspond

to the section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

acap: 33, 35-38.

Ada: 11.

add: 31, 33, 35, 42.

add. capability : 15, 33, 34, 35, 41, 61,

67, 72, 76.

alLchecks: 70.

answer: 44.

Astring: 12, 21, 25-27, 33, 35.

A String: 12.

badid: 13, 35.

bind: 30-33, 39-40.

boolean: 18, 23, 27, 33, 35, 44, 53.

cap- array : 26 .

cap-map : 12, 15-19, 27-28, 30-34, 39-41,

44-47, 50, 52, 67, 77, 79.

cap-num: 26, 33, 35, 45-47.

cap-rec: 27 .

capset: 21, 24, 26, 31, 33, 35, 42.

capabilities : 26, 30-35, 38-47.

capability: 11 , 21, 70.

capability .adb : 11.

capability. ads : 11.

Character: 43.

character: 51.

Characters: 11.

chr: 43, 50-51.

cmap: 27,30-32,39-41,44,47.

copy- capability : 16, 41.

create : 69.

create. developer: 14, 28, 67, 72, 78.

data-file: 64-67, 69.

debug: 23, 31, 39, 50.

debugt: 23, 32, 52, 57, 59.

deveLnum: 12, 15, 21, 27-28, 32, 34-35,

40-41, 44, 47, 49, 67.

developer: 14, 28, 31-32.

developer- array : 27.

developers: 27, 29-32, 35, 39-41, 44,

47, 49.

dummy: 67-68.

empty: 42.

end- of-file: 66.

enum-io: 35, 39, 59, 60.

enumeration-io : 35, 45-47, 60.

exp: 15,33,35,39-40,45-47,59-61.

exp-io: 45, 46, 47.

ExpertiseLevel: 12, 15, 33-35, 41, 44, 60.

Expertiselevel: 45-47.

expl: 34, 41, 44.

exp2 : 44.

false: 23, 27, 38, 44, 52.

fd: 17, 19, 46, 50.

fetch: 34, 41, 44-47.

file-type: 17, 19, 46, 50, 65, 69.

finished: 52-55, 59.

generic-map-pkg: 11-12.

genericset-pkg: 11, 21.

get: 59.

get-capability : 19, 50, 52, 67, 78.

get- developer-name: 17, 36, 39, 41,

48, 49.

get-developers: 20, 63, 78.

get-immediate : 50.

get-line: 67.

get-num-developers : 20, 62 .

globalcaps: 24,31,33,35,42.
gstring: 23, 42-43.

handling: 11.

High: 72.

high: 12, 31, 72.

220

§82 APPENDIX H INDEX

i: 30, 32, 34, 38, 40, 41, 42, 44, 45,

46, 47, 48.

id: 15, 17-18, 32, 34-35, 44, 47, 49.

in-file : 64.

index: 52, 55, 59, 67.

index-non-blank : 57, 67.

indl : 52-53, 57, 59, 67-68.

ind2 : 52, 55-57, 59, 67-68.

ind3 : 55-56.

infile: 20, 63-64.

integerAo: 71.

inuse: 27, 29, 32, 35, 40.

is-member: 33, 35, 38.

is-qualified: 18, 44, 75.

j: 36, 37, 43-

k: 50.

key: 12.

knt: 28-31, 33, 35, 38-39.

kntl : 45-47.

knt2 : 45-47.

Last: 59-60, 67-68.

/en^/i: 36-37, 43, 52, 57, 59, 67.

low: 12, 30, 32, 40, 44.

map: 15-19, 27-28, 33-34, 41, 44-46,

50, 52, 67, 77, 79.

max-developers: 21.

MAXCAPS: 26.

medium: 12, 76.

member: 34, 41, 44-47.

mycaps : 26.

rnyi<£: 72-75.

myi^ : 72-75.

myid3: 72-75, 78.

myi^ : 78-79.

name: 27,31-32,36,48-49,67-68.

namel : 41.

name2: 41.

naLio : 71 .

na<uraZ: 14-18, 20-21, 24, 26, 28-29,

34-36, 39, 41, 44, 47, 49, 53, 56,

62, 68, 71, 73, 79.

new.line : 39, 48, 50, 57, 59, 74, 78.

newstr: 67-68.

newstr: 50-51.

newstr2: 50.

open: 64.

out-file: 69.

outfile: 69.

pars ecapabilityerror : 13, 55.

positive: 51, 60.

prinLcapabilities : 17, 45, 46, 47, 48,

74, 78.

print-developers: 17, 31, 48, 78.

put: 32, 39, 45-48, 50, 52, 57, 59.

put-developers : 69.

puUine: 32, 52, 75, 78.

result: 12.

set: 21, 24, 26.

slice: 52, 57, 59, 67.

str: 19, 25, 52.

String: 12, 14-15, 19, 28, 33, 35, 43,

50-52, 68, 79.

string: 20, 25, 36-37, 63, 69.

strings: 11.

Strings: 11.

suppress : 70.

system dependencies: 80.

tail: 52, 57, 59, 67.

taskl : 71-11.

task2 : 78-79.

test-io-pkg: 11.

testcap: 70 .

test cap. adb : 70.

testcapstr: 78-79.

TEXTJO: 11.

text-io : 70.

tmpcap : 28.

to-upper: 36-37, 43.

totaLcaps: 26, 30-35, 38, 40-42, 44-47.

totaLdevelopers: 24, 29, 48, 62.

true: 29, 38, 44, 55, 59.

tstr: 36-37, 43, 50-53, 55, 57, 59, 67-68.

tstr2: 57-58, 61.

tstr3 : 59-60.

Unbounded: 11.

unchecked- deallocation : 11.

221

INDEX APPENDIX H §82

Use: 11.

ustring: 17, 36, 41, 48-49, 51, 53, 58,

60, 68.

Ustring: 23.

Ustrings: 11.

ustrings: 11, 70.

yr: 41.

yrcap: 15-16, 19, 33-37, 41, 50, 52,

61, 67.

grid: 14-16, 28-29, 34-36, 39-41, 44,

47, 49.

yrtask: 15, 17-18, 33, 44-46.

222

§82 APPENDIX H NAMES OF THE SECTIONS

Add new capability to map 61) Used in section 54.

Add this capability to all the other developers 32) Used in section 31.

Add to all developers 40) Used in section 35.

Assign capabilities to him 30) Used in section 28.

Check if finished 55) Used in section 54.

Check qualifications 75) Used in section 70.

Convert to upper-case 36

)

Convert to uppercase 43) Used in section 42.

Create a task map and see if any developers qualify 76) Used in section 70.

Create capability out of his name 31) Used in section 28.

Fetch an unused developer 29) Used in section 28.

First convert to upper-case 37) Used in sections 33 and 35.

Get capability 57 } Used in section 54.

Get developer's name and capabilities 67) Used in section 66.

Get ExpertiseLevel 59) Used in section 54.

Get capability name pairs 54) Used in section 52.

Initialize capabilities 42) Used in section 11.

Instantiate generic packages 71) Used in section 70.

Open file 64) Used in section 63.

Package boiler-plate 11) Used in section 10.

Print out items in set 74) Used in section 70.

Procedures and Tasks in capability 28, 33, 34, 35, 41, 44, 45, 46, 47, 48, 49, 50, 52, 62, 63, 69

)

Used in section 11.

Read in developers 66) Used in section 63.

See if already in capabilities array 38) Used in sections 33 and 35.

Specification of private types in capability 21) Used in section 11.

Specification of procedures visible from capability 14, 15, 16, 17, 18, 19, 20

)

Used in section 11.

Specification of types and variables visible from capability 12, 13) Used in section 11.

Test if items are in set 72) Used in section 70.

Try reading in some capabilities 78) Used in section 70.

Update capabilities of this developer 39) Used in section 35.

Variables and types local to capability 23, 24, 25, 26, 27) Used in section 11.

Variables local to testcap 73, 77, 79) Used in section 70.

Variables local to fget-capability 51) Used in section 50.

Variables local to get_capability 53, 56, 58, 60) Used in section 52.

Variables local to get-developer 65, 68) Used in section 63.

223

224

APPENDIX I Project Scheduling Tool

Task Generator

[Ada '95—Version 2.0]

September 4, 1997

Section Page

Introduction 1 227

System-dependent changes 48 239

Index 50 240

225

WEB OUTPUT APPENDIX I

This page intentionally left blank

226

§ APPENDIX I INTRODUCTTON

1. Introduction. This routine generates a number of tasks for which a valid schedule

exists. The output of this routine is fed into the scheduling algorithm to test its perfor-

mance. This particular version uses the capability model described in my thesis.

2. This is the main routine that starts everything.

output to file task generator . adb

pragma Unsuppress(alLchecks);

with CALENDAR;
use CALENDAR;
with text-io;

use text-io;

(Needed packages 10

)

procedure task-generator is

package naLio is new integerAo (natural);

use nat-io;

package flt-io is new floaLio (float);

use flt-io;

package booLio is new enumeration-io (boolean);

use booLio;

(Variables local to task-generator 6

)

(Functions local to task-generator 33
)

begin

(Get input parameters 4

)

declare

(Allocate a static array to hold tasks for schedule 12
)

begin

(Compute earliest available time (EAT) in resource matrix 15)

R <— laxity;

for i 6 1 . . tasks loop

(Generate another task 16

)

end loop;

if do-alternate then

(Convert to calendar time 35
)

end if;

(Print out results 34

)

end;

end task-generator;

227

INTRODUCTION APPENDIX I §3

3. This routine takes two input parameters. (1) "-tasks" the number of tasks to

generate; and (2) "-laxity" the laxity, or tightness, parameter. This is formally defined

as

Td — Teat + Tp

where Td is the deadline, Teat is the earliest start-time, and Tp is the processing time. It

is computed apriori by the task-generator

.

TD = (1 + R) * SC

where R is an input parameter, and SC is the shortest completion time.

4. The input values are read in using the routines in package getopt . I read in the number

of tasks to compute, the "laxity" of the schedule, and a "seed" for the random number
generator.

(Get input parameters 4)
=

tasks <— 10;

if option^present (U ("-tasks")) then
geLoption ({/("-tasks"), param); get(S(param), tasks, Last);

end if;

laxity <— 0.0;

if option-present ({/("-laxity")) then
get-option ({/("-laxity"), param)] get(S(param), laxity , Last);

end if;

seed <- 68069;

if option-present(U(" -seed")) then
geLoption ({/("-seed"), param); g et(S'(param), seed , Last);

end if;

(Get NRaD option 5

)

(Get developer file 7
)

(Get developers 8

)

This code is used in section 2.

5.

(Get NRaD option 5) =
if option_present(U("-iLraid")) then

get-option (U (" -TXTdid")
,
param); get(S(param), nrad

,
Last);

else

nrad «— true;

end if;

See also section 45.

This code is used in section 4.

228

§6 APPENDIX I INTRODUCTION

6.

(Variables local to task-generator 6)
=

tasks : natural;

laxity : float

;

Last : positive

;

param : Ustring;
seed : natural;

nrad : boolean
;

See also sections 9, 13, 18, 19, 22, 26, 29, 30, 32, 37, 41, 44, and 46.

This code is used in section 2.

7.

(Get developer file 7)
=

if name-present{\) then

getjname (devfile , 1);

else

raise nofilename;

end if;

This code is used in section 4.

8.

(Get developers 8)
=

get-developers (S(devfile)); num-developers <— geLnuni-dev elopers;

This code is used in section 4.

9.

(Variables local to task-generator 6) +=
nofilename : exception;

devfile : ustring;

num-developers : natural;

10. We need some more packages to read in the parameters. Specifically the package

getopt written by this student; and the package Ustrings—used for manipulating "un-

bounded" strings.

(Needed packages 10) =
with Ustrings;

use Ustrings;

with GetOpt;

use GetOpt;

See also sections 11, 14, 24, and 39.

This code is used in section 2.

229

INTRODUCTION APPENDIX I §11

11. We also add the following package to enhance the capability model the scheduler

(and task-generator) can use.

(Needed packages 10)
+=

with capability,

use capability;

12.

(Allocate a static array to hold tasks for schedule 12) =
sched : array (1 . . tasks) of StepRecord;

newsched : array (1 . . tasks) of NewStepRecord;
mysample : booLarray{\ .. tasks);

See also section 31.

This code is used in section 2.

13.

(Variables local to task-generator 6) +=
type NewStepRecord is

record

CalDuration : Duration;

CalStartTime : Time;

CalDeadLine : Time;

end record;

14.

(Needed packages 10)
+=

with genericset-pkg;

with SchedPrims

;

use SchedPrims

;

15.

(Compute earliest available time (EAT) in resource matrix 15) =
MATRIX_MIN{EAT, Min, COL);

This code is used in sections 2 and 28.

230

§16 APPENDIX I INTRODUCTION

16.

{ Generate another task 16)
=

(Compute duration of task T„p 17
)

(Compute predecessors 25
)

(Compute earliest start time 20

)

(Compute deadline T.D 21

)

(Compute priority P 23

)

sched (i).StepID <— i] sched (i).Deadline <— T-D\ sched (i).Priority <— P;

sched(i).EstimatedDuration <— T_p; (Assign expertise level 27)

(Update resource matrix 28
)

This code is used in section 2.

17. The duration varies in length between MIN-D and MAX-D . The duration will not

go over the maximum task deadline (MTD).

(Compute duration of task T_p 17)
=

T_p «- uniform (MIN.D , MAX-D); { duration }

This code is used in section 16.

18. Minimum task duration.

(Variables local to task-generator 6) +=
Min-D : natural <— 2;

19. Maximum task duration.

(Variables local to task-generator 6) +=
Max-D : natural *— 10;

20.

(Compute earliest start time 20)
=

for j E 1 . • (i — 1) loop

if naLset .member (j ,
sched(i).predecessors) then

if Sched(j). deadline > sched(i).EarliestStartTime then
sched [i).EarliestStartTime <— Sched(j).Deadline;

if debug then
pu*(MModifieduSched.(n

); put(i,l); put(") utoubeu ");

put (sched (i).EarliestStartTime , 1); puLline(" .u")>

end if;

end if;

end if;

end loop;

This code is used in section 16.

231

INTRODUCTION APPENDIX I §21

21. The deadline (T-D) is a function of the duration and the least value of a resource

in the resource matrix.

(Compute deadline T-D 21)
=

TT <- integer (float (T.p)* (1.0 + laxity))]

if debug then

pu^'Oldudeadlineuisu"); put(sched(i).Deadline ,1); pu£(" . u ")j

end if;

if sched(i).EarliestStartTime > EAT (COL) then

T_J9 «— TT + sched(i).EarliestStartTime;

else

T_Z> <- TT + JEAr(C);

end if;

if debug then
pui("Newudeadlineuisu "); puf(T_jD,l); pti£_7»ne(" .u")j

end if;

This code is used in section 16.

22.

(Variables local to task-generator 6) +=
debug : boolean <— false;

debugt : boolean <— false;

23. A random value.

(Compute priority P 23) =
P <— uniform (4, 10);

This code is used in section 16.

24.

(Needed packages 10)
+=

with Probability;

use Probability;

232

§25 APPENDIX I INTRODUCTION

25. I choose to select M out of N tasks as predecessors. M has an upper limit of

Max-Predecessors and N is the number of previous tasks assigned. If the number of

previous tasks scheduler is less than Max-Predecessors then the minimum is selected then

the upper limit is the number of previous tasks scheduled. M is selected randomly.

{ Compute predecessors 25) =
if do-predecessor then

if i < Max-Predecessors then
ptasks <— (i — 1);

else

ptasks <— Max-Predecessors

;

end if;

nsamp <— uniform(Q, ptasks);

if i > 1 then

sample(nsamp ,i — 1, mysample);
for j G 1 . . (i — 1) loop

if mysample(j) then
tl <— natset. size (Sched(i).Predecessors);

t2 <— nat_set.size(Sched(j). Successors);

if (tl < Max_Predecessors) A (t2 < Max^Predecessors) then

naLset.add(j, Sched(i).Predecessors); naLset.add(i, Sched (j). Successors);

end if;

end if;

end loop;

end if;

end if;

This code is used in section 16.

26.

(Variables local to task-generator 6) +=
Max-Predecessors : constant natural <— 0;

ptasks , nsamp : natural;

tl ,t2 : natural

;

27.

(Assign expertise level 27)
=

declare

tmpcap : cap-map .map

;

begin

copy_capability (COL, sched (i).ExpLevel);

end;

This code is used in section 16.

233

INTRODUCTION APPENDIX I §28

28.

(Update resource matrix 28) =
if debug then

pM<(nBeforeuUpdate: u
n

); put("EAT("); put(COL,l); put(n
) u=u")]

put{EAT (COL), 1); puUine(" . u ");

end if;

EAT(COL)+- T-D;

if debug then
pM<("AfteruUpdate: u

M
); pu*("EAT("); puf(COL,l); pu*(")u=u");

pu*(£y4T(COL),l); puL/me(M
. u ");

end if;

(Compute earliest available time (EAT) in resource matrix 15
)

This code is used in section 16.

29.

(Variables local to task-generator 6) +=
R : float <- 0.7;

R3 : natural <— 3; { laxity }

UU : natural <— 1;

Ul : natural <— 3; { seed }

U2 : natural *— 1;

type RESOURCE-MATRIX is array (POSITIVE range <>) of natural;

do-predecessor : BOOLEAN *— true;

30. Max task deadline.

(Variables local to task-generator ^) +=
MTD : natural +- 70000;

31. The way this is denned, it "hard-codes" the maximum number of designers per leve

to '2.' (Must be in concordance with the maximum number of designers defined above.)

(Allocate a static array to hold tasks for schedule 12) -f-=

EAT : RESOURCE-MATRIX (1 .. num-developers) +- (others =J> 0);

32.

(Variables local to task-generator 6) +=
P, T-D ,T-p,Rl,R2,C : natural

;

Min : natural <— 0;

COL : natural <— 1;

COUNT : natural *- 0;

TT : integer;

234

§33 APPENDIX I INTRODUCTION

33. This finds the smallest value in the resource matrix and returns the index of the

minimum value.

(Functions local to task-generator 33)
=

procedure MATRIX-MIN (MATRIX : in RESOURCE-MATRIX ;MIN : out

natural; Kl : out natural) is

Mini : natural <- MATRIX (1);

begin
Kl 4-1;

for j € 2 . . MATRIX 'Length 1 -p

if Mini > MATRIX (j) the

Mini 4- MATRIX (j); Kl <-j;

end if;

end loop;

MflV «- Mini

;

end MATRIX-MIN;
This code is used in section 2.

34. Procedure PuLset is declared in package schedprims

.

(Print out results 34 }
=

for i £ 1 . . £a.sfc.s loop

if ~^do- alternate then

put(sched(i).Deadline, 4); put(sched(i).Priority ,4);

put(sched (i).EstimatedDuration ,5); put(sched(i).EarliestStartTime,5);

{earliest start time}

pu<("u"); putset(Sched(i).Predecessors); put(" u "); putset(Sched(i). Successors);

put(,%

u
n
); print-capabilities(Sched(i).ExpLevel); new-line;

else

print- date (newsched(i).CalDeadline); put(sched(i). Priority ,5);

put(sched(i).EstimatedDuration,5); put("u ");

prinL date (newsched(i).CalStartTime); put("u")\ puts et(Sched(i). Predecessors);

pttf(Mu"); putset(Sched(i). Successors); put(" u ");

print- capabilities (Sched(i).ExpLevel); new-line;

end if;

end loop;

This code is used in section 2.

235

INTRODUCTION APPENDIX I §35

35.

(Convert to calendar time 35) =
(Get start date 36

)

Start-Time <— Current-Time;

for i G 1 . . tasks loop

(Convert Start Time to Calendar Time 43

)

(Convert Task Duration to Duration type 42
)

(Convert Deadline to Calendar Time 47

)

end loop;

This code is used in section 2.

36. For now "hard-code" a date (July 1st, 1997).

(Get start date 36 }
=

Current-Time <— Time.of (1997, 7,3); (Find first work-day 38) ifdebug2 then (Print

out first work day 40) end if;

This code is used in section 35.

37.

(Variables local to task-generator 6) +=
Current-Time , Start-Time : Time]

do-alternate : boolean +— false;

38.

(Find first work-day 38)
=

while (->Is WorkDay (Current-Time, nrad)) loop

Current-Time <— Current-time + Day-Duration' Last;

end loop;

This code is used in section 36.

39. Package to find federal off-days till year 2099 (barring acts of God, or Congress).

(Needed packages 10) -f-=

with calyr;

use calyr;

40.

(Print out first work day 40) =
Split (Current- Time , Year , Month , Day , Seconds); put("Th.eufirstuworkudayuisu ");

put(Month,3); put("/"); put(Day,3); put("/"); put(Year,4); puUine(" .");

This code is used in section 36.

236

§41 APPENDIX I INTRODUCTION

41.

(Variables local to task-generator 6) +=
Year : Year-number;

Month : Month-number

;

Day : Day-Number;

Seconds : Day-Duration;

42.

(Convert Task Duration to Duration type 42)
=

newsched(i). CalDuration <— ConvertHourstoDuration(sched(i).EstimatedDuration);

This code is used in section 35.

43.

(Convert Start Time to Calendar Time 43)
=

TotalTime <— ConvertHoursToDuration(Sched (i) .EarliestStartTime);

newsched(i).CalStartTime <— DurationTo Calendar Time (Start-Time , dailyhours
,

TotalTime , NRad);

if debug2 then
testduration <— CalendarTimetoDuration (Start- Time, dailyhours

,

newsched (i). CalStartTime , NRaD);

testhours *— ConvertDurationToHours(testduration);

if sched(i).EarliestStartTime ^ testhours then
pu<("ERRORuinuCalendarTimetoWorkHours"); new-line

;

pu<(MCalendarTimeureturnedu "); put (testhours);

pu<(" uanduitushoulduhaveureturnedu "); put(sched(i).EarliestStartTime);

put("."); J>uf(
,, (NRaD) u=u

,,

); put(NRaD); put(") ."); newJine;

pw<("TheuStartuTimouisu
,,

); print-date(StarLTime);

ptt<(
M

. uTheuTotalTimeuisu
M

); put (float (TotalTime));

pw<("Inuhoursuthatuisu "); put(ConvertDurationtoHours(TotalTime));

put (")"); put(" -uu")? new-line;

end if;

end if;

This code is used in section 35.

44.

(Variables local to task-generator 6) +=
testduration : Duration;

testhours : natural;

237

INTRODUCTION APPENDIX I §45

45.

(Get NRaD option 5) +=
for day £ Mon . . Thu loop

if nrad then
dailyhours (Day) «— 9.0 * SecondsPerHour;

else

dailyhours (Day) <— 8.0 * SecondsPerHour
;

end if;

end loop;

dailyhours (Fri) <— 8.0 * SecondsPerHour]

46.

(Variables local to task-generator 6) +=
dailyhours : Worfc/iou7\s

;

SecondsPerHour : constant Duration *— 3600.0;

TotalTime : duration;

47.

(Convert Deadline to Calendar Time 47) =
TotalTime <— ConvertHoursToDuration(Sched(i).Deadline);

newsched(i).CalDeadline <— DurationTo Calendar Time (Start-Time , dailyhours
,

TotalTime , NRad);

This code is used in section 35.

238

§48 APPENDIX I SYSTEM-DEPENDENT CHANGES

48. System-dependent changes. This module should be replaced, if necessary, by

changes to the program that are necessary to make MAIN work at a particular installation.

It is usually best to design your change file so that all changes to previous modules

preserve the module numbering; then everybody's version will be consistent with the

printed program. More extensive changes, which introduce new modules, can be inserted

here; then only the index itself will get a new module number.

49. RCS Keywords.

$RCSnle: task-generator.aweb,v

$Revision: 1.3

$Date: 1997/09/05 00:35:25

$Author: evansjr

$Id: task-generator.aweb,v 1.3 1997/09/05 00:35:25 evansjr Exp evansjr

$Locker: evansjr

$State: Exp

239

INDEX APPENDIX I §50

50. Index. Here is a cross-reference table for the MAIN program. All modules in which

an identifier is used are listed with that identifier, except that reserved words are indexed

only when they appear in format definitions, and the appearances of identifiers in module

names are not indexed. Underlined entries of subprograms and packages correspond to

sections where this entity is specified, whereas entries in italic type correspond to the

section where the entity's body is stated. For any other identifier underlined entries

correspond to where the identifier was declared. Error messages and a few other things

like "ASCII code" are indexed here too.

add: 25.

alLchecks: 2.

booL array: 12.

booLio: 2.

boolean : 2, 6, 22, 37.

BOOLEAN: 29.

CalDeadline: 34, 47.

CaffleadLine : 13.

CalDuration: 13, 42.

CALENDAR: 2.

CalendarTimetoDuration: 43.

CalStartTime: 13, 34, 43.

calyr : 39.

cap-map: 27.

capability: 11.

COL: 15, 21, 27-28, 32.

ConvertDurationtoHours: 43.

ConvertDurationToHours: 43.

ConvertHoursToDuration: 43, 47.

ConvertHourstoDuration: 42.

copy_ capability : 27.

COUNT: 32.

CurrenLTime: 35-38, 40.

CurrenLtime: 38.

dailyhours : 43, 45-47.

day : 45.

Day: 40-41, 45.

Day-Duration: 38, 41.

Day-Number: 41.

Deadline: 16, 20-21, 34, 47.

deadline : 20.

debug: 20-22, 28.

debugt: 22, 36, 43.

devfile: 7-9.

do„ alternate: 2, 34, 37.

do-predecessor : 25, 29.

duration : 46.

Duration: 13, 44, 46.

DurationTo CalendarTime : 43, 47.

EarliestStartTime: 20-21, 34, 43.

EAT: 15, 21, 28, 31.

enumeration-io: 2.

EstimatedDuration: 16, 34, 42.

ExpLevel: 27, 34.

false: 22, 37.

float: 2, 6, 21, 29, 43.

floaLio : 2.

flLio : 2.

Fri: 45.

genericset-pkg: 14.

get: 4-5.

get-developers: 8.

get-name: 7.

get-num-developers : 8.

geLoption: 4-5.

getopt: 4, 10.

GetOpt: 10.

z: 2, 34, 35-

integer: 21, 32.

integer-io : 2.

Jj WorJfeUay : 38.

j: 20, 25, 33-

#i : 33.

Last: 4-6, 38.

laxity: 2, 4, 6, 21.

Length: 33.

map : 27.

MATRIX: 33.

MATRIX.MIN: 15, 33-

AL4X_Z>: 17.

240

§50 APPENDIX I INDEX

Max-D: 19.

Max-Predecessors : 25-26.

member: 20.

MIN: 33.

Min: 15, 32.

M/O: 17.

Min-D: 18.

Mini : 33.

Mon: 45.

Month: 40-41.

Month^number: 41.

MTD: 17, 30.

mysample: 12, 25.

name-present: 7.

nat-io : 2.

natset: 20, 25.

natural: 2, 6, 9, 18-19, 26, 29-30,

32-33, 44.

new-line: 34, 43.

newsched: 12, 34, 42-43, 47.

NewStepRecord : 12, 13.

nofilename : 7, 9.

nrad: 5-6, 38, 45.

iViW: 43, 47.

JVflaD : 43.

nsamp : 25-26.

num-developers: 8-9, 31.

option^present: 4-5.

param: 4—6.

positive : 6.

POSITIVE: 29.

Predecessors : 25, 34.

predecessors : 20.

print- capabilities : 34.

print-date: 34, 43.

Priority: 16, 34.

Probability : 24.

ptasks : 25-26.

pu*: 20-21, 28, 34, 40, 43.

putJine: 20-21, 28, 40.

putset: 34.

Putset: 34.

RESOURCE-MATRIX: 29,31,33.

fll: 32

#2: 32

#,?: 29

45-46.

35, 37, 43, 47.

48.

sample : 25.

Sc/ie<f: 20, 25, 34, 43, 47.

acfcei : 12, 16, 20-21, 27, 34, 42-43.

SchedPrims : 14.

schedprims : 34.

Seconds: 40-41.

SecondsPerHour

seed: 4, 6.

size: 25.

Split: 40.

Start- Time

:

StepID: 16.

StepRecord: 12.

Successors : 25, 34.

system dependencies:

T_P: 16, 21, 28, 32.

T-p: 16-17, 21, 32.

task-generator: 2, 3, 11.

task_generator.adb : 2.

<<wib: 2, 4, 6, 12, 34-35.

testduration: 43-44.

testhours : 43-44.

text-io: 2.

Thu: 45.

Time: 13, 37.

Time-of : 36.

tmpcap : 27.

TotalTime: 43, 46-47.

irue: 5, 29.

TT: 21, 32.

« : 25-26.

tS: 25-26.

uniform: 17, 23, 25.

Unsuppress : 2.

ustring : 9.

Ustring: 6.

Ustrings : 10.

TO: 29.

tfi : 29.

tf-2 : 29.

241

INDEX APPENDIX I §50

Workhours: 46.

Year: 40-41.

Year_number : 41.

242

§50 APPENDIX I NAMES OF THE SECTIONS

Allocate a static array to hold tasks for schedule 12, 31) Used in section 2.

Assign expertise level 27) Used in section 16.

Compute deadline T_D 21) Used in section 16.

Compute duration of task T_p 17) Used in section 16.

Compute earliest available time (EAT) in resource matrix 15) Used in sections 2 and 28.

Compute earliest start time 20) Used in section 16.

Compute predecessors 25) Used in section 16.

Compute priority P 23) Used in section 16.

Convert Deadline to Calendar Time 47) Used in section 35.

Convert Start Time to Calendar Time 43) Used in section 35.

Convert Task Duration to Duration type 42) Used in section 35.

Convert to calendar time 35) Used in section 2.

Find first work-day 38) Used in section 36.

Functions local to task-generator 33) Used in section 2.

Generate another task 16) Used in section 2.

Get NRaD option 5, 45) Used in section 4.

Get developer file 7) Used in section 4.

Get developers 8) Used in section 4.

Get input parameters 4) Used in section 2.

Get start date 36) Used in section 35.

Needed packages 10, 11, 14, 24, 39) Used in section 2.

Print out first work day 40) Used in section 36.

Print out results 34) Used in section 2.

Update resource matrix 28) Used in section 16.

Variables local to task-generator 6, 9, 13, 18, 19, 22, 26, 29, 30, 32, 37, 41, 44, 46
)

Used in section 2.

243

244

LIST OF REFERENCES

[1] Salah El-Din Mohammed Badr. A Model and Algorighms For A Software Evo-

lution Control System. PhD thesis, Naval Postgraduate School, Monterey, CA
93943, December 1993.

[2] Ramamritham K., Stankovic J. A., and P. Shiah. Efficient scheduling algorithm

for real-time multiprocessor systems. Technical Report 89-37, University of Mas-

sachusetts, Amherst, 1989. Dept. of Computer and Information Science.

[3] Ramamritham K., Stankovic J. A., P. Shiah, and Zhao W. Real-time schedul-

ing algorithms for multiprocessors. Technical Report 89-47, University of Mas-

sachusetts, Amherst, 1989. Dept. of Computer and Information Science.

[4] Luqi. A graph model for sofware evolution. IEEE Transactions on Software

Engineering, 16(8), August 1990.

[5] A.K. Mok. and M.L. Dertouzos. Multiprocessor scheduling in a hard real-time en-

vironment. In Proceedings of the IEEE Real-Time Systems Symposium, November

1978.

[6] J. D. Ullman. NP-complete scheduling problems. J. Comput. System Sci., 10:384-

393, 1975.

245

246

INITIAL DISTRIBUTION LIST

1

.

Defense Technical Information Center 2

8725 John J. Kingman Road., Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

Monterey, CA 93943

3. Center for Naval Analysis 1

4401 Ford Ave.

Alexandria, VA 22302

4. Dr. Ted lewis, Chairman, Code CS/Lt 1

Computer Science Dept.

Naval Postgraduate School

Monterey, CA 93943

5. Chief of Naval Research 1

800 North Quincy St.

Arlington, VA 22217

6. Dr. Luqi, Code CS/Lq 1

Computer Science Dept.

Naval Postgraduate School

Monterey, CA 93943

7. Dr. Marvin Langston 1

1225 Jefferson Davis Highway

Crystal Gateway 2 / Suite 1500

Arlington, VA 22202-4311

8. David Hislop 1

U.S. Army Research Office

PO Box 12211

Research Triangle Park,NC 27709-2211

9. Capt. Talbot Manvel 1

Naval Sea Systems Command
2531 Jefferson Davis Hwy.

Attn: TMS 378 Capt. Manvel

Arlington ,VA 22240-5150

247

10. CDR Michael McMahon
Naval Sea System Command
2531 Jefferson Davis Hwy.

Arlington, VA 22242-5160

11. Elizabeth Wald
Office Of Naval Research

800 N. Quincy St.

ONR CODE 311

Arlington , VA 22132-5660

12. Dr. Ralph Wachter

Office of Naval Research

800 N. Quincy St.

CODE 311

Arlington, VA 22217-5660

13. Army Research Lab

115 O'Keefe Building

Attn: Mark Kendall

Atlanta, GA 30332-0862

14. National Science Foundation

Attn: Bruce Barnes

Div. Computer & Computation Research

1800 G St. NW
Washington, DC 20550

15. National Science Foundation

Attn: Bill Agresty

4201 Wilson Blvd.

Arlington, VA 22230

16. Hon. John W. Douglas

Assistant Secretary of the Navy
(Research, Devlopment and Aquisition)

Room E741

1000 Navy Pentagon

Washington, DC 20350-1000

17. Technical Library Branch

Naval Command, Control, and Ocean Surveillance Center

RDT&E Division, Code D0274

San Diego, CA 92152-5001

248

18. Head, Intelligence, Surveillance, & Reconnaissance Dept.

Naval Command, Control and Ocean Surveillance Center

RDT&E Division, Code D70
San Diego, CA 92152-5001

19. Head, Joint & National Systems Division

Naval Command, Control and Ocean Surveillance Center

RDT&E Division, Code D73
San Diego, CA 92152-5001

249

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE
SCHOOL

Monterey ca 93943-5101

DUDLEY KNOX LIBRARY

3 2768 00344901 8

