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PREFACE.

The following work is based upon a course of lectures and
recitations which the author has given, during the last few

years, to the Junior class of the Electrical Engineering

Department of the Sheffield Scientific School.

It has been the author's aim to present the subject in such

a manner as to enable the student to acquire a firm grasp of

the fundamental principles of Mechanics and to apply them
to problems- with the minimum amount of mental effort.

In other words economy of thought is the goal at which the

author has aimed. It should not be understood, however,

that the author has been led by the tendency toward reducing

text-books to collections of rules, mnemonic forms, and formu-
lae. Rules and drill methods tend toward the exclusion of

reasoning rather than toward efficiency in thinking. The
following features of the treatment of the subject may be

noted

:

In order to make the book suitable for the purposes of

more than one class of students more special topics are

discussed than any one class will probably take up. But
these are so arranged as to permit the omission of one or

more without breaking the logical continuity of the subject.

In deciding on the order of the topics discussed two more
or less conflicting factors have been kept before the eye,

i.e., to make the treatment logical, yet to introduce as few

new concepts at a time as possible. It is to secure the

second of these ends, for instance, that the historical order

of the development of mechanics is followed by discussing

equilibrium before motion. This arrangement not only

27105:}



IV PREFACE

grades the path of the student by leading him from the

easier to the more difficult dynamical ideas, but it also

gives him time to acquire proficiency in the use of his mathe-
matical tools.

As a result of the severe criticisms of Newton's laws of

motion by such men as Heinrich Hertz, Ernst Mach, and
Kail Pearson, authors of recent text-books on Mechanics

have shown a tendency to give either a new set of laws or

Done at all. There is no doubt that a subject like Mechanics

should start, as in the case of Thermodynamics, with a few

simple laws and the entire structure of the science should be

based upon them. In the present work the following law

is made the basis of the entire subject:

To every action there is an equal and opposite reaction, or,

the sum of all the actions to which a body or a part of a body

.is subject at any instant vanishes.

Four concepts are associated with the term act ion, namely,

the concepts of force, torque, linear kinetic reaction, and

angular kinetic reaction. These are introduced one at a

time and in connection with the application of the law to

a certain class of problems. Force is introduced with the

equilibrium of a particle (pp. 15, 10), torque with the equilib-

rium of a rigid body (pp. 35, 39, 40), linear kinetic reaction

with the motion of a particle (pp. 100-106), angular kinetic

reaction with the motion of a rigid body (pp. 218-221).

Thus by introducing the concepts of linear and angular

reactions and by extending the meaning of the term action

to include these reactions, the fundamental principle of

Mechanics is put in the form of a single law, which is equiva-

lent to Newton's laws of motion and which lias the advan-

tages <>f the point of view involved in D'Alembert's principle.

This law ha- the directness and simplicity of Newton's

third law. so that the beginner can easily understand it and

apply it to simple problems of equilibrium, and yel it admits

of wider interpretation and application with the growth of
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the student's knowledge. By making this law the central

idea of the entire subject and by gradually extending its

interpretation the treatment is made uniform, coherent, and
progressive.

While appeal is made to the student's experience in in-

troducing the principles of the conservation of dynamical

energy and of the conservation of momentum they are

shown to be direct consequences of the law of action and
reaction. The equivalence and the alternative character

of the conservation principles and of the law of action and
reaction are emphasized by working out a number of prob-

lems by the application of both the law and the principles.

The two types of motion, i.e., motion of translation and
motion of rotation, are treated not only in the same general

manner, but are developed along almost parallel lines.

The simpler types of motion which are generally treated

under Kinematics are given in the present work as problems

in Dynamics. The author believes that the practice of

divesting the physical character of the motion from the

simpler types and reducing them to problems in integration

is unfortunate. On account of their freedom from mathe-

matical difficulties the simpler types of motion are particu-

larly well adapted to illustrate the principles of dynamics.

In order to differentiate between vectors and their magni-

tudes the former are printed in the Gothic type.

In conclusion the author wishes to express his obligations

to Mr. Leigh Page for reading the manuscript and to Dr.

David D. Leib for reading the proofs and to both for many
valuable suggestions.

H. M. Dadourian.
Yale University,

January, 1913.
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ANALYTICAL MECHANICS

INTRODUCTION.

1. Scope and Aim of Mechanics.— Mechanics is the science

of motion. It has a twofold object:

First, to describe the motions of bodies and to interpret

them by means of a few laws and principles, which are gen-

eralizations derived from observation and experience.

Second, to predict the motion of bodies for all times when

the circumstances of the motion for any one instant are

given, in addition to the special laws which govern the

motion.

The present tendency in science is toward regarding all

physical phenomena as manifestations of motion. Compli-

cated and apparently dissimilar phenomena are being ex-

plained by the interactions and motions of electrons, atom-.

molecules, cells, and other particles. The kinetic theory of

heat, the wave theories of sound and light, and the electroD

theory of electricity are examples which illustrate the tend-

ency toward a mechanical interpretation of the physical

universe.

This tendency not only emphasizes the fundamental im-

portance of the science of mechanics to other physical

sciences and engineering but it also broadens the aim ot t la-

science and makes the dynamical interpretation of all physi-

cal phenomena its ultimate object. The aim of elementary

mechanics is, however, very modest and its -cope is limited to

the discussion of the simplest cases of motion and equilibrium

which occur in nature.

l
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2. Divisions of Mechanics. — It is customary to divide

Mechanics into Kinematics and Dynamics. The former

treats of the time and space relations of the motions of

bodies without regard to the interactions which cause them.

In other w«.rd-. Kinematics is the geometry of motion. In

Dynamics, on the other hand, motion and equilibrium are

treated as the results of interactions between bodies; conse-

quently not only Htm and spaa enter into dynamical discus-

sions, but also mass
}
the third element of motion.

Dynamics in it- turn is divided into Statics and Kindles.

Static- is tli«- mechanics of bodies in equilibrium, while

Kineti.- is the mechanics of bodies in motion.

Chapters II. III. and IV of the present work arc devoted

to problems in Btatics, while the rest of the book, with the

exception of Chapters I. V, and VII, is given to discussions

of problems in kinetics. The subject matter of Chapters I

and VII is essentially of a mathematical nature. In the

former the addition and resolution of vector- are discussed,

while in the hitter the ( lalculus is applied to finding centers

of mass and moment- of inertia. Chapter V is devoted

mainly to kinematical problems.



CHAPTER I.

Vectors are rep-

The length of the

Y

ADDITION AND RESOLUTION OF VECTORS.

3. Scalar and Vector Magnitudes.—-Physical magnitudesmay
be divided into two classes according to whether they have
the property of orientation or not. Magnitudes which

have direction are called vectors, while those which do not

have this property are called scalars. Displacement, veloc-

ity, acceleration, force, torque, and momentum are vector

magnitudes. Mass, density, w^ork, energy, and time are

scalars.

4. Graphical Representation of Vectors,

resented by directed lines or arrows,

directed line represents the magnitude

of the vector, while its direction coin-

cides writh that of the vector. For

brevity the directed lines as well as

the physical quantities which they

represent are called vectors. The
head and the tail of the directed line

are called, respectively, the terminus

and the origin of the vector. In Fig. 1, for instance, P is

the origin and Q the terminus of the vector a.

5. Notation.— Vectors wdll be denoted by letters printed in

Gothic type, while their magnitudes will be represented by
the same letters printed in italic type. Thus in Fig. 1 the

vector PQ is denoted by a, but if it is desired to represent

the length PQ without regard to its orientation a is used.

6. Equal Vectors.— Two vectors are said to be equal it they

have the same length and the same direction. It follows,

therefore, that the value of a vector is not changed when it

3

FlQ. l.
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is moved about without changing its direction and magni-

tude.

7. Addition of Two Vectors.— Let the vectors a and b, Fig. 2,

represent two displacements, then their sum is another

vector, c, which is equivalent to the given vectors. In

Older to find c let us apply to a particle the operations indi-

cated by a and b. Each vector displaces the particle along

its direct ion through a distance equal to its length. There-

/

Fio. 2. Fro. 3.

fore applying a to the particle at P, Fig. 3, the particle is

broughl to the point Q. Then applying the operation indi-

cated by b the particle is broughl to the point R. There-

fore the result of the two operations is a displacement from
/' to /.'. Bui this is equivalent to a single operation repre-

sented by the vector c. which has /' for its origin and It for

it- terminus. Therefore c is called the Bum, or the resultant,

of a and b. This fact is denoted by the following vector

equation,
a + b = c. (I)

8. Order of Addition.— The order of addition does not affect

the result. If in I'm. •"! the order of the operations indicated

by a and b is reversed the particle moves from P to Q' and

th.-n to //. Thus the path of the particle i- changed but not

t be resultant displacement.

9. Simultaneous Operation of Two Vectors. The operations

indicated by a and b may 1><- performed simultaneously

without affecting the final result. In order to illustrate
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the simultaneous operation of two vectors suppose the
particle to be a bead on the wire .1/;, Fig. 4. Move the
wire, keeping it parallel to itself, until each of its particles
is given a displacement represented by b. Simultaneously
with the motion of the wire move the bead along the
wire giving it a displacement equal to a. At the end of

J
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ant. Then, solving the triangle formed by these vectors,

we obtain

c 2 = a 2 + b- -f- 2 ab cos
<f>

b sin
and tan

a + b cos

(ID

(HI)

where a, b, and c are the magnitudes of a, b, and c, respec-

tively, while and are the angles b and c make with a.

Equation (II) determines the magnitude and equation (III)

the direction of c.

1 i... 5.

(n)

(b)

I i... 6.

Special Cases, (a) If a and b have the same direction,

as in Pig. 6a, then <£=(). Therefore

md

c* = a*+b*+2db
f

tan = 0,

c = a + b,

= 0.

Thus c has the same direction as a and b, while its magni-
tude equals the arithmetical sum of their magnitudes.

b When a and b are oppositely directed, as in Fig. 6b,

<t>
= t. Therefore

C " - a 2 + b- — 2 oft, .*. C = a — 6,

and tan = 0, :. = 0.
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Thus the magnitude of c equals the algebraic Bum of the
magnitudes of a and b, while its direction is the same as

that of the larger of the two. It is evidenl thai it' the

magnitudes of a and b are equal c vanishes. Therefore
two vectors of equal magnitude and opposite directions are

the negatives of each other. In other words, ,/•/„ „ the din <-

Hon of a vector is reversed its sign is changed.

(c) When a and b are at right angles to each other, as in

Fig. 6c, <j> =
l-

Therefore

c
2 = a 2 + b 2

and tan = - •

a

12. Difference of Two Vectors.— Subtraction is equivalent to

the addition of a negative quantity. Therefore, to subtract

b from a we add — b to a. Thus
we have the following rule for

subtracting one vector from an-

other.

In order to subtract one vector

from another reverse the one to be

subtracted and add it to the other

vector.

It is evident from Fig. 7 that

the sum and the difference of two vectors form the diagonals

of the parallelogram determined by them.

ILLUSTRATIVE EXAMPLES.

A particle is displaced 10 cm. X. 30° E., then Jo cm. E. Find the

resulting displacement.

Representing the displacements and their resultant by the vectors a,

b, and c, Fig. 8, we obtain
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c- = a- + 61 + 2 oo cos <>

= (10 cm.) 8 + (10 cm.)- + 2 X 10 cm. X 10 cm. cos (60°)

= 300 cm. 1

tan

10 V3 cm.

17.3 cm.*

h sin <t>

Y
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a = a, -f

ax =

a = V«/ + ay\

a cos 0, )

a sin 0, ^

tan = —
a.

(n

(VI)

\ll

When a has components along all three axes of a rectangular

system, Fig. 10, the following equations express the vector

in terms of its components.

Ik;. 10.

a r+a y -f

a COS ai,|

a COS a2
,f

a cos «3.|

I\

V

a = Vaz
2+ay

2+a VI

where ai, a2 , and a :! are the angles a makes with the coordi-

nate axes.

14. Resultant of Any Number of Vectors. Graphical Methods.

— The resultant of a number of vectors a. b. c. etc., may be

obtained by either of the following metl

First: move b, without changing either it- direction or its

magnitude, until its origin falls on the terminus of a, then



10 AXA LYTICAL MECHANICS

It.,. 11.

move c until its origin fulls on the terminus of b, and so on
until all the vectors are joined. This gives, in general, an

open polygon. Then the resultant

is obtained by drawing a vector

which closes the polygon and which

has its origin a1 the origin of a.

The validity of this method will be

seen from Fig. 11, where r repre-

sent-; the resultant vector. Evi-

dently the resultanl vanishes when
the given vectors form a closed

polygon.

Second: draw a system of rectangular coordinate axes;

resolve each vector into components along the axes; add the

components along each axis geometrically, beginning at the

origin. This gives the components of the required vector.

Then draw the rectangular parallelepiped determined by
these components. The resultant is a vector which has the

origin of the axes for its origin and forms a diagonal of the

parallelopiped.* This method is based upon the following

analyi ical method.

15. Analytical Method.—Expressing the given vectors and their

resultanl in terms of their rectangular components, we have

a= a r + a„+ a„

b= b x +b„+b„
(1)

r = r x + r„ + r z

Substituting from (1) in the vector equation

r=a+b + c+ • • •

(2)

and collecting the terms we obtain

r,+ rir
+r. = (a,+ b,+ - • •)+(a„+b

1/
+ . . .)

+(a,+ b.+ - • •)• (3)

But since the directions of the coordinate axes are indepen-

•i the given vectors are in the same plane the parallelopiped reduces

to a n ctangle.
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dent, the components of r along any one of the axes must
equal the sum of the corresponding components of th<

vectors. Therefore (3) can be split into the following three
separate equations.

r*= a*+ b,+ c x + • • • ,1

r„= a u+b y +c„ + • •, I

r, = a, + b,+ c,+ • • • . ]

It was shown in § 11 that when two vectors are parallel

the algebraic sum of their magnitudes equals the magni-

Fig. 12.

tude of their resultant. This result may be extended to

any number of parallel vectors. Therefore we can put the

vector equations of (4) into the following algebraic forms:

rx = ax+bx+cx+ • • • ,1

ry=ay+by+cy+ • • •

,

rz = as+ 6,+ c,+ • • • .
|

Equations (5) determine r through the following relations:

vVs
2+rv

2+r,2
,

COS ct\ COS a3 = (7)
rx— , COS c*2 =
r /' /'

where ah a2, and a3 are the angles r makes with the axes.

16. Multiplication and Division of a Vector by a Scalar.

When a vector is multiplied or divided by a scalar the result

is a vector which has the same direction as the original vec-

tor. If, in the equation b= ma. m be a scalar then b has the

same direction as a but its magnitude is m times thai of a.
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ILLUSTRATIVE EXAMPLE.

A man walks 3 miles X. 30° E., then one mile 1 :.. then 3 miles S. 45° E.,

then 4 miles S., then one mile X. .'30° W. Find his final position.

Representing the displacements by vectors we obtain the graphical

solution given in Fig. 13, where r represents the resultant displacement.

Y

Fig. 13.

In order to find r analytically we first determine its components. Thus

rx = [3 cos (60°) + cos (0°) + 2 cos (-45°) + 4 cos (-90°)

+ cos (120°)] miles

= (2 + V2) miles

= 3.41 miles.

r„ = [3 sin (00°) + sin (0°) + 2 sin (-45°) + 4 sin (-90°)

-r-sin (120°)] miles

= (2V3 -V2-4) miles

= —1.95 miles.

.-. r - Vrx
2 + V

= 3.93 miles.

The direction of r is given by the following relation.

tan0
r„ „ -1.95

37 1

Therefore the final position of the man is about 3.93 miles 8. 52 .9 E.

from his starting point.
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PROBLEMS.

1. The resultant of two vectors which are at righl angles to each other
is twice the smaller of the two. The magnitude of the smaller \ i

a; find the magnitude of the greater vector.

2. In the preceding problem find the resultant vector.

3. Find analytically the sum of three equal vectors which point in the
following directions — East, N. 30° \Y., and S. 30° \Y.

4. In the preceding problem make use of the first graphical method.
6. In problem 3 make use of the second graphical method.
6. A vector which is 15 cm. long points X. 30° E. Find its compo-

nents in the following directions.

(a)N.30°W. (c) W. (e)S.60°E.
(b) X. 60° E. (d) S. 30° W. (0 E.

7. A vector a is in the xy-jAanc. If 3 is added to n z and \ to n v the

direction of the vector is not changed but its magnitude becomes o, + a v .

Find the magnitude and direction of a.

8. Three vectors a, b, and c lie in the .ry-plane. Find their resultants

analytically, taking the magnitudes of their components from the follow-

ing tables:



CHAPTER II.

EQUILIBRIUM OF A PARTICLE.

ACTION AND REACTION. I ORCE.

17. Particle.— A body whose dimensions are negligible is

called a particle. In a problem any body may be considered

as a particle so long as it docs not tend to rotate. Even

when the body rotates it may he considered as a particle if

its rotation does not enter into the problem. For instance,

in discussing the motion of the earth in its orbil the earth

is considered as a particle, because its rotation about its

axis docs not enter into the discussion.

18. Degrees of Freedom. The Dumberof independent ways

in which a body can move is called the number of degrees of

freedom of its motion. It equals the number of coordinates

which are necessary in order to specify completely the posi-

tion of th<- body. A five particle can move in three inde-

pendent directions, that is. along the three axes of a system

of rectangular coordinates, therefore it has three degrees

of freedom. When the particle is constrained to move in a

plane its freedom is reduced to two degrees, because ii can

move only in two independent directions. When it is con-

strained to move in a straight line it has only one degree of

freedom.

19. Force. "While considering the motion or the equilibrium

of a body our attention is claimed not only by that body

hut also by other- which act upon it. In order to insure

concentration of attention problems in Dynamics arc sim-

plified in the following manner. All bodies are eliminated,

except the "tie the motion of which is being discussed, and

their actions upon the latter are represented by certain vec-

tor magnitude- known as forces. As an illustration consider
14
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the equilibrium of the shaded part of the rope in Fig. 1 la.

The shaded part is acted upon

by the adjoining- sections of the
T

* »

—
' * *

rope. Therefore we consider the

shaded part alone and represenl

the actions of the adjoining parts

by the forces — F and F, as shown

in Fig. 14b.

20. Definition of Force.— Force is a vector magnitudt which

represents the action of one bod// upon another. The interac-

tion between two bodies takes place across an area, while the

forces which represent them are supposed to be applied al

one point. Therefore the introduction of the idea of force

presupposes the simplification of dynamical problems which

is obtained by considering bodies as single particles, or as

a system of particles.

21. Internal Force.—A force which represent- the action of

one part of a body upon another part of the same body is

called an internal force.

22. External Force. —A force which represents the action of

one body upon another body is called an external force.

23. Unit Force. — The engineering unit of force among

English speaking people is the -pound. The pound is the

weight, in London, of a certain piece of platinum kepi by

the British government.

24. The Law of Action and Reaction.—The fundamental law

of Mechanics is known as the law of action and miction.

Newton (1692-1727), who was the first to formulate it. put

the law in the following form.

"To every action (Inn is an equal and opposite reaction,

or the mutual actions of two bodies are equal and oppositely

directed."

Let us apply this law to the interaction between a book

and the hand in which you hold it. Your hand presses

upward upon the book in order to keep it from falling,
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while the book presses downward upon your hand. The

law states that the ad ion of your hand equals the reaction

of the book and is in the opposite direction. The book

reacts upon your hand because the earth attracts it. When
your hand and the earth are the only bodies which act upon

the book, the action of your hand equals and is opposite to

the action of the earth. In other words the sum of the

two actions is nil. Generalizing from this simple illustra-

tion we can put the law into the following form:

To every action there is an equal and opposite reaction, or

the sum of all the actions to which a body or a part of a body
is subject at any instant vanishes :

2A = 0.* (A)

25. Condition for the Equilibrium of a Particle.— The condi-

tion of equilibrium of a particle is obtained by replacing the

term "action '"

by the term "force" in the last form of the

fundamental law and then Stating it in the form of a condi-

tion. Thus — in order that a parliclr be in equilibrium the

sum of all the forces which act upon it must vanish.

In other words if Fi, Fa , F :t
F

ri
are the forces which

act upon a particle, then the vector equation

Fi+Fa+F,+ • • • +F„ = (I)

musl be satisfied in order thai the particle be in equilib-

rium. Equation (I) is equivalent to stating thai when the

forces are added graphically they form a closed polygon.

Bui when the sum of a number of vectors vanishes the sum

of their components also vanishes. Therefore we must

have
x,+ x,+ • • • +XB =0,|
Y, + Y,+ • • +Y.-0, (II')

Zi + Za +- • • + Z» = 0,J

where X.. Y . and Z are the Components of F,.* Since the

vectors in each of the equations of II') are parallel we can

table of notations.
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write them as algebraic equations. Therefore we have the
following equations for the analytical form of the condition

of equilibrium of a particle.

2XsX1 +X2+ • • • + A' B = 0,*|

2Z m Zx + Z2 + • • • + Zn = 0.
)

The condition of equilibrium may, therefore, be stated

in the following form.

In order that a particle be in equilibrium the algebraic sum
of the components of the forces along each of the axes of a rec-

tangular system of coordinates must vanish.

The following rules will be helpful in working out prob-

lems on the equilibrium of a particle.

First. Represent the particle by a point and the action of

each body which acts upon it by a properly chosen

force-vector. Be sure that all the bodies which

act upon the particle are thus represented.

Second. Set the sums of the components of the forces

along properly chosen axes equal to zero.

Third. If there are not enough equations to determine the

unknown quantities, obtain others from the geo-

metrical connections of the problem.

Fourth. Solve these equations for the required quantities.

Fifth. Discuss the results.

- ILLUSTRATIVE EXAMPLES.

1. A particle suspended by a string is pulled aside by a horizontal

force until the Btring makes an angle a with the vertical. Find the tensile

force in the string and the magnitude of the horizontal force in terms of

the weight of the particle.

The particle is acted upon by three bodies, namely, the earth, the

string, and the body which exerts the horizontal force. Therefore, we

* The relation 2X a A'i +X»+ • • « + A'„ Ls not an equation. It

merely states that 2X is identical with and is an abbreviation f< »r A'i -f

x, + • • + x„.
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represent the actions.,!' these bodies by three force-vectors, W, T, and F,

Pig. 15, ami then apply the conditions of equilibrium. Setting equal to

zero the sums of tin- components of the y
forces along the x- and y-axes, we gel

EX /' - 7' sin p: = 0. (a)

EY m -W+Tcosa = 0. (b)

Solving equations (a) and (b) we have

and

cos a

= T sin a
= W tan a.

Discussion. — When a = 0, T= W

and F = 0. When a
2'

cc and

F=x>. Therefore no finite horizontal

force can make the string perfectly hori-

zontal.

2. A uniform bar. of weigh! It' and

length a, is suspended in a horizontal

position by two Btrihgs of equal length Il<;
-

1,r
>-

I. The lower ends of the strings are fastened to the ends of the bar and

the upper ends to a peg. Find the tensile force in the strings.

The bar is acted upon by three bodies, namely the earth and the two

Btrings. We represenl their actions by the forces W, Ti,and T2, Fig. 16a.

The tensile forces of the strings act at the ends of the liar. On the other

hand the weight is distributed all along the rod. But we may consider

it a- acting at the middle point, as in Fig. 16a, or we may replace the rod

W
by two particles of weight — each, as shown in Fig. bib. In the last case

the rigidity of the bar which prevents its ends from coining together is

represented by the forces F and — F.

( lonsidering each particle separately and setting equal to zero the sums

of the Components of tin 1 forces along the axes, we obtain

EX sTxCosa-F = 0,

w
2

for the first particle, and

EX = -TiCosa + F = 0,

11'

2F 7\ sin a 0,

IT 7', sin « = 0,
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for the second particle. It follows from these equations that

Tx
= 7',

L9

2 sin a

_J
Vll*-d

w.

Fig. 16.

Discussion. — The tensile force of the strings increases indefinitely

as their total length approaches that of the bar. On the other hand as

the length of the strings becomes very large compared with thai of the

11'

bar the tensile force approaches — as a limit.

The problem can be solved also by considering the forces acting on the

peg, as shown in Fig. 16b.

PROBLEMS.

1. Show that when a particle is in equilibrium under the action of two

forces the forces must lie in the same straight line.

2. Show that when a particle is in equilibrium under the action of

three forces the forces lie in the same plane.
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3. Find the horizontal force which will keep in equilibrium a weight
of L50 pounds on a smooth inclined plane which makes oir with the
horizon.

4. A ring of weight W is suspended by means of a string of length I
'

'« ends of which are attached to two .onus on the same horizontal line.'
I ml foe tensde force oi the string If the distance between .is ends is d
Also discuss the limiting cases in which / approaches d or becomes very
large compared with it.

y

6 A body of weighl W is suspended by two strings of lengths h and Z,The upper end oi each string is attached to a fixed point in the same
horizontal hue. Find the tensile for,,, m the strings if thedist^e
between the two points is d.

e

7. A particle is in equilibrium on a smooth inclined plane under theaction o wo equd forces, the one acting along the plane uplandthe other horizontally. Find the inclination of the plane
8. Apply the conditions of equilibrium to find the magnitude and^- of the resultant of a number of forces actmg upoTfpaScle
9.

1 wo spheres oi equal radius and equal weighl an- in eoiiSbrium inasmooth hemtepherical bowl; find the reactioiXw^ th?^oX^and between the spheres and the bowl.
'

10. The ^ls of a string, 60 cm. long, are fastened to two points in thesame horizontal hue and at a distance of
10 cm. apart: two weights are hung from
points in the Btring 25 cm. and 20 cm. from
the ends. Find the ratio of the weights if

the part of the string between them is hori-
zontal.

11- A single triangular truss of 24 feet
span and .", feet depth supports a load of
3tans at the apex. Find the forces acting on the rafters and the tie

1 'Iplanchva force F, acting horizontally; ,. can also be kept in

te^ns^^^
01 P«^P-^ ^ the plane. Express 1

1

Fand w""'
f°U0Win8 amingementa " f '" lll(^ 'i'" 1 the relation between
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l
""

l

i
I | [ i

l/w\l l/w\l I /w\ I

(b) (c) (d)

SLIDING FRICTION.

26. Frictional Force.—Consider the forces acting upon a body

which is in equilibrium on a rough inclined plane, Fig. 17.

The body is acted upon by twoi

forces, namely, its weight, W,

and the reaction of the plane,

R. The reaction of the plane

is the result of two distinct

and independent forces. One
of these, N, is perpendicular

to the plane and is called the

normal reaction. The other,

F, is along the plane and is

called the frictional force. The

normal reaction is due to the rigidity of the plain'. It re-

sists the tendency of the body to go through the plain'. The

frictional force isdueto the roughness of the contact between

the body and the plane. It prevents the body from ^lidin.^

down the plane.

27. Angle of Friction.— Aswe increase the angle of elevation

of the inclined plane a certain definite angle will be reached
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when the equilibrium is disturbed and the body begins to

slide down the plane. This angle is called the angle of

friction. This definition for the angle of friction does not

hold when the body is acted upon by other forces besides

its weight and the reaction of the plane. The following

definition, however, is valid under all circumstances: The

angle of friction equals the angle which the total reaction makes

with the normal to the surface of contact when the body is on

the point of motion.

28. Coefficient of Friction.— Denoting the angle of friction

by 4>, we obtain

F = R sin <f>,

N = R cos 4>.

Therefore F = N tan </>

= l*N, (HI)

where y. = tan </> and is called the coefficient of friction.

The angle of friction and consequently the coefficient of

friction are constants which depend upon the surfaces in

contact. The last four equations hold true only when the body

is on the point of motion.

29. Static and Kinetic Friction.— The friction winch comes

into play is called static friction if the body is at rest and

kinetic friction if it is in motion.

30. Laws of Friction.— The following statements, which are

generalizations derived from experimental results, bring out

the important properties of friction. They hold true within

certain limits and are only approximately true even within

these limits.

1. Frictional forces come into play only when a body is

urged to move.

2. Frictional forces always act in a direction opposite to

that in which the body is urged to move.

3. Frictional force is proportional to the normal reaction,
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4. Frictional force is independent of the area of contact.

5. The static frictional force which comes into play is not

greater than that which is necessary t<> keep the body in

equilibrium.

G. Kinetic friction is smaller than static friction.

Lawr
s 1 to 4 hold true for both static and kinetic friction.

The coefficient of friction between two bodies depends upon

the condition of surfaces in contact. Therefore the value of

n is not a perfectly definite constant for a given pair of nib-

stances in contact.

The values given in the following table are averages of

values obtained by several experimenters.
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and R = VF 2 + N 2

= VP 2 + W 2 - 2 PW sin a.

But since the body is on the point of motion the relation F = /iN holds.

Therefore

= F_ _ P cos a
M N W-P sin a'

Discussion. — (a) When a = 0, R

(b) When a - 1, P = P - IF = 0, therefore P = IF, and /i is indeter-

minate, (c) When P = 0, m = 0, and R = W.

VI

VP 2 + W2 and n = ~-
W

Fia. 19.

2. A body which rests upon a rough inclined plane is brought to the

point of motion up the inclined plane by a horizontal force. Find ^ and R.

The body is acted upon by three forces, Fig. 19,

P, the horizontal imrf,

W, the weight,

R, the reaction of the plane.

Replacing R by its components F and N, and taking the axes along and

ai right angles to the plane, we obtain

I'.V P cos cx - F - Wean a = 0,

^F -/'.-in « + X - W cos a = 0.

Therefore
/' /' COS Q - W B0Z1 <r,

A P sin a I W cos a,

r - VF* + N*
' = y/F1 + IP,



and

EQUILIBRIUM OF A PARTICLE 25

_ F_ _ P cos a — W sin a
M ~ N ~ P sin a + W cos a

'

p
Discussion. — (a) When a = 0, m = -- a,1(1 R = W Vft* + 1.

(b) When P = 0, m = —tan a; therefore a = — 0, that is, the inclined

plane must be tipped in the opposite direction and mu-i be given an

angle of elevation equal to the angle of friction in order that motion may
take place towards the positive direction of the x-axis.

PROBLEMS.
1. A body which weighs 100 pounds is barely started to move on a

rough horizontal plane by a force of 150 pounds acting in a direction

making 30° with the horizon. Find R and /jl.

2. A body placed on a rough inclined plane barely starts to move
when acted upon by a force equal to the weight of the body. Find

the coefficient of friction, (a) when the force is normal to the plane;

(b) when it is parallel to the plane.

3. A horizontal force equal to the weight of the body has to be applied

in order to just start a body into motion on a horizontal floor. Find the

coefficient of friction.

4. A weight IF rests on a rough inclined plane, which makes an angle

a with the horizon. Find the smallest force which will move the weight

if the coefficient of friction is ft.

6. How would you determine experimentally the coefficienl of friction

between two bodies?

6. A weight of 75 pounds rests on a rough horizontal floor. Find the

magnitude of the least horizontal force which will move the body if the

coefficient of friction is 0.4; also find the reaction of the plane.

7. A particle of weight W is in equilibrium on an inclined plane under

the action of a force F, which makes the magnitude of the normal pres-

sure equal IF. The coefficient of friction is fi and the angle of elevation of

the inclined plane is a. Find the magnitude and direction of the force

8. An insect starts from the highesl point of a sphere and crawls

down. Where will it begin to slide if the coefficienl of friction between

the insect and the sphere is Y-

9. The greatest force, which can keep a particle at re>t. acting along

an inclined plane, equals twice the least force. Find the coefficienl of

friction. The angle of elevation of the plane i

31. Resultant of a System of Forces. -The resultant of a

number of forces which act upon a particle is a force which
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is equivalent to the given forces. There are two criteria by

which this equivalence may be tested. First : The resultant

force will give the particle the same motion, when applied

to it, as that imparted by the given system of forces. We
cannot use this test just now because we have not yet

studied motion. Second: When the resultant force is re-

versed and applied to the particle simultaneously with the

given forces the particle remains in equilibrium.

According to the second criterion, therefore, the resultant,

R, of the forces Fi, F2 , . . . , Fn
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PROBLEMS.

1. Three men pull on a ring. The Brat man pulls with a force of 50
pounds toward the X. 30° W. The second man pulls toward the 8. 15°

E. with a force of 75 pounds, and the third man pulls with a force of LOO

pounds toward the west. Determine the magnitude and direction of

the resultant force.

2. Show that the resultant of two forces acting upon a particle Lies

in the plane of the given forces.

3. Show that the line of action of the resultanl of two forces Lies

within the angle made by the forces.

4. Find the direction and magnitude of the resultanl of three equal

forces which act along the axes of a rectangular system of coordinates.

GENERAL PROBLEMS.

1. A particle is in equilibrium under the action of the forces P. Q, and

R. Prove that
P _ Q R

sin (Q, R) sin (P, R) sin (P, Q)

'

where (Q, R), etc., denote the angles between Q and R, etc.

2. Two particles of weights \\\ and \V Z rest upon a smooth sphere of

radius a. The particles are attached to the ends of a string of Length I,

which passes over a smooth peg vertically above the center of the sphere.

If /( is the distance between the peg and the center of the sphere, find 1 1)

the position of equilibrium of the particles, (2) the tensile force in the

string, and (3) the reaction of the sphere.

3. The lengths of the mast and the boom of a derrick are ,; and h

respectively. Supposing the hinges at the lower end of the 1 m and the

pulley at the upper end to be smooth, find the angle the boom makes

with the vertical when a weight W is suspended in equilibrium.

4. Find the tensile force in the chain ami the compression in the boom

of the preceding problem.

6. Two rings of weights ll'i and U', are held on a smooth circular

wire in a vertical plane by means of a string subtending an angli

the center. Show that the inclination of the string to the horizon is

given by

tan0=
(l

.

j 1(j
tana.

6. A bridge, Fig. (a), of 60-fool span and 10-foot width has two queen-

post trusses 9 feet deep. Each truss is divided into three equal parts by two
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posts. What arc the stresses in the different parts of the trusses when,

there is a load of 150 pounds per square foot of floor space?

-->*—20—>K 20— -»i

Fig. (b).

7. Find the force in one of the members of the truss of figure (b).

8. A weight rests upon a smooth inclined plane, supported bytwo equal

strings the upper ends of which are fastened to two points of the plane in

the same horizontal line. Find the tensile force in the strings and the

reaction of the plane.

9. In the preceding problem suppose the plan^ to be rough.

10. A particle is suspended by a string which passes through a smooth

ring fastened to the highest point of a circular wire in a vertical plane.

The other end of the .string is attached to a smooth bead which is movable

on the wire. Find the position of equilibrium supposing the bead and

the suspended body to have equal weights.

11. A particle is in equilibrium on a rough inclined plane under the

action of a force which acts along the plane. If the least magnitude of the

force when the inclination of the plane is a equals the greatest magnitude

when it is « 2 , show that J
, where 4> is the angle of friction.

12. Two weights IF, and W\ rest upon a rough inclined plane, con-

nected by a siring which passes through a smooth pulley in the plane.

Find the greatest inclination the plane can be given without disturbing

the equilibrium.

13. Two equal weights, which are connected by a string, rest upon a.

rough inclined plane. If the direction of the string is along the steepest

slope of the plane and if the coefficients of friction are fi ]
and /j-2 , find the

greatest inclination the plane can be given without disturbing the equi-

librium.

14. In the preceding problem find the tensile force in the string.

16. One end of a uniform rod rots upon a rough peg, while the other

end is connected, by means of a string, to a point in the horizontal plane

which contain- the peg. When the roil is just on the point of motion it
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is perpendicular to the string. Show that 2/ = n<i, where / is the

of the string, a that of the roil, and /i the coefficient of friction.

16. A particle resting upon an inclined plane i- at the point of motion

under the action of the force F, which acts downward along the plane. If

the angle of elevation of the plane is changed from a t
to ,,_. and the

direction of the force reversed the particle will barely start to move up the

plane. Express /j. in terms of a, and a 2 .

17. A string, which passes over the vertex of a rough double inclined

plane, supports two weights. Show that the plane must he tilted through

an angle equal to twice the angle of friction, in order to bring it from the

position at which the particles will begin to move in one direction t,. the

position at which they will begin to move in the opposite direction.

18. Three equal spheres are placed on a smooth horizontal plane ami

are kept together by astring, which surrounds them in the plane of their

centers. If a fourth equal sphere is placed on top of these, prove that the

tensile force in the string is—— , where W is the weigh! of each sphere.
3v6

19. Three equal hemispheres rest with their bases upon a rough hori-

zontal plane and are in contact with one another. What is I he least value

of n which will enable them to support a smooth sphere of the same radius

and material'?

20. If the center of gravity of a rod is at a distance a from one end ami

b from the other, find the least value of n which will allow it to rest in

all positions upon a rough horizontal ground and against a rough vertical

wall.

21. A string, which is slung over two smooth pegs at the same level,

supports two bodies of equal weight W at the ends, ami a weight W at

the middle by means of a smooth ring through which it passes. Find

the position of equilibrium of the middle weight.



CHAPTER III.

EQUILIBRIUM OF RIGID BODIES.

TRANSLATION AND ROTATION.

32. Rigid Body.— There are problems in which bodies

cannot be treated as single particles. In such cases they are

considered to be made up of a great number of discrete par-

ticles. A body is said to be rigid if the distances between

its particles remain unchanged whatever the forces to which

it may be subjected. There are no bodies which are strictly

rigid. All bodies are deformed more or less under the action

of forces. But in mo-t problems discussed in this book ordi-

nary solids may be treated as rigid bodies.

33. Motion of a Rigid Body. — A rigid body may have t wo

distinct types of motion. When the body moves so that its

particles describe straight paths it

is Baid t" have a motion of trans-

latum. Evidently the paths of the

particles are parallel. Fig. 20. If

the particles of the body describe

circular path- ii is said to have a

motion of rotation. 'Flic plane- of

th<- circh- arc parallel, while their

center- lie ..ii a straight line per-

pendicular to these planes, which

i- called the axis of rotation. The

motion of a flywheel is a well-known example of motion of

rotation. Suppose A, Fig. 21, to be a rigid body which is

brought from the position .1 to the position A' by a motion

of rotation about an axis through the point perpendicular

to the plane of the paper, then the paths of its particles

30

.;. 20.
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FlQ. 21.

are arcs of circles whose planes

are parallel to the plane of the

paper and whose centers lie

on the axis of rotation.

34. Uniplanar Motion.

—

When a rigid body moves so

that each of its particles re-

mains at a constant distance

from a fixed plane the motion

is said to be uniplanar. The
fixed plane is called the guide plane.

35. Theorem I. — Uniplanar motion of a rigid body consists

of a succession of infinitesimal rotational displacements.

Suppose the rigid body A, Fig. 22, to describe a uniplanar

motion parallel to the plane of the paper and let A and A'

be any two positions occupied by the body. Then it may
be brought from A to A' by a rotational displacement

about an axis the position of

which may be found in the fol-

lowing manner. Let P and Q
be the positions of any two

particles of the body in a plane

parallel to the plane of the

paper when the body is at the

position A, and P' and Q' be the

positions of the same particles

when the body occupies the po-

sition A'. Then the desired axis is perpendicular to the

plane of the paper and passes through the poinl of

intersection of the perpendicular bisectors of the lines

PP' and QQ', drawn in the plain' determined by these

lines.

Therefore the body can be broughl from an\ position .1

to any other position A' by a single rotational displacement.

The actual motion between .1 and .1' will be, in general,

r
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quite different from the simple rotation by which we accom-

plished the passage of the body from one of these positions

to the other. But the result, which we have just obtained,

is true not only for positions which are separated by finite

distances but also for positions which are infinitely near

each other. Therefore by giving the body infinitesimal

rotational displacements about properly chosen axes it may
be made to assume all the positions which it occupies during

its actual motion.

36. Instantaneous Axis. —- As the body is made to occupy

the various positions of its actual motion the axis of rota-

tion moves at right angles to itself and generates a cylin-

der whose elements are perpendicular to the guide plane.

The elements of the cylinder are called instantaneous axes,

because each acts as the axis of rotation at the instant when

the body occupies a certain position. The curve of inter-

section of the cylinder and the guide plane is called the

centrode.

The motion of a cylinder which rolls in a larger cylinder

is a simple example of uniplanar motion. In this case the

common element of contact is the instantaneous axis. As

the cylinder rolls different elements of the fixed cylinder

become the axis of rotation.

.Motion of translation and motion of rotation are special

cases of uniplanar motion. In motion of translation the

axis of rotation is infinitely far from the moving body. In

rotation the cylinder formed by the instantaneous axes

reduces to a single line, i.e., the axis of rotation.

37. Theorem II. — Rotation about any axis is equivalent to

a rotation through the sann angle about a parallel axis and a

translation in a direction perpendicular to it.

The truth of thi- theorem will be seen from Fig. 23, where

the rigid body A is brought from the position A to the posi-

tion .1' by a single rotation about :m axis through the point

perpendicular to the plane of the paper. This displace-
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ment may be produced also by rotating the body to the

position A" and then translating it to the position A'.

Fig. 23.

PROBLEMS.

1. Show that in theorem II the order of the rotation and of the trans-

lation may be changed.

2. Show that the converse of theorem II is true.

38. Theorem III.— The most general displacement of a rigid

body can be obtained by a single translation and a single

rotation.

Let A and A' be any two positions occupied by the rigid

body and P and P' be the corresponding positions of any <>n<'

Fig. 24.

of its particles. Then the body may be brought from .1 to

A' by giving it a motion of translation which will bring tin-

particle from P to P' and then rotating the body about a

properly chosen axis through P'. A Bpecial case of this
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theorem is illustrated in Fig. 24, where the direction of the

translation is perpendicular to the axis of rotation.

39. Theorem IV.— The most general displacerm nt of a rigid

body can be obtained by a displacement similar to that of a

screw in its nut, that is, by a rotation about an axis and a

translation along it.

This theorem states that the axis of rotation of the last

theorem can be so chosen that the translation is along the

axis of rotation. In theorem 1 1 1 lei 1'1 J
', Fig. 25, be the path

of any point of the body
)C

described during the transla-
]

tion and BB be the line about

which the body is rotated. >\

Draw CC through P parallel to
J

.^

BB and drop the perpendicular | ^^
P'P" upon CC. The displace- ^^
ment may be accomplished

, L^^
now in ' the following three i

stages. First: translate the

body along the line CC until 'c

the point which was at /'

arrives at V" . Second: translate the body alongP"P' until

the point arrives al /''. Third: rotate the body about BB
until it comes to the desired position. But by theorem II

the last two operal ions can be accomplished by a single rota-

tion about CC. Therefore the desired displacement can be ob-

tained l»y a translation along and a rotation about the line ' ( .

Evidently the last theorem holds for infinitesimal dis-

placement- as well as for finite displacements; therefore

however complicated the motion of a rigid body it can be

reproduced by a Buccessi f infinitesimal screw-displace-

ments, each displacement taking the body from one position

which it ha- occupied during the motion to another position

infinitely near it. Thus at every instant of ii > motion the

rigid body i- displaced like a screw in its nut. In general
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the pitch and the direction of the axis of the screw-motion

change from instant to instant. In the case of the motion

of a screw in its nut these do not change.

Translation and rotation are special cases of Bcrew-

motion. When the pitch of a screw is made smaller and
smaller it advances less and less during each revolution.

Therefore if the pitch is made to vanish the screw does

not advance at all when it is rotated. Thus rotation i- a

special case of screw-motion in which the pitch is zero.

On the other hand as the pitch of the screw is made greater

and greater the screw advances more and more during each

revolution. Therefore at the limit when the pitch is in-

finitely great the motion of the screw becomes a motion of

translation. Thus translation is a special case of screw-

motion in which the pitch is infinitely great.

LINEAR AND ANGTJLAE ACTION. TORQUE.

40. Two Types of Action.—We have seen that a rigid body

may have two different and independent types of motion,

namely, motion of translation and motion of rotation.

These motions are the results of two independent and

entirely different kinds of actions to which a rigid body is

capable of being subjected. We will differentiate between

these two types of action by adding the adjectives "linear"

and ''angular" to the term "action." Tims the action which

tends to produce translation will he called linear action and

that which tends to produce rotation, angular <uii<>u.

41. Torque.—The vector magnitude which represents the

angular action of one body upon another i- called t<>r</ut .

42. Couple.— Although a single force i~ not capable of

giving a rigid body a motion of pure rotation, two or more

external forces will do it when properly applied. The

simplest system of forces which is capable of producing

rotation is known a- a couple. It consists of two equal and

opposite forces which are not in the same line. Fig. 26.
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It is evident from Fig. 26 that a couple is capable of

giving a rigid body a motion of rotation. But this is not

enough to show that the effect produced by a couple is the

same as that produced by a torque. We must show also

that the couple is not capable of producing a motion of

translation. Consider the rigid body A, Fig. 27, which is

acted upon by a couple. Suppose the couple did tend to

Fio. 26. Fig. 27.

produce a translation in a direction BB'. Then pass through

the body a smooth bar of rectangular cross-section in the

direction of the supposed motion, so that the body is free

to move along the bar but not free to rotate. When this

constraint is imposed upon the rigid body it behaves like

a particle and therefore cannot be given a motion by two

equal and opposite forces. But since any motion in the

direction BB' is qo1 affected by the presence of the bar,

the assumption thai the couple produces a motion of trans-

lation along BB' musl be wrong. Hence we see thai when

the bar is taken out the motion due to the couple will be

one of pure rotal ion.

43. Measure of Torque. When a rigid body is in equi-

librium under the action of two couple- it is always found

thai the product of our of the force- of one couple by the

distance apart of the forces of the same couple equals the
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corresponding product for the other couple. In order, for

instance, that the rigid body A, Fig. 28, be in equilibrium,

we must have

FD = F'D'.

Therefore the product FD is

the measure of the torque of

the couple formed by the forces

F and — F, the lines of action

of which are separated by the

distance D. Thus denoting

the torque of a couple by G,

we have

G=FD.
The distance D is called the arm of the couple and the plane

of the forces the plane of the couple.

44. Unit Torque. — The torque of a couple whose forces

are one pound each and whose arm is one foot is the unit of

torque. The symbol for the unit torque is the lb. ft.

45. Vector Representation of Torque.— Torque is a vector

magnitude and is represented by a vector which is perpen-

F* G-

Fio. 28.

(I)

Fi<;. 20.

dicular to the plane of the couple. The vector points away
from the observer when the couple tends to rotate the body

in the clockwise direction and point- towards the observer

when it tends to rotate the body in the counterclockwise

direction, Fig. 29. In the first case the torque i- considered

to be negative and in the second case positive.
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46. Equal Couples. Two cou-

ples are equal when the vectors

which represent their torques are

equal in magnitude and have the

same direction. The three couples

in Fig. 30 are equal if d = G2 = G3 .

Resultant of two couples is a

third couple, whose torque is the

vector sum of the torques of the

given couples.

PROBLEMS.

1. Find the direction and magnitude of the resultant torque of three

couples of equal magnitude the forces of which act along the edges of the

bases of a right prism. The bases of the prism are equilateral triangles.

2. In the preceding problem let the forces have a magnitude of 15

pounds each, the length of the prism he 2 feet and the sides of the bases

10 inches.

3. In problem 1 suppose the prism to have hexagonal bases.

4. In problem 2 BUppose the prism to be hexagonal.

5. A right circular cone, of weight W ami angle 2 a, is placed in a

circular hole of radius r, cut in a horizontal tabic. Assuming the coeffi-

cient of friction between the cone and the table to be n, find the least

torque necessary to rotate the former about its axis.

47. Moment of a Force. — The most common method of

giving a rigid body a motion of rotation is to put an axle

through it and to apply to it a

force which acts in a plane per-

pendicular to the axle. The

rotation is produced by the

couple formed by the applied

force ami the reaction of the

axle. 'I'll'
1 torque due to the

couple equals the product of

tb«' applied force by the shortest distance from the axle

to the lin«' of action of the force. It i- often more con-

Fio. 31.
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venient to disregard the reaction of the axle. When this

is done the torque of the couple is called the moment of the

force applied. Therefore the moment of a force about an

axis equals the product of the force by its lever-arm. The lever-

arm of a force is the shortest distance between the axis and

the line of action of the force. In Fig. 31 the moment of

F about the axis through the point and perpendicular to

the plane of the paper is

G = Fd, (II)

where d is the lever-arm.

PROBLEMS.

1. Prove that the moment of a force about an axis equals the moment
of its component which lies in a plane perpendicular to the axis.

2. Prove that the sum of the moments of the forces of a couple about

any axis perpendicular to the plane of the couple is constant and equals

the torque of the couple.

48. Degrees of Freedom of a Rigid Body.— A rigid body

may have a motion of translation along each of the axes of

a rectangular system of coordinates and at the same time

it can have a motion of rotation about each of these axe-.

Therefore a rigid body has six degrees of freedom, three of

translation and three of rotation. When one point in it is

constrained to move in a plane the number of degn

freedom is reduced to five. When the point i- constrained

to move in a straight line the number becomes tour. When
the point is fixed the body has only the three degn

freedom of rotation. If two points are li\e<l the body can

only rotate about the line joining the two point-. There-

fore its freedom is reduced to one degree. When a third

point, which is not in the line determined by the other two.

is fixed the body cannot move at all. that i-. it ha- no

freedom of motion.

49. The Law of Action and Reaction. The law from which

the conditions of equilibrium of a particle were obtained is a
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universal law applicable to all bodies under all conditions;

therefore it is applicable to rigid bodies as well as to single

particles. But since rigid bodies may be subject to two

distinct types of action the law may be stated in the fol-

lowing form.

The sum of all the linear and angular actions to which

a body or a part of body is subject at any instant vanishes:

2(A/ + A„)=u. (A')

But since the two types of action are independent of each

other the sum of each type must vanish when the combined

sum vanishes. Therefore we can split the law into the fol-

lowing two sections.

To every linear action there is an equal and opposite

linear reaction, or, the sum of all the linear actions to

which a body or a part of body is subject at any instant

vanishes

:

ZA, = 0. (A,)

To every angular action there is an equal and opposite

angular reaction, or, the sum of all the angular actions

to which a body or a part of body is subject at any in-

stant vanishes

:

2A„ = 0. (A.)

50. Conditions of Equilibrium of a Rigid Body.— I f we replace

the term "linear action " in the firsl section of the law by the

\\oi<l" force" and the term " angular action " in the second

section of the law by the word "torque" we obtain the two

conditions which must be satisfied in order thai a rigid body

be in equilibrium. Thus, in order that a rigid body be in

equilibrium the following conditions must be satisfied.

First. The sum of all the forces acting upon the rigid body

must vanish, thai is, if F,, Fj, . . . F„ denote all the forces

actum upon the body then the vector equation

Fi+F,+ - • • +F„ = (III)

musl be satisfied.
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Second. The sum of all the torques acting upon tin rigid
body must vanish, that is, if d, G_., . . . G„ denote all the
torques acting upon the body then the vector equal ion

G1+ G2+ • • • +G.-0 i\

must be satisfied.

The following forms of the statement of these two condi-

tions are better adapted for analysis.

First. The algebraic sum of the components of all the fora s

along each of the axes of a rectangular system of coordinates

must vanish, that is,

2I= Ii+I2+ • • • +xn =0,|
27= Fi+r2+ . . . + rB=0t (V/)

2Z = Zi + Z2 + . • • +Zn = 0.|

Second. The algebraic sum of the components of all the

torques about each of the axes of a system of rectangular coor-

dinates must vanish, that is,

HGmmGa'+ Qa
" + + f;'"

1 = 0,
|

2GV
m G v

' + Gy
" + • • • + 67 = 0, (VI '

)

EG.mG.' + G."+ • +GT = 0.1

51. Coplanar Forces.— If two or more force- act in the same
plane they are said to be coplanar. If a system of coplanar

forces act in the xy-ptene then the conditions of equilibrium

reduce to the following equation-:

2X=Xi+X2+ • • • +Xn =0,j
sf ee ]'!+}'.,+ • • • +yn =o,j

ZG^F^h + F,d2 + • • • + h\dn = 0, V

I

where du d-2 , . . . , dn are the Lever-arms of the forces F .

F2 , . . . F„, respectively, about any axis which is perpen-

dicular to the plane of the forces, The z-componenta of

the forces and the x- and y-components of the moments

vanish identically. Consequently they need not be con-

sidered.
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52. Transmissibility of Force. — A force which acts upon a

rigid body may be considered to be applied to any particle

of the body which lies on the line of action of the force. In

order to prove this statement consider the rigid body A,

Fig. 32, which is in equilibrium under the action of the two

Fig. 32.

equal and opposite forces F and — F. Now suppose we
change the point of application of F, without changing

either its direction or its line of application. Evidently

the equilibrium is not disturbed, because by moving F in its

line of action we neither changed the sum of the forces nor

the sum of their moments about any axis. Therefore the

line of action of a force is of importance and not its point

of application.

53. Internal Forces. — Internal forces do not affect the equi-

librium of a rigid body. This is a direct consequence of the

law of "action and reaction." Since by definition the in-

ternal forces arc due to the interaction between the particles

of.the system these forces exist in equal and opposite pairs,

therefore mutually annul each other.

ILLUSTRATIVE EXAMPLES.

1. A uniform beam rests with its Lower end on smooth horizontal

ground and its upper end againsl a smooth vertical wall. The beam is

held from slipping by means of a string which connects the foot of the

beam with the foot of the wall. Find the tensile force in the string and

the reactions at the ends of the beam.

There are four forces acting upon the beam, i.e., the two reactions, R t

mid R . the tensile force T and the weight W. Since both the ground and

the wall are supposed to I ,c .-mooth. Ri is normal to the ground, and R 2
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to the wall. Therefore denoting the lengths of the beam and the Btring

by I and a, respectively, we have

SZ - Rt - T = 0,

IT = fij - W= 0,

2<7 < =-R2 l sin a + W ,' cos a = 0,

where -Gv denotes the sum of the mo-
ments of the forces about an axis through

the point 0' perpendicular to the .r//-plane.

Solving the last three equations we have

Ri = W,

and

Discussion. — It should be noticed that in taking the moments the

axis was chosen through the point 0' in order to eliminate the momenta

of as many forces as possible and thus to obtain a simple equation.

The reaction Ri is independent of the angular position of the beam

and equals the weight W. On the other hand Rj and T vary with a.

As a is diminished from - toO, Rj

Ri = y cot a

W a
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Solving these we get

Fx = r-£-
t
w,

1 + M"

Fig. 34.

Discussion. — The last expression gives the value of a for a given

value of fj.. When /x = 1, a = 0, therefore in this case the ladder will be

in equilibrium at any angle between and - with the ground. Evidently

this is true for any value of n greater than unity.

3. Find the smallest force which, when applied at the center of a

carriage wheel of radius a, will drag it over an obstacle.

The forces acting on the wheel are: its weight W, the required force F,

and the reaction R. Since the firsl two meet at the center of the wheel,

the direction of R must pass through the center also. Take the coordinate

axes along and at righ1 angles to R, as shown in Fig. 35, and let F make

an angle 6 with the .r-axis. Then the equations of equilibrium become

2 X -F cos 6 - A' + W cos a = 0,

ZF Pain - IF.sin a = 0,

!<;„ W -a sin a - Frinfl-a = 0.

From either of the lasi two equations we get

r, sin a tit

Since ll" and a are fixed F can be changed only by changing 0. Therefore

the minimum value of F is given by the maximum value of ain 6, i.e.,

2'
which makes

Wean
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a — h
From the figure we obtain cos a =

therefore a= -Vh(2a-h),

w ,

and F = — Vh {2 a- h).

Fig. 35.

Since cos 6 = the first equation of equilibrium gives

R = W cos a

a

Discussion. — It will be observed that the first two of the equations

of equilibrium are sufficient to solve the problem.

When h is zero, F = and R = W. On the other hand when h = a,

F = W and R = 0.

PROBLEMS.

1. Prove that the true weighl of a body is the geometric mean between

the apparent weights obtained by weighing it in both pans of a false

balance.

2. A uniform bar weighing l<> pounds is supported at the ei

weight of 25 pounds is suspended fnim a point 20 cm. from one end.

Find the pressure at the supports if the length of the bar is 50 cm.

3. A uniform rod which rests on a rough horizontal Boor and againsl

a smooth vertical wall is on the point of slipping. Find the reactions at

the two ends of the rod.
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4. A body is suspended from the middle of a uniform rod which passes

over two fixed supports u feet apart. In moving the body G inches nearer

to one of the supports the pressure on the support increases by 100

pounds. What is the weight of the body if o pounds is the weight of

the rod?

5. A uniform rod of length a and weight 11' is suspended by two strings

having lengths U and /•_.. The lower ends of the strings are attached to the

ends of the rod, while the upper ends arc tied to a peg. Find the tensile

force in the strings.

6. A safety valve consists of a cylinder with a plunger attached to a

uniform bar hinged at one end. The plunger has a diameter of J
inch

and is attached to the bar at a distance of 1 inch from the hinge. The

bar is 2 feet long and weighs 1 pound. How far from the hinge must a

slide-weight of 2 pounds be set if the steam is to blow off at 120 pounds

per Bquare inch?

7. The two legs of a stepladder are hinged at the top and connected

at the middle by a string of negligible mass. Find the tensile force in the

string and the pressure on the hinges when the ladder stands on a smooth

plane. The weight of the ladder is M', the length of its legs /, and the

length of the string a.

8. A uniform rod rests on two smooth inclined planes making angles of

«i and aj with the horizon. Find the angle which the rod makes with

the horizon and the pressure on the planes.

9. A rectangular Mock is placed on a rough inclined plane whose in-

clination is gradually increased. If the block begins to slide and to turn

about its lowest edge simultaneously find the coefficient of friction.

10. A uniform rod rests with one end against a rough vertical wall

and the other end connected to a point in the wall by a string of equal

length. Show that the smallest angle which the string can make with

the wall is tan
-1

(

J

•

11. A uniform rod is suspended by a string which is attached to the

ends and is Blung over a smooth peg. Show that in equilibrium the rod

is either horizontal or vertical.

12. A ladder 25 feet lonur and weighing 50 pounds rests against a

vertical wall making 30° with it. How high can a man weighing 150

pounds climb up the ladder before it begins to slip'.' The coefficient of

friction is ().."> at both ends of the ladder.

13. A rod of negligible weight rests wholly inside a smooth hemispheri-

cal bowl of radius r. A weight W is clamped on to the roil at a point

distances from the ends are a and h. Show that the equilibrium
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, where 8 is the angle itposition of the rod is given by sin 6 = —

-

2Vr*-ab'
makes with the plane of the brim of the bowl which is horizontal

14. Prove that when a rigid body is in equilibrium under the action of

three forces their lines of action lie in the same plane and intersect at the

same point.

15. Find the forces which tend to compress or extend the different

members of the following cranes.

1,760 lbs]

16. Supposing the weights of the following figures to be in equilibrium

find their relative magnitudes. The circles which are tangent to other

circles represent gears.

54. Resultant of a System of Forces Acting upon a Rigid Body.

—We have already shown.tha1 the most general displacement

of a rigid body consists of a translation along, and a rotation

about, a certain lino. Therefore such a displacement can be

prevented by a single force opposed to the translation and

asingle torque opposed to the rotation. Thus a Bingle force

and a single torque can be found which will keep a rigid body

in equilibrium against the action of any system of forces.



48 ANALYTICAL MECHANICS

The resultant of a system of forces consists, therefore, of a
single force and a single torque which, when reversed, will

keep the rigid body in equilibrium against the action of the

given system of forces.

55. Resultant of Coplanar Forces Acting upon a Rigid Body. —
Let Fi, F>, . . . Fn denote the given forces and let the xy-

plane be their plane of action. Then, if R, X, and Y denote

the resultant force and its components, respectively, we have

X = Xi+X2+ • • + xn ,

Y = Fi+IV+ . . . + F. '

R=Vx 2+Y 2

,
(VIII)

Y
and tan — — > (IX)

A

where the terms in the right-hand members of the first two

equations are the components of the given forces, and is

the angle R makes with the a>axis.

On the other hand if G denotes the resultant torque and

dh dz, . . . , dn denote the distances of the origin from the

lines of action of the forces, then

G.-FA+FA+ • • • +Fndn . (X)

If we represent this torque by the moment of the resultant

force about the z-axis, then

RD = Fidi + F2<k+ • +Fnd„,\

gives the distance of the line of action of the resultant force

from the origin.

ILLUSTRATIVE EXAMPLE.

Find the resultant of the six forces acting along the sides of the hexa-

gon of Fig. 36.

Taking the sum of the components along the x and y directions, we
have
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X = 2F + 3Fco3|-2Fcos|-F-2fco8= • I

= F.

-fVs.
... R = y/f* + 3 p*

= 2 F

and tan 8 = — V3.

Therefore the resultant force has

a magnitude 2 F and makes an angle

of —60° with the .r-axis.

Taking the moments about an

axis through the center of the hexa-

gon, we obtain

RD = (2F + 3F + 2F + F + 2F + F)a
= 11 Fa,

therefore D = 5.5 a,

where a is the distance of the center from the lines of action of the

Fig. 36.

56. Resultant of a System of Parallel Forces. — Let R be the

resultant of the parallel forces Fi, F2 , . \ . , F„, which acl

upon a rigid body. Then, since the forces arc parallel, the

resultant force equals the algebraic sum of the given forces.

Thus
R=Fi+ F2+ • • • +Fn ,

and RD = F xd x +

F

2d2 + • +/

Now take the z-axis parallel to the forces and lot .r, and //,

denote the distances of F< from the //r-plano and ti

plane, respectively. Then the last equation may be split

into two parts, one of which gives the moments about the

x-axis and the other about the //-axi-. Thus,

Rx = F1Xi+ Fixi+ +/
Ry = /'V/i + /«\!h + • • +/'„//.,

S

where x and y are the coordinates of the poinl in the xy~

plane through which the resultant force passes. In other

XII
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words, (x,y) is the point of application of the resultant force.

The resultant force is evidently parallel to the given forces.

The last two equations may be written in the following

forms
_ ZFx

y R

(XIII)

ILLUSTRATIVE EXAMPLE.

Find the resultant of two parallel forces which act upon a rigid body

in the same direction.

Let the ?/-axis be parallel to the

forces.

Then R = F x + F2 ,

a ~ F,.r, + F2x2
and X = F l + F2

'

F2 x — xi

But since x 2 — x and x — Xi are the

distances of F2 and Fi from R, we have

F\ = d_2

F2 ch'

or Fxdy = F'l:.

Therefore the distances of the resultant from the given forces are in-

versely proportional to the magnitudes of the latter.

PROBLEMS.

1. Find the resultant force and the resultant torque due to the forces

P, 2 P, 4 P and 2 P which act along the sides of a square, taken in order.

2. Three forces are represented in magnitude and line of action by

the Bidea of an equilateral triangle. Find the resultant force, taking the

directions of one of the forces opposite to that of the other two.

3. The lines of action of three (nn-cs form a right isosceles triangle of

. 0, and a \ 2. The magnitudes of the forces are proportional to

the ndes of the triangle. Find the resultant force.

4. The Bum of the moments of a system of coplanar force- about any

three points, which arc not in 1 he same straight line, are the same. Show
that the system is equivalent to a couple.



EQUILIBRIUM OF RIGID BODIES 51

5. Three forces are represented in magnitude, direction, and line of

action by the sides of a triangle taken in order; prove thai their resultant

is a couple the torque of which equals, numerically, twice the area of the

triangle.

6. Three forces act along the sides nf an equilateral triangle; find the

condition which will make their resultant pass through the center of tin-

triangle.

FRICTION ON JOURNALS AND PIVOTS.

57. Friction on Journal Bearings. — If the horizontal shaft

of Fig. 38 fits perfectly in its bearings the friction which comes

into play is a sliding friction, therefore the laws of Bliding

friction may be assumed to hold good. The most importanl

of these laws is: the frictional force which comes into play

is proportional to the normal reaction, that is, in the relation

F = fiN,

n is independent of N. We will assume therefore thai this

law holds at each point of the surface of contact and thus

reduce the problem under discussion to one of sliding fric-

tion. There is an important difference, however, between

the problem under discussion and the problems on friction

which we have already discussed. In the presenl problem

the normal reaction is not the same at all the point- of

the surfaces in contact. We must apply, therefore, the

laws of friction to small elements of surfaces of contact over

which the normal reaction may be considered to be constant.

Let the element of surface be a strip, along the Length of

the shaft, which subtends an angle dB al the axis of the shaft.

Further let r/N be the normal reaction over this clement of

surface, and d¥ be the corresponding frictional force; then

we have
dF = n dN

= iip • I -a do,

where p is the normal reaction per unit area or the pressure,

a is the radius of the shaft, and / the length of the bearing.
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Therefore the total frictional force and the total frictional

torque are, respectively,

F= ftal

and G = narl

f'pdd

f
"p de.

In order to carry out the integral of the foregoing expressions

we have to make some assumption with regard to the nature

Fig. 38.

of dependence of p upon 0. But whatever the relation

between p and it is obvious that the sum, over all the sur-

faces of contact, of the vertical component of the normal

reaction must equal the load which rests upon the bear-

ings. If P denotes this load, then ;; must satisfy the condi-

tion

P = I p sin • dA
Jo

= al
J

T

p sin 6 <I9,

where .1 is the total area of contact.

ILLUSTRATIVE I XAMPLE.

The normal pressure on the bearings is given by the relation p = p sin 6;

find tin- total frictional force and the lotal frictional torque.
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Substituting the given value of p in the expression for /•' we obtain

F = nalpo f'sin 6 dd
Jo

= -> v<dp .

In order to determine p in terms of the total load on the bearings we
make p satisfy the condition

= al C p sin 6
Jq

60.

Substituting the given value of p in the right-hand member of the pre-

ceding equation we have

P = alpo Csm 2 8 dd
Jo

iralpo
~ 2 '

2P
Po = ^'

Therefore F = lif p

and G = — aP.
7T

It will be observed that the total frictional force varies with the load and

is independent of the radius and of the length of the bearing; in other

words it is independent of the area of contact.

PROBLEMS.

1. Supposing the normal pressure to be the same at every point of the

surfaces of contact, derive the expressions for the total frictional force and

the resisting torque due to friction.

2. Supposing the vertical componenl of the total reaction at every

point of the surfaces of contact to be constant, derive the expressions for

the total frictional force and the resisting torque due to friction.

3. Derive expressions for the total frictional force and the resisting

torque upon the assumption that the normal pressure is given by the

relation p = p sin 2 6.

58. Friction on Pivots.— The problem of friction on

pivots also is a problem of sliding friction. The feature



54 ANALYTICAL ML( HANK'S

which distinguishes the pivot from the journal bearing is

this: in the former the lever arm of the frictional force varies

from point to point, while

in the latter it is constant

and equals the radius of the

shaft.

Let dN be the normal
reaction upon dA, an ele-

ment of area at the base of

the flat-end pivot of Fig.

39; then if dF denotes

the corresponding frictional

force, we have

dF=»dN
= up dA,

where p is the normal pres-

sure. Evidently p is con-

stant ; therefore we can write

o
dA

TTd'up. Fig. 39.

The expression for the resisting torque due to the friction

Is obtained as follows

:

G=f*r.dF

= I r • updA

= fl rup . rdd • dr
Jo Jo

= irup I r2 dr

= f Tra
s
np

= | aixP,

where P is the total load on the pivot.
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PROBLEMS.

1. Derive an expression for the resisting torque due to friction in the

collar-bearing pivot of the adjoining figure.

I'

-2 a >

2. Supposing the normal pressure to be constant, derive an expression

for the resisting torque due to friction in the conical pivot of the adjoining

figure.

3. In the preceding problem suppose the vertical component of the

normal pressure to be constant.

4. In problem 2 suppose the horizontal component of the normal

pressure to be constant.

6. Taking the normal pressure to be constant derive an Depression for

the resisting torque, due to friction in the spherical pivot of the adjoin-

ing figure.
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6. Prow thai the resisting torque due to friction is greater for a hollow

pivot than for a solid pivot, provided thai the load and the load per unit

area arc the same in both cases.

7. Show thai the resisting torque due to friction for a hemispherical

pivot is about 2..'3."> times as large as that for a flat end pivot.

ROLLING FRICTION.

59. Coefficient of Rolling Friction.— Consider a cylinder,

Fig. 40, which is in equilibrium on a rough horizontal plane

under the action of a force S-

In addition to this force the

cylinder is acted upon by its

weight and by the reaction of

the plane. Applying the con-

ditions of equilibrium we ob-

tain

27 = -w + N=0,
2GQ = ND-Sd=0,

where F and N are the com-
ponents of R, the reaction of

the plane, while D and d are,

respectively, the distances of

the points of application of R and S from the point 0, about
which the moments are taken. These equations give us

Fig. 40.

.-Hid

R= Vf 2+N 2

= VS-+ IP,

It the cylinder is just on the point of motion

F=»N,
s

and consequently W

(1)

(2)

(3)
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Combining (2) and (3), we obtain

D=nd. \l\

The distance D is called the coefficient of rolling friction.

Equation (XIV) states, therefore, that the coefficient of the

rolling friction equals the coefficient of the sliding friction

times the distance of the point of contact from the line of

action of the force which urges the body to roll.

60. Friction Couple. — It is evident from the above equa-

tions that a change in the value of d does not affect the values

of TV and F, consequently it does not change the value of m-

This is as it should be, since, according to the laws of sliding

friction, n depends only upon the nature of the surfaces in

contact. A change in d, however, changes the value of D;

in other words, it changes the point of application of R.

When d = 0, that is, when S is applied at the point of con-

tact, D = 0, in which case the body is urged to slide only.

But when d is not zero the force S not only urges the body

to slide but also to roll; therefore, in addition to the resist-

ing force F, a resisting torque comes into play. This torque,

which is due to the couple formed by N and W, is called

the friction couple.

PROBLEMS.

1. A gig is so constructed that when the shafts arc horizontal the

center of gravity of the gig is over the axle of the wheels. The gig rests

on perfectly rough horizontal ground. Find the leasl force which, act-

ing at the ends of the shafts, will just move the gig.

2. Find the smallest force which, acting tangentially at the rim of a

flywheel, will rotate it. The weight and the radius "f the flywheel, the

radius of the shaft, and the coefficienl of friction between the shaft and

its bearings are supposed to be known.

3. A flywheel of 500 pounds weighl is brought to the point of rotation by

a weight of 10 pounds suspended by means of a String wound around its rim.

Find the coefficienl of friction between the axle and it- bearings. The

diameters of the wheel and the axle are lo feet and 8 inches, respectively.



58 ANALYTICAL MECHANICS

4. A wheel <>f radius a and weight W stands on rough horizontal

ground. If ju is the coefficient of friction between the wheel and the

ground find the smallest weight which must be suspended at one end

of the horizontal diameter in order to move the wheel.

GENERAL PROBLEMS.

1. A table of negligible weight has three legs, the feet forming an

equilateral triangle. Find the proportion of the weight carried by the

legs when a particle is placed on the table.

2. A rectangular board is supported in a vertical position by two

smooth pegs in a vertical wall. Show that if one of the diagonals is

parallel to the line joining the pegs the other diagonal is vertical.

3. A uniform rod rests with its two ends on smooth inclined planes

making angles a and /3 with the horizon. Where must a weight equal to

that of the rod be clamped in order that the rod may rest horizontally?

4. A uniform ladder rests against a rough vertical wall. Show that

the least angle it can make with the horizontal floor on which it rests is

given by tan 6 = -
MM

, where ju and y! are the coefficients of friction
2 n

for the floor and the wall, respectively.

6. A uniform rod is suspended by two equal strings attached to the

ends. In position of equilibrium the strings are parallel and the bar is

horizontal. Find the torque which will turn the bar, about a vertical

axis, through an angle and keep it in equilibrium at that position.

6. The line of hinges of a door makes an angle a with the vertical.

Find the resultant torque when the door makes an angle (3 with its equi-

librium position.

7. The lines of action of four forces form a quadrilateral. If the

magnitude of the forces are o, b, c, d times the sides of the quadrilateral

find the conditions of equilibrium.

8. A force acts at the middle point of each side of a plane polygon.

Each force is proportional to the length of the side it acts upon and is

perpendicular to it. Prove that the polygon will be in equilibrium if all

the forces are directed towards the inside of the polygon.

9. A force acts at each vertex of a plane convex polygon in a direc-

tion parallel to one of the sides forming the vertex. Show that if the

re proportional to the sides to which they are parallel and if their

directions are in a cyclic order their resultant is a couple.

10. A uniform chain of length / hangs over a rough horizontal cylinder

of radius a. Find the length of the portions which hang vertically when
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the chain Is on the point of motion under its own weight, d) when '/ ia

negligible compared with /, (2) when it is nut negligible compared with /.

11. Two equal weights arc attached to the extremities of a string

which hangs over a rough horizontal cylinder. Find the least amount
by which either weight must be increased in order to starl the system to

move. The weight of the string is negligible.

12. Three cylindrical pegs of equal radius and roughne88 are placed

at the vertices of a vertical equilateral triangle the two lower corners of

which are in the same horizontal line. A string of negligible weighl ia

attached to two weights and slung over the pegs. Find the ratio of the

weights if they are on the point of motion.

13. A sphere laid upon a rough inclined plane of inclination « is on the

point of sliding. Show that the coefficient of friction is • tan a.

14. A uniform ring of weight W hangs on a rough peg. A bead of

weight w is fixed on the ring. Show that if the coefficient of friction

W
between the ring and the peg is greater than—

—

the ring will

\ W* + 2wW
be in equilibrium whatever the position of the bead with respect to the

peg-

15. A uniform rod is in equilibrium with its extremities on the interior

of a rough vertical hoop. Find the limiting position of the rod.

16. A weight W is suspended from the middle of a cord whose ends an:

attached to two rings on a horizontal pole. If w be the weight of each

ring,
fj. the coefficient of friction, and I the length of the cord, find the

greatest distance apart between the rings compatible with equilibrium.



CHAPTER IV.

EQUILIBRIUM OF FLEXIBLE CORDS.

61. Simplification of Problems.— The simplest phenome-

non in nature is the result of innumerable actions and

reactions. The consideration of all the factors which con-

tribute to any natural phenomenon would require unlimited

analytical power. Fortunately the factors which enter into

dynamical problems are not all of equal importance. Often

the influence of one or two predominate, so that the rest can

be neglectedwithout an appreciable departure from the actual

problem. Any one who attempts to solve a physical problem

musl recognize this fact and" use it to advantage by repre-

senting the actual problem by an ideal one which has only

the important characteristics of the former. This was done

in the last two chapters in which bodies were treated as single

particles and rigid bodies, and the problems were thereby

simplified without changing their character.

The same procedure will be followed in discussing the

equilibrium of flexible cords, such as belts, chains, and ropes.

These bodies will be represented by an ideal cord of negli-

gible cross-secl ion and of perfect flexibility. The solution of

the idealized problems gives us a close enough approxima-

tion for practical purposes. If, however, closer approxima-

1 ion is desired smaller factors, such as the effects of thickness

and imperfecl flexibility, may be taken into account.

62. Flexibility.— A cord is said to be perfectly flexible if it

offers ii" resistance to bending; in other words, in a perfectly

flexible cord there are no internal forces which act in a

direction perpendicular to its length.

GO
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63. Suspension Bridge Problem.— The following are the

important features of a suspension bridge which Bhould be

considered in order to simplify the problem:

1. The weights of the cables and of the chains are small

compared with that of the road-bed.

2. The road-bed is practically horizontal.

3. The distribution of weight in the road-bed may be

considered to be uniform.

We can, therefore, obtain a sufficiently close approxima-

tion if we consider an ideal bridge in which the cable and

the chains have no weight and the distribution of weight in

the road-bed is uniform in the horizontal direction. With
these simplifications consider the forces acting upon that

part of the cable which is between the lowest point and any

point P, Fig. 41.

Fig. 41.

The forces are: The tensile force T , which acts horizon-

tally at 0. The tensile force T, which acts along the tangent

to the curve at P. The weight of that part of the bridge

which is between and P. If w be the weight per unit

length of the road-bed and x denotes the length "'I'', then

the third force becomes w.r.

Therefore the conditions of equilibrium give

Sis
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It is evident from equation (1) that the horizontal compo-

nent of the tensile force is constant and equals T . Squaring

equations (1) and (2) and adding we get

r- = TQ
- + w-x\ (3)

Thus we see that the smallest value of T corresponds to

x = and equals T , while its greatest value corresponds

to the greatest value of x. If D denotes the span of the

bridge then the greatest value of T, or the tensile force of

the cable at the piers, is

In order to find the equation of the curve which the cable

assumes we eliminate T between equations (1) and (2).

This gives

tan 6 = % x. (4)

Substituting -f- for tan and integrating we get
ax

1 W » .

where c is the constant of integration.

But with the axes we have chosen, y = when x = 0,

therefore c= 0. Thus the equation of the curve is

which is the equation of a parabola.

Dip of the Cable.— Let H be the height of the piers

above the lowest point of the cable. Then for x = —,y= H,

therefore

H=
ir

D2 ' (6)

It is evident from the last equation that the greater the
ten -ion the less is the sag.
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Problem. A bridge is supported by two suspension cables. The
bridge has a weight of 1.5 tons per horizontal fool and has a span of 100

feet. Supposing the dip of the bridge to be 50 feel find the values of

the tensile force at the lowest and highesl points of the cable.

64. Equilibrium of a Uniform Flexible Cord which is Sus-

pended from Its Ends.— The problem is to determine the

nature of the curve which a

perfectly uniform and flexi-

ble cable will assume when
suspended from two points.

Let AOB, Fig. 42, be the curve.

Consider the equilibrium of

that part of the cable which

is between the lowest point

and any other point P.

The part of the cable which

is under consideration is

acted upon by the following three forces:

The tensile force at the point 0, T .

The tensile force at the point P, T.

The weight of the cable between the points and /'.

Since the cable is perfectly flexible T and T are tangent to

the curve. Therefore we have

ZX = - T + T cos 6 = 0, or T cos = T
,

I

2 Y = -ws + T sin 6 = 0, or T sin 6 = W8,

where w is the weight per unit length of the cable and s is

the length of OP.

Squaring equations (1) and (2) and adding we obtain

T2=TQ
2+w282

. (3)

Eliminating T between equations (1) and (2) w<

s = - tan 9,

which is the intrinsic equation of the curve.

I
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In order to express equation (4) in terms of rectangular

coordinates we replace tan by -g and obtain

w dx
(5)

But ds 2 = dx 2 -\-dy 2
, therefore eliminating dx between this

equation and equation (5) and separating the variables

sds
dy =

Vs 2+ a 2
(6)

and then integrating

= Vs 2+ a 2+ c,

where a = — and c is the constant of integration.
w

Let the rc-axis be so chosen that when s = 0, y = a, then

c = 0. Therefore

y = Vs 2+ a 2
, or s = Vy* — a 2

.

Different iating equation (7), squaring and replacing

(dx 2 + dy 2
) we have

(7)

f

2 by

Solving for dx,

dx 2+ c?i/
:

dx= —

_ r

vy

y
2 -a 2

ady
- 1 Va 2 - ?/

2
(8)

i 'Va 2 —y 2

where i= V— 1. Integrating equal ion (8) we get

+ c'.

^ ... y- = cos x -
a a
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But y a
,
when x =
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The curve, Fig. 43, denned

by equation (15) is called an

exponential curve. It has an

interesting property, namely,

its ordinate is doubled every

time a constant value P is

added to its abscissa. This

constant is called the half-value

period of the curve. The value

of P may be determined in

the following manner. By the

definition of P and from equa-

tion (15) we have

2y = aJ (16)

Dividing equation (1G) by equation (15) we get
p

or P = a\og e 2.

Length of Cable.—In order to find the length in terms

of the span eliminate y between equations (7) and (11).

This gives

a
,e

a —e

1 tf 1 &
,

2 • 3 a 2 2 • 3 • 4 • 5 a3

(17)

(18)

where the right member of equation (18) is obtained by
expanding the right-hand member of equation (17) by
Maclaurin's Theorem.

If I) and L denote the span and the length of the cable,

respectively, we have B*=\L when x=\D. Therefore

substituting these values of s and as in equation (18) and

replacing a by its value we obtain
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When the cable is stretched tight T is large compared with

w. Therefore the higher terms of the series may be ae

glected and equation (19) be put in the following approxi-

mate form.

1 w 2

Hence the increase in length due to sagging is —- D .

24 To"

approximately.

PROBLEMS.

1. A perfectly flexible cord hangs over two smooth pegs, with its ends

hanging freely, while its central part hangs in the form of a catenary. If

the two pegs are on the same level and at a distance D apart, show that

the total length of the string must not be less than Dc, in order thai

equilibrium shall be possible, where e is the natural logarithmic base.

2. In the preceding problem show that the ends of the cord will be

on the x-axis.

3. Supposing that a telegraph wire cannot sustain more than the

weight of one mile of its own length, find the least and the greatesl sag

allowable in a line where there are 20 poles to the mile.

4. Find the actual length of the wire per mile of the line in the pre-

ceding problem.

5. The width of a river is measured by stretching a tape over it.

The middle point of the tape touches the surface of the water while the

ends are at a height H from the surface. If the tape reads S, show that

/^-the width of the river is approximately l

6. Show that the cost of wire and posts of a telegraph line is mini-

mum if the cost of the posts is twice that of the additional length <>f wire

required by sagging. The posts are supposed to be evenly spaced and

large in number.

7. A uniform cable which weighs loo tons is suspended between two

points, 500 feet apart, in the same horizontal line. The lowest poinl of

the cable is 40 feet below the points of support. Find the .-inallot and

the greatest values of the tensile force.

8. In the preceding problem find the length of the cable.

65. Friction Belts.— The flexible cord .!/>'. Fig. H. ifi in

equilibrium under the action of three forces, namely, To



68 ANALYTICAL MECHANICS

and T, which are applied at the ends of the cord, and the

reaction of the rough surface of C, with which it is in con-

tact. It is desired to find the relation between T and T
when the cord is just on the point of motion towards T .

f

Y

Fro. 44.

Consider the equilibrium of an element of that part of the

cord which is in contact with the surface. The element

is acted upon by the following three forces:

The tensile force in the cord to the right of the element.

The tensile force in the cord to (he left of the element.

The reaction of the surface.

Lei the tensile force to the left of the element be denoted

by T, then the tensile force to the righl may be denoted by

T+dT. Oe the other hand if R 'denotes the reaction of

the surface per unil Length of the cord, the reaction on the

elemenl is R cfe, where ds is the length of the element. We
will, as usual, replace R by its frictional component F and

its normal component N.
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Taking the axes along the tangent and the normal through

the middle point of the element and applying the conditions

of equilibrium we obtain

2X - (T+ dT) cos- - T cos f - F ( - ds)* = 0,

ZY^Nds- T sin ^ - (T+ dT) sin - = 0,
2 2

or d77 cos-^ + F<is = 0,

and Nds-2Tsm^--dTsm- = 0,
2 2

where dd is the angle between the two tensile forces which
act at the ends of the element. Hut since the cord is suit-

posed to be perfectly flexible the tensile forces arc tangent

to the surface of contact. Therefore is the angle between

the tangents, and consequently the angle between the nor-

mals, at the ends of the element. As an angle becomes
indefinitely small its cosine approaches unity and it- sine

approaches the angle itself,f therefore we can make the

substitutions

dd . , . dd de
cos— = 1 and sin— = —

2 2 2

in the last two equations, and obtain

dT+Fds = 0, (1)

and Nds-Tdd+\dTdd=0.

Neglecting the differential of the second order in equation

(2) and then eliminating ds between equations 1 and 2)

we get

dT F .„ Jn /ox

where n is the coefficient of friction. Integrating the last

* The negative sign in F (—ds) indicates the fact that F and

measured in opposite directions,

t See Appendix Avi.



70 ANALYTICAL MECHANICS

equation and passing from the logarithmic to the exponen-

tial form, we have
T = ce-*,

where c is the constant of integration. If is measured from

the normal to the surface at the point where the right-hand

side of the cord leaves contact we obtain the initial condition,

T = T when 0=0, which determines c. Applying this con-

dition to the last equation we have

T = T e-"e
. (4)

Discussion. — Equation (4) gives the relation between the values of

the tensile force at any two points of the cord. It must be observed that

is ii teasured in the same direction as F; in other words, opposite the

direction towards which the cord is urged to move. Therefore T or T
has the larger value according to whether is positive or negative. As

a concrete example suppose a weight W to be suspended from the right-

hand end of the cord and to be held in equilibrium by a force F applied at

the left-hand end. If F is just large enough to prevent W from falling

then the cord will be on the point of moving to the right, therefore is

measured in the counter-clockwise T
direction and is positive. In this

case

F = We'*9
.

In case F is just large enough to start

11' to move up, then is measured in

the clockwise direction and is nega-

tive. Therefore

F = We>*.

The value of T drops very rapidly

with the increase of 0. This fact

is made clear by drawing the graph

of equation 1 1 1, Fig. \5. The graph

may be constructed easily by making use of the half-value period of the

curve. If /' denotes the period, then, by definition, the ordinate is reduced

-half its value every time P is added to 0.* We have therefore

lT=Toe-»
i0+P)

.

* The difference between this definition of P and the one given in the pre-

ceding Bection La accounted for by the difference in the signs of the exponents

in equation I and in equation (14) of the preceding section.



Dividing equation (4) by the last equation we get
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PROBLEMS.

1. A weight of 5 tons is to be raised from the hold of a ship by means

of a rope which takes 3} turns around the drum of a steam windlass. If

p. = 0.25 what force must a man exert at the other end of the rope?

2. By pulling with a force of 200 pounds a man just keeps from surg-

ing a rope, which takes 2.5 turns around a post. Find the tensile force

at the other end of the rope, ju = 0.2.

3. A weight W is suspended by a rope which makes 1* turns around

a clamped pulley and goes to the hand of a workman. If
fj.
= 0.2, find

the force the man has to apply in order (a) to support the weight, (b) to

raise it.

4. Two men, each of whom can exert a pull of 250 pounds, can sup-

port a weight by means of a rope which takes 2 turns around a post.

On the other hand, one of the men can support it alone if the rope

makes 2.5 turns. Find the weight.

6. In order to prevent surging a sailor has to exert a force of 150

pounds at the end of a hawser, which is used to keep the stern of a boat

at rest while the Low is being turned by the engines. Find the pull

exerted by the boat upon the hawser under the following conditions:

[Hint. — Make use of equations (5) and (6).]

w»-=,



CHAPTER V.

MOTION.

FUNDAMENTAL MAGNITUDES.

66. Analysis of Motion.—The conception of motion neces-

sarily involves four ideas, namely, the ideas of

(a) A body which moves.

(b) A second body with respect to which it moves.

(c) A distance which it covers.

(d) An interval of time during which the distance is

covered.

67. Relativity of Motion. Reference System. — The firsl

important inference to be drawn from the foregoing analysis

is the fact that motion presupposes at least two bodies,

namely, the body which is supposed to move and the body

to which the motion is referred. The words "motion" and

"rest" become meaningless when applied to a single particle

with no other body for reference. Whenever we think or

talk about the motion of a particle we refer its motion,

consciously or unconsciously, to other bodies. The body

to which motion is referred is called a rqferena system.

The choice of a particular body as a reference system is a

question of convenience. If a man walk- in a crowded car

fast enough to discommode its occupants he will be blamed.

not because he is moving at the rate of. say, 20 mile- per

hour with respect to the ground, bul because he i- moving

at the rate of 4 miles per hour with respecl to the car. In

this case the car should be taken a- the reference system,

and not the ground. On the other hand if the man want-

to leave the moving car, it is of meat importance for him to
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consider the velocity with which he is going to land. In this

case, therefore, the surface of the earth should be taken as

the reference system.

68. Fundamental Magnitudes. — The first two of the four

conceptions into which we analyzed motion are similar;

therefore three distinct conceptions are associated with

motion. The first of these is the idea of body, or of matter;

the second is that of distance, and the third is that of time.

Distance and time are terms which are too familiar to be

made clearer by definitions, therefore we will not attempt

to define them.

In their efforts to reduce natural phenomena to their

simplest terms scientists have come to the conclusion that

all physical phenomena are the result of motion. It is

the main object of science to describe the complicated phe-

nomena of nature in terms of motion, in other words, to

express all physical magnitudes in terms of the three magni-

tudes involved in motion. Therefore time, mass, and length

are called fundamental magnitudes and all others derived

magnitudes.

69. Fundamental Units.—The units of time, length, and

mass are called fundamental units, while those of other

magnitudes are called <l< rived units.

70. The Unit of Time is st .

\ ,,,, part of the mean solar day,

and is called the second.

71. The Unit of Length is the centimeter, which is -jot Par^
of the standard meter. The latter is the distance at 0° C.

between two parallel lines drawn upon a certain platinum-

indium bar in the possession of the French government.

72. Mass. The choice of the units of time and length is

comparatively easy. We associate" only one property with

each of these quantities, therefore in choosing a. unit all we
have to do is to decide upon its size. Matter, on the other

hand, ha- a great Dumber of properties, such as volume,

Bhape, temperature, weight, mass, elasticity, etc. We com-
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pare and identify different bodies by means of these proper-

ties. In selecting one of these properties to represent the

body in our study of motion we must sec thai the property

fulfills two conditions: that it is intimately related to motion
and that it is constant.

Weight is often used to represent a body in its motion.

So far as bodies on the earth are concerned weighl La

intimately connected with motion, but it is not constant.

Besides, when bodies are far from the earth, weighl does nol

have a definite meaning. Therefore weight does Dol satisfy

the foregoing conditions. The property which serves tin-

purpose best is known as mass. It is intimately connected

with motion and is constant.* The nature of this property

will be discussed in the next chapter. Therefore we will c< in-

tent ourselves by denning mass as that property with which

bodies are represented in discussions of their motion.

73. Unit of Mass.—The unit of mass is the gram, which

is yoVo Part °f the. mass of the standard kilogram. The
latter is the mass of a piece of platinum in the possession

of the French Government.

74. Dimensions.—The fundamental magnitudes enter into

the composition of one derived magnitude in a manner dif-

ferent from the way they enter into that of a second. Lengl h

alone enters into the composition of an area, while velocity

contains both length and time, and all three of the funda-

mental magnitudes combine in work and momentum. The

expression which gives the manner in which time, length,

and mass combine to form a derived magnitude is called the

dimensional formula of that magnitude. Thus the dimen-

sional formulae for area, velocity, and momentum are, respec-

tively,

[A]=[L 2

], [V] = [LT-% and [H] - [MLT^J,

where .1/, L, and T represent length, mass, and time. The

exponent of each letter is called the dimension of the de-

* C'f. §101.



76 ANALYTICAL MECHANICS

rived magnitude in the fundamental magnitude which the

letter represents. Thus area has two dimensions in length

and zero dimension in both time and mass, while momen-
tum has one dimension in mass, one dimension in length,

and minus one dimension in time.

75. Homogeneity of Equations.— Magnitudes of different

dimensions can neither be added nor subtracted. There-

fore in a true equation the sum of the magnitudes of one

kind which are on the left of the equation sign equals the

sum of the magnitudes of the same kind which are on the

right. When all the terms of an equation have the same
dimensions the equation is said to be homogeneous.

76. Systems of Units. — The C.G.S. System is used in

most of the civilized countries and by scientists all over

the world. In this system the centimeter, the gram, and

the second are the fundamental units.

English-speaking people use another system, known as

the British gravitational system, in which weight, length,

and time are the fundamental magnitudes and the pound,

the foot, and the second are the fundamental units. Thus
the unit of time is the same in both systems. The following

equations give the relation between the centimeter and the

inch with an error of less than one-tenth of one per cent.

1 in. = 2.5-4 cms.

1 cm. = 0.3937 in.

The relation between the mass of a body which weighs one

pound and the grain is given by the following equations

with an error of less than one-tenth of one per cent.

1 kg. = 2.205 pds.

1 ])d. = 453.6 gms.,

where kg. is the abbreviation for the kilogram, or 1000 gms.,

while ])d. denote- ihe mass of a body which weighs one
pound in London and is often called pound-ma8S. Denoting
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the pound (weight) by its usual abbreviation we have

2.205 lbs. = the weight of L000 gms.*

VELOCITY.

77. Displacement.— When the position of a particle with
respect to a reference system is slightly changed it is Baid

to have been displaced, and the

vector s, Fig. 4G, which has its

origin at the initial position and
its terminus at the final position,

is called a displacement.

78. Velocity.— If a particle un-

dergoes equal displacements in

equal intervals of time, however •

small these intervals, it is said to

have a constant velocity. In this

particular case the velocity equals, numerically, the distance

covered per second. When, therefore, a distance 8 is covered

in an interval of time t, the velocity is given by

s

—v
By equal displacements are meant displacements equal

in magnitude and the same in direction. Therefore con-

stant velocity means a velocity which is constant in direc-

tion as well as in magnitude. The magnitude «>(' velocity

without regard to its direction is called speed.

In general, bodies not only cover unequal distances in

equal intervals of time, but also change their directions of

motion. Therefore we need a definition of velocity like the

following, which is perfectly general.

The velocity of a particle at any /><>in( of its path equals,

in magnitude, the time rod <il which it describes that pari of

the path which is in the immediate neighborhood of tht point

and has the direction of lh< tangent at that /mint.

* For t lie relation between mass and weight a p 109.
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FlO. !7

In order to expiv» this definition of velocity in analytical

language, consider a particle describing a curved path with

a changing speed. The most natural way of determining

the s] )<<•< 1 at a point P, Fig. 47, is to observe the interval

of time which the particle takes to pass two points, Pi and

7
J

.

2 , which arc equidistant from P, y
then to divide the distance P1P2 by

thai interval of time. This gives

the average speed from Pi to P2 ,

which may or may not equal the

actual speed at P. If, however,

we take the points Pi and P2 nearer

to P we obtain an average speed

which is, in general, nearer the

speed at P, because there is less

chance for large variations. If we °

take Pi and P2 nearer and nearer

the average speed approaches more and more to the value at

P P«
P. Therefore the limiting value of the ratio —--2

- is the

speed at P. In other words

„=!=*. a)

is the analytical definition of speed. Therefore the velocity

is a vector which has s for its magnitude and which is tan-

gent to the path at the point considered, that is,

v = s. (I')

* The Differential Calculus was invented by Newton and Leibnitz inde-

pendently. Newton adopted a notation in which the derivative of a variable

8 with respect to another variable is denoted by i. This notation is not con-

venient when derivatives arc taken with respect to several variables. The
notation introduced by Leibnitz is more convenient and is the notation which

ifl generally adopted. Newton's notation, however, is often Used to denote

differentiation with respect to time. On account of the compactness of ,s

Compared with -jj, we will denote differentiations with respect to time by

Newton's notation whenever compactness of expression is desired.
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79. Dimensions and Units of Velocity.— The dimensions

of velocity are [LT~~ X

\. The C.G.S. unit of velocity is the

cm,—
' . The British unit of velocity is

sec.

> L
.

sec.

80. Rectangular Components of Velocity. — Let v, Fig. 48,

centimeter per second,

the foot per second,

A
Fig. is.

denote the velocity at P, then the magnitude of its compo-

nent along the z-axis is

vt = V cos

ds
=

dt
C°S

_ ds cos e

dt

dx -

=
dt
=x -

Similarly

and

dy

dt

dz

dt

(ID

Equations (II) state that the component of the velocity of

a particle along any line equals the velocity of the
|

tion of the particle upon that line, in other words, the ve-
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locity along any direction equals the rate at which distance

is covered along that direction.

The velocity and its components evidently fulfill the

relation

v=Vvx*+vv
i+v,2

. (Ill)

When, as in the case of Fig. 48, the particle moves in the

jcy-plane, z = 0, therefore

The direction of v, in this case, is given by

tan0 = H-,
x

where is the angle v makes with the x-axis.

(HI')

(IV)

ILLUSTRATIVE EXAMPLE.

Find the path, the velocity, and the components of the velocity of a,

particle which moves so that its position at any instant is given by the

following equations:
x = at, (a)

y=-hgt*. (b)

Eliminating t between (a) and (b), we obtain

2a 2

for the equation of the path, therefore the path is a parabola, Fig. 49.

To find the component -velocities we differentiate (a) and (b) with

respect to the time. This gives Y

x = a,

y - -</<•

.-. v = \/« 2 + gt 2
.

Discussion. — The horizontal compo-

nent of the velocity IS directed tn the right

and is constant, while the vertical com-

ponent is directed downwards and increases

at a constant rate.

We will Bee later that these ('([nations Il,;
- 49.

represent the motion of a body which is projected horizontally from an

elevated position.
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PROBLEMS.

1. Find the path and the velocity of a particle which moves bo that

its position at any instant is ijiven by the following pairs of equal ii

(a) x = at,
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with respect to the time. Differentiating (3) we obtain

dr
V
'=dt
_x dx y dy

r dt r dt

= i cos + ?/ sin 0. (5)

Differentiating (4) we get

dd
v = r—
p

dt

_ r
xy-yx
x 2 + y

2

= ycosd-x sin 0. (6)

These components satisfy the relation

v = Vr 2 + r-b\ (7)

ILLUSTRATIVE EXAMPLE.

A particle describes the motion defined by the equations

x = a cos kt, (a)

and y = a sin kt. (b)

Find the equation of the path, the velocity at any instant, and the com-

ponents of the latter.

Squaring and adding (a) and (b) we eliminate t and obtain

X 2 -f if = o* Y

for the equation of the path.

Differentiating (a), we have
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Therefore v = Vx- + y-

= k Vx- + if

= ka.

Thus the particle describes a circle with a constant speed ka. The direc-

tion of the velocity at any instant is given by the relation

tan 6 = I

The components vr and vp may be obtained at once by remembering, (1)

that the radius vector is constant: e.g., f = 0, (2) that it is always normal

to the path: e.g., rdd = ds. Therefore

dr nv* = Tt

= °»
at

and
dd ds

T
dt

=
dt
=V ka.

82. Velocity of a Particle Relative to Another Particle in

Motion.— Consider the motion of a particle Pi, Fig. 52, with

Y

o x.

Fia. 52.

respect to a particle P2 , when both arc in motion relative

to the system of axes XOY.
Let the system of axes A"'/M" have /', for it- origin and

move with its axes parallel to those of the system XOY.

Further let (x1} yx) and >x : . // v be the positions, and v, and

v 2 the velocities of 1\ and Ps with respeel to XOY. Thru
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if (x', y') denotes the position and v' the velocity of Pi with

respect to X'P-iY', we get

x' = Xi — x2 ,

y' = yi - yi-

Differentiating the last two equations with respect to the

time

Therefore

x' = Xi - x2 ,

\i = i/i - i/2.

v' = x' + y'

= (xi + yi'

= Vi - v2 .

,X2+ \T2

(V)

Equation (V) states that the velocity of a particle with

respect to another particle is obtained by subtracting the

velocity of the first from that of the second.

ILLUSTRATIVE EXAMPLE.

Two particles move in the circumference of a circle with constant

speeds of v and 2 v. Find their relative velocities.

Lei the slower one be chosen as the reference particle, and let the angle

P2OP1, Fig. 53, be denoted by 6. Then the velocity of Pi relative to P2 is

v/ = Vi - V2.

But vi = 2v and v2 = v, therefore

v'

Fig. 53.

Discussion. — Whenever Pi passes P2 the value of 6 is a multiple of

2 7r, therefore cos 6 = 1 and v' = v. When the particles occupy the ends
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of a diameter cos 6 = - 1, therefore Vi - 3 v. When they are Beparated

by an angle which is an odd multiple of -
, cos = U; therefore d \ 5

PROBLEMS.

1. An automobile is moving at the rate of 30 miles an hour in a direc-

tion at right angles to a train which is making 40 miles an hour; find tin-

velocity of the automobile with respect to the train.

2. Two trains pass each other on parallel tracks, in opposite directions.

A passenger in one of the trains observes thai it takes the other train 4

seconds to pass him. What is the length of the other train it" the veloci-

ties of the two trains are 50 and 40 miles per hour?

3. A man of height h walks on a level street away from an electric

lamp of height //. If the velocity of the man is v, find the velocity of the

end of his shadow (a) with respect to the ground and (l>) with respect to

the man.

4. Two particles move, in opposite directions, on the circumference of

the same circle with the same constant speed. Find an expression for

their relative velocity and see what this expression becomes at BpeciaJ

positions of the particles.

5. A train is moving due north at the rate of 50 miles an hour. The

wind is blowing from the southeast with a velocity of 20 miles an hour.

Find the apparent direction and magnitude of the wind to a man on tin-

train.

6. The wind seems to blow from the north to an automobile party

traveling westward at the rate of 15 miles an hour. On doubling the

speed of the automobile the wind appears to come from the northwest.

Find the actual direction and magnitude of the velocity of the wind.

7. Find the velocity of a particle moving on the circumference of a

circle with uniform speed relative to another particle moving with equal

speed in a diameter of the circle.

8. Express the speed of a mile a minute in the C.G.S. units.

9. Express the C.G.S. unit of velocity in miles per hour.

10. Trove that i2 + if = r
2 + r-0-.

11. Trove analytically that

vz = vr coa6 — Vps'md,

vy
= i;r sin + vp i

12. Trove graphically that

vT = VxCohO + py sin 9,

vp
= rv cos0 — /'iSintf.
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AN C! ULAB VELOCITY.

83. Angular Displacement.—When the motion of a particle

is referred to an axis, then the angle which the axial plane,

i.e., the plane determined by the particle and the axis,

describes, is called an angular displacement. Angular dis-

place! nent is a vector magnitude

which is represented by a vector

drawn along the axis; as in the

case of the vector representation

of a torque. The directional rela-

tions are the same; that is, the

vector points towards the observer

and is considered as positive when

the rotation is counter-clockwise.

It points away from the observer

and is negative when the rotation

is clockwise.

The relation between the linear

displacement of a particle and its

angular displacement about an axis may be found from a

consideration of Fig. 54:

r

_ ds cos <j>

r

where ds is the linear displacement of the particle P, dd is

the corresponding displacement about an axis through the

point perpendicular to the plane of the paper, and 4> is

the angle ds makes with the normal to the axial plane.

When r is constant
<f> is zero, and the particle describes a

circle, in which case the last equation becomes

Fig.

dd =
ds

or 6
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84. Unit Angle. — In the last equation 0= 1 when s=r;
therefore the angle which is subtended at the center of a
circle by an arc equal to the radius is the unit of angle.

This unit is called the radian. Angles and angular dis-

placements have no dimensions. Why?
85. Angular Velocity.—The conception of angular velo< ity

is similar to that of linear velocity. It is the time rate al

which the axial plane sweeps over an angle. When con-

stant it is numerically equal to the angle swept over per

second. If we denote the angular velocity by o> its magni-

tude is defined by

Angular velocity is a vector quantity which is represented

by a vector drawn along the axis of rotation. The vector

points towards the observer when the rotation is counter-

clockwise, and away from the observer when it is clockwise.

The angular velocity is said to be positive in the firsl case

and negative in the second case. Angular velocity has the

dimensions of the reciprocal of time.

[0]-[r-*].

The unit of angular velocity is the radian per second,—'--

8^ C.

The relation between the linear and the angular velocities

of a particle may be obtained from equations I \ 1 I
and I .

" =
It

de

dt

ds COS <;,

dt

=«, mi
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where vp is the component of the linear velocity in a direction

perpendicular to the axial plane.

ILLUSTRATIVE EXAMPLE.

A particle describes a circle of radius a with a constant speed v. Find

its angular velocity relative to an

axis through a point on the cir-

cumference and perpendicular to

the plane of the circle.

Lei P (Fig. 55) be the position

of the particle and the point at

which the axis of reference inter-

sects the circle. Move the par-

ticle from P to P' and denote the

linear and angular displacements

by ds and (19 respectively. Then

the angle subtended by PP' at

is one-half that subtended at C. Hence

dd = $d<i>

1 ds

2 a
'

de

dt

2 a dt

v

2a

Thus the angular velocity about O is independent of the position of the

particle and equals one-half the angular velocity aboul the center.

PROBLEMS.

1. The radius of the earth is 4000 miles and thai of its orbit 93 million

miles. Compare the angular velocities of a point on the equator with

respect to the bud al midday and midnight.

2. In wli.-it latitude is a bullet, which is projected east with a velocity

of 1320 feel per Becond, at rest relatively to the earth's axis; the radius

being taken as WOO miles?
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3. A belt passes over a pulley which has a diameter of 30 inch

which makes 200 revolutions per minute. Find the linear Bpeed of tin-

belt and the angular .speed of the pulley.

4. The wheels of a bicycle, which are 75 em. in diameter, mal

revolutions in 65 minutes. Bind the Bpeed of the rider; the angular

speed of the wheels about their axles; the relative velocity of the highest

point of each wheel with respect to the center.

5. A point moves with a constant velocity v. Find its angular veloc-

ity about a fixed point whose distance from the path is ".

6. A railroad runs due west in latitude X. Find the velocity of the

train if it always keeps the sun directly south of it.

7. Find the expression for the angular velocity of any point on the

rim of a wheel of radius a, moving with a velocity v,- the wheel is supposed

to be rolling without slipping. Discuss the values of the velocity for

special points.

8. In the preceding problem find the relative velocity of any point on

the rim with respect to the center of the wheel, and the velocity of the

center with respect to the point of contact with the ground.

9. The end of a vector describes a circle at a constant rate. If the

origin is outside the circle find the velocity along and at right an|

the vector. Discuss the values for interesting special positions.

10. In the preceding problem derive an expression for the angular

velocity of the vector and discuss it.

ACCELERATION

86. Acceleration.--When the velocity of a particle changes

it is said to have an acceleration. The change may lie in

the magnitude of the velocity, in the direction, or in both;

further it maybe positive or negative. Therefore the term

acceleration includes retardation as well :is increase in ve-

locity. Retardation is negative acceleration.

If the particle moves in a straight path with :i velocity

which increases or diminishes at a constant rate it- accel-

eration equals, numerically, the change in the velocity per

second and is said to be constant :

f
V2 ~ Vl

f_
t '

where f is the acceleration and v, and v-_. are the velocities

at the beginning and at the end of the interval of time t.
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Since vi and v2 are in the same line, their difference will be a

vector in the same direction. Therefore in this particular

case the acceleration is constant not only in magnitude but

also in direction.

The following definition of acceleration is general and
holds true whatever the manner in which the velocity

changes.

The magnitude of the acceleration of a particle at any point

<>f its path equals the time rate at

which its velocity changes at the

instant it occupies that point.

The analytical expression for

this definition may be obtained

by a reasoning similar to thai

employed in deriving the analyt-

ical definition of velocity. Sup-

pose it is required to find the

acceleration at P (Fig. 56). Let vi and vo denote the veloc-

ities at two neighboring points Pj and P2 . Then the ratio

gives the average rate at which the velocity changes during

the interval of time t, which it takes the particle to move
from Pi to Pz. Therefore f is the average acceleration for

that interval of time. In general this average acceleration

will not be the same as the acceleration at P. But by taking

/', and I', nearer and nearer to P the difference between the

average acceleration and the required acceleration may be

made as small as desired. Therefore at the limit when Ph P,

and /'. become successive positions of the particle, the aver-

age acceleration becomes identical with the acceleration at

/'. and the lasl equation takes the form

f-S-*. (VIII)
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It must be remembered that dv is the vector difference of

the velocities at the beginning and at the end of the interval

of time dt; therefore f is a vector magnitude with a direction

which is, in general, different from that of the velocity.

87. Dimensions and Units of Acceleration. The dimen-

sions of acceleration are [LT~ 2
]. The unit of acceleration

is a unit change in the velocity per second. Therefore the

C.G.S. unit is — or '-. Thus if the velocity of a
sec. sec-

cm
particle increases by an amount of one — during cadi

sec.

second it has a unit acceleration. The engineering unit of

ft
acceleration is the foot per sec. per sec, -—'—•

sec 2

PROBLEMS.

1. Express the engineering unit of acceleration in terms of the < '.< '..s;
.

unit.

2. Taking the value of the gravitational acceleration to be 980

find its value in —\ and -——
sec. 2 hr.-

3. A train moving at the rate of 30 kilometers per hour is brought

to rest in two minutes. Find the average acceleration and express it in

ft. , km.
and -—

- •

sec* sec. 2 hr.-

88. Components of Acceleration along Rectangular Axes.

Suppose a particle to describe a path in the ./•//-plane. Then

if vi and v2 be the velocities at two neighboring points, we

can write

dv = y> — vi

= (x 2 +y-.)-(xi+y.)
= dx-f dy.

,_dv_dxdy
'"•

dt
"

dt
+

dt

'

But since f = fx+ f*,

dx dy

dt dt
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The last equation cannot be true unless

Tl
dt

and f„=f-

Therefore the component of the acceleration along a fixed

line equals the time rate of change of the component of the

velocity along that line.

It follows from the last two equations that:

f
_dx _ d^x _

Jx ~ dt~ dt
~ X

'

_dy_d*y
yJv ~ dt~ dt
V '

(IX)

The magnitude and the direction of the acceleration are

given by the following equations:

/=vpTF, (x)

tan0=^ (XI)
x

where 9 is the angle f makes with the ar-axis.

89. Tangential and Normal Components of Acceleration.—
The tangential component of the acceleration at P (Fig. 57)

equals the rate at which the velocity increases along the di-

rection of the tangent at P. In order to find this rate we

consider the velocities at two neighboring points 1\ and P2 .

Let vi and v2 be the velocities at these points and ei and e2

the angles which vi and v2 make with the tangent at P.

Then the change in the velocity along the tangent at P,

while the particle moves from Pi to P2 , is

Vi cos f .j
— r, cos ei.

Dividing this by the corresponding interval of time we ob-

tain the average rate at which the velocity increases from
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Pi to P2 along the tangent at P. Therefore the average

tangential acceleration is

7- _ V-2 COS e2 — Vi COS ei

3t ~
t

This average approaches the actual tangential acceleration

at P as Pi and P2 are made to approach P as a limit. But

N

Fig. 57.

as these points approach P the angles ei and €2 approach

zero as a limit and their cosines approach unity. Therefore

the tangential acceleration at P is

fT = limit3,1*7*]
dv

dt

~~

d-s

dt 2
s.

By similar reasoning we obtain

r., sin e-j
- r, sin ei

/» =

for the average normal acceleration between Pi and P§. The

actual normal acceleration at P is the limiting value of this

expression as Pi and P2 approach P. But as these points

approach P, ^ and r_. approach v, the velocity al P, while
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sin ei and sin *> approach ci and €2,* respectively. Therefore

the normal acceleration at P is

/„ = limit[mit r_,ii±^]
<=o L t A

imit — v -\
t*o L LA

limit

dd

--•a—*. (xii)

where = ci+€2 is the total change in the direction of the

velocity in going from Pi to P2 . Since the direction of the

velocity coincides with that of the tangent, is the rate at

which the directions of the tangent and the normal change.

But the rate at which the normal changes its direction equals

the angular velocity of the particle about the center of

curvature. Therefore if p denotes the radius of curvature

at P, we have

i-v
,

*****

and /. = - ~ (XIII)

The negative sign in (XIII) shows that/n and p are measured

in opposite directions. Since p is measured from the center

of curvature, /„ must be directed towards the center of cur-

vature. Therefore the total acceleration is always directed

towards the concave side of the path.

The following are the principal results obtained in this

section and the conclusions to be drawn from them.

(a) The magnitude of the tangential acceleration is ft;

fr = ft.

(b) The normal acceleration is directed towards the center

v 2

of curvature and lias — for its magnitude;

Jn
p

* Bee Appendix An.



MOTION 95

(c) The magnitude of the total acceleration is given by

r
the relation /= V v- + -•

(d) The total acceleration is directed towards the concave
side of the path and makes an angle with the tangent which
is defined by

fn v 2

toaj-j.— -.

(e) When the path is straight, that is, when p = oo , the

normal acceleration is nil; therefore in this case the total

acceleration is identical with the tangential acceleration.

(/) When the path is circular and the speed constant,

then p = r, the radius of the circle, and v = 0; therefore

/ =/»=--•J J»
r

90. Radial and Transverse Components of Acceleration. —
Let P (Fig. 58) be any point of the path at which the

acceleration of the particle is to be considered. Take two

neighboring points Pi and P2 , and let vi and v2 be the veloci-

ties at these points. Then the change in the radial velocity

in going from Pi to P2 is obtained by subtracting the radial

component of Vi from that of v 2 . Replace Vi and vs by

their components along and at right angles to r
{
and r-: ,

respectively, and denote these components by v r; , v and

v r , v /): ; then it will be seen from the figure that

(iV, cos e2 - vP2 sin e2 ) - Ov, cos €i + vPl sin d)

is the total change in the radial velocity. Therefore the

radial component of the acceleration is

f -Y -

t [

X cos 62 - vp, sin ei — vr ,
cos c t - vPl

sin f ,1

where t is the time taken by the particle to go from Pi to /'..

But as the points Pi and P approach !' as a limit, the follow-

ing substitutions become permissible.
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COS €i = COS 62 Sill ei = d, sin e2 = 62.

tv, - vry = dvr , v
Pl
= vPl

= vp , ei + «2 = de.

Alaking these substitutions in the expression for/r , we obtain

/,- limit [

('--^ -->(« + «»)

]

dVr de

dt
p
dt

dt 2
r
\dt)

,

where is the angle r makes with the a>axis.

Fig. .58.

(XIV)

By similar reasoning we obtain the following expressions

for the transverse acceleration, that is, the component of

the acceleration along a perpendicular to the radius vector.

* See Appendix Avi.
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J = limit \
Vr*
Sm ** + Vpt C°S e2 ~ ^ ~ ' Vl Sin €l + ^" C0S 6l ^

l

= limit
pvfa +^+fa-^

j

r
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acceleration. Therefore the unit is the V,. The dimen-
sec-

sions of angular acceleration are given by [T~

ILLUSTRATIVE EXAMPLE.

A particle moves so that the coordinates of its position at any instant

are given by the equations
x = a cos kt,

y = a sin kt.

Find the acceleration and its components.

In a previous illustrative example, p. 82, it was shown that these

equations represent uniform circular motion, with the following data:

V =
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GENERAL PROBLEMS.

Find the velocity, the acceleration, and the path of a particle whose
motion is denned by the following pair of equations:

1.



CHAPTER VI.

MOTION OF A PARTICLE.

KINETIC REACTION.

92. Kinetic Reaction.—The Law of Action and Reaction,

which we found so useful in studying equilibrium, is appli-

cable not only to problems of equilibrium but also to those

of motion. In applying it to motion, however, we must

extend the meaning of the term "reaction" so as to include

a form of reaction which is known as kinetic reaction. In

order to understand the nature of kinetic reaction consider

the following ideal experiment:

Suppose you hold one end of a long elastic string, the

other end of which is attached to a rectangular block placed

upon a perfectly horizontal and smooth table. Let another

person pull the block along the plane of the table and thereby

stretch the string. While the string is being stretched you

have to exert a force on it in order to keep your end of it fixed.

At any instant the force with which you pull the string equals

and is opposite to the force with which the string pulls your

hand. The action equals the reaction and is oppositely di-

rected. The same is true about the block and the person who
holds it. What will happen if the block is released? Will

the force which the string exerts on your hand cease as soon

as the block is released? No. The string pulls on until it

regains its natural length, something which does not take

place instantaneously. The elasticity of t he string urges it to

assume its natural Length. But this cannot be accomplished

without moving the block. Therefore the string moves the

block. Hut in order to start the block the string must exert

a tone on it, and this in spite of the fact that the weight of

100
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the block is exactly balanced by the reaction of the plane so

that there are no forces to be overcome in order to move tin-

block. Therefore we conclude that the block resists any
attempt to start it into motion. In other words, the block

offers resistance to a force which accelerates it. This resist-

ance is the kinetic reaction.

In one respect kinetic reaction is similar to frictional and

resisting forces, namely, it is not aggressive. The kinetic

reaction of a body manifests itself only when its state of

rest or of motion is interfered with. A body which is at

rest or moving with a constant velocity does not display any
kinetic reaction, but as soon as it is set in motion or its

velocity is changed kinetic reaction appears; further the

kinetic reaction of a body is greater the greater the accelera-

tion imparted to it.

93. Generalization of the Law of Action and Reaction. —
When the terms "action" and " reaction" are used so as to

mean kinetic reactions as well as forces and torques, then the

law is directly applicable to problems of motion as well as

to problems of equilibrium. It will be remembered that in

Chapter III the law was split into two sections, of which the

second section is not applicable to single particles. There-

fore we need to consider here only the first section, which

states

:

To every linear action there is always an equal and op-

posite linear reaction, or the sum of all the linear actions

to which a body or a part of a body is subject at any in-

stant vanishes.

2A< = 0. \

If we replace the term "linear action" by the terms

"force" and "linear* kinetic reaction" the law may be put

into the following form.

* The adjective "linear" is introduced in order to distinguish b<

the kinetic reaction which is celated to forces and the kinetic reaction intro-

duced ut the beginning of Chapter IX. which is related to toi
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The sum of all the forces acting upon a body plus the

linear kinetic reaction equals zero, or the resultant of all

the forces acting upon a body equals and is opposite to

the linear kinetic reaction.

Sum of all forces + linear kinetic reaction = 0'

or Resultant force = —(linear kinetic reaction).
(A/)

Now let us apply the law to the experiment of the preced-

ing section. .After the block is released it is acted upon by

three forces, namely, its weight, the reaction of the table, and

the pull of the string. The law states

that the resultant of these forces equals

the kinetic reaction of the block and is

oppositely directed. Since the weight

and the reaction of the table are exactly

balanced the pull of the string is the

resultant force. Therefore the kinetic

reaction of the block equals the pull of

the string and has a direction opposite

to that in which the block is pulled.

94. Definition of Mass.— In the block

experiment suppose the free end of the

string to be connected to a spring bal-

ance which is fixed on the table, Fig. 59.

Further suppose the block to be set in

motion as in the previous experiment.

Let one person observe the readings of

the balance and another the acceleration

of the block. If Fu F2 , F3 , etc., denote

the readings of the balance and fh f2 , /3 ,

etc., the wiliics of the acceleration of the

Mock, obtained simultaneously with the

readings of the balance, then it will be found that the fol-

lowing relations hold true:

Fi F2 F8

Fia. 59.

m, (i)
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where m is a constant. Bui since the readings oi the balance

give the values of the kinetic reaction, equation 1 1 states that

the kinetic reaction of the block is proportional to the acceler-

ation. The constant of proportionality, m, is called the mass

of the block. We have, therefore, the following definition

for mass.

The mass of a body is a constant scalar magnitude which

equals the quotient of the magnitude of the kinetic reaction of

the body by the magnitude of its acceleration.

95. Measure of Kinetic Reaction. —Suppose we have sev-

eral sets of apparatus consisting of a spring; balance, a long

elastic string, and a block, set up on a smooth horizontal

table. Let two persons attend to each set of apparatus: "in-

to observe the readings of the balance and the other to

observe the acceleration of the block. Suppose the block-

to be set in motion as in the last experiment, and the pull

registered by each balance observed at an instant when the

corresponding block attains a certain definite acceleration /.

Then if Fh F-2 , Fz , etc., denote the readings of the balances

and mu m2 , ??i 3 , etc., the masses of the blocks, it will be found

that the following relations hold good:

E± = F± = l± = . . . =/. ,|

m x m% "h

Equations (II) state that when bodies have equal accelera-

tions their kinetic reaction- are proportional to their masses.

Therefore equations (I) and (II) state that the kinetic re-

action of a body is proportional to the product of it- ma— by

its acceleration; that is,

kinetic reaction = kmf, II

I

where k is the constant of proportionality. When the

quantities involved in the lasl equation are measured in the

same system of units the constant k becomes unity, in which

case we have
kinetic reaction mf. .Ill
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If we want to express the fact that kinetic reaction and ac-

celeration are oppositely directed we put the last equation

in the vector notation and write,

kinetic reaction mf. (IV)

Equations (I) and (II) and consequently equation (IV)

hold good not only when the acceleration is due to a change

in the magnitude of the velocity but also when it is due to

a change in its direction. As an illustration of this fact

consider the following ideal experiment

:

Let P, Fig. 60, be a particle attached to the end of an

inextensible string, which passes through the hole 0, in the

middle of the smooth and hori-

zontal table A, and is fastened

to the spring balance S. If we
project the particle in the plane

of the table in a direction at

right angles to the line OP we
will find that it describes a circle

about the point 0, with a speed

equal to the speed of projection.

We will further observe that

the balance registers a pull.

Now let us examine the forces experienced by the particle

during its motion. The particle is acted upon by three

forces, namely, its weight, the reaction of the table, and the

pull of the string. Since the surface of the table is per-

fectly smooth and horizontal the weight and the reaction

of the plane exactly balance each other. Therefore the

pull of the string is the resultant force. Thus the particle

ie pulled tow aid the point 0, but somehow manages to keep

the same distance from it; and this in spite of the fact that

it is not acted upon by forces which would counterbalance

the pull of the string. The explanation is plain. While

describing the circle the direction of the velocity of the

/- 4--"
/r !

(/
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particle is continually changing, that is, the particle is being

accelerated. Therefore kinetic reaction manifests itself and

acts in a direction opposed to that of the acceleration, thai

is, away from the point 0. Hence the pull of the string.

But the pull which conies into play is just enough to over-

come the kinetic reaction, therefore the particle neither

approaches to, nor recedes from, the point 0.

Suppose we project the particle with different velocities,

observe the corresponding readings of the spring balance,

and compute the accelerations from — —
, the expression for

p

the normal acceleration, p. 94. Let F\
y
F2 , F3 , etc., denote

the readings of the balance and fl} /2 , /3 , etc., denote the

accelerations; then we shall find that the relations between

the accelerations and the readings of the balance are given

by equations (I).

On the other hand if we fasten particles of different masses

to the string and give them equal accelerations, we shall

find that equations (II) hold true. Therefore we conclude

that whether the acceleration be due to changes in the mag-

nitude of the velocity, or in the direction, or in both, the

kinetic reaction equals the product of the mass by the

acceleration and is opposed to the latter.

The kinetic reaction of the last experiment may be differ-

entiated from that of the experiments of sections 92 and '.M

by emphasizing the fact that the former comes into play

when there is a normal acceleration, while the latter mani-

fests itself whenever there is acceleration along the tangent.

The resultant or total kinetic reaction is the vector Bum of

the two. .

The results of the last few sections may be summed up in

the following manner:

(a) The tangential kinetic reaction has a magnitude m'vand

has a direction opposite to that of On tangential oca U ration.

Tangential kinetic reaction - - TOVr . I\
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(b) The normal kinetic reaction has a magnitude and
p

has a direction opposite to that of the normal acceleration. In

other words it has the same direction as the radius of curvature,

i.e., away from the center of curvature,

Normal kinetic reaction = • (IV")
P

/ v
4

(c) The total kinetic reaction has a magnitude m V v
2

-\

T p~

and has a direction opposite to that of the total acceleration,

Total kinetic reaction = —mv. (IV)

FORCE EQUATION.

96. Force Equation.— Combining (A/) and (IV) and denot-

ing the resultant force by F we obtain

F = mi , 1

= mv.l
(V)

Equation (V) is called the force equation. It states that the

resultant force acting upon a particle equals the product of

the mass by the acceleration and has the same direction as

the latter.

/ r
4

IS V v
2 + —

P"

takes the following form when stripped of its vector notation:

Since the magnitude of v is V i>
2 + — , the force equation

F = m\/i>*- + -
. (VI)

1 p"

In equation (VI) v represents that part of the acceleration

which is due to the change in the magnitude of the velocity

and represents that part which is due to the change in the
p

direction.*

97. Component-force Equations. — Splitting equation (V)

into two component equations which correspond to the di-

p. '.»! (Or the tangential and normal components of v.
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rections of the tangent and the normal and then dropping
the vector notation we obtain

FT = mv, (VII)

and Fn=-m— . (VIII)
p

The negative sign in equation (VIII.) states that the normal
component of the resultant force, and consequently the re-

sultant force itself, is directed toward t he concave part of t he

path. The last two equations may be obtained directly from

(VI) by considering them as the force equations for special

cases of motion. Thus when the path of the moving pari icle

is a straight line p = oo, and consequently

F = mv. \II\.

On the other hand when the particle moves with a con-taut

speed v = 0, and therefore

F = -m-- VIII')
P

If in addition the radius of curvature of the path doe- nol

change, that is, if the particle moves in a circle with a con-

stant speed, then

F = -m-> \ 111")

where r is the radius of the circle.

The following is a useful set of component-force equations

obtained by splitting equation V) into three component

equations which correspond to the directions of the axes of

a rectangular system:

Fx = nix,
I

Fv = my,\ IX)

I<\ = ///:.
I

Equations (IX) emphasize the fact that ih> component of

the resultant force along any direction equals (!• product <>f
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the mass by the component of the acceleration along the same

direction.

98. Equilibrium as a Special Case of Motion. —- When the

right-hand member of the force equation vanishes, that is,

when the acceleration is nil, the resultant force vanishes.

But this is the condition of the equilibrium of a particle,

therefore equilibrium is a case of motion in which accelera-

tion is zero. For the equilibrium of a particle it is neces-

sary that the resultant force vanish, but this condition is not

sufficient because while the acceleration vanishes when F = 0,

the velocity may have any constant value. In other words

a particle may be in motion even when the resultant of the

forces which act upon it vanishes. Therefore in order that a

particle stay at rest not only must the resultant of the forces

vanish but it must be at rest at the time of application of

these forces.

99. Dimensions of Force. — In discussing the equilibrium

of bodies we only compared forces because it was all that was

necessary; besides we had no means of expressing forces in

terms of other physical magnitudes. But now the force

equation enables us to express forces in terms of the three

fundamental magnitudes and thus to connect them with

other physical quantities.

If we substitute the dimensions of mass and acceleration

in the force equation we obtain the following dimensional

formula for force

:

[F]=[MLT~*].

100. Units of Force. — The C.G.S. unit of force is the dyne.

It is a force which gives a body of one gram mass a unit

acceleration. This is denoted symbolically by the following

formula:

dyne=,SEi«S:.
sec. 2

The British unit of force is the pound, which we have

already defined (p. 76) as the weight, in London, of a body
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which has a mass of about 453.G gins. The weight of a body
is the force with which it is attracted toward- the center of

the earth. Therefore if m denotes the mass of a body and

g the magnitude of the acceleration which the gravitational

attraction of the earth imparts to bodies, the force equation

gives us

W = mg, \

where IF is the weight of the body. The value of g is

slightly different at different points of the surface of the

earth. It is greatest at the poles and least at the equator.

The maximum variation, however, is less than one per cent

;

therefore for most purposes it may be considered as constant.

For engineering problems 32.2 —'- or 981 '- are close
sec- sec-

enough approximations to the actual value of g in any

locality.

The relation between the pound and the dyne may be

obtained by the help of equation (X). Thus

lib. = lpd. X32.2-^
sec. 2

= 32.21^4
sec-

= 4 .45xl0seB^
sec.

= 4.45 X 106 dynes,

where "lb." is the symbol for the pound (weighl I
and "pd."

the symbol for the mass of a body which weighs one pound.

In order to emphasize the distinction between the two they

are often called pound-weight and pound-mass.

101. Difference between Mass and Weight. — The beginner

often finds it difficult to distinguish between the ma— of a

body and its weight. He is apt to ask Buch a question as

this, "When I buy a pound of fruit what do I get, one
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pound-mass or one pound-weight?"* The difficulty is due

to the fact that the common methods for comparing the

masses of bodies make use of their weights.

There are two general methods by which masses may be

compared, both of which are based upon the force equation.

Let Fi and F2 be the resultant forces acting upon two bodies

having masses mi and m^, and /i and /2 be the accelerations

produced. Then the force equation gives

Fi = mi/i,

F2 = m2/2 ,

. mi Fx /,
and — = 7T-7'

(1) If the forces are of such magnitudes that the accel-

erations are equal then the masses are proportional to the

forces; for when/i =/2 , the last equation becomes

Vh = Ei.

ra2 F2

This gives us a method of comparing masses, of which the

common method of weighing is the most important example.

* This question may be answered in the following manner. "The fruit

which you net has a mass of 1 pd. (about 453.6 gra.) and which weighs 1 lb.

(about 4.4.") X 106 dynes). If the fruit could be shipped to the moon during the

the weight woul 1 diminish down to nothing and then increase to about

one-sixth of a pound. The zero weight would be reached at a point about

nine-tenths of the way over. Up to thai position the weight would be with

respeel to the earth, that is, the fruit would be attracted towards the earth;

bu1 from there on the weight would be with respect to the moon. The mass

of the fruit, however, would be the same on the earth, during the passage, and

on the moon. It would be the same with respect to the moon as it is with

respeel to the earth. Mass is an intrinsic property of matter, therefore it

does not change. Weight is the result of gravitational attraction; conse-

quently it depends upon, (a) the body which is attracted, (b) the bodies

which attract it. and (<•) the position of the former relative to the latter. It

18 evident then fore that when a body is moved relative to the earth its weight

changes."
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If W\ and U"> denote the weights of two bodies of mac
and m-i, then by equation

I X) we obtain

FTi =
///,f/,

and — = —-,

where # is the common acceleration due to gravitational

attraction.

(2) If the forces acting upon the bodies are equal the

masses are inversely proportional to the accelerations:

Vh =k.

This gives us the second method by which masses may
be compared. The following are more or less practicable

applications of this method:

(a) Let A and B (Fig. 61) be two bodies connected with a

long elastic string of negligible mass, placed on a perfectly

A

Fig. 61.

smooth and horizontal table. Suppose the string to be

stretched by pulling A and B away from each other. It is

evident that when the bodies are released they will be accel-

erated with respect to the table and that the accelerating

force, that is, the pull of the string, will be the same for both

bodies. Therefore if /i and /•_• denote their accelerations al

any instant of their motion, the ratio of their masses i-

by the relation

nh /i

(b) Suppose the bodies whose masses are to be compared
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to be fitted on a smooth horizontal rod (Fig. 62) so that they

are free to slide along it. If the rod is rotated about a verti-

cal axis the bodies fly away from the axis of rotation. If,

however, the bodies are connected by a string of negligible

mass they occupy positions

on the two sides of the axis,

which depend upon the ratio

of the masses. So far as the

motion along the rod is con-

cerned, each body is equiv-

alent to a particle of the

same mass placed at the

center of mass of the body.*

Suppose, as it is assumed

in Fig. 62, the horizontal

rod to be hollow and to have

smooth inner wall; further

suppose the centers of mass of the given bodies to lie on the

axis of the rod. Then if at the center of mass of each body
a particle of equal mass is placed and the two particles con-

nected by means of a massless string of proper lengths, the

positions of the particles will remain at the centers of mass
of the given bodies even when the rod is set rotating about

the vertical axis.

Now let mi and rth be the masses of the particles and fx

and /2 their accelerations due to the rotation of the tube

about the vertical axis. Then since the tensile force in the

string is the same at its two ends, the forces acting upon
the particles are equal. Therefore we have

F = ffli/i = W2/2,

Fig. 62.

or
rrh fi

* For a proof of this statement see p. 242.
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But if n and r2 denote the distances of the particles from the
axis of rotation, and P the period of revolution, then

/,— tf— i^S and /,= -£=_<
n p- ra P 2

Therefore —
' = -2

ma r,

gives the ratio of the masses of the particles as well as those

of the given bodies.

MOTION OF A PARTICLE UNDER A CONSTANT FORCE.

102. Case I. Rectilinear Motion. — Suppose a particle of

mass m to be acted upon by a force F, which is constant in

direction as well as in magnitude. Then the force equation

gives

«*-/. a)

dv F , ,_,.

dt m

Since both m and F are constant, /, the acceleration, is also

constant. Integrating equation (I') once we obtain

v = ft + c,

where c is a constant to be determined by the initial con-

ditions of the motion. Let the initial velocity be denoted

by vQ ; then v= v , when t= 0, therefore c= v and

V=Vo+ ft. (1)

ds
Substituting -r- for v in equation (1) and integrating,

dt

s= v t +hft 2 +c f

.

Let s = 0, when t = 0; then c' = 0. Therefore

s =Vot+$ft*. (2)

Eliminating t between equations 1 1) and (2) we get

t>»=Pb»+2/8. (3)
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103. Equations of Motion.— The force equation and the

equations (1), (2), and (3), which connect v, s, and t are

called equations of motion. The force equation will be

called the differential equation of motion, while those which

are obtained by integrating the force equation will be called

the integral equations of motion.

104. Special Cases: A. Motion when the Force is Zero.

—

When the force vanishes the acceleration is zero. There-

fore equations (1) to (3) become

v= v = const.,

s = v t.

Therefore the particle moves in a straight path with un-

changing velocity.

105. B. Falling Bodies.—The force experienced by a fall-

ing body is its weight mg. Therefore the acceleration of

the motion is g, the gravitational acceleration due to the

attraction of the earth. So long as the distance through

which the body falls is very small compared with the

radius of the earth, g may be considered to remain con-

stant. Therefore the motion of falling bodies may be

treated as a special case of rectilinear motion under a con-

stant force. Hence the equations of motion of a falling

body are obtained by replacing / by q in equations (1) to

(3). Making this substitution we get

v = t/ + yt,

s = v t + \ gt
2

,

v2 = v 2 +2gs.

When a body falls from rest the initial velocity is zero.

Therefore we must put v =0 in the lasl three equations

before using them for bodies falling from rest.

When a body is projected vertically upward the accelera-

tion is in the opposite direction from the velocity: in other

words, it is negative. Therefore in the last three equations
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g must be replaced by {-g) before they are applied to the

motion of bodies which are projected vertically upwards.

PROBLEMS.

1. A steel plate weighing 10 pounds is placed on a perfectly smooth
and perfectly horizontal sheet of ice. The plate is then moved by means
of a string, one end of which is fastened to the plate, and the string is

pulled in a direction parallel to the surface of the ice. Is it necessary to

apply a force to the string in order to give the plate a desired velocity?

Why? What will the magnitude of the force depend upon?

2. In the preceding problem the block is given a velocity of LOO —
in 5 seconds. Find the tension of the string supposing it to be constant

.

How far will the plate have traveled in the meantime?
3. In the preceding problem the string is just strong enough to support

half the weight of the plate. What is the shortesl time in which the

plate can be pulled through a distance of 162 feet'.'

4. In the preceding problem suppose the contact to be rough and to

have a coefficient of friction equal to 0.1. A
5. A bullet is fired with a muzzle velocityjff 500

metcrs
. Fin- 1 the

average acceleration, supposing the length <j^B barrel to he si) cm.

6. A stone is sent gliding over a horizo^^r sheet of ice with a

motors
of 10 . How far and how long will it move if the coefficient of

sec.

friction is 0.1?

7. An elevator starts from rest and rises to a height of 100 feet in

10 seconds, with a constantly increasing velocity. Find the increase in

pressure exerted on the feet of a man in the elevator who weighs 1"><>

pounds.

8. A man can just lift 350 pounds when on the ground. Bow much

can he lift when in an elevator descending with an acceleration of I

9. An elevator starts from rest and rises 100 feel in five seconds, with

a constant acceleration. Find the tension of the rope which pulls it up

if the elevator weighs 2000 pounds; neglect the frictional t"<

10. A body is projected vertically upward with a velocity of 50

the edge of a pit 200 feet deep. When will it strike the bottom?

11. What is the lowest level, over the enemy's camp, to which a bal-

loon can safely descend, if the enemy is provided with guns which have

muzzle velocities of 2000 feel per second?
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12. A tody, which is dropped from the top of a tower, strikes the

ground half a second after it passes by a window 8-1 feet above the side-

walk. Find the height of the tower.

13. In the preceding problem find the velocity with which the body

strikes the ground.

14. A man weighing 150 pounds is obliged to leave his room by way

of a window 50 feet above the sidewalk. He has a rope which is long

enough but cannot support more than 125 pounds. What is the least

velocity with which he can reach the ground?

15. A ball is dropped in an elevator from a point 6 feet above the floor

of the elevator. How long will it take to strike the floor if the elevator is

descending with a constant speed of 10—-?
sec.

106. C. Motion of a Particle along a Smooth Inclined Plane.

— There are two forces acting on the particle, its weight

and the reaction of the plane.

The weight is wajand acts

downwards. The rRtction of

the plane, N, is npttnal to

the plane, because t^e"
4
plane

is smooth. Therefore setting

the components of the kinetic

reaction along and at right

angles to the plane equal to

the sum of the corresponding components of the forces we

obtain

dv

Fig. 63.

///

dt
mg sin a,

and = N — mg cos a.

The last equation states that forces along the normal add

up to zero and therefore do not affect the motion. We
have, therefore, to consider only the first equation, which

gives

dv

dt
g sin a = const.
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Therefore the equations of motion are obtained by sub-

stituting g sin a for/ in equations (1) to (3). Thus we have

v = v + gt sin a,

s = v t -\-\gt'1 sin a,

v- = v - +2gs sin a,

for the equations of motion.

PROBLEMS.

1. A number of particles slide down smooth inclined planes of equal

height. Show that the time taken by each particle to reach the base is

proportional to the length of the plane along which it slides.

2. Given the base of an inclined plane, find the height SO that the

horizontal component of the velocity acquired in descending it may be

greatest possible.

3. Two particles are projected simultaneously, one up and the oilier

down a smooth inclined plane. Find the velocities of projection if the

particles pass each other at the middle of the plane.

4. Show that the time taken by a particle to slide down any chord

which begins at the highest point of a vertical circle is constant and equals

6-here a is the radius of the circle.

5. A particle is projected down an inclined

plane of length I and height h. At the same

time another particle is let fall vertically from

the same point. Find the velocity of the pro-

jection of the first particle if both strike the

base at the same time.

6. A ship stands at a distance d from its

pier. Show that the length of the chute which

will make the time of sliding down it a mini-

mum is d y/2.

107. D. Motion of a Particle along a

Rough Inclined Plane.— The only dif-

ference between this problem and the

last one is that the reaction of the

plane is not normal to the surface. On accounl of friction

the reaction R has a component along the plain'. 1 denoting
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the frictional component of R by F and the normal com-

ponent by N, and equating the components of the kinetic

reaction along and at right angles to the plane to the sums

of the corresponding components of the forces we obtain

m— = mg sin a — F, (a)
at

Q = N — mg cos a. (b)

But if n is the coefficient of friction then

F = mA7 • [p. 22]

= n mg cos a [by (b)].

Substituting this value of F in equation (a) we obtain

dvm— = mg sm a — fi mg cos a,

dv , .
N

Or 37 = g (Sin a- ,uCOSa).-
at

Thus the acceleration is constant. Therefore the equations

of motion are obtained by replacing f by g (sin a — n cos a)

in equations (1) to (3) of page 113:

v = Vq + gt (sin a — n cos a),

s = v t + \ gt
2 (sin a — fi COS a),

v 2 = vQ
2
-\- 2 gs (sin a — n cos a).

PROBLEMS.

1. A car weighing 10 tons becomes uncoupled from a train which is

moving down a grade of 1 in 200 at the rate of 50 miles per hour. If the

frictional resistance is 15 pounds per ton, find the distance the car will

travel before coming to rest.

2. The pull of a locomotive is 2500 pounds. Find the velocity it can

give in 5 minutes to a train which weighs 75 tons. Take 10 pounds per

ton for the resistance and consider the (racks to be horizontal.

3. In the preceding problem suppose the tracks to have a grade of 1

in 200 and find the velocity (a) going down grade and (b) going up grade.
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108. E. Atwood's Machine. — The problem is to find tin-

equations of motion of two particles connected by means ol a

string of negligible mass which is slung

over a smooth pulley.

Let mi and m2 be the masses of the

particles. Then considering each parti-

cle separately we obtain the following

for the force equations:

dv

dt

dv

dt

where T is the tensile force in the string.

Eliminating T between equations (a)

and (b) we obtain

(mi + m2 ) -£ = (mi - m2 ) g, (c)

mi

m 2

T+mtf,

= T-m 2g,

dt

dv _ mi — m2

dt mi + m 2

:

(d) t

in i9

m 2 g

Fig. 65.

Therefore the acceleration is constant and consequently tin-

equations of motion are obtained by substituting this value

of the acceleration in equations (1) to (3) of page 113:

V
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Discussion. — Instead of considering the masses separately we can

consider them as a single moving system and write a single force equation.

Thus
(total moving mass) X (acceleration) = sum of the forces,

or (mi + m 2 )
-~ = m^g - m^g,

which is identical with equation (c).

PROBLEMS.

1. Two particles of mass m\ and ra2 are suspended by a string which is

slung over a smooth table. A third particle of mass rn 3 is attached to that

portion of the string which is on the table. Prove that when the system

is left to itself it will move with an acceleration of

Wi + m2 + m s

2. In the preceding problem suppose the table to be rough and find

the acceleration, /jl = 0.5.

3. Discuss Atwood's machine supposing a frictional force to act be-

tween the string and the pulley (the latter is supposed to be fixed) ; take

the frictional force to be equal to the tensile force in that portion of the

string which is moving up.

109. Case II. Parabolic Motion, or Motion of Projectiles. —
Consider the motion of a particle which is projected in a

direction making an angle a with the horizon. When we
neglect the resistance of the air, the only force which acts

upon the particle is its weight, rag. Taking the plane of

motion to be the xy-pl&ne, Fig. 66, we have

dx _ dx M xm
it=°>

or
i-°- (1)

mt = - m9
>

or
ft=- g - (2)

where
,

X
and -* are the components of the acceleration

at at

along the axes. Integrating equations (1) and (2) we get

X— Ci,

and y= - gt + c2 .
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Therefore the component of the velocity along the x-axis

remains constant, while the component along the {/-axis

changes uniformly. Let v be the velocity of projection,

then when t = 0, x = v cos a and y = v sin a. Making these

substitutions in the last two equations we obtain

C\ = v cos a,

and

Therefore x = v cos a, (3)

and ?/ = v sin a — at. (4)

(h = v sin a.
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It is interesting to note that the motions in the two directions

are independent. The gravitational acceleration does not

affect the constant velocity along the z-axis, while the mo-

tion along the y-axis is the same as if the body were projected

vertically with a velocity v sin a. The projectile virtually

rises a distance of v t sin a on account of its initial vertical

velocity, and falls a distance | gt 2 on account of the gravita-

tional acceleration.

The Path. — The equation of the path may be obtained

by eliminating t between equations (7) and (8). This gives

y = x tan a . ^ _ x 2
, (9)

which is the equation of a parabola.

The Time of Flight.— When the projectile strikes the

ground its ^/-coordinate is zero. Therefore substituting zero

for y in equation (8) we get for the time of flight

T= 2j^na^
(10)

g

The Range.— The range, or the total horizontal distance

covered by the projectile, is found by replacing t in equation

(7) by the value of T, or by letting y = in equation (9). By

either method we obtain

2 v
2 sin a cos a

R

?'
2
sin 2 a

9

(ID

Since v and g are constants the value of R depends upon a.

It is evident from equation (11) that R is maximum when

Bio 2 a= 1, or when a = \ The maximum range is, there-

fore,

Rm =
Vj?. (12)
9
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In actual practice the angle of elevation which gives the

maximum range is smaller on account of the resistance of

the air.

The Highest Point.— At the highest point y = 0. There-

fore substituting this value of ij in equation (4) we obtain

— or - T for the time taken to reach the highesl point.
9 2

Substituting this value of the time in equation (8) we gel

for the maximum elevation

//
t'o-sin-q.

2<7
(13)

The Range for a Sloping Ground. — Let be the

angle which the ground makes with the horizon. Then the

range is the distance OP, Fig. 67, where P is the point

where the projectile strikes the sloping ground. The equa-

tion of the line OP is

2/ = :c tan 0. (14)

Eliminating y between equations (14) and (9) we obtain the

^-coordinate of the point,

2 /'q
2 cos 2 a (tan a — tan 0)

But

Therefore

xp
= R' cos 0, where W = OP.

^ 2 '^%in («-0)
g cos 2

_ t'
2 sin (2 a - 0) - sin /3

g cos 2
/3

(15)
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Thus for a given value of /3, R' is maximum when sin {2a— 0)

= 1, that is, when « = t + ? :

4 Z

, v 2
1 - sin ^ v 2

gr cos-/3 gi(l + sin/3)

When = equations (15) and (16) reduce to equations (12)

and (13), as they should.

PROBLEMS.

1. A body is projected horizontally with a speed of 105 - from a cliff
sec.

365 feet high. Find the magnitude and direction of the velocity at the

time it reaches the ground.

2. The muzzle velocity of a gun is 3000—- . Find the area it covers
sec.

if it is mounted on top of a hill 500 feet above the surrounding plain.

3. A shot fired horizontally from the top of a tower strikes the ground

at a distance d from the base of the tower, with a velocity the vertical

component of which equals the initial velocity of the shot. Find the

height of the tower.

4. A bullet is projected at an angular elevation of 45° with a velocity

of 400—- . At the highest point of its flight the bullet goes through a

target 5 cm. thick and strikes the ground at a distance of 1200 m. from

the place where it was projected. Find the average resisting force offered

by the target.

6. After sliding 200 m. down a slope of 30° a ski-jumper leaves the

ground making 45° with the horizon and lands further down the same
doping ground. Supposing the coefficient of friction to be 0.05 and

neglecting the resistance due to air, find (a) the speed with which he left

the ground, (b) the speed with which he landed.

6. In the preceding problem find the leap measured along the ground.

7. A man can make 6 feet in the high jump. How many feet could he

make if he were on the moon? The gravitational acceleration on the moon

is 5.3—- .

sec.2

8. A particle slides down a chord of a vertical circle and then falls on a
horizontal plane A feel below the Lower end of the chord. Find the chord
which will give the greatest possible range on the plane.



MOTION OF A PARTICLE 125

9. Show that a rifle will shoot three times as high when it- angle of

elevation is 60° as when it is 30°, but will carry the Bame distance along a

horizontal plane.

10. An emery wheel bursts into small pieces while making 100

lutions per second. If the radius of the wheel is 10 cm. find farthi

tance reached by any of its pieces.

MOTION OF A PARTICLE UNDER THE ACTION OF A VARY
ING FORCE.

110. I. Uniform Circular Motion.— Consider the motion of

a particle projected into a circular tube, Fig. 68, the inner

surface of which is perfectly

smooth. Let m be the mass of

the particle, v its speed of pro-

jection and r the radius of the

circle formed by the tube. The
radius of the cross-section of

the tube is supposed to be neg-

ligible. Suppose the particle to

be acted upon by no forces ex-

cept the reaction of the inner

surface of the tube. Then, since

the surface is smooth, the reac-

tion is normal and consequently there is no force along the

tangent to the path. Therefore the force equations for the

tangential and the normal directions give

do

Fra. 68.

and

"a" -

m— = — N,
r

(1)

2

where N represents the reaction of the walls of the tube upon

the particle. It is evident from equation (1) thai the mag-

nitude of the velocity is constant. Therefore the particle

describes the circular path with a constant speed. Equation

(2) states that the normal reaction of the surface equals the



126 ANALYTICAL MECHANICS

normal kinetic reaction and is oppositely directed. There-

fore the reaction of the surface is directed towards the center

of the circular path.

Equations (1) and (2) are independent of the special

method used to keep the particle in a circular path. If,

for instance, the particle were connected to the center by
means of an inextensible string and then projected in a

direction perpendicular to the string the results would have

been the same.

The force which constrains the particle to move in the

circular path is called the central force. This force may be

the reaction of a surface, the tension of a string, or the

pull of a center of attraction. In order to emphasize the

fact that this force is directed towards the center it is often

denoted by Fc . Since the subscript makes clear the fact

that the force is directed towards the center, we can drop

the negative sign from equation (2), and write

ft- 2? (3)

4?r 2mr
--pi-'

where P is the time of one revolution.

(4)

PROBLEMS.

1. A particle of mass mi, which describes a circle on a perfectly smooth

horizontal table, is connected with another particle of mass tn 2 which

hangs freely; the string which connects the two particles passes through a

smooth hole in the table. Find the condition necessary to keep 7n 2 at rest.

2. Find the smallest horizontal velocity with which a body must be

projected at the equator in order that the body may become a satellite.

Find the period of revolution.,

3. A locomotive weighing 125 tons moves in a curve of 600 feet radius,

with a velocity of 20 miles per hour. Find the lateral pressure on the

rails if they are on the same level.

4. Derive the expression for the period of a conical pendulum.

6. A number of particles of different masses are suspended from the

same point by means of strings of different lengths. li\ow that when
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the bodies are given the same angular velocity about a vertical axis

through the point of suspension the particles will lie in the same hori-

zontal plane.

6. If the masses in the preceding problem are equal how will the tensile

force vary with the length of the strings'.'

7. Supposing the earth to be spherical discuss the variation in the

weight of a body due to the rotation of the earth about its axis.

8. The moon describes a circular path around the earth once in every

27 days, 7 hours, and 43 minutes; find the acceleration at the center of

the moon due to the attraction of the earth. Take 2-40,000 miles f,,r the

radius of the moon's orbit.

9. If the earth rotated fast enough to make the weights of bodies

vanish at the equator show that the plumb line at any latitude would

become parallel to the axis of the earth.

10. In the preceding problem what would the length of the day be?

11. How much would the weight of a body be increased at latitude 30°

if the earth stopped rotating?

12. A particle suspended from a fixed point by a string of length /

is projected horizontally with a speed Vllg; show that the string will

become slack when the particle has risen to a height I I.

13. How much should the outer rail of a railroad track be raised at a

curve in order that there be no lateral pressure on the rails when a train

makes the curve at the rate of a mile a minute? The radius of the curve

is 1500 feet and the distance between the tracks is 4 feet SJ inches.

14. Prove that a locomotive will upset if it takes a curve with a

greater thanl/^, on tracks the outer rails of which are not raised,

> 2 h

where g denotes the gravitational acceleration, r the radius of the curve,

a the distance between the rails, and h the height of the center of mass

of the locomotive above the tracks.

16. Show that if there is no lateral pressure on the outer rails, while

a car takes a curve, the relation
v-

tanfl =-
gr

is satisfied, where 6 is the angle the floor of the car makefl with the hori-

zon, v is the speed of the car, and r the radius of the curve.

111. II. Bodies Falling from Great Distances. -When the

distance from which a body falls is not negligible compared

with the radius of the earth the gravitational acceleration

cannot be considered as constant during the hill. Therefore
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the variation of the gravitational attraction must be taken

into account. According to the law of gravitational attrac-

tion the force between two gravitating spherical bodies is

of the following form:
mm' mf= -7-^-> (i)

where m and m' are the masses of the spheres, r is the dis-

tance between their centers, and 7 is a positive constant.

The negative sign indicates the fact that r is measured in a

direction opposed to that in which F acts. When the grav-

itating bodies are the earth and a body which is small com-

pared with the earth 7 = ^— , where M is the mass of the

earth, a its radius, and g the gravitational acceleration on

the surface of the earth. In order to show this observe

that when the body is on the surface of the earth, that

is, when r = a, the force is —mg, the weight of the body.

Therefore replacing in equation (1) F by-mg and m' by M
and solving for 7 we obtain
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Separating the variables and integrating we have

r- = — 1- c.

Now suppose the body starts to fall from a distance r' from

the center, then v = when r = r' and c = — *-r m Therefi »re
/•

--»».»(* -I) (6)

gives the velocity at a distance r from the center. WheD
the body falls from an infinite distance r' = oc and the

velocity at any distance is

,„ = a \/^. (7)

Therefore the velocity with which it will reach the surface

of the earth is

Woo = ^2 ga

. . m miles \ (8)
= 7

sec. j

If the body starts to fall from a distance above the surface

equal to the radius of the earth, then in equation (6) r' = 2r.

Therefore

v= ^ag,

miles
= 4.95

sec.

Therefore about seventy-one per cent of the velocity attained

in falling from an infinite distance is developed in the lasl

4000 miles.

PROBLEMS.

1. A meteorite falls n. the earth. Supposing it in -tart from infinity

find the time it takes to travel tin- last WOO mile-.

2. A particle is attracted towards a fixed point by a force which varies

inversely as the cube of the distance of the particle from the fixed point.

Find the time it will take the particle to fall to the point if it .-tarts from

a distance d.
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3. Discuss the motions of a particle which is repelled from a fixed

point with a force which varies directly as the distance of the particle

from the fixed point.

112. III. Motion of a Particle in a Resisting Medium.— As

a concrete example of motion in a resisting medium consider

the motion of falling bodies, taking the resistance of the

atmosphere into account. At any instant of the motion

two forces act on the body, i.e., the weight of the body and

the resistance of the air. Denoting the resisting force by

F we get

mj
t

=mg-F (1)

for the force equation. In order to be able to integrate the

last equation we must make an assumption as to the nature

of F.

Case I. Resistance Proportional to the Velocity.
— Suppose F to be proportional to the velocity, then

F= fav,

where ki is a positive constant. Substituting in the force

equation this expression for F we obtain

dv ,"•5 -**-**.

dv , /r,s

a"'
-* (2)

h
where k = — . Rearranging the last equation

m

Integrating

dv _ j if

Iog(»-|V=-Arf+c,

or v - | = e
c

• e"
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Let v = i'o when t = 0, then e
c = v - j. Therefore

or + I (3)

Limiting Velocity. — The last equation has a simple in-

terpretation which comes out clearly by plotting the time as

abscissa and the velocity as ordinate. There are four special

cases which depend upon the following values of the initial

velocity

:

(a) v = 0, (b) » <fi

(c) I'o I (d)
"»>z-

Curves (a), (b), (c), and (d) of Fig. 69 represent these ca» 3.

It is evident from these curves

that whatever its initial value

the velocity tends to the same

limiting value |, called the lim-

iting velocity. In the third case

the velocity remains constant, as

shown by the horizontal line (c),

because the resisting force ex-

actly balances the moving force.

Integrating equation (3) we
get

I i... 60.

= h rj: - g

k k

Let s = when t = 0, then

c =

+ c.

t'ok - g

Therefore t +
vpk - g

k 2
(l - «-*'). ^
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If we plot the last equation for the four different cases of

the initial velocity we obtain the curves of Fig. 70. It is

evident from these curves that a very-

short time after the beginning of the

motion the distance covered increases

at a constant rate, as would be ex-

pected from the meaning of the lim-

iting velocity.

Case II. Resistance Propor-
tional to the Square of the Ve-

locity.— The assumption that resist-

ance varies as the velocity holds only

for slowly moving bodies. It is found

that for projectiles whose velocities

lie under 1000 feet per second and

over 1500 feet per second the resistance varies, approxi-

mately, as the square of the velocity, while between these

values it varies as the cube and even higher powers of

the velocity. The experimental data on the subject are

not enough to find a law of variation which holds in all

cases.

If we assume the resistance to vary as the square of the

velocity, then the force equation for a falling body becomes

dv , 2m— = mg - kiv
2

,

at

dv

dt
g - kv 2

, (5)

/.-,

where k = — = constant. In order to integrate the last equa-
i/i

t ion wo replace — by v- and rearrange the terms so that we
dt ds

get

dv
kds.
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Integrating we have

\og(v°-- g

k
)=-2ks+ c,

or v- — f = e
c
>e~- k\

Let v = vQ when s = 0, then e
c = v

2 - |. Therefore

Therefore the limiting velocity is y |. In other words, for

large values of s the distance traversed approximately equals

PROBLEMS.

1. A man finds that the resistance of the air to a body moving at the

rate of 20 -

—

' equals 1000 dynes per square centimeter of the resisting sur-

face. If 600 ' is the limit of the velocity with which he can safely land,
sec.

find the smallest parachute with which he ran safely descend from any
height. The man and his parachute have a mass of 7."> kg. Take the re-

sistance to be proportional to the velocity.

2. In the preceding problem take the resistance to be proportional to

the square of the. velocity.

3. Discuss the equation of motion of a boal in still water, after the.

man who was rowing ships his oars. Suppose the resistance to be pro-

portional to the velocity.

4. A particle is projected with a velocity V in a rc-i-ting medium and

is acted upon by no other force except that due to the resistance of the m<^

dium. Show that, (a) the particle will describe a finite distance in an in-

finite time when the resistance is proportional to the velocity; (b) it will

describe infinite distance in infinite time when the resistance i- propor-

tional to the square of the velocity.

6. A bullet is projected vertically upwards with a velocity v,. Sup-

posing the resistance of the air to be proportional to the square of the
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velocity of the bullet, find the expression for the highest point reached.

Also find the time of upward flight.

6. In the preceding problem suppose the resistance to be proportional

to the velocity.

113. IV. Simple Harmonic Motion.—The motion of a par-

ticle is called simple harmonic when the particle is acted

upon by a force which is always directed towards a fixed

point and the magnitude of which is proportional to the

distance of the particle from the same point.

Fig. 71.

Let m be the mass of the particle, the line AA' its path,

Fig. 71, and the fixed point. Then denoting the dis-

placement, i.e., the distance of the particle from the fixed

point, by x we obtain

F = - k 2
x,

dv , „

or m ~Ti
= ~ * x

>

,11

(1)

for the force equation. It is evident that equation (1) is

nothing more or less than the analytical expression for the

foregoing definition of simple harmonic motion. The fac-

tor /.- is a constant. The negative sign in equation (1)

indicates the fact thai the force and the acceleration are

directed towards the fixed point, while x is measured from



MOTION OF A PARTICLE i:;:,

it. Since the motion is along the x-axia the velocity has

no components along the other axes, consequently

Therefore equation (1) may be written in the form

(2)

ih.v
, .,m——

y
= — k 2x.

« dt-

where o>
2 = — • Multiplying both sides of equation (2) by

dx
%-rrdt and integrating

or v = v cv=Vc

where c 2
is the constant of integration. Let v =t^ when

x = 0, then c~ = v 2
. Therefore

V= Vi) 2— co
2X 2

.

In order to find the second integral of equation (2) rewrite

equation (3) in the form

^- = Vv *-o> 2x\
at

Separating the variables in the last equation and integrating

we have

sin J— = ut + c
,

or x = — sin (<at -f c')
CO

= a sin (ut + c')
f

where c' is the constant of integration and a = -. Let
u

x = when £ = 0, then c' = 0, and

• x = a sin cot. (4)
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When equation (4) is plotted with the time as abscissa and

the displacement as ordinate the well-known sine curve is

obtained, Fig. 71.

It is evident both from equation (4) and from the curve that

the maximum value of x is equal to a. This value of the dis-

placement is called the amplitude. The minimum value of

x is a displacement equal to the amplitude in the negative

direction. Therefore the particle oscillates between the

points A and A'. The displacement equals the positive

value of the amplitude every time sin ut equals unity, that

is, when at assumes the values -> — , — , etc. In other
2 Z 2

words, the particle occupies the extreme point A at the

instants when t has the values-^-, —— , — , etc. Therefore
2u 2 co 2 co

the particle returns to the same point after a lapse of time

equal to —— . This interval of time is called the period of
CO

the motion and is denoted by P. Thus

P-— (5)

PROBLEMS.

1. A particle which moves in a straight groove is acted upon by a force

which is directed towards a fixed point outside the groove, and which

varies as the distance of the particle from the fixed point. Show that the

motion is harmonic.

2. Within the earth the gravitational attraction varies as the dis-

tance from the center. Find the greatest value of the velocity which a

body would attain in falling into a hole, the bottom of which is at the

center of the earth.

3. Show that when a particle describes a uniform circular motion, its

projection upon a diameter describes a harmonic motion.

GENERAL PROBLEMS.

1. The speed of a train which moves with constant acceleration is

doubled ID a distance of 3 kilometers. It travels the next 1 iV kilometers

in one minute. Find the acceleration and the initial velocity.
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2. Show that the ratio of the distances described by a falling body

during the (n — l)th and the nth seconds is
~ "—

1 .

2« + l

3. A juggler keeps three balls going in one hand, bo thai al any in-

stant two arc in the air and one in his hand. Find the time during which

a ball stays in bis hand; each ball rises to a height h.

4. Find the shortest time in which a mass m can be raised to a height h

by means of a rope which can bear a tension T.

6. A train passes another on a parallel track. When the two loco-

motives are abreast one of the trains has a velocity of 20 miles per hour

and an acceleration of 3 —

-

OJ while the other has a velocity of 40 miles
sec-

pcr hour and an acceleration of 1
—'—. How soon will they be abreast
sec. 2

again, and how far will they have gone in the meantime
6. A mass of 1 kg. is hanging from a spring balance in an elevator.

After the elevator starts the balance reads 1100 gin. Assuming the

acceleration of the elevator to be constant, find the distance moved in

5 seconds.

7. A smooth inclined plane of mass m and inclination a stands with

its base on a smooth horizontal plane. What horizontal force must be

applied to the plane in order that a particle placed mi the plane simulta-

neously with the beginning of action of the force may lie in contact with

the plane yet fall vertically down as if the inclined plane were not then'?

8. The pull of a train exceeds the resisting forces by 0.02 of tin' weight

of the train. When the brakes are on full the resisting forces equal 0.1

of the weight. Find the least time in which the train can travel between

two stopping stations 5 miles apart, the tracks being leveL

9. Give a construction for finding the line of quickest descent from a

point to a circle in the same vertical plane.

10. A mass m x falling vertically draws a mass mt up a smooth inclined

plane which makes an angle of 30° with the horizon. The un-

connected with a string which passes over a -mall smooth pulley at the

top of the plane. Find the ratio of the masses which will make the

acceleration * •

4

11. A particle is projected up an inclined plane which makes an angle

a with the horizon. If 7', is the time of ascent, T . the time of d

and </> the angle of friction, show that

(TX- _ sin (a - 4>)

' r- <t>)
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12. The time of descent along straight lines from a point on a verti-

cal circle to the center and to the lowest point is the same. Find the

position of the point.

13. A uniform cord of mass m and length I passes over a smooth peg

and hangs vertically. If it slides freely, show that the tension of the

cord equals
'r

/2

~
, when the length on one side is x.

14. In an Atwood's machine experiment the sum of the two moving

masses is m. Find their values if in t seconds they move through a dis-

tance h.

15. Given the height /; of an inclined plane, show that its length must

be —-^r, in order that mi, descending vertically, shall draw m-i up the plane
mji

in the least possible time.

16. A gun points at a target suspended from a balloon. Show that

if the target be dropped at the instant the gun is discharged, the bullet

will hit the target if the latter is within the bullet's range.

17. Find the position where a particle sliding along the outside of a

smooth vertical circle will leave the circle.

18. A particle falls towards a fixed point under the action of a force

which equals yr~ ri

, where 7 is a constant and r is. the distance of the parti-

cle from the fixed point. Show that starting from a distance a the particle

will arrive at the fixed point with an infinite velocity in the time •

V3t
19. A particle falls towards a fixed point under the attraction of a force

which varies with some power of the distance of the particle from the cen-

ter of attraction. Find the law of force, supposing the velocity acquired

by the particle in falling from an infinite distance to a distance a from the

center to be equal to the velocity acquired in falling from rest from a dis-

tance a to a distance -•

4

20. A part icle is projected toward a center of attraction with a velocity

equal to the velocity it would have acquired had it fallen from an infinite

distance to the position of projection. Supposing the force of attraction

to be yr~n
, where 7 is a constant and r is the distance of the particle from

the center of attraction, show that the time taken to cover the distance

between the point of projection and the center of attraction is

n+lV 2 7
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21. From the following data show that the velocity with which a body

has to be projected from the moon in order to reach the earth is about 1.5

miles per sec. Both the earth and the union are supposed to be

The mass of the moon is sV of that of the earth. The radii of the earth

ami the moon are 4000 miles and lion miles, respectively. The distance

between the earth and the moon is 240,000 miles.

22. Taking the data of the preceding problem, show that if the earth

and the moon were reduced to rest they would meet, under their mutual

attraction, in about 4.5 days.



CHAPTER VII.

CENTER OF MASS AND MOMENT OF INERTIA.

CENTER OF MASS.

There are two useful conceptions, known as center of

mass and moment of inertia, which greatly simplify dis-

cussions of the motion of rigid bodies. It is, therefore,

desirable to become familiar with these conceptions before

taking up the motion of rigid bodies.

114. Definition of Center of Mass. — The center of mass of

a system of equal particles is their average position; in other

words, it is that point whose distance from any fixed plane

is the average of the distances of all the particles of the

system.

Let X\, Xi, xz , . . . xn denote the distances of the particles

of a system from the 2/2-plane; then, by the above definition,

the distance of the center of mass from the same plane is

- _ x x + x2 + xz + • • • + xn

n

n

When the particles have different masses their distances

must be weighted, that is, the distance of each particle must

be multiplied by the mass of the particle before taking the

average. In this case the distance of the center of mass
from the 7/2-plane is defined by the following equation:

(mi+wi*+ • • • + mn ) x = niix 1 +

m

2x2 + • • • + m nxn ,

140
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or

similarly

and

*"
Urn

'

y 2m'

Z
I'm

'

Evidently x, y, and z are the coordinates of the center of

mass.

ILLUSTRATIVE EXAMPLES

1. Find the center of mass of two particles of masses m and nm, which

are separated by a distance a.

Taking the origin of the axes at the particle which has the mass m,

Fig. 72, and taking as the .r-axis the line which joins the two particles we get

+ nma
x = —

m + ttm

7}

v = o,

5 = 0.

Y
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115. Center of Mass of Continuous Bodies.—When the par-

ticles form a continuous body we can replace the summation

si^ns of equation (I') by integration signs and obtain the

following expressions for the coordinates of the center of

mass:

rxdm *

I dm

y dm

I dm

Jz dm
* nm '

/ dm
Jo

where m is the mass of the body.

ILLUSTRATIVE EXAMPLES.

1. Find the center of mass of the parabolic lamina bounded by the

curves //'- = 2 px and x = a, Fig. 74.

Obviously the center of mass lies on the x-axis. Therefore we need to

(I)

Fio. 74.

* In general if y is a function of x then the average value of y between the

1 /•*!

limits j-i and Jj is given by the relation: y = I ydx.'
Xi — X[ Ji.
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determine x only. Taking a snip of width dx for the element of m
have

dm = a 2 y dx

= 2aV'2 pxdx,

where a- is the mass per unit area. Therefore substituting this expression

of dm in equation (I) and changing the limits of integration we obtain

Xo
.

x \ 2 px dx

x = -—

2a f
a

V~2pxdx

j x? dx

5
'

2. Find the center of mass of the lamina bounded by the curves

y
1 = 4 ox and y = bx, Fig. 75.

Let dx dij be the area of the element of mass, then

dm = udxdy.

Therefore substituting in equation (I) and introducing the proper limits

of integration we obtain

4a '• '

X, xd
'J
dx - X l,'" 1"' 1*

X = —T^ y = —*a

L dlJ dX X Xr **

f
bl

(2 V^r" - fa) X dx
J;" (^ OX - | X»J

</x

=
To ££

f
"

(2 V^ - bx) dx f
bi

(2Va~c- bx) dx
Jo Jo

8a
56 2

'

b
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3. Find the center of mass of a semicircular lamina.

Selecting the coordinates and the element of mass as shown in Fig.

we have

dm = a -pdd -dp,

C ("y - <?p dp de
- Jo .'0

y =

j
w
j"cxpdpdd

Cf
a

p-smddpdd

n a

P dp dd
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Y

Fig.

ILLUSTRATIVE EXAMPLE
Find the center of mass of a parab-

oloid of revolution obtained by revolv-

ing about the x-axis that part of the

parabola y
2 = 2 px which lies between

the lines x = and x = a.

dm = T7T//- dx

= T7r 2 px dx;

2tttpC..'•- dx

2irrp ( xdx

= %a.

PROBLEMS.

Find the center of mass of the homogeneous Bolid of revolution gener-

ated by revolving about the .r-axis the area bounded by

(1) y = -x, x = h, and y = 0.
h

(2) x 2 = 4ay, x = 0, and y = a.

(3) x- + y- = a 2
, and x = 0.

(4) b 2x 2 + <ry- = a*b*
}
and x = 0.

(5) y = sinx, x = 0, and x = -

(6) x 2 + >/
2 = s

, x- + //- - //-, and I - 0.
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117. Center of Mass of Filaments.— The transverse dimen-

sions of a filament are supposed to be negligible; therefore

it can be treated as a geometrical curve. Taking a piece of

length ds as the element of mass and denoting the mass per

unit length by X we have

dm = X ds.

ILLUSTRATIVE EXAMPLE.

Find the center of mass of a semicircular filament.

(a) Taking x 2 + y
2 = a 2 to be the equation of the circle we get

dm = \ils

= x«

Jo Va 2 - .r
2

/•a dx

Jo Va2 - x 2

dx

Va2 - x 2

dx

-V^2

sin
-1 -

a
Fig. 79.

2a

(b) Referring the circle to polar coordinates we have r = a for its

equation. Therefore

dm = \ds

= \ad0.

f. x Xa dd r. a cos 6 dd

r X a ,10

/ dB
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PROBLEMS.

Find the center of mass of a uniform wire bent into the following

curves:

(1) An arc of a circle subtending an angle 2 at the center.

(2) y = a sin x, between x = and x = ir.

(3) y- = -i ax, between x = and x = 2 a.

(4) The cycloid x = a (d - sin 0), ij = a (1 — cos 6), between two

successive cusps.

(5) Half of the cardioid r = a (1 + cos 6).

118. Center of Mass of a Body of Any Shape and Distribution

of Mass. — The illustrative examples of the last few pages

are worked out by special methods in order to bring out tin-

fact that in a great number of problems the ease with which

the center of mass may be determined depends upon the

choice of the element of mass. The following general ex-

pressions for an element of mass may be used whatever the

shape of the body or the distribution of its mass:

(a) When the bounding surfaces of the body are given

in the Cartesian coordinates the mass of an infinitesimal

cube is taken as the ele-

ment of mass

:

dm = t • dxdy dz.

(b) When the bounding

surfaces of the body are

given in spherical coordi-

nates the element of mass

is chosen as shown in Fig.

80. In this case the fol-

lowing is the expression for

the element of mass

:

dm = t • p dd • dp • p d<f> sin

= tp 2 sin d dd d<p dp.

(c) When the density. -, varies from point to poinl it

is expressed in terms of the coordinates ami substituted in

the expression for dm.
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ILLUSTRATIVE EXAMPLES.

1. Find the center of mass of an octant of a homogeneous sphere,

(a) Suppose the bounding surfaces to be

x 2 + if + z*- = a-, x = 0, y = 0, and z = 0.

Then the limits of integration are

x = and x = a.

Therefore

y = and y = Vo* — x 1

,

z = and z = y/a- — x 2 —
\

j x c/x d# dz
j
_ ^o •'o Jo

f f f dxdyda
•'O •'O -^

= 3a *

8
'

and by symmetry y = z = '—
8

(b) Suppose the equations of the

bounding surfaces to be given in spheri-

cal coordinates, then we have

-
,

= 0, and
<t>
= -

The limits of integration are

r = and r = a

= and 6 = ?

Fig. 81.

and

C C fV sin 2 cos0 rir rid d<j>

Therefore x = °

x

n

y
'

°

[x = r sin 6 cos0]

f f" C"r-s'mdrirridri<p
Jo Jo Jo

8
'
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2. Find the center of mass of a righl circular cone whose density

varies inversely as the square of the distance from the apex, the distance

being measured along the axis.

dm — t • iry 2
• dx

T\ n-.r'
1

Ti7T<7-
dx,

where n is the density at a unit

distance from the apex. -There-

fore

Tjira- r'

hi J

.

as?
f c/x

h

2
Fig. 82.

PROBLEMS.

1. Find the center of mass of aright circular cone, the density of which

varies inversely as the distance from the vertex.

2. Find the center of mass of a circular plate, the density of which

varies as the distance from a point on the circumference.

3. Find the center of mass of a cylinder, the density of which varies

with the nth power of the distance from one base.

4. Find the center of mass of a quadranl of an ellipsoid.

5. Find the center of mass of a hemisphere, the density of which varies

as the distance from the center.

119. Center of Mass of a Number of Bodies. Lei mi, rn : ,

etc., be the masses and xu .<.. etc., be the x-coordinates of tin-

centers of mass of the individual bodies. Then if x denotes

the z-coordinate of the center of ma— of the entire system

we can write

x =
xdm
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JfV»i f™2
xdm-\- I xdm+

o Jo

dm+ I dm+ •

o Jo

_ m&\ + m2^2 + • •
•

mi + m2 + • • •

_ HmXj
2m

2m

1///

Therefore the mass of each body may be considered as being

concentrated at its center of mass.

ILLUSTRATIVE EXAMPLE.

Find the center of mass of the plate indicated by the shaded part of

Fig. 83.

(a) Suppose the plate to be separated

into two parts by the dotted line. Then

the coordinates of the center of mass of

the lmver part are

b , - b — a
Xi = - and i/i =

2 " 2

On the other hand the coordinates of the

cciiicr of mass of the upper part are

2b -ab — a
'

2
and y2 =

Therefore the coordinates of the center of mass of the entire plate have

the following values:

b b — a
»"

2 + w*
—

mi + m»

oh(h-a)-+<ra(b— a) —

^

ab (6—o)+ff (b — a) a

b- + nb - q'

2(a + 6)

2
+ m,

26

TO] + I» 2

j n .b— a. ,, ,2 b—

a

ab{b-a)——\-aa(b-a) —

—

ab (b— a)-\-aa {b— a)

b- + nb - a2

2 (a + 6)
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(b) Suppose the square OA to represenl a plate of positive ma

the square O'A to represent a plate of negative mass. Then if the two

plates have the same thickness and density the positive and the m

masses annul each other in the square O'A. Therefore the two Bquare

plates form a system which is equivalent to the actual plate represented

by the shaded area of the figure. Bence I he center of mass of the Bquare

plates is also the center of mass of the given plate.

The masses of the square plates are air and - an-, while the codrdi-

nates of their centers of mass are

-, -, b , -„ -„ 26 -a
x = y = - and x = y = —-— •

Therefore the coordinates of the center of mass of the two are

,„& . , „. 2b-a
ffb*-+ {-an-) —

ah- + ( — ad1
)

b- -\- ab — a-

2 (a + b)

which are identical with those obtained by the first method.

PROBLEMS.

1. Find the center of mass of the homogeneous plates indicated by the

following figures:

V'
aJ
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ated by revolving about the x-axis the area bounded by y
2 = 2 px

and x = a. Find the center of mass of the remaining solid if the parab-

oloid and the cone have the same base and vertex.

MOMENT OF INERTIA.

120. Definition of Moment of Inertia. — The moment of

inertia of a body about an axis equals the sum of the

products of the masses of the particles of the body by the

square of their distances from the axis.* Thus if dm de-

notes an element of mass of the body and r its distance

from the axis then the following is the analytical state-

ment of the definition of moment of inertia:

/ = f> dm. (II)

The integration which is involved in equation (II) is often

simplified by a proper choice of the element of mass. The

choice depends upon the bounding surfaces of the body and

the position of the axis ; therefore there is no general rule by

which the most convenient element of mass may be selected.

There is one important point, however, which the student

should always keep in mind in selecting the element of mass,

namely, the distances of the various parts of the element of mass

from the axis must not differ by more than infinitesimal lengths.

ILLUSTRATIVE EXAMPLES.

1. Find the moment of inertia of a rectangular lamina about one of its

Y

dm
_L

x

dy

sides.

Suppose iIh' lamina to lie in the xy-

plane. Further suppose the side with

reaped to which the moment of inertia is

to lie found to lie in the x-axis. Then
the mOSl Convenient element of mass is

a strip which is parallel to the x-axis.

Let ,/ be the length (Fig. 84), b the

width, and <t the mass per unit area of the lamina, then

dm = aady.

'
I <>r :i physical definition of moment <>f inertia and its meaning see p. 220.

Fig. 84.
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The distance of the element of mas-; from the axis is y\ therefore substi-

tuting in equation (II) these expressions for dm and its distance from the

axis we obtain

I =
)

//- • an dy

= i (rub3

= i mb2
,

for the desired moment of inertia. The limits of integration arc different

from those in equation (II) because the independent variable is changed

from m to y,

2. Find the moment of inertia about the x-axis of a lamina which is

bounded by the parabola x 2 = 2 py and the straight line y = a.

(a) Choosing a horizontal strip for the element of mass we have

dm = a - 2xdy.

/a
xf-xdy

= 2 a f y
2 V2py dy

J

>'•

But m = a I 2 x dy
•J

= I a a v2 pa.

(b) We can also take an element of the strip for the element of mass,

in which case we have

dm = a dx dy.

:. I = \ ir • a dx dy

= i a a3 V'2 pa,

= 2 ma 2
.



154 AXA IATICAL MECHANICS

PROBLEMS.

1. Find the moment of inertia of a circular lamina about a diameter.

2. Find the moment of inertia of an elliptical lamina about its minor

axis.

3. Bind the moment of inertia of a rectangular plate of negligible

thickness about a diagonal.

4. Find the moment of inertia of a thin plate, which is in the shape of

an equilateral triangle, with respect to one of its edges.

5. Find the moment of inertia of a triangular plate about an axis

which
i
lasses through one of its vertices and is parallel to the base.

6. Find the moments of inertia of the following lamina with respect

to the axes indicated by the thin vertical lines.

a

2b
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It is evident from this theorem thai when the lamina is

rotated about the z-axis Iz and I y change, in general, but

their sum remains constant.

122. Theorem II.— The moment of inertia of a body about

any axis equals its moment of inertia about a parallel axis

through the center of 7nass

plus the product of the mass

of the body by the square of

the distance between the two

axes.

Let the axis be perpen-

dicular to the plane of the

paper and pass through

the point 0, Fig. 86. Fur-

ther let dm be any ele-

ment of mass, r its dis-

tance from the axis through 0, and rc its distance from a

parallel axis through the center of mass, C. Then if a

denotes the distance between the axes we have

Fig. S6.

dm/=/ r»«
Jo

= I (r 2+ a 2 — 2 arc cos 0) dm

rc-dm+\ a*dm— 2a \ rc cos d dm
i/O t/0

= Ic + ma 2 - 2a j xdm.

nm

But by the definition of the center of mass
J
xdm= tnx,

and in the present case the center of mass is at the origin;

therefore x and consequently the lasl integral \ranishes.

Thus we get

l = I .+ ma 2
.

IV)

123. Radius of Gyration.—The radius of gyration of a body

with respect to an axis is defined as the distance from the
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axis of a point where if all the mass of the body were con-

centrated its moment of inertia would not change.

Lei m denote the mass of a body, / its moment of inertia

with respect to a given axis, and K its radius of gyration

relative to the same axis; then the definition gives

/ = K 2m, )

K=\fl]
(V)

' m J

If Ke denote the radius of gyration relative to a parallel axis

through the center of mass, then by equations (IV) and (V)

we obtain

K 2=K 2+ a 2
. (VI)

ILLUSTRATIVE EXAMPLES.

1. Find the moment of inertia of a homogeneous circular disk (a) about

its geometrical axis, (b) about one of the elements of its lateral surface.

Let m be the mass, a the radius, I the thickness, and r the density of the

disk. Then choosing a circular ring for the element of mass we have

dm = t • / • 2 xr -dr,

where r is the radius of the ring and dr its

thickness. Therefore the moment of inertia

about the axis of the disk is

I = 2ttIt C"r*dr
Jo

_ rlira*

2

_ mo2

2
*

Fig. 87.

The moment of inertia about the element is obtained easily by the help

of theorem II. Thus
/' = / + ma*
= * ma2

.

It will he noticed t li.it the 1 hiekness of the disk does not enter into the

ione for / and /' excepl through the mass of the disk. Therefore
.pressiniis hold good whether the disk is thick enough to be called

a Cylinder or thin enough to he called a circular lamina.
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2. Find the moment of inertia of a cylinder aboul a transverse axis

through the center of mass.

Let m, a, I, and r be, respectively, the mass, the radius, the Length, and
the density of the cylinder. Further lei the given axis pass through the

center of mass of the cylinder; then taking a slice obtained by two right

sections as the element of mass we get, by theorem II.

(II y = <lly> + Z- <llll,

where dm is the mass of the element, dl y and dl y
- are the momenta of

inertia of the element aboul the given axis and aboul a parallel axis through

the center of mass of the element, and r is the distance In 'tween th

axes. But by theorem I

ill* + die = dl»

and by symmetry dl^ = dl^,

and by the last illustrative example

a 2 dm
•>

dls =

Therefore dlj
a- dm

F^l
Vu,. 88.

Substituting this value of dl u in the expression for <//„ we gel

dly = (^ + :^dm

Integrating the last equation we have

y ma-
,

r m
• i

/„ =— +J z*dm

i

mn'1
, r -

., .,
,
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— m° 2

_l_
Tira ~l

3

4
+

12

3. Find the moment of inertia of a homogeneous sphere about a

diameter ami about a tangent line.

Let )n, a, and r be the mass, the y
radius, and the density of the sphere,

respectively. Then, taking the axes

and the element of mass as shown in

Fig. 89, we have

dly = dly
» + 2 2 dm,

=
2

_ 1 y- dm
~ 2 2

Integrating the last equation

dIM + z 2 dm

+ z 2 dm.

Iv=if
Q

!J
2
<l>»+f ^dm

— "7 I y
4 dz -\-ttt I z 2

y
2 dz [dm = mry-dz]

4 J—

a

J—a

= fr^ - ^ 2 dz + 2^i> 2 - *>*

and

Sttto 5

15

= I TOO2

Iy> = I y + ma-

= I ma2
.

124. Theorem III. — 77/ r moment of inertia of a homogeneous

right cylinder about a transverse axis equals the moment of in-

ertia of two lamince which fulfill the following conditions, (a)

Each lamina has a mass equal to that of the cylinder. (6) One

lamina occupies the entire area of the transverse section of the

cylinder through the given axis, while the other lamina occupies

the < ntire area of the longitudinal section of the cylinder through

(he "j .
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Let Y, Fig;. 00, be the axis with respect to which it is

desired to find the moment of inertia of the cylinder. Lei

dlv denote the moment of inertia of an element bounded by
two transverse sections relative to 1 he K-axis, and ///,.. denote

the moment of inertia of the same element relative to the

Fig. 90.

F'-axis, a parallel axis through the center of mass of the

element. Then, by theorem II, we have

dly
= dl y»+ (x 2 +z 2)clm,

where (x 2 +z 2
) is the square of the distance between tin-

two axes. Similarly the moment of inertia of the element

about the F'-axis which is parallel to the F"-axis and inter-

sects the same elements of the cylinder, is given by

dl v
>= dl v

- + z 2 dm.

Eliminating dl v
- between the last two equations we obtain

dly
= dl y

- + x*dm
= Ki'-d/n + x-drn,
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where A'i is the radius of gyration of the element of mass

about the F'-axis. Integrating the last equation we have

I v
= I Kx*dm+ I x-dm.
Jo Jo

Each of the elements of mass has its own F'-axis similarly

placed. Therefore ki is the same for all the elements of mass

and remains constant during the integration. Hence

Iv = Ki2m+ I x-dm

where h = K x-m and 72 = / # 2 dm. It is not difficult to see

that h is the sum of the moments of inertia of all the elements

of mass relative to their respective F'-axes. It is equal,

therefore, to the moment of inertia about the F-axis of the

lamina (A in the figure) which would be obtained if the en-

tire cylinder could be compressed into the transverse section

through the F-axis. On the other hand 72 equals the mo-

ment of inertia about the F-axis of the lamina (D in the

figure) which would be obtained if the cylinder could be com-

pressed into the longitudinal section through the F-axis.

ILLUSTRATIVE EXAMPLE.

As an illustration of the last theorem consider the illustrative example

of p. 157.
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Denoting the moment of inertia of the circular lamina by I\ and that

of the rectangular lamina by h we have

/ = /i + u
I

1 ma* . r5
» j

2 /-2

- + era I j x 2 dr
_

2

Z
2

<?+§>
which is identical with the result obtained by the direct method.

PROBLEMS.

1. Find the moment of inertia of a hollow circular cylinder with re-

spect to, (a) its geometrical axis, (b) an element, (c) a transverse axis

through the center of mass.

2. Find the moment of inertia of an elliptical cylinder with respect to,

(a) its geometrical axis, (b) a transverse axis through its center of mass

and parallel to the major axis of a right section.

3. Find the moment of inertia of a rectangular prism with respect to,

(a) its geometrical axis, (b) a transverse axis through the center of mass

and perpendicular to one of its faces.

4. In the preceding problem suppose the prism to be hollow.

5. Find the moment of inertia of a prism, the cross section of which is

an equilateral triangle, with respect to, (a) its geometrical axis, do a

transverse axis through its center of mass and perpendicular to one of its

faces.

6. In the preceding problem suppose the prism to be hollow.

7. Find the moment of inertia of a hollow sphere with respect to, (a)

a diameter, (b) a tangent line.

8. Find the moment of inertia (if a spherical shell of negligible thick-

ness with respect to a tangent line.

9. Find the moment of inertia of a right circular cone with reaped to,

(a) its geometrical axis, (b) a transverse axis through the vertex.

10. In the preceding problem suppose the cone to be a -hell of negli-

gible thickness.

11. Find the moment of inertia of a paraboloid of revolution with

respect to, (a I
its axis, (b) a transverse axis through its vertex. The radius

of the base is a and the height is h.



162 ANALYTICAL .MECHANICS

12. Find the moment of inertia of an ellipsoid with respect to, (a) one

of its axes, (b) a tangent at one end of one of the axes parallel to the

other.

13. In the preceding problem suppose the body to be an ellipsoidal

shell of negligible thickness.

125. General Method.— The special methods which have

been discussed in the last few pages are desirable but not

necessary for finding the moments of inertia of bodies. In-

stead of selecting special types of elements of mass for each

type of bodies and then making use of the various theorems

we can use the general expressions for dm which were given

on p. 147 and obtain the moment of inertia directly from

equation (II).

As an illustration of this general method consider the moment of inertia

of a sphere with respect to a diameter. It is evident from the symmetry

of the body that the moment of inertia about a diameter equals eight

times that of an octant about one of its straight edges.

(a) Let the octant be taken as shown in Fig. 81, and be referred to

Cartesian coordinates, then the equations of the bounding surfaces are

x 2 + if + z2 = a 2
, x = 0, y = 0, and z = 0.

Hence taking the x-axis as the axis of reference we have

/ = J
m
r 2 d)n

= 8r
JoJo Jo W + '^dxdydz

= I ma2
.

(b) Let the octant be referred to spherical coordinates, Fig. 80, then

the equations of the bounding surfaces are

and p

Therefore 1 = f

TV

~ 2
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126. Routh's Rule. — The following is a useful rule for re-

membering the moments of inertia of certain types of bodies:

Moment of inertia with respect to any axis of symmetry

. . sum of the squares of the perpendicular semi-axes
= mass X J- ^— J H y -.

8, 4, 5

The denominator of the right-hand member is 3, 4, or 5 ac-

cording as the body is rectangular, elliptical, or ellipsoidal.

The following illustrate Routh's rule.

Rectangular lamina; about axis perpendicular to its plane:

«! + fr;

. 4 4 a2 + b2

Circular lamina; about axis perpendicular to its plane:

/ m a2 + a? _ ma2

J = m_____.

Elliptical lamina; about axis perpendicular to its plane:

T a2 + b2

I = m—
4

Rectangular parallelopiped; about axis perpendicular to one of its sides

:

I = m 4 4 a2 4- b2

3 12

Circular cjdinder; about longitudinal axis:

r a2 + a2 ma2

Sphere; about a diameter:

o- + a 2 2
_ ma2

.

5

Ellipsoid; about one of its axe-:

. a2 4- b2

I = m—-



CHAPTER VIII.

WORK.

127. Work.— The mechanical result produced by the ac-

tion of a force in displacing a particle may be considered to

be proportional to the interval of time during which the force

acts or to the distance through which it moves. In other

words, we can take either the time or the displacement as

the standard of measure. The effect measured when the

time is taken as the standard is different from that which

is obtained when the displacement is made the standard.

The first effect is called impulse. It will be discussed in a

later chapter. The second is called work, the subject of

this chapter.

128. Measure of Work.—When a force moves a body it

is said to do work. The amount of work done equals the

product of the force by the distance through which the body

is displaced along the line of action of the force. In this defi-

nition the force is considered to be constant. When it is vari-

able the definition holds for infinitesimal displacements, since

during the time taken by an infinitesimal displacement the

force may be considered as constant. Therefore if the par-

ticle P, Fig. 92, is displaced through ds,

under the action of the force F, the work
done is

dW = F -ds cos a,

where a is the angle between the direc-

tions of the force and the displacement.

When the displacement is finite the

work 'lone equals the sum of the amounts of work done in

164



WORK 165

successive infinitesimal displacements. Therefore the work

done in any displacement is given by the integral

j:
F cos ads. (I)

When the path of the particle is curved the direction of ds

coincides with that of the tangent to the curve. Therefore

F cos a is the tangential component of the force. In other

words the tangential component of force does all the work.

Hence
Ps
FT ds. (I')*-r

The normal component does no work because the particle

is not displaced along it.

Special Cases. Case I.—When the force is constant, both

in direction and in magnitude, it can be taken out of the

integrand. Therefore

W= F I cos a ds.

The last integral equals the projection of the path upon the

direction of the force. Therefore the product of the force

by the projection of the path upon the line of action of the

force equals the work done.

Case II.— When the force is constant and the path is

straight then the angle between the force and the displace-

ment is constant. Therefore

W = Fcosa / ds

= Fs COS a.

Case III.— When the force is not only constant bul is

also parallel to the path, then a = 0. Therefore

W = Fs.

Case /F. — When the force is at right angles to the dis-

placement a =?|, and cos a = 0. Hence W 0. Therefore

the force does no work unless it has a component along the
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path. In this case the motion of the particle is not due to

the force in question.

129. Work Done Against the Gravitational Force.— These

special cases may be illustrated by considering the work

done in raising a body from a lower to a higher level against

the gravitational attraction of the earth. Consider the

work done in taking a particle from A to B, along each of

the three paths shown in Fig. 93.

(a) Suppose the particle to be taken from A to C and

then to B; the work done in taking it from A to C comes

under Case IV. The direction of motion is at right angles

to that of the gravitational force, therefore no work is done

against it. The work done in taking the particle from C to

B comes under Case III; the force and the motion are in

the same direction. Therefore the work done is

W
the

= mgh,

vertical height of Bwhere h

above A.

(b) Suppose the particle to be taken

along the straight line AB. This comes

under Case II. The angle between the

force and the direction of motion is

constant. Therefore

W = mgl cos a,

where I is the length of the line AB.

Bui since I cos a = h, the work done is

the same as in (a), that is, mgh.

C Suppose the particle to be taken along the curve AB.

This comes under ( 'use I. Then

Fia. 93.

W = nig j cos ads
Jo

= mi/ j <llt [since ds cos a = dh]

= mgh.
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Therefore the work dom against the gravitational force in

taking a body from one position to another depends only upon

the vertical height through which the body is raised and not

upon the path.

130. Dimensions and Units of Work. —Work is a scalar

magnitude and has for its dimensions [ML-T~-\. The (
'.< r.S.

unit of work is the erg. It equals the work done by a force

of one dyne in displacing a particle through a distance of

one centimeter, measured along its line of action. It is

symbolized by -

—

'-—~. The erg is a small unit, therefore
sec.-

a larger unit called the joule is also used.

1 joule = 107 ergs.

The British unit of work is the foot-pound (ft.-lb.). It is

the work done against the gravitational attraction of the

earth in lifting one pound through a vertical distance of

one foot. Since the work done in lifting bodies is mgJi, we
can express the foot-pound in terms of the fundamental

units, thus

1 ft. lb. = 1 pd. X 32.2-^r X 1 ft.
sec. 2

= 32 .2PdJL
2

,

sec. 2

where pd. represents the pound-mass.

131. Work Done by Components of Force.—The work done

by a force F in giving a particle a displacement ds i- Fcos 6ds
}

where 6 is the angle between F and ds. Let X. Y, and Z be

the rectangular components of F, then the direction of F

is defined by its direction cosines — , — , ami . Therefore

if /, m, and n denote the direction cosines of ds. we get

V V Z*
cosd=l'

F
+m- + n-

* S<t Appendix Arv.
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and F cos d ds = (IX + mY + nZ) ds

= Xdx + Ydy + Z dy

where dx, dy, and dz are the components of ds along the

axes. Thus the total work done in a finite displacement is

given by

W = f F cos d ds
Jo

= f*Xdx+ f
y

Ydy+ Pzdz. (II)
Jo Jo Jo

Equation (II) states that the work done by a force equals

the sum of the amounts of work done by its components.

PROBLEMS.

1. Find the number of foot-pounds in one Joule.

2. Find the number of ergs in one foot-pound.

3. Find the work done in dragging a weight w up an inclined plane

of length I, height h, and coefficient of friction fi.

4. A body of 100 kg. mass is dragged up, then down, an inclined plane.

Compare the work done in the two cases if the length of the plane is 15 m.,

the height 5 m., and the coefficient of friction 0.5.

5. What is the work done in winding a uniform chain which hangs from

a horizontal cylinder? The chain is 25 in. long, and has a mass of 125 kg.

6. A body has to be dragged from a point at the base of a conical hill

toa poinl diametrically opposite. Show that, if the angle which the sides

of the hill make with the horizon equals the angle of friction, the work

done in dragging the body over the hill is less than in dragging it around

the base.

7. A steam hammer falls vertically from a height of 3 feet under the

action of its own weight and of a force of 2000 pounds due to steam pres-

sure At the end of its fall it makes a dent of 1 inch depth in an iron

plate Find the total amount, of work done in making the dent. The

hammer weighs loot) pounds.

8. In the preceding problem find the average resisting force.

9. A locomotive which is capable of exerting a draw-bar pull of 1.5 tons

is coupled to B train of six cars. The locomotive and the tender weigh

The cars weigh 15 tons each. Find the time it takes the loco-

motiveto imparl to t lie train a velocity of 00 miles per hour and the work

done under the following conditions.



WORK 169

(a) Horizontal tracks and no resistance.

(b) Horizontal tracks and a resistance of 12 pounds per ton.

(c) Down a grade of 1 in 200 with no resistance.

(d) Same as in (c) kit with a resistance of l_' pounds per ton.

(e) Up a grade of 1 in 200 with do resistance.

(f) Same as in (b) but with a resistance of l_' pounds per ton.

10. A mass of 5 pds. is at the bottom of a vertical shaft which reaches

the center of the earth. How much work will have to be done in order

to bring it to the surface? The weight of a body varies, within the cart h,

directly as its distance from the center. Take 4000 miles to be the depth

of the shaft.

11. Express the result of the last problem in joules.

132. Work Done by a Torque.— Suppose the rigid body A,
Fig. 94, to be given an angular displacement dd about a fixed

axis through the point O, per-

pendicular to the plane of the

paper. The displacement may
be considered to be] due to

a single force which forms a

couple with the reaction of the

axis, or it may be considered

to be due to small forces acting

upon every element of mass of

the body.

Taking the latter view, let

dF be the resultant force* acting upon the element of mass

dm. Then since dm can move only at right angles t<> the

line r, which joins it to the axis, dF must be perpendicular

to r. When the body is given an angular displacement do,

dm is displaced through ds, therefore the work done by dF is

d2W = dF • ds

= dF -rdd

= dG dd,

* dF is the resultant of tin- external forces which ad directly on •

of the interna] forces which an- due to the connection of dm with tin- red of

the body.

Fig. 94.
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where dG is the moment of dF about the axis. Thus the

total work done by all the forces acting upon all the elements

in producing the angular displacement dd is

dW= f dG dd

- do f°fir ^0 is the same for every

Jo element of mass.)

= Gdd,

where G is the sum of the moments about the axis of all the

forces acting upon the elements of the body, i.e., the result-

ant torque about the axis. The work done in giving the

body a finite angular displacement is, therefore,

W= f°Gde (III)
Jo

= GO [when G is constant].

Therefore work done by a constant torque in producing an

angular displacement equals the product of the torque by the

angle.

PROBLEMS.

1. A weight of 10 tons is to be raised by a jackscrew. The pitch of

the screw is \ inch and the length of the bar which is used to turn the nut

on 1 he screw is 2 feet long. Supposing the work done by the torque to be

expended entirely against gravitational forces, find the force which must

he applied at the end of the liar.

2. A ball, which is suspended by a string of negligible mass, is pulled

aside until the string makes an angle B with a vertical line. Show that

the work done is the same whether it is supposed to have been done in

rai.-iny; the hall against the action of gravitational forces, or in rotating

the hall and the string, as a whole, about a horizontal axis through the

point of suspension, against the action of the torque.

3. In the preceding problem take the following data and calculate, by

both methods, the amount, of work done. Weight of hall = 12 ounces,

length of string - :\ feet, and e = 00°.

4. The torque which has to he applied to the ends of a rod varies

directly with the angle through which it is twisted; derive an expression

for the work done in turning one end of the rod with respect to the other

end through an angle 6.
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5. In the preceding problem suppose one end of the rod to be fixed,

while the other end is firmly attached to the middle of another rod perpen-

dicular to it. A torqneof 10 pounds-foot is necessary in order to keep the

second rod in a position turned through l"> about the axis of the first

rod. How much work must be done in order to produce an angular

deflection of 45° ?

6. If in problem 5 the torque is due to a couple the forces of which are

applied at points 4 inches from the axis of rotation, find the forces applied

and show that the work done by the forces equals the work done by the

torque.

7. Making the following assumption with regard to the normal pressure

at the bearings, obtain an expression for the work done in giving a fly-

wheel an angular displacement.

(Hint.— For this and the following problems consult §§-57 and 58.)

(a) Normal pressure is constant.

(b) Vertical component of the total reaction is constant.

(c) Normal pressure is a sine function of the angular position; the

latter being measured from the horizontal plane through the axis of the

shaft.

(d) Normal pressure varies as the square of the sine of the angular posi-

tion.

8. Find the work done in giving a flywheel a complete rotation. The
following data are given. The flywheel weighs 5 tons, the diameter of

the shaft is 10 inches, the coefficient of friction in the journal bearings is

0.05, and the normal pressure on the bearings satisfies one of the follow-

ing conditions:

(a) Normal pressure is constant.

(b) Vertical component of the total reaction is constant.

(c) Normal pressure varies as the sine of the angular position, measured

from the horizontal plane through the axis of the shaft.

(d) Normal pressure varies as the square of the angular position.

9. Derive an expression for the work done in giving an angular dis-

placement to a load which is supported by a fiat-end pivot.

10. The rotating parts of a water turbine which weigh 50 tons are sup-

ported by a flat-end pivot. The diameter of the shaft is 10 inches and

the coefficient of friction is 0.().'5. Find the work lost per revolution.

11. Supposing the normal pressure to be constant derive an expression

for the work done in giving a loaded spherical pivot an angular displace-

ment about its axis.

12. Supposing the normal pressure to be constant derive an expi

for the work done in giving a loaded conical pivot an angular displacement.
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13. A vertical shaft carries a load of 10 tons. Find the work lost per

revolution if the ahafl is 8 inches in diameter and has a flat-end bearing;

the coefficient of friction being 0.01.

14. Derive an expression for the work done in giving a collar-bearing

pivot an angular displacement.

15. A vertical shaft carries a load of 5 tons. Find the work lost per

revolution if the shaft is supported by a collar-bearing pivot which has

an inner diameter of inches and an outer diameter of 8 inches. The

coefficient of friction is 0.1.

HOOKE'S LAW.

133. Stress.— When a body is acted upon by external

forces which tend to change its shape and thus give rise to

forces between its contiguous elements, the body is said to

be under stress. The measure of stress is force per unit area:

S-j, (IV)

where S denotes the stress, F the force, and A the area on

which the latter acts.

134. Pressure, Tension, and Shear.— Stresses which occur

in bodies are often of a complex nature, but they may be

resolved into three component stresses of simple character.

These are called pressure, tension, and shear. Pressure tends

to compress, tension to extend, and shear to distort bodies.

Shearing stress is the result of a compressive stress com-

bined with a tensile stress at right angles. A special case

of -hear, which conies into play within a shaft when the

Latter is twisted, is called torsion.

135. Strain. -Strain is the deformation produced by

Btress. The measure of strain is the percentage deformation.

For instance, if the deformation consists of a change in length

the Btrairj equals the ratio of the increase in length, to the

original length
: /

f-j. (V)

win-re s denotes the stress, / the increase in length, and L
the original Length.
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136. Hooke's Law.— The relation which connects a stress

with the strain which it produces is known as Hooke's law.

It states that stress is proportional to strain:

S = \s, (VI)

where X is the constant of proportionality, and is called the

modulus of elasticity.

137. Elastic Limit. — Hooke's law holds true so long as

stress is small enough to leave no appreciable permanent def-

ormation. In other words, Hooke's law holds true strictly

only while the body under consideration behaves like a per-

fectly elastic body under the action of the given stresses.

All bodies are more or less imperfectly elastic ; that is, stresses

always leave bodies with permanent strains. Therefore at

the best Hooke's law is approximately true when applied

to material bodies. The approximation, however, is close

enough for practical purposes so long as the permanent def-

ormation is negligible compared with the total deformation

produced by the stress. If a considerable portion of the

deformation becomes permanent the body under stress is

said to have reached its elastic limit, when Hooke's law does

not give a close enough approximation and consequent ly

cannot be used.

138. Young's Modulus. — The modulus of elasticity of a

body which is being stretched is called Young's modulus.

Let the body be an elastic string, a wire, or a rod, and let .1

be the area of its cross-section, L its natural or unstretched

length, and I the increase in length due to stretching. Then
we have

S = — and s = - •

.1 L

Therefore - =Xt'
A I.

,
F L

X-IT
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Thus Young's modulus of a substance equals, numerically,

the force necessary to stretch a uniform rod of unit cross-

section, which is made of the given substance, to double its

length. During the process of stretching Hooke's law is, of

course, supposed to hold.

139. Work Done in Stretching an Elastic String. — Let L
denote the natural length of the string and x its length at

any instant of the process of stretching. Then the work

done in increasing the length by dx is

dW = Tdx

= AS dx,

where T is the tensile force, S the tension, and A the area of

the cross-section of the string. But by Hooke's law,

Xs.

In this case s =

d\V = A.\'

Therefore

•- L

and W

2L
l}

-dx

(x — L) dx

Vu.. 95.where x' = AX, and / is the total in-

crease in length. Thus the work done varies as the square

of the increase in length. Plotting I as abscissa and IT as

ordinate we obtain a parabola, Fig. 95.

140. Work Done in Compressing Fluids.— Let C, Fig. 96,

be a cylinder which contains a compressible fluid and which
is provided with a piston. When the piston is displaced

toward the left work is done against the force with which
the fluid presses upon the piston. If dx denotes the dis-
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placement and F the force on the piston then the work
done is dW Fdx

pA dx

pdv,

where p is the pressure in the fluid, A the area of the piston,

and dv the change in the volume of the fluid. Therefore t he

total work done in compressing the fluid from a volume i\

to a volume r-2 is

W=- J pdv. (1)

When the law connecting p and v is given the work done

in compressing or expanding a fluid can be found by carry-

ing out the integration

indicated in equation (1).

During expansion, however,

the displacement has the

same direction as the force

which causes the expansion

;

therefore the sign before the

integral is positive.

141. Representation of the

Work Done in the PV-Dia-

gram.— When the volume

of the expanding fluid is

plotted as abscissa and the

pressure as ordinate, a curve is obtained, which repre-

sents, graphically, the law connecting j> and v. Such a

representation is called a PV-diagram. It i- evidenl from

equation (1) that the area bounded by the curve, the /-axis.

and the two vertical lines whose equations are v = >\ and

v = Vz, represents the work done in compressing the fluid

from Vi to Vi.

142. Isothermal Compression of a Gas. — If a gas is com-

pressed without changing its temperature the compression

Fig. 96.
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is called isothermal, in which case the relation between p
and v is given by Boyle's law, i.e.,

pv-Jb. (2)

Substituting in equation (1) the value of p given by equation

(2) we obtain

w=-kT-
= Hog^- (3)

143. Adiabatic Compression of a Gas.— If no exchange of

heat is allowed between the gas and other bodies while the

former is being compressed the compression is called adiabatic.

The law which connects p and v in an adiabatic compression

or expansion of a gas may be expressed by the relation

pvy = k, (4)

where y and k are constants for a given gas. Substituting

in ('(iiiation (1) the value of p, which is given by equation

(4), we obtain

W=-k f*

7- 1

7- 1

144. Modulus of Elasticity of a Gas. — Let — dv denote the

change in volume due to an increase in the pressure of a gas

by an amount dp. Then the stress is dp and the strain - —

.

v

Therefore by Hooke's law

, . — dv
dp = \

V

or \=- v p. (6)
dv
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The modulus of elasticity X is not a definite constant for

a given gas, because the value of -^ depends upon the tem-

perature and the amount of heat of the gas. Therefore the

state of a gas for which ~ is calculated should be stated in
dv

order that the value of X may have any meaning at all.

There are two states for which X is calculated, namely, the

isothermal and the adiabatic states.

145. Isothermal Elasticity. — When the compression is iso-

thermal
pv = k

and <*!>__A
dv v

2

V- (7)

Therefore the isothermal elasticity of a gas numerically

equals the pressure.

146. Adiabatic Elasticity.— When the gas is compressed

adiabatically

pvy = k

and ^ = - fair*-1

dv

= - ypv~ l
.

••• X=7P. (8)

147. Torsional Rigidity of a Shaft. — Suppose the upper

end of the cylinder of Fig. 97 to be rotated about the axis

of the cylinder through an angle 0, while the lower end is

fixed, and consider the stresses and the strains in the cylin-

der. It is evident that the strain is nil at the axis and in-

creases uniformly with the distance from the axis. Further

the strain is nil at the lower base and increases uniformly

with the distance from it. Since Hooke's law holds these

statements are true with regard to the stress in the cylinder.
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Let dF denote the force acting on the area, on the upper

base, of a ring of radius r and width dr, then the stress

equals
dF

But if 6 is the angle of twist at the upper
2 vr • dr

base and / the length of the cylinder, then the strain equals

y. Therefore by Hooke's law

dF =x rd

2irrdr I

In this case X is called modulus of shearing

elasticity or, simply, shear modulus. Solv-

ing the preceding equation for dF we get

dF=~6r"-dr.

Therefore the torque acting upon the area

of the ring is

dG = r >dF
_ 2_ttX

I

2ttXG= ~r

6rs dr.

Jr z dr
o

= X
21

(9) Fig. 97.

where Q is the total torque applied at the upper end and a

the radius of the cylinder. Thus the torque necessary to

produce a given angle of twist varies directly as the fourth

power of the radius and inversely as the length. On the

other hand for a given shaft the torque varies directly with

the angle of twist .

The torsional rigidity of the shaft is defined as the torque

ny to produce a unit angular twist; therefore

G
R =

= X
Tra 4

21
(10)
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It will be observed that the torsional rigidity of a Bolid

shaft varies directly as the fourth power of the radius and
inversely as the length.

148. Work Done in Twisting a Rod. — Work done by a

torque is obtained by substituting the expression for the

torque in the work equation. Thus

W= f°Gdd.
Jo

= X

f[J) dd [byeq. (9).]

=W (ii)

where k= X—- •

PROBLEMS.

1. What are the dimensions of stress, strain, and modulus of elasticity?

2. A steel rod of £-inch radius is found to stretch 0.004 inch in 10

inches of its length when a load of 10,000 pounds is gradually applied.

Find the Young's modulus of the rod.

3. The Young's modulus of a brass wire is 10.8 X 1011™? . Find
cm. 2

the load (in pounds) necessary in order to produce an elongation of 0.5 mm.
in 1 meter. The diameter of the wire is 1 millimeter.

4. The modulus of shearing elasticity of a steel shaft is 11 X 106 pounds

per square inch. What force acting at the end of a lever 30 inches long

will twist asunder the shaft if it is 0.5 inch in diameter?

6. A brass rod, 4 feet long and 1 .5 inches in diameter, is twiste* 1 through

an angle of 9° by a force of 1500 pounds acting G inches from the axis of

the rod. If on removal of the stress the bar recovers its original posil ion,

calculate the modulus of shearing elasticity of the rod.

6. Taking the data of the preceding problem find the force necessary to

give an angle of twist of 2° to a rod 15 inches lout:, 0.5 inch in diameter.

7. An elastic string of natural length / is stretched to twice its length

when it supports a weight Ii'. The ends of the string are connected to

two points at the same level and a distance d apart, while the weighl II'

is attached to the middle of the string. Find the position of equilibrium

of the weight.

8. A spider hangs from the ceiling by a thread which is stretched by

the weight of the spider to twice its natural length. Show that the work
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done by the spider in climbing to the ceiling equals J mgh, where m is the

mass df the spider and h its distance from the ceiling.

9. The outer end of a rial spiral spring is fixed, while the inner end is

attached to the center of a bar 20 cm. long, in such a way that the bar is

parallel to the plane of the spring. Two forces of 500 dynes each applied

at the ends of the bar, at right angles to the bar and parallel to the plane

of the spring, can keep the bar turned through an angle of - radians.

What torque must be applied in order to keep the bar in position after

giving it three turns?

10. In the preceding problem find the work done in giving the bar three

turns. What portion of the total work is done in the last turn?

11. Prove that the following is the expression for the torsional rigidity

of a hollow shaft:

(a* - fr
4
)

I!
2 1

where 6 is the inner radius of the shaft, while the other letters represent

the same magnitudes as in § 147.

12. Derive expressions for the saving of material and loss of rigidity

due to making a shaft of a given external diameter hollow.

13. Find the value of the quotient of the inner to the outer radius

which will make the quotient of the saving of material to the loss of rigid-

ity a maximum.
14. The weight and the length of a shaft are fixed; find the ratio of

the inner to the outer diameter which will make the rigidity of the shaft

a maximum.

15. The torsional moment which a shaft has to withstand and the

Length are fixed; find the ratio of the inner to the outer diameter which

will make the weight of the shaft a minimum

VIRTUAL WORK.

149. Principle of Virtual Work.— The concept of work
enables us t<> formulate a principle, called the principle of

virtual work, which can be applied to equilibrium problems
t" greal advantage.

In on lor i,, derive this principle consider a particle which
i- in equilibrium. Evidently the resultant force acting upon
the particle is nil and remains nil so long as the particle is in

the equilibrium position. But when the particle is given a
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small displacement, the resultant force assumes a value dif-

ferent from zero. If the displacement is small enough, bo

that the departure from equilibrium position and conse-

quently the resultant force remains small, the displacement

is called a virtual displacement and the work done by the

resultant force virtual work. We will call virtual force the

small resultant force, which is called into play by the virtual

displacement.

Let Fi, F2 , etc., be the forces under the action of which

the particle is in equilibrium. When the particle is given a

virtual displacement ds, these forces are changed, in general,

in magnitude and direction so that a virtual force dF acts

upon the particle during the displacement. Then the virtual

work is

dF •ds = F1
> dsi + F2 • ds2 + • • •

,
(VII)

where ds y , ds2 , etc., are the displacements of the particle

along the forces Fh F2} etc., due to the virtual displacement

ds. But since the left-hand member of the last equation

is an infinitesimal of the second order while the terms of the

right-hand member are infinitesimals of the first order we

can neglect the left-hand member and write

Fi dsj. + F2 ds2 + • • + = 0. (VIII)

Equation (VIII) states: when a particle which is in equi-

librium is given a virtual displacement the total amount of work

done by the forces acting upon the particle vanishes. This is

the principle of virtual work.

The principle of virtual work is applicable not only to

particles, but also to any system which is in equilibrium.

If the system is acted upon by torques as well as forces,

then the sum of the work done by the virtual torques and

the virtual force- vanishes:

Fx dsl+ F2 ds2+ +Gidei+ Gidei+ •••-(>. IX
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ILLUSTRATIVE EXAMPLES.

1. Supposing the weights in Fig. 98 to be in equilibrium and the con-

tacts to be smooth, rind the relation between the two weights

If U'i is given a virtual displace-

ment towards the left along the in-

clined plane, then the virtual work is

- T ds + Wi • ds sin a + N • = 0,

or T = W\ sin a.

But T = W2 .

Therefore W2 = Witana.

2. Two uniform rods of equal weight W and equal length a are jointed

at one end and placed, as shown in Fig. 99, in a vertical plane on a smooth

horizontal table. A string of length I joins the middle points of the

rods. Find the tension of the string.

The following forces act upon each rod — the weight of the rod, the

pull of the string, the reaction at the joint, and the reaction of the table.

Suppose a slighl displacement to be given to the system by pressing down-

ward at the joint. The work done by the force which produced the dis-

placement equals the sum of the work done by the other forces which act

upon the rods during the displace-

ment. Bui since both the force ap-

plied and the displacement produced

are very small their product is negli-

gible. Therefore the sum of the work

done by all the other forces is zero.

The reactions at the ends of the

rod- do not contribute to the virtual

work because each of the reactions is

perpendicular to the corresponding

surface of contact along which the displacement takes place. Therefore

the weights and the tensile force of the string contribute all the virtual

work. If '// and <lh denote, respectively, the increase in length of the

Btring and the distance through which the centers of mass of the rods are

I during the virtual displacement the virtual work takes the form

»( f + Wdfc) 0.

But from the liirure /

and <//< = — a

obtain

a Bin 0, and h = (i cos 0. Therefore dl = a cos Odd

Making these substitutions and simplifying we

T = 'Jirtane1

.
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3. Find the mechanical advantage of the jack-screw.

Let /' be the pitch of the screw, I the length of the lever arm, F the force

applied and P the force derived. Then
since at any instant the system is supposed

to be in equilibrium the virtual work, due ^""

to a small displacement, must vanish. Let /

dd denote a small angular displacement
l

\

and dh the corresponding rise of the screw.

Then if G denotes the torque applied the

virtual work takes the form

GdB-Pdh = 0.

But G = F • I and dh

Fide
Ppdd
2tt

p. Therefore

5

Fig. 100.

Hence the mechanical advantage, which is the quotient of the force de-

rived to the force applied, is

P _2irl

F v '

PROBLEMS.

1. By the application of the principle of virtual work derive the ex-

pression for the mechanical advantage of

(a) the lever;

(b) the wheel and axle;

(c) the hydraulic press;

(d) the pulley (a) of problem 13 on page 21;

(c) the pulley (b) of problem 13 on page 21;

(f) the pulley (c) of problem 13 on page 21

;

(g) the pulley (d) of problem 13 on page 21.

2. Apply the principle of virtual work to

(a) illustrative problem 1 on page 17;

(b) problem 4 on page 20;

(c) problem 6 on page 16;

(d) problem 16 on page 47.

3. Four rods of equal weighl W are freely jointed so as to form n

square. The system is suspended vertically from one of the joints. A

string of negligible weighl connects two of the joints so as to keep the

square shape of the system. Find the ten-ion of the string.
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4. An clastic band of weight W and natural length I is slipped over a

smooth circular cone the axis of which is vertical. The force necessary

to sintch the st ring to double its natural length equals X. Find the

position of equilibrium and the tension of the string.

5. Find the mechanical advantage of the following machines.

fa



CHAPTER IX.

ENERGY.

150. Results of Work. — Consider the work done by the

engine of a train in pulling it upgrade. The work done may
be divided into three parts:

(a) Work done against frictional forces.

(b) Work done against gravitational forces.

(c) Work done against the kinetic reaction.

The result of work done against frictional forces is heat..

The amount of heat generated is proportional to the amount
of work done. The heat may be utilized, at least theoreti-

cally, to do work. Thus a part, if not all, of the original

work may be recovered.

The apparent result of the work done against the gravi-

tational forces is the elevation of the train to a higher level.

The work done may be recovered by letting the train come
down to its former level and thereby do work. Therefore

the work done against gravitational forces may be considered

to be stored up.

The apparent result of the work done against the kinetic

reaction in accelerating the train is an increase in the ve-

locity of the train. The work done may be recovered by

letting the train overcome a force, which tends to reduce

the velocity of the train to its original value Therefore in

this case also the work done may be said to have been

stored up. In fact in all three cases the work done is

stored up. In the first case, however, work is qoI available

as readily as in the other two cases. In order to converl
185
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boat into work special moans, such as heat engines, etc.
r

have to be used, which do not belong to the domain of

ordinary mechanics; therefore work done against frictional

forces is considered as lost. On the other hand work which

is done againsl gravitational forces or against kinetic reac-

fcions is directly available for mechanical work.

151. Energy. Potential, Kinetic, and Heat Energy.—Energy

may be defined as work which is stored up. Work stored up

in overcoming kinetic reactions is called kinetic energy. Work
stored up while overcoming nonfrictional forces, such as

gravitational forces, is called potential energy. Work done

while overcoming frictional forces is called heat energy.

152. Transformation of Energy.— Potential, kinetic, and

Tieat energy are different (at least apparently*) forms of the

same physical entity, i.e., energy. Energy may be changed

from any one of these forms into any other form. "Whenever

such a change takes place energy is said to be transformed.

Transformation of energy is always accompanied by work.

In fact the process of doing work is that of transformation

of energy. The amount of energy transformed equals the

amount of work done.

The units and dimensions of energy are the same as those

of work.

KINETIC ENERGY.

153. Kinetic Energy of a Particle.— By definition kinetic

energy equals the work done against the kinetic reaction

in giving the particle its velocity. Since there is no mo-
tion along the normal to the path of the particle no work is

done againsl the normal component of the kinetic reaction.

Therefore we need only consider the work done against the

tangential component.

ni developments in physical sciences tend to show thai differences

i different forms of energy are only apparent :uui that all forms of

.". in the last analysis, kinetic.
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Denoting the kinetic energy by T and putting the defini-

tion into analytical language we obtain

=m£
ds ,

dt

(I)

Therefore the kinetic energy of a particle equals one-half the prod-

uct of the mass by the square of its velocity. Since both m and

v2 are positive, kinetic energy must be a positive magnitude.

The kinetic energy of a system of particles, therefore, equals

the arithmetic sums of the kinetic energies of the individual

particles. Thus
T = \ Zmv\ (II)

"When all the particles of the system have the same velocity

T=\Mv\

where M is the total mass of the system.

154. Work Done in Increasing the Velocity of a Particle. — If

the velocity of a particle is increased from v to v then the

work done against the kinetic reaction equals the increase

in the kinetic energy of the particle. This will be seen from

the following analysis

:

d\

fHv (h

ml vdv

= T- To.
(Ill)

* The first negative sign indicates Mir fad thai T is the work done against

ami nol by the kinetic reaction-;.

The second negative sign belongs to the kinetic reaction as it was explained

in Chapter VI.
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PROBLEMS.

1. Show that the dimensions of work and kinetic energy are the same.

2. A body of 50 gin. mass starts from the top of an inclined plane 10 m.

lone, and arrives al the bottom with a velocity of 300—;
. Find the aver-

"'
sec.

age frictional force. The angle of elevation of the plane is 30°.

3. A body of 100 gm. mass, which is projected up an inclined plane,

arrives a1 the top of the plane with a velocity of 150-

—

'-. Find the

velocity of projection, supposing the frictional force to be constant and

equal to 10,000 dynes. The length of the plane is 5 inches, and the angle

of elevation is 30°.

4. A bullet enters a plank with a velocity of 1500 —-. and leaves it
sec.

with a velocity of 1350 —— • How many such planks can the bullet
see.

penetrate?

6. In the preceding problem find the average resisting force which the

planks offer. The bullet weighs \ ounce.

6. A catapult, which consists of an elastic string 15 cm. long,. with its

end- tied tu the prongs of a forked piece of wood, is used to throw stones.

What velocity will it give to a stone of 5 gm. mass when stretched to twice

its natural length. The modulus of elasticity of the string is 2 pounds.

7. The kinetic energy acquired by a weight of 750 pounds in falling

through a distance of 4 feet is to be absorbed by a helical spring, 5 inches

long. Find the modulus of elasticity of the spring so that it will not be

compressed more than 1 inch.

8. Having a given size and shape, how will the penetrative power of a

bullet depend (a) on its weight, and (b) on its velocity. The resisting

force is supposed to be constant.

155. Kinetic Energy of a Rigid Body Rotating About a Fixed

Axis. Suppose the rigid body A, Fig. lOl^to rotate about

an axis through the point O, at right angles to the plane of

the paper. Consider the kinetic energy of an element of

i! Li— dm al a distance r from the axis. If v denotes the

velocity of the element and dT its kinetic energy, then

= \ r
2u 2 dm, [v= rw]
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where w is the angular velocity of the body,

total kinetic energy of the rotating body is

Therefore the

o

/•'-' dm • w s

(IV)

where / is the rnoment of inertia

of the body about the axis of

rotation.

Comparing the expression for

the kinetic energy of rotation

with the expression for the kinetic

energy of translation.we observe

that moment of inertia plays the

same role in motion of rotation as mass, the linear inertia,

plays in motion of translation.

The expression for the kinetic energjr of a rotating body
may be put in a little different form by substituting for /

its value in terms of the moment of inertia about a parallel

axis through the center of mass. Thus

Fig. 101.

= \{I c + ma-)u-
= %ma 2

oo
2+ \ 7,.ar

= \mv?+ \Ieu?i
(V)

where ve is the velocity of the center of mass. We have

thus divided the kinetic energy into two parts— (a) kinetic

energy due to the motion of translation of the body as a

whole with the velocity of the center of mass, (b) kinetic

energy due to the rotation of the body about an axis through

the center of mass.

156. Work Done in Increasing the Angular Velocity of a Rigid

Body. — It was shown in § 154 that the work dour againsl

the kinetic reaction of a particle equals the increase in the

kinetic energy of the particle. Therefore the wrork done

against the kinetic reaction of any number of particles is the
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sum of the increments in the kinetic energies of the individ-

ual particles. Therefore

W=Z(±mv2 -%mv 2
).

When the particles form a continuous system, we can replace

the particles by elements of mass and the summation sign by

the integration sign. Thus

W= I (3 v
2 dm - | v

2 dm)

= h \ (r2<°
2 dm — r 2

o)
2 dm)

= \ co
2

/ r 2dm-\^ 2
I r 2 dm

Jo Jo

= I /or - \ /a>o
2

,
(VI)

where co and w are the initial and the final values of the

angular velocity of the body. Therefore in this case also

work done equals the increase in the kinetic energy.

PROBLEMS.

1. The flywheel of a metal punch is 4 feet in outside diameter and

weighs 500 pounds. What must be its initial velocity in order that the

punch may exert a force of 25 tons, through a distance of 1 inch, without

reducing the speed of the flywheel by more than 25 per cent? Neglect

the effect of the shaft, and consider the flywheel to be a disk.

2. The power of a 15-ton car was shut off and the brakes were put on

at :i time when the car was making 50 miles an hour. On each of the 8

wheels a normal brake-shoe force of 5000 pounds was applied. Find the

distance covered by the car before coming to rest. The diameters of the

wheels are 30 inches, the tracks are horizontal, and the coefficient of fric-

tion for Hie contacl between the shoes and the wheels is 0.2.

3. A L00-tOD Locomotive making a mile a minute is to be stopped within

5<mi yards. What brake-shoe force must be applied? The diameters of

the wheels are (i feet. The coefficient of friction is 0.3.

4. Find the amount of heat which would be generated if the rotation

of the earth about its axis were stopped. The mean density of the earth

- 5.5 *~, the radius = 4000 miles; 1 calorie = 4.2 (10) 7 ergs.
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6. How many cubic miles of ice could be melted by the heat computed

in the preceding problem? The latent heal of ice is 80 calorics per gram.

6. The winder of a spinning top is a helical spring, which is set in a

Cylindrical piece 1 inch in diameter. When the winder is honked to the

top and twisted through tc radians a force of 1 pound has to be applied to

the cylinder tangentially in order to keep it from untwisting itself. After

the sprint; is given a twist of 2\ turns the top is released. Find the kinetic

energy the top would acquire if there wore no frictional forces.

7. In the preceding problem find the angular velocity of the top suppos-

ing it to consist of a circular plate of 2 inch radius, and of \ pound weight.

8. If the top of the preceding problem turns for 2 minutes before stop-

ping, find the mean torque due to friction and resistance; also find the

total number of revolutions made.

9. A top is given a motion of rotation by pulling at a string wound

around it. Derive an expression for the energy communicated, (a) when

the force applied to the string is constant; (b) when it varies directly with

the length of the string which is unwound.

POWER.

157. Power. — Power is the rate at which work is done.

When put into the language of calculus this definition be-

comes

P = ^. (VII)

Power is a scalar quantity and has the dimensions [ML-T~*\.

The C.G.S. unit of power is the erg per second. This unit

is too small for engineering purposes; therefore two larger

units are adopted, which are called the watt and the kilowatt.

The following relations define these units:

1 watt =
1 joule

1 sec.

= 10'SB.
sec.

1 kilowatt = 10^ watts

= 10'"
'' r^-
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The British unit of power is the horse power, denned by the

following equation:

1 H.P. = 33,000
ft "

PROBLEMS.

1. Show that 1 horse power equals about 746 watts.

2. The engine of a train, which weighs 150 tons, is of 200 horse power.

Find the maximum speed the train can attain on a level track if there is a

constant resisting force of 15 pounds per ton.

3. The diameter of the cylinder of a steam engine is 9 inches, and its

length 10 inches; the mean effective pressure per square inch is 90 pounds,

and the number of revolutions per minute is 100. Find the indicated

horse power.

4. Each of the 2 cylinders of a locomotive is 16 inches in diameter,

the length of the crank is 9 inches, the diameter of the driving wheels is

ti feet, the velocity of the train is 40 miles per hour, and the mean effective

pressure is 75 pounds per square inch. Find the power developed.

6. A train weighing 125 tons moves at the rate of 50 miles an hour,

along a horizontal road. Find the power, in kilowatts, transformed by

the motors of the electric engine which pulls the train. The resistance

is 10 pounds per ton.

6. Find the horse power developed by an engine which moves a train at

the rate of 30 miles an hour up an incline of 1 in 300. The train weighs

120 tons and there is a resistance of 15 pounds per ton.

7. A belt traveling at the rate of 45 feet per second transmits 100

horse power. What is the difference in tension of the tight and the slack

Bides <>f the belt. The width of the belt is 20 inches.

8. A L50-horse-power steam engine has a piston 18 inches in diameter
which makes 100 strokes per minute. Find the mean effective pressure

of tin' steam in the cylinder. The length of the stroke is 24 inches.

9. The average flow over the Niagara Falls is 10,000 cubic meters per

Becond. The average height is L60 feet. Find the power, in kilowatts,

which could be generated if all the energy were utilized.

10. A lire engine pumps water with a velocity of 125 — through a
sec.

iiu/./.le 1 inch in diameter. Find the horse power of the engine required
t<» drive the pump, if the efficiency of the pump is 75 per cent and the



EXEIU'.Y 193

nozzle is 15 feel above the surface of the reservoir which supplies the

water.

11. Find the power of a machine gun which projects 600 bullets per

minute with a muzzle velocity of 500 —- and angular velocity of 600 ir ra-
sec.

dians per second. The bullets are cylinders 0.9 cm. in diameter and 15 gm.

mass.

12. A shaft transmits 50 horse power and makes 150 revolutions per

minute. Express the torque transmitted in pounds-foot and dynes-cm.

13. An electric motor develops 25 kilowatts at 000 revolutions per

minute. Find the torque on the rotating armature due to the field mag-

nets. Neglect friction.

14. Find the power of a clock which has a maximum run of S days.

The weight which moves the works has a mass of 10 kg. At its highest

position the weight is 15 inches above its lowest position.

15. A twin-screw steamer has engines of 20,000 horse power and when

working at full power the engines make 75 revolutions per minute. Find

the torque transmitted by the shaft of each screw.

16. The pitch of the screw propeller of a ship is 25 feet. The power

transformed by the propeller is 15,000 horse power, when the ship makes

20 knots. Assuming that there is a slip of 10 per cent at the propeller

screw and that the efficiency is 0.75, find the torque transmitted by the

shaft, also the thrust on the bearings.

17. A feed pump delivers water into a boiler at the rate of 20 lbs. an

hour. If the pressure in the boiler is 150 lbs. per square inch above the

atmospheric pressure, find the effective horse power of the pump.

POTENTIAL ENERGY.

158. Configuration.— The arrangement of the parts of a

system is called the configuration of the system. The system

which consists of this book and the earth, for instance, is in

one configuration when the book is on the desk and in an-

other configuration when it is on the floor. During thel rans-

fer of the book from the floor to the desk the system passes,

continuously, through infinite number of configurations, be-

cause the book occupies infinite number of differenl positions

relative to the cart h.

159. Conservative Forces. --If the work done in bringing

a system from one configuration to another configuration is
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independent of the manner in which the change of configura-

tion takes place, the forces acting upon the system are said to

be conservative forces. Gravitational forces are examples of

conservative forces. This is evident from the result of § 129

where it was shown that the work done against gravitational

forces in taking a body from one point to another is inde-

pendent of the path along which the body is carried.

160. Dissipative Forces.— Forces which are not conserva-

tive are called dissipative or nonconservative forces. All fric-

tional and resisting forces are of this type.

161. Potential Energy.— The potential energy of a system

in any configuration equals the work done against the con-

servative forces which act upon the system, in bringing it

from a standard configuration to the configuration in ques-

tion. For instance, if the unstretched state of an elastic string

is taken to be its standard configuration, then the potential

energy of the string at any stretched state equals the work

done in producing the extension. The potential energy of

this book when on the table equals the work done in raising

it from the floor to the table, provided the book is considered

to be at the standard configuration when it is on the floor.

The selection of the standard configuration is quite arbi-

trary and i- a matter of convenience only.

It is evident from the definition of potential energy that

it- value is zero at the standard configuration.

Comparing the definitions of potential energy and of con-

servative forces we Bee that the potential energy at any given

configuration is independent of the manner in which the

system is brought from the standard configuration. This is

equivalent to stating that the potential energy of a system

depends upon its configuration. But coordinates define the

configuration of a system; therefore potential energy is a

function of the coordinates.

If the Bea level is taken as the standard configuration,

i.e.. tin- position of zero potential energy, then the potential
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energy of a body, due to gravitational forces, is a function

of the vertical height of the body above the sea level; in

fact it equals mgh, where mg is the weighl of the body and

A its height above the sea Level.

162. Difference of Potential Energy. — The difference be-

tween the potential energy of a system in two different con-

figurations equals the work done in taking the system from

the configuration of lower potential energy to that of higher

potential energy.

Let the point A, Fig. 102, represent the standard con-

figuration and the points B and C represent two other con-

,c

Fig. 102.

'A

figurations. Then if UB and Uc denote the potential energies

at B and C respectively, then by definition

UB=WAB,

Uc=WAC,

where IVAb and WAc are equal, respectively, to the work

done in going from A to B and from A to C. Therefore

Uc-Ub =Wac-Wab= Wbc,
(VIII)

where Wbc equals the work done in taking the Bystem from

B to C. Thus the work done against conservative forces

acting upon a system equals the increase in the potential

energy of the system.

163. Isolated System.—A system which is not acted upon

by external force- is called an isolated system. An isolated

system neither gives energy to external bodies nor receives

energy from them. This is an immediate resull of the defi-

nition of an isolated Bystem, because exchange of energj
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presupposes work by or against external forces, which in its

turn presupposes interaction with external bodies. But

since no external forces are supposed to act upon the system,

there cannot be interaction with external bodies or exchange

of energy.

164. The Principle of the Conservation of Energy. — One of

the greatest achievements of the nineteenth century was the

recognition and the experimental verification of the great

generalization known as the principle of the conservation of

< nergy, which states that the total amount of energy of an

isolated system is constant.

By means of the interaction of the different parts of an

isolated system the various forms of its energy may be

changed into other forms, and the distribution of the energy

within the system may be altered, but the total amount

of energy remains constant. In other words, energy may be

transformed or transferred but cannot be annihilated or created.

165. Dynamical Energy.— Kinetic and potential forms of

energy are called dynamical energy. The distinction be-

tween dynamical and nondynamical energy, such as heat

energy, chemical energy, etc., is a matter of convenience.

Beal energy may be treated as kinetic energy, but in order

to do that molecules and their individual motions have

to be taken into account. On the other hand chemical

energy may be treated as potential energy if molecular and

atomic forces can be taken into account. It is to avoid the

complications of the molecular structure of bodies that these

forms <>l energy are considered as nondynamical.

166. Conservation of Dynamical Energy. — When all the

forces acting within an isolated system are conservative

tin' interchange of energy is confined to the potential and
kinetic forms of the energy of t lie system. Therefore apply-

ing the general principle of the conservation of energy we
Bee thai in Buch a system the sum of the dynamical energy

remains constant, that is,

T+U= const. (IX)
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If T and U denote the initial values of T and U, thou the

last relation gives

T+U= To+l'o
and T-T =-(U -U ). (X)

Therefore if only conservative forces act between the various

parts of an isolated system, the sum of the potential and
kinetic energies of the system remains constant, in other

words, the gain in the kinetic energy equals the loss in the poten-

tial energy. Equation (X) will be called the energy equal ion.

167. Conservation of Dynamical Energy and the Law of Action

and Reaction. — The principle of the conservation of dynam-
ical energy may be obtained from the Law of Action and
Reaction. In order to prove this statement consider an
isolated conservative system. Suppose the configuration of

the system to have changed under the action of its inter-

nal forces. Let L' and U be the potential energies in the

initial and final configurations, respectively. Then the

change in the potential energy is

(U-U ).

During the change in the configuration of the system the

positions and the velocities of the particles, which form the

system, undergo changes. Therefore let s and s denote

the positions, and v and v the velocities of any particle in

the initial and final configurations of the system. Further

let F denote the resultant force which acts upon the particle.

Then the change in the potential energy of the system due

to the displacement of the particle from s to s is

- f'Fr ds*f
where FT is the tangential component of the force. The
normal component contributes nothing to the work. There-

* Potential energy is. by definition, the \\<>rk done by external forces against

internal forces. Therefore when the change in potential energy is obtained l>y

computing the work dune by internal forces 1 1 »
*

- result is the negative of Mir

change in the potential energy. Bence the negative sign.
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fore the total change in the potential energy of the system

equals the Bum of the work done, during the rearrangement,

on all the particles of the system; i.e.,

(U-U ) = -2 fFT ds,

where the summation covers all the particles of the system.

Therefore substituting the expression for Fr) which was

obtained by applying the law of action and reaction to the

motion of particles, we obtain

= — I! m I vdv

= — H {\mv~— ^mv 2
)

= -p(imt; 2)-2(imt>o 2

)]

= -(T-T ),

where 7', and T are, respectively, the values of the total

kinetic energy of the system in the initial and in the final

configurations. Rearranging the terms of the last equation

we gel

U+ T= r + T = const.

which is the principle of the conservation of dynamical

energy. Therefore the principle of the conservation of

dynamical energy and the law of force are not independent

of each other but form two different aspects of the same

universal principle.

[LLUSTRATIVE EXAMPLE.

Taking into account the variation of the gravitational attraction with

the distance <>f a body from the center of the earth, find the potential

energy <>f a body with reaped to the surface of the earth.

de the earth the weight of a body varies inversely as the square

distance from the center of the earth. Therefore denoting this

variable weighl by F we have

r-k.
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where k is a constant and r is the distance of the body from the centei of

the earth. But at the surface of the earth

the weight of the body is— mg, therefore F
= — mg when r = a, where a is the radius of

the earth. Therefore making these substitu-

tions in the last equation we obtain

k
mga2

.
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PROBLKMS.

1. A reservoir which is 50 feet long, 40 feet wide, and 10 feet deep is

full of water. Find the potential energy of the water relative to a plane

25 feet below the bottom of the reservoir.

2. A particle slides down a curve in a vertical plane and "loops the

Loop." Find the minimum height the starting point can have above the

center of the "loop." The radius of the "loop" is 15 feet.

3. Find the least velocity with which a bullet will have to be projected

from the earth so that it will never return again.

4. A uniform rod which is free to rotate about a horizontal axis is

held in a horizontal position. With what angular velocity will it pass the

vertical position if it is let go?

6. A cylinder of mass m and radius a is rotating about a horizontal

a\i>, making // turns per second. How high can it raise a mass m', which

is suspended from the cylinder by means of a string of negligible mass?

6. A particle, which is attached to a point by a string of negligible

ma--, has just enough energy to make complete revolutions in a vertical

circle. Find the velocity at the highest and at the lowest points.

7. In the preceding problem show that the tension of the string is zero

when the particle is at the highest point and six times the weight of the

particle when it is at the lowest point.

8. A particle starts from rest at the highest point of a smooth sphere

and slides down under its own weight. Where will it leave the sphere?

9. A particle which is suspended by means of a string is pulled to one

side until it makes an angle a with the vertical, and then it is let go. Find

the position at which the tension of the string equals the weight of the

particle.

10. In the preceding problem show that the total energy remains con-

Btanl during the motion of the particle. Also find the velocity at the

Lowest position when a = GO .

11. Supposing the tensile force necessary to stretch an clastic string

to be proportional to the increase in length, derive an expression for tho

potential energy of a stretched string.

12. Derive an expression for the potential energy of a watch spring.
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GENERAL PROBLEMS.

1. What should be the tractive force of a locomotive in order that it

may be able to give a train of L50 tons a velocity of 45 miles per hour within

one mile from the start? The resistance per ton is given in pounds by

the numerical relation R = 5 + 0.4 v'
2

, where v is the velocity in miles per

hour.

2. In the preceding problem find the limiting velocity.

3. The effective horse power of a vertical water wheel is 46 and its

efficiency is 70 per cent. If the head of water is 25 feet find the number

of gallons of water which have to be delivered to the wheel per minute.

4. A belt running at a speed of 1500 feet per minute transmits 25 horse

power. Assuming the tensile force on the tight side of the belt to be

twice that on the slack side, find both tensile forces.

5. In the preceding problem find the width of the belt if the safe

tensile force is 75 pounds per inch width of the belt.

6. Find the power which may be transmitted by a belt under the

following conditions:

The width of the belt is 10 inches.

The pulley which the belt drives is 4 feet in diameter and makes

125 revolutions per minute.

The arc of contact subtends an angle of 150° at the center.

The coefficient of friction is 0.4.

The tensile force of the belt is not to exceed 90 pounds per inch

of width.

7. In the preceding problem find the tensile force on the slack side

of the belt.

8. In problem 6 suppose the arc of contact to subtend 120° at the

center of the pulley.

9. In the preceding problem find the tensile force per inch width of

the belt on the slack side.

10. Find the power lost due to friction in the bearings of a flywheel

under the following conditions:

The journals are 6 inches in diameter and ID inches long.

The coefficient of friction is 0.004.

The flywheel weighs 15 tons and makes 200 revolutions per

minute.

The normal pressure on the bearings is constanl over the surface

of contact.

11. In the preceding problem suppose the vertical component of the

total reaction to be constant.
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12. Find the power lost due to friction in the bearings" of a water

turbine under the following conditions:

The rotating system, which weighs 50 tons, is supported by a

llat-eud pivot bearing 10 inches in diameter.

The coefficient of friction is 0.01.

The turbine makes 250 revolutions per minute.

13. In the preceding problem suppose the shaft which carries the

rotating system to be hollow, with an inner diameter of 6 inches and outer

diameter of 12 inches.

14. In problem 12 suppose the bearing to be a hemispherical pivot

with constant normal pressure.

16. In the preceding problem suppose the vertical component of the

normal pressure to be constant.



CHAPTER X.

FIELDS OF FORCE AND NEWTONIAN POTENTIAL.

168. Fields of Force.— If a particle experiences a force

when placed at any point of a region the region is called afield

<>/ force The gravitational field of the earth,, the electrical

field of a charged body, and the magnetic field of a magnet
are examples of fields of force.

169. Potential Energy and Fields of Force.— The potential

energy of a system is due to the overlapping of the fields

of force of its parts. For instance, the earth and the moon
are not connected by anything material, yet they form a
system which has potential energy, because they are in each

other's gravitational field of force. The fact that a stretched

elastic string has potential energy seems to contradict this

statement, but this contradiction is only apparent. The
potential energy of the stretched string is also due to the

overlapping of the fields of force of its parts. In this case,

however, molecules form the parts of the system.

170. The Principle of the Degradation of Potential Energy.

— Consider a body which is displaced under the action of the

forces of a field of force. A certain amount of work is done

during the displacement. If the body is not acted upon by

forces which are external to the field, then by the principle

of the conservation of energy, the energy of the body remains

constant during the displacement. Therefore the amount

lost by one form of the energy of the body is gained by the

other. The work done is the measure of the amount of the

energy transformed.

The principle of the conserval ion of energy docs nut throw

any light on the question, "Which form of energy is the
203
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loser and which the gainer?" It merely states that the loss

equals the gain. In order to know the direction of the trans-

formation we have to appeal to another principle; i.e., the

principle of the degradation of potential energy, which states :

A body which is free to move in afield of force moves in such

a may as to diminish its potential energy *

This principle is nothing more or less than a simple state-

ment of human experience with things that "run down."

The principle states that water flows down hill under the

action of gravitational forces, that a clock runs down, etc.

171. Force Experienced by a Particle in a Field of Force. —
Consider a particle in a field of force. When the particle

is displaced through a distance ds, under the action of the

forces of the field, a certain amount of work is done which

equals Fds, where F is the resultant force due to the field.

Therefore, by the principle of the degradation of energy, the

potential energy of the particle is diminished by an amount

equal to Fds.

Let the rate of increase of U along the direction of the

displacement be denoted by — , then- — ds is the diminu-

tion in the potential energy. Therefore, equating the work

jjoneby the forces of the field to the diminution of the poten-

tial energy of the particle, we get

Fds= — — ds,
ds

F=-^-t (I)

dS

• Thia principle may be called the dynamical version of the second law

of thermodynamics.

I- bould l»- remembered thai the forces which enter into the equations

| odF - . are equal but oppositely directed. In the second

equation /•' represents the resultanl force which a particle experiences by virtue

potential energy. < >n the other hand Pin the definition of potential

lenotee the external force which has to be applied to the particle in



FIELDS OF FORCE AND NEWTONIAN POTENTIAL 205

Splitting equation (I) into three component equations we
have

dx

dz

(I')

Equations (I) and (F) state that 2/ie force along a given direc-

tion which a particle experiences by virtue of its potential energy

equals the rate of diminution of the potential energy along the

given direction.

172. Torque Experienced by a Rigid Body in a Field of Force.

— Suppose the rigid body to be displaced under the action of

the forces of the field through an angle dd. Then an amount
of work G dd is done, where G is the torque which the body
experiences in the field. By the principles of the conserva-

tion and degradation of dynamical energy this work must

come from the potential energy of the body in the field.

Therefore denoting the rate of increase in the potential energy

of the body, due to a rotation about a given axis, by -— we
dd

have

O-f. (ID

Equation (II) states that the torque which a rigid body exjn ri-

ences by virtue of its potential energy equals the rate of diminu-

tion of this energy as the body (urns about the axis of the

torque.

on lor to overcome the forces winch the particle experiences because of its po-

sition in a field of fonc, and thereby to bring the particle from the standard

configuration to the one in which it has potential energy U.
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ILLUSTRATIVE EXAMPLES.

1. Find the font- which :i particle placed upon a smooth inclined plane

experiences by virtue of its potential energy. Also find the components

of the force along I lie axes of :i rectangu-

lar Bystem, in which the r-axis is normal

to the inclined plane and the .c-axis is

horizontal.

Let the origin of the axes, Fig. 104, be

the position of the particle. Then if h

denotes ita heighl from the base of the

inclined plane the potential energy is mgh.

Therefore the force along the vertical is

given by

dV
dh dh

(mgh) mg.
Fig. 104.

Thus the force due to the gravitational field is downwards and equals the

weight of the particle. The components of the force are found by equa-

tion <F). Thus

x = _ ^ mg 0.

Therefore the force along the .c-axis is nil.

dhdU
mg

dy
mg bw a.

Therefore the component of the force along the plane is downwards and

equals »'</ sin a.

„ dV dhZ = - — =-mg—
dz dz

mg cos a.

Therefore the component along the :-axis tends to move the particle nor-

mally into the plane and has a magnitude equal to mg cos a. The com-
ponents along the .r-axis and the c-axis produce no motion because X
equals zero and Z is exactly balanced by the reaction of the plane. The
foregoing results may be verified by finding the components of mg by the

common method, i.e., by taking projections of mg along the axes.

2. A rigid body which is free to rotate about a horizontal axis is dis-

through an angle 0. Find the torque due to the gravitational

held of the earth.
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Let .1, Fig. 10"), be the body, the point where the axis pierces the

plane of the paper, (
' the center of mass, and D its distance from the axis.

Then at the displaced position the potential

energy is

Therefore the

hotly is

U = mgh

= mgD (1 — cos0).

torque experienced by the

Fig. 105.

— —mgDmi 6.

This result may be easily verified by consid-

ering the moments of the forces which act

upon the body. The forces which act upon the body are the reaction of

the axis and the weight of the body. The moment of the reaction is

nil; therefore the resultant moment is entirely due to the weight and

equals

G= — mg-d = — mgDs'md,

which is the result obtained by the other method. The negative sign i?

introduced to indicate the fact that the rotation is clockwise.

173. New Condition of Equilibrium.— Equations (I), (I'),

and (II) provide us with a new condition for the equilibrium

of conservative systems. It was shown in Chapters II and

III that a system is in equilibrium when the resultant force

and the resultant torque vanish.

Therefore setting F and G equal to zero in equations

(I) and (II) we obtain

dU
ds

dU
dd

where the differentiation in the first equation is with respect

to any direction and that in the second with respect to an

angle about any axis. Hut when equations (III) are satis-

fied, U has a stationary value, that is, the value of £/is either

a minimum, or a maximum, or a constant. Therefore the

i).

= 0,

(III)
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new condition states — in order that a conservative system be in

equilibrium its potential energy must have a stationary value.

174. Analytical Criterion of Stability.— The equilibrium of a

body is said to be stable if it is not upset when the body is

given a small displacement.

Potential energy is a function of coordinates, therefore

we <aii denote the potential energy of a particle at the

point (rri, yh Zi) by the functional relation

Ui = U(xu yi,Zi).

Let us suppose the point (xh yh Zi) to be a position of equi-

librium of the particle, and investigate the stability of the

equilibrium. If the particle is given a displacement 8x, the

potential energy in the new position becomes

U2 = U(x 1 +8x,yh z 1).

Expanding U2 by Maclaurin's theorem in powers of 8x we
obtain

a-HSt"'©^
where the subscripts after the parentheses denote that after

the indicated differentiations are carried out the coordinates

x, y, and z must be replaced by x\, yi, and Z\, which are the

coordinates of the equilibrium position.

But since the particle is in equilibrium at the point

dXh(

Since o.r, the displacement, is small we can neglect all the

terms of the right-hand member of the last equation except

the first. This gives
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Case I.— Suppose (
—

-) to be positive. Then U%— Uy is

\oX l\

positive and consequently Ux is a minimum. But according

to the principle of the degradation of energy a body, which is

free, moves in such a way as to diminish its potential energy.

Therefore when the force which produced the displacement 5.r

is removed the particle returns to the point (xu yu Zi), where

its potential energy is a minimum. Evidently the equilib-

rium is stable in this case.

Case II. — Suppose (
—

-) to be negative. Then U2-U1

is negative and consequently L\ is a maximum. Therefore

if the particle is given a small displacement 8x and then left

to itself, it will move away from the point (x\, yi, Zi), where

its potential energy is a maximum. In this case the equi-

librium is unstable.

Case HI. — Suppose f —^J to be zero. There are throe

special cases to be considered:

(a) The order of the first differential coefficient which

does not vanish is odd.

(b) The order of the first differential coefficient which

does not vanish is even.

(c) All of the differential coefficients vanish.

It is evident that when (c) is true the potential energy of

the particle has a constant value and does not change with

the position of the particle. Therefore when the particle

is left to itself after giving it a small displacement it will

neither return to its original position nor go on changing

its position. The potential energy is the same and the

particle is in equilibrium at all points. In this case the

equilibrium is said to be neutral or indifferent.

It may be shown that when (a) holds the equilibrium is

stable. On the other hand when (b) is true the equilibrium

is stable or unstable according as the first differentia] coeffi-

cient which does not vanish is positive or negative.
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The three types of equilibrium are illustrated by the three

equilibrium positions, Fig. 100, which a right cone can as-

sume on a horizontal plane.

Fig. 106.

NEWTONIAN POTENTIAL.

175. Newtonian Law of Force.— The law of force between

1 wo interact ing particles is called a Newtonian law of force if

the particles attract or repel each other with a force which

acts along the line of centers of the particles, and which

varies directly as the product of the masses of the particles

and inversely as the square of the distance between them.

The forces between two material particles, between two
small electrical charges, and between two small magnetic

poles obey the Newtonian law of force. The following are

the familiar forms in which the law is written for material,

electrical, and magnetic particles, respectively,

F = F= - F= - unit
(IV)

where -,
. k, and n are constants. When the interacting par-

ticles are in free space the numerical value of the constants

I: and n is unity, while

7=6.7X10-3
Cm '

3

2
-

gm. sec. 2

176. Newtonian Field of Force.— When the forces which
act in a region obey the Newtonian law of force the region

is called a X< wtonian field of force.
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177. Newtonian Potential.— The potential energy of a unit

mass placed at a point of a Newtonian field is called the

potential at that point. The standard configuration or the

position of zero potential is taken to be infinitely far from

the center of the field. But the potential energy of a body
equals the work done in bringing the body from the position

of zero potential energy, therefore the following definition is

equivalent to the one just given.

The potential at a point equals the work done in bringing a

unit mass from an infinite distance to that point.

178. Potential Due to a Single Particle.— Let m be the mass
of the particle, U the potential energy of a particle of mass
?n' placed in the field of force of the first particle, r the dis-

tance between the two particles, and V the potential at the

position of m' due to m. Then by the definitions of V and U

m

= h f
r

(-F)dr

where F is the force experienced by m' due to the field of m

(V)

D 4. V mm
But F = -7 —

—

r-

Therefore V= ym I —
t/oo T

— T= . (VI)

The negative sign indicate- the facl that when a particle is

brought to the field of another attracting particle work will

be done by the particle and not by the agent which brings

it. Therefore the potential due to a material particle, as

we have denned it, is everywhere negative, excepl at infinity

where it is zero. In ease of electrical and magnetic masses

potential is defined as the work dime in bringing a unit posi-

tive charge, or unit positive pole, from infinity. Therefon
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the potentials due to a negative charge and a negative pole are

negative, while the potentials due to a positive charge and a

positive pole arc positive.

179. Potential Due to Any Distribution of Mass. — When the

field of force or the potential field is due to a number of par-

ticles (material, electrical, or magnetic), the potential at a

point equals the algebraic sum of the potentials due to the

various particles. Thus if m x , m2 , m 3 , etc., be the masses of

the particles and r ly r2 , n, etc., their distances from the point

considered, then the potential at the point is

V n r2

„ni
(VII)

When the field is due to a continuous distribution of mass

the last equation may be put in the form of an integral.

Thus
dmrm dm

i/ T
(VII')

180. Intensity of the Field.— The intensity at any point of

a potential field, or a field of force, is defined as the force

t.r/K /•/'( need by a unit mass when placed at that point.

Let H denote the intensity at a point. Then, if F is the

force experienced by a mass m' when placed at that point,

we have, by definition,

W = —,i (VIII)
m

and // = —

,

in

= --,(-)
III \dS )

8»ta7
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Similarly

and

=
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(a) Point Outside the Sphere.— In this case R>a. Therefore the

expression for the potential may be put in the form

v= _yrjJIa [{a + R) _ iR _ a)]

T-iira 2

m

Therefore outside the shell the potential is the same as if the mass of the

shell wnr concentrated at its center.

(b) Po» i Within the Sphere. — In this case R < a. Therefore

v _ yT 2 ira
,

R
t 4 7ra2

[(a + R)-(a- R)\

-y

H = -

Therefore within the shell the potential is constant and equals that at the

surface.

If // denotes the intensity of the field due to the shell, then

dv
dR

= — 7 -=r-
2
when R >a.

= when R < a.

Therefore the shell attracts

8 particle which is outside

with the same foTCi

all of its mass were concen-

trated at its center. I m the

other hand the shell exerts

on b particle which

is within the shell. The dis-

tribution of V and // in the

field are represented graph-

ically in Fig. Kis, where

the po-

ind
|
II ) the intensity.

2. I m.
I the expressions for the potential and the intensity due to a

i
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There are two cases which have to be considered separately.

(a) Point Outside the Sphere. — Consider the sphere to be made
of concentric shells of thickness dp. Then, since the point is outside every

one of these shells the potential due to any one of the shells is, according

to the results of the last problem,

... dm
d\ = — y—=ri

where dm is the mass of the shell and R the distance of the point from the

center. Hence the potential due to all the shells in the sphere is

dmr- am

= - y
R'

where m is the mass of the sphere. Therefore the potential at a point

outside of a sphere is the same as that due to a particle of equal mass

placed at the center.

(b) Point Within the Sphere. — In this case we divide the sphere

into two parts by means of a concentric spherical surface which passes

through the point. Then the potential due to that part of the sphere

which is within the spherical surface is obtained by the result of case (a).

Thus if nh denotes the mass of this part of the sphere and V\ its potential,

then

In order to find the potential due to the rest of the sphere suppose it

to be divided into a greal number of concentric spherical shells. Then
since every one of the shells contains the point the potential due to any

one of them is

dVi = — y— = — 4 ivyrp dp,

P

where dm is the mass, p the radius, and dp the thickness of the shell.

Therefore the potential due to all the shells having radii between R and a is

Vt = — -iwyr
\

pdp

= — 2-rryT
(fl R :

.



21G ANALYTICAL MECHANICS

Therefore the potential due to the entire Bphere is

V = Vi+ V,

= — ym 3 <r- - R-

2 a 3

When R is plotted as abscissa and

V as ordinate the distribution of

the potential is given by a curve

similar to (I) of Fig. L09.

Now consider the intensity at a

point in the field of the sphere.

(a) Point Outside the Sphere.

H =- dV
dR

Fig. 109.

Therefore the distribution of the field intensity outside of the sphere is

tin- -ame as that due to a particle placed at the center.

(hi Point Within the Sphere.

dY
dR

H =-r=

= -y-R-
<r

Therefore aithin the Bphere the distribution of the field intensity obeys the

harmonic law; i.e., the intensity varies directly as the distance from the

center. In Fig. It)'.), curve (11) gives the distribution of the intensity of

the field.

PROBLEMS.

1. Find the potential and the Held intensity due to a hollow sphere

at a point (I i outside, (2) within the hollow part, and (3) in the solid

pari of the Bphere.

2. Find the potential and the field intensity due to a circular disk of

negligible thickness .-it a point on its axis.

3. Find the potential and the field intensity due to a straight wire of

length / and mass m at a point on the axis of the wire. The cross-section

negligible.
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4. Find the potential and the field intensity due to a straighl circu-

lar rod at a point on its axis.

5. Show that problems 2 and 3 arc special cases of problem 4.

6. Find the magnetic potential and the field intensity due to a, cylin-

drical magnet at a point on its axis; suppose the magnetism to be dis-

tributed at the ends only.

7. Find the potential and the field intensity clue to two spherical

charges at a point equidistant from centers of the two charges.

8. Find the potential and the field intensity due to a right cone al a

point on its axis.

9. A uniform solid sphere is cut in two by a diametral plane. Show
3 tn

that the gravitational force between the two parts will be — y —-, where
16 a 2

m is the mass of the sphere, a the radius, and y the gravitational constant.

10. Show that if any two points on the surface of the earth were joined

by a straight and smooth tunnel a particle would traverse it in about 42.5

minutes.

11. Two spheres of masses m and m' attract each other with a force.

F = y—— , where y is a constant and r is the distance between the centers.

Taking the configuration when the spheres are in contact to be that of

zero potential energy, find their potential energy when the centers are

separated by a distance D. The radii of the spheres are a and b.

12. In the preceding problem suppose the spheres to repel each other

with the same law of force and take the configuration when the spheres

are separated by an infinite distance to be that of zero potential energy.

13. Find the potential due to a small magnet at a point whose distance

is large compared with the length of the magnet.

14. In the preceding problem find the components of the intensity of

the field along and at right angles to the line joining the point to the

magnet. Also find the total intensity and its direction.



CHAPTER XL

UNIPLANAR MOTION OF A RIGID BODY.

181. Angular Kinetic Reaction. — It will be remembered

thai in considering the equilibrium of rigid bodies the Law

of Action and Reaction was divided into the following two

sections:

To every linear action there is an equal and opposite

linear reaction, or, the sum of all the linear actions to

which a body or a part of a body is subject at any instant

vanishes. . .

SA, = 0. (A,)

To every angular action there is an equal and opposite

angular reaction, or, the sum of all the angular actions to

which a body or a part of a body is subject at any instant

vanishes.
^Au = 0. (AJ

In Chapter VI the first section of the law was applied

to particles in motion; but in order to do this the meaning

of the terms "linear action" and "linear reaction" was

enlarged bo as bo include linear kinetic reactions as well as

forces. In the present chapter the second section of the

law will be applied to the motion of rigid bodies; but before

doing this we must introduce another form of kinetic re-

action, which we will call angular kinetic reaction. If we
replace in the Becond section of the law the terms "angu-

lar action" and "angular reaction" by the terms "torque"

and "angular kinetic reaction," we obtain the following

form which is directly applicable to problems of rotation:

The sum of all the torques acting upon a rigid body
plus the angular kinetic reaction equals zero, or the

218
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resultant torque equals and is oppositely directed to the

angular kinetic reaction.

Resultant torque= —(angular kinetic reaction). (I)

In order to understand the nature of the angular kinetic

reaction consider the following experiment: If we try to

rotate a flywheel, which is free to move about a horizontal

axis, by pulling at one end of

a string which is wound around

the axle, Fig. 110, we find that

the greater the angular veloc-.

ity which we want to impart

in a given interval of time

the harder we must pull at

the string. But since the pull

of the string and the reaction of the bearings form a couple

and since the increase in the angular velocity per unit time

means angular acceleration, we conclude that a torque must

be applied to the flywheel in order to impart to it an angular

acceleration, and that the greater the acceleration desired

the greater must the torque be. Evidently the torque

which we apply to the flywheel expends itself in overcoming

certain reactions. The resisting torque due to the friction

between the axle and its bearings and between the surface

of the flywheel and the surrounding air must be overcome.

But if we gradually diminish this resisting torque by reducing

the friction we observe that the torque which must be applied,

in order to give the flywheel a certain angular acceleration,

tends towards a constant value different from zero. In

other words even if all the resisting torques due to friction

were eliminated we would have to apply a torque of definite

magnitude in order to give the flywheel a desired angular

acceleration; that is, tin- flywheel resists torques which im-

part to it an angular acceleration. This resistance to angular

acceleration is the angular kinetic reaction.
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182. Experimental Definition of Moment of Inertia.— If in

the experiment of the preceding section all frictional forces

and torques are eliminated and then torques of different

magnitude- are applied to the flywheel, it will be found that

t Ik- t < >rques are proportional to the angular accelerations pro-

duced; that is, if <;u G2 , etc., denote the torques obtained

by multiplying the pull of the string by the radius of the axle

and yi, yt} etc., the corresponding angular acceleration, then

we shall find that the following relations hold:

^ = ^ = ^=...=7, (II)
71 72 73

where / is a constant which depends only upon the rotating

Bystem. In fact, as will be shown in § 186, it is nothing

more or less than the moment of inertia of the rotating

system. We have, therefore, the following definition for

the moment of inertia of a body, in addition to the analytical

definition given in Chapter VII:

The moment of inertia of a body about a given axis is a con-

st <ml of the body, relative to the given axis, which equals the

quotient of the torque applied by the angular acceleration ob-

tained; both being referred to the given axis*

183. Measure of Angular Kinetic Reaction. — It is evident

from equation (II) that Gh (?•>, etc., which measure the angu-

lar kinetic reactions of the flywheel for the accelerations 71,

v.. He, are proportional to these accelerations. Therefore

the angular kinetic reaction of a body varies directly with

the angular acceleration imparted. If, on the other hand, a

number of bodies of different moments of inertia are given

tin' Bame angular acceleration, it is found that the kinetic re-

art ion- are proportional to the moments of inertia; that is,

— = — =•••= 7, (HI)
l\ 1 2

the striking similarity between this definition of moment of inertia

i' definition of mass given in §94.
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where y is the common angular acceleration. Therefore the

angular kinetic reaction varies directly as the product of the

moment of inertia by the angular acceleration,

angular kinetic reaction = kly,

where k is the constant of proportionality. When all the

magnitudes involved in the last equation are measured in

the same system of units k becomes unity.

Introducing this simplification in the last equation and
putting it into vector notation we have

angular kinetic reaction = — ZY. (IV)

The negative sign indicates the fact that the direction of

the angular kinetic reaction is opposed to that of the angular

acceleration.

184. Torque Equation.— Combining equations (I) and (IV)

and denoting the resultant torque by G we obtain

G =
?'} (V)

The last equation, which will be called the torque equation,

states that the resultant torque about any axis equals the

product of the moment of inertia by the angular accelera-

tion and has the same direction as the angular acceleration.

185. The Two Definitions of Moment of Inertia. — In order

to show that the constant, I, of equation (II) and the

moment of inertia defined by equation (II) of page 152

are the same magnitude, consider the motion of the rigid

body A, Fig. Ill, about a fixed axis through the point 0,

perpendicular to the plane of the paper. Let dF be the

resultant force acting upon an element of mass dm, that

is, the vector sum of the forces due to externa] fields of

force and the forces due to the connection of dm with the

rest of the body. Then

at

is the force equation for the element of mass.
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The linear acceleration varies from point to point, but

the angular acceleration is the same for all the elements.

Therefore the discussion of the

problem becomes simpler if we

replace the linear acceleration by

the angular acceleration. This

may be done by taking the mo-
ments of the forces about the

axis. Since dm can move only

in a direction perpendicular to

the line r, the resultant force d?

must be perpendicular to r. Therefore the magnitude of

the moment dG, due to dF, is

dG=rdF
dv

Fig. 111.

= rdm
dt

= r 2 dm
dt

(v = rco).

Therefore the resultant torque acting upon the body, or the

Bum of the moments due to the forces acting upon all the

particles of the body, is

= co I r 2 dm.

Bui by equation (V) G = Iw. Therefore

/= / r2 dm, '

which i- the definition of the moment of inertia given in

Chapter VII.

186. Comparison. — There is a perfect analogy between

D of pure translation and motion of pure rotation.

This is clearly brought out in the following lists of the

magnitudes involved in the two types of motion:
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Magnitudes involved in motion of translation.
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ILLUSTRATIVE EXAMPLES

ON THE MOTION OF A RIGID BODY ABOUT A FIXED AXIS.

Discuss the motion of a rigid body, which is free to rotate about a fixed

axis, under the action of a constant torque.

Suppose the body to be the flywheel of Fig. 110. Let the constant

torque be supplied by a constant force F applied at the free end of the

string which is wound around the axle. The tensile force of the string

and the reaction of the bearings form a couple, the torque of which equals

the moment of the force F about the axis of rotation. Therefore

G = Fa,

where a is the radius of the axle. Substituting this value of G in the torque

equation we obtain

7 "77 = Fa
>

(It

r/co Fa
or — = — = 7 = const.

[ntegrating the last equation we get

co = yt + c.

Let co = co when t = 0, then c = co . Therefore

CO = C0 + (lit, (1)

(Id
or — = co + oot.

at

[ntegrating again
8 = oo t + J cot

2 + c'.

Let 6 = when t = 0, then c' = 0. Therefore

e = u t + i co/-. (2)

Eliminating / between equations (1) and (2)

co'; = co o
2 + 2 70.* (3)

I \i i;..y Method. — The increase in the kinetic energy due to the

action of F is

T -T = ] /or - J /coo
2

.

The diminution in the potential energy of the system which supplies the

F equals the work done by F. Therefore

-(U- U ) = Fs,

Compare equations (1), (2), and (3) with the corresponding equations

of p. 113.
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where s is the length of the string which is unwound. Substituting these

in the energy equation we obtain

$ Zco 2 — 5 7co 2 = Fs.

op
.*. or = co

2 + ^y- s

= w 2 + 2 70, (s = ad)

which is the equation (3) obtained by the torque method. Differentiating

the last equation we have

2co^ = 2 7co

at

dco

dt
and 7,

which is the equation obtained by the torque method; therefore the rest

of the problem is identical with that given by the torque method.

2. A flywheel rotates about a horizon-

tal axis under the action of a falling body,

which is suspended by means of a string

wound around the axle of the flywheel.

Discuss the motion, neglecting the mass of

the string.

Let / = the moment of inertia of the

rotating system.

m = the mass of the falling body.

a = the radius of the axle.

T = the tensile force of the string.

Torque Method. — Taking the

moments about the axis of rotation

we have q _ m_

for the resultant torque. There-

fore
la = Ta

is the torque equation. But con-

sidering the forces acting upon the

falling body we gel

mi' — mg — T.

Hence
16) = Ta

= (mg — mv) a

= m (g — acb) a.

Energy Method.—Suppose the

flywheel to start from rest, and let h

denote the distance covered by the

body during its fall. Then the

energy equation gives

J /or + \ mv'1 = mgli.

Differentiating with respect to t,

Juiio -\- mm = mgh.

Hut V = au and li = i\ therefore

/cow -+- /wi'-coco = mgdST,

or Ico = m ((/
— au
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Thus we have from either method

/ + ma*

I + ma 2
"'

It is evident from the last two equations that both the linear and the

angular accelerations are constant. Therefore the equations of motion

are

/ + ma
1 ma 2

2 1 + ma

gt,

,gt 2
,

i'
2 = 2

/ + ma 2

1 ma

I + ma1
'

Discussion. — When / <C ma, then

v = g, and the motion of the sus-

pended body is about the same as

thai of a freely falling body. When
I ^> ma then v = 0. Therefore the

velocity of the falling body changes

very Blowly.

3. A uniform rectangular trapdoor,

which is held in a vertical position, is

allowed to fall. Supposing the hinges

In be smooth and horizontal, find the

expre—iun for the angular velocity a1

any instant of the motion.

Toeqi i. Method.— The torque

on the door is due to the action of

it- weight and the reaction of the

Therefore

2/ + mw

2
ma

,

I + ma 2 '

gt\

Fig. 113.

' sin

Putting this value of G in the

torque equation we gel

Zw.^sin*.
-

Energy Method. — In turning

through an angle 6 the door acquires

a kinetic energy of '. Ztt s and loses

from its potential energy an amount

equal tomgh. Therefore the energy

(•(liiation gives

Iuy = mgh >»g o (1 cos 6).

I differentiating

the time

lit

with respect to
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•'• w = iff sin R
,

dft

Multiplying both sides of the last equation by 2 — dt, and integrating we

obtain

3.9

(f)"
cos + c.

But^ = when = 0, therefore c = ^. Hence
dt a

W 2 = 3-2(1 -cos0).
a

Discussion. — It will be observed that this result is already given by

the energy equation.

When 6= -, co
2 =— , therefore the door strikes the floor with an

2 a

angular velocity of i /zJL . Thus the greater a the less the angular velocity

V a

with which the door strikes the floor. On the other hand the linear

velocity with which the end of the door strikes the floor increases with

a, since

v2 = Sag (1 — cos0)

= 3 ag, when 6 = - •

PROBLEMS.

1. Discuss the motion of the falling bodies in Atwood's machine,

supposing the pulley to rotate without slipping.

2. In the problem discussed in the first illustrated example take into

account the resistance of the air, supposing the resistance to be propor-

tional to the angular velocity of the wheel.

3. A flywheel which is making loo revolutions per minute and which is

subject to a constant torque of 50 pounds-fool comes to resl after making

1500 revolutions. Find the moment of inertia of the wheel, the angular

acceleration and the time taken incoming to rest. The angular accelera-

tion is supposed to be constant.

4. A flywheel which is subjeel to a constant torque of 5000 dynes-

centimeter stai-ts from resl and makes 2000 revolutions in 1 minutes.

Find the angular acceleration and the moment of inertia.
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5. In the Becond illustrative problem suppose there is a resistance to

the motion of the falling body proportional to its velocity.

6. A flywheel making 400 revolutions per minute is brought to rest in

3 minutes by means of friction brakes applied to it. Find the angular

inertia of the wheel and axle if the total brake-shoe force applied is 500

pounds and the diameter of the flywheel is 10 feet.

7. Int he preceding problem find the total number of revolutions made
after the brakes were applied.

8. A flywheel is brought to rest by means of brakes applied at the

axle. If the combined angular inertia of the flywheel and the axle is

50,000 gm. cm. 2 and the diameter of the axle 20 cm., find the force which

must bo applied on the brakes in order to bring the flywheel to rest within

5 minutes, the initial angular velocity being 30 radians per sec.

9. A flywheel is stopped by fluid friction. The resisting torque due to

the friction is proportional to the angular velocity. Discuss the motion.

10. The flywheel of a gyroscope is rotated by applying a force to a

string wound around the axle. Discuss the motion, supposing the tension

of the string to be proportional to the length of the string unwound.

MOTION OF A RIGID BODY ABOUT INSTANTANEOUS AXES.

188. Uniplanar Motion. — It was shown on p. 31 that uni-

planar motion may be considered as a motion of pure rotation

at each instant of the motion. Since the torque and energy

equations hold good at each instant of the motion they can

be applied to a rigid body in

uniplanar motion as if the in- 0* s

Mantaneous axis were fixed at

the instant considered. There-

fore uniplanar motion may be

discussed in the same way as

iimt ion about a fixed axis.

189. Instantaneous Axis. — If

at any instant tbe velocities of

two points of a rigid body are

known the position of the in-

Btantaneous axis may be found in the following manner:
Lei /' and Q, Fig. Ill, be two points which lie in a plane
parallel to the guide plane, and the velocities of which are
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not parallel; further let vP and wQ be the velocities. Draw
the line PO perpendicular to vP in a plane parallel to the

guide plane; also draw QO perpendicular to vQ in the same
plane. Then the instantaneous axis passes through 0, the

point of intersection, and is perpendicular to the plane POQ.

ILLUSTRATIVE EXAMPLES.
1. Discuss the motion of a uniform circular cylinder which rolls down

a rough inclined plane without slipping.

Fig. 115.

Let m = the mass of the cylinder.

I = the moment of inertia of the cylinder about the element of

contact.

a = the radius of the cylinder.

v = the velocity of the axis of the cylinder,

w = the angular velocity of the cylinder.

Torque Method.— The torque

is due to the weight of the cylinder

and the reaction of the plane. It

equals the moment of the weight

about the element of contact.

Therefore

G = mga sin a.

Substituting this value of G in the

torque equation we have

ICo = mga sin a.

Energy Method. — In moving

through a v distance s aloii.ti the

plane the potential energy of the

cylinder is diminished by an amount

equal to

mgh = mgs sin <>.

Therefore the energy equation gives

\Io) 2 - \ Iu)
2 = »i0ssin^

Differentiating with respect to the

time ^ |
: ',

Iuioj = mgs sin a.

:. J(jj = mga sin a.
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Therefore

and

w = —- g sin a,
6a

Thus both the linear and the angular accelerations of the cylinder are

constant. Therefore the equations of the motion are the following:

v = Vo + ^gtana,

s = v t + - gt 2 sin a,
o

4
''
2 = <'<r + ^ gs sin a.

o

co = co + tt~ g sin a,
Sa

6 = co t + — gt 2 sin a,

4
co

2 = oj
2 +— gQ sin a.

3a

2. A wheel moves down an inclined groove with its axle rolling along

the groove without slipping. Discuss the motion.

Let a = the radius of the axle.

b = the radius of the wheel.

m'— the mass of that part of the

axle which projects out from

the wheel.

m = the mass of the rest of the

moving system.

.1/ = m + ///'.

Fig. 116.
Suppose the wheel to be a solid disk

with a thickness equal to half the total

length of the axle. Then if both the wheel and the axle are of the same

material the relation
lr

holds. Therefore

M and
a 2 + 6

Tobqub Method.— Considering

the momenta about the element of

contacl we obtain the following for

the torque equation:

Iu> = Mga sin a,

(I c+Mn''> u Mga sin a,

(Ie + Ma 7
) v = Mga* sin a,

' ': QOtl 3 thfi moment of in-

"f the moving system about

M.
a2 + 6"

Energy Method. — Supposing

the wheel to start from rest we ob-

tain

'. Mv* -f I 7c oj
2 = Mgs sin a,

i I Mr- + I c
— I = Mgs sin a,

\ (Ic + Ma 2
) v2 = Mga2

s sin a,

(Ic + Ma 2
) w = Mga 2s sin a,

(Ie + Ma 2
) i) = Mga 2 sin a.
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Ma*

Ma .

•'• (a = l^Ma->
gSma -

Thus both the linear acceleration and the angular acceleration are

constant. Therefore the equations of motion may be obtained as in the

preceding problem.

Discussion.

/« =
!

. mb 2

'"•"
2

a* + b*

2 (a 2 + b 2
)

Substituting this value of Ic in the expression for v we get

. 2 a 2 (a 2 + b 2
)

,
g sin a.

2a4 + (a 2 + 6 2
)

s

Case I.— Let b = a, then v = \ g sin a, which is the acceleration of

a cylinder rolling clown an inclined plane.

2
Case II.— Let6 then

Caselll.— Letfr^>«, then

g sin a, as in case I.

' sin a. Thus by reducing the

radius of the axle we can reduce the acceleration, theoretically at least, as

much as we please. The reason for this fact becomes clear when we con-

sider the relative proportions of

the potential energy which are

transformed into kinetic energy

of translation and kinetic energy

of rotation.

3. In Fig. 117 the larger cir-

cle represents a cylinder of mass

M which rolls along a rough hori-

zontal table, under the action

of a falling body of mass m. The

right-hand end of the ribbon,

which connects the falling body

with the cylinder, is wound

around the latter so that it is

unwound as the motion goes

on. The pulley over which the

ribbon slides is smooth. Discuss the motion, supposing the mass and

the thickness of the ribbon to be negligible.
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Torqik METHOD. —The cylinder is acted upon by four forces— its

weight .Ug, the aorrnal reaction N, the frictional reaction F, and the

tensile force of the string T. Taking the moments about the element of

contact we obtain
G =T.2a,

where n is the radius of the cylinder. The other forces do not have

mom< nts about the element of contact. But considering the motion of

the falling body we find that

mv = mg — T,

where b is the acceleration of the falling body. Therefore

G = m (g — b) • 2 o.

Substituting this value of G in the torque equation,

7o> = 2 aw (a — b),

where I is the moment of inertia of the cylinder about the element of con-

tact, and u the angular acceleration. But since the highest element of

the cylinder has the same linear velocity as the ribbon and the falling body,

we have _» ou = v, and consequently cb = ~ . Making this substitution

in the torque equation

â
= 2am(g-v),

4 a^rn

7 + 4 a*m

m
(I = I Ma-.)m+lM "

].m.i;<;y Method. —Supposing the initial velocities to be zero and

equating the gain in the kinetic energy of the system to the loss in

potential energy we have

J r« 2 + irrw! = mgh,

where h i< the distance Mien through 1
1
y the body. Differentiating the

lasl equation with respect to the time,

/cow + mob = mgh.

But A — V. w «= --—
, andeb = ^—. Making these changes and solving for

l a 2 a

b we obtain

• •_ _1^L_ • _ 2fl»t

"i + iahn 9 " I + la-m
0,

m m
m+W 'la\m+\M)

which an- the expressions obtained by the torque method.
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Discussion. — It is evident that both b and u arc constant. There-

fore the motions of both the cylinder and the falling body are uniformly

accelerated, the one in rotation, the other in translation.

When m is negligible compared with M, v is very small and consequently

the motion very slow. When m is very large compared with M, v is prac-

tical^ equal to g, hence the body falls almost freely.

The linear acceleration of the axis of the cylinder equals one-half that

of the falling body. The linear accelerations of the cylinder and of the

falling body depend upon the radius of the cylinder only indirectly, i.e.,

through the mass of the cylinder.

4. A circular hoop is projected along a rough horizontal plane with a

linear velocity v and an angular velocity co . Discuss the motion.

The hoop is acted upon by two forces, namely, its weight and the re-

action of the plane. The latter may be resolved, as usual, into its normal

component N and its frictional component F. Then the force equation

gives

.*-*! (!)

for the horizontal direction and

= N - mg (2)

for the vertical direction. On the other hand the torque equation gives

Mh** (3)

where a is the radius of the hoop and Ic its moment of inertia about its

own axis. The double sign indicates the fact that the direction of F
changes with the direction in which slipping takes place at the poinl of

contact. Denoting the coefficient of friction at the point of contact by fx

we have

F = imN,

= fxmg [by equation (2)].

Making this substitution in equations (1) and (3) and replacing Ie in

equation (3) by its value we obtain

!=*« <4>

*-*«, (5,

Case I. — Suppose the initial angular velocity to be clockwise and
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v < acfe Then the sliding at the point of contact is toward the left;

therefore F is directed to the right and consequently positive. Thus

dt

= txg >
(4)

% &L. (5 ')

at a

Integrating the last two equations we have

v = v + ngt. (6)

u> = u>o-^t. (7)
a

These equations hold until sliding stops, after which the hoop rolls with

constant angular and linear velocities. Let h denote the time when

sliding -tops, that is, when v = aoo. Then

v + ugh '(•*-£>
au — vp /«

or ti = —-—

—

(o)
2W

Substituting this value of t in equations (6) and (7) we get

* - *±», (9)

and o>, = *|^4, (10)

for the linrai and the angular velocities of the hoop after the instant

when the sliding ceases. The subsequent motion is one of pure rolling

with a linear velocity >i, greater than v , and angular velocity «i, less

than co .

Case II. — Initial rotation clockwise and Vo > aa) - In this case slid-

ing i- toward the right, consequently F is negative and therefore

Tr - m, (4)

at a

If I- denotes the time when sliding stops, in this case, a reasoning similar

to i he foregoing Lri\es

U = ?

-^F^> (8')

v, =
?^p, (9')

a,, = Sdt5». (10')
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Therefore after the time t» the hoop will roll along towards the right with

a linear velocity v2 less than rn , and with an angular velocity u greater

than Wo.

Case III. — Suppose the initial rotation to be counter-clockwi.se. In

this case we obtain

5— #» (i )

dt~~ a
(5'")

fc= 3L±«* (n
2ng

v — aoio

2 '

(9")

Vo — QUO nr,l\"3= ^a-' (1G)

where t3 is the time when sliding ceases.

There are three special cases to be considered :

(a) When v > aa> , v3 is positive, and consequently the hoop goes on

rolling towards the right.

(b) When v = aa)
, v3 = 0, and' consequently at t = t 3 the hoop comes

to rest.

(c) When v < aai , v3 is negative. Therefore at the instant t = t3

the hoop begins to roll backwards.

PROBLEMS.

1. Discuss the motion of the following bodies rolling down an inclined

plane without slipping:

(a) A hollow cylinder of mass m and inner and outer radii r
{
and r»)

respectively.

(b) A hoop of mass /// and radius r.

(c) A sphere of mass m and radius r.

(d) A hollow sphere of mass m and inner and outer radii r, and r«,

respectively.

(e) A spherical shell of negligible thickness of mass m and of radius r.

(f) Compare the time-; of descent in (c) and

2. A sphere is projected, wiihout initial rotation, up a perfectly rough

inclined plane. Discuss the motion.

3. A wheel which is rotating aboul its own axis is placed on a per-

fectly rough inclined plane. DisCUSS the motion up the plain-.
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4. The return trough of a howling alley is 50 feet long and has a slope

of 1 foot in 20 feet. Supposing the contact to be perfectly rough find the

time a ball will take to return. The sides

of the trough are perpendicular to each

other.

5. In the adjoining figure the largest cir-

cle represents a solid disk wheel, which rolls

along a rough horizontal table under the

action of a falling body. The left-hand end

of the string is spliced and connected to two

smooth rings on the axle of the wheel.

The pulley over which the string passes is smooth. Discuss the motion.

6. In the preceding problem suppose the pulley to be rough and to

rotate about its axis.

7. Same as problem 5 except that the wheel rolls up an inclined

plane.

8. In the preceding problem suppose the pulley to rotate.

9. Same problem as the third illustrative example, p. 231, except that

the cylinder is hollow and has a negligible thickness.

10. Same as the preceding problem, but the cylinder rolls up an

inclined plane.

11. I low can you tell a solid sphere from a hollow one which has exactly

the same diameter and mass?

12. Two men of different weights coast down a hill on exactly similar

bicycles. Which will reach the bottom of the hill first, the lighter or

the heavier man?

13. A thin spherical shell of perfectly smooth inner surface is filled

with water and allowed to roll down an inclined plane. Discuss the

motion.

14. A hollow cylinder of negligible thickness and perfectly smooth

inner surface is filled with water and allowed to roll down an inclined

plane. Discuss the motion.

GENERAL PROBLEMS.

1. A sphere of radius a starts from the top of a fixed sphere of radius b

and rolls down. If there is no sliding find the position at which they will

separate.

2. Two masses ///, and m% are suspended by means of strings which are

wound around a wheel and its :i\le, respectively. The wheel and axle

are rigidly connected and are free to rotate about a horizontal axis. Dis-

B motion,
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(a) When .l/i and M : , the masses of the wheel and axle, are negligible;

(b) When they are not negligible.

3. In the At wood machine problem show that if the pulley is not

rough enough the acceleration of the two moving masses is - — aM + wie**
'

where ju is the coefficient of friction.

Hint. — If T and T' are the tensile forces in the string on the two Bides,

T= Tel".

4. Same as the third illustrative problem, but the pulley P is supposed

to rotate.

6. In the preceding problem suppose the cylinder to roll up an inclined

plane.

6. A tape of negligible mass and thickness is wound around the middle

of a cylinder. The free end of the tape is attached to a fixed point and

then the cylinder is allowed to fall. Show that the cylinder falls with an

acceleration of § g and the tensile force of the tape is 1 W, where W is the

weight of the cylinder.

7. In the preceding problem the fixed point is on an inclined plane

and the cylinder rolls down the plane.

8. Discuss the motion of a log which moves along its length down an

inclined plane, upon two rollers, which stay horizontal.

9. A uniform rod is allowed to fall from a position where its lower end

is in contact with a rough plane and it makes an angle a with the horizon.

Show that when it becomes horizontal its angular velocity is y-^sin a,

where I is the length of the rod.

10. Discuss the motion of a cylinder down an inclined plane, supposing

the contact to be imperfectly rough, so that the cylinder both slides and

rolls.

11. In the preceding problem suppose the cylinder to be hollow.



CHAPTER XII.

IMPULSE AND MOMENTUM.

190. Impulse.— It was stated at the beginning of Chapter

VIII that when a force acts upon a body two entirely dif-

ferent mechanical results are produced which are called work

and impulse. The former is the result of the action of force

in space. The latter is the result of the action of force in

time. We have already discussed work. Impulse is the

subject of the present chapter.

191. Measure of Impulse.— If a force which is constant

both in direction and magnitude acts upon a particle the

impulse which it imparts to the particle equals the product

of the force by the time during which it acts. Since time is

a scalar while force is a vector, impulse is a vector which

has the same direction as the force. If L denotes the im-

pulse which a constant force F imparts in the interval of

time /, we can write

L = F . I (I')

When the force is variable in magnitude or in direction, or

in both, we must consider the impulses imparted in infini-

tesimal intervals of time and add them up. Thus

dl_ = Fdt

and ' L= ffdt. (I)

Substituting in the last equation mv for F we have

L = / mvdt
Jo

i I dv,///

= mv — mvo, (II)

238
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where v and v are the velocities at the instants t = and

t = t, respectively. If v and v are parallel, equation (II ) may
be written* in the form

L= mv — mv . (II')

192. Momentum.—The vector magnitude mv is called mo-

mentum. Therefore the momentum of a particle equals the

product of the mass by the velocity and has the same direc-

tion as the latter. Equation (II) states, therefore, that im-

pulse equals the vector change in momentum.

PROBLEM.

Show that the component of the impulse along any direction equals

the change in the component of the momentum along the same direction,

that is,

S.
X dt = mx — mxn, etc.

193. Dimensions and Units.— Substituting the dimensions

of force and time in the definition of impulse and those of

mass and velocity in the definition of momentum, we obtain

[MLT-1
] for the dimensions of both. The C.G.S. unit of

£m. cm.
both impulse and momentum is the — — . The British

1
sec.

unit is the pound-second.

Force and Momentum.— Let F denote the resultant of all

the forces acting upon a particle of mass m. Then we have

F = mv

= |(mv), (III)

which states that the resultant force experienced by a particle

equals the time rati' of change of the momentum of the particle.

In order to extend this result to a system of particles lei

F denote the resultanl of all the external forces acting upon

the system. Further let F, be the resultanl of all the forces

acting upon any one of the particles. Evidently F is the

resultant of two sets of forces, namely, those which are
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external and those which are internal to the system. Let

F/ denote the resultant of the external forces acting on the

particle, and F." denote the resultant of the internal forces

acting upon it, due to its connection with the rest of the

system. Then
F,= F/+F,".

But since F is the resultant of all the external forces acting

upon all the particles of the system we have

f = n:f/

=2Fi -:SF/'.

The second sum of the left-hand member is the sum of the

internal forces and is nil, because the internal forces come
in pairs which mutually annul each other. Therefore

F = 2:F
i (IV)

= Smv (IV)

= |(Smv). (V)

These are results which are worth noting. Equation (IV)

states that the resultant external force acting upon a system

equals and is opposite to the vector sum (or the resultant) of

the kinetic reactions of all the particles of the system.

Equation (V) states that the resultant external force acting

a pun a system equals the time rate of change of the resultant

momentum of the system.

PROBLEMS.

(I) Show that the component, along any direction, of the resultant

force acting upon a particl [uals the rate at which the corresponding
component of its momentum changes, that is,

A' = — (mx) , etc.

3how that the component, along any direction, of the resultant

: force acting upon a ByBtem equals the rate at which the corre-
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sponding component of the resultant momentum of the system changes,

that is,

X = (

jt
(Smi), etc.

at

194. The Principle of the Conservation of Momentum. —
When the resultant external force is zero equation (V) gives

or £ (mv) = const. (VI)

Therefore when the sum of the external forces acting upon a

system vanishes the resultant momentum of the system remains

constant, both in direction and magnitude. This is the prin-

ciple of the conservation of momentum. The momenta of

the various parts of an isolated system may and, in general,

do change, but the vector sum of the momenta of all the

particles of the system cannot change either in direction or

in magnitude.

PROBLEM.

Show that if the component, along any direction, of the resultant

external force vanishes, the corresponding component of the resultant

momentum of the system remains constant, that is,

-///./• = const., when X = 0.

195. Momentum of a System. — The magnitude of the

.r-component of the resultant momentum of a system may
be put in the following forms:

2 ///./•=
(
(Smx)

= -(ilfi) [by equation (I'), p. 141]

= Mi.

Similarly 2my = My
Zmz= Mi,.

vin
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where .1/ is the total mass and x, y, and z are the coordi-

nates of the center of mass of the system. Combining the

last three (Miuations in a single vector equation we obtain

2mv = Mv, (VII)

which states that the resultant momentum of a system equals

tin proiluct of the total mass of the system by the velocity of its

a nli r of mass.

196. Motion of the Center of Mass of a System.— Com-
bining equations (V) and (VII) we get

F = Mv, (VIII)

which states that the resultant external force acting upon a

system equals the product of the total mass of the system by
the acceleration of its center of mass. But equation (VIII)

is the force equation for a particle of mass M, which is acted

upon by a force F. Therefore the center of mass of a system

moves as if the entire mass of the system were concentrated at

that point and nil Ihe forces acting upon the system were ap-

plied to the resulting particle.

PROBLEM.

Show thai when the component, along any direction, of the resultant

force acting upon a system vanishes the corresponding component of the

Velocity of the center of mass remains constant, that is,

x = const., when X = 0.

ILLUSTRATIVE PROBLEM.

A bullet penetrates a fixed plate to a depth d. How far would it

penetrate if the plate were free to move in the direction of motion of the

bullet?

Let F be the mean resisting force which the plate offers to the motion

of the bullet. When the plate is fixed all the energy of the bullet is ex-

pended in doing work against this force. Therefore we have

Fd = i mv\ (1)

where m is the mass and v the velocity of the bullet. When the target is

• move part of the energy of the bullet is expended in giving the
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target and the bullet a common velocity v'. Therefore if d' be the new

depth of penetration we have

Fd'=imvi -i(m + M)v,i
,

(2)

where M is the mass of the target. Eliminating F between equations

(1) and (2) we get

'-I)-
8?©]* (3)

But by the conservation of momentum we have

mv= (m + U)v'. (4)

Therefore eliminating the velocities between equations (3) and (4) we get

d'=--^-J. (5)M + in

It is evident from equation (5) that when the target is free, but very large

compared with the bullet, the depth penetrated is about the same as when

it is fixed.

PROBLEMS.

1. A particle which weighs 2 ounces describes a circle of 1.5 feet radius

on a smooth horizontal table. If it makes one complete revolution in

every 3 seconds find the magnitude and direction of the impulse imparted

by the force, which keeps the particle in the circle,

(a) in one-quarter of a revolution;

(b) in one-half of a revolution;

(c) in three-quarters of a revolution

;

(d) in one complete revolution.

2. Find the expression for the impulse imparted to a particle in de-

scribing an arc of a circle with uniform speed.

3. Considering the rate of change of the momentum of a particle which

describes a uniform circular motion derive the expression for the central

force.

4. If we neglect the resistance of the air to the motion of a projectile

what can we state with regard to the components of the momentum in

the horizontal and vertical direction-'.'

6. A train which weighs 100 tons runs due south at the rate of one

mile :i minute. Find the lateral force on the western rails due to the

rotation of the earth, while the train passes the line of 30° latitude.

6. At what latitude will the force of the preceding problem be a maxi-

mum? Determine its amount.
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7. Two trains, weighing 150 tons each and moving towards each

other at the rale of 40 miles an hour, collide. Find the average force

which comes into play if the collision lasts 1.5 seconds.

8. A body explodes while at rest and flies to pieces. If at any instant

after the explosion the different parts of the body are suddenly connected,

will it move

9. A shell of mass m explodes at the highest point of its flight and

breaks into two parts, the one n times the other. Find the velocity of

one piece if the other is brought to rest for an instant by the explosion.

The velocity of the shell at the instant of explosion is v.

10. In the preceding problem will the motion of the center of mass of

the entire shell be affected by the explosion? Answer this question on

the assumption (a) that there is no air resistance, (b) that there is an air

resistance.

11. A man walks from one end to the other of a plank placed on a

smooth horizontal plane. Show that the plank is displaced a distance

M ,

M+m
where M and m are the masses of the man and of the plank, respectively,

and I is the length of the plank.

12. A shell, which weighs 150 pounds, strikes an armor plate with a

velocity of 2000 feet per second and emerges on the other side with a

velocity of 500 feet per second. Supposing the resisting force to be uni-

form, find its magnitude and show that the impulse produced by it equals

the change in the momentum of the shell while plowing through the plate.

The plate is 10 inches thick.

COLLISION AND IMPACT.

197. Central Collision.—- If two bodies collide while moving
along the line which joins their centers of mass the collision

ie said to be central. In order to fix our ideas suppose the

colliding bodies to be spheres, then Fig. 118 represents

roughly the state of affairs during the collision. For a short

interval of time after the spheres come into contact their

centers approach each other and a little deformation takes

place in the neighborhood of the point of contact at the end
of which the centers of the spheres are, just for an instant,

with respect to one another, and are moving with a
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common velocity. Then the deformed parts of the spheres

begin to regain, at least partially, their original forms and

cause the spheres to separate.

The process of collision may,

therefore, be divided into two

parts. The first part lasts from

the initial contact at t= until

the instant when the centers of

the spheres are nearest together

at t= ti. The second part be-

gins at t = U and lasts until the

spheres separate at t = t\. The
impulse imparted to each body

during the first part of the

collision is called the impulse

of compression, while that im-

parted during the second part is

called the impulse of restitution.

Let mi and m2 be the masses

of the colliding bodies, vi and

v2 be their velocities just before and v/ and v2
' just after

the collision, and let v be their common velocity at the

instant of maximum compression, that is, when the distance

between the centers of mass is shortest. Further, let L and

L' denote the impulses of compression and of restitution,

respectively. Then we have

— m 2 (v— ft),

Fig. 118.

L= f
U
Fdt= m, (»-

Jo

L'= f
tl

Fdt= mi (ft'

ft)-

-v) rm (>.,' — v).

The foregoing relations follow at once from the definition

of impulse and from the fad thai the colliding bodies form

a system which is not acted upon by external forces, and

consequently the sum of their momenta remains constant

during the collision.
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198. Coefficient of Restitution. — It is found by experiment

that the ratio of the impulse of restitution to the impulse

of compression depends only upon the nature of the bodies

in collision. The ratio, therefore, is a constant of the sub-

stances in collision. This constant is called the coefficient

of restitution, and is generally denoted by the letter e. Thus

•—t (ix)

V — V\

ih' - V

v— v2

Eliminating v we obtain

r'—v'
e = • (X )

Vi - V-2

But (vi — v2 ) and ( - i\' + v%) are the velocities of the first

body relative to the second, just before and just after the

collision. Denoting them by V and V, respectively, we
obtain

-? CD

_ relative velocity after impact

relative velocity before impact

199. Resiliency.— When two bodies rebound after col-

lision they are said to have resiliency, and the contact

Le called clastic contact. The coefficient of restitution is

a i Measure of the resiliency of the colliding bodies. When
e= 1 the resiliency of the colliding bodies is perfect and the

contact is Bald to be perfectly elastic.

The coefficient of restitution cannot have a value greater

than unity, as will be seen from a consideration of the trans-

formation of energy which takes place during collision. At
the beginning of the collision the bodies have a certain

amount of kinetic energy which depends upon their relative
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velocity at that instant. During the compression pari of

the collision a fraction of their energy is transformed into

potential energy of compression and the rest into heat energy.

During the restitution a fraction of the potential energy is

transformed into kinetic energy and the rest into heat energy.

Thus, in general, the kinetic energy at the end of the collision

is less than that at the beginning. Therefore the relative

velocity at the end of the collision is less than thai at the

beginning. Thus the coefficient of restitution is, in general,

less than unity. If none of the energy, which is due to the

relative motion of the colliding bodies, is lost in the form of

heat, it is all transformed into potential energy during the

compression and back into kinetic energy during the resti-

tution. In this case the relative velocity at the end of the

collision equals that at the beginning, which makes the

coefficient of restitution unity.* The relative velocity at

the end of the collision may be made greater than that

at the beginning by having explosives at the point of con-

tact. But this does not come in the definition of the coeffi-

cient of restitution. Therefore unity is the highest value

of e. When all the kinetic energy is transformed into heal

during the collision the bodies have no relative velocity after

the collision. In this case the contact is called perfectly

inelastic. Evidently e is zero when the contact is perfectly

inelastic. Therefore the value of e lies between zero and

unity. The values of the coefficient of restitution are 0.95

for glass on glass, 0.81 for ivory on ivory, and 0.15 for lead

on lead.

200. Loss of Kinetic Energy of Colliding Bodies. - The

kinetic energy of a system equals the kinetic energy due

to the linear motion of the system with the velocity of its

* In working out problems in which the contact is perfectly elastic instead

of introducing the coefficient of restitution make use of the principle «>f the

conservation of energy. The conservation of dynamical energy holds only

when the contacl is perfectly elastic. But the conservation of momentum
and the conservation (general) of energy arc true under all circumstai
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contor of mass plus the kinetic energy of its parts due to their

motion relative to the center of mass. Collision does not

affect the mot ion of the center of mass of the system formed

of the colliding bodies, because the forces which arise during

the collision are internal forces. Therefore that part of its

kinetic energy which is due to the motion of its center of

mass 'Iocs not suffer any loss. The loss occurs in that part

of the energy which is due to the motion of the parts of the

system with respect to the center of mass. Referring all

the velocities to the center of mass and denoting the loss

of kinetic energy by Th we have

T
t
= {\ rriivr + \ m2v2 -) - (§ m^"2 + \ m 2 v2

2
),

where i\ and r2 are the velocities just before and vx
' and v2

the velocities just after the collision.

We can eliminate Vi and v2 from this expression for T
t
by

means of the principle of the conservation of momentum and

the definition of e. According to the former

mii\ + m»v2 = miVi + m2vo
f

and by (X')

Vi — v2 = — e (i\ — v2 ).

Eliminating v,_' between the last two equations we have

th - i\' = -^— (i\ - r2)(i + e).
mi + m 2

The following changes in the expression of T
t
are effected

by mean- of the last three equations.

T, = Jw.O'i
2 - *'/

2
) + h ™* (v2

2 - v,'-)

=
I »'i (V, - Vi)(Vi + iO -f J »h 0> - v2 ')(v2 + v2 )

= 2 '"I (''I - >'i')0i - th + Vi - V2 )

= l"iiO\ - yiOCVi- ''i)(l -e)

\ "^( Vl -v2)

2 (l-e 2
). (XI)

I'll + llh

When the colliding bodies are perfectly elastic then e=l
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and T
t
= 0; on the other hand if the bodies are perfectly

inelastic, c = 0; therefore, T
t
= h -?— (i'

{

— /•>)-.

201. Impact.—When the mass of one of the colliding

bodies is very large compared with that of the other the

velocity of the former with respect to the center of mass of

the colliding system does not change appreciably during the

collision. In such a case the body with the greater mass is

considered to be fixed and the collision is called an impact.

The impact of a falling body when it strikes the ground is

a case in point.

The velocities of the larger mass before and after the

collision, as well as the common velocity at the instant of

maximum compression, are negligible. Therefore making
these changes in the expressions for L, V', e, and T

t
and

dropping the subscripts we obtain

L = mv,

V = — mv,

e=
v~, (X")
v

and T,= \mv-{\-e-), (XI')

where m is the mass of the impinging body, while v and v' are

its velocities just before and just after impact, respectively.

ILLUSTRATIVE EXAMPLE.

A ball which is thrown vertically down from a height // rises to the point

of projection after impinging against a horizontal floor. Find the ve-

locity of projection and the loss in energy.

Let v be the velocity of projection, then the velocities just before and

just after the impact arc

v = V?'o 2 + 2 gh and v' = s/2gh,

respectively. But v' = ev. ^Therefore

Ti = \mv-(l -c-)= J nii'o-
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Discussion. The energy lost during the impact equals the kinetic

energy of projection, us would be expected from the conservation of

energy.

When c = 1, v = and T t
= 0. In other words when the ball is per-

fectly elastic it will rise to the heighl from which it is dropped. The entire

kinetic energy is transformed, during the impact, into potential energy and

back to kinetic energy without any loss.

When e = 0, v = ao and T t
= oo, that is, if the contact is perfectly

inelastic no value of the velocity of projection will enable the ball to

rebound after the impact.

PROBLEMS.

1. Show that when two perfectly elastic spheres of equal mass collide

centrally they exchange velocities.

2. A ball of mass mi, impinging directly on another ball of mass m2 at

n -t , comes to rest. Show that mi = em2 .

3. Two perfectly elastic balls collide directly with equal velocities.

The relation between their masses is such that one of them is reduced to

rest. Find the relation.

4. A ball which is dropped on a horizontal floor from a height h reaches

a height equal to $ h at the second rebound. Find the coefficient of

restitution.

6. A metal patched bullet strikes a wall normally with a velocity of

1200 —-. With what velocity will it rebound if e = 0.4?
sec.

1 + e
6. Show that if two equal halls collide centrally with velocities v

and — v, the one which has the former velocity will come to rest.

7. A bullet strikes a vertical target normally and rebounds. Find- the

relation between the distances of the foot of the target from the rifle and

from the place where the bullet strikes the ground.

8. Two perfectly elastic equal balls collide with velocities inversely as

their masses. Find the velocities after collision.

9. Two billiard balls collide centrally with velocities of 8 feet per

.second and 16 feel per second. Supposing e = 0.8, find the final velocities.

10. A ball ia dropped from I lie top of a tower, at the same instant that

another hall of equal ma-- i- projected upward from the base of the tower,

with a velocity jusl enough to raise it to the top of the tower. Show that

if the hall- collide centrally the falling hall will rise, on the rebound, to a

: (3 + e 2
) above the ground, where h is the height of the tower.

l
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11. Two spheres of masses 111 and 2 m moving with equal velocities

alon^ two lines at righl angles to each other collide at the instant when
their .enters are on the line of motion of the smaller sphere. Show that it'

t he contact is smooth and e = 0.5 the smaller sphere will come to rest
, and

find the direction and magnitude of the velocity of the larger sphere.

12. In the preceding problem let m = 500 gm, v = 40 cm. per second

and find

(a) the impulse, its magnitude and direction;

(b) the loss of energy.

13. A metal patched bullet which weighs 1.5 ounces strikes a rock,

normally, with a velocity of 1500 feet per second. Find the velocity with

which it will rebound and the impulse given to the rock; e = 0.5.

14. A body impinges against another body which has a mass n times

as large. Show that if the larger body is at rest and the contact inelasl ic

the loss of energy is ——— times its value before the collision.
n -f- 1

15. A particle is projected up a smooth inclined plane with a velocity

y/gh; simultaneously a particle of equal mass is allowed to slide down

the inclined plane. The two collide somewhere on the plane. Find the

velocities with which the particles will arrive at the bottom of the plane.

h = the height of the inclined plane.

16. Two small spheres of masses m and 2 m move in a smooth circular

groove on a horizontal table with equal speeds in opposite directions.

Find the position of the second collision relative to the first; e = 0.6.

17. In the preceding problem find the interval of time between the first

and the eleventh collision, under the following assumptions — the radii

of the particles are negligible compared with that of the circular groove,

which equals 50 cm., the common speed of the spheres just before the first

collision is 500 cm. per second, the time of collision is negligible.

202. Efficiency of a Blow. — A blow may be struck to pro-

duce one or the other of two distinct results. The object of

a blow from a hammer in driving a nail is quite different from

that of a blow in shaping a rivet. Efficiency in the first

case means gn at esl amounl of driving with the least amount

of deformation, while in the second case it means greatest

amounl of smashing with the least amounl of driving.

Therefore the efficiency of a blow is different for these two

cases. We may define
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~ . . „ . energy expended in driving
Driving efficiency = 7;

—

s— —-
, , •

total energy expended

, . ~ . energy expended in deforming
Smashing efficiency = ~\ .

v 3—3

—

& -

total energy expended

Consider the ease of a blow which drives a nail or a pile. Let

.1/ be the mass of the hammer, m the mass of the pile, v the

velocity of the hammer just before impact, v' the velocity

just after impact. The contact between the hammer and

the pile may be regarded as inelastic, therefore just after the

impact both the pile and the hammer have the same velocity

1/. In other words, immediately after the impact there is an

amount of energy equal to \ {M + m) v'
2 available for driv-

ing the pile, while the balance of the energy of the ham-
mer, that is, \ Mv 2 — \ (M + m) v'

2
, is expended during

the impact in producing permanent deformation, heat, and

sound. Substituting these in the two definitions for the

efficiency of a blow we obtain

(M+m) v'°-

Driving efficiency

Smashing efficiency = 1

Mv 2

(M + m) v'
2

Mv 2

Immediately after the impact practically all the momentum
of the hammer relative to the earth will be in the hammer
and the pile; therefore we can write

Mv— {M+m) v'.

Eliminating the velocities between the last equation and the

above expressions for the two efficiencies we obtain

M
Driving efficiency = M+m

Smashing efficiency

(XII)

M+m
It Is evident from these expressions that for driving piles or

oailfl the ram or the hammer head must have a large mass
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compared with the pile or the nail. On the other hand, for

shaping rivets the anvil must have a large mass compared

with the hammer.

203. Motion where Moving Mass Varies. — If the moving
mass varies, as in the case of an avalanche, the relation be-

tween impulse and momentum still holds, that is, impulse

equals the change in the momentum. We have to take into

account, however, the change in the momentum of the mass
which is continually added to the moving system as well as

that of the original mass. Let a mass dm be added in the

time dt; then supposing dm to have been initially at rest the

total change in the momentum is m dv + v dm, where the first

term is the increase in the momentum of m and the second

term is the increase in the momentum of dm. Therefore the

impulse given by the resultant force dF in the time dt is

F dt = m c/v + v dm,

_ dv . dm

which is the same equation as (III), except that in (III) m
was considered to be constant, while here it is considered as

a variable.

If dm has an initial velocity u, then the change in the

momentum of dm is (v — u) dm. Therefore

_ dv . / dmF=,„-+(v-u
1(//

d f \ dm x , ,

,
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ILLUSTRATIVE EXAMPLES.

1. A jet of water strikes a concave vessel with a velocity of 80 feet per

second and then leaves it with a velocity which has the same magnitude

as the vetocity of impact but makes an angle of 120° with it. If the

diameter of the jel is I inch find the force necessary to hold the concave

vessel in position.

The force experienced by the vessel equals the rate at which it receives

moment uin. Suppose the vessel to be symmetrical with respect to the

axis of the jet, as in Fig. 119, then by symmetry there can be no resultant

force on the vessel in a direction perpendicular to the axis of the jet.

Therefore we need to consider only the change in momentum along the

axis. Let m be the mass of water delivered by the jet in the time t,

v the velocity of impact, and a the change in the direction of flow. Then
the force is a V

— mv cos a i—

-

Fig. 119.

where .1 is the area of the cross-section of the jet and wi is the weight of

:i cubic foot of water. Replacing the various magnitudes by their nu-

merical values we obtain

»g*'(s <0'*-(w=:)'*(' + cos 60°)

32

'
L02.3 lb.

I Mm i S8ION. It is evident from the general expression of F that its

value depends upon a and varies between zero for a = and " "'" ''

for

Whe
'J'
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2. A uniform chain is hung from its upper end so thai its lower end

just touches an inelastic horizontal table, and then it is allowed to fall.

Find the force which the table will experience at any instanl during the

fall of the chain.

The force is partly due to the weight of that part of the chain which is

on the table at the instant considered and partly due to the rate at which

the table is receiving momentum. Let x be the height of the upper end

of the chain above the table, / the total length, and p the mass per unit

length. Then pg {I - x) is the weight of that part of the chain which is

on the table. On the other hand the momentum which the table receives

in the interval of time dt is pv <lt • v. Therefore the rate at which it re-

ceives momentum is pr'2 , where v is the velocity of that part of the chain

which is above the ground. This velocity is the same as that of the upper

end of the chain, therefore

v = V2g(l-x).

Hence the total force is

F = p(l-x)g + p-2gQ-x)

= 3p(l-x)g.

Discussion. — When x = I, that is, at the beginning of the motion,

the force is zero. When x = 0, that is, at the end of the motion, it is

3 pig, or three times the weight of the chain. As soon as the entire

chain comes to rest on the table the force equals the weight of the

chain.

3. A spherical raindrop, descending by virtue of its weight, receives

continuously, by precipitation of vapor, an accession of mass proportional

to the surface. Find the velocity at any instant.

The external force acting upon the drop at any instant equals the rate

at which its momentum changes, therefore

mg = 'j
t

(m»), (1)

where m, the mass of the drop, is variable. Since the accession of mass is

proportional to the surface the rate of change of radius of the drop will be

constant, bet <i he the radius of the drop when it begins to fall, r its

radius at any later instant, and /.• the rate at which r increases. Then at

any instant

m = r

= T *7T (O + H)\
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where r is the density of water. Substituting this expression for m in

equation (1)

? (a+ &)»=! [(a+ &)»»]

= (a + kt) 3 ~ + 3(a-t-kty-kv
at

'""'
j + «-?h'

= s ' (2 '

the integral of which is t; = e a +^ JG/e
a + *' eft + c •

,.. r = e
-3log (a + *fl I"J^log (a + fcQ ^ _j_ c

l

= (a + kt)->[gf(a + kt)*dt + c]

= (a + A-0~ 3Q (4 a3
< + 6 a-kt2 + 4 akH3 + *#*) + c]

.

Let v = when < = 0; then c = 0.

. g< 4 a3 + 6 a 2
A-/. + 4 aF-<2 + fc

3
<
3

4 (a + fa)»

?(' + ;+?+?)•

PROBLEMS.

1. Find the pressure upon the canvas roof of a tent produced by a
Bhower. The following data are given— the raindrops have a velocity of

50— at right angles to the roof; the intensity of the shower is such as

to produce a deposit of 0.2 inch per hour; 1 cubic foot of water weighs

62.5 pounds.

2. Find the pressure on horizontal ground due to the impact of a
column of water which falls vertically from a height of 500 feet.

3. Water flowing through a pipe at the rate of 100 -
—

' is brought to

* Equation (2) is of the form-^ +Py = Q, which is the typical linear

equation, with the integral y = e~fPdxT fQeJ*** dx + c~|.
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rest in 0.1 second by closing a valve at the lower end. Find the in-

crease of pressure produced near the valve in both the C.Ci.S. and the

British units. The Length of the pipe is 500 meters.

4. A jet of water strikes a blade of a turbine normally, [f the velocity

of the jet is 150 feet per second, find the pressure it exerts on the blade,

(a) when the blade is fixed; (b) when it has a velocity of 50 feet per

second along the jet.

6. Figure 120a represents a horizontal trough with smooth vertical

walls. The stream is supposed to have the same speed, 6 miles per hour,

in all three parts of the trough. The stream in C is one-third of that in B.

Find the force on the wall BC. The cross-section of the stream in A is

5 feet by 3 feet.

6. In the preceding problem suppose the branch C to be closed.

Pig. 120.

7. A stream of water flowing in a horizontal direction is divided into

two equal streams, as shown in Fig. 120b. Supposing the velocity of

the water to remain unchanged derive an expression for the force on the

obstacle, and discuss it for special values of 6.

8. In the preceding problem suppose the velocity of the stream to lie

5 miles per hour, its cross-section before it is divided to be 1 feet by

2 feet, and = 120°.

9. In the precedin'j; problem take 6 = tt.

10. In (S) take0 =
'^f-

11. In (S) takefl = 2tt.

12. A machine gun delivers 500 bullets per minute with a velocity of

L800 feet per second. If the bullets weigh <>.:> ounce each find the average

force on the carriage of the trim.

13. A train scoops up 1500 pounds of water into the tender from a

trough .">()() yards long while making 50 miles per hour. Find the added

resistance to the motion of the train.
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204. Oblique Impact of a Particle upon a Fixed Plane. Case

I. Smooth Contact. — Let v
t
and vn, Fig. 121, be the compo-

nents of the velocity along the plane and along the normal,

respect ively, just before the impact; and let v t
' and vn

' be

the corresponding components just after the impact. Since

the plane is smooth, no hori-

zontal forces arise during the

impact; hence the horizontal

component of the momentum
remains constant. Therefore

mv, = mv,',

So far as the vertical compo-

nent is concerned the impact

is direct; therefore
Fig. 121.

Denoting by a and the angles which the resultant velocity

makes with the normal just before and just after the im-

pact we obtain

tan a = — i

vn

tan

.-. tan a = e tan 0. (XIV)

Discussion. — When the contact is perfectly clastic c= 1; therefore

the angle of incidence equals the angle of reflection as in the case of the

reflection of light. In this case the magnitude of the velocity is not

changed by the impact, as is to be expected from the conservation of

energy. When the contact is imperfectly elastic the angle of reflection

I

ween - and the angle 6f incidence, while the normal component of

the velocity and consequently the magnitude of the total velocity is di-

minished. When the contact is perfectly inelastic c = 0, and since a is

• ' nm-i be - in order that < tan may have a finite value. There-

fore in this case the particle slides along the plane after the collision.



IMPULSE AND MOMENTUM 259

205. Case II. Rough Contact.— When the plane is rough

frictional forces come into play and change the tangential

component of the momentum. Let F be the tangential force

due to friction, N the normal force, and ju the coefficient of

friction; then we have

rr
L„ = I Ndt= — mvn ,
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When e = and tan a < n, tan 0= — oo and = - ^ ;
therefore the particle

is reflected towards the left and slides along the plane.

PROBLExMS.

1. A perfectly elastic ball impinges obliquely on another ball at rest.

Prove i bat their masses are equal if, after impact, the balls move at right

angles.

2. A billiard ball strikes simultaneously two billiard balls at rest, and

<(iincs to rest. Show that the coefficient of restitution is f.

3. A particle slides down a smooth inclined plane and then rebounds

from a horizontal plane. Find the range of the first rebound.

4. A bullet strikes a target at 45° and rebounds at the same angle.

Prove that c = ~ *
, where /jl is the coefficient of friction.

1 +M
6. Pour smooth rods, which form a square, are fixed on a smooth

horizontal plane. A particle which is projected from one corner of the

square strikes an adjacent corner after three reflections; show that

e(l + e)
tan a

l + e(l + e)

where a is the angle the initial velocity makes with the rod joining the two

corners and e is the coefficient of restitution.

6. In the preceding problem discuss the values of a for special values

of c.

7. 1 )erive an expression for the percentage of energy lost during oblique

impact (a) when the contact is smooth; (b) when the contact is rough.

8. Two billiard balls which are in contact are struck, simultaneously,

by a third ball moving with a velocity v, in a direction perpendicular to

the line of cciiters of the first two. Supposing the table to be perfectly

smooth find the velocity of each ball after impact.

9. In the preceding problem obtain the expression for the loss of

energy and find its value for the following special cases. The balls weigh

ti ounce- each.

(a) V 16 feet per second, c = 0.8.

(1>) v = 20 feet per second, e = 0.5.

10. A ball impinges againsl another ball which has twice as large a

mass and is at reel .
The -mailer ball has a velocity of 60 feet per second

i,. a direction which makes 135° with the line of centers. Find the veloci-

fter unpad ; e - <>.">.
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GENERAL PROBLEMS.

1. A gun is free to move on smooth horizontal tracks. Show that tin:

Lobs of energy due to recoil is -rz E. where .1/ and m arc the maM + m
the gun and the projectile respectively, and E is the kinetic energy which

is transmitted to the gun and projectile.

2. In the preceding problem compare the velocities of the projectile

when the gun is fixed and when free to move. Also show that the actual

angle a at which the projectile leaves the gun is given by tan a =——

—

tan a, where a is the angle which the gun makes with the horizon.

3. A man stands on a plank of mass m, which is on a perfectly smooth

horizontal plane. He jumps upon another plank of the same mass, then

back upon the first plank. Find the ratio of the velocities of the two

planks if the mass of the man is M.
4. A stream of water delivering 1000 gallons per minute, at a velocity

of 20 —-, strikes a plane (1) normally, (2) at an angle of 30°. Find the
sec.

force exerted on the plane.

5. A uniform chain is held coiled up close to the edge of a smooth table,

with one end hanging over the edge. Discuss the motion of the chain

when it is allowed to fall, supposing the part hanging over the edge to be

very small at the start of the motion.

6. In the preceding problem show that the acceleration is constant if

the density of the chain varies as the distance from that end of the chain

which is in motion.

7. A mass of snow begins to slide down a regular slope, accumulating

more snow as it moves along, thus forming an avalanche. Supposing the

path cleared to be of uniform depth and width, show that the acceleration

of the avalanche is constant.

8. A ball falls on a floor from a height h and rebounds each time verti-

cally.

(a) Show that T = J-ii V/^,
1 — e f

g

where T is the total time taken by the ball to come to rest. Find the

value of T for /; = 25 feet and c = 0.5.

(b) Show that II = \^f2
h,

where // is the total distance described. Find the value of // for h = 25

feet and e = 0.5.
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9. A shell explodes at the highest point of its path and breaks up into

two parts, the centers of mass of which lie in the line of motion. Find

the velocity of the pieces jusl after explosion, taking m for the mass of the

shell, n for the ratio of the masses of the pieces, v for the velocity of the

shell just before explosion, and E for the energy imparted to the pieces

by the explosion.

10. A particle slides down a smooth inclined plane which is itself free

to move on a smooth horizontal plane. Discuss the motions of the particle

and of the plane.

11. After falling freely through a height h a particle of mass m begins

to pull ui> ;l greater mass M, by means of a string which passes over a

smooth pulley. Find the distance through which it will lift M.

12. A smooth inclined plane which is free to move on a smooth hori-

zontal plane is so moved that a particle placed on the inclined plane

remains at rest. Discuss the motion of the plane.

13. A disk and a hoop slide along a smooth horizontal plane with the

Bame velocity v, then begin to roll up the same rough inclined plane.

How high will each rise?

14. A ball, moving with a velocity v, collides directly with a ball at rest.

sond ball in its turn collides with a third ball at rest. If the masses

of the first and last ball are ///, and m„ respectively, show that the velocity

acquired by the third ball is greatest when the mass of the second ball

satisfies the relation m 2 = y/m^nt .

16. Find the maximum velocity acquired by the third ball of the pre-

ceding problem.

16. A billiard ball, moving at right angles to a cushion, impinges

directly on an equal ball at rest at a distance d from the cushion. Show
2 i

-

that they will meet again at a distance—

—

d from the cushion.
1 + e

17. A ball is projected from the middle point of one side of a billiard

table, so that it Btrikesan adjacent side first, then the middle of the opposite

side. Show that if/ is the length of the adjacent side, the ball strikes the

adjacent side at a point from the corner it makes with the opposite
1 -p €

side.

18. A simple pendulum hanging vertically has its bob in contact with

d wall. The bob IS pulled away from the wall and then it is let go.

the coefficient of restitution find the time it will take the pendulum
to come to rest.

19. A particle strikes a smooth horizontal plane with a velocity v,
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making an angle a with the plane, and rebounds time after time. Prove

that

LVsi„« B= 4^i«
g{i-e) g(i-e)

where T is the total time of flight after the firsl impact, R the total

range, and < the coefficient of restitution.

20. In the preceding problem find the values of T and li for the fol-

lowing special eases:

(a) v = 500 meters per second, a = 30°, e = 0.5.

(b) v = 500 meters per second, a = 90°, c = 0.9.

21. A particle is projected horizontally from the top of a smooth

inclined plane. Derive an expression for the time at the end of which

the particle stops rebounding and slides down the plane. Compute its

value for the following special cases:

(a) v = 500 feet per second, a = 45°, c = 0.5.

(b) v = 500 feet per second, a = 30°, e = 0.3.

22. In the preceding problem find the distance the particle moves

along the plane before it stops rebounding.

23. In problem 21 find the velocity of the particle at the instant it

stops rebounding.

24. A bead slides down a smooth circular wire, which is in a vertical

plane, and strikes a similar bead at the lowest point of the wire. If during

the collision the first bead comes to rest, show that the second bead will

rise to a height e2h and on its return will follow the first head to a heighl

e* (1 — e)
2
h, where h is the height from which the first bead falls.

25. Two equal spheres, which are in contact, move in a direction per-

pendicular to oieir line of centers and impinge simultaneously on a third

equal sphere which is at rest. Supposing the contacts to be perfectly

smooth and elastic find the velocity of each sphere after the collision.

26. A bullet hits and instantly kills a bird, while passing the highest

point of its trajectory. Supposing the bullet to stay imbedded in the bird,

and the bird to have been at rest when shot, find the distance between the

place of firing and the point where the bird strikes the ground.

27. Two particles of masses m,\ and ///,. are connected by an inextensiUe

string of negligible mass. The second particle is placed on a smooth hori-

zontal table while the first is allowed to fall from the e,l ure of the table.

When the falling particle reaches a distance /i from the top of the table the

string becomes tight. Find the velocity with which the second particle

begins to move.
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28. A uniform chain Lies in a heap close to the edge of a horizontal

table. One end of the chain is displaced from the edge of the table so

that it begins to fall. Show that when t lie last portion of the chain leaves

the table the chain will have a velocity of \-£-> where I is the length of

tin' chain.

29. A uniform plank is placed along the steepest slope of a smooth

inclined plane Show that if a man runs down the plank making its

length in the time given by

2 M a
t
2 = M + m g sin a

the plank remains stationary during his motion.

30. A number of coins of equal mass are placed in a row on a smooth

horizontal plane, each coin being in contact with its two neighbors. A
similar coin is projected along the line of the coins with a given velocity.

Find the velocity with which the last coin will start to move.

31. A ball of mass ///, which is at rest on a smooth horizontal plane,

is tied by means of ;i string to a fixed point at the same height as the

center of the ball. A second ball of equal radius but of mass m' is pro-

jected along the plain' with a velocity v which makes an angle a with the

Btring. The second ball collides with the first centrally and gives it a

velocity '/. Show that

in' sin a (1 + e)
u = ; / , v.m + m sin- a



CHAPTER XIII.

ANGULAR IMPULSE AND ANGULAR MOMENTUM.

206. Angular Impulse.— The mechanical results produced

by a torque may be measured in two ways. If the torque

is considered to act through an angle the result measured

is the work done by the torque; on the other hand if the

torque is considered to act during an interval of time the

result measured is called angular impulse.

The angular impulse which a constant torque imparts to a

body in an interval of time equals the product of the torque

by the interval of time. If H denotes the angular impulse,

G the torque, and t the time of action, then

H = G • t. (I')

When a vector is multiplied by a scalar the product is a

vector which has the same direction as the original vector.

Therefore H is a vector and has the same direction as G.

When torque is not constant angular impulse equals the

vector sum of infinitesimal impulses imparted during infini-

tesimal intervals of time. Therefore

H-fJo Gdt

I'l (o dt

= / / tfto,

(I)

where o> and w are the angular velocities at the beginning

and at the end of the interval of time during which the torque

acts.acts.

265
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When /, the moment of inertia, remains constant, as in

the case of a rigid body rotating about a fixed axis, the

last integration can be performed at once and the following

result obtained

:

I G dt = Iu - /co . (II)

207. Angular Momentum.— The magnitude 7o> is called

angular momentum and is defined as the product of the

moment of inertia by the angular velocity. Since I is a

scalar /a> is a vector which has the same direction as <o.

Equation (II) states that angular impulse equals the change

in the angular momentum.

208. Moment of Momentum.—Angular momentum is often

called moment of momentum, because the former may be

considered as the moment of the linear momenta of the

particles of the system under consideration. Let dm be an

element of mass, r its distance from the axis of rotation, and
r ite linear velocity. Then the moment of the momentum
of dm about the axis is r-vdm. Therefore the total moment
of momentum is

Jf'm
nm

r • v dm = I r -ru dm
u Jo

= / r
2 dm • co

= /«,

which is the angular momentum.
209. Dimensions and Units. -Substituting the dimensions

of G. i, I, and co in equation (II) we find that both angu-

lar impulse and angular momentum have the dimensions

M///T '). The units are also the same for both. The

3. unit is
K

and the British unit is ft. lb. sec.
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210. Torque and Angular Momentum.—When the moment
of inertia of a body remains constant under the action of a

torque we have

dt

(/«) (Ill)

Therefore torque equals the time rate of change of momentum.
The following analysis proves that the last statement is

true when the moment of inertia varies with the time as

well as when it remains constant.

Let A, Fig. 122, represent a body, or a system of bodies,

which is acted upon by one or more external torques. For

the sake of simplicity suppose

the planes of the torques to be

parallel to the plane of the

paper, and the axis of rotation

to pass through the point and

to be perpendicular to the plane

of the paper. Let dF be the

resultant force acting upon an

element of mass dm. Then the moment of dF about the

axis of rotation equals the product of r, the distance of dm
from the axis, by dFpf the component of dF perpendicular

to r. Therefore

dF,

dmfp

Fig. 122.

dG

dm •

1 d

/ dt
(r 2

*) [p. 97]

dm •-, (r2«)
dt

= | (r=,/,„ »).
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Therefore the resultant external torque acting upon the

body is

or G= | (/w) '
(III)

where / is supposed to vary with the time. Equation (III)

is the genera] form of torque equation, of which equation

(V) of Chapter XI is a special case.

Introducing this expression of G in the definition for

angular impulse we obtain

-i

-I

Gdt

= 7o> - 7 co
,

(IV)

where h and <Do denote the moment of inertia and the angular

acceleration at the instant t = 0, and I and to those at t — t.

Equation I IV) is a generalization of equation (II). It states

tti.it angular impulse equals the change in the angular momen-
tum under nil circumstances.

211. The Principle of the Conservation of Angular Momen-
tum.— When the resultant external torque acting upon a
body or system of bodies vanishes, it follows from equation
(III) that

|(/») = 0,

and consequently 7© = const. (V)

Therefore // the resultant of all the external torques acting
upon a system vanishes, the angular momentum of the system
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remains constant, in direction as well as in magnitude. This

is the principle of the conservation of angular momentum.

ILLUSTRATIVE EXAMPLE.

Discuss the effect of a shrinkage in the radius of the earth upon the

length of the day.

Let P and P' be the lengths of the day when the radius of the earth is a

and a', respectively. Further, let a; and co' be the corresponding values

of the angular velocity of the earth about its axis. Then

S-5-
But since the earth is not supposed to be acted upon by any external

torques its angular momentum remains constant. Therefore

Ico = ZV. (2)

From equations (1) and (2) we obtain

El = 11 = °11PI a2
'

P-P' a 2 - a' 2

-P~ =^
and *§ = "±01..**,

(3)P a a

where 8P and 8a denote the diminutions in the length of the day and the

radius, respectively. When 8a is small a' is very nearly equal to a, there-

fore equation (3) may be written in the form

Therefore the percentage diminution in the length of the day is twice as

large as the percentage diminution in the radius. Hence when the radius

is diminished by 1 mile the length of the day is diminished by about 43

seconds.

PROBLEMS.

1. How do the oceanic currents from the polar regions affect the length

of the day?

2. A uniform rod of negligible diameter falls from a vertical position

with its lower end on a perfectly smooth horizontal plane. What is the

path of its middle point?
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3. While passing through the tail of a comet an amount of dust of

mass hi settles uniformly upon the surface of the earth. Find the conse-

quent change in the Length of the day.

4. In the preceding problem find the torque due to the addition of

mass. Suppose the passage to take n days and the rate at which mass

is acquired to be constant.

6. A particle revolves, on a smooth horizontal plane, about a peg, to

which it i- attached by means of a Btring of negligible mass. The string

winds around the peg as the particle rotates. Discuss the motion of the

particle.

6. A mouse is made to run around the edge of a horizontal circular

table which is free to rotate about a vertical axis through the center.

Find the velocity of the mouse relative to the table which will give the

latter 20 revolutions per minute? The table weighs 2 pounds and has a

diameter of is inches; the mouse weighs 5 ounces.

7. In the preceding problem find the velocity of the mouse with re-

specl to the ground.

8. A cylindrical vessel of radius a is filled with a liquid, closed tight,

and made to rotate with a constant angular velocity oj about its geomet-

rical axis, which is vertical. Suppose the frictionaJ forces between the

inner surface of the \ esse! and the liquid and bet ween the molecules of

the liquid to be small, yet enough to transmit the motion to the liquid if

the rotation is kept up for a long time. After each particle of water at-

tains an angular velocity about the axis given by the relation co = co r the

torque which kepi the angular velocity constant is stopped and the liquid

i- suddenly fro/en. What will be 1 he angular velocity of the system if

The mass of the vessel is negligible,

(b) The maSfi ifl not negligible but the thickness is. Take the ends

into account

.

Neither the mass nor the thickness of the cylinder is negligible.

I k) not take the ends into account.

(d) In (c) take the ends into account.

9. In the preceding problem suppose the distribution of the angular

velocity of the liquid about the axis just before it is frozen to be given
a— r

by the relation w = co e r
. where ;• is the distance from the axis.
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APPLICATION TO SPECIAL PROBLEMS.

212. Ballistic Pendulum.—A ballistic pendulum is a heavy

target which is used to determine the velocity of projectile-.

The target, which is suspended from a horizontal axis, is

given an angular displacement when it receives the projec-

tile. Considering the target and the bullet which is projected

into it as an isolated system we apply the principles of the

conservation of energy and of the conservation of angular

momentum. Just before the bullet hits

the target the angular momentum of

the system about the axis is that due

to the velocity of the bullet and equals

/' 7, where /' is the moment of inertia
b

of the bullet about the axis, v is its

velocity, and b is its distance from the

axis just before it hits the target, Fig.

123. The bullet is supposed to hit the

target normally, when the latter is in the

equilibrium position, and t o be imbed< led

in it. The angular momentum just aft er

the bullet hits the target is (/ + 1') u,

where / is the moment of inertia of the target and w its initial

angular velocity. Then, by the conservation of the angular

momentum, we have

(1)l'\ = (/+/') co. .-. V=b l ~

b
*-

'

-'~
/' -

If we suppose the energy lost during the impact to be negli-

gible the kinetic energy of rotation just after the bullet hits

the target equals the potential energy of the system at its

position of maximum angular displacement. Therefore

I (/ + /') co
2 = (M + m > ga 1 1

- cos a), (2)

where .1/ and m are the masses of the target and of the bullet

,

respectively, a is the distance of the center of mass of the

system from the axis, and a is the maximum angular dis-
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placement. Eliminating « between equations (1) and (2) we

obtain

v = A V2 ga (/+ /') (M+ m) (1 - cos a) . (3)

The moment of inertia of the target may be determined by ob-

serving the period of oscillation when it is used as a pendulum.

It will be shown later* that if P denotes the period then

P-W(i£fcr (4)

Eliminating (/ -f- /') between equations (3) and (4) we get

(5)

Pabg (M + m) /!_

v
Pa by (M+m) a

id' 2

But in practice m is very small compared with M, the bullet

is small enough to be considered as a small particle, and a is

small; therefore we can neglect m in the numerator, substi-

tute mb'1 for V, and replace sin ^ by ^. When these simpli-
z z

iiiations are introduced into equation (5) we get

PagM 2 fasV
=I*mb

a -- (6)

213. Motion Relative to the Center of Mass.—Suppose a

rigid body to have a uniplanar motion. Let M be the mass
of the body, / its moment of inertia with respect to an axis

perpendicular to the plane of the motion, Ic its moment of

inertia about a parallel axis through the center of mass, and
a the distance between the two axes. Then the angular

momentum about the first axis is

7a, = (/,.+ Ma 2
) co

= /,.« + a- My, 1

(M)

where I is the velocity of the center of mass. In the right

hand member of the last equation the first term represents
* Page 309.
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the angular momentum of the body due to the motion of

its particles relative to the center of mass, while the second

term represents the angular momentum of the body due to

the motion of its particles with the center of mass. The
second term depends upon the position of the center of mass
relative to the axis of rotation. The first term does not at

all depend upon this position. It depends upon the distri-

bution of the particles of the body about the center of mass.

The two terms are, therefore, independent; that is, if the

center of mass of a body is suddenly fixed the angular mo-
ment um of the body due to the motion of its particles about

the center of niass is not at all affected. On the other hand
if the motion about the center of mass is destroyed the angu-

lar momentum about a given axis due to the motion of the

particles of the body with the center of mass is not changed.

In other words motion about the center of mass and motion with

the center of mass are distinct and independent*

As an illustration of this important

fact consider two disks, Fig. 124, of equal

mass, radius, and thickness, which have

equal and opposite angular velocities

about a common axle, and which move
with the axle in a direction perpendicular

to it. Suppose each of the disks to have

two similarly placed holes, as shown in

the figure, so that they can be made one

solid piece by dropping a pin in each pair

of holes when they are in line. If the

rotational motion is stopped by dropping

the pins into the holes, the motion of the

axle goes on as if aotbing had happened.

On the other hand if the motion with the

axle is changed or even stopped, the rotations of the disks about the axle

are not at all disturbed.

Fig. 124.

This result holds true for all bodies and systems, whether rigid or not.
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ILLUSTRATIVE EXAMPLE.

A uniform circular hoop rotates about a peg on a perfectly smooth

horizontal plane; find the angular velocity of .the hoop if the peg is sud-

denly removed and simultaneously another peg is introduced, about

which it begins to rotate.

Let and 0', Fig. 125, be the positions of the first and.second peg,

respectively. The circle in continuous line may be considered to repre-

sent the position of the hoop just

before it stops rotating about

and just after it begins to rotate

about 0'.

The only force which comes into

play when the hoop strikes the peg
<>' passes through 0', hence it pro-

duces no effect upon the angular

momentum about 0'. Therefore

the angular momentum about 0'

ju-t after the hoop strikes the peg

equals the angular momentum just

before. The angular momentum
after the hoop begins to rotate about 0' is

H' ' = Ico' = 2 ma2u',

where //,'. is the angular momentum and u' the angular velocity about

the <>', in the mass, and a the radius of the hoop.

The angular momentum about 0' just before the hoop begins to rotate

about ()' equals the angular momentum of the hoop due to the motion of

the hoop about its <,r<'omet rical axis plus its angular momentum due to

its motion with its center of mass. Therefore

IK' = ^| mo • a cos a
= ma*a + ma2

o) cos a
= ma 2

u) (1 -f cos a),

where u ifl the angular velocity about the peg 0, and a the angle which
the arc ()() subtends at the center of the hoop. Bui since

//V = Ho',

2 rnaaa>' ,= mafa (1 -f cos a)

and „' = L±_£os«^

,,, 1 + coso^
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where v is the linear velocity of the center of the hoop while the latter

rotates about o, and v' the velocity afterwards.

Discussion. — When a = 0, that is, when the two pegs coincide,

co' = co and v' = v, as they should. When a — -z, o>'= -, v'= -• When

a = 7T, a/ = and v' = 0, that is, the hoop comes to rest.

PROBLEMS.

1. A rod of negligible transverse dimensions and length I is moving on

a smooth horizontal plane in a direction perpendicular to its length. Show

that if it strikes an obstacle at a distance a from its center it will have

an angular velocity equal to -=j-, where v is its linear velocity before

meeting the obstacle.

2. A uniform circular plate is turning about its geometrical axis on a

smooth horizontal plane. Suddenly one of the elements of its lateral sur-

face is fixed. Show that the angular velocity after fixing the element

equals ^ , where a; is the angular velocity before fixing it.

o

3. A circular plate which is rotating about an element of its lateral

surface is made to rotate about another element by suddenly fixing the

second and freeing the first. Show that a/ = co, when 1 w and
o

w' arc the values of the angular velocity of the plate before and after fixing

the second element, and a is the angular separation of the two elements

when measured at the center of the disk.

4. Three particles of equal mass are attached to the vertices of an

equilateral triangular frame of negligible mass. Show that if one of the

vertices is fixed while the frame is rotating about an axis through the

center of the triangle perpendicular to its plane the angular velocity is

not changed.

5. A square plate is moving on a smooth horizontal plane with a veloc-

ity vat right angles to two of its sides. Find the velocity with which it

will rotate if

(a) one of its corners is suddenly fixed;

(b) the middle point of one of its sides is fixed.

6. A uniform rod of negligible transverse dimensions is rotating about

a transverse axis through one end. Find the angular uelocity with which

it will rotate if the axis is suddenly removed and simultaneously a parallel

axis is introduced through the center of mass of the rod.

7. An equilateral triangular plate i- rotating about an axis through
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one of the vertices perpendicular to the plane of the plate. Find the

resulting angular velocity due to a sudden removal of the axis and a simul-

taneous introduction of a parallel axis through the center of mass.

8. In the preceding problem, suppose the new axis to pass through one

of the other two vertices.

Fig. 126.

214. Reaction of the Axis of Rotation.—Suppose B, Fig. 126,

to be a rigid body free to rotate about a fixed axis through

the point 0, perpendicular to the

plane of the figure. If an ex-

ternal force F is applied to the

body a part of its action is, in gen-

et al, transmitted to the axis of

rotation. This results in the re-

action, R, of the axis, which we
will investigate. For the sake of

simplicity suppose F to lie in the

plane which passes through the

center of mass, c, perpendicular to the axis.

Since F and R are supposed to be the only external forces

acting upon the body, then by equation (VIII) of p. 242

rav = F + R, (1)

where tf is the acceleration of the center of mass. If F„ and

F denote the components of F along and at right angles to

the line Oc, respectively, and P and Q the components of R
along the same directions, equation (1) may be resolved

into the following component-equations:

mfn = Fn + P,

ml = FT + Q,

where ?„ and ?r are the components of v.

of the center of mass is a circle

(2)

(3)

But since the path

and

Jn
a

fr=r Qco,
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where a is the distance of the center of mass from the axis

and co the angular velocity of the body. Making these sub-

stitutions in equations (2) and (3) and solving for P and Q
we obtain

P=-Fn + mau 2
,

(VII)

Q = - F
t + maco. (VIII)

The magnitude and the direction of R are given by the

relations

r = Vp* + Q

and tan</>=^>

where
<t> is the angle R makes with the line Oc.

ILLUSTRATIVE EXAMPLE.

A uniform rod, which is free to rotate about a horizontal axis through

one end, falls from a horizontal position. Find the reaction of the axis at

any instant of its fall.

Evidently Fn = — mg cos 0.

FT = — mg sin 0.

The negative sign in the first equation is due to the fact that in equa-

tion (VII) Fn is supposed to be directed towards the axis, while mg cos0

is directed away from the axis. The negative sign in the second equation

is due to the fact that 6 is measured in the counter-clockwise direction,

while mg sin 6 points in the opposite direction.

Substituting these values of F n and l<\ in equations (VII) and (VHI),

we obtain

P = mg cos 6 + mr/or,

Q — mg sin 6 -f mnic.

But by the conservation of energy

\ la* = mga cos 6,

where a is one-half the length of the rod. Therefore

, 2 mqa
fl

3o a
co

2 = —I
s— cos = —*• cos

/ 2

"

and o> = — —^ sin 0.
4a
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Making these substitutions

P = 5 mg cos 6.

Q = * >»g sin 6.

R = 1J1?- Vl+99cos 2
0.

4

tan = iV tan 8.

Discussion. — The reaction and its direction are independent of the

length of the rod. When 6 = 0, Q = and R = P = f mp. In other

words at the instant when the rod passes the lowest point the force on the

axis ia : times as large as the force when rod hangs at rest. When 8 = ->

P = and R =Q = \ mg. If the rod is held in a horizontal position by

supporting the free end the reaction of the axis is § mg. But as soon as

the support is removed from the free end the reaction on the axis is changed

from \ mg to \ mg.

PROBLEMS.

1. A uniform rod' which is free to rotate about a horizontal axis falls

from the position of unstable equilibrium. Find the reaction of the axis.

2. In the preceding problem find the position where the horizontal

component of the reaction is a maximum.
3. A uniform rod which is free to rotate about a horizontal axis falls

from a horizontal position. Show that the horizontal component of the

reaction is greatest when the rod makes 45° with the vertical.

4. A cube rotates about a horizontal axis which coincides with one of

its edges. If at the highest position it barely completes the revolution,

show that P =
:! ~ ,r

;>

( ""s 6 W and Q = ^~ W, where W is the weight of

the cube.

5. A cube which is free to rotate about a horizontal axis through one

of its edges Starts to fall when its center is at the same level as the axis of

rotation. Kind the reaction of the axis.

6. Show that if the body of 5 2] 1 is a particle connected to the axis

with a massless rod the reaction perpendicular to the rod vanishes.

7. Consider the reactions of the axis when the latter passes through

the center of mass of the rigid body.

8. A circular plate is free to rotate about a horizontal axis which forms

one of the elements of its cylindrical Burface. The plate is let fall from

:tion when its center of mass is vertically above the axis. De-

termine the reaction of the axis at = * and at 6 = 0.



ANGULAR IMPULSE AND ANGULAR MOMENTUM _'7!>

9. A hoop barely completes rotations about a horizontal axis which
passes through its rim and is perpendicular to its plane Determine
the reaction of the axis at the lowest and the bighesl positions.

10. A uniform rod which rotates about a horizontal axis through one

end has four times as much kinetic energy as it has potential energy at the

instant it passes the highest point. Find the reaction of the axis when
the rod is

(a) at the highest position;

(b) horizontal;

(c) at the lowest position.

215. Impulsive Reaction of an Axis. Center of Percussion.

—

If a rigid body which is free to rotate about a fixed axis is

so struck that no impulse is imparted to the axis during the

blow, any point of the line of action of the blow is called a

center of percussion for that axis. It is evident that if the

axis be removed and the blow applied at a center of percus-

sion which corresponds to the removed axis, the body will

rotate as if the axis were not removed. The axis about

which a free rigid body rotates when
it is given a blow is called the axis

of spontaneous rotation.

Suppose the rigid body of Fig.

127 to be free to rotate about an

axis through perpendicular to the

plane of the figure. For the sake

of simplicity suppose the blow to be

applied in such a direction that it

tends to produce rotation only about

the given axis. Let L denote the

linear impulse of the blow and L'

the impulse given to the body by the reaction of the axis

of rotation. Then by the conservat ion of linear momentum
the linear momentum of the body must be equal to the

impulse given to it by the blow and by the reaction of the

axis. Therefore

mv = L+l', (1)
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where m is the mass of the body and v the velocity of its

center of mass. But by the conservation of angular momen-

tum the angular momentum of the body about the axis after

the blow must equal that of the blow itself. Therefore

la = Lb, (2)

where / is the moment of inertia of the body, « its angular

velocity and b the distance of the line of action of the blow

from the axis.

Eliminating L between equations (1) and (2) and solving

for L' we obtain

L = mv—— > (3)
b

*-£)», ax)

where a is the distance of the center of mass from the axis of

iot at ion. Equation (IX) gives the impulse produced by the

reaction of the axis.

If tho blow is applied at a center of percussion V = 0.

Therefore

ma — 7=0

and b= (X)
ma

PROBLEMS.

1. A square plate is moving on a smooth horizontal plane with two of

parallel to the direction of motion. Find the angular velocity

with which it will rotate, also the impulsive reaction of the axis,

(a) if one of the corners is fixed;

(b) if the middle poinl of one of the sides is fixed.

2. Aii equilateral triangular plate is moving on a smooth horizontal

plane in a direction perpendicular to one <>f its sides. Find the resulting

angular velocity, also the impulse given by the axis,

if one of its corners is fixed
;

if the middle point of one of its sides is fixed.

3. A hoop is moving on a smooth horizontal plane with its axis perpen-
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dicular to the plane. Suppose a point on it to be fixed and find expres-

sions for the resulting angular velocity and impulse imparted. Discuss

the expressions for special positions of the fixed point.

4. While a circular plate is moving on a smooth horizontal plane one

of the elements of its lateral surface is fixed. Find expressions lor the

resulting angular velocity and the impulse given by the axis. Discuss

the results for special positions of the axis of rotation.

6. A uniform rod lies on a smooth horizontal plane. Where must a

blow he struck so that it rotates about one end?

6. In the preceding problem can the rod be made to rotate about its

middle point by a single blow?

7. A circular plate which lies on a smooth horizontal plane is struck so

that it rotates about one of the elements of its lateral surface as an axis.

Find the position where the blow is applied.

8. Find the center of percussion of a hoop which is free to rotate

about an axis perpendicular to its plane.

9. How must a triangular plate, placed on a smooth horizontal plane,

be struck so that it may rotate about one of its vertices?

( ;EXERAL PROBLEMS.

1. Two particles of equal mass are connected by a string of length I

and of negligible mass and placed on a smooth horizontal table so

that one of the particles is near an edge of the table and the string is

stretched at right angles to the edge. The particle near the edge is given

a small displacement so that it begins to fall. Show that the interval of

time between the instant at which the second particle leaves the table

and the instant at which the string occupies a horizontal position is

given by

\l\

2. A uniform bar of negligible cross-section, which is rotating on n

smooth horizontal plane about a vertical axis, strikes an obstacle and

begins to rotate in the opposite direction. If L and L' denote the impulses

given by the collision to the axis and the obstacle, respectively, u and a/

the angular velocities of the bar before and after the collision, / the length

and /// the mass of the bar, and a the distance of the obstacle from the axis,

show that

(a) a/ = cu>;

n\ t /i j ,1(7! - 6a)
(b) L = m (1 + e)—— -«;

12a

(c) L' = m(i + e)^«.



282 ANALYTICAL MECHANICS

3. A circular table is perfectly free to rotate about a vertical axis

through its center. Show t hat if a man walks completely around the edge

of the table the latter turns through an angle of
^

• 2 tt, where m

and M an- the masses of the table and of the man, respectively.

4. A circular plate is rotating about its axis, which is vertical, with an

angular velocity w and is moving on a smooth horizontal plane with a linear

velocit: Find the angular velocity it will have if one of the elements

of il- lateral surface is suddenly fixed, and determine the impulse given

; axis of rotation. Discuss the results for special positions of the

fixed axis.

6. A uniform rod strikes at one end againsl an obstacle while falling

transversely. Show that the impulse which the obstacle receives will

be one-half that which it would have received if the other end of the

rod had struck an obstacle simultaneously with the first.

6. A particle is projected into a tube which is bent to form a circle and

is lying on a smooth horizontal table. If the inner surface of the tube is

perfectly smooth, show that the center of mass of the two moves in the

direction of projection of the particle with a velocity of;— .. v, while

the particle and the center of the tube describe circles about it with an

angular velocity -. where .1/ is the mass and a the radius of the tube,
a

while m is the mass and v the velocity of projection of the particle.

7. bind the direction and point of application which an impulse must

have in order to make a sphere rotate about a tangent.

8. A uniform rod which is rotating on a smooth horizontal plane about

a pivot through its middle point breaks into two equal parts. Determine

the subsequent motion.

9. A uniform rod rotates on a smooth horizontal plane about a pivot.

What will be the motion when the pivot breaks?

10. A uniform rod falls from a position where its lower end is in con-

tact with a rough horizontal plane with which it makes an angle a. Show

that when it becomes horizontal its angular velocity is y—^— , where

/ i- the length of the rod.

11. Show that in problem (10) the angular velocity will be the same
when the horizontal plane i- smooth.

12. A uniform rod which lies on a smooth horizontal plane is struck

id. transversely. Show that the energy imparted equals f of the

which would have been given to the bar by the same blow if the

end of the bar were fixed.



CHAPTER XIV.

MOTION OF A PARTICLE IN A CENTRAL FIELD
OF FORCE.

216. Central Field of Force. — A region is called a central

field of force when the intensity of the field at every point

of the region is directed toward a fixed point. The fixed

point is called the center of the field. The force which a

particle experiences when placed in a central field of force

is called a central force.

217. Equations of Motions. — Consider the motion of a par-

ticle which is projected into a central field of force. It is

evident from symmetry that the path will lie in the plane

determined by the center of the field and the direction of

projection. The expressions for the radial and transverse

components of the acceleration are, according to the results

of §90,

f _d 2r /dey
Jr
~dc>

~ r
[dt)'

When the center of the field is chosen as the origin the force

acts along the radius vector. Therefore the transverse ac-

celeration vanishes.- Suppose the force and the acceleral ion

to be functions of the distance of the particle from the cen-

ter, then the last two equations become

dV _
dt

2

d

dt

283

(r*«) = 0. (II)
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where -/ (r) is the total acceleration. The negative sign in

the right-hand member of equation (I) indicates the fact

that the acceleration is directed toward the center, while

the radius vector is measured in the opposite direction.

Equations (I) and (II) are the differential equations of the

motion of a particle in a central field of force.

218. General Properties of Motion in a Central Field.

—

Integrating equation (II) we get

r 2u=/*, (III)

where h is a constant. The following properties, which are

direct consequences of equation (III), are common to all

motions in central fields of force.

(1) The radius vector sweeps over equal areas in equal

intervals of time.

When the radius vector turns through an angle dd it sweeps

over an area equal to \r>rdd; therefore the rate at which

the area is described equals

1 J 1. 1

,

-r- — = -r-co = - h = constant.
2 dt 2 2

(2) The angular velocity of the particle varies inversely

as the Bquare of the distance of the particle from the center

of force. This is evident from equation (III).

(3) The linear velocity of the particle varies inversely as

the Length of the perpendicular which is dropped upon the

direction of the velocity from the center of force.

It was shown on page 87 that

VCOSd)

where v is the linear velocity and </> the angle which the

velocity makes with a line perpendicular to the radius vector.

i denote the length of the perpendicular dropped from
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the center of force upon the direction of the velocity; fcheD

it is evident from Fig. 128 that

cos<j>= '—

r

Substituting this value of cos <j>

in the preceding equation we
obtain

pv
(x) = — J

r- Fig. 128.

or v= — = -• (1\)
V P

(4) The angular momentum of the particle with respect

to the center remains constant.

This result is obtained at once by multiplying both sides

of equation (III) by m, the mass of the particle. Thus

mr 2w = mh,

but mr 2
co = Iu.

Therefore loo = mh = constant.

219. Equation of the Orbit. — The general equation of the

orbit is found by eliminating t between equations (I) and

(III). The analytical reasoning which follows does not need

further explanation:

^L _ dr d$ _ dr

dt~ dd' dt~
U
dd .

= h dr

r 2 dd

- 3
dd

h du= - h —

f

dd

[by (Hi)]
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where u = -.
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Substituting in equation (VI) from equations (1) and (2) we get

F = -«^a.
(3 )

Therefore the force varies inversely as the fifth power of the distance from

the center i »f force. The aegative sign in the second member of equation

(3) shows that the force is directed towards the origin; in other words,

it is an attractive force.

PROBLEMS.

1. Show that if a particle describes the reciprocal spiral rd = a in a

central field of force, the force is attractive and varies inversely as the cube

of the distance from the origin, which is the center of attraction.

2. Show that if a particle describes the logarithmic spiral r = eae in

a central field of force, the expression for the force is F ih 2 (a + 1)

r8

3. A particle moves in a central field of force where the force is away
from the center and is proportional to the distance. Show that the orbit

is a hyperbola.

4. Show that in the preceding problem the radius vector sweeps over

equal areas in equal intervals of time.

5. A particle describes an ellipse in a field of force the center of which

is at the center of the ellipse. Show that the force varies directly as the

distance and is directed towards the center.

6. In the preceding problem show that the radius vector sweeps over

equal areas in equal intervals of time.

7. A particle describes an ellipse in a field of force, the center of which

is at one focus. Show that the force is towards the center of force, and

is inversely proportional to the square of the distance.

220. Motion of Two Gravitating Particles.— Suppose two

particles of masses m and .1/ to move under the action of

their mutual gravitational attraction, as in the case of the

sun and the earth or the earth and the moon. Then if r is

the distance between the centers and y the gravitational con-

stant the mutual force of attraction is

• mMF=-y- •

In order to fix our ideas let .1/ !>< the mass of the sun and

m the mass of the earth. Then the bud gives the earth
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an acceleration - y -j, while the earth imparts to the sun

an acceleration equal to 7 — •

r~

Suppose at any instanl we impart to both the sun and

the earth a velocity equal and opposite to that of the sun

and apply an acceleration -. This will bring the sun to

rest and keep it at rest, without altering the motion of the

earth relative to the sun.* This reduces the problem of

the motion of the earth to that of a particle moving in a

central field of force where the acceleration is

., s M m
7(0 = -7-7 -y-z

(VII)

(VIII)

Substituting from equation (VIII) in equation (V) we
obtain

d-u . fi ,i S^ + " = p (I)

for the cqiiation of the orbit. Let u' = u— ~, then the

equation of the orbit takes the form

du'
In onh-r to integrate equation (2) let v =—

,

ud

• The acceleration of a particle relative to another moving particle is

found t>y adding the negative of the acceleration of the second particle to
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may be obtained from equations (5) and (III), respectively,

in equation (3) of page 82. Thus

., /r//V ,
o/ddY



Case I. The orbit is a parabola, when vf

Case II. The orbit is an ellipse, when r
2 <
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2k
rQ

'

2k
rQ

'

2 k
Case III. The orbit is a hyperbola, when v 2>

7*0

The general expression for the velocity, which is given by

equation (9), may be put in the following special forms:

2 A*

I. v
2 = — , when the orbit is a parabola.

II. v~ — k(
J,
when the orbit is an ellipse.

III. v
2 = kl- + -J,

when the orbit is a hyperbola.

The quantity a is the length of the semi-transverse axis.

222. Velocity from Infinity. — The velocity which the par-

ticle acquires in falling towards the center from a point

infinitely distant from the center is called the velocity from

infinity. This velocity may be computed from the energy

equation. Thus
Pr
Fdr\ mv 2 = / 1

-I

r

Therefore v2 =—-
r

But the last equation is identical with the relation which

gives the velocity of a panicle moving in a parabolic path,

therefore if a particle describes a parabolic orbil its velocity

atany point of it> <>rl>it is equal to the velocity it would have

acquired if it had started from infinity and arrived at that



292 ANALYTICAL MECHANICS

point of the field of force. This fact enables us to state the

conditions which determine the type of the orbit in the fol-

lowing forms:

I. When the velocity of projection equals the velocity

from infinity the orbit is a parabola.

II. When the velocity of projection is less than the

velocity from infinity the orbit is an ellipse.

III. When the velocity of projection is greater than the

velocity from infinity the orbit is a hyperbola.

Thus if a comet starts from rest at an infinite distance from

the sun and falls towards the sun its orbit will be a parabola.

If it is projected towards the sun from an infinite distance

its orbit will be a hyperbola. If it falls from rest, starting

from a finite distance, its orbit will be an ellipse.

223. Period of Revolution. — From equation (III) we have

h = r 2w = r~— -

dt

:. hdt=r -rdd=2dA,

where dA is the area swept over by the radius vector in the

time dt. Therefore when the orbit is an ellipse the period of

revolution is

P = f
P
dt

Jo
O n-nab

- I dA {irab = area of ellipse)
h Jq

O f*irab

h

2wab

where a and 6 are the semi-major axis and semi-minor axis

of the ellipse, respectively. But by equations (6)

h = Vep. M

and by the properties of the ellipse ep =— , therefore h = y-
a T a
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Substituting the last expression for h in that for P we obtain

V/i

2 ircA

V7 (M + m)

It will be noted that the period of revolution depends upon

the major axis but not upon the minor axis of the orbit.

The results obtained in discussing the motion of two gravi-

tating particles are as they appear to an observer who is lo-

cated on one of the bodies. The form and size of the orbit,

the period of revolution, etc., will be the same whether the

observer is located on one or on the other of the two bodies.

For instance, to an observer on the moon the earth describes

an orbit which is exactly similar to the orbit which the moon
appears to describe to an observer on the earth.

224. Mass of a Planet which has a Satellite.— In order to

fix our ideas let the earth be the planet. Then, since the ac-

celeration due to the sun is practically the same on the moon
as it is on the earth, the period of revolution of the moon
around the earth is the same as if they were not in the gravi-

tational field of the sun. Therefore the period of the moon
around the earth is

p , 2rt'l

v 7 (w + ttc')

while that of the earth around the sun is

- -"-

where .1/", ///, and ///' arc the masses of the sun. of the earth,

and of the moon, respectively, a is t he semi-major axis of the

earth's orbit, and a' thai of the moon's orbit.

Squaring these equation- and dividing one by the other

±£L m (L\\(*)
+ ni V/'V w
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Since m' is negligible compared with ra, and in compared with

M, the last equation may be written in the form

m
M ©'•£)'

which gives the ratio of the mass of the planet to that of the

sun.

225. Kepler's Laws. — In establishing the truth of the law

of gravitation Newton showed that the same law which

makes the apple fall to the ground keeps the moon in its

orbit. Then he extended the application of the law to the

other members of the solar system by accounting for the

empirical laws which Kepler (1571-1630) had formulated

from the observations of Tycho Brahe (1546-1601). The fol-

lowing are the usual forms in which Kepler's laws are stated.

1

.

Each planet describes an ellipse in which the sun occu-

pies one focus.

2. The radius vector describes equal areas in equal inter-

vals of time.

3. The square of the period of any planet is proportional

to the cube of the major axis of its orbit.

The first law is, as we have seen, a direct consequence of

the inverse square law.

The second law follows from equation (III), which holds

good tor ;i ll bodies moving in central fields of force.

'I'lic third law amounts to stating that the masses of the

plaints are negligible compared with the mass of the sun.

For if ///. a, and /' refer to one planet and m', a', and P'to
another planet, then

P= ,

2 *«' andP'-V7 (M + m) Vy (M + m')

Therefore

try taY M +m'
'/'7 Uv ' M + m'
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Evidently when m and m* are negligible compared with M

©-6)' •

which is of Kepler's third law.

PROBLEMS.

1. The gravitational acceleration at the surface of the earth is about

980 cm. /sec. 2 Calculate the mass and the average density of the earth,

taking 6.4 X 108 cm. for the mean radius, and supposing it to attract as

if all its mass were concentrated at its center.

2. The periods of revolution of the earth and of the moon arc, roughly,

365^ and 27 J days. Find the mass of the moon in tons. Take 6.0 X 1027

gm. for the mass of the earth.

3. The periods of revolution of the earth and of the moon are 365^

and 27| days, respectively, and the semi-major axes of their orbits are,

approximately, 9.5 X 107 and 2.4 X 105 miles. Find the ratio of the mass

of the sup to that of the earth.

4. Taking the period of the moon to be 27£ days, and the radius of

its orbit to be 3.So X 10 10 cm., show that the acceleration of the moon.

due to the attraction of the earth, is equal to what would be expected

from the gravitational law. Assume the gravitational acceleration at

the surface of the earth, that is, at a point 6.4 X 108 cm. away from the

center, to be 980— •

sec

6. Show that if the earth were suddenly stopped in its orbit it would

fall into the sun in about 62.5 days.

6. Show that if a body is projected from the earth with a velocity of

7 miles per second it may Leave the solar system.

GENEK \l. PROBLEMS.

1. Find the expression for the central force under which a particle

describes the orbit r
n = an cos >td and consider the special cases when

(a) n = i, (c) » = 1, (c) n = 2.

(b) n=-h, («1) n = 2,

2. A particle moves in a central field of force with a velocity which is

inversely proportional to the distance from the center of the field. Show

that the orbit is a logarithmic Bpiral.
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3. A gun can project a shot to a height of — , where R is the radius of

the earth. Taking the variation of the gravitational force with altitude,

show that the gun can command —of the earth's surface.

4. A panicle is projected into a smooth horizontal circular groove.

The particle is attracted towards a point in the radius which joins the

position nf projection with the center, with a force equal to ~ Show that

in order that the particle may be able to make complete revolutions the ini-

tial velocity must not be less than ^
, where a is the radius of the

a L — b-

groove and b the distance of the center of force from the center of the

groove.

5. A cornel describing a parabolic orbit about the sun collides with a

body of equal mass at rest. Show that the center of mass of the two
describes a circle about the sun as center.

6. Prove that the least velocity with which a body must be projected

from the ninth pole so as to hit the surface of the earth at the equator is

about 1} miles per second, and that the angle of elevation is 22°.o.

7. A particle moves in the common field of two fixed centers of force

of equal intensity. The particle is attracted towards one of the centers

with a force which varies as its distance from that center, and repelled

from the other center according to the same law. Show that the orbit

is a parabola.

8. A particle moves in a field in which the force is repulsive and varies

ly as the square of the distance from the center of force. Show
thai the orbil is a hyperbola.

9. In the preceding problem show that the radius vector sweeps over
equal areas iu equal intervals of time.



CHAPTER XV.

PERIODIC MOTION.

226. Simple Harmonic Motion.— When a particle moves in

a straight line under the action of a force which is directed

towards a fixed point and the magnitude of which varies

directly as the distance of the particle from the fixed point,

the motion is said to be simple harmonic.

Let 0, Fig. 130, be the fixed point, m, the mass of the par-

ticle, and x its distance from 0; then the foregoing definition

gives

F=-kx, (I')

O mX. m
Fig. 130.

where k is the constant of proportionality. The negative

sign in the right-hand member of the equation (I') accounts

for the fact that F is directed towards the fixed point, while

x is measured in the opposite direction. Substituting this

expression for F in the force equation we get

mj
t

= -kx, (I)

I---* (I ">

where w 2 =—. Substituting?'- U>r inequation (I") and
m dx dt

integrating we have
y2 = c 2 — co'-'.r'-.

Let v= Va when x = 0, then c = r . Therefore

v =VVo
2 -o>2x2

. (II)

297
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Putting equation (II) in the form

dx t'o
1

2

and integrating we obtain

• , wo:
sin

-1— = ut+8,

Vn
or x = -sin (<at+ 8)

CO

= asin (ut+8), (III)

where 5 is the constant of integration and a = — •

CO

227. Displacement.— The distance, x, of the particle from

the fixed point is called the displacement.

228. Amplitude.— The maximum displacement is called

the amplitude. It is evident from equation (III) that the

amplitude equals a.

229. Phase. — The particle is said to be in the same phase

at two different instants, if the displacement and the velocity

at the «>ne instant equal, respectively, the displacement and
the velocity at the other instant.

230. Period.— The time which elapses between two suc-

cessive instants at which the particle is in the same phase is

called the period of the motion. In order to find the period

we will make use of the definition of a periodic function.*

It is evident from equation (III) that x is a periodic function

of t: therefore we can write

x = a sin [cot + <5]

= asin[«(*+P)+ «].

iy variable x is :i periodic function of any other variable t and if the

dependence <if z on / is given by the elation x = / (t), then the function satis-

fiea the following condition:

/(0-/(H
• period and » any positive or negative integer. As an illustra-

tbe function x = sin 9. This function evidently satisfies the

Therefore 2 w is the period.
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But since sin is a periodic function of 6 witji a period of 2 tt,

we have
sin = sin (d+2ir),

t herefore x= a sin [« (< + P) + 5 ]

= a sin M+ 5 + 2 tt]

2tt
and consequently P = (IV)

231. Frequency. — The number of complete vibrations

which the particle makes per second is called the frequency

of the vibration. If n denotes the frequency, then

U=
P

(V)

232. Time-distance Diagram. — Suppose the particle to

describe the vertical line AA', Fig. 131, the middle point of

Fig. L31.

which is the fixed point. Then OA = OA' = a = the ampli-

tude. The relation between the position of the particle and

the time may be visualized by plotting equation (III) with

x as ordinate and t as abscissa. This gives the well-known

sine curve.

A mental picture of the motion of the particle may be

formed by supposing thai the particle under consideration

is a projection of another particle which moves in a circle

of radius a with a constanl speed. 1 1 1
* second particle and

its path may be called the auxiliary particle and the auxiliary

circle, respectively.
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(HI')

233. Common Forms of Equation (III).— The following are

the typical forms in which equation (III) is written:

x = a sin (wt+ S) = a sin w (/ + fo)

= a sin [-£t+ 6] = a sin -— (t + to)

= a cos (wt + 5') = a cos w (£ + i/)

= acosf—^+ 8') = acos-^(£+^'),

where 5' = - — 8 and fo' — -— t .

2 4

234. Epoch.— The constants t and k' are called epochs,

and o and 8' are called epoc/i angles. The meanings of these

constants will be seen from Fig. 131.

235. Velocity.— The following expressions for the velocity

of the particle may be obtained either from equation (II) or

from equation (III)

:

v = Vv 2 — oi
2x- = u Va 2 — x2

= acocos (cot+ 8)

= aaj sin(c^+ <5 +

(I) is tho displacement - time curve

(II) is the velocity -time curve

Fro. L32.

I' Lb evident from these expressions that the velocity is a

Bimple harmonic function of the time, that it has the same
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period as the displacement, and thai it differs in phase Prom

P
the latter by

,
as shown in Fig. 132.

4

236. Energy of the Particle,

further explanation.

The following do not need

-X'
Fdx

2 w-m

2 iv-m ,

Of.

P 2
X

2Tr 2a-m

P 2
sin 2 ^(t + to). (VII)

e=t+v

p

2ir-a 2m
P 2

2ir-a-m

(a 2 - x 2
)

P2

(*+4).(vi)

(VIII)

Thus the total energy of the particle is constant and equals

the maximum values of the potential and kinetic energies.

The total energy varies, evidently, directly as the square of

the amplitude and inversely as the square of the period.

In Fig. 133, T, U, and V are plotted as ordinates and the

time as abscissa, with phase relations which correspond to

the curves of Fig. 132.

(I) is the Uand t Curve.

(II) is the T and t Curve.

(Ill)isthe E and t Curve.

Fig. 133.

237. Average Value of the Potential Energy. Since I ' may

be considered as a function of either x or t, we will find its

average value with respect to both variables. TakingO and
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a as the limits of x and the corresponding values of t as the

limits of t we have

p 1 Ca

i
/•> U*= / Udx

77<= _i_j Udt* a-OJo

f-o° =-JrPx*dx4 p 2 a Jo

= ±-"'"' firing* _^r
P P2 Jo P -

6

... E= sux =2 Ut- (IX)

PROBLEMS.

1. A particle which describes a simple harmonic motion has a period

of ."» Bee. and an amplitude of 30 cm. Find its maximum velocity and its

maximum acceleration.

2. When a load of mass m is suspended from a helical spring of length L

and of negligible mass an extension equal to D is produced. The load is

pulled down through a distance a from its position of equilibrium and then

sel free. Find the period and the amplitude of the vibration. Hooke's

law holds true.

3. Within the earth the gravitational attraction varies as the distance

from the center. Suppose there were a straighl shaft from pole to pole,

with no resisting medium in it. What would be the period of oscillation

of a body dropped into the shaft'.' Suppose the earth to be a sphere with

a radius of WOO miles.

4. In the preceding problem find the velocity with which the body

would pass the center of the earth.

5. A particle describes a circle with constant speed. Show that the

projection of the particle upon a straight line describes a simple harmonic

motion.

6. The pan of a helical spring balance is lowered 2 inches when a

weighl of ."» pounds is placed on it. Find the period of vibration of the

balance with the weighl on.

footnote p. L42.
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7. A particle which is constrained to move in a straight line is at-

tracted by another particle fixed at a point outside the line. Show that

the motion of the particle is simple harmonic when the force varies as the

distance between the particles.

8. A particle of mass m describes a motion defined by the equation

x = a sin (ojt + 5).

Find the average value of the following quantities, with respect to the

time, for an interval of half the period:

(a) displacement; (e) momentum;
(b) velocity; (f) kinetic energy;

(c) acceleration; (g) potential energy.

(d) force;

9. In problem S take the averages with respect to position.

10. In problem 8 suppose the motion to be given by

x = a cos oj (t + t ).

11. In problem 10 take the averages with respect to position.

12. In problem S suppose the motion to be given by the following

equations:

I. x = asm 2
(cot + 8).

II. x = a cos 2
(ojt + 5).

III. x = a sin iot cos (cct + 5).

238. Composition of Two Parallel Simple Harmonic Motions

of Equal Period. Analytical Method. - Suppose

.r, = «i sin (<at + 5 X ), (1)

and x-i = a-i sin (at + 52 ),

to define the motions which a particle would have if

acted upon, separately, by two simple harmonic forces.

Then the motion which will result when the turn- ad
simultaneously is obtained by adding equations (1) and (2).

Thus

X = X\ +
= Oi sin (ojt + Si) -f Ch sin (at + 5>).



304 ANALYTICAL MECHANICS

Expanding the right-hand member of the last equation and

rearranging the terms we get

x = (ai cos 5i + a2 cos 52) sin wt

+ (ai sin 5i + «2 sin S2) cos ut

= a cos S sin a>t + a sin 5 cos ut

= a sin («£ + 8),

where a cos 8= ai cos Si + a 2 cos 82,

and a sin 5 = ai sin Si + a2 sin 82 .

(3)

Fig. 134.

It is evident from equation (3) that the resulting motion is

simple harmonic and has the same period as the component

motion-.

Squaring the last two equations and adding we obtain

the amplitude of the motion in terms of the constants of

equations (1) and (2). Thus

a- = ar + o2
2 + 2 a xa2 cos (52 - Si). (4)

The phase angle of the motion is evidently defined by

O] sin 8\ + a2 sin 52
tan 6

ai cos Si + a 2 cos S2

(5)

239. Graphical Method. — The graph of the resulting mo-
tion may be obtained by either of the following methods:

I Represent the given motions by displacement-time

curves, bhen add the ordinates of these curves in order to
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obtain the curve which represents the resultant motion. In

Fig. 135 the curves (I) and (II) represent the component

motions and curve (III) represents the resultant motion.

Fig. 135.

(2) Draw two concentric auxiliary circles with radii equal

to the amplitudes of the component motions; draw a radius

in each circle making an angle with the 2-axis, equal to the

phase angle of the corresponding motion; the vector sum

of these radii gives the radius of the auxiliary circle for the

resultant motion and the corresponding phase angle. By
the help of this auxiliary circle the displacement-time curve

of the resulting motion can be drawn without drawing those

of the component motions.

PROBLEMS.

Find the resultant motion due to the superposition of two motions

denned by the following pairs of equations:

(1) Ji = ai sin ut and x2 = flj.sin f wt + -]

(2) Xi = «i sin (at and Xj = '/..cos (cot —
-J-

i

= ai cos ut and x% = OjCOS (ut + -
)•

(4) X\ — Oi sin <at and = Ojsin (ut-\-8).

(5) X\ = a x
sin ut and x< = Otcoawt.
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(6) Xi = d sin -= t and x2 = a 2 cos— (t + t ).

(7) Xi = oi cos w< and x» = a* eon (cot + 5).

(8) Xi = ai cos oj< and x» = a 2 cos (wi+ 5).

(9) xi = a, cos a'/ and x 2 = a 2 cos— (t + t ).

(10) Xi = ai sinfo}« + |j and a* = flfesin— t.

(11) xi = <h sin (a;/ + 50 and x 2 = « 2 cos (cot + 5 2).

(12) xi = «i cos (ut + 5,) and x2 = a 2 cos (u* + S2).

(13) Ji = ai cos -£ (t + t„) and x2 = o^sin^ (/ - t ).

Mi Xi = a, sin ^~(t- Q and x 2 = a 2 siny (< + f ).

(15) xi = ai cos -£(t— 'o) and x2 = a 2 cos— (t + / )-

240. Elliptic Harmonic Motion.— Consider the motion of a

particle which is acted upon by two harmonic forces whose

directions are perpendicular to each other. Suppose the

periods of vibration of the particle due to the separate action

of the forces to be the same, then the following equations

define the component motions.

x = a sin cot* (1)

y=bsm(at + 8). (2)

The equation of the path of the particle may be obtained

by eliminating / between equations (1) and (2). Expanding

the right-hand member of equation (2) and substituting for

sin tat and cos tat from equation (1) we get

y = b sin cot • cos 5+6 cos cot • sin 5

= b- cos 5 + 6 V 1 - ^- sin 5,

a . * a-

' The phase angle is left out of equation (1) to simplify the problem. This,

however, does nol affecl the generality of the problem. It simply amounts to

ng a particular instanl as the origin of the time axis. If, however, the

ogle i- left oul of l»>tli :>f the component motions the generality <>f the

problem it affected because thai will amount to assuming thai the compo-
nent motions .-ire in the aame phase.
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• sin 5.

a * a-

Squaring the last equation and simplifying we have

x 2
, y

2 2 xy . . .,—
; + To r cos 8 = sin 2

8,
o 2 o- ab

which is the equation of an ellipse, Fig.

136. The following cases are of special

interest.

Case I. When 5 = 0, equation (3) re-

duces to y = - x, which is the equation of

the line AA'. Substituting the values

of x and y in the equation

(3)

r = v x 2 + y
2

we obtain

r = Va 2 + b 2
• sin ut FlG

-
136 -

for the equation of the motion. Therefore the motion is

simple harmonic, in the line AA' , with an amplitude equal

to v/

a 2
-f b 2 and period— •

Case II. When 8 = v, equation (3) reduces to y = — x.
a

Therefore the motion is similar to that in Case I and takes

place in the line BB'.

Case III. When 8 = ± ~ equation (3) reduces to

*L
2

+ ^
2

= 1

while equations (1) and (2) become

x = a sin cot,

y = b cos ut.

In this case, therefore, fche particle describes an elliptical
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path with a period equal to — . The axes of the path coin-
co

cide with the coordinate axes.

Case IV. When S = =fc - and b = a, the path becomes a cir-

cle, and the motion uniform circular motion with a period

equal to— •

u>

PROBLEMS.

Find the resultant motion due to the superposition of the motions

defined by the following equations:

(1) s = a cos cot and y = a smut.

(2) x = a cos— (t + / ) and y = a sin— t.

(3) x = asm cot and y = a cos— (/ + t ).

(4) x = a sin (cot + 5) and y = a cos (co£ — 5)

.

(5) x = a cos co£ and y = b sin a>£.

(6) x = a sin (cot — 5) and (/ = b cos (oj£ + 8).

(7) x = a sin (cot —
-J

and ?/ = 6 sin
{
cot + -)•

(8) x = acosf w/ + M and y = 6sin (lot — -}

•(-9
(10) x = a cosM + 6i) and ?/ = 6 sin (co£ + 5 2 ).

241. Physical Pendulum.— Any rigid body which is free to

oscillate under the ad ion of its own weight is called a physical

or a compound pendulum. Let A, Fig. 137, be a rigid body

which is tree to oscillate about a horizontal axis through the

point and perpendicular to the plane of the paper. Fur-

ther lo c denote the position of the center of mass and D its

distance from the axis. Then the torque equation gives

/'^ = -mgDBmd, (X)

where m is the mass of the body and the angular displace-

ment from the position of equilibrium.

(9) x = a cos [cot — J and y = b cos ( cot + -
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The equation —:

T = -k-sinx is
ar

not integrable in a finite number
of terms; therefore the solution of

equation (X) must be given either

in an approximate form, or it must

be expressed as an infinite series.

First Approximation. — When
6 is small sin may be replaced by

6. Therefore we can write

r dco

dt
mgDd, (X') Fig. 137.

dt
(X")

where
mgD
I

' It be observed that the last two

equations are of the same type as equations (I') and (II') of

p. 297, the differential equations of simple harmonic motion.

Therefore the motion of the physical pendulum is approxi-

mately harmonic. Hence we can apply to the present prob-

lem the results which were obtained in discussing simple

harmonic motion. Thus the expression for the displace-

ment i^ a sin (ut+ 8), XI)

where a is the amplitude, i.e., the maximum angular dis-

placement of the pendulum. On the other hand the period

of the pendulum is
2 v

^o = —

r

= 2ttv/
\ mgD

/I r+mD*
- "" V —~

—

> mgD

= 2
IK-+D 2

XII

(XIII)
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where / is the momenl of inertia of the pendulum about an

axis through the center of mass parallel to the axis of vibra-

tion and K is the corresponding radius of gyration.

Second Approximation.— Starting with the energy equa-

tion we have

'ddV

x(D
!

mgh

= mgD (cos 6 — cos a),

or dt =
I dd
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Making these substitutions in the left-hand member of the

preceding expression for the period we obtain

P=4
\ mgD(iDJa V

" sin-" sin 2
<f> 'd<t>*

; +

4\/-^- /'Yl+isin^sinV+ -1^-sin^sin^ + - • -W
V mgDJo \ 2 2 1-2-3 2 /

V mgDJo L
l + ^sin 2 ^(l-cos2 0) + ]ch

=4i/5(24y
. 7r . , a ,

)

i p 1 »ff
i

1 +
i

Sin"2 +

1 + ^sin-

•) [by (XII)]

["when a is small higher "1

L terms may be neglected J

$ [*hen a is small sin

Therefore

242. Simple Pendulum. — A ball

which is suspended by means of a

string forms a simple pendulum when

it is free to swing about a horizontal /

axis through the upper end of the /
string, provided the mass of the string

is negligible compared with that of the /

ball and the radius of the ball is negli- v.

gible compared with the length of the

string. If m denotes the mass of the

ball and I the length of the string then

* This is called an elliptic integral.

t This expansion 1- carried nut by the Binomial theorem.

X See Appendix At.

I

(XIV)

Flo. 138

See Appendix A.
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the moment of inertia of the pendulum equals ml 2
. Therefore

substituting this value of / in the expressions for P and P
and replacing D by / we obtain

Po=27rV/-^-
y mgD

= 2irl/-' (XV)
* 9

for the first approximation, and

= P.(l +$ (XV)

for the second approximation.

243. Equivalent Simple Pendulum. — A simple pendulum

which has the same period as a physical pendulum is called

the equivalent simple pendulum of the latter. If I denotes the

Length of the equivalent simple pendulum, then

>
g

y gD

.-. i =
R2 + D\ (XVI)

For a giveo value of D and a given direction of the axis, K
is constant. Therefore if the direction of the axis is not

changed I is a function of I) alone. If we plot the last equa-

tion with / as ordinate and D as abscissa we obtain a curve

similar to that of Fig. 139. It is evident from the curve that

the value of I is infinitely large for D= 0, but it diminishes

2 K
rapidly to the minimum value—— as D reaches the value A'.

9
\- />i- increased further/ increases continually. It will be ob-

2 A
served that for a given value <»f / greater than" there are two

9

values of D, one of which is less and the other greater than K.
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The group of parallel axes about which the rigid body

oscillates with the same period forms two coaxial circular cyl-

inders,. Fig. 140, whose common axis passes through the cen-

D,->i

Fig. 140.

ter of mass. The cylinders which correspond to the minimum
value of the period coincide and have a common radius K.

PROBLEMS.

1. Find the period of the following physical pendulums:

(a) A uniform rod, i lie transverse dimensions of which arc negligible

compared with the length, oscillates aboul a horizontal axis through one

end.

(b) A sphere suspended from a horizontal axis by means of ;i string of

negligible mass. Discuss the changes in the period as the axis approaches

the center of the sphere.

(c) A circular flat ring oscillates aboul an axis which forms an element

of the inner surface.

\ door oscillates aboul the line of the hinu.es which make an angle

ex with the vertical.

2. A sphere of radius a oscillates hack and forth in a perfectly smooth

spherical howl of radius >>. Find the period of oscillation. The sphere

i.> supposed to have no rolling motion.

3. 'What effect on the period of a pendulum would he produced by a

change in the mass of the bob, or of the length of the string, or in the

radius of the earth, or in the length of the da\
,
or in the latitude of the

location?

4. A seconds pendulum lo8es -'ID seconds per day at the summit of ;i

mountain. Find the heighl of the mountain, considering the earth to he
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a sphere of 4000 miles radius and the gravitational force to vary inversely

as the square of the distance from the center of the earth.

5. Given the heighl of a mountain above the surrounding plain and

the period of a pendulum on the plain and on the top of the mountain,

find a relation from which the radius of the earth can be computed.

6. Supposing the gravitational attraction within the earth to vary as

the distance from the center, find the depth below the surface at which a

seconds pendulum will beat 2 seconds.

7. Derive a relation between the distance of a pendulum from the

cuter of the earth and its period.

8. A balloon ascends with a constant acceleration and reaches 400 feet

in one minute. What is the rate at which the pendulum gains in the bal-

loon?

9. A pendulum of length I is shortened by a small amount 5/. Show

that it will gain about ^r- vibrations in an interval of time of n vibra-

tions, n is supposed to be a large integral number.

10. How high above the surface of the earth must a seconds pendu-

lum be carried in order that it may have a period of 4 seconds?

11. While a train is taking a curve at the rate of 60 miles per hour a

seconds pendulum hanging in the train is observed to swing at the rate of

L21 oscillal ions in 2 minutes. Show that the radius of the curve is about

a quarter of a mile.

12. bind the expressions for the least period of oscillation the following

bodies can have; also determine the corresponding position of the axes.

(a) Rod of negligible transverse dimensions. (d) Solid cylinder.

(b) Square plate of negligible thickness. (e) Solid sphere.

(c) Circular plate of negligible thickness. (f) Spherical shell.

244. Determination of the Gravitational Acceleration by

Means of a Reversible Pendulum. — A physical pendulum

which is provided with two convenient axes of vibration is

called a reversible pendulum. Let Dand D', Fig. 141, denote

the distances of the axes from the center of mass. Then the

corresponding periods are

> gD
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Eliminating K and solving for g we get

°-* r '

D>P>*-DF>
'

(1)

Eleversible pendulums which are made for the purpose of

determining g are so constructed that the two periods are

very nearly equal. Therefore we can write

P'=P + 8P, [8P^P],
and obtain

, , D'--D 2

D' (P

= 4tt-

= 4 7T
:

= 4

spy- -dp 2

D' 2 - D 2

P 2 {D'-D) + 2 PD'SP + Z)' (5P) 2

D +D'
2D'

1/

[(8p)
2
is neglected]

1
-

D PJ
2D'

D'-D f) (2)

The approximate expression which

is given in equation (2) is better

adapted for computing the value of

g from experimental data than the

more exact expression given in

equation (1). This is due to the

fact that (D' — D), which cannot be

determined with a high degree of

accuracy, enters into equation ( 1)

as a factor, while it appears only in

the correction term of equation (2).

245. Bifilar Pendulum. — A rigid

body which is suspended by means

of two parallel strings, as shown in

Fig. 142, is called a bifilar pendulum

A
x

D

/

li... 1 11.

When the body is

given an angular displacement aboul a vertical axis through

See Appendix Ai.
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Substituting this value of G in the torque equation we hav

I

dt
-2FDcos-

= - 2 TD sin ^ cos -

.

First Approximation.— When and are small the fol-

lowing relations give close enough ap-

proximations.

T = h mg, ' cos- = 1,

— I'D

Dd = 1(f)* sin = ?<

flaking these substitutions in the torque

equation we get

T
du mgD'2

dt

which is the equation of simple harmonic

motion. Therefore

»=4? V-D » mg

is the period of the motion.

Second Aimm;< >\i.\iation.— From Fig.

143 we have

T cos <f>=%mg and ea' = lsin<t> = 2 Dsin- •

Therefore

and

. 2D .

sin = — sin -

T = mg mg
'_' COS

n/- 4
-;'-",

* The lineea' is considered as an arc of each ol two circles with centers a1 g and c
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Making these substitutions in the torque equation we obtain

rfco _ nujl)-

dt~ I

rm/I)-

2 sin -cos-

i-
4 D-

sm

\
4 d- . ., e

Iii actual experiments is made less than — • Therefore

even if the maximum value of is made as large as half a

radian the second term under the radical is less t haii
, f^ and

consequently negligible. Thus the last equation reduces to

du> _ mgD* .

which is the well-known pendulum equation. Therefore we

have

D V mg V

16/

1 +
L6

= n i

for a second approximation to the actual

value of I hf period.

246. Torsional Pendulum. —A torsional

pendulum consists of a rigid bodysuspended

by a wire, the wire being rigidly connected

to both the support and the body, Fig. 144.

When the body is given an angular displace-

ment about the wire as an axis and then left

to itself it vibrates with a constant period.

The torque which produces the angular displacement obeys

Hooke'a law; therefore

G=- IcO,

Fig. 144.
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where k is a positive constant which depends upon the physi-

cal properties of the wire* The negative sign indicate- tin-

fact that the torque and the angular displacement arc oppo-

sitely directed. Substituting this value of G in the torque

equation we have

I
Tt

= - kd
>

(XVII)

or
do*

dt

where c 2 = - But these are the typical forms of the equa-

tion of simple harmonic motion; therefore

2;r n IIP= — =2
c

/t (XVIII)
V/,

is the expression for the period. It will be observed that

the motion is strictly harmonic; consequently there is no

correction for finite amplitudes.

247. Application to the Determination of Moment of Inertia.

— Let P be the period of the torsion pendulum and P' its

period after the body whose moment of inertia is desired is

fastened to the bob of the pendulum. Further let / be the

moment of inertia of the bob about the suspension wire as an

axis and V the moment of inertia of the body. Then we have

p - 2VI
// + v

and P/ = 2»y- ^

Therefore

k

P' 2 - P- r

and I: = 4
P'-- P-

1 Ience if / is known both V and k may be determined experi-

mentally.
* Page L78
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248. Damped Harmonic Motion. — When a particle moves in

a harmonic field of force which is filled by a resisting medium

the motion of the particle is called damped harmonic motion.

The particle is acted upon by two forces, namely, a har-

monic force due to the field, and a resisting force due to

the medium. All resisting forces are functions of the veloc-

ity and art in a direction opposed to that of the velocity.

But since in harmonic motion the velocity does not attain

great values, we can suppose the resisting force to be a linear

function of the velocity. Therefore if F denotes the total

force acting upon the particle we can write

F = — fax — k->r,

where the first term of the right-hand member represents

the harmonic force and the second term the resisting force.

Substituting this value of F in the force equation we get

»i --**-*» oa%)

A motion which is the perfect analogue of the motion de-

fined by ('([nation (XIX) is obtained when a rigid body placed

in a resisting medium is subjected to a harmonic torque. The
motion is defined by the following torque equation:

/^ =-k'd-k"u, (XX)

where the first term of the right-hand member represents the

harmonic torque and the second term the resisting torque.

< >n account of the perfect analogy between the two types

of motion a discussion of one of them is all that is necessary.

We will consider the motion represented by equation (XX).
/,•" /,'

I • 2a and — = b 2
, then equation (XX) becomes
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The last equation is a differentia] equation of the second

order which can be solved by the well-known methods of

Differential Equations. We will, however, obtain the solu-

tion by a method which is more instructive and which may
be called an experimental method.

It will be observed that d and its first two derivatives arc

added in equation (1); therefore 8 must be such a function

of t that when it is differentiated with respect to the time the

result is a function of the same type. The only known ele-

mentary functions which satisfy this condition are the circu-

lar and exponential functions. But since circular functions

may be obtained from exponential functions* the solution

of equation (1) may be expressed in the form

6 = ae*, (2)

where a and p are constants. Replacing 6 and its first two

derivatives in equation (1) by their values, which are ob-

tained from equation (2), we get

(/3
2 + 2 a/3 + o 2

) ae" = 0.

Evidently one or both of the factors must vanish. When ae01

. = 0, = 0, which means that there is no motion. This is

called a trivial solution. When the other factor vanishes we
get

j8 = - a ± vV - 6 2
.

Substituting these values of /3 in equation (2) we obtain the

following particular solutions:

8' = ae-{<>+**=*\

In order to obtain the general solution we multiply the par-

ticular solutions by constants and add them. Hence

= ae—' (de
vV -^' + Cfi-

y/°rr*')

* Sec Appendix Avii.
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is the general solution of equation (2). Now let 6= when

t = 0, then Co = — C\, Therefore

e=A 1e—'(e
v* zn:u -e- v*zr» t

) }
(XXI)

where A x
= ac

x
. There are three special cases which must

be discussed separately.

Case I. Let o 2 = b\ then 6 = for all values of the time.

Therefore this is a case of no motion.

Casi II. Let <r> b 2
, then Va 2 - 6 2

is real.

radical by c we have

d=A l [e-
{a

The character of the motion

is brought out by the graph

of ('(inutioii (XXII), Fig.

I
1."). The graph is easily

obtained by drawing the

dotted curves, which are

plotted by considering the

terms of the right-hand

member of equation (XXII)

separately, and then adding

them geometrically. It is

evident from the curve that

t he value of 9 starts at zero,

increases to a maximum,

Denoting this

(XXII)

Fig. 1
1."..

and then diminishes to zero

asymptotically. In this case the motion is said to be aperi-

odic «»f dead-bi at.

III. L.t a- <b- then \ <r - (>- is imaginary. Let

s i i and V&» - a2 = «. Then vV - 62 = iu. Making
tin- substitution in equation (XXI) we obtain

e=A
le-

at
(e

ikt -c- ikt

)

= A xe~
al -2 /sin ul*

= Ac- a, smut, (XXIII)

* See Appendix Avn.
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where A = 2iAi. Equation (XXIII) is the integral equa-

tion of harmonic motion with the additional factor e~ at
,

which is called the damping factor. On account of this factor

the amplitude of the motion continually diminishes.

It is evident from equation (XXIII) that the motion is

periodic and has a period

V6 2 - a 2
(XXIV)

The character of the motion is brought out clearly by the dis-

placement-time curve of Fig. 146. A mental picture of the

Fia. 146.

damped harmonic motion of a particle may be formed by con-

sidering the motion of an auxiliary particle which moves in

a logarithmic spiral. If the auxiliary particle describes the

logarithmic spiral of the figure in the counter-clockwise di-

rect ion, in such a way as to give I he radius vector a constant

angular velocity, then the motion of the projection of the

auxiliary particle upon the "-axis is damped harmonic

The logarithmic spiral may be used as an auxiliary curve

in drawing the graph of equation (XXIII), as the circle is used

in drawing a sine curve.
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249. Logarithmic Decrement.— The logarithm of the ratio

of two consecutive amplitudes is constant and is called the

logarithmic (Urn ment of the motion. The amplitudes occur

whenever the relation

tan (orf) = —

is satisfied. Let the first amplitude occur at the instant

t = U ; then since the period of the tangent is tt, the times of

the succeeding amplitudes are given by

tan (coO = tan (wh + rnr),

or by t = h +
rnr

LO

where n is a positive integer. Hence, denoting the loga-

rithmic decrement by A and the nth amplitude by an , we

have

X = log —

—

(by definition)
ocn + 2

= log
^ e

" a(< ' +

H s
;
nMl + n7r)

[by (XXIII))

Ae~
a^ + '

L^ X
) sin [a>ti + (n + 2)ir]

log

2tt

= al>

'"

i

P. (XXV)

Therefore if / is known /," may be determined from observa-

tion- of /' ;in<l a .

'
( obtained by Betting- . = 0.
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250. Effect of Damping on the Period. — Substituting the

values of a and 6 in the expression for the period,

Vy-pi

i+^

= ^0(1+^)' (XXVI)

where P is the period for the undamped motion. It is evi-

dent from equation (XXVI) that the damping increases the

period.

VIBRATIONS ABOUT A POSITION OF EQUILIBRIUM.

251. Lagrange's Method.— In the various pendulum prob-

lems which we have discussed the vibrating body was consid-

ered to be either a particle or a rigid body. These simplifi-

cations were necessary because the methods we have used

cannot be applied conveniently to complicated systems. La-

grange (1736-1813) introducedinto Dynaniii-s a methodwhich

can be applied to any vibrating system. The following is a

special case of his method adapted to conservative systems

which have only one degree of freedom of motion.

Express the potential energy of the system as a function

of a properly chosen* coordinate q, so thai when expanded

in ascending powers of q the first power of 9 does qoI appear.

Thru the potential energy takes the form

U= A.+ fa% + M + • •
. xxvii)

where /3 , #>, etc., arc constants. The constant ft can be

* It is shown in books on advanced Dynamics thai such a choice is always

possible.
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eliminated by taking the origin as the position of zero poten-

tial energy. Thus we have

U=Ptf+($zq*+ (XXVII')

But since the vibrations are supposed to be small, q remains

a small quantity during the motion. Therefore the higher

powers of q are negligible compared with q
2

. Thus neglect-

ing the higher terms we obtain the following expression for

the potential energy of the system.

£/=!/3<Z
2

,
(XXVIII)

where \ = /32 .

The kinetic energy, on the other hand, takes the form

T=±aq2
,

(XXIX)

where a is a constant and q = --*
. But since the system is

conservative the sum of its dynamical energy remains con-

stant. Therefore
E= T+U
= \ aq°- + \ $q\ (XXX)

Differentiating both sides of the last equation with respect

to the time,

ag + /fy=0, (XXXI)

which is the differential equation of simple harmonic motion.

Therefore we have

q = a sin V - (t + k) (XXXII)
_ a

and P=27rV^. (XXXIII)
' p

Hence the main part of Lagrange's method consists of select-

ing the coordinate which defines the position of the system

in such a way as to make the expressions for the kinetic and

potential energies of the forms

T=h«q\
U=\Pq\
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ILLUSTRATIVE EXAMPLES.

1. A weight which is suspended by means of a helical spring vibrates

in the gravitational field of the earth. Find the expression for the period,

taking the mass of the spring into account.

Let m = mass of the suspended body.

m' = mass of the spring.

p = mass per unit length of the spring.

L = length of the spring before the body is suspended.

D = increase in the length of the spring due to the weight of the

suspended body.

a = the distance through which the body is pulled down in

order to start the vibration.

In Fig. 147 let denote the position of equilibrium, A the lowest posi-

tion, and B any position of the body. The coordinate in terms of which

we want to express the energy of the system must vanish at the position

of equilibrium. Therefore we will define the position of the suspended

body in terms of its distance from the position of equilibrium. The dis-

tance will be considered as positive when measured downwards. Let q

denote this distance then the kinetic energy of the suspended

body equals £ mq 2
. In order to express the kinetic energy of

the spring in terms of this coordinate let as denote the distance

of an element of the spring from the point of suspension.

Then the kinetic energy of the entire spring is

1 r
x 2 dm

1 C L '' ., ,

= 2 J, Z?«
•"**
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By Hooke's law the force which produces the extension of the string is

a harmonic force, that is, if Q denotes the force then Q = - kq, where k is

a constant. Therefore the potential energy of the system is

U = - CQJq
Jo

= k \

q
q dq

Jo

= \kq\

But Q = nig when q =-D. Therefore mg = kD, or k = ^ .
Making

this substitution in the expression for the potential energy we obtain
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mass. Find the period with which the particle will vibrate when dis-

placed along the string.

Let U be the stretched length of the string, .1 the area of its cross-flec-

tion, q the distance of the particle from its position of equilibrium, and 'J\

and T2 the tensile forces of the two parts of the string. Then by Booke's

law we have

^ x
(2" + V~2 . L'-L + 2g

A
=X

1
= X

I
'

9

^JizitlS = X\2 V 2 . x
g-L-2 t .

.4 L L
2

Therefore the resultant force on the particle is

where X' = AX. Hence the potential energy equals

2X' .q:

But since the kinetic energy is given by

1 2X'
we obtain E = - mq 2 + -=- q

2

Z Ld

for the total energy of the system. Differentiating the last equation we

get

mq +— q = 0,

which gives

and r* = ir \ •

3. A cylinder performs small oscillations inside of a fixed cylinder.

Find the period of the motion, supposing the contact between the cylin-

ders to be rough enough to prevenl sliding.
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Let m be the mass of the vibrating cylinder and a and b the radii of the

vibrating and the fixed cylinders, respectively. Then at any instant

T = 1 /co 2
,

where T denotes the kinetic energy

of the vibrating cylinder, / its mo-

ment of inertia about the element of

contact and o> its angular velocity.

Bui
1 = 1 ma2

,

v
and co = - = (b-a)9, FlG 14g

where v is the linear velocity of the axis of the moving cylinder and 6 its

angular velocity. Therefore

T = fm(6-a) 2 2
.

On the other hand we have the following expressions for the potential

energy

:

U = mgh

= mg (b — a) (1 — cos 6)

-»-«>H'-atS~ ••)*]•

Since is supposed to remain small all the time, it is permissible to neglect

the higher terms of 9 in the last expression for U. Therefore we have

U = i mg (b - a) d\

Thus both T and U are expressed in forms which are adapted to the appli-

cation of Lagrange's method.

The total energy of the system is

E = I m (b - a) 2 2 + | mg (b - a) 2
.

I differentiating the last equation with respect to the time we obtain

3(b-a)'d + 2g6 = 0.

Therefore

*,V
/

i(?h)«+ tt

and -V (b - «)

The expansion is carried out by Maclaurin'a Theorem. Sec Appendix Ai.
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When the contact is smooth we have

T = lm (b - ay-d-,

and U = | mg (6 - o) 0-\

Therefore = a sin \ / t-2— (< + '«)

,

\ o — a

and P = 2iri/^^.

Thus the length of the equivalent simple pendulum is (6 — a) when the

contact is smooth and —*-——' when it is rough.

PROBLEMS.

1. A butcher's balance is elongated 1 inch when a weight of 4 pounds
is placed in the pan. If the spring of the balance weighs 5 ounces, find

the error introduced by neglecting the mass of the spring in calculating

the period of oscillation.

2. Find the expression for the period of vibration of mercury in a

U-tube.

3. If in the illustrative problem on p. 329 the particle divides the string

in the ratio of 1 to n, show that the period is P = 2 irV "'
~

• ^t •

T //- X

4. Find the period of vibration of a homogeneous hemisphere which
performs small oscillations upon a horizontal plane which is rough enough

to prevent sliding.

6. Find the period of vibration of a homogeneous sphere which makes
small oscillations in a fixed rough sphere.

6. A particle of mass m is attached to a point on a smooth horizontal

table by means of a spring of natural length L. [f the particle is pulled so

that the spring is stretched to twice its natural Length and then let go, show

that it will vibrate with a period P = 2 (w + 2) y— , when' T is the force

necessary to stretch the Bpring to twice its natural length. The mass of

the spring is negligible.

7. Two masses ///, and tn- are connected by a spring o! aegligible mass.

The modulus of elasticity of the spring is such that when Mi is fixed m 2

makes n vibrations per second. Show thai when in- is fixed mi makes

nV^v brations per second.
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8. In the preceding problem suppose both of the particles to be free

and show that they make n V
"''-±-^2 vibrations per second.

9. A string which connects two particles of equal mass passes through

a small hole in a smooth horizontal table. One of the particles bangs

vertically while the other, which is on the table at a distance D from the

hole, is given a velocity Vg~D in a direction perpendicular to the string.

Show that the suspended particle will be in equilibrium and that if it is

hi i)

slightly disturbed it will vibrate with a period of 2ir y — •

10. The piston of a cylinder, which is in a vertical position, is in equi-

librium under the action of its weight and the upward pressure of the gas

in the cylinder. Show that when the cylinder is given a small displace-

ment it will vibrate with a period equal to 2 tt y -, where h is the height

of the piston above the base of the cylinder when the former is at its equi-

librium position. Assume Boyle's law to hold.

11. In illustrative problem 2 (p. 328) take the mass of the string into

account and obtain the expression for the period of vibration.

12. In problem 6 take the mass of the spring into account and obtain

an expression for the period.

13. In problem 7 take the mass of the spring into account and find the

expression for the period of vibrations.

14. In problem 8 take the mass of the spring into account and find the

expression for the period.

16. A pari icle is placed at the center of a smooth horizontal table; two

particl.- of the same mass as the first one are suspended by means of

Btrings of negligible mass, each of which passes over a smooth pulley at

the middle point of one of the edges of the table and is attached to the

firsl particle. The particle at the center is given a small displacement

at righl angles to the strings. Show that it performs small oscillations

with a period of 2 tt \ - where a is the distance between the two pulleys.

16. A particle rests at the center of a square table which is smooth and

horizontal. Four particles are suspended by means of strings each of

which passes over an edge of the table and is connected to the particle on

the table. Find the period with which the system will vibrate when the

le which is on the table is displaced along one of the strings. The
particles have equal mass. Neglect the mass of the strings.



PERIODIC motion 333

17. A. particle is in equilibrium at a point midway between two centers

Of attraction, which attract the particle with forces proportional to the

distance. Show that if the particle is displaced toward one of I he centers

it will vibrate with a period of =
, where K and K' are the forces

v K + K'

which a unit mass would experience when placed at a unit distance from

each center of force.
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[. BINOMIAL THEOREM.

(a + z)» = a" + 2 a- .r + ?-^=^ a-**' + * (* - 1H" " 2>

a
n-3j-3 + . . .

< l
+t\-

When x «C a, and consequently
.r
2 x3

. „— > — , etc.,<Cx.

Applying this theorem to (1 ± x) -1 we obtain

—^— = 1 - x + x- - x 3 + • • •

1 + x

«.'
i _ - pVhen x«l, and consequently!

|_x2, a;
3
, etc.,<x.

—^— = l + .r + x- + x 3 + • • •

1 — x

.., and consequently[When x <§: 1, ai

.(-. x8
, etc.,<^Cx.

II. QUADRATIC FORMULA.
If x .satisfies the quadratic equation ox8 + 6x + c = 0, then

— b ± V6- - 4 (//

T= 2^

III. LOGARITHMIC RELATIONS.

(a) lop, ab = \u<r<l + loir/*.

,. . , _ , friiis formula may be obtained from (a) l>v~|
(b) log a n = n log a. , . ., ,

[Jetting b = a, a-, etc., until nb = a .

(c) log: = loga — log&. [This follows immediately from (a) and (b).]

(d) log 1 = 0. [This is obtained by letting 6 = </ in (<•').]

IV. TRIGONOMETRIC RELATIONS.

sin- X -f- COS'l = 1.

(b) 1 + tairx = sfi-'.r.
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(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

tan (x ± y)

sin (x ±y) = sin x cos y + cos x sin (± y).

cos (x ± y) = cos x cos y — sin x sin ( ± y)

tanx + tan (± ?/)

1 — tanx tan (± ?/)

sin 2 x = 2 sin x cos x.

cos 2x = cos 2 x — sin 2 x.

. n 2 tan x

[(f), (g), and (h) are obtained by let-1

ting y = x in (c), (d), and (e).

sin x = 2 sin - cos -•

cos x = cos 2 - — sin 2 -•

2 tan

(k) tan x

Phese may be obtained by replac-

gxby | in (f), (g), and (h).

1 - tan-'

(1)

(m)

(n)

(o)

sin 2 x :

cos2 X

. ,x
sin 2 - (1— cosx).

(1 + cosx).

These may be obtained easily from (g).

[These are obtained by replacing x by"

- in (1) and (m).

2

HI - cos 2 x).

I (1 +cos2x).

1

2

2 2

Angle between two lines.

(p) cos 6 = cos a cos a' + cos/3cos/3' 4- cos 7 cos 7'.

Y MACLAURIN'S THEOREM.

f(x)=J(0)+f
l

f'(0) + p"(0) + fi

r(0)+- • •

VI. IMP* > RIANT FUNCTIONS EXPRESSED AS POWER SERIES.

The following expansions are carried out by Maclaurin's theorem.

= 1 + x. [When x <£C 1, and consequently x 2
, x 3

, etc., <C x.]

(b)
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J° X 2 X* X6

(e) <*»* = o|-2i+ iI-6l + , [0! = 1]

= 1. [When x<^ 1, ami consequently x 2
, x 3

, etc.,<g;x.]

(f) log(l+x)=y-^ +
3! 4!

for - 1 < j- < 1

(a)

(b)

(0

(d)

e*x _ cos j- _|_ isinx.

= x. [When j<1, and consequently x 2
,

x

3
, etc., <£. x.]

VII. RELATIONS WHICH CONNECT EXPONENTIAL FUNC-
TIONS WITH CIRCULAR FUNCTIONS.

"These are called De Moivre's Theorems

and are obtained by comparing series (b)

and (c) of VI with series (d) and (e) of

the same group.

"This relation is obtained by subtract-

ing (b) from (a).

"This relation is obtained by adding (b)

to (a).
cosx

cos x — i sin x.

+ e-

VIII. HYPERBOLIC FUNCTIONS.

(a) sinh x = i sin (t'x).

(b) coshx = cos (ix).

These are the definitions of the hyperbolic sine and the hyperbolic cosine.

Replacing x by ix in equations (c) and (d) of group VII we obtain the

following relations between hyperbolic and exponential functions:

e
x - e~x

(c) sinh x

(d) cosh x

2

e' + e-

Squaring equation (c) and subtracting it from the square of equation

(d) we obtain

(e) cosh 2 x — sinh 2 x = 1.

IX. AVERAGE VALUE.

The average value of y = f (x) in the interval between x = Xi and

x = Xn is given by

y a ——j",
ydx.

X' — X,<y r,
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Trigonometric Functions.

0°-22 .5.

Degree

—



Trigonometric Functions.

22°.5-45°.

Degree.



Exponential Functions.

X





INDEX.
The numbers refer to pages.

Acceleration, 89.

angular, 97.

normal, 92.

radial, 95.

tangential, 92.

transverse, 95.

Action and react ion,. 15.

angular, 35, 218.

law of, 15, 39, 101, 197, 218.

linear, 35, 101.

types of, 35.

Adiabatic compression, 176.

elasticity, 177.

Amplitude, 13G, 29S.

correction for, 311.

Atwood's machine, 119.

Average value, 142, 301.

Axis, instantaneous, 32, 228.

of rotation, 30.

of spontaneous rotation, 279.

Belts, 67, 71.

Binomial theorem, 337.

Boyle's law, 17ii.

Cable, dip of, 62.

length of, 66.

( 'at diary. »'••">.

( Sentrodes, 32.

( !ircle, auxiliary, 209.

( 'ollisiou. 244.

Comparison of translation and rota-

tion. 222.

Composition of harmonic mot |<

equal periods, 303, i" '<

Configuration, 193.

standard, 194.

Contact , elastic, -'if..

inelastic, 247.

( !oordinates, spherical, 1 17.

( Hid-, equilibrium of, 60.

Couple, 35.

arm of, 37.

plane of, 37.

Damping factor, 323.

Degrees of freedom, 14, 39.

De Moivrc's theorem, 339.

Dimensions, 75.

of, see Units.

Dip of cable, 62.

Displacement, 77.

angular, 86.

in S. H. M., 298.

most general, 34.

screw-, 34.

virtual, 181.

Dynamical energy, 96.

conservation of, 96.

Dynamics, 2.

Dyne, 108.

Efficiency of a blow, 251.

Elastic limn. 17:;.

. 246

Elasticity, adiabatic, 177.

isothermal, 177.

modulus of, 17:;.

perfi ei. 246.

Bhearing, 178.

Energy, 186.

conservation of. 196.

degradation of. 203.

equation, 197.

kinetic, lsii, lss.

lost in collision, _' 17. 2 19.

method, 2!
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Energy, potential, 186, 194.

transformation of, 186.

Epoch, 300.

angle, 300.

Equilibrium, ;t special case of motion,

L73.

and potential energy, 208.

conditions of, 16, W, 208.

of a pari ick, 16.

of ri^id bodies, 40.

of flexible cords, chains, belts, etc.,

stability of, 208.

stable, unstable and neutral, 210.

Erg, 167.

Expansion into series, 338.

Exponential, curve, 66, 70.

fund inn.-. 339, -117.

Field intensity, 212.

Fields of force, see Force.

Flexibility, 60.

I orce, 1 1. i">.

and momentum, 239.

central, L26, 283.

central fields of, 283.

conservative, 193.

coplanar, 11, 48.

dissipative, 194.

equation, 106.

external, 15.

fields of, 203, 210,283.

{notional, 21.

in a field, 204.

internal, l.">, 12.

moment of, 38.

inian, 210.

aonconservative, 19 1.

iltant, ion.

resultant of, 25, 17, 19.

transmissibility <>f, 12.

virtual, 181.

.i.e. mathematical,

on, angle of, 21.

Friction, belts, 67.

coefficient of rolling, 56.

coefficient of sliding, 22.

couple, 57.

kinetic, 22.

laws of, 22.

on journal hearings, 51.

on pivot hearings, 53.

rolling, 56.

sliding, 21.

static, 22.

Fund ions, circular, 339.

exponential, 339.

hyperbolic, 339.

trigonometric, 337.

Fundament al magnitudes, 71.

Gravitational, acceleration, 109, 314.

constant, 210.

law, 210, 289.

Guide plane, 31.

Gyration, radius of, 155.

Harmonic, see Motion.

Homogeneous equation, 76.

Hooke's law, 173.

Hyperbolic functions, 339.

Impact, 249.

oblique, 258.

Impulse, angular, 265.

linear, 238.

of compression, 245.

of restitution, 245.

Impulsive reaction, 279.

Inertia, 100.

moment of, 152.

Introduction, 1.

Isolated system, 195.

hot hernial compression, 175.

Joule, 167.

Kepler's laws, 294.

Kilowatt, L91.



i m ) i : x 351

Kinematics, 2.

Kinetic reaction, angular, 218.

lunar, 100.

measure of angular, 220

measure of linear, 103.

normal, 106.

tangential, 105.

Kinetics, 2.

Lagrange's method, 325.

Lever arm, 39.

Logarithmic decrement, 324.

Logarithmic tables, 343.

Maclaurin's theorem, 338.

Mass, 71. L02.

and weight, 109.

center of, 140.

comparison of, 110.

of a planet, 293.

Mechanical advantage, 183.

Mechanics, scope of, 1.

divisions of, 2.

Moment of force, 3S.

Moment of inertia, L52.

experimental determination of, 319.

experimental definil ion of, 220, 221.

mathematical definition of, L52.

theorems on, 1") I.

Momentum, angular, 266.

conservation of angular, 268.

conservation of, 241.

force and, 239.

linear, 239.

of a system, 241.

moment of, 266.

torque and angular, 267.

Motion, al)out a fixed axis, 224.

aboul instantaneous axes, 228.

along an inclined plane, 16.

analysis of, 73.

aperiodic, 322.

damped harmonic, 320.

dead beat, 322.

elliptic harmonic, 306.

equations of, 1 1 1.

Motion, in resisting media, 130.

of center of mass, 2 I-'

of falling bodies, LI I, L27.

of two gravitating particles, 2*7.

of projectiles, 120.

of a particle, 100, 113.

of a rigid body, 30, 218.

of rotation, 30.

of translation, 30.

periodic, L33, 297.

relativity of, 7:;.

relative to center of mas.-. 272.

simple harmonic, 133, 297.

uniformly accelerated, 113.

uniform circular, 125.

uniplanar, 31, 228.

where mass varies, !'.">:;.

Newtonian, field of force, 210.

law of force, 210.

potential, 211.

Notation, 3.

table of, xi.

Orbits, equation of, 285.

types of, 290.

( Oscillations, small, 325.

Parallelogram method, 5.

Particle, 1 1.

auxiliary, 2'.".'.

Pendulum, ballistic, 271.

bifilar, 315.

compound, 308.

equivalent simple, 312.

physical, 308.

reversible, 21 1.

simple, oil.

torsional, 318.

Percussion, center of. 279

Period, 136, 292, 298

effect of damping on thi

half Value, 66, 70.

Periodic function. 298.
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Potential, due to a particle, 211.

due to any distribution, 212.

field, 212.

Newtonian, 210.

Power, 191.

Pressure, 172.

volume-diagram, 175.

Torque, representation of, 37.

resultant, 219.

Torsion, 172.

Triangle method, 5.

Trigonometric functions, 345.

relations, 337.

Tycho Brahe, 294.

Quadratic formula, 337.

Radius of gyration, 155.

Range, 122.

for sloping ground, 123.

Reaction, see Action.

frietional, 21.

normal, 21.

of avis, 276.

total, 21.

Reference system, 73.

Resiliency, 246.

Restitution, coefficient of, 246.

impulse of, 245.

Rigid body, 30.

Rigidity, torsional, 177.

Rout h's rule, 163.

Dip.

Bcalars, •'{.

Screw motion, 34.

Shear. 172.

Simplification of problems, 60.

Speed, 77.

Stability, criterion of, 208.

Statics, '-'.

Strain, 17_'.

17.'.

Suspension bridge, 61.

Tension, 17.'.

Torqui

and angular momentum, 267.

equation, 221,

in a Held, 206.

Ill'

Unit, angle, 87.

angular acceleration, 97.

angular velocity, 87.

derived magnitudes, 74.

energy, 167.

force, 108.

fundamental magnitudes, 74.

impulse, angular, 266.

impulse, linear, 239.

length, 74.

mass, 75.

momentum, angular, 266.

momentum, linear, 239.

of acceleration, 91.

power, 191.

systems of, 76.

time, 74.

torque, 37, 221.

velocity, 78.

weight, 76, 109.

work, 167.

Vectors, 3.

addition of, 4.

analytical method, 10.

difference of two, 7.

graphical method, 9.

multiplication by scalars, 11.

origin of, 3.

parallelogram method, 5.

representation of, 3.

resolution of, 8.

resultant of, 5, 9.

Bubl faction of, 7.

terminus of, 3.

Velocity, 77.

angular, 87.
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Velocity, componenta of, 79.

from infinity, 129, 291.

limiting. 131, 233.

orbital, 290.

radial, 81.

relative, 83.

transverse, 81 ,

Vibrations, 325.

Virtual, displacement, 181.

force, 181.

work, 180.

Watt, 191.

Weight, 109.

and mass, 109.

Work done, againsl conservative

forces, 194.

againsl frictional forces, 185.

againsl gravitational forces, 166.

against kinetic reaction, 185, 186.

by ;i force, 164.

by a torque, 169.

by components of force, 167.

in compressing Quids, 170.

in stretching a string, 174.

in twisting a rod, 179.

results of, 185.

virtual, 180.

Young's modulus, 173.
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