

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

Table	of	Contents
Introduction

What	Is	a	Font

Trusting	Your	Eyes

Planning	Your	Project

The	EM	Square

Installing	Fontforge

Configuring	Fontforge

General	UI	introduction

Using	the	Fontforge	Drawing	Tools

Drawing	With	Spiro

Creating	“o”	and	“n”

Font	Info	&	Metadata

Word	Space

Creating	Your	Type	DNA

Capital	Letters

Line	Spacing

Punctuation	and	Symbols

Completeing	the	Lower	Case

Diacritics	and	Accents

Numerals

Bold	and	Other	Weights

Italic

Spacing,	Metrics	and	Kerning

Making	Sure	Your	Font	Works,	Validation

The	Final	Output	Generating	Font	Files

When	Things	Go	Wrong	With	Fontforge	Itself

Designing	Devanagari	Typefaces

Importing	Glyphs	from	Other	Programs

Adding	Glyphs	to	an	Arabic	Font

Further	Reading

Glossary

2

Introduction

This	book	has	been	produced	to	help	make	the	process	of	type	design	available	to	anyone.	Type	design	is	visually	complex	as
well	as	highly	technical	–	however	it	is	easier	to	begin	making	type	now	than	ever,	partly	because	of	the	availability	of	free	tools
like	FontForge.	While	being	a	handy	tool	with	which	to	begin,	FontForge	is	not	just	for	beginners.	It	has	an	advanced	toolset
and	is	rapidly	improving	at	the	time	this	book	is	being	written.

This	book	aims	to	offer	technical	help	and	general	insight	into	planning	a	type	design	project,	and	also	offers	advice	about	how
to	make	your	workflow	more	efficient.

If	you	wish	to	help	us,	you	can	contribute	to	making	FontForge	better	by	giving	feedback	or	even	by	contributing	content	and
fixes	on	GitHub.
If	you	face	any	bug	in	FontForge,	search	the	issue	tracker	on	GitHub	to	see	if	you	hit	a	known	bug	and	what	the	state	of	its
resolution	is.	Otherwise,	see	here	for	bug	reporting	guidelines.

We	hope	you	will	enjoy	reading	this	tutorial	as	much	as	we	did	writing	it.

—	The	FontForge	Project	Contributors

Introduction

3

http://fontforge.github.io/
https://github.com/fontforge/designwithfontforge.com/
https://github.com/fontforge/fontforge/issues

What	Is	a	Font

—	What	makes	typefaces	different	from	hand-writing,	calligraphy,	lettering,	and	logos?

The	single	biggest	issue	that	makes	type	design	different	is	the	need	for	every	glyph	in	the	typeface	to	work	with	every	other
glyph.	This	often	means	that	the	design	and	spacing	of	each	part	of	the	typeface	ends	up	being	a	series	of	careful
compromises.	These	compromises	mean	that	we	can	best	think	about	typeface	design	as	the	creation	of	a	wonderful	collection
of	letters	but	not	as	a	collection	of	wonderful	letters.	In	other	words	we	must	think	about	the	group	and	how	it	will	perform
together	and	prioritize	this	over	any	question	of	what	is	wonderful	in	a	single	letter.

This	need	to	prioritize	with	the	system	rather	than	with	any	single	part	also	leads	to	a	need	to	analyse	our	design	process	on	the
level	of	the	system.	Characteristics	which	span	letters	become	the	things	we	want	to	focus	on,	particularly	at	the	beginning	of
the	design	process.

The	other	oddity	in	type	design	is	that	to	a	very	large	extent	the	forms	we	are	designing	are	already	significantly	established.
Our	task	as	type	designers	is	not	so	much	to	create	an	utterly	new	form	but	rather	to	create	a	new	version	of	an	existing	form.
This	can	perplex	new	type	designers.	Finding	just	the	right	amount	to	change	in	order	to	excite	but	not	to	alienate	a	reader	is	a
tricky	thing.	Often	designers	get	stuck	in	letter-specific	thinking.	This	mistake	can	be	easily	avoided	if	you	realize	from	the	start
that	what	is	most	meaningful	in	a	typeface	are	the	parts	of	it	that	repeat	the	most.	Typeface	design	is	not	just	about	designing
the	characteristics	applied	to	the	common	forms	we	all	recognize,	but	also	to	the	forms	that	occur	most	often.

It	is	also	useful	to	recognize	that	these	characteristics	not	only	help	to	create	a	font’s	voice	or	atmosphere,	but	also	determine
what	the	font	will	or	will	not	be	useful	for,	and	they	sometimes	help	determine	the	technological	contexts	for	which	a	font	is
suitable.

It	may	seem	intimidating	or	excessively	abstract	to	think	about	the	design	of	a	font	in	this	way.	However,	getting	used	to	these
ideas	is	the	key	to	a	faster,	more	effective,	and	satisfying	type	design	process.

Let’s	begin	by	identifying	the	main	systemic	characteristics	in	type	design.

Construction

What	Is	a	Font

4

Construction	refers	to	the	structure	of	the	underlying	strokes	that	form	a	particular	glyph.	Perhaps	you	can	imagine	the	glyph’s
skeleton.	The	kind	of	construction	to	use	is	arguably	one	of	the	most	important	questions	to	think	about,	because	the
construction	affects	so	many	of	the	remaining	choices,	particularly	if	your	design	is	going	to	feel	somewhat	familiar	to	readers.
In	the	example	above,	the	white	line	inside	the	letters	indicate	the	approximate	construction	suggested	by	the	shape	of	the
letters	themselves.

However,	the	way	strokes	end	(the	‘terminals’)	and	the	‘serifs’	(see	below)	are	generally	not	part	of	what	is	meant	by
‘construction.’	Construction	is	the	skeleton	of	the	glyph,	while	rest	–	width,	weight,	terminals	–	are	all	parts	of	the	flesh.

Proportion	of	X-height	to	Cap-height

The	letters	on	the	left	come	from	Playfair	Display,	which	has	a	large	x-height	relative	to	its	cap-height.	The	letters	on	the	right
are	from	EB	Garamond,	which	has	a	smaller	x-height.	In	the	sample	above,	the	size	of	the	H	has	been	adjusted	so	that	they
match.

Ascender	Height

What	Is	a	Font

5

http://www.forthehearts.net/typeface-design/playfair-display/
http://www.georgduffner.at/ebgaramond/

In	the	example	above,	the	x-heights	have	been	matched	in	order	to	illustrate	the	relative	difference	in	ascender	heights.

Ascenders	usually	exceed	the	cap-height	by	at	least	a	little,	especially	in	text	designs.	In	some	cases,	however,	they	can	match
or	even	be	lower	than	the	cap-height.	Longer	ascenders	can	add	elegance	to	the	look	of	a	typeface.	They	often	go	with	smaller
x-height.

Descender	depth

What	Is	a	Font

6

Like	ascenders,	descenders	that	are	long	can	feel	elegant.

Taken	together,	long	ascenders	and	descenders	can	become	difficult	to	manage.	If	the	typeface	will	be	used	with	small	line
heights,	the	elongation	means	letter	can	collide	across	rows	of	text.

Width

What	Is	a	Font

7

The	width	of	a	type	design	will	alter	not	just	how	it	feels	but	also	what	it	is	useful	for.	The	example	on	the	right	is	from	a	text
face.	The	example	on	the	left	is	from	a	display	design	meant	to	be	eye	catching.	Letters	that	are	more	narrow	than	the	text	face
example	are	also	possible	and	can	be	used	to	save	space	or	to	fit	more	text	in	a	smaller	space.

Width	regularity	versus	variability

The	letters	in	the	top	row	of	this	example	show	a	greater	variety	of	width	than	do	the	letters	in	the	bottom	row.

Weight

What	Is	a	Font

8

Slant

Contrast

Contrast	refers	to	how	much	variation	in	stroke	width	is	found	within	a	glyph.	Notice	in	the	below	two	‘O’	glyphs	that	the	one	on
the	left	has	much	greater	variability	in	line	thickness	between	the	top	and	sides	of	the	glyph.	Both	glyphs	have	some	contrast,
but	the	one	on	the	left	has	much	more	than	the	one	on	the	right.

What	Is	a	Font

9

Type	with	consistent	weight	(stroke	width)	in	its	letterforms	or	no	visible	contrast	produces	a	sheer	distinction	from	contrasted
type.	Like	the	choice	between	serifs	or	sans-serifs,	contrast	is	an	early	choice	of	type	design.	It	is	interesting	to	note	that	‘slab’
serif	designs	generally	use	consistent	stroke	width	in	their	letters,	and	that	the	design	of	slab	serifs	is	not	merely	about	the	serif,
as	it	sounds!	It	must	be	remembered	that	the	rules	of	perception	apply	(see	“Trusting	your	eyes”)	–	contrast	is	about	how	the
weight	looks	but	not	how	it	measures	out	to	be.

Angle	of	contrast

In	the	below	image,	we	see	that	the	thin	parts	of	the	lower	case	letter	‘o’	shapes	are	different.	In	the	glyph	on	the	left,	the	thin
points	lie	on	a	perfectly	vertical	axis.	In	the	glyph	on	the	right,	the	axis	is	diagonal.

What	Is	a	Font

10

Weight	distribution

If	your	font	uses	very	little	to	no	contrast,	you	don’t	really	need	to	think	of	it.
Most	fonts,	however,	have	at	least	some	degree	of	contrast.	In	these	cases,	you	have	a	wide	variety	of	options	to	choose	from
when	it	comes	to	how	to	distribute	the	weight	in	your	font.

Vertical

What	Is	a	Font

11

Vertical	distribution	of	weight	is	very	common.	The	9	and	8	above	are	a	particularly	intense	example.

Horizontal

What	Is	a	Font

12

Horizontal	weight	distribution	is	much	less	common,	but	is	nonetheless	seen	in	many	fonts.

Bottom-heavy

Top-heavy

Irregular

What	Is	a	Font

13

Stems

It	is	easy	to	assume	that	your	stems	will	simply	be	straight	and	that	this	isn’t	a	real	concern,	but	both	the	weight	and	the	shape
of	your	stems	are	things	you	can	and	should	make	deliberate	choices	about.

Joins

What	Is	a	Font

14

Bowls

Note	that	bowls	are	the	stroke	part	in	the	below	illustrations	and	not	the	black	inner	forms.	The	inner	strokes	are	referred	as
“counters”.	While	designing	type,	you	will	often	find	yourself	altering	your	work	not	because	of	the	shape	or	width	of	the	stroke
but	due	to	the	shape	and	size	of	the	counter.

What	Is	a	Font

15

Terminals

Terminals	are	the	end	forms	of	the	strokes.	They	are	not	same	as	the	serifs.	They	are	often	perpendicular	to	the	angle	of	the
stroke	at	its	end,	or	sheared	horizontally	or	vertically.	They	may	also	reflect	the	shape	of	the	nib	or	other	mark-making	tool	that
the	letter	forms	evoke.

Speed

What	Is	a	Font

16

The	‘n’	on	the	left	seems	to	be	written	much	faster	than	the	one	on	the	right.	Speed	is	discussed	in	more	detail	in	the	chapter	on
italics.

Regularity

The	following	characteristics	are	not	present	in	all	type	designs,	however	they	are	variables	that	may	be	a	part	of	your	design.	If
this	is	the	case,	it	is	worth	considering	the	degree	to	which	they	will	play	a	role	as	a	variable.

What	Is	a	Font

17

Flourish

Notice	that	in	the	font	on	top	the	flourish	is	more	present	in	the	capital	letter	and	the	second	one	the	flourish	is	more	in	the
lowercase.

Serif	-	To	be	or	not	to	be

Serifs	are	one	of	the	most	distinct	aspects	of	a	typeface,	and	often	the	first	classification	of	type	is	between	serif	and	sans-serif
type.

This	choice	affects	how	the	end	terminals	will	look	like.	Serifs	can	be	two	sided	or	one	sided.	They	can	be	perpendicular	to
stroke	or	have	their	own	direction	(like	being	always	horizontal	or	vertical).	Serifs	can	be	with	or	without	brackets.	Any	serif
design	is	a	mix	of	all	of	the	above	applied	consistently	to	the	type	design	with	some	deviations	for	particular	letters,	especially
the	‘S’,	‘C’	and	‘Z’	(e.g.	a	type	with	horizontal	serifs	for	all	letters	will	often	have	s,	c	and	z	to	have	vertical	serifs).

What	Is	a	Font

18

There	is	a	urban	legend	asserting	that	serif	types	are	easier	to	read	than	sans-serifs	–	it	is	a	sole	myth,	until	further	notice.

The	form	of	the	serifs	are	related	to	the	forms	of	the	terminals.

Brackets

The	corner	portions	of	a	serif	where	it	connects	to	the	main	stroke	are	called	‘brackets’.	A	particular	design	may	have	them
giving	a	soft	feel	to	the	serif	(Times	New	Roman	is	an	example)	or	may	choose	to	not	have	any	bracket.	Some	designs	also	use
brackets	only	on	one	side	or	with	different	proportions	on	the	two	sides.

This	is	a	relatively	strong	parameter	that	renders	feel	to	the	type	–	elegance	(smooth	or	large	brackets	of	Times	New	Roman)	or
chunky	crisp	(absent	brackets	of	Arvo).

Slab-serifs

Also	called	mechanistic	or	Egyptian	type,	slabs	are	thick,	block-like	serifs.	Slab	serifs	don’t	use	brackets.	Generally	speaking,
type	design	with	such	serifs	are	seen	to	have	less	contrast	in	their	glyphs	–	Rockwell,	Courier	or	American	typewriter	reflect
that.

It	may	be	safe	to	assume	that	slab	serifs	have	been	used	to	add	some	ornament	or	rhythm	to	an	otherwise	no-contrast	type
design.	But	this	is	not	an	absolute	rule.

Serif	Terminals

Just	like	letter	terminals,	the	end	shape	of	the	serifs	themselves	contribute	to	the	feel	of	the	type	–	either	soft	or	chunky.	Serif
terminals	can	be	soft	and	rounded	(Courier)	or	blunt	and	angular	(Rockwell).

Decoration

Dimension

What	Is	a	Font

19

http://asserttrue.blogspot.se/2013/01/the-serif-readability-myth.html
http://practicaltypography.com/times-new-roman.html
http://practicaltypography.com/times-new-roman.html
http://files.korkork.com/index.php?/fonts/arvo/
http://www.myfonts.com/fonts/mti/rockwell/
http://typedia.com/explore/typeface/courier/
http://www.myfonts.com/fonts/linotype/itc-american-typewriter/
http://typedia.com/explore/typeface/courier/
http://www.myfonts.com/fonts/mti/rockwell/

What	Is	a	Font

20

Trusting	Your	Eyes

Font	design	is	the	process	of	iteratively	testing	the	individual	choices	that	collectively	add	up	to	a	complete	design.	You	will	be
testing	your	font	to	see	if	the	combination	of	decisions	you	have	made:

Allows	you	to	read	the	font
Makes	the	font	feel	right	to	you
Makes	the	font	useful	for	the	the	jobs	you	want	the	font	to	be	able	to	do.

As	you	test	the	design,	you	will	have	to	trust	your	perceptions	and	design	somewhat	practically.	Much	of	type	design	requires
that	you	make	letters	similar	and	that	you	repeat	forms.

It	is	tempting	to	assume	that	if	you	measure	the	parts	and	the	spaces	between	the	glyphs,	then	you	will	get	reliable	results.
While	very	useful,	this	approach	has	real	limitations.	You	should	expect	to	make	adjustments	if	something	looks	wrong	to	you.
Furthermore,	you	should	feel	confident	that	making	changes	until	it	“looks	right”	is	the	correct	thing	to	do.

The	reason	this	is	true	is	that	there	are	a	number	of	natural	optical	illusions	that	all	readers	are	subject	to.	These	illusions	must
be	accounted	for	by	altering	the	shapes	of	letters	until	they	look	right	to	you.

You	can	get	a	feel	of	where	to	look	and	what	elements	to	adjust	in	these	Type	Review	Videos	(External	Link)

Examples	of	illusions
Some	illusions	involve	the	perceived	weight	of	lines,	some	involve	the	perceived	length	of	lines,	and	others	involve	the	eye’s
perception	of	shapes.

Horizontal	vs.	vertical	weight

The	example	on	the	left	shows	an	‘H’	which	bars	are	precisely	equal	in	thickness.	This	looks	wrong.	Can	you	feel	it?
The	other	one	on	the	right	has	a	horizontal	bar	which	has	been	thinned	to	appear	equal	in	thickness.

Trusting	Your	Eyes

21

https://vimeo.com/typereview/videos

Glyphs	in	which	optical	adjustments	have	to	be	made	are	numerous	and	include	A,	E,	F,	L,	H,	f,	t,	and	z.

Diagonal	thickness

Similarly,	if	you	have	bars	of	the	same	width	and	one	of	them	is	set	at	a	diagonal,	the	diagonal	bar	will	seem	slightly	heavier
than	the	vertical	bar	and	slightly	thinner	than	the	horizontal.	If	you	want	it	look	right,	you	will	have	to	adjust	it	to	be	lighter	like	the
horizontal	example,	but	just	a	little	less.

Trusting	Your	Eyes

22

Glyphs	in	which	this	human	perception	may	be	relevant	are	quite	numerous	but	include	k,	K,	N,	Q,	R,	v,	V,	w,	W,	x,	X,	y,	Y,	7,	2,
&,	ł,	Ł,	ø,	Ø,	√,	⁄,	‹,	›,	«,	»,	½,	⅓,	¼,	≤,	≥,	and	×.

Length	and	perceived	diagonal	angle

Longer	shapes	need	to	slant	less	than	short	shapes	in	order	to	give	the	appearance	of	same	slant.

The	image	below	has	diagonal	lines	that	are	all	at	the	same	angle.	The	long	one	appears	to	be	at	a	different	angle.

In	the	next	picture	below,	the	slant	of	the	longer	line	has	been	adjusted:

Trusting	Your	Eyes

23

Now	let’s	look	at	an	actual	italic,	applying	these	corrections	to	the	glyphs:

Trusting	Your	Eyes

24

Crossing	diagonals

When	a	bar	crosses	another	diagonal	or	a	straight	line,	it	will	need	adjustments	to	not	appear	as	misaligned.

Trusting	Your	Eyes

25

In	the	example	above,	the	X	on	the	left	has	two	unadjusted	bars	crossing	each	other.	The	example	on	the	right	has	been
adjusted	so	that	they	appear	to	be	aligned.

Trusting	Your	Eyes

26

As	you	can	see	in	this	X	with	dotted	line	on	top	of	it,	the	X	that	appears	visually	aligned	involves	an	offset.

Glyphs	in	which	this	illusion	is	relevant	include	x,	X,	k,	K,	×,	#,	and	the	icelandic	letter	‘eth’	(ð).

Perceived	height

The	shape	of	a	glyph	will	contribute	to	how	high	it	needs	to	be	in	order	to	look	as	if	it	is	the	same	height	as	the	other	glyphs.
Round	glyphs	need	to	overshoot	the	height	of	flat	glyphs	by	a	little	bit.	Glyphs	which	have	pointier	shapes	will	need	to	overshoot
more.	The	sharper	the	shape,	the	more	it	will	need	to	overshoot	in	order	to	look	correct.

Trusting	Your	Eyes

27

In	the	image	above,	the	top	three	shapes	are	unadjusted	—	that	is,	they	have	identical	heights.	The	three	shapes	on	the	bottom
have	been	adjusted	so	that	they	appear	more	similar	in	height.

This	illusion	is	relevant	for	any	glyph	that	has	parts	which	are	either	round	or	pointy.	These	include	O,	Q,	C,	S,	A,	V,	W,	and	so
on.

You	are	fully	qualified	to	correct	for	these	illusions
Because	you	can	see	both	the	illusion	and	the	effect	of	correcting	for	the	illusion,	you	will	be	able	to	make	these	corrections	for
yourself.	You	just	have	to	trust	your	impressions.

Test	for	fitness	of	purpose
Just	like	you	are	able	to	see	optical	illusions	and	correct	them,	you	also	have	the	ability	to	tell	if	a	font	is	working	for	the	specific
use	(or	uses)	you	may	have	in	mind.	That’s	where	you	should	also	trust	your	judgment.

Quite	separately,	it	is	worth	noting	that	no	font	can	be	evaluated	apart	from	the	way	it	is	used	and	what	it	is	used	for.	This	is	why
it	is	essential	to	begin	testing	from	the	very	beginning	of	the	design	process,	and	to	continue	testing	until	you	feel	the	project	is
done.

What	will	these	tests	be	like?	The	tests	will	be	simple	at	first,	allowing	you	to	test	the	first	design	choices.	As	your	design
becomes	more	complete,	your	tests	will	need	to	keep	pace	and	let	you	evaluate	the	relative	success	or	failure	of	the	newest
choices	you	have	made	—	or,	even	better,	to	compare	two	(or	three,	or	more…)	options	you	are	considering.

Sometimes	you	will	find	you	have	to	double	back	and	change	a	design	choice	you	thought	was	already	working	well.	This	is
normal.	Making	a	font	requires	balancing	many	variables,	and	surprises	often	occur.	The	more	you	design	fonts,	the	more
experience	you	will	have	in	making	these	arbitrary	choices.

Trusting	Your	Eyes

28

When	nearing	the	end	of	the	process,	if	the	font	is	to	be	used	in	a	simple	way,	the	tests	should	also	just	stay	simple.	However,	if
a	font	is	to	be	used	in	many	ways	or	in	a	wide	range	of	printing	or	screen	environments,	then	it	should	be	tested	across	all	that
range	of	situations,	which	includes	printing	various	samples	of	the	font.

It	can	save	you	design	time	to	have	a	well	defined	idea	of	the	final	use	you	intend.	However,	this	is	not	always	possible	and
your	ideas	may	evolve.	The	key	thing	is	to	think	about	and	define	the	use	cases	as	completely	as	you	can,	then	to	ensure	that
your	tests	keep	pace	with	the	questions	you	are	asking	yourself	while	designing	the	font.

Further	Reading
http://typographica.org/on-typography/making-geometric-type-work/
http://typedrawers.com/discussion/1085/the-letter-s

Trusting	Your	Eyes

29

http://typographica.org/on-typography/making-geometric-type-work/
http://typedrawers.com/discussion/1085/the-letter-s

Planning	Your	Project

Now	that	you	have	a	sense	of	how	a	font	design	can	vary,	you	may	want	to	decide	whether	your	project	will	have	only	one	font,
if	it	will	be	a	collection	of	several	inter-related	fonts,	if	it	will	be	a	(now	traditional)	three	or	four-styles	type	family,	or	if	it	will	be
something	even	larger.

Common	styles	of	type	families	include:

A	Regular	and	a	Bold	weight
Regular,	Bold,	Italic	–	eventually	with	a	Bold	Italic
Thin,	Light,	Book,	Regular,	Semi-Bold,	Bold,	Extra-Bold,	Heavy	and	Black
Regular,	Condensed,	Bold	and	Bold	Condensed
Narrow,	Condensed,	Wide	and	Extra	Wide
Regular,	Semi-Flourished,	Flourished,	Very	Flourished,	Extremely	Flourished.

While	there	are	reasons	that	typical	patterns	in	families	exist,	you	may	find	you	want	a	very	different	kind	of	grouping.

The	scope	of	the	project	can	be	determined	exclusively	by	your	ambition	and	your	amount	of	free	time.	But	project	scopes	are
often	determined	by	the	use	you	have	for	the	collection	or	family	of	fonts,	or,	even	further,	by	the	needs	of	your	client.	Certainly
for	professional	type	designers,	the	latter	two	questions	are	usually	the	determining	factors.

Feeling
The	most	important	thing	about	a	type	design	is	the	feelings	it	evokes.	This	is	notoriously	hard	to	verbalise,	but	it	is	what	makes
a	particular	typeface	meaningfully	different	from	any	other.

A	type	designer	in	Portugal,	Natanael	Gama,	designed	the	Exo	family	with	FontForge.	On	his	homepage	he	describes	another
project	for	the	sculptor	John	Williams	and	includes	a	graphic	showing	his	brief	in	a	matrix	of	continuums	of	feelings:

Figurative	to	Abstract	50%
Graceful	to	Robust:	30%
Calm	to	Energetic:	0%
Puzzling	to	Plain:	15%
Experimental	to	Standard:	15%
Prestigious	to	Ordinary:	15%
Other	Ideas:	Beautiful,	Outside	Spaces,	Human	Condition

Glyph	coverage
A	font	is	still	a	font	even	if	it	has	only	one	glyph	in	it.	But	a	font	can	also	have	a	few	hundred	or	even	thousands	of	glyphs.	If	your
project	is	self-initiated,	then	this	choice	is	ultimately	arbitrary.	You	may	decide	you	only	want	capitals,	or	that	you	want	to	include
the	glyphs	found	in	the	other	fonts	you	use.	If	you	are	doing	work	for	a	client,	you	may	want	to	clarify	which	language	or
languages	the	font	is	meant	to	support.	Your	goal	could	also	be	to	extend	an	existing	font,	adding	a	few	glyphs	to	make	it	work
in	one	or	more	additional	languages.

It’s	certainly	a	good	idea	to	make	this	choice	deliberately,	and	to	err	on	the	side	of	including	less	rather	than	more.	Often	as	a
typeface	is	being	made,	it	can	be	tempting	to	include	more	and	more	glyphs	–	but	it	is	frequently	more	valuable	to	continue	to
improve	the	core	set	of	glyphs	than	adding	new	ones.

Planning	Your	Project

30

https://www.google.com/fonts/specimen/Exo
http://ndiscovered.com/john-williams/

Multi-style	family	workflow
If	you	know	from	the	start	that	you	will	have	more	than	one	font,	you	will	save	yourself	time	if	you	plan	and	build	the	font	family
systematically,	and	work	on	the	styles	somewhat	in	parallel,	rather	than	completing	one	style	at	a	time.

It	is	of	course	impossible	to	create	every	style	in	a	completely	parallel	manner,	but	it’s	possible	to	complete	a	given	design	step
for	each	style	in	order	to	check	and	be	sure	about	the	relationships	between	the	styles,	early	in	the	process.	You	may	find	that	it
is	useful	to	complete	one	full	set	of	test	letters	(such	as	“adhesion”)	for	a	regular	version,	and	then	to	make	“adhesion”s	for	the
other	styles	next.	However,	you	can	also	make	the	process	even	more	granular	and	make	decisions	about	specific	parts	of	the
base	letters	(such	as	the	‘n’	and	‘o’)	for	all	styles	together.

Depending	on	the	size	and	composition	of	the	family	you	are	planning,	you	may	find	that	it	saves	time	to	make	interpolatable
instances	of	glyphs,	not	only	so	you	can	interpolate	intermediate	styles,	but	to	aid	making	design	choices	about	those
typographic	variables	that	shift	across	the	members	of	a	family.
For	a	remainder	of	the	variables	you	should	be	considering,	see	the	chapter	“What	is	a	font?”.

Technical:	Version	Management
You	should	learn	to	use	Git	and	Github	to	store	your	files,	and	use	the	"SFDir"	format	for	your	sources.

https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github
http://justinhileman.info/article/git-pretty/

Overall	Process

Planning	Your	Project

31

https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github
http://justinhileman.info/article/git-pretty/

Page 1 / 1

Testing	Environments
When	planning	your	project,	you	must	consider	the	medium	of	typography	you	are	intending	the	typeface	for	primarily	and
secondarily:	Mobile	and	web,	or	digital	projectors,	or	cheap	office	bubblejet	and	laser	printers,	or	high	end	print	bureau	laser
printers,	or	magazine	offset	lithographic	printing,	or	high-speed	high-volume	newspaper	printing...	and	so	on.	You	should	then
try	to	acquire	or	arrange	access	to	those	typesetting	technologies,	so	you	can	see	the	real	results	of	your	work.

Throughout	the	type	design	process,	you	will	find	it	very	helpful	to	preview	text	set	with	your	(prototype)	typeface	at	a	higher
resolution	than	your	laptop	or	workstation	screen.	This	typically	means	a	laser	printer	with	"true"	1200	DPI	and	Adobe
PostScript	3.	For	individuals	it	is	possible	purchase	something	like	this	for	around	$500,	and	some	2013	recommendations
were:

HP	P2055d
Xerox	Phaser	4510
Xerox	Phaser	5550
Nashua/Ricoh	P7026N

In	May	2013,	the	Production	Type	studio	has	a	Xerox	7525	with	"fiery"	controller,	which	costs	around	€12,000	to	purchase	but	is
€300	per	month	to	lease	with	toner,	parts	and	maintenance.	In	late	2015,	Octavio	Pardo	leased	a	Xerox	Phaser	7100	in	a
similar	way	for	€30	per	month.

OpenType	Features

Planning	Your	Project

32

http://productiontype.com
http://www.xerox.es/oficina/impresoras/impresoras-en-color/phaser-7100/eses.html

You	can	plan	the	OpenType	features	of	your	project	before	you	begin	drawing.	Common	features	include

	liga		Ligatures
	onum	,		lnum		Numerals

For	some	languages		locl		works	but	for	others	it	doesn't,	so	it	is	best	to	expose	language	specific	forms	via	both		locl		and
	ssNN		or		cvNN	.

The	OpenType	specification	allows	for	some	kinds	of	features	which	are	not	recommend:

	hist		feature.	Read	more	in	this	discussion	on	TypeDrawers.

Further	Reading
Aoife	Mooney's	presentation	on	the	type	design	process	at	TypeCon	2014:	https://vimeo.com/107421895
TypeDrawers	discussion	of	Printer	recommendations	for	proofing

Planning	Your	Project

33

http://typedrawers.com/discussion/1358/what-are-the-best-practices-for-the-hist-feature-long-s
https://vimeo.com/107421895
http://typedrawers.com/discussion/314/printer-recommendations-for-proofing

The	EM	Square

—	Also	called	the	‘em	size’	or	‘UPM’.
In	a	font,	each	character	is	fitted	into	its	own	space	container.	In	traditional	metal	type	this	container	was	the	actual	metal	block
of	each	character.	The	height	of	each	character	piece	was	uniform,	allowing	the	characters	to	be	set	neatly	into	rows	and	blocks
(see	below).

The	height	of	the	type	piece	is	known	as	the	‘em’,	and	it	originates	from	the	width	of	the	uppercase	‘M’	character;	it	was	made
so	that	the	proportions	of	this	letter	would	be	square	(hence	the	‘em	square’	denomination).
The	em	size	is	what	the	point	size	of	metal	type	is	calculated	upon.	So,	a	10	points	type	has	a	10	points	em	(see	below).

In	digital	type,	the	em	is	a	digitally-defined	amount	of	space.	In	an	OpenType	font,	the	UPM	–	or	em	size	is	usually	set	at	1000
units.	In	TrueType	fonts,	the	UPM	is	by	convention	a	power	of	two,	generally	set	to	1024	or	2048.

The	EM	Square

34

When	the	font	is	used	to	set	type,	the	em	is	scaled	to	the	desired	point	size.	This	means	that	for	10	pt	type,	the	1000	units	for
instance	get	scaled	to	10	pt.

So	if	your	uppercase	‘H’	is	700	units	high,	it	will	be	7	pt	high	on	a	10	pt	type.

Setting	that	up	in	the	Glyph	Window

With	the	knowledge	that	your	font	is	using	a	1000,	1024,	or	2048	UPM,	you	need	to	set	up	the	drawing	of	your	glyphs	to	ensure
that	all	aspects	of	your	typeface	fit	adequately	into	that	UPM	square.

The	size	of	the	em	square	can	be	set	from	Element	>	Font	Info…	then	click	on	the	General	tab	and	you	will	see	the	EM	setting,
which	value	shall	be	distributed	between	the	Ascender	and	Descender	heights,	respectively	heights	above	and	underneath	the
baseline.

The	Baseline:

The	Cap	Height:

The	EM	Square

35

The	x-height:

Later	when	designing	your	type,	you	will	have	to	set	the	Blue	values	which	serve	for	PostScript	outlines	and	also	for	the
FontForge	autohinter	–	regardless	of	which	outlines	you	are	working	on.
You	will	find	the	setting	in	Element	>	Font	Info…,	on	the	PS	Private	tab.	FontForge	can	initially	guess	the	values	based	on	your
outlines,	but	you	will	have	to	edit	them	yourself	for	overshoots/undershoots	—	we	are	a	few	chapters	ahead	of	this	concept	(see
“Creating	‘o’	and	‘n’”);	let’s	first	get	ahold	of	FontForge	and	its	drawing	functionalities.

The	EM	Square

36

Installing	Fontforge

FontForge	is	libre	software,	so	you	can	download,	share	and	install	copies	without	any	restrictions	on	usage	-	both	commercial
or	personal	use	is	encouraged.	It	is	a	community-maintained	application,	and	anyone	can	contribute	to	the	source	code.

FontForge	is	available	in	easy	to	install	packages	for	Windows,	Mac	OS	X	and	GNU+Linux	operating	systems.

Installing	FontForge	on	Windows

An	installation	guide	is	available	for	the	official	Windows	builds,	prepared	by	Jeremy	Tan.

Installing	FontForge	on	Mac	OS	X

An	installation	guide	is	available	for	the	official	Mac	builds,	prepared	by	Dr	Ben	Martin.

Installing	on	GNU/Linux

The	easiest	method	to	get	FontForge	on	your	Linux	machine	is	to	use	your	Linux	distribution’s	package	repository.

Debian	or	Ubuntu

The	FontForge	package	included	in	Ubuntu	14.04	by	default	dates	from	2012,	so	it	is	preferable	to	install	the	more	up-to-date
package	from	the	FontForge	[Personal	Package	Archive	(PPA)]	(https://launchpad.net/~fontforge/+archive/ubuntu/fontforge).

Check	that	the	helper	script		add-apt-repository		is	installed:

sudo	apt-get	install	software-properties-common;

Add	the	FontForge	PPA	(which	will	also	add	the	authentication	key):

sudo	add-apt-repository	ppa:fontforge/fontforge;

Update	the	software	list	to	include	packages	from	the	PPA:

sudo	apt-get	update;

Install	FontForge:

sudo	apt-get	install	fontforge;

Fedora

To	install	FontForge	on	your	Fedora	Linux	desktop	machine	run	the	following	yum	command	as	the	root	user.	This	will	require
about	10MiB	of	download	to	complete.

yum	install	fontforge;

Installing	Fontforge

37

http://fontforge.github.io/en-US/downloads/windows/
http://fontforge.github.io/en-US/downloads/mac/
https://launchpad.net/~fontforge/+archive/ubuntu/fontforge

If	you	have	not	compiled	software	on	your	Fedora	machine,	after	installing	gcc,	automake,	autoconf	and	others	then	you	might
get	an	error	during	the	execution	of	autogen.sh	with	libtoolize.	If	that	is	the	case	you	might	need	to	install	the	libtool-ltdl-devel
package	on	Fedora	or	a	similar	development	package	on	another	GNU+Linux	distribution.

After	issuing	the	yum	install	you	should	be	able	to	run	FontForge	from	your	menu	or	directly	from	the	konsole	or	gnome-terminal
by	issuing	the		fontforge		command.

Compile	your	own	version	from	Github
GitHub	is	a	source-code	hosting	service	where	everyone	can	contribute	to	the	development	of	a	piece	of	software.	It	stores	the
current	leading	state	of	development	of	the	application.	In	some	cases,	perhaps	because	you	want	access	to	a	feature	not	yet
available	in	the	release	packages,	you	may	wish	to	compile	your	own	version	from	Github.

Full	instructions	are	at	https://github.com/fontforge/fontforge/blob/master/INSTALL-git.md

Debugging	the	FontForge	software
When	you	See	the	Debugging	section	for	more	information.

Installing	Fontforge

38

https://github.com/fontforge/fontforge/blob/master/INSTALL-git.md

Configuring	Fontforge

FontForge	can	be	fine-tuned	in	various	ways.	Here	are	some	tips	and	tricks	for	doing	so.	You	have	many	options	for	optimizing
FontForge	for	your	platform	and	workflow.

Please	tell	us	us	if	you	have	any	tips	you	want	to	share.

First	Things	First

When	making	any	configuration	changes,	be	sure	to	follow	this:

1.	 Quit	FontForge	(and	X11)
2.	 Make	the	changes
3.	 Start	FontForge	and	test	your	changes

Windows
Currently	we	have	nothing	specific	to	the	Windows	distribution.	If	you	think	of	something,	tell	us.

GNU+Linux
Currently	we	have	nothing	specific	to	any	GNU+Linux	distribution.	If	you	think	of	something,	tell	us.

Mac	OS	X
To	open	a	long	file	or	folder	location	path	provided	below:

1.	 Copy	the	path
2.	 	⌘	Tab		to	switch	to	Finder
3.	 	⇧⌘G		to	open	the	Go	menu		→		Go	to	Folder	item
4.	 	⌘V		to	paste	in	the	path
5.	 	Go		to	open	a	new	Finder	window	at	that	location

Keyboard	Shortcuts

Many	dialog	and	menu	items	have	one	letter	that	is	underlined.	These	can	be	accessed	immediately	by	pressing		Ctrl-Alt		and
that	key.	For	example,	if	a	dialog	asks	you	if	you're	OK,	press		Ctrl	+	Alt	+	o	

If	you	do	not	use	a	US	English	keyboard,	you	may	find	some	of	the	keyboard	shortcuts	are	silly.	Or,	you	might	just	want	to
customize	them	to	be	the	way	that	you	expect.	To	change	these	keys	open	and	edit	the		default		text	file,	located	here:

/Applications/FontForge.app/Contents/Resources/opt/local/share/fontforge/hotkeys/default

When	you	install	the	next	release,	all	files	inside		/Applications/FontForge.app		will	be	overwritten,	so	save	a	duplicate	copy	of
your		default		file	somewhere	else,	too.

Configuring	Fontforge

39

https://github.com/fontforge/designwithfontforge.com#how-to-contribute
https://github.com/fontforge/designwithfontforge.com#how-to-contribute
https://github.com/fontforge/designwithfontforge.com#how-to-contribute

UI	Size

If	the	UI	looks	too	big	or	too	small,	it	can	be	scaled	to	better	fit	your	computer.	Open	and	edit	the		resources		text	file,	located
here:

/Applications/FontForge.app/Contents/Resources/opt/local/share/fontforge/pixmaps/resources

Add	the	line		Gdraw.ScreenWidthCentimeters:	34		if	your	screen	is	34cm	wide.	Try	different	values	until	you're	happy.

Bookmarks

In	the	file	dialog	there	is	a	button	to		Bookmark	Current	Dir	,	but		Remove	Bookmark...		doesn't	work	#2054.	You	can	edit	the	list
manually	in	the		FCBookmarks		section	of	the		prefs		file	located	at

~/.config/fontforge/prefs

Reset	your	bookmarks	by	opening	Terminal	and	pasting	the	following	text	into	Terminal:

sed	-i	bak	-e	's/^FCBookmarks.*/FCBookmarks:					~\/Library\/Fonts\/;\/Library\/Fonts\/;\/System\/Library\/Fonts\//g'	~/.

config/fontforge/prefs;

Then	press	Enter	to	run	this	command.	If	you	see	no	errors,	it	worked	correctly.

3	button	mouse

FontForge	uses	three	mouse	button	clicks	for	some	extra	functions.	If	you	don't	have	a	three	button	mouse	you	can	emulate
that	by	enabling	it	in	X11/Xquartz	preferences,	in	the		Input		section's	option		Emulate	three	button	mouse	

Change	X11/XQuartz	icon	to	FF	icon

If	you	primarily	use	X11	for	FontForge,	you	can	change	its	icon.	Copy	and	paste	the	following	text	into	the	terminal	and	follow
the	instructions

sudo	cp	-f	/Applications/FontForge.app/Contents/Resources/FontForge.icns	/Applications/Utilities/XQuartz.app/Contents/Res

ources/X11.icns	|	sudo	touch	/Applications/Utilities/XQuartz.app

Window	management

FontForge	isn't	a	native	Mac	app,	so	window	handling	can	be	slighty	"off,"	especially	on	dual	monitor	systems.	To	regain	control
of	window	positions,	use	the	free,	libre,	open	source	ShiftIt	utility	to	assign	keyboard	shortcuts	to	set	window	positions.

Configuring	Fontforge

40

https://github.com/fontforge/fontforge/issues/2054
https://github.com/fikovnik/ShiftIt

General	UI	introduction

FontForge	has	the	same	interface	on	Windows,	Mac	OS	and	GNU/Linux	operating	systems.

Here	is	a	short	introduction	to	the	essential	features	by	Dave	Crossland	at	a	Crafting	Type	workshop,	a	non-profit	type	design
workshop	that	supports	the	FontForge	project:

There	are	4	main	windows:

1.	The	Font	View	Window

This	window	appears	when	you	first	run	FontForge.	It	shows	a	table	of	the	glyphs	in	the	font.

2.	The	Character	View	Window

Double	click	a	glyph	in	the	Font	View	to	open	it	in	the	Character	View.	This	is	where	you	can	draw	and	edit	glyphs,	either	one	at
a	time	with	a	tab	interface,	or	side	by	side	with	a	prepared	text	file	of	words	to	step	through.

3.	The	Metrics	View	Window

Go	to	Window,	Metrics,	or	Metrics,	Window.	Or	select	some	glyphs	in	the	Font	View	and	hit		Ctrl-K	.	You	can	also	drag	and
drop	glyphs	from	the	Font	View	to	the	Metrics	View.

General	UI	introduction

41

This	is	where	you	can	adjust	the	spacing	and	kerning	of	your	font.	You	can	also	step	through	a	prepared	word	list	text	file	here.

4.	The	Font	Info	Window

Go	to	Elements,	Font	Info.	Here	you'll	find	all	the	metadata	about	the	font.

5.	The	Typesetting	Environment,	for	Testing

Outside	any	font	editor,	you'll	need	a	typesetting	system	to	test	your	fonts	in	use.	This	is	one	of	the	big	secrets	of	professional
type	designers:	A	lot	of	the	most	important	work	in	a	typeface	design	project	is	done	outside	the	font	editor,	in	testing
documents	created	in	a	typesetting	system.	The	main	systems	are:

Web	(Firefox,	Chromium,	etc)
DTP	tools	(Scribus,	Inkscape,	etc)
Word	Processors	(Libre	Office,	AbiWord,	Calligra	Words,	etc)
Programming	Page	Layout	Processors	(LaTeX,	ConTeXt,	SILE,	ShoeBot,	Even,	etc)

General	UI	introduction

42

Using	the	Fontforge	Drawing	Tools

Designing	a	font	in	FontForge	will	involve	using	a	number	of	tools	and	utilities,	starting	with	a	set	of	drawing	tools	which	may
feel	familiar	to	users	with	experience	in	vector	graphics	–	there	are	noticeable	differences	through.
We’ll	first	seek	to	get	an	understanding	of	how	Bézier	curves	work,	before	looking	at	FontForge’s	drawing	tools	themselves.

Understanding	Bézier	curves
The	concept	of	“Bézier	curves”	refers	to	a	particular	mathematical	representation	used	to	produce	smooth	curves	digitally.
Generally,	Cubic-	and	Quadratic-order	of	these	curves	are	used	—	through	FontForge	also	supports	Spiro	curves,	which	are	an
alternate	representation	for	the	designer.

In	this	chapter,	we	will	only	discuss	Cubic	paths,	as	that’s	what’s	generally	used	when	drawing	glyphs.	Spiro	paths	will	be
discussed	in	the	next	chapter,	and	Quadratic	curves	are	only	found	in	TrueType	fonts	and	rarely	used	in	drawing	–	they	are
rather	generated	at	build	time.

A	typical	Bézier	path	is	composed	of	an	anchor,	with	two	handles	that	mark	the	overall	direction	—	the	length	of	each	handle
determines	the	length	of	the	curve	on	each	side	–	see	below.

Different	kinds	of	points

Curve	points	(shown	as	round-shaped	points)

Curve	points	have	two	handles,	each	of	them	being	linked	to	the	other	so	that	the	line	between	them	always	stays	straight,	in
order	to	produce	a	smooth	curve	on	each	side.

H/V	Curve	points	(shown	as	lozenge-shaped	points)

H/V	curve	points	(‘horizontal/vertical’)	are	a	variant	of	curve	points	that	snap	to	the	horizontal	or	vertical	axe	–	an	essential	tool
in	getting	Bézier	forms	done	right	(more	on	that	in	the	next	section).

Using	the	Fontforge	Drawing	Tools

43

Coins	or	corner	points	(shown	as	square-shaped	points)

Coins	can	have	0,	1	or	2	Bézier	handles.	The	position	of	each	handle	is	independant	of	the	others,	making	it	suitable	for
discontinuities	in	the	outline.
Without	handles,	coins	will	produce	straight	lines.

Tangent	points	(shown	as	triangular-shaped	points,	or	‘arrowheads’)

Using	the	Fontforge	Drawing	Tools

44

If	you	want	to	start	from	a	straight	line	and	then	start	curving	smoothly,	you	will	want	to	use	tangent	points.
A	tangent	leaves	a	straight	line	on	one	side,	while	the	Bézier	handle	on	the	other	side	is	its	direction	–	this	ensures	a	continuous
transition	between	the	line	and	the	curve.

Getting	it	right

In	order	to	produce	proper	curves	–	with	minimal	control	points	and	eased	rasterization,	the	anchors	should	always	be	placed	at
the	extremas	of	the	curve,	and	unless	in	places	where	you	have	breaks	in	your	letterforms,	the	line	that	determines	the	path
should	be	horizontal	or	vertical.

Note:	If	your	control	points	aren’t	placed	at	the	extremas,	FontForge	will	point	out	the	actual	extrema	with	a	sight	icon:

Using	the	Fontforge	Drawing	Tools

45

You	can	then	fix	this	by	copying	your	current	outline	to	another	layer,	then	move	the	control	points	around	so	that	it’s	laid	out
properly	–	otherwise	the	FontForge	Validation	tool	will	add	the	point	at	extremas	automatically,	at	which	point	you	can	merge
your	misplaced	anchor	with	Right-click	>	Merge.
More	about	that	will	be	said	later	in	the	Validation	chapter.

To	elaborate,	there	are	two	cases	where	you	will	have	to	give	up	horizontal/vertical	Bézier	paths:

If	you	want	to	change	the	overall	slope	of	your	curve,	as	with	the	upper-left	part	of	the	‘a’	below	that’s	being	kept	almost
flat:

If	you	want	to	place	breaks	in	your	letterforms,	as	with	the	lower-left	part	of	the	‘g’	below	–	that’s	typically	where	you	will
want	to	use	a	Coin	(besides	for	drawing	lines):

Using	the	Fontforge	Drawing	Tools

46

Note:	As	you	can	see,	when	setting	breaks	with	a	Coin,	the	direction	of	each	handle	should	be	tangent	to	the	curve	where	it
arrives.

Mastering	FontForge’s	drawing	tools
From	the	main	window,	double-click	on	one	of	the	glyph	boxes	to	launch	the	Glyph	Window.

Using	the	Fontforge	Drawing	Tools

47

Note:	The	numbers	along	the	top	where	the	x	and	y	axis	intersect	indicate,	from	left	to	right:

The	current	(x,y)	location	of	your	cursor	on	the	canvas
The	location	of	the	most	recently	selected	point
The	relative	position	of	your	cursor	to	the	selected	point
The	distance	between	your	cursor	and	the	selected	point
The	angle	from	the	selected	point	to	the	cursor	(relative	to	the	baseline)
The	current	magnification	level,	followed	by	the	name	of	the	active	layer.

Caution:	Sometimes,	it	seems	like	FontForge	is	not	responding	when	you	are	inside	the	Glyph	Window.	It	might	be	that	there	is
an	open	dialog	box	hidden	behind	it	–	so	just	move	it	and	process	the	dialog	box.

A	Line	consists	of	2	points.

Using	the	Fontforge	Drawing	Tools

48

A	Spline	consists	of	4	points:	2	end	points	of	the	spline	and	2	‘handles’,	which	describe	the	slope	of	the	spline	at	those	end
points.

Copy,	paste,	cut	and	delete	points,	splines	and	lines

As	with	most	drawing	softwares,	FontForge	allows	you	to	Copy,	Cut,	Paste	or	Delete	any	point,	line	or	spline.	These	commands
are	available	in	the	Edit	menu,	or	using	your	OS’s	typical	keystrokes	(also	shown	alongside	each	command	in	the	menu).

Familiarizing	yourself	with	the	drawing	tools
Now	that	you	know	your	way	around	the	canvas,	it’s	time	to	get	acquainted	with	the	tools.

Point	and	Zoom

Point	and	Zoom	behave	similarly	to	the	equivalent	tools	in	other	applications.
The	pointer	is	a	selection	tool,	used	to	select	points,	paths,	and	other	objects	on	the	canvas.
The	Zoom	tool	lets	you	zoom	in	(Z)	easily;	in	order	to	zoom	out:	go	to	the	View	menu	and	select	Zoom	out	(X)	or	Fit.

Note	that	you	can	also	momentarily	switch	to	the	pointer	tool	while	using	another	by	holding	down	the	Control	(Ctrl)	key.

Using	the	Fontforge	Drawing	Tools

49

The	Freehand	tool

The	Freehand	tool	allows	you	to	sketch	out	irregular	paths.

On	the	drawing	area,	click	and	hold,	then	move	around	to	draw.	Switch	back	to	the	pointer	tool,	and	you	can	select	points	on
the	path	you	have	drawn.

When	you	select	one	of	the	points	on	the	path,	it	will	turn	into	a	yellow	circle.	If	the	selected	point	is	on	a	curve,	it	will	display	its
control	points	with	a	magenta	handle	and	a	cyan	handle.	You	can	grab	either	handle	and	drag	it	around	to	change	the	shape	of
the	curve.

The	point	tools

Okay,	now	let’s	go	about	using	the	point	tools.

To	add	a	point	to	a	path,	first	select	any	of	these	tools,	then	click	on	the	path	and	give	it	a	little	push.	You	will	get	a	new	point	on
the	line.

The	Curve	point	tool	is	used	to	add	a	point	in	a	curved	segment.
The	HVCurve	point	tool	constrains	the	new	points	so	that	they	have	either	horizontal	or	vertical	control	points	–	this	is	important
for	setting	up	extrema	points.
The	Corner	point	tool	allows	you	to	make	a	sharp	bend	in	the	path.
The	Tangent	point	tool	allows	you	to	transition	from	a	straight	segment	to	a	curved	segment	along	the	path.

The	Pen	tool

The	Pen	tool	allows	you	to	add	a	point	on	the	curve	and	drag	out	its	control	points.

Spiro

Using	the	Fontforge	Drawing	Tools

50

Selecting	the	Spiro	tool	puts	you	into	Spiro	drawing	mode.	Spiro	drawing	allows	you	to	draw	curves	that	reflow	as	you	reposition
the	nodes.	Some	people	prefer	this	to	the	standard	approach	(known	as	Bézier	editing),	but	if	you	are	used	to	Bézier	editing
you	might	find	that	it	does	some	unexpected	things.

Knife

The	Knife	tool	allows	you	to	cut	splines	in	two.	This	comes	in	handy	if	you	have	drawn	a	shape,	but	only	need	part	of	it.

Ruler

The	ruler	tool	gives	you	measurement	and	coordinate	information.	When	you	use	it,	it	displays	a	floating	‘tooltip’	next	to	the
cursor.	If	you	hover	your	cursor	over	a	point,	the	tooltip	gives	you	even	more	detailed	measurement	and	coordinate	information.
If	you	bring	it	next	to	a	spline,	it	gives	you	information	about	the	curvature	and	radius.	Most	usefully,	if	you	click	and	drag	the
ruler	tool,	you	will	see	the	distance	you	have	dragged	the	cursor,	plus	every	intersection	that	you	have	stretched	across.

The	transform	tools

There	are	six	transform	tools:

Note:	For	all	of	the	Transform	tools,	if	you	double-click	on	the	tool,	you	can	enter	numeric	values.

The	Scale	tool	lets	you	freehand	rescale	an	object.	Holding	down	the	Shift	key	allows	you	to	scale	an	object	while	constraining
it	to	the	proportional	ratio.

The	Rotate	tool	lets	you	free-rotate	an	object.	It	rotates	the	selected	object	around	the	position	where	you	initially	click.

The	3D	rotate	tool	lets	you	rotate	an	object	in	the	third	dimension,	and	projects	the	result	on	the	x-y	plane.

Using	the	Fontforge	Drawing	Tools

51

The	Flip	tool	allows	you	to	flip	a	selection	either	horizontally	or	vertically.	The	point	at	which	you	click	the	mouse	is	the	point	of
origin	of	the	transformation.

Note:	After	flipping	a	point	you	will	probably	want	to	apply	Element	>	Correct	Direction.

The	Skew	tool	lets	you	horizontally	skew	the	selection	either	clockwise	or	counterclockwise	(withershins	is	how	the	dialog	refers
to	counterclockwise).

The	Perspective	tool	gives	you	another	way	to	distort	a	shape	in	a	nonlinear	way.

Note:	There	is	no	numerical	option	for	the	perspective	transformation.

The	Rectangle/Ellipse	and	Polygon/Star	tools

These	tools	allow	you	to	draw	primitive	geometric	shapes,	which	is	faster	than	constructing	those	shapes	out	of	separate	line
segments.

Clicking	the	chevron	area	on	these	tools	will	give	you	the	option	to	switch	to	the	alternate	tool.	If	you	double-click	on	either	of
the	tools,	you	can	open	the	shape	type’s	options.

Rectangle	options:	corner	style	and	bounding	box	(corner	or	center	out).

Ellipse	options:	bounding	box	or	center	out.

Polygon	options:	number	of	vertices.

Star	options:	number	of	star	points	and	depth	of	points	by	percentage.	The	higher	the	percentage	setting,	the	longer	the	arms	of
the	star.

Mse1	and	Mse2

Under	the	toolbar,	you	can	view	the	current	tool	and	the	operations	available	to	both	mouse	buttons:

Left	button	(Mse1)
Left	button	+	Ctrl	(^Mse1)
Mouse	wheel	button	(Mse2)
Mouse	wheel	button	+	Ctrl	(^Mse2)

This	way,	you	can	use	a	few	different	tools	without	having	to	repeatedly	click	on	the	toolbar.

Caution:	It	appears	that	the	Mse	functionality	doesn’t	currently	work	properly.

Layers

Using	the	Fontforge	Drawing	Tools

52

The	FontForge	canvas	has	three	layers	by	default:	the	Guide	layer,	the	Background	layer,	and	the	Foreground	layer.	Guide
layers	are	used	to	insert	guides	(such	as	x-height	or	cap-height	guides).	Foreground	layers	and	background	layers	are	both
used	for	drawing,	but	only	the	topmost	foreground	layer	will	be	rendered	into	your	final	font.

A	checkbox	indicates	whether	each	layer	is	visible,	and	you	can	uncheck	it	to	make	a	layer	invisible.	The	C	(or	Q)	indicates
whether	you’re	using	Cubic	or	Quadratic	curves.

The	#,	B,	or	F	refers	to	whether	the	type	of	each	layer	is	a	Guide	layer,	Background	layer,	or	Foreground	layer,	which	is
significant	if	you	add	more	layers	of	your	own.	You	can	create	and	delete	additional	layers	using	the	plus	(+)	or	minus	(−)
buttons	in	this	section	of	the	toolbar.	Layer	type	and	curve	type	can	also	be	controlled	by	right-clicking	(once	you	have
additional	layers).

Basic	drawing
Next	we	will	go	over	some	basic	drawing	workflows,	which	you	often	find	yourself	in	need	of.

Cutting	a	shape	within	another

1.	 Start	by	using	the	Rectangle	tool	to	draw	a	rectangle	within	the	drawing	area	of	the	Glyph	window.
2.	 Next,	use	the	Ellipse	tool	to	draw	an	ellipse	within	the	rectangle	you	just	drew.

Using	the	Fontforge	Drawing	Tools

53

3.	 Go	to	the	Element	menu	and	choose	Correct	Direction.	You	will	see	that	the	two	shapes	merged,	and	that	you	essentially
punched	a	hole	in	the	center	of	the	rectangle.

Using	the	Fontforge	Drawing	Tools

54

Remove	overlap

1.	 Add	a	star	that	overlaps	the	corner	of	the	rectangle.

Using	the	Fontforge	Drawing	Tools

55

2.	 Select	the	star	and	the	earlier	shape.	You	only	need	to	select	one	point	of	each	overlapping	shape,	but	it	is	okay	to	select
extra	points.

3.	 Go	to	Element	>	Overlap	>	Remove	overlap.	You	will	see	that	your	two	shapes	have	become	one.

Using	the	Fontforge	Drawing	Tools

56

Add	a	Point

Using	the	Pen	tool,	click	and	hold	in	the	middle	of	a	line	segment,	then	drag	the	mouse	to	change	the	shape.

Using	the	Fontforge	Drawing	Tools

57

Tangent	points

Select	the	bottom-left	corner	point	of	your	new	shape	(the	intersection	of	the	curve	and	the	straight	line).	From	the	Point	menu,
you	will	see	that	Corner	Point	is	checked.	Select	Tangent.	This	changes	the	square	node	to	a	triangle,	but	that	is	all	it	does	until
you	do	the	next	step:	extending	control	points.

To	do	so,	choose	Element	>	Get	Info,	which	opens	the	Point	Info	Window.	From	the	Location	tab	in	that	window,	go	to	the	Next
CP	field	set	and	set	the	Distance	to	a	large	number,	such	as	75.	Click	OK.	You	will	see	that	the	curve	now	smoothly	enters	the
straight	line.

Using	the	Fontforge	Drawing	Tools

58

Transformation

Now	select	about	a	quarter	of	the	shape	—	the	star	and	part	of	the	ellipse	in	the	middle.

Using	the	Fontforge	Drawing	Tools

59

Choose	the	3D	Rotate	tool,	move	to	the	middle	of	the	selected	area,	and	slowly	click	and	drag	until	you	see	something	you	like,
then	release.	Here	is	an	example	of	3D	Rotate	used	on	the	practice	image:

Using	the	Fontforge	Drawing	Tools

60

Set	stroke	shape	and	width

So	far	you	have	used	the	Freehand	drawing	tool	to	draw	a	line.	If	you	double-click	the	Freehand	tool,	you	get	the	Freehand
dialog	shown	here,	which	contains	a	drawing	window.	This	is	where	you	select	pen	shape	and	size.	This	dialog	also	appears
when	you	choose	the	Expand	Stroke	option	in	the	Element	menu.

Using	the	Fontforge	Drawing	Tools

61

Using	the	Corner	tool,	draw	a	polygon	and	click	OK.

Now,	draw	a	line	with	the	Freehand	drawing	tool.	When	you	release	the	mouse	button,	the	new	path	is	automatically	stroked
with	the	shape	you	chose	in	the	Freehand	dialog,	as	shown	here.

Using	the	Fontforge	Drawing	Tools

62

Keep	drawing!
You	should	continue	to	experiment	with	the	drawing	tools	until	you	feel	comfortable	that	you	can	use	them	to	draw	and
transform	whatever	shapes	you	need.	At	this	point,	you	are	equipped	to	start	constructing	the	components	of	glyphs,	but	you
should	also	take	time	to	look	at	FontForge’s	other	set	of	tools.
The	next	chapter,	“Drawing	with	Spiro”,	describes	the	Spiro	drawing	mode.	Spiro	drawing	is	distinct	enough	from	Bézier	curve
editing	that	it	requires	an	explanation	of	its	own.

Further	Reading
A	TypeDrawers	Forum	Discussion	on	Beziers	included	these	links	shared	by	Nina	Stössinger	on	twitter:

Bezier	Curves	and	Type	Design:	A	Tutorial	by	Fábio	Duarte	Martins
So	What’s	the	Big	Deal	with	Horizontal	&	Vertical	Bezier	Handles	Anyway?
Hand	Lettering:	How	to	Vector	Your	Letterforms	by	Scott	Biersack
Type	Basics	by	Underware
The	Bézier	Game	by	Marc	MacKay

Using	the	Fontforge	Drawing	Tools

63

http://typedrawers.com/discussion/967
https://twitter.com/ninastoessinger/status/593687255341998080
http://learn.scannerlicker.net/2014/04/16/bezier-curves-and-type-design-a-tutorial/
http://theagsc.com/community/tutorials/so-whats-the-big-deal-with-horizontal-vertical-bezier-handles-anyway/
http://design.tutsplus.com/tutorials/hand-lettering-how-to-vector-your-letterforms--cms-23248
http://typeworkshop.com/index.php?id1=type-basics&id2=&id3=&id4=&id5=&idpic=15#pictloader
http://bezier.method.ac

Using	the	Fontforge	Drawing	Tools

64

Drawing	With	Spiro

Spiro	is	a	toolkit	for	designing	curves	in	an	alternate	method	to	the	more	traditional	Bézier	curves.	Although	it	is	optional,
FontForge	can	be	installed	to	include	a	Spiro	mode	that	offers	you	tools	to	create	this	specific	kind	of	curves.
See	“Installing	FontForge”	for	more	details	on	how	to	include	the	Spiro	library	in	your	program.

Spiro	drawing	has	a	different	approach,	that	can	help	you	getting	your	curves	done	in	a	different	way	and	solving	your
conception	problems.	Please	experiment!

The	Spiro	toolset
Many	of	the	same	drawing	tools	are	available	in	Spiro	mode	as	those	described	in	the	“Using	the	FontForge	drawing	tools”
chapter,	but	some	of	them	work	very	differently	when	you	are	in	Spiro	mode.

There	are	five	different	types	of	Spiro	points:

1.	 G4	points,	used	for	a	more	gentle	curve
2.	 G2	points,	used	for	a	sharper	curve
3.	 Corner	points,	for	abrupt	corner	joints
4.	 Previous	constraint	points,	used	when	the	contour	of	the	path	changes	from	a	curve	to	a	straight	line
5.	 Next	constraint	points,	used	when	the	path	changes	from	a	straight	line	to	a	curve

Drawing	an	‘S’	with	Spiro
Going	through	the	exercise	of	drawing	an	‘S’	with	Spiro	will	make	you	comfortable	with	Spiro.

Tip:	When	drawing	in	Spiro	mode,	always	start	with	a	G4	or	G2	point.	Beginning	with	the	other	types	of	points	doesn’t	really
work	in	FontForge.

Start	off	with	a	G4	point	at	the	topmost	point	of	your	‘S,’	followed	by	a	corner	point,	then	another	corner	point.	Work	clockwise
around	the	shape	of	the	letter.

Drawing	With	Spiro

65

Follow	this	with	a	G4,	a	previous	constraint	point,	and	a	next	constraint	point.

Drawing	With	Spiro

66

Next,	add	another	G4	point,	followed	by	two	more	corner	points.

Drawing	With	Spiro

67

Then	a	G4,	followed	by	a	previous	constraint,	followed	by	a	next	constraint.

Drawing	With	Spiro

68

Then,	add	one	more	G4	point,	and	finally,	close	the	shape	at	the	starting	point	by	clicking	on	it	using	the	G4	point	tool.

Drawing	With	Spiro

69

Now	you	almost	have	an	‘S’!	Begin	nudging	the	points	around	to	get	your	S	to	look	the	way	you	want.

Oops,	what	happened?

Drawing	With	Spiro

70

Don’t	worry	–	Spiro	sometimes	does	some	funny	things.	Just	hit	Undo,	or	keep	nudging	the	points	to	get	things	back	on	track.

Now,	you	should	see	something	like	this:

Drawing	With	Spiro

71

Toggle	out	of	Spiro	mode	back	into	Bézier	mode.	You	will	notice	there	are	a	lot	of	points	on	the	resulting	curve	–	you	may	want
to	clean	some	of	them	up.

Drawing	With	Spiro

72

To	clean	up	those	extra	points,	go	to	the	Element	menu	and	select	Simplify	>	Simplify.	Then	go	to	Element	>	Add	Extrema.
Finally,	go	to	Element	>	Round	>	To	Int.	After	these	clean	up	operations,	you	will	see	something	like	this:

Drawing	With	Spiro

73

You	can	continue	to	experiment	with	Spiro	mode	to	get	a	feel	of	how	it	differs	from	Bézier	drawing.
The	terminology	is	different,	but	as	with	FontForge’s	other	drawing	and	adjustment	tools,	practice	will	get	you	the	things	you
want.

Drawing	With	Spiro

74

Creating	“o”	and	“n”

There	are	many	approaches	to	designing	a	font.	It	can	be	helpful	to	deconstruct	the	larger	processes	involved	in	order	to	get
started	quickly,	and	to	provide	a	solid	basis	for	a	whole	font’s	worth	of	characters.
A	popular	and	valuable	approach	to	this	is	to	design	the	‘o’	and	‘n’	characters	first,	nailing	down	essential	elements	of	form,
space	and	balance,	before	bringing	them	together	for	the	formation	of	other	characters.	Creating	the	lowercase	‘o’	and	‘n’
characters	can	provide	us	with	some	of	the	fundamental	forms	and	structures	that	will	underpin	all	other	characters	that	are
needed.

Although	the	design	of	the	‘o’	may	seem	like	quite	a	simple	thing,	all	the	characteristics	mentioned	in	the	“What	is	a	font?”
chapter	come	into	play.	The	choice	you	make	about	each	characteristic	should	be	a	deliberate	choice.

Underhangs	and	Overshoots
One	way	in	which	optical	effects	impact	type	design	is	in	how	curves	and	straight	edges	appear	to	the	eye.
For	instance,	for	a	curve	and	a	straight	edge	to	look	as	though	they	are	aligning	correctly	on	the	baseline,	the	curve	must
actually	sit	a	little	below	the	line,	producing	an	undershoot.	The	portion	of	the	character	that	dips	just	below	the	baseline	in	order
to	appear	sitting	on	the	baseline	is	called	the	underhang	–	demonstrated	below.	Without	underhang,	characters	with	curves
around	the	baseline	will	appear	misaligned	within	a	line	of	text.

Similarly	to	the	undershoot,	an	area	of	overshoot	is	needed	to	provide	the	illusion	of	alignment	at	the	x-height	and	at	the	cap-
height	(see	below).

Creating	“o”	and	“n”

75

Designing	the	lowercase	‘o’
The	design	of	the	‘o’	is	not	just	a	question	of	the	black	part	of	the	letter.	While	the	‘o’	provides	the	very	basic	bowl	weight	and
shape,	the	white	–	or	counter	–	provides	the	size	and	shape	used	by	the	rest	of	the	font.
In	general	terms,	we	can	also	observe	that	the	round	form	of	the	‘o’	will	be	echoed	in	other	characters.	These	include	the	b,	c,	d,
e,	p,	and	q,	and	the	form	will	also	implicate	the	shaping	and	forms	of	curves	within	any	other	characters	of	the	font,	such	as	the
O,	C,	D,	and	Q.

In	addition,	the	white	inside	the	‘o’	should	be	utilized	when	designing	the	spacing	of	our	font;	the	‘o’	sets	up	the	reference
rhythm	of	spaces	used	between	all	other	glyphs	in	the	font	too.	These	two	values	are	very	related,	so	essentially	you	will	need
to	design	the	amount	of	white	space	that	are	the	side	bearings	of	your	‘o’	as	well.	As	a	general	principle,	with	the	exception	of
slanted	or	italic	fonts,	the	‘o’	should	have	the	same	amount	of	space	on	the	left	and	right	sides,	and	the	white	space	between	a
string	of	‘o’	characters	should	balance	the	white	space	inside	the	‘o’s.

Here	we	encroach	well	into	the	territory	of	spacing	and	metrics,	so	even	at	this	early	stage	you	may	want	to	have	a	look	at	the
“Spacing,	Metrics,	and	Kerning”	chapter,	which	covers	the	basic	implications	of	spacing	in	a	font.
That	should	get	you	to	a	well-spaced	‘o’	character,	which	will	help	you	with	the	design	of	the	‘n’.

Design	the	lowercase	‘n’

Creating	“o”	and	“n”

76

Once	you	are	happy	with	the	form	and	spacing	of	your	lowercase	‘o’	character	as	shown	with	a	sample	string,	the	next	step	of
this	approach	is	to	create	a	suitably	shaped,	balanced,	and	well-spaced	lowercase	‘n,’	which	you	will	inject	into	your	string	of
‘o’s.

If	we	look	at	the	anatomy	of	an	‘n’,	we	can	break	it	apart	into	two	or	three	components	consisting	of	a	stem	and	a	curve.
This	approach	can	give	us	a	shortcut	to	keeping	balance	and	harmony	within	our	characters	as	they	are	formed,	and	as	our	set
of	characters	grows.	Looking	at	the	sample	‘n’	below;	it	is	broken	into	two	components.	These	separate	components	combine
together	to	form	an	‘n’,	but	the	same	components	will	be	re-used	later	when	forming	other	characters;	e.g.,	the	stem	at	the	left
of	the	‘n’	can	be	used	to	form	the	left-sided	stem	of	all	other	lowercase	characters.

Creating	“o”	and	“n”

77

Taking	yourself	forward	again	to	the	chapter	on	spacing	and	metrics,	the	design	of	the	‘n’	character	should	keep	pace	with	the
process	of	spacing	the	‘n’	and	‘o’	characters	together.

Now,	garnering	the	methods	you	have	used	to	create	an	‘n’	and	‘o’	character,	you	are	ready	to	expand	the	lowercase	character
set.	The	qualities	of	the	stem	and	curve	components	of	the	‘n’	and	‘o’	will	inform	the	way	you	may	form	other	characters.
If	we	study	the	characters	below	from	Open	Sans,	we	can	see	the	relationships	between	the	formal	aspects	of	separate
characters	and	how	they	can	be	repeated,	with	some	adjustments,	to	form	the	components	of	our	font.

Creating	“o”	and	“n”

78

http://opensans.com/

Creating	“o”	and	“n”

79

Creating	“o”	and	“n”

80

Creating	“o”	and	“n”

81

Font	Info	&	Metadata

Element,	Font	Info
The	Font	Info	window	is	ubiquitous	in	font	editors,	and	FontForge	closely	follows	the	OpenType	Specification.	It	may	appear
cryptic	at	first,	but	using	it	can	help	learn	some	familiarity	with	the	OpenType	format,	and	in	turn	reading	about	the	OpenType
format	makes	the	dialog	more	approachable.

Version	Numbering
Software	developers	like	to	use	Semantic	Versioning	for	their	programs,	and	this	is	also	a	good	idea	for	your	fonts.	In	a	way,
fonts	are	an	"API"	for	text	to	access	some	associative	feelings	in	readers.

A	MAJOR	version	would	be	after	a	complete	redesign.	Compare	Exo	and	Exo	2.	If	you	have	a	document	using	Exo,	you	don't
want	to	jump	into	Exo	2,	because	the	feeling	evoked,	the	'voice'	or	'flavor,'	is	(subtly)	different.	Adding	support	for	one	or	more
new	scripts	that	are	quite	similar	in	height,	or	a	substantial	number	of	languages,	could	also	constitute	a	MAJOR	revision,	as

Font	Info	&	Metadata

82

http://semver.org
http://www.google.com/fonts/specimen/Exo
http://www.google.com/fonts/specimen/Exo+2

could	anything	else	that	substantially	changes	the	vertical	or	horizontal	metrics.	However,	if	a	complementary	design	is	made
for	2	scripts,	it	may	be	best	to	release	2	or	3	families,	one	with	each	script	scaled	appropriately	and	the	other	script(s)	scaled	as
secondary	fonts	for	simple	fallback	typesetting	of	multilingual	texts.

A	MINOR	version	would	be	anything	that	subtly	changes	the	metrics,	such	as	vertical	metrics,	horizontal	sidebearings	or
improved	kerning,	or	making	minor	corrections	to	some	glyphs,	because	such	updates	will	cause	documents	using	the	font	to
reflow	(albeit	subtly	in	many	cases.)	Here	is	an	example	from	http://www.fastcodesign.com/3033126/roboto-rebooted-why-
google-plans-to-update-its-font-like-the-rest-of-its-products:

Adding	just	a	few	or	a	dozen	glyphs	to	"complete"	coverage	of	a	previously	intended	character	set	or	to	add	support	for	just	a
few	more	languages	is	probably	MINOR,	especially	if	it	doesn't	change	the	vertical	metrics.

A	change	at	the	PATCH	level	would	be	anything	that	improves	the	font	without	changing	the	metrics	or	changes	a	glyph	design
in	a	visible	way,	that	don't	affect	the	final	text	layout.	Your	1.001	release	might	not	have	fsType	set	to	0	or	be	run	through
fontcrunch,	and	changing	both	those	things	in	a	1.0.1	release	won't	be	visible	or	reflow	anything.	Sadly,	the	third	PATCH	version
number	isn't	available	in	OpenType	font	version	metadata	fields.	Instead,	increment	the	MINOR	version	number	for	such
changes	to	hinting	or	metadata.

Also,	the	version	should	have	no	more	than	3	decimal	places,	and	this	may	be	represented	with	5	in	a	TTX	file.	Eg		2.001		is
typical,	and	may	appear	as		2.00099		in	TTX	XML.

If	you	release	libre	fonts,	the	Github	Releases	features	are	very	useful.

Family	Naming

Font	Info	&	Metadata

83

http://www.fastcodesign.com/3033126/roboto-rebooted-why-google-plans-to-update-its-font-like-the-rest-of-its-products
https://www.google.com/search?q=github+releases

Microsoft	works	hard	to	ensure	that	a	program	written	for	a	previous	version	of	Windows	will	continue	to	run	on	the	latest
versions,	enticing	people	to	upgrade.	This	means	that	the	basic	TrueType	font	model	introduced	in	Windows	3	is	still	with	us,
and	Windows	does	not	support	font	families	with	more	than	the	4	basic	styles	(Regular,	Italic,	Bold,	Bold	Italic.)

This	means	for	font	designers	that	our	font	family	names	should	be	set	up	in	a	way	that	all	our	fonts	can	be	used	in	all	operating
systems.	The	OpenType	format	allows	for	this,	complementing	the	Family	and	Style	Name	values	with	"Preferred	Family	Name"
and	"Preferred	Style	Name"	values	that	will	take	precedence	in	OpenType-aware	software.

This	Family	Naming	Google	Docs	Spreadsheet	is	based	on	information	shared	by	Polish	font	expert	Adam	Twardoch	and
discussed	in	the	Fontlab	forum.	It	supercedes	the	OpenType	specification	example.

Font	Info	&	Metadata

84

https://docs.google.com/spreadsheets/d/1ckHigO7kRxbm9ZGVQwJ6QJG_HjV_l_IRWJ_xeWnTSBg/edit#gid=0
http://forum.fontlab.com/index.php?topic=313.0
https://www.microsoft.com/typography/otspec/namesmp.htm

Word	Space

It	may	sound	funny	to	pay	special	attention	to	the	word	space,	however	it	is	one	of	the	most	commonly	used	parts	of	a	type
design.
A	word	space	that	is	too	wide	or	too	narrow	can	ruin	the	design	of	a	font.	It’s	not	too	early	to	begin	considering	the	word	spacing
as	long	as	you	have	your	first	characters	set	up.	The	choice	you	make	at	this	point	should	be	gradually	adjusted	while	you
progress	in	the	design	of	the	font.

The	word	space	here	is	too	tight…

And	here,	it’s	too	wide…

Now	this	is	well-balanced…

Word	Space

85

If	your	type	is	meant	to	be	used	at	larger	sizes,	then	the	word	space	can	be	reduced	—	and	vice-versa	if	it’s	to	be	used	at	very
small	sizes.

The	research	has	shown	that	a	word	space	that’s	too	large	is	more	tolerable	than	one	that’s	too	small,	so	if	you	are	unsure	you
may	want	to	err	in	that	direction.

Note:	Similar	studies	have	shown	that	younger	children	in	particular	benefit	a	little	from	word	spaces	larger	than	what’s
considered	normal	for	adult	readers.

Linda	Reynolds	and	Sue	Walker	(2004)	–	‘You	can’t	see	what	the	words	say:	word	spacing	and	letter	spacing	in	children’s
reading	books’,	Journal	of	Research	in	Reading,	vol	27,	no.1,	pp.	87-98.

Word	Space

86

Creating	Your	Type	DNA

After	you	have	completed	good	solid	design	and	spacing	of	the	‘o’	and	‘n’,	the	next	thing	to	do	is	to	begin	populating	the	font
with	letters	whose	structural	characteristics	provide	a	useful	basis	for	making	many	of	the	other	letters	in	the	font.

It	may	be	tempting	to	rush	and	populate	your	font	as	rapidly	as	possible	with	all	the	letters	—	resist	this	urge!
While	‘o’	and	‘n’	provide	an	excellent	starting-point	to	the	foundation	of	the	design,	we	need	to	establish	the	rest	of	it.	Rapid
expansion	before	this	is	done	will	mean	that	the	whole	project	will	become	harder	to	manage	—	and	takes	longer	than	it	needs
to.

What	else	do	we	need	for	the	foundation	of	our	design?	—	First,	let’s	look	at	what	we’ve	got	with	our	‘n’	and	‘o.’

Although	the	‘o’	is	especially	useful	for	working	out	the	basic	spacing,	it’s	not	going	to	help	us	design	other	characters	—	not
necessarily	even	the	‘b’	or	‘d’.
The	letter	‘n’,	on	the	other	hand,	is	very	useful	because	it	helps	making	the	‘m’,	‘h’,	and	‘u’.	The	other	factor	that	we	need	to
weigh	when	choosing	letters	for	our	foundation	is	how	frequently	the	letter	is	used.	A	letter	that’s	used	a	lot	will	help	us	make
test	words.	Some	of	the	letters	may	be	chosen	almost	exclusively	for	this	particular	reason.

The	letters	you	choose	don’t	have	to	be	those	suggested	here.	They	should	simply	have	the	characteristics	being	discussed.
So,	for	instance,	you	may	want	to	use	“a	d	h	e	s	i	o	n”	to	start	with.	This	set	of	letters	is	what’s	used	in	the	type	design	MA
course	at	the	University	of	Reading,	UK.
An	alternative	is	“v	i	d	e	o	s	p	a	n”	which	is	used	by	the	foundry	Type	Together	to	start	their	projects,	and	in	their	own	type
design	workshops.	Either	set	has	enough	DNA	to	be	meaningful,	and	both	are	small,	so	they	are	easy	to	make	‘global’	changes
to.

While	it	may	be	easiest	to	simply	use	one	of	the	above	sets	of	letters,	you	can	also	build	your	own.	Ask	yourself	what	set	of
letters	you	should	pick	to	add	to	‘n’	and	‘o’.	Consider	the	following	options:

‘a’	—	the	letter	‘a’	is	also	a	very	common	starting	choice.	The	‘a’	may	also	be	useful	in	‘anticipating	what	the	terminals	of	the
‘s’	will	look	like.
‘d’	—	the	shape	of	‘d’	can	let	you	know	quite	a	lot	about	the	design	of	‘b’,	‘p’	and	‘q’.
‘e’	—	in	English	and	many	other	languages,	the	letter	‘e’	is	especially	common	—	which	‘makes	it	especially	valuable.	The
shape	of	‘e’	can	also	be	used	to	begin	the	design	of	‘c’.
‘h’	—	while	‘h’	can	be	built	fairly	rapidly	from	the	‘n’,	it	also	provides	variety	to	the	texture	you	want	to	test	by	offering	an
ascender.
‘i’	—	like	‘e’,	the	letter	‘i’	is	fairly	common	and	has	the	benefit	of	letting	you	know	a	little	bit	about	the	face	of	the	‘j’.	The
shape	of	‘i’	is	also	partly	inferable	from	the	shape	of	the	‘n’.
‘s’	—	the	letter	‘s’	is	a	good	one	to	draw	early	on	because	it	adds	visual	variety	to	the	texture	of	the	letters	you	will	be
testing.	The	letter	‘s’	is	also	unusually	hard	to	get	right,	so	starting	on	it	early	makes	it	more	likely	that	you	will	be	able	to
spend	enough	time	to	get	it	right	by	the	end	of	the	project.
The	terminals	of	the	‘s’	may	sometimes	be	useful	for	anticipating	what	the	terminals	of	‘a’,	‘c’,	‘f’,	‘j’	and	‘y’	could	be	like.
‘v’	—	the	letter	‘v’	is	useful	for	anticipating	what	the	‘y’	and	‘w’	may	be	like.

Once	you	have	these	letters,	it’s	good	to	spend	time	refining	them	by	testing	words	that	are	made	from	them.	As	before	with	the
‘n’	and	‘o’,	a	great	deal	of	attention	should	be	paid	to	the	spacing	of	the	letters	and	the	relationships	of	the	counters	to	these
spaces.

Here	is	a	TypeDrawers	thread	on	determining	the	ascender	and	descender	heights:
http://typedrawers.com/discussion/1620/ascender-descenders-in-latin-type-design

Creating	Your	Type	DNA

87

http://typedrawers.com/discussion/1620/ascender-descenders-in-latin-type-design

Building	a	test	text
There	are	many	resources	available	online	for	rapidly	building	your	dummy	test	text:

LibreText	is	a	libre	software	solution.
Adhesion	Text,	made	by	Miguel	Sousa	was	the	first	resource	of	this	kind.
JAF	Generator,	by	Just	Another	Type	Foundry.
Typable,	by	Ondrej	Job

Use	real	text
Those	dummy	texts	are	in	a	way	"blind"	texts;	you	can	not	actually,	really,	read	them.

But	once	you	have	a	dozen	or	so	letters,	you	can	construct	real	text	to	experience	immersive	reading.	This	is	essential	for
deeply	understanding	how	the	design	performs,	so	its	good	to	get	to	this	stage	quickly.

But	watch	out	for	the	stale	text	effect.	If	you	re-use	the	same	real	text	for	testing	your	typeface,	it	can	become	so	familiar	that
you	lose	some	perception	abilities	for	how	the	typeface	is	performing.

Once	you	have	a	full	alphabet,	to	ensure	fresh	text,	you	can	set	your	operating	system	font,	email	application,	or	web	browser's
default	font	to	be	your	font.

This	was	discussed	on	the	Type	Drawers	forum	On	The	Use	of	Blind	Texts	thread.

Creating	Your	Type	DNA

88

http://libretext.org
http://www.adhesiontext.com/
http://justanotherfoundry.com/generator
http://www.urtd.net/data/typable/
http://typedrawers.com/discussion/918/on-the-use-of-blind-texts

Capital	Letters

Making	the	capital	letters	should	follow	a	pattern	very	similar	to	the	making	of	the	lower	case	letters.	You	begin	by	designing	key
letters	whose	shapes	and	characteristics	lend	themselves	to	the	design	of	chararacters	which	share	a	common	shape.	Just	like
with	lower	case	letters	the	frequency	with	which	letters	are	used	also	remain	an	important	factor	in	the	choice	of	the	letters.

The	first	two	letters	to	design	are	"H"	and	"O".	The	design	these	letters	should	not	just	be	in	relation	to	each	other	but	should
also	relate	to	the	existing	lower	case	letters.

It	is	at	this	stage	that	you	determining	the	proportion	of	the	lower	case	to	the	upper	case.	You	may	want	to	adjust	the	ascenders
and	descenders	of	your	lower	case	or	adjust	your	capitals	to	the	lower	case	to	create	the	proportion	that	suit	the	purpose	of
your	design.

The	weight	of	strokes	in	the	upper	case	often	needs	to	be	somewhat	heavier	than	the	strokes	of	the	lower	case.	You	may	want
to	create	an	interpolation	experiment	to	rapidly	find	how	much	heavier	they	should	be.

The	next	set	of	letters	to	consider	adding	are	A	E	S	I	N	and	either	P	or	D	and	maybe	V.

Depending	on	the	style	of	the	font	you	are	making	you	may	find	that	the	capital	letters	require	more	variation	in	width	than	you
have	in	the	lower	case	letters.	The	width	of	the	E	S	and	P	may	be	substantially	narrower	than	the	H	or	may	be	similar.

Generally	the	N	and	V	are	usually	similar	to	H	but	a	slightly	wider.

Capital	Letters

89

The	D	may	be	similar	to	H	or	quite	a	bit	wider.

Capital	Letters

90

The	shape	of	O	can	tell	you	quite	a	lot	about	the	C,	G	and	Q.	The	shape	of	H	tells	you	a	bit	about	about	I	and	J	and	the	left	side
of	B	D	E	F	K	L	P	R.

It	also	tells	you	a	little	about	T	and	U.	The	shape	of	A	can	tell	you	quite	a	lot	about	the	shape	of	V.

Capital	Letters

91

Capital	Letters

92

The	shape	and	proportions	of	V	tells	you	a	little	about	how	to	design	Y	W	X.	The	shape	of	the	Z	is	distinctive.

Capital	Letters

93

Capital	Letters

94

Line	Spacing

When	you	have	the	word	space	and	the	n	and	o	set	you	can	begin	to	look	at	the	line	spacing.	However,	a	full	and	final	decision
about	line	spacing	isn't	possible	until	you	have	Capital	letters	and	some	punctuation.

Think	about	line	space	intentionally
As	is	the	case	with	letter	and	word	spacing,	having	too	much	or	too	little	line	spacing	can	make	your	font	look	awkward	in	real-
world	usage.	Above	all	else,	finding	the	right	line	spacing	balance	is	a	matter	of	thinking	about	the	question	intentionally	and	of
testing	a	range	of	options	on	the	way	to	making	a	final	decision.

As	a	general	rule,	most	new	font	designers	tend	to	err	on	the	side	of	having	too	little	line	spacing	in	their	font,	so	if	you	are
unsure,	adding	additional	space	is	usually	a	good	idea.

You	should	also	consider	the	scope	of	your	project's	language	coverage	when	considering	line	spacing.	If	you	test	your	font's
line	spacing	only	with	unaccented	characters,	you	are	likely	to	settle	on	a	line	spacing	value	that	leaves	no	room	for	accents.	If
you	are	certain	your	font	will	never	be	used	with	accented	characters,	this	might	be	acceptable	—	but	the	odds	are	that	your
font	will	be	used	to	set	accented	text.	In	that	case,	too	little	line	spacing	will	cause	the	accents	on	one	line	to	run	into	the
bottoms	of	the	glyphs	above,	and	leave	the	reader	with	difficult	(if	not	impossible)	to	read	text.

One	strategy	to	test	whether	your	font's	line	spacing	is	proper	for	accented	characters	is	to	employ	sample	text	from	several
languages.

For	languages	heavy	in	diacritical	marks	(such	as	Czech),	line	spacing	should	be	taller	than	for	languages	that	use	no
diacriticals.	The	examples	above	show	Czech	(above)	and	English	with	the	same	fairly	wide	line	spacing.

Experiment	with	your	font's	line	spacing	in	FontForge
In	FontForge,	you	can	set	and	adjust	your	font	project's	line	spacing	from	within	the	Font	Info	window.	Open	this	window	by
choosing	Font	Info	from	the	"Element"	menu,	then	click	on	the	General	tab.	Note	the	values	that	FontForge	has	listed	for	Ascent
and	Descent.	Unless	you	have	made	manual	changes	already,	these	two	numbers	when	added	together	should	equal	the	value
of	Em	Size	listed	on	the	line	below.

Line	Spacing

95

Now	switch	to	the	"OS/2"	tab.	On	almost	all	computers,	your	font's	line	spacing	will	be	determined	by	the	Ascent	and	Descent
values	that	you	enter	in	this	tab,	under	the	Metrics	heading.

Line	Spacing

96

There	are	three	sets	of	values:	Win	Ascent	and	Descent,	Typo	Ascent	and	Descent,	and	HHead	Ascent	and	Descent.	You
should	set	all	the	Ascents	to	be	the	same	as	the	Ascent	value	you	noted	in	the	General	tab.	Next,	you	should	set	all	of	the
Descents	to	be	the	same	as	the	Descent	value	you	noted	in	the	General	tab,	with	one	important	exception:	you	must	make	the
Typo	Descent	number	negative.	Leave	the	value	the	same,	but	put	a	minus	sign	in	front	of	it.	Finally,	uncheck	all	of	the	"is
offset"	options.

These	settings	will	give	you	a	sensible	starting	point.	You	can	now	proceed	to	test	your	font	with	this	line	spacing	and	make
incremental	adjustments	until	you	arrive	at	eye-pleasing	result.

If	you	find	your	linespacing	is	too	tight	and	you	don't	want	to	or	can't	make	the	verical	metrics	larger	you	can	scale	the	glyphs
down	to	gain	more	space	for	linespacing.

Line	Spacing

97

Punctuation	and	Symbols

Punctuation	and	other	typographics	symbols	have	a	history	of	their	own,	separate	and	apart	from	the	development	of	the
alphabet.	But	you	will	find	that	the	same	design	process	still	applies,	including	reusing	and	adapting	component	elements,	and
iteratively	testing	your	design	choices.

Simple	punctuation	glyphs
The	first	thing	to	do	when	designing	punctuation	is	to	create	the	'.'	character,	which	is	known	as	the	full	stop	or	period.

The	shape	of	this	glyph	is	often	taken	from	the	dot	over	the	'i,'	which	is	sometimes	called	the	tittle.	After	you	copy	the	dot,	you
may	want	to	make	it	a	little	larger.	Testing	several	different	sizes	in	printed	text	or	on	screen	is	advisable.

Once	you	establish	a	size	that	you	are	happy	with,	this	dot	can	be	used	as	the	basis	for	a	wide	variety	of	other	punctation,
including	these	glyphs:	;	:	?	!	¡	¿	·	…

Punctuation	and	Symbols

98

The	next	glyph	to	make	is	the	comma.	The	shape	of	the	comma	can	vary	to	an	almost	suprising	degree.	It	may	be	valuable	for
you	to	look	at	a	wide	rage	of	comma	designs	before	you	design	yours.

The	image	below	shows	two	of	the	most	common	forms	that	the	comma	may	take.

The	top	of	the	comma	is	often	slightly	lighter	than	the	period,	because	if	it	is	the	same	it	can	look	too	heavy.	In	the	sample
image,	the	comma	on	the	right	is	a	good	example	of	this	compensation	being	applied.	Another	common	mistake	to	watch	out
for	with	this	glyph	is	making	it	too	short

When	you	have	your	comma	it	will	be	fairly	easy	to	make	the	semi	colon	(;).

Exclamation	mark	and	question	mark
The	exclamation	mark	can	be	be	deceiving	in	that	it	seems	simple	to	make.	If	you	look	at	a	range	of	typefaces	you	will	see	that
sometimes	the	design	is	indeed	fairly	simple.

However,	this	is	a	glyph	which	has	a	surprising	amount	of	opportunity	for	expressing	design.	It	often	the	case	that	even	in	a	font
which	has	very	little	contrast,	the	bar	above	the	dot	is	somewhat	heavier	at	the	top	than	the	bottom.	The	form	of	the	exclamation
mark	usually	relates	to	the	design	of	the	comma	to	some	degree.

Punctuation	and	Symbols

99

The	question	mark	can	also	be	quite	difficult	to	make,	because	it	requires	you	to	balance	an	open	curve	over	the	dot	below.

As	with	the	exclamation	mark	it	is	advisable	to	look	at	and	even	test	a	range	of	different	solutions	before	choosing	one	for	your
design.

Punctuation	and	Symbols

100

The	design	of	the	c,	C,	G,	s,	and	S	glyphs	may	provide	some	basis	for	the	design	of	this	glyph,	but	you	may	decide	to	choose	a
form	that	is	distinct	as	well.

Additional	symbols

Simple	or	vertical	quotes	—	'	and	"	—	are	distinct	from	typographic	quotes:	‘	’	and	“	”	‚	„	.

Simple	quotes	can	follow	the	shape	of	the	bar	over	the	dot	in	the	exclamation	mark,	but	they	can	also	be	designed	separately.

Usually	typographic	quotes	are	fairly	closely	related	to	the	comma,	however	they	should	be	longer	than	the	comma	and	often
curve	more.

Punctuation	and	Symbols

101

Brackets	[]	are	relatively	simple	to	make	because	they	are	so	boxy	in	shape.	Neverthess	their	design	should	reflect	the	choices
you	have	made	in	the	rest	of	the	typeface.

The	main	question	to	decide	is	how	tall	and	deep	they	will	be.	The	convention	is	that	they	should	exceed	the	height	of	the
capitals	very	slightly	and	descend	below	the	baseline	to	approximately	3/4	of	the	depth	of	your	lower	case	descenders.

These	choices	will	also	be	reflected	in	the	design	of	the	parentheses	()	and	the	braces	{}.	The	weight	of	the	stems	on	all	three	of
these	symbols	should	be	less	than	the	weight	of	the	stems	of	both	the	capitals	and	the	lower	case	letters.

Be	warned:	when	testing	the	characters	[]	#	in	the	metrics	window,	they	may	not	show	up.	This	is	because	they	are	reserved	by
the	program.	Instead	of	typing	[]	and	#	,	you	must	type	/bracketleft	/bracketright	and	/numbersign	.

Punctuation	and	Symbols

102

Parentheses	should	draw	on	the	design	of	related	shapes,	such	as	D,	C,	and	G.

Braces	are	notable	in	that	their	design	varies	to	a	greater	degree.	Braces	have	this	in	common	with	the	question	mark.	The
distribution	of	weight	in	braces	may	be	like	weight	distribution	of	the	numbers,	in	that	it	may	sometimes	violate	the	rules	you
follow	in	the	rest	of	the	design.

Punctuation	and	Symbols

103

Completeing	the	Lower	Case

You	may	have	noticed	in	fonts	you've	seen	before	that,	while	each	letter	has	its	own	shape,	they	all	relate	to	each	other.	By
carefully	de-constructing	a	few	glyphs,	you	gain	the	building	blocks	of	nearly	all	the	others.

Note	the	similarity	between	the	upper	terminals	on	this	c	and	f:

Their	shapes	indicate	that	they	belong	in	the	same	group,	even	though	they	are	subtly	different.	The	terminals	are	one	of	the
identifying	traits	of	a	font,	and	generally	are	repeated	on	many	of	the	letter	forms.

However,	excessive	dependence	on	modularity	shows	its	own	marks	in	a	design,	and	therefore	should	be	avoided	—	unless
that	is	a	look	you	want.

Proceeding	with	the	other	lower	case	letters

Completeing	the	Lower	Case

104

You	already	made	your	letter	'n.'	From	this,	you	can	easily	derive	the	m,	h,	and	u	by	cloning,	stretching,	and	rotating,
respectively.	There	are	subtle	changes	in	the	spacing	of	the	stems	in	the	m	and	the	u.	The	'u'	has	changed	not	only	its	spacing
but	its	serifs.	This	doesn't	happen	automatically;	it's	up	to	you	to	get	in	there	and	push	the	points	around.

The	'i'	can	be	derived	from	the	stem	of	the	'n.'	The	l''	can	be	made	from	the	stem	of	the	'n'	with	some	adjustments.

Making	the	d	From	the	Stem	of	h	and	o

Open	the	letter	'd''s	glyph	window	by	double-clicking	below	the	'd'	in	the	font	view.	From	the	font	view,	copy	the	'o'	and	paste	it
into	the	letter	'd''s	glyph	window.	Then	do	the	same	for	the	'h'.	At	this	point	you	can	delete	the	part	of	the	h	that	you're	not	going
to	use.	Position	the	remaining	pieces	together	so	they	resemble	a	'd.'

Completeing	the	Lower	Case

105

Clearly,	there's	more	work	to	be	done	here.	We'll	make	some	adjustments.	Narrow	the	right	side	of	the	o	where	it	meets	the
stem.

Completeing	the	Lower	Case

106

To	improve	the	optical	spacing	and	allow	the	shape	to	look	more	balanced,	make	a	little	room	at	the	serif	by	adding	a	point	to
the	stem	and	pushing	the	bottom	points	to	the	right.

Below	is	an	overlay	of	the	starting	shape	and	the	new	shape.

Completeing	the	Lower	Case

107

Now	that	you	know	how	to	assemble	from	existing	parts,	you	can	make	other	similar	letters.	Keep	in	mind	the	subtleties	that
make	each	letter	individual,	yet	still	part	of	a	family.

Deriving	the	b,	p,	and	q

Now	that	you	have	the	d,	by	flipping	and	rotating	you	can	make	a	reasonable	b,	p,	and	q.	Again,	be	aware	of	how	the	serifs	and
the	contrast	differ	in	each	letter.	Your	font	doesn't	have	to	do	this	exactly	the	same	way,	but	it's	one	of	the	things	you	should
think	about.

Completeing	the	Lower	Case

108

Make	the	g

You	can	start	with	the	q,	stretching	and	altering	the	tail,	to	make	the	single	bowl	g.	No	shapes	closely	resemble	the	binocular	g.
The	binocular	g	usually	needs	to	be	noticeably	lighter	in	order	to	look	right	when	set	with	other	letters.

Completeing	the	Lower	Case

109

On	to	f	and	t

The	t	has	an	ascender,	but	it's	generally	shorter	than	the	ascenders	of	the	other	lower	case	letters.	By	comparison,	the	f	is
much	taller	and	usually	encroaches	on	the	space	of	the	letter	next	to	it.	They	both	have	crossbars	which	are	generally	at	the
same	height,	width,	and	thickness.	Often	you	can	copy	from	one	to	the	other.

Completeing	the	Lower	Case

110

Now	make	the	e

The	e	will	be	loosely	based	on	the	o.	The	crossbar	of	the	e	is	lower	than	that	of	the	t,	but	has	the	same	thickness.	The	hook	at
the	bottom	of	the	e	will	be	informed	by	the	bottom	of	the	t.

From	the	e	comes	c

Creating	the	c	from	the	e	involves	deleting	the	crossbar	and	adding	the	terminal	at	the	top.	The	upper	terminal	of	the	c	can	be
similar	to	the	upper	terminals	of	other	letters	such	as	the	a,	and	f,	and	r.	The	terminals	of	the	c	can	also	form	the	basis	for	the	s.
The	e	can	also	influence	the	proportions	of	your	a.

Completeing	the	Lower	Case

111

v,	w,	x,	y,	and	z

These	letters	are	somewhat	difficult	because	they	don't	have	forms	that	are	related	to	the	other	letters.	This	means	you	have	to
just	jump	in	and	draw	the	v.	Make	the	down-stroke	as	thick	as	your	thick	stems,	and	make	the	upstroke	as	thin	as	the	thinner
strokes	in	your	other	letters.	Once	you	have	the	v,	you	have	a	basic	plan	for	the	w	and	y.	For	x	and	y,	focus	on	matching	the
contrast	of	the	rest	of	the	design	while	compensating	for	the	illusions	that	occur	in	diagonal	and	crossing	diagonal	forms.

Completeing	the	Lower	Case

112

Diacritics	and	Accents

A	diacritic	is	a	mark	added	to,	or	combining	with,	a	letter,	often	used	to	change	the	sound	value	of	the	letter	to	which	the	mark	is
added.	Some	diacritical	marks	(such	as	the	'acute'	and	'grave')	are	often	called	accents.	Diacritical	marks	may	appear	above	or
below	a	letter,	within	it	or	between	two	letters.

	 	 	 	 	 	 	 	

Some	examples	of	diacritics

Lowercase	'a	with	grave'	(unicode	u+00e0).	Created	in	a	font	by	combining	the	lowercase	'a'	glyph	(unicode	u+0061)	and	the
'combining	grave	accent'	glyph	(unicode	u+0300).

Lowercase	'a	with	circumflex'	(unicode	u+00e2).	Created	in	a	font	by	combining	the	lowercase	'a'	glyph	(unicode	u+0061)	and
the	'combining	circumflex	accent'	glyph	(unicode	u+0302).

Diacritics	and	Accents

113

Lowercase	'a	with	ogonek'	(unicode	u+0105).	Created	in	a	font	by	combining	the	lowercase	'a'	glyph	(unicode	u+0061)	and	the
'combining	ogonek'	glyph	(unicode	u+0328).

Lowercase	'c	with	cedilla'	(unicode	u+00e7).	Created	in	a	font	by	combining	the	lowercase	'c'	glyph	(unicode	u+0063)	and	the
'combining	cedilla'	glyph	(unicode	u+0327).

Lowercase	'o	with	double	acute'	(unicode	u+0151).	Created	in	a	font	by	combining	the	lowercase	'o'	glyph	(unicode	u+006f)	and
the	'combining	double	acute	accent'	glyph	(unicode	u+030b).

Diacritics	and	Accents

114

FontForge	can	automatically	create	accented	characters	in	2	main	ways;

1.	 FontForge	contains	rudimentary	information	on	where	to	place	diacritic	marks,	so	can	automatically	build	most	accented
characters.

2.	 For	much	greater	control	of	diacritic	placement,	FontForge	can	place	diacritic	marks	based	on	the	position	of	user	created
anchor	points.

It	should	be	noted	here	that	if	you	are	not	using	anchors	and	lookup	tables	to	position	diacritic	marks	then	if	the	glyph	of	a
particular	diacritic	mark	is	not	present	in	your	font,	FontForge	will	instead	use	a	similar	spacing	character	in	place.	For	example,
if	the	combining	mark	'acutecomb'	(u+0301)	is	not	present,	then	FontForge	will	use	the	standard	'acute'	(u+00b4)	character
when	it	automatically	builds	any	acute	accented	glyphs.	If	the	'acutecomb'	is	present,	then	FontForge	will	always	use	that,
unless	you	specifically	force	FontForge	to	use	spacing	characters	for	building	accented	glyphs.

FontForge's	basic	auto	placement	of	diacritic	marks.
In	FontForge's	'Element'	menu,	is	a	function	called	'Build'	that	can	be	used	to	create	accented	characters,	certain	composite
characters	and	some	duplicate	characters.	To	auto	build	accented	characters	FontForge	uses	the	'Element	>	Build	>	Build
Accented	Glyph'	function.	This	function	can	also	be	performed	with	the	keystroke	'ctrl	+	shift	+	a'.	So,	using	the	example	of
building	the	'a	acute'	character	(u+00e1)	,	we	would	need	to	have	already	created	the	lowercase	'a'	(u+0061)	and	the
'acutecomb'	glyph	(u+0301).	Then	selecting	the	'a	acute'	character	slot	and	using	the	'Element	>	Build	>	Build	Accented	Glyph'
function,	FontForge	will	place	a	reference	to	the	lowercase	'a'	glyph	and	a	reference	to	the	'acutecomb'	glyph	into	the	'a	acute'
character	slot	(see	below).

Diacritics	and	Accents

115

This	automatic	placement	of	diacritic	marks	can	be	tuned	by	preferences,	found	in	the	'accents'	section	of	FontForge's
preferences	menu	'File	>	Preferences	>	Accents'	(see	below).

Diacritics	and	Accents

116

'PreferSpacingCharacters'	-	selecting	this	option	to	'On'	will	force	FontForge	to	build	accented	glyphs	with	spacing	characters
even	if	the	appropriate	combining	characters	are	present.	This	option	is	ignored	when	using	anchors	to	position	diacritic	marks.

'AccentOffsetPercent'	controls	the	amount	of	vertical	space	between	the	base	glyph	and	the	mark	glyph.	The	value	entered
here	is	a	percentage	of	the	em	square	of	the	font.	So	a	value	of	'6'	will	offset	the	mark	glyph	from	the	base	glyph	by	6	percent	of
the	font's	em	square.

The	preferences	for	the	horizontal	placement	of	the	mark	glyph	can	also	be	set.	Selecting	'On'	for	the	preference
'AccentCenterLowest'	will	centre	the	accent	glyph	to	the	lowest	point	of	the	base	glyph.

Selecting	'AccentCenterHighest'	to	'On'	will	centre	the	accent	to	the	highest	point	of	the	base	glyph.

Selecting	both	the	above	preferences	to	'Off'	will	centre	the	accent	into	the	width	of	the	base	glyph.	Selecting	both	the	above
preferences	to	'On'	will	centre	the	accent	in	the	width	of	the	character	slot.

Diacritics	and	Accents

117

Using	Anchor	Points	to	place	diacritics
The	most	accurate	and	efficient	way	to	build	accented	characters	in	FontForge	is	to	use	'anchor	points'.

Anchor	points	allow	fine	control	of	the	positioning	of	exactly	where	the	diacritic	mark	will	be	positioned	in	relation	to	each	base
glyph	in	the	accented	characters.	So,	in	the	case	of	the	'a	ogonek'	character,	the	'a'	glyph	is	the	base	glyph,	and	it	will	be
positioned	normally,	the	'ogonek'	glyph	is	the	'mark	glyph'	and	will	be	positioned	so	that	the	anchor	point	of	the	'mark	glyph'
coincides	with	the	anchor	point	in	the	base	glyph.

In	the	example	below,	creating	an	'a	ogonek'	character,	an	anchor	class	has	been	created	called	'bottom'.	In	the	lowercase	'a'
glyph,	the	'bottom'	anchor	is	placed	at	the	bottom	of	the	stem	of	the	'a'.	This	is	the	'base	glyph'	form	of	the	anchor.	(see	below)

In	the	'ogonek'	glyph	the	'bottom	anchor	is	placed	at	the	top	of	the	ogonek	glyph,	in	the	form	of	a	'mark'	anchor.	(see	below)

Diacritics	and	Accents

118

Then,	when	the	'a	ogonek'	character	is	built	(using	the	'Build	Accented	Charcter'	function)	the	'bottom'	mark	anchor	point	will	be
placed	at	the	same	location	as	the	'bottom'	base	anchor	point,	ensuring	that	the	referenced	ogonek	glyph	is	placed	correctly	at
the	foot	of	the	stem	of	the	referenced	'a'	glyph	(see	below).	This	exact	and	automatic	placement	would	not	have	been	possible
without	using	anchor	points	to	position	the	base	and	mark	glyphs.

Diacritics	and	Accents

119

Creating	anchor	points	for	placing	diacritic	marks	(Mark	to	base	positioning)

FontForge	uses	lookup	features	know	as	'mark-to-base'	for	creating	and	positioning	anchor	points.	These	mark-to-base	lookups
can	be	created	and	edited	in	the	GPOS	Lookups	section	of	the	Font	Info	of	your	font	('Element>Font	Info>Lookups>GPOS').

From	the	GPOS	Lookups	window,	click	on	'Add	Lookup'	and	choose	the	Type	'Mark	to	Base	Position',	then	choose	'Mark
Positioning'	from	the	'New'	column	of	the	Feature	pane	(see	below).	Click	'OK'	to	close	the	window.

Diacritics	and	Accents

120

With	the	new	lookup	selected,	click	'Add	Subtable'.	In	the	resulting	window	(see	below)	you	can	create	your	anchor	classes.

In	this	example	(below),	two	anchor	classes	have	been	created,	'top'	and	'bottom'.	The	'top'	anchor	class	will	be	used	to	position
diacritic	marks	that	are	placed	above	glyphs,	and	the	'bottom'	anchor	will	be	used	for	positioning	marks	below	glyphs.

Diacritics	and	Accents

121

To	place	an	anchor	with	a	glyph,	simply	use	the	right	mouse	click	in	a	glyph	edit	window,	and	select	the	function	'Add	Anchor'
from	the	right-click	menu.	The	dialogue	box	that	appears	enables	you	to	assign	whether	the	anchor	is	a	base	or	mark	anchor.
The	anchor's	position	can	also	be	fine	tuned	from	this	dialogue	box.	Alternatively	the	anchor	can	be	moved	by	being	dragged	to
position	with	the	mouse,	or	moved	by	using	the	up,	down,	left	and	right	keys.	The	anchor	point	can	also	be	edited	by	right
clicking	on	the	anchor	point	and	choosing	'get	info'	from	the	mouse	click	menu.

Control	of	Anchor	Classes

FontForge	also	contains	a	usefull	graphical	interface	for	controlling	the	position	of	whole	classes	of	anchor	points,	enabling	the
user	to	fine	tune	the	position	of,	for	example,	all	the	acute	accents	at	once	in	a	font,	or	all	the	anchors	in	a	class	contained	in,
for	example,	characters	that	reference	the	lowercase	'e'.	In	the	examples	below	we	can	see	how	to	use	this	graphical	interface
to	fine	tune	the	position	of	all	acute	accents	in	a	font,	and,	to	fine	tune	a	class	of	anchors	across	all	characters	that	reference
the	lowecase	'e'	glyph.

Once	you	have	created	anchor	classes	within	your	mark-to-base	position	lookups,	and	added	anchors	to	some	glyphs,	you	can
control	these	classes	from	"Element>Font	Info>Lookups>GPOS"	and	then	editing	a	subtable	that	contains	anchor	classes.	You
will	then	see	this	window;

Diacritics	and	Accents

122

From	here	select	the	class	you	wish	to	edit	and	click	on	the	'Anchor	Control'	button.	You	will	then	be	presented	by	a	graphical
interface	to	that	class.	In	the	examples	below	we	are	editing	the	control	of	the	'top'	class.	In	the	first	example	(below)	the
lowercase	'e'	has	been	selected	from	the	'Bases'	section	of	the	drop	down	menu.	When	a	base	glyph	is	selected,	all	characters
that	reference	that	glyph	and	contain	a	'top'	base	anchor,	will	be	displayed	in	the	preview	pane.	We	can	then	adjust	the	position
of	the	'top'	base	anchor	to	see	how	it	effects	the	position	of	all	glyphs	that	contain	the	'top'	mark	anchor.

In	the	second	example,	below,	the	'acute'	glyph	has	been	selected	from	the	'Marks'	section	of	the	drop	down	menu.	When	a
mark	glyph	is	selected	then	all	glyphs	that	reference	the	selected	glyph	and	contain	a	'top'	mark	anchor	will	be	displayed	for
preview.

Other	resources
http://urtd.net/projects/cod/about
http://ilovetypography.com/2009/01/24/on-diacritics/
http://diacritics.typo.cz/
http://scripts.sil.org/ProbsOfDiacDesign
http://www.microsoft.com/typography/developers/fdsspec/diacritics.htm
https://twitter.com/fostertype/status/610292546971893760

Diacritics	and	Accents

123

http://urtd.net/projects/cod/about
http://ilovetypography.com/2009/01/24/on-diacritics/
http://diacritics.typo.cz/
http://scripts.sil.org/ProbsOfDiacDesign
http://www.microsoft.com/typography/developers/fdsspec/diacritics.htm
https://twitter.com/fostertype/status/610292546971893760

Numerals

Numerals	are	often	difficult	for	font	designers	—	and	for	several	reasons.	One	is	that	numerals	have	a	very	large	number	of
curves.	Another	is	that	numerals	often	use	conventions	in	their	shapes	that	are	different	from	(or	are	even	in	violation	of)	the
visual	conventions	seen	in	the	rest	of	the	font	design.	Furthermore,	numerals	can	have	very	large	number	of	strokes	(like	8	and
5	do),	or	they	may	have	large	white	spaces	(like	1,	7,	and	sometimes	2	and	4).	Both	situations	can	be	hard	to	manage.	Finally,
there	is	the	problem	of	how	to	make	sure	your	zero	looks	different	from	the	capital	O.

It	can	be	useful	to	look	at	the	numerals	found	in	a	wide	variety	of	fonts	to	become	more	familiar	with	the	ways	in	which
designers	cope	with	these	problems.

In	those	numerals	with	a	dense	number	of	strokes	(such	as	8),	you	may	find	that	designers	allow	the	stroke	widths	to	become	a
little	thinner	than	is	typical	of	the	letters	in	the	font.	A	similar	approach	can	be	seen	the	design	of	the	double	story	g.

Conversely,	to	compensate	for	numerals	with	large	white	space	proportions,	some	strokes	are	likely	to	become	heavier	than
would	be	typical.

In	the	case	of	distinguishing	the	zero	from	the	capital	O,	there	are	a	wide	range	of	solutions	—	such	as	making	the	zero
narrower	than	the	O,	or	a	zero	that	is	perfectly	round,	or	perhaps	(especially	in	a	monospace	font)	having	a	slash	through	the
zero.

Having	the	zero	narrower	than	the	capital	O	while	sharing	its	height	is	the	common	approach.	This	approach	is	typical	of	lining
numerals.	Lining	numerals	are	the	most	common	style	for	numerals.	Examples	of	fonts	that	use	this	approach	include:	many
Garamonds,	Futura,	and	the	Google	web	font	Open	Sans.	Below	is	Open	Sans	showing	the	zero,	capital	O,	zero	and	then	other
numerals.

A	perfectly	round	or	nearly	perfectly	round	circle	is	less	common,	but	does	exist.	Examples	of	fonts	that	use	this	approach
include	the	Google	web	font	Vollkorn	as	well	as	other	commercial	types	such	as	Mrs	Eaves,	Vendeta	and	Fleischman	BT	Pro.
Fonts	that	use	oldstyle	proportional	numerals	are	more	likely	to	feature	this	approach.	Sometimes	a	zero	at	x-height	but	which
is	narrower	will	also	be	seen.

Numerals	also	come	in	up	to	11	identifiable	styles	when	you	include	fractions,	superscripts	and	subscripts.	We	will	look	at	the	5
most	common	ones.

Lining	style	numerals
The	most	common	styles	of	number	found	in	fonts	are	Tabular	Lining	and	Proportional	Lining.	Lining	refers	to	the	heights	that
the	numbers	use.	If	it	is	a	lining	style	the	heights	for	all	the	numbers	will	be	optically	the	same.	The	difference	between	Tabular
Lining	and	Proportional	Lining	numbers	is	that	in	Tabular	Lining	all	the	numbers	also	share	the	same	widths.	This	style	is	useful
for	spreadsheets	and	any	other	purpose	where	it	is	helpful	for	numbers	to	stay	stacked	up	in	neat	lines	both	horizontally	and
vertically.

Numerals

124

Proportional	lining	numbers	have	the	advantage	of	having	the	ability	to	looking	more	visually	even	because	the	forms	and
spacing	of	the	numbers	can	vary	to	compensate	for	differing	stroke	density.

Numerals

125

Ranging	or	Old	style	numerals

Numerals

126

Tabular	numbers	are	a	relatively	new	invention	in	historical	terms.	Before	they	existed	there	were	old	style	proportional
numbers.	Old	style	numbers	are	useful	if	you	want	the	numbers	to	mix	in	and	share	the	style	of	a	text.

Tabular	oldstyle	numbers	are	fairly	rare.	They	can	be	useful	in	an	annual	report	where	you	want	the	feeling	of	an	old	style
number	but	the	tabular	spacing	typical	of	that	kind	of	document.	The	image	above	is	from	a	typewriter	Library	catalog	card.

Hybrid	style	numerals

Numerals

127

Hybrid	numerals	don't	share	the	font's	cap-height	or	x-height,	but	instead	occupy	their	own	height.	The	term	"hybrid"	refers	to	a
mixing	of	the	old-style	and	lining	numerals.	Examples	of	fonts	that	use	hybrid	style	numerals	include	Georgia	and	the	Google
web	fonts	Merriweather	and	Donegal.	The	zero,	capital	O,	zero,	1,	2,	3,	etc	glyphs	from	Merriweather	are	shown	below.

Numerals

128

Bold	and	Other	Weights

When	we	talk	about	the	style	"bold,"	we	are	really	talking	about	a	broader	variable,	which	is	weight.	Weight	can	include	anything
from	very	very	thin	hairline	letters	to	enormously	heavy	letters.	This	variable	is	used	in	text	typography	to	create	strong
separation	between	bodies	of	text,	and	it	is	used	in	graphic	design	either	to	draw	attention	to	a	word	or	short	texts,	or	to	give
text	a	specific	feeling	(rather	than	to	contrast	it	with	other	text).

While	you	may	want	to	do	a	wide	range	of	things	with	weight	it	is	likely	that	your	first	experience	with	adjusting	weight	will	be	to
try	to	create	a	bold	to	accompany	your	regular	text	weight.

Because	you	are	using	FontForge	you	have	a	distinct	advantage.	Unlike	many	font	editing	programs,	the	results	you	get	from
FontForge	style	filter	may	actually	be	suitable	for	use	—	moreso	than	the	ones	you	would	get	in	commercial	type	design
software.	This	is	because	the	algorithm	it	uses	is	exceptionally	sophisticated.

Creating	a	bold	version	of	a	font	can	be	rapidly	approximated	by	running	a	filter	called	Change	weight	(which	you	will	find	in	the
Element	>	Styles	menu)	to	add	weight	to	your	glyphs.

The	automatic	nature	and	relatively	high	speed	of	this	process	makes	it	ideal	for	testing	what	weight	you	may	want	for	your
bold.	You	may	want	to	try	running	this	filter	several	times	and	save	several	versions	to	compare	in	text	next	to	your	regular.	That
said,	you	may	still	need	to	either	alter	the	result	further	after	running	the	filter,	or	manually	adjust	individual	glyphs	in	order	to	get
a	result	which	is	satisfactory.

It	is	also	worth	remembering	that	glyphs	which	do	not	have	a	density	of	strokes	(such	as	1,	i,	l,	I,	L,	j	and	J)	may	need	to	be
heavier,	while	glyphs	which	do	have	a	density	of	strokes	(such	as	a,	e,	g,	x,	B,	R,	8,	and	&)	will	need	to	be	less	heavy	than	the
other	glyphs.

Font	interpolation
FontForge	does	have	a	function	to	interpolate	between	separate	fonts	(see	the	the	Interpolate	Fonts	function	from	the	Element
menu).	Font	interpolation	is	a	technique	that	can	be	used	for	creating	intermediate	weights	from	two	other	weights.	Therefore
one	way	of	deciding	about	the	weight	of	your	bold	is	to	create	a	bold	which	is	definitely	heavier	than	you	need,	then	to
interpolate	several	different	weights	between	this	overly	bold	design	and	your	regular.

Using	this	technique	you	can	more	rapidly	find	the	weight	you	feel	is	most	appropriate	for	your	project.	The	same	technique	can
be	applied	to	help	decide	about	even	heavier	weights	such	as	the	"heavy"	and	"black,"	as	well	as	lighter	ones	like	"book"	and
"thin"	styles.	You	can	also	set	negative	values	on	interpolation,	for	example	you	will	get	a	"bold"	style	if	you	interpolate	a
"regular"	with	"thin"	at	-50%.

By	this	logic,	it	may	seem	like	the	best	and	most	efficient	way	of	making	a	regular	weight	and	all	the	other	weights	you	may
need,	would	be	to	make	a	very	thin	and	a	hyper-bold	font,	then	generate	everything	you	need	from	these.	However,	the	result	of
that	approach	is	likely	to	be	excessively	bland.	Instead,	it	is	often	the	case	that	each	significant	change	in	weight	will	require	its
own	master	design	from	which	other	middle	weights	can	be	made.

Further	Reading
http://bigelowandholmes.typepad.com/bigelow-holmes/2015/07/on-font-weight.html

Bold	and	Other	Weights

129

http://bigelowandholmes.typepad.com/bigelow-holmes/2015/07/on-font-weight.html

Bold	and	Other	Weights

130

Italic

Italics	are	probably	the	most	misunderstood	style	in	type	design,	but	they	are	also	the	style	with	the	greatest	potential
excitement	and	fun	due	to	the	large	number	of	variables	for	you	the	designer	to	play	with.

Italics	are	different	from	bolds	in	that	they	are	not	meant	to	appear	to	have	a	different	weight	than	the	regular.	Instead,	they	are
meant	to	offer	a	different	texture	than	the	regular.	Greater	intensity	in	this	difference	will	mean	that	the	italic	is	especially	useful
for	creating	a	sense	of	contrast	with	the	regular.	This	stronger	effect	is	useful	for	highlighting	single	words	or	short	passages	of
text.	In	contrast,	a	less-different	texture	is	often	useful	in	situations	where	you	are	setting	multiple	lines,	whole	paragraphs,	or
even	even	pages	in	an	italic.

Slant
The	variable	most	commonly	associated	with	italics	is	slant.	Indeed,	when	a	web	browser	is	asked	for	an	italic	in	a	CSS	rule
and	there	is	no	Italic,	it	will	simply	slant	the	regular	to	create	a	synthetic	or	faux	italic.	It	is	probably	not	surprising	that	when
people	first	begin	designing	type	they	also	consider	this	approach.	The	origins	of	this	idea	go	back	to	the	mid-20th	Century	and
modernism	as	it	was	applied	to	design.	This	is	why	the	first	italics	seen	in	typefaces	such	as	Helvetica	were	also	slanted
versions	of	the	regular.

How	much	slant?

Some	italics	have	no	slant.	No,	really!	These	italics	are	called	upright	italics.	However	it	is	likely	that	if	your	design	has	only	one
italic	in	it	that	you	will	choose	for	that	italic	to	have	some	degree	of	slant.	In	general,	italics	tend	to	slant	between	4-14	degrees.
Most	contemporary	fonts	slant	between	6-9	degrees.

While	slant	can	be	important	to	the	design	of	an	italic,	is	easy	to	notice,	and	can	even	be	done	with	some	limited	success	using
an	automatic	filter,	it	is	not	the	only	variable	that	you	can	use	to	help	separate	your	italic	from	your	regular.	You	may	want	to
consider	using	one	or	more	of	the	following	variables	in	addition	to	slant.

Italic	construction
The	term	"italic"	does	not	in	fact	refer	to	the	slant	seen	in	in	many	italics	designs	but	instead	refers	instead	to	a	style	of	writing
which	became	popular	in	14th	century	Italy.	This	style	of	writing	was	a	faster	and	a	connected	form	of	writing	which	uses	a
different	construction	for	its	letters	than	is	seen	in	regular.	This	different	construction	or	pattern	of	strokes	is	what	type	designers
are	referring	to	when	they	say	they	have	designed	a	"real"	or	"true"	italic.	This	construction	has	many	sub	characteristics	that
you	may	choose	to	include	in	an	italic	design.

Triangular	counters

The	most	obvious	of	these	characteristics	is	the	triangular	countershape	created	by	letters	with	joins.	These	letters	include	a,	b,
d,	g,	h,	m,	n,	p,	q,	and	u.	This	variable	is	powerful,	partly	because	countershape	is	a	powerful	variable,	but	also	because	of	the
great	number	of	letters	with	the	feature.	That	fact,	combined	with	the	high	frequency	of	their	usage	in	most	languages,	is	also	a
very	large	(and	probably	the	even	greater)	factor.

When	designing	your	italic,	you	can	very	effectively	tune	the	effect	your	italic	gives	by	making	relatively	small	adjustments	to	the
height	of	the	joins.	Subtle	changes	can	give	surprisingly	large	results.	Still,	not	all	italic	fonts	take	advantage	of	this	variable.

Italic

131

In	and	out	strokes

Many	italic	fonts	make	use	of	asymmetical	serifs,	in	the	form	of	in-	or	out-strokes,	or	both.	When	only	one	is	used,	it	is	more
common	to	use	the	outstroke	and	to	have	an	upright	style	applied	where	the	instroke	might	have	been.	The	intensity	of	the
effect	that	instroke	and	outstroke	has	can	be	controlled	by	the	weight	of	the	strokes	and	by	adjusting	how	long	they	are.	Like
triangular	counters,	a	great	part	of	their	utility	and	power	comes	from	the	fact	that	so	many	letters	use	them.

Condensation

Italics	are	normally	somewhat	less	wide	or	more	condensed	than	the	regular	style.	Because	condensation	is	a	feature	seen
across	all	of	the	letters	in	the	italic,	it	is	a	very	powerful	variable.	This	variable	can	be	employed	in	both	a	gross	and	subtle
manner.	If	you	choose	to	use	this	variable,	it	is	necessary	to	adjust	the	weight	of	the	strokes	to	make	the	italic	appear	to	be	the
same	or	nearly	the	same	weight	as	the	regular	design.	The	more	condensed	your	italic	is,	the	more	you	will	need	to	make	this
adjustment.

Mixing	variables
Most	italics	use	all	of	the	variables	listed	above	in	various	proportions.	You	may	find	that	it	is	useful	to	look	at	a	range	of	italic
designs	and	analyse	which	variables	are	being	used	and	in	what	strength.	When	you	do	this,	you	will	notice	that	none	of	the
variables	are	used	at	full	strength.	Instead,	one	of	the	variables	tends	to	lead,	with	some	limited	use	of	the	others.	The	stronger
the	use	of	the	variables	the	more	contrast	your	italic	will	have	from	the	regular.

In	is	also	notable	that	in	the	last	ten	years	we	have	seen	an	increasing	number	of	type	designers	choose	to	offer	not	just	one
italic	in	their	type	families,	but	two	or	even	more.	It	is	also	notable	that	dictionaries	sometimes	make	use	of	more	than	one	style
of	italic.

When	they	were	first	made	for	printing,	italics	were	not	thought	of	as	part	of	the	same	type	design	or	type	family.	This	idea	is
one	which	became	standard	over	the	19th	and	20th	Centuries.	Even	the	idea	of	mixing	italics	with	regular	was	not	part	of	the
original	idea	behind	this	script.	The	first	italic	fonts	were	used	to	set	entire	books,	instead	of	the	upright	roman	style.	It	is
probably	safe	to	assume	that	the	role	of	the	italic	will	continue	to	evolve.

Italic

132

Spacing,	Metrics	and	Kerning

The	spaces	between	characters	are	an	important,	integral	part	of	the	design	of	a	font.

Designing	a	font’s	letter	spacing	should	be	carried	out	as	an	integral	part	of	the	whole	process	of	designing	a	font.	Good
spacing	is	necessary	for	a	font	to	function	well.

In	FontForge,	the	Metrics	Window	allows	you	to	design	the	metrics	of	your	font,	alter	the	spacing	between	them,	and	test	how
glyphs	look	together.	Metrics	Windows	can	be	opened	from	the	‘Window’	menu,	or	by	using	the	Control-k	command.

The	space	between	any	two	glyph	has	two	components;	the	space	after	the	first	glyph,	and	the	space	before	the	second	glyph.
These	spaces	between	glyphs	are	composed	of	the	‘side	bearings’	from	each	glyph	pair.	Each	glyph	has	a	left	side	bearing	and
a	right	side	bearing,	in	the	example	below	of	the	lowercase	‘a’	of	Open	Sans	the	right	sidebearing	has	a	value	of	166	units,	and
the	left	sidebearing	has	a	value	of	94	units.

Basic	Functions	of	the	Metrics	Window
The	side	bearings	of	characters	can	be	edited	in	FontForge’s	Metrics	Window	in	5	ways;

Manually	dragging	each	side	bearing	boundary.
Manually	dragging	a	character.	Note	though	that	dragging	a	character	will	only	effect	the	value	of	the	left	side	bearing.

Spacing,	Metrics	and	Kerning

133

Side	bearing	values	can	be	altered	by	directly	editing	their	value	in	the	metrics	tables	of	the	Metrics	Window.
The	value	of	side	bearings	can	be	incremented	/	decremented	by	using	the	keyboard.
Using	commands	in	the	Metrics	Window’s	Metrics	menu.

Adjusting	Side	Bearing	Values	with	the	keyboard.

One	method	of	adjusting	metric	values	quickly	and	accurately	in	FontForge	is	by	using	the	up,	down,	left	and	right	keys	of	a
keyboard.	The	up	and	down	keys	are	used	to	incrememt	/	decrement	values	and	alt+up,	alt+down,	alt+left	and	alt+right	are
used	for	navigating	around	the	different	value	fields	of	the	Metrics	Window.

General	Principles
As	a	general	principle	symmetric	characters	such	as	'A'	'H'	'I'	'M'	'N'	'O'	'T'	'U'	'V'	'W'	'X'	'Y'	'o'	'v'	'w'	'x'	will	have	symmetric	side
bearings,	e.g.	a	the	left	and	right	side	bearings	of	an	'H'	will	be	the	same	value.	Note	though	that	this	is	not	a	hard	and	fast	rule,
but	a	general	one.

As	you	space	the	characters	that	you	design,	you	should	trust	your	eyes.	The	bottom	line	is	to	'design	-	look	-	adjust	-	look
again'.

For	the	absolute	beginner;	do	not	assume	that	reliable	results	are	achieved	by	relying	on	the	measured	space.	For	example,
whilst	the	measurements	between	two	characters	may	be	unequal,	the	eye	can	see	them	as	equal.	An	obvious	example	of	this
can	be	seen	when	attempting	to	space	the	characters	'H'	and	'O'.	So	for	the	example	below,	the	side	bearings	of	the	'H'	and	'O'
are	equal,	but	look	unequal.	In	the	lower	line,	the	side	bearings	are	not	equal	but	the	spacing	appears	balanced.

A	tool	for	generating	such	texts	is	available	from	http://tools.ninastoessinger.com/

Metrics	Menu	Commands	for	editing	metrics
'Center	in	Width'	-	This	centers	the	current	glyph	within	its	current	width.

'Window	Type'	-	FontForge's	Metrics	Window	can	be	set	to	behave	in	2	ways	for	metrics	adjustment;

'Advance	Width	Only'	-	in	this	mode	metrics	view	may	only	be	used	to	adjust	the	advance	widths	of	glyphs.
'Both'	-	In	this	mode	metrics	view	will	adjust	either	the	advance	width	or	kerning	values.

'Set	Width'	-	this	command	allows	you	to	change	the	width	of	the	current	glyph.

'Set	LBearing'	-	allows	you	to	change	the	left	side	bearing	value.

'Set	RBearing'	-	allows	you	to	change	the	lright	side	bearing	value.

Spacing,	Metrics	and	Kerning

134

http://tools.ninastoessinger.com/

A	basic	approach	to	spacing
The	following	method	is	designed	to	get	you	started	effectively	towards	designing	the	metrics	of	your	font.

Starting	with	a	string	of	lowercase	'o'	characters	in	the	metrics	window,	the	left	and	right	sidebearings	can	be	adjusted	until	the
spacing	of	the	characters	looks	and	feels	right.	One	way	to	look	for	this	'rightness'	is	to	look	for	the	whitespace	between	the	'o'
characters	to	balance	the	whitespace	inside	the	'o'	characters.	In	general,	with	the	exception	of	slanted	or	italic	fonts,	the	left
and	right	side	bearings	of	a	lowercase	'o'	should	be	of	equal	value.	Once	you	are	happy	with	the	spacing	of	your	string	of	'o'
characters,	introduce	the	'n'	character	from	your	font	(see	below)	and	then	look	to	adjust	the	side	bearings	of	the	'n'	so	that	it's
spacing	fits	into	the	balance	of	the	string	of	'o'	characters	(see	below).	Note	that	due	to	the	nature	of	the	way	our	eyes	see,	the
right	side	bearing	of	an	'n'	will	allways	be	a	smaller	value	than	the	left	side	bearing,	and	the	side	bearings	of	the	'o'	will	be
smaller	than	the	side	bearings	of	the	'n'.

Once	both	the	'n'	and	'o'	are	adequately	spaced	their	sidebearings	can	be	used	to	create	the	sidebearings	for	an	array	of	other
characters,	for	example;

The	left	side	bearing	of	the	'o'	can	be	used	for	the	left	side	bearing	of	the	'c',	'd',	'e',	and	'q'.
The	right	side	bearing	of	the	'o'	can	be	used	for	the	right	side	bearing	of	the	'b'	and	'p'.
The	right	side	bearing	of	the	'n'	can	be	used	for	the	right	side	bearing	of	the	'h'	and	'm'.
The	left	side	bearing	of	the	'n'	can	be	used	for	the	left	side	bearing	of	the	'b',	'h',	'k',	'm',	'p'	and	'r'.

Note	-	the	above	should	be	used	as	a	guide	only	that	can	be	used	as	a	super	effective	starting	point	for	finding	correct	values
for	these	side	bearings.

From	here	it	makes	sense	to	then	space	the	rest	of	the	side	bearings	of	the	lowercase	characters	against	strings	of	'n'	and	'o'
characters,	as	seen	in	the	diagram	above.	Again,	trust	your	eyes	to	reach	correct	balance	of	characters.

Spacing,	Metrics	and	Kerning

135

Uppercase	characters
Uppercase	characters	can	be	spaced	using	the	same	principles	as	above.	For	example,	start	with	the	string	'Hooooo'	and
adjust	the	right	side	bearing	of	the	'H'	untill	it	feels	balanced	against	the	string	of	'o'	characters.	With	the	left	side	bearing	of	the
'H'	being	equal	to	the	right	side	bearing,	the	uppercase	'O'	can	then	be	spaced	against	the	'H'	(see	below).

From	here	all	other	characters	can	be	spaced	against	the	characters	which	have	already	been	spaced.	It	should	be	noted	that
this	method	can	be	used	as	a	good	starting	point	for	spacing	a	font,	but	it	is	likely	that	more	minute	fine	tuning	of	spacing	will
also	be	needed	to	achieve	higher	levels	of	good	letter	spacing.	Other	strings	of	characters	that	are	usefull	in	this	can	be	arrays
such	as	'naxna',	'auxua',	'noxno',	'Hxndo'.

Kerning
Kerning	is	the	adjustment	of	the	spacing	between	specific	character	pairs.	Kerning	enables	individual	spacing	of	character	pairs
that	is	applied	in	addition	to	the	spacing	provided	by	a	character's	side	bearings.	Common	examples	of	character	pairs	where
kerning	is	often	needed	to	improve	spacing	would	be	'WA',	'Wa',	'To',	'Av'.	In	the	examples	below,	we	can	see	that	without
kerning	the	spacing	between	the	letter	pairs	'T-o'	and	'V-a'	are	too	wide,	whereas	with	kerning	the	space	between	these
character	pairs	is	much	more	balanced	with	the	feel	of	the	spacing	of	the	rest	of	the	font.

The	Metrics	Window	in	FontForge	can	be	used	to	design	both	side	bearings	and	kerning	values.	Kerning	values	can	be	applied
to	a	font	in	a	number	of	ways	in	FontForge,	2	of	these	are	shown	below,	kerning	with	classes	and	kerning	with	individual	pairs;

FontForge's	Metrics	menu
'Window	Type'	-	FontForge's	Metrics	window	can	be	set	to	behave	in	2	different	ways	to	enable	kerning	adjustment;

Spacing,	Metrics	and	Kerning

136

'Kerning	Only'	-	in	this	mode	the	metrics	view	may	only	be	used	to	adjust	kerning.
'Both'	-	In	this	mode	metrics	view	will	adjust	either	the	advance	width	or	kerning	values.

'Kern	By	Classes'	-	This	command	provides	the	user	with	a	dialog	to	manipulate	kerning	classes.

'Kern	Pair	Closeup'	-	This	command	provides	the	user	with	a	dialog	from	which	you	can	adjust	already	existing	kerned	pairs	or
create	new	pairs	(see	below).

Adjusting	kerning	values	with	the	keyboard
Just	like	with	adjusting	side	bearing	values,	kerning	values	can	be	quickly	and	accurately	edited	in	FontForge	by	using	the	'up',
'down',	'left'	and	'right'	keys	of	a	keyboard.	The	'up	and	'down'	keys	are	used	to	incrememt	/	decrement	values	and	'alt+up',
'alt+down',	'alt+left'	and	'alt+right'	are	used	for	navigating	around	the	different	value	fields	of	the	metrics	window.

Spacing,	Metrics	and	Kerning

137

Kerning	individual	pairs
This	is	the	most	basic	level	of	creating	kerning	pairs	in	FontForge.	In	the	Metrics	Window	the	kerning	value	between	2
characters	can	be	manually	adjusted	either	by	dragging	the	right-hand	character	to	or	from	the	left-hand	character,	or	by	editing
the	kerning	value	directly	in	the	metrics	table	of	the	window.	To	change	kerning	values	by	dragging	characters	use	the	kern-tool
handle	that	appears	when	the	mouse	cursor	is	hovered	between	2	characters	(see	screeenshot	below).	The	kerning	value	in
the	metrics	table	can	be	edited	by	manuallly	entering	values	or	by	incrementing	/	decrementing	the	value	using	your	keyboards
up	/	down	keys.

Kerning	with	classes
A	'kern	class'	in	FontForge	can	be	created	to	build	groups	of	characters	who	will	all	have	the	same	kerning	value	applied,	so	for
example	a	class	can	be	created,	let's	call	it	'o_left_bowl'	in	which	the	characters	'o',	'c',	'd',	'e',	'q'	will	allways	have	the	same
kerning	value	when	preceeded	by,	for	example,	the	character	'T'.	The	'T'	could	also	itself	be	a	member	of	another	class	that
would	likely	include	other	characters	such	as	Tcaron	and	Tbar.	Effectively,	class	kerning	can	save	you	a	lot	of	time.

The	most	direct	way	to	create	kerning	classes	is	from	the	"Kern	by	classes"	item	in	FontForge's	"Metrics"	menu.

Select	"Kern	by	classes"	and	you	will	be	presented	by	the	"new	lookup"	window.
Click	on	the	"New	Lookup"	button	and	another	window	will	pop	up,	where	you	can	create	a	kerning	feature	lookup.
Chose	the	item	"pair	position	kerning"	from	the	"Type"	drop	down	menu.
Now	click	on	the	down	arrow	next	to	"NEW"	in	the	"Feature"	column,	and	choose	"Horizontal	Kerning"	from	the	drop	down
menu.
Click	on	"OK".	You	can	keep	the	default	names	that	fontforge	creates	for	you.

Spacing,	Metrics	and	Kerning

138

Now	you	are	presented	by	the	window	where	you	can	build	you	actual	kerning	classes	(see	above).	The	first	character	of	a
kerning	pair	will	be	chosen	from	the	left	hand	column,	and	the	second	character	of	a	pair	will	be	chosen	from	the	right	column.

The	Element	>	Font	Info	>	Lookups	tab	provides	an	interface	to	class	kerning	in	FontForge.	The	same	interface	is	also	got	at
via	the
It	brings	up	a	dialog	showing	all	the	GPOS	lookups	(of	which	kerning	is	one)	and	their	subtables.	See	screenshot	below;

Spacing,	Metrics	and	Kerning

139

To	create	a	new	kerning	lookup	click	on	'Add	Lookup'	and	choose	'Pair	Position	(kerning)'	as	the	lookup	type	and	give	the
lookup	its	own,	unique	name	(see	below).

Spacing,	Metrics	and	Kerning

140

Each	set	of	kerning	classes	lives	in	its	own	subtable.	To	create	a	subtable,	click	on	'Add	Subtable'.	When	you	create	a	kerning
subtable	you	will	be	asked	whether	you	want	a	set	of	individual	kerning	pairs	or	a	matrix	based	on	classes.	If	you	chose	classes
you	will	be	presented	with	a	following	dialogue	where	you	can	create	your	classes.	Note	that	you	can	choose	to	enable
FontForge	to	'guess'	or	'autokern'	the	kerning	values	between	the	classes	you	are	creating	in	the	dialogue.	If	using	FontForge	to
guess	kerning	values	you	will	undoubtedly	need	an	amount	of	trial	and	error	and	experimentation,	but	it	can	make	sense	to	use
the	autokern	function	as	a	starting	point	to	kerning	your	font.

Spacing,	Metrics	and	Kerning

141

For	example	in	the	screenshot	above,	2	classes	have	been	created;	one	class	containing	the	'T'	character,	and	one	class
containing	the	'o'	character.	On	clicking	'ok'	in	the	above	dialog,	you	will	be	presented	with	the	following	window	where	you	can
fine	tune	the	amount	of	kerning	between	these	two	'T'	and	'o'	classes.

Spacing,	Metrics	and	Kerning

142

Manual	kerning
If	autokerned	values	need	to	be	adjusted	(and	they	will!)	then	this	can	be	done	in	a	number	of	ways.

Via	the	'kerning	by	classes'	dialog	window.
Using	the	Metrics	Window.
Using	the	'Kern	Pair	Closeup'	command	from	the	Metrics	menu.

See	also
Strategies	for	determining	letter	spacing

Spacing,	Metrics	and	Kerning

143

http://letterpunch.blogspot.com/2014/09/strategies-for-setting-letter-spacing-part-one.html

Making	Sure	Your	Font	Works,	Validation

In	a	perfect	world,	your	font	would	be	ready	to	build	and	install	on	any	modern	computer	without	any	special	effort,	but	reality	is
messier—particularly	during	the	design	process.	Fonts	can	have	technical	errors	that	prevent	them	from	working	or	displaying
correctly.	For	example,	curves	that	intersect	themselves	will	not	render	correctly	because	they	do	not	have	a	"inside"	and
"outside."	The	various	font	file	formats	also	expect	glyphs	to	adhere	to	certain	rules	that	simplify	placing	the	text	on	screen,	and
fonts	that	break	the	rules	can	cause	unexpected	problems.	An	example	of	this	type	of	issue	is	that	all	of	the	points	on	a	curve
should	have	coordinates	that	are	integers.	Finally,	there	are	stylistic	errors	that	are	not	technically	incorrect,	but	that	you	will	still
want	to	repair—such	as	lines	that	are	intended	to	be	perfectly	horizontal	or	vertical,	but	are	accidentally	slightly	off-kilter.

FontForge	offers	tools	that	you	can	use	to	locate	(and,	in	many	cases,	repair)	all	three	categories	of	problem.	Validating	your
font	to	eliminate	these	errors	will	thus	not	only	ensure	that	it	can	be	installed	and	enjoyed	by	users,	but	will	ensure	that	finished
project	exhibits	polish.

Find	Problems
The	first	tool	is	called	Find	Problems,	and	is	found	under	the	Element	menu.	You	must	first	select	one	or	more	glyphs—either
from	in	the	font	view,	the	outline	view,	or	the	metrics	view—then	open	the	Find	Problems	tool.	The	tool	presents	you	with	an
assortment	of	potential	problems	in	eight	separate	tabs.

Making	Sure	Your	Font	Works,	Validation

144

You	can	select	which	problems	you	are	interested	in	looking	for	by	checking	the	checkbox	next	to	each,	and	in	some	cases
providing	a	numeric	value	to	check	the	font	against.	When	you	click	the	OK	button,	the	tool	will	examine	all	of	the	selected
glyphs,	and	report	any	problems	it	finds	in	a	dialog	box.

The	problems	that	the	Find	Problems	tool	can	look	for	are	sorted	into	these	eight	groups:

Problems	related	to	points
Problems	with	paths	and	curves
Problems	with	references
Problems	with	hinting
Problems	with	ATT
Problems	specific	to	CID-keyed	fonts
Problems	with	bounding	boxes
Miscellaneous	other	problems

Not	every	check	is	necessary;	some	apply	only	to	specific	scripts	or	languages	(such	as	those	in	the	"CID"	tab),	while	others
apply	only	to	specific,	optional	font	features	(such	as	the	checks	in	the	references	tab).	But	you	should	check	that	your	font
passes	those	tests	that	examine	the	glyphs	for	required	features,	and	several	tests	that	look	for	optional	but	commonly-
expected	behavior.	Several	of	the	other	tests	provide	feedback	and	guidance	to	you	during	the	design	process,	and	are	worth
exploring	for	that	reason.

First	things	first:	test	for	required	features

In	the	"Points"	tab,	select	the	Non-Integral	Coordinates	test.	This	test	makes	sure	that	all	of	the	points	in	each	glyph	(including
both	on-curve	points	and	control	points)	have	integer	coordinates.	Not	every	font	output	format	requires	this	behaviour,	but
some	do.

In	the	"Paths"	tab,	select	the	options	Open	paths	and	Check	outermost	paths	clockwise.	These	are	both	mandatory	features	in
all	fonts;	the	first	looks	for	any	curves	that	are	not	closed	shapes,	and	the	second	makes	sure	that	the	outer	curves	of	every
glyph	are	traced	in	clockwise	order.	It	is	a	very	good	idea	to	check	Intersecting	paths	as	well;	although	modern	font	formats	can
support	two	intersecting	paths,	curves	that	insect	with	themselves	are	not	allowed.	In	addition,	if	a	glyph	has	any	self-
intersecting	paths	then	FontForge	cannot	perform	the	Check	outermost	paths	clockwise	test.

In	the	"Refs"	tab,	select	all	six	tests.	These	checks	all	relate	to	references,	in	which	a	glyph	includes	paths	from	another	glyph.
For	example,	an	accented	letter	includes	a	reference	to	the	original	(unaccented)	letter,	plus	a	reference	to	the	accent
character.	All	of	the	tests	in	the	"Refs"	tab	are	mandatory	for	at	least	one	common	output	format,	and	all	are	good	ideas.

Similarly,	select	all	of	the	tests	in	the	"ATT"	tab.	These	tests	look	for	missing	glyph	names,	substitution	rules	that	refer	to	non-
existent	glyphs,	and	other	problems	related	to	glyph	names	or	OpenType	features.	The	problems	they	guard	against	are
uncommon,	but	all	will	cause	the	font	to	be	considered	invalid	by	one	or	more	computer	system,	so	they	are	worth	including.

Make	life	easier	for	your	users:	test	for	good	behaviour

The	tests	listed	above	will	ensure	that	your	font	installs	and	renders	correctly	according	to	the	rules	set	out	by	the	various	font
formats,	but	there	are	a	handful	of	others	tests	you	should	consider	adding—especially	at	the	end	of	the	design	process—
simply	because	they	check	for	common	conventions	followed	by	most	modern	typography.

In	the	"Points"	tab,	select	Control	points	beyond	spline.	This	test	will	look	for	control	points	lying	beyond	the	endpoints	of	the
curve	segment	on	which	they	reside.	There	is	rarely	a	reason	that	a	control	point	should	lie	outside	of	the	curve,	so	these
instances	usually	signify	accidents.	It	is	also	a	good	idea	to	select	Points	too	far	apart,	which	will	look	for	points	that	are	more
than	32767	units	away	from	the	next	nearest	point.	That	distance	is	larger	than	most	computers	can	deal	with	internally,	and	a
point	that	far	away	is	almost	certainly	unintentional	(for	comparison,	a	single	glyph	tends	to	be	drawn	on	a	grid	of	about	1000
units),	so	removing	such	points	is	important.

Making	Sure	Your	Font	Works,	Validation

145

In	the	"Paths"	tab,	both	the	Check	Missing	Extrema	and	More	Points	Than	[val]	tests	can	be	valuable.	The	first	looks	for	points
at	the	extrema—that	is,	the	uppermost	point,	lowest	point,	and	leftmost	and	rightmost	points	of	the	glyph.	Modern	font	formats
strongly	suggest	that	each	path	have	a	point	at	each	of	its	horizontal	and	vertical	extrema;	this	makes	life	easier	when	the	font
is	rendered	on	screen	or	on	the	page.	check	will	look	for	missing	extrema	points.	The	second	test	is	a	sanity	check	on	the
number	of	points	within	any	one	glyph.	FontForge's	default	value	for	this	check	is	1,500	points,	which	is	the	value	suggested	by
the	PostScript	documentation,	and	it	is	good	enough	for	almost	all	fonts.

As	its	name	suggests,	the	"Random"	tab	lists	miscellaneous	tests	that	do	not	fit	under	the	other	categories.	Of	these,	the	final
three	are	valuable:	Check	Multiple	Unicode,	Check	Multiple	Names,	and	Check	Unicode/Name	mismatch.	They	look	for
metadata	errors	in	the	mapping	between	glyph	names	and	Unicode	slots.

Help	yourself:	run	tests	that	can	aid	design

Many	of	the	other	tests	in	the	Find	Problems	tool	can	be	useful	to	find	and	locate	inconsistencies	in	your	collection	of	glyphs;
things	that	are	not	wrong	or	invalid,	but	that	you	as	a	designer	will	want	to	polish.	For	example,	the	Y	near	standard	heights	test
in	the	"Points"	tab	compares	glyphs	to	a	set	of	useful	vertical	measurements:	the	baseline,	the	height	of	the	"x"	glyph,	the
lowest	point	of	the	descender	on	the	letter	"p",	and	so	on.	In	a	consistent	typeface,	most	letters	will	adhere	to	at	least	a	couple
of	these	standard	measurements,	so	the	odds	are	that	a	glyph	that	is	nowhere	near	any	of	them	needs	a	lot	of	work.

The	Edges	near	horizontal/vertical/italic	test	in	the	"Paths"	tab	looks	for	line	segments	that	are	almost	exactly	horizontal,
vertical,	or	at	the	font's	italic	angle.	Making	your	almost-vertical	lines	perfectly	vertical	means	that	shapes	will	render	sharply
when	the	font	is	used,	and	this	test	is	a	reliable	way	to	track	down	the	not-quite-right	segments	that	might	be	hard	to	spot	with
the	unaided	eye.

You	can	use	other	tests	to	locate	on-curve	points	that	are	too	close	to	each	other	to	be	meaningful,	to	compare	the	side
bearings	of	similarly-shaped	glyphs,	and	to	perform	a	range	of	other	tests	that	reveal	when	you	have	glyphs	with	oddities.	Part
of	the	refinement	process	is	taking	your	initial	designs	and	making	them	more	precise;	like	other	aspects	of	font	design,	this	is
an	iterative	task,	so	using	the	built-in	tools	reduces	some	of	the	repetition.

Validate	font
FontForge's	other	validation	tool	is	the	whole-font	validator,	which	runs	a	battery	of	tests	and	checks	on	the	entire	font.	Because
the	validator	is	used	to	examine	a	complete	font,	you	can	only	start	it	up	from	the	font	view	window;	you	will	find	it	in	the
Element	menu,	under	the	Validation	submenu.	The	validator	is	designed	to	run	just	those	tests	that	examine	the	font	for
technical	correctness—essentially	the	tests	described	in	the	"test	for	required	features"	section	above.	But	it	does	execute	the
tests	against	the	entire	font,	and	it	does	so	far	more	rapidly	than	you	can	step	through	the	process	yourself	using	the	Find
problems	tool.

Making	Sure	Your	Font	Works,	Validation

146

The	first	time	you	run	the	validator	during	a	particular	editing	session,	it	will	pop	up	a	dialog	box	asking	you	whether	or	not	it
should	flag	non-integer	point	coordinates	to	be	an	error.	The	safe	answer	is	to	choose	"Report	as	an	error,"	since	sticking	with
integral	coordinates	is	good	design	practice.	When	the	validator	completes	its	scan	of	the	font	(which	will	be	mere	seconds
later),	it	will	open	up	a	new	dialog	box	named	Validation	of	Whatever	Your	Font	Name	Is.	This	window	will	list	every	problem	the
validator	found,	presented	in	a	list	sorted	by	glyph.

Making	Sure	Your	Font	Works,	Validation

147

But	this	window	is	not	merely	a	list	of	errors:	you	can	double-click	on	each	item	in	the	list,	and	FontForge	will	jump	to	the
relevant	glyph	and	highlight	the	exact	problem,	complete	with	a	text	explanation	in	its	own	window.	You	can	then	fix	the	problem
in	the	glyph	editor,	and	the	associated	error	item	will	immediately	disappear	from	the	validator's	error	list.	In	many	cases,	the
error	will	be	something	FontForge	can	automatically	repair;	in	those	cases	the	explanation	window	will	have	a	"Fix"	button	at	the
bottom.	You	can	click	it	and	perform	the	repair	without	additional	effort.

For	some	problems,	there	is	no	automatic	fix,	but	seeing	the	issue	on-screen	will	help	you	fix	it	immediately.	For	example,	a
self-intersecting	curve	has	a	specific	place	where	the	path	crosses	over	itself—it	may	have	been	too	small	for	you	to	notice	at	a
glance,	but	zooming	in	will	allow	you	to	reshape	the	path	and	eliminate	the	problem.

For	other	problems,	there	may	not	be	one	specific	point	at	which	the	error	is	located.	For	example,	if	a	curve	is	traced	in	the
wrong	direction	(that	is,	counterclockwise	when	it	should	be	clockwise),	the	entire	curve	is	affected.	In	those	instances	where
FontForge	cannot	automatically	fix	the	problem	and	there	is	no	specific	point	on	the	glyph	for	the	validator	to	highlight,	you	may
have	to	hunt	around	in	order	to	manually	correct	the	problem.

Finally,	there	are	some	tests	performed	by	the	validator	that	might	not	be	a	problem	from	the	final	output	format	you	have	in
mind—for	example,	the	non-integral	coordinates	test	mentioned	earlier.	In	those	cases,	you	can	click	on	the	"ignore	this
problem	in	the	future"	checkbox	in	the	error	explanation	window,	and	suppress	that	particular	error	message	in	future	validation
runs.

Fix	problems	as	you	edit
Most	of	the	errors	that	the	Find	problem	tool	and	the	whole	font	validator	look	for	can	be	corrected	during	the	editing	process,
so	do	not	feel	any	need	to	defer	troubleshooting	while	you	work.	For	example,	View	>	Show	submenu	has	options	that	highlight
problem	areas	during	editing;	the	Element	menu	hold	commands	like	Add	Extrema	that	will	add	the	extrema	points	expected	in
most	output	file	formats,	and	checkboxes	to	indicate	whether	the	selected	path	is	oriented	in	the	clockwise	or	counterclockwise
direction.	If	you	flip	a	shape	(horizontally	or	vertically)	in	the	glyph	editor,	you	will	notice	that	its	direction	is	automatically
reversed	as	well.	If	you	click	on	the	Correct	Direction	command	in	the	Element	menu,	FontForge	will	fix	the
clockwise/counterclockwise	orientation	immediately.	Getting	in	the	habit	of	doing	small	fixes	like	this	as	you	work	will	save	you	a
bit	of	time	during	the	validation	stage	later.

Does	the	Design	Work?
Typefaces	can	'work'	better	or	worse	in	two	ways;	readability	and	legibility.

Legibility	means	the	designs	of	glyphs	are	distinct	enough	to	be	instantly	recognised	correctly.	Here	are	some	pairs	that	are
often	too	similar:

the	letter	"L"	and	the	number	"1"
the	letter	"O"	and	the	number	"0"

Making	Sure	Your	Font	Works,	Validation

148

the	letter	"Z"	and	the	number	"2"
the	numbers	"1"	and	"7”

Readability	means	all	the	glyphs	work	well	together	for	a	familiar,	comfortable	reading	experience.	Creating	test	documents	is
the	best	way	to	ensure	this.	If	you	have	a	complete	alphabet	then	you	can	typeset	real	text	-	for	example	using	FontFriend	to
drag	and	drop	your	font	into	a	long	news	article	you	wish	to	read,	then	printing	it	out.

However,	if	you	font	only	contains	a	fraction	of	the	alphabet,	you	can	use	a	test	text	generator	such	as	LibreText.org	and	any
word	processor,	desktop	publication	application	or	general	illustration	program	(such	as	Inkscape)	to	create	test	documents.

Testing	the	font	in	different	environments
When	testing	fonts	on	Microsoft	Windows,	the	Font	properties	extension	can	be	helpful	for	quickly	reviewing	the	internal	font
metadata,	such	as	version	numbers.

If	you	install	development	fonts	that	make	Windows	behave	erratically,	John	Hudson	described	how	to	clear	out	corrupt	fonts	on
TypeDrawers:

Restart	Windows	in	recovery	console	mode.	In	the	console,	navigate	to	the	Windows/Fonts	folder,	and	delete	all	entries
for	the	Rhodium	font.	Then	navigate	to	Windows/System32	and	delete	the	'FNTCACHE.DAT'	file	(not	the	.dll)	Then
restart	Windows.	The	font	cache	.dat	file	will	be	rebuilt,	and	then	you	can	reinstall	a	clean	copy	of	the	Rhodium	font	and
see	if	it	behaves.	(Don't	worry	if	you	still	get	a	message	saying	the	font	is	already	installed:	at	that	stage	Windows	is	lying
to	you.)

Making	Sure	Your	Font	Works,	Validation

149

http://somadesign.ca/projects/fontfriend/
http://libretext.org
http://www.inkscape.org
https://www.microsoft.com/typography/TrueTypeProperty21.mspx
http://typedrawers.com/discussion/1322/otf-fonts-from-glyphs-not-working-with-windows-word

The	Final	Output	Generating	Font	Files

Although	you	can	do	a	wide	range	of	testing	within	FontForge	itself,	you	will	need	to	generate	installable	font	files	in	order	to
perform	real-world	testing	during	the	development	process.	In	addition,	your	ultimate	goal	is	of	course	to	create	font	that	you
can	make	available	in	an	output	format	for	other	people	to	install	and	use.	You	will	use	the	Generate	Fonts	tool	(found	in	the
File	menu)	to	build	a	usable	output	font	regardless	of	whether	you	are	making	it	for	your	own	testing	purposes	or	to	publish	it	for
consumption	by	others,	but	you	will	want	to	employ	a	few	extra	steps	when	building	the	finished	product.

FontForge	can	export	your	font	to	a	variety	of	different	formats,	but	in	practice	only	two	are	important:	TrueType	(which	is	found
with	the	.ttf	filename	extension)	and	OpenType	CFF	(which	is	found	with	the	.otf	extension).	Technically	the	OpenType	format
can	encompass	a	range	of	other	options,	but	the	CFF	type	is	the	one	in	widespread	use.

Quick	and	dirty	generation	for	testing
To	build	a	font	file	for	testing	purposes	—	such	as	to	examine	the	spacing	in	a	web	browser	--	you	need	only	to	ensure	that	your
font	passes	the	required	validation	tests.

You	can	use	the	Validate	Font	tool	found	in	the	Element	menu	to	do	this	(see	the	chapter	on	validating	fonts	for	a	more	detailed
explanation),	or	you	can	select	all	of	the	glyphs	(hit	Control-A	or	choose	"Select"	->	"Select	All"	from	the	"Edit"	menu)	then	run	a
few	commands	to	apply	some	basic	changes	in	bulk.	Be	sure	to	save	your	work	before	you	proceed	any	further,	though:	some
of	the	changes	required	to	validate	your	font	for	export	will	alter	the	shapes	of	your	glyphs	in	subtle	ways.

For	OpenType	fonts,	first	correct	the	direction	of	all	of	your	paths.	Hit	Control-Shift-D	or	choose	"Correct	Direction"	from	the
"Element"	menu.	Next,	check	to	make	sure	that	you	have	not	left	any	unclosed	paths.	Choose	"Find	problems"	from	the
"Element"	menu,	select	the	Open	paths	option	in	the	"Paths"	tab,	and	click	OK	to	run	the	test.	Once	your	font	passes	the	test
without	errors,	you	are	ready	to	generate	OpenType	output.

For	TrueType	fonts,	a	few	additional	steps	are	required.	You	should	first	correct	the	direction	of	all	of	your	paths	as	described
above.	Next,	adjust	all	points	to	have	integer	coordinates:	either	hit	Control-Shift-_	(underscore),	or	choose	To	Int	from	the
"Element"	->	"Round"	menu.	Finally,	open	the	"Find	problems"	tool,	select	the	Open	paths	test	as	described	above,	and	also
select	all	of	the	tests	in	the	"Refs"	tab.

After	you	can	run	these	tests	without	errors,	you	will	then	need	to	convert	your	paths	to	quadratic	curves.	Open	the	"Font	Info"
window	from	the	"Element"	menu.	Click	on	the	"Layers"	tab,	and	check	the	All	layers	quadratic	option.	Click	OK	at	the	bottom	of
the	window,	and	you	are	ready	to	generate	TrueType	output.

Building	the	font	files

Open	the	Generate	Fonts	window	by	choosing	it	from	the	"File"	menu.	The	top	half	of	the	window	shows	the	familiar	file-
chooser	options	—	a	list	of	the	files	found	in	the	current	directory,	a	text-entry	box	for	you	to	enter	a	filename,	and	buttons	to
navigate	to	other	folders	and	directories	if	necessary.	This	is	strictly	a	means	to	help	you	quickly	find	the	right	place	to	save	your
output	file,	or	to	choose	an	existing	font	file	if	you	intend	to	overwrite	a	previous	save.	All	of	the	options	you	need	to	look	at	are
found	in	the	bottom	half	of	the	window.

The	Final	Output	Generating	Font	Files

150

On	the	left-hand	side	is	a	pull-down	menu	from	which	you	select	the	format	of	the	font	you	wish	to	generate.	You	should	choose
either	TrueType	or	OpenType	(CFF),	as	discussed	earlier.	On	the	right-hand	side,	make	sure	No	Bitmap	Fonts	is	selected.	On
the	line	below,	make	sure	No	Rename	is	selected	for	the	"Force	glyph	names	to:"	option.	You	can	check	the	"Validate	Before
Saving"	option	if	you	wish	(to	potentially	catch	additional	errors),	but	this	is	optional.	Leave	the	"Append	a	FONTLOG	entry"	and
"Prepend	timestamp"	options	unchecked.

Click	the	"Generate"	button,	and	FontForge	will	build	your	font	file.	You	can	load	the	font	in	other	applications	and	run	any	tests,
but	when	you	are	ready	to	return	to	editing,	remember	to	re-open	the	saved	version	of	your	font	that	you	created	before
generating	your	.ttf	or	.otf	output.

Generating	for	final	release
Designing	your	font	is	an	iterative	process,	but	eventually	the	day	when	come	when	you	must	declare	your	font	finished	—	or	at
least	ready	for	public	consumption.	At	that	point,	you	will	again	generate	a	.ttf	or	.otf	output	file	(perhaps	even	both),	but	before
doing	so	you	will	need	to	work	through	a	few	additional	steps	to	create	the	most	standards-compliant	and	user-friendly	version
of	your	font	file.

First,	follow	the	same	preparation	steps	outlined	in	the	section	on	quick	and	dirty	generation	for	testing	purposes.	In	particular,
remember	to	change	your	font	to	All	layers	quadratic	if	you	are	creating	a	TrueType	file.

Remove	overlaps

The	Final	Output	Generating	Font	Files

151

As	you	know,	it	is	a	good	idea	to	keep	your	letter-forms	as	combinations	of	discrete	components	as	you	design:	stems,	bowls,
serifs,	and	other	pieces	of	each	glyph.	But	although	this	technique	is	great	for	designing	and	refining	forms,	you	want	your	final,
published	font	to	have	simple	outlines	of	each	glyph	instead.	This	reduces	file	size	a	bit,	but	more	importantly	it	cuts	down	on
rendering	errors.

FontForge	has	a	Remove	Overlap	command	that	will	automatically	combine	the	separate	components	of	a	glyph	into	a	single
outline.	Select	a	glyph	(or	even	select	all	glyphs	with	Control-A),	then	hit	Control-Shift-O	or	choose	Remove	Overlap	from	the
"Element"	->	"Overlap"	menu.	One	caveat	is	worth	watching	out	for,	however:	FontForge	cannot	merge	shapes	if	one	of	the
shapes	is	traced	in	the	wrong	direction	(that	is,	if	the	outermost	path	is	counterclockwise).	A	path	traced	in	the	wrong	direction	is
an	error	of	its	own,	though,	which	you	should	fix	anyway.

Simplify	contours	and	add	extrema	points

You	should	also	simplify	your	glyphs	where	possible	—	not	eliminating	details,	but	eliminating	redundant	points.	This	reduces
files	size	slightly	for	every	glyph,	which	adds	up	considerably	over	the	entire	set	of	characters	in	the	font.

From	the	"Element"	menu,	choose	"Simplify"	->	Simplify	(or	hit	Control-Shift-M).	This	command	will	merge	away	redundant	on-
curve	points	in	all	of	the	selected	glyphs.	In	some	cases,	there	will	be	only	a	few	points	removed,	in	others	there	may	be	many.
But	it	should	perform	the	simplification	without	noticeably	changing	the	shape	of	any	glyphs.	If	you	notice	a	particular	glyph	that
is	altered	too	much	by	Simplify,	feel	free	to	undo	the	operation.	You	can	also	experiment	with	the	Simplify	More	command	also
located	in	the	same	menu;	it	offers	tweakable	parameters	that	could	prove	helpful.

In	any	event,	after	you	have	completed	the	simplification	step,	you	will	need	to	add	any	missing	extrema	points.	Choose	Add
Extrema	from	the	"Element"	menu	(or	hit	Control-Shift-X).	As	discussed	earlier,	it	is	a	good	idea	to	place	on-curve	points	at	the
extrema	of	every	glyph	as	you	edit.	Nevertheless,	you	must	still	perform	this	step	when	preparing	for	final	output	generation
because	the	Simplify	step	will	occasionally	remove	an	extrema	point.

Round	everything	to	integer	coordinates

The	final	preparation	step	to	perform	is	to	round	all	points	(both	on-curve	points	and	control	points)	to	integer	coordinates.	This
is	mandatory	for	generating	TrueType	output,	but	is	highly	recommended	for	OpenType	output	as	well.	It	can	result	in	sharper
rendering	and	better	grid-fitting	when	the	fonts	are	displayed,	without	any	additional	design	work.

To	round	all	points	to	integer	coordinates,	choose	"Element"	->	"Round"	->	To	Int.

As	soon	as	this	operation	is	completed,	you	may	notice	something	puzzling.	Sometimes,	simply	due	to	the	peculiarities	of	the
curves	involved,	the	processes	of	rounding	to	integer	coordinates,	simplifying	glyphs,	and	adding	missing	extrema	can	work
against	each	other.	An	example	of	when	this	might	occur	is	when	a	curved	outer	edge	has	a	control	point	that	lies	just	past	the
horizontal	or	vertical;	in	this	situation	rounding	it	to	integer	coordinates	can	shift	the	curve	slightly	and	change	where	the
extrema	lies.

There	is	not	a	one-shot	solution	to	this	conundrum;	the	only	guaranteed	fix	is	to	repeat	the	cycle	of	steps	for	the	affected	glyphs
until	they	stabilize	at	a	point	where	the	three	operations	no	longer	interfere	with	each	other.	This	may	take	multiple	cycles,	but	it
is	a	rare	occurrence.

Validate

Your	font	should	pass	the	required	validation	tests	before	you	generate	your	final	output.	As	with	the	rounding-points-to-integer-
coordinates	step,	though,	sometimes	the	other	preparatory	operations	can	introduce	errors,	so	it	is	always	a	good	idea	to	run
the	whole-font	validator	at	this	stage	before	building	the	final	output.	The	chapter	on	FontForge's	validation	tools	will	give	you
more	detail	on	what	to	check.

A	word	about	hinting

The	Final	Output	Generating	Font	Files

152

Hinting	refers	to	the	use	of	mathematical	instructions	to	render	the	vector	curves	in	a	font	in	such	a	way	that	they	line	up	nicely
with	the	pixel	grid	of	the	rasterized	output	device	(whether	that	grid	is	composed	of	dots	of	ink	or	toner	on	paper,	or	luminescent
dots	on	a	computer	monitor).

FontForge	allows	you	to	hint	your	font	(and	even	provides	an	Autohint	function),	but	in	practice	this	step	is	not	strictly
necessary.	Modern	operating	systems	often	have	better	grid-fitting	functionality	built	into	their	text	rendering	engines	than	you
can	create	yourself	without	expending	considerable	time	and	effort.	In	fact,	Mac	OS	X	and	Linux	both	ignore	any	hints
embedded	in	the	font	file	itself.	If	you	do	decide	your	font	needs	hinting	for	the	benefit	of	Windows	users,	your	best	bet	is	to
build	the	font	without	embedded	hints,	then	use	a	specialized	application	such	as	ttfautohint	to	add	hinting	after	the	fact.

For	CFF	hinting,	see	this	video	from	Adobe	at	RoboThon.

To	set	the	PS	hinting	with	Python	is	possible:		private		is	a	list	of	tuples	(Thanks	Sungsit!)

font.private['BlueValues']	=	(-20,	0,	600,	620,	780,	800,	810,	830)

font.private['OtherBlues']	=	(-225,	-210)

font.private['StdHW']	=	100,

font.private['StdVW']	=	137,

Check	your	metadata

Last	but	certainly	not	least,	once	your	font	has	been	thoroughly	prepared	technically	for	export,	you	should	pause	and	update
the	font	metadata,	making	sure	that	important	metadata	information	is	included,	and	that	it	is	up	to	date.

First,	if	this	is	the	initial	release	of	your	font,	open	the	Font	Info	dialog	from	the	"Element"	window,	and	select	the	"PS	Names"
tab.	Fill	in	the	font's	Family	Name	and	Weight	first,	then	copy	that	information	into	the	"Name	for	Humans"	box.	Although	using
version	numbers	is	not	required,	it	is	extremely	helpful	for	you	as	a	designer	to	differentiate	between	different	revisions	of	your
work.	Enter	"1.0"	as	the	"Version"	number	if	you	are	not	sure.	Next,	visit	the	"TTF	Names"	tab	and	enter	the	same	information.

The	Final	Output	Generating	Font	Files

153

http://vimeo.com/38364880
https://github.com/fontuni/boon/issues/26#issuecomment-157640491

As	is	the	case	with	version	numbers,	it	is	helpful	in	the	long	run	for	you	to	make	log	entries	for	each	revision.	Go	to	the
"FONTLOG"	tab	and	write	a	brief	sentence	or	two	explaining	what	changes	if	any	have	gone	into	the	revision	that	you	are
building	for	release.	If	this	is	your	initial	log	entry,	you	should	also	describe	your	font	and	its	purpose	in	a	sentence	or	two.

Fonts,	like	all	creative	works,	need	to	have	a	license,	so	users	will	know	what	they	are	and	are	not	allowed	to	do.	FontForge	has
a	button	in	the	"TTF	Nmes"	tab	labelled	"Add	SIL	Open	Font	License."	The	Open	Font	License	(OFL)	is	a	font	license	designed
to	allow	you	to	share	your	font	with	the	public	with	very	few	restrictions	on	how	where	it	is	used,	while	still	protecting	you	as	the
designer	from	having	others	take	credit	for	your	work	or	creative	derivatives	of	your	font	that	will	be	confused	for	the	original.
Clicking	the	button	will	add	"License"	and	"License	URL"	strings	to	the	TTF	Names	metadata.	If	you	have	another	license	you
would	prefer	to	use	instead	of	the	OFL,	enter	it	in	the	"License"	field	instead.

The	Final	Output	Generating	Font	Files

154

If	you	have	made	significant	changes	to	other	features	of	your	font,	it	is	a	good	idea	to	double-check	the	other	font-wide	settings
in	the	Font	Info	window,	and	make	sure	everything	is	still	up	to	date.	Line	spacing	information,	for	example,	is	found	in	the
"OS/2"	tab	under	"Metrics."

Building	the	font	files

The	process	for	generating	the	font	output	files	is	the	same	when	you	are	building	the	final	release	as	it	is	when	you	are	building
a	quick-and-dirty	copy	for	testing,	but	you	will	want	to	pay	closer	attention	to	some	of	the	options.

Open	the	Generate	Fonts	window	by	choosing	it	from	the	"File"	menu.	Again,	the	top	half	of	the	window	allows	you	to	choose
the	directory	and	file	name	to	give	to	your	output	file	—	just	be	careful	that	you	do	not	overwrite	a	previous	save.

In	the	left-hand	side	pull-down	menu,	select	the	format	of	the	font	you	are	generating,	either	TrueType	or	OpenType	(CFF),	as
discussed	earlier.	On	the	right-hand	side,	make	sure	No	Bitmap	Fonts	is	selected.	On	the	line	below,	make	sure	No	Rename	is
selected	for	the	"Force	glyph	names	to:"	option.	You	can	check	the	"Validate	Before	Saving"	option	if	you	wish	(to	potentially
catch	additional	errors),	but	this	is	optional.	Leave	the	"Append	a	FONTLOG	entry"	and	"Prepend	timestamp"	options
unchecked.

Next,	click	on	the	"Options"	button.	Select	the	PS	Glyph	Names,	OpenType,	and	Dummy	DSIG	options	in	the	window	that	pops
up,	and	deselect	everything	else.

The	Final	Output	Generating	Font	Files

155

Click	the	"Generate"	button,	and	FontForge	will	build	your	font	file.	One	final	ord:	it	is	important	not	to	overwrite	the	saved
version	of	your	FontForge	work	with	the	modifications	you	made	in	this	section	solely	to	generate	your	.ttf	or	.otf	output.	For
example,	you	lose	a	lot	of	individual	glyph	components	when	you	perform	the	Remove	overlaps	operation.	But	the	next	time
you	resume	work	on	your	font,	you	will	definitely	want	to	pick	up	where	you	left	off	in	the	original,	individual-glyph-component-
filled	version.

Consequently,	if	you	decide	to	save	the	modified	version	of	your	FontForge	file,	be	sure	that	you	rename	it	in	a	memorable	way,
such	as	MyFont-TTF.sfd	or	MyFont-OTF.sfd.	But	you	do	not	necessarily	need	to	save	these	output-oriented	variations	of	your
file	at	all	—	in	practice,	the	next	time	you	revise	your	original	work	in	FontForge,	you	will	work	through	the	output	preparation
steps	again	anyway.

Congratulations	are	in	order!	You	have	now	created	your	first	font.	All	that	remains	now	is	for	you	to	share	your	work:	upload	it
to	the	web,	post	it	to	your	blog,	and	go	tell	your	friends.

Without	doubt,	you	will	be	back	and	continue	revising	and	refining	your	typeface	—	after	all,	as	you	have	seen,	font	design	is	a
highly	iterative	process.	But	be	sure	that	you	pause	and	take	this	moment	to	enjoy	what	you	have	accomplished	first.

The	Final	Output	Generating	Font	Files

156

When	Things	Go	Wrong	With	Fontforge	Itself

FontForge	is	developed	on	Github.	The	FontForge	team	uses	Github	Issues	to	discuss	problems,	errors	and	ideas	for
improvements,	and	then	someone	develops	a	solution	and	proposes	it	as	a	Pull	Request.

To	learn	more	about	Github,	check	out	Good	Resources	for	Learning	Git	and	GitHub

Paying	for	Support
This	might	be	a	surprise,	but	it	is	both	possible,	and	encouraged	to	pay	for	FontForge	support	when	things	go	wrong.

When	other	font	editors	with	similar	comprehensive	features	cost	hundreds	of	US	Dollars,	if	we	each	pay	a	similar	amount	to
FontForge	developers	to	get	our	most	annoying	bugs	fixed,	FontForge	will	become	better	and	better.

FreedomSponsors.org	offers	a	transparent	system	for	paying	FontForge	developers	to	fix	issues	you	care	about	in	a	timely
fashion.

1.	 Create	a	FontForge	issue	describing	what	you	want	to	be	changed	(see	below.)	Copy	the	URL	of	the	issue	to	the	clipboard.
2.	 Visit	FreedomSponsors	and	sponsor	a	new	issue,	using	the	URL	you	copied	earlier.
3.	 Revisit	the	issue	and	add	a	comment	with	the	link	to	the	freedom	sponsors	issue	page,	with	a	personal	note	that	you're

offering	a	paid	bounty	for	this	issue	to	be	closed

Report	A	Bug
1.	 Visit	the	FontForge	Github	Issue	Tracker	and	sign	in	to	Github	(after	creating	an	account,	if	you	don't	have	one	yet.)
2.	 In	the	Issues	search	box	try	searching	for	similar	issues,	to	see	if	the	problem	you	are	facing	was	reported	already.	If	it	was,

and	your	issue	is	related	but	not	quite	the	same,	please	comment	on	that	issue	with	your	own	take	on	the	issue.
3.	 If	it	was	not	already	reported,	open	up	a	new	issue.	Click	the	green	"New	Issue"	button,	and	then	describe	your	question,

what	you	did	to	trigger	a	crash,	or	your	idea	for	an	improvement.

Include	relevant	details,	such	as:

your	Operating	System	and	version,
your	FontForge	version	and	where	you	got	it	from,
what	happens,	step	by	step,	to	produce	the	issue
what	error	messages	you	see,
what	you	expect	to	happen

You	can	drag	and	drop	screenshots	or	other	images	directly	into	the	issue	page	to	include	them

An	easy	way	to	report	issues	is	to	record	a	screencast	videos	where	you	explain	in	a	narrated	voiceover	the	things	you	are
interested	in	as	they	happen,	and	then	upload	it	to	YouTube	and	include	a	link	to	your	video

To	reproduce	the	issue,	it	can	helpful	to	share	with	the	developer	community	the	files	you	are	working	with.	If	you	can	make	a
file	that	is	small	and	only	contains	what	is	needed	to	reproduce	the	issue,	please	fork	the	fontforge	repo	and	add	these	files	to
/tests/fonts	and	submit	a	pull	request.	You	can	also	place	files	on	your	own	website	or	a	file	sharing	service	temporarily	(such	as
MegaUpload,	DropBox,	Google	Drive,	etc.)	Finally,	if	you	do	not	wish	to	make	your	files	publicly	available,	you	can	provide	an
email	address	for	a	FontForge	developer	to	contact	you	at	to	get	a	private	copy	of	the	file.

Please	don't	close	other	people's	issues	-	ask	them	to	close	the	issue	if	it	is	closed	to	their	satisfaction.

When	Things	Go	Wrong	With	Fontforge	Itself

157

https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://freedomsponsors.org/project/220/
https://github.com/fontforge/fontforge/issues
https://github.com/fontforge/fontforge/tree/master/tests/fonts

How	To	Report	A	Crash
The	process	is	just	the	same	for	reporting	a	crash	or	other	kinds	of	bugs	as	it	is	for	new	features	or	questions.	Sending	a	good
crash	report	to	the	FontForge	developers	really	does	help	them	a	lot	to	improve	the	stability	of	the	program	for	everybody!	Don’t
feel	shy	about	reporting	such	issues,	because	a	crash	that	isn’t	reported	is	a	crash	that	is	far	less	likely	to	be	fixed.

If	you	find	FontForge	crashing	whilst	in	use,	create	an	issue	as	above.	If	you	have	a	particular	font	file	(SFD,	UFO,	OTF,	TTF,
etc)	that	triggers	the	crash,	you	can	either	upload	it	to	a	new	Github	repository	yourself	(or	Dropbox	or	whatever)	and	include	a
link,	or	post	your	email	and	ask	a	developer	to	email	you	to	get	a	copy	privately.

With	your	description	the	FontForge	software	developers	will	try	to	reproduce	the	crash.	If	they	can	do	this,	then	they	will	be
able	to	work	out	where	the	code	is	going	wrong,	and	create	a	fix.

After	the	Pull	Request	that	addresses	the	issue	is	merged,	you'll	need	to	get	a	version	after	that.	You	can	do	one	of	the
following:

recompile	from	the	latest	Github	source	code	(See	Installing	Fontforge),
check	if	a	daily	build	is	available	(often	possible	for	Mac	OS	X),	or
wait	until	the	next	release	(often	within	a	few	weeks.)

The	Best	Crash	Reports

To	help	developers	find	out	what	is	going	wrong	and	really	understand	how	to	fix	it,	you	can	do	a	bit	more	work	to	make	a
backtrace.	A	backtrace	includes	a	list	of	which	program	functions	have	called	which	other	ones	to	get	to	where	the	program	has
stopped	working.	A	backtrace	is	most	useful	if	it	also	contains	the	line	numbers	of	the	functions.

To	make	a	backtrace,	you	may	need	to	install	from	source	with	debugging	information	included.	Use	the		type		and		nm	
commands	to	find	the	path	and	status	of	your	fontforge	binary.	Example:

$	type	-all	fontforge;

fontforge	is	/usr/bin/fontforge

$	nm	/usr/bin/fontforge;

nm:	/usr/bin/fontforge:	no	symbols

$

In	this	example	we	see		no	symbols	,	so	we	must	update	our	installation	to	include	debug	information.

Install	Debugging	Information	on	Fedora

Fedora	offers	in	the	standard	repository	a	command	to	easily	install	debugging	information	for	FontForge.	(But	note	that	this
might	require	hundreds	of	megabytes	of	download	if	you	do	not	already	have	many	of	the	dependent	debuginfo	packages
installed.)	To	install	it,	run:

debuginfo-install	fontforge;

TODO:	Explain	how	to	include	debug	information	from	compiled	sources

A	backtrace	is	generated	using	the	GNU	Project	Debugger,		gdb	.	You	can	either	attach	gdb	to	an	already	running	FontForge,	or
start	FontForge	inside	the	gdb	session	itself.	Here's	an	example	of	the	latter:

When	Things	Go	Wrong	With	Fontforge	Itself

158

http://fontforge.github.io/en-US/downloads/mac/

$	gdb	fontforge;

GNU	gdb	(GDB)	Fedora	(7.3.50.20110722-16.fc16)

Copyright	(C)	2011	Free	Software	Foundation,	Inc.

License	GPLv3+:	GNU	GPL	version	3	or	later	<http://gnu.org/licenses/gpl.html>

This	is	free	software:	you	are	free	to	change	and	redistribute	it.

There	is	NO	WARRANTY,	to	the	extent	permitted	by	law.		Type	"show	copying"

and	"show	warranty"	for	details.

This	GDB	was	configured	as	"x86_64-redhat-linux-gnu".

For	bug	reporting	instructions,	please	see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading	symbols	from	/usr/local/bin/fontforge...done.

Then	once	you	issue	the	debugger	the	run	command,	FontForge	will	open	on	screen:

(gdb)	run

Starting	program:	/usr/local/bin/fontforge	

[Thread	debugging	using	libthread_db	enabled]

Using	host	libthread_db	library	"/lib64/libthread_db.so.1".

Copyright	(c)	2000-2012	by	George	Williams.

	Executable	based	on	sources	from	14:57	GMT	31-Jul-2012-ML-TtfDb-D.

	Library	based	on	sources	from	14:57	GMT	31-Jul-2012.

From	here	you	can	use	FontForge	in	the	usual	way,	but	with	the	advantage	of	being	able	to	effectively	capture	and	report	any
issues	that	FontForge	may	have.

One	major	difference	that	running	FontForge	inside	gdb	makes	is	how	a	crash	is	made	apparent.	Without	gdb,	when	FontForge
crashes	it	will	disappear	from	your	screen.	When	you	are	running	FontForge	inside	gdb	however,	a	crashed	FontForge	will
remain	open	along	with	its	windows	and	user	interface.

If	you	find	that	your	interface	is	unresponsive,	switch	back	to	the	terminal	where	you	ran	gdb	and	you	might	see	something	like
	SIGSEGV		in	the	text	followed	by	the		(gdb)		prompt.	If	you	see	the		(gdb)		prompt	then	FontForge	is	no	longer	executing.

You	can	now	(finally!)	use	the		bt		command	to	get	a	backtrace,	and	then	use	the	gdb		quit		command	to	exit	from	gdb	and	to
close	the	crashed	FontForge.	Here	is	an	example:

When	Things	Go	Wrong	With	Fontforge	Itself

159

Program	received	signal	SIGSEGV,	Segmentation	fault.	

0x00007ffff74a7c01	in	??	()	from	/lib/x86_64-linux-gnu/libc.so.

(gdb)	bt

#0		0x00007ffff74a7c01	in	??	()	from	/lib/x86_64-linux-gnu/libc.so.6

#1		0x00007ffff6389a80	in	copy	(str=0x900000008)	at	memory.c:82

#2		0x00007ffff7a4aeb5	in	KCD_AutoKernAClass	(kcd=kcd@entry=0xe80c40,	index=2,	is_first=is_first@entry=1)

				at	kernclass.c:236

#3		0x00007ffff7a51405	in	KCD_FinishEdit	(g=0xeb0fe0,	r=1,	c=,	wasnew=1)	at	kernclass.c:2020

#4		0x00007ffff5effe2d	in	GME_SetValue	(gme=gme@entry=0xeb0fe0,	g=0xe94760)	at	gmatrixedit.c:988

#5		0x00007ffff5f00554	in	GME_FinishEdit	(gme=0xeb0fe0)	at	gmatrixedit.c:997

#6		0x00007ffff5f01c1a	in	GMatrixEditGet	(g=g@entry=0xeb0fe0,	rows=rows@entry=0x7fffffffcf78)

				at	gmatrixedit.c:2214

#7		0x00007ffff7a4ea3c	in	KCD_Expose	(event=0x7fffffffd1e0,	pixmap=0x83ae00,	kcd=0xe80c40)

				at	kernclass.c:1446

#8		kcd_e_h	(gw=0x83ae00,	event=0x7fffffffd1e0)	at	kernclass.c:1762

#9		0x00007ffff5eabe8f	in	_GWidget_Container_eh	(gw=gw@entry=0xe7f040,	event=event@entry=0x7fffffffd1e0)

				at	gcontainer.c:269

#10	0x00007ffff5eac385	in	_GWidget_TopLevel_eh	(event=0x7fffffffd1e0,	gw=0xe7f040)	at	gcontainer.c:734

#11	_GWidget_TopLevel_eh	(gw=0xe7f040,	event=0x7fffffffd1e0)	at	gcontainer.c:606

#12	0x00007ffff5ef86ce	in	GXDrawRequestExpose	(gw=0xe7f040,	rect=0xef72b0,	doclear=)

				at	gxdraw.c:2687

#13	0x00007ffff5eea075	in	gtextfield_focus	(g=0xef72a0,	event=0x7fffffffd2e0)	at	gtextfield.c:1888

#14	0x00007ffff5eaa857	in	_GWidget_IndicateFocusGadget	(g=0xe94760,	mf=mf@entry=mf_normal)

				at	gcontainer.c:143

#15	0x00007ffff5eaac97	in	GWidgetIndicateFocusGadget	(g=)	at	gcontainer.c:155

#16	0x00007ffff5f02b1e	in	GME_StrSmallEdit	(event=0x7fffffffd670,	str=0xe10e60	"A",	gme=0xeb0fe0)

				at	gmatrixedit.c:890

#17	GMatrixEdit_StartSubGadgets	(gme=gme@entry=0xeb0fe0,	r=1,	c=c@entry=0,	event=event@entry=0x7fffffffd670)

				at	gmatrixedit.c:1472

#18	0x00007ffff5f03d69	in	GMatrixEdit_MouseEvent	(event=0x7fffffffd670,	gme=0xeb0fe0)	at	gmatrixedit.c:1499

#19	matrixeditsub_e_h	(gw=,	event=0x7fffffffd670)	at	gmatrixedit.c:1735

#20	0x00007ffff5eabd98	in	_GWidget_Container_eh	(gw=0xeeb2e0,	event=0x7fffffffd670)	at	gcontainer.c:393

#21	0x00007ffff5ef6555	in	dispatchEvent	(gdisp=gdisp@entry=0x769a50,	event=event@entry=0x7fffffffd9b0)

				at	gxdraw.c:3475

#22	0x00007ffff5ef7d1e	in	GXDrawEventLoop	(gd=0x769a50)	at	gxdraw.c:3574

#23	0x00007ffff7ad353a	in	fontforge_main	(argc=,	argv=)	at	startui.c:1196

#24	0x00007ffff736676d	in	__libc_start_main	()	from	/lib/x86_64-linux-gnu/libc.so.6

#25	0x00000000004006e1	in	_start	()

(gdb)	quit

A	debugging	session	is	active.

							Inferior	1	[process	19196]	will	be	killed.

Quit	anyway?	(y	or	n)	y

A	developer	can	see	in	this	example	backtrace	that	FontForge	has	crashed	inside	the		copy()		function.	The		copy()		function
was	itself	called	from	the		KCD_AutoKernAClass		function.	The	backtrace	will	tell	a	software	developer	the	exact	lines	these	calls
were	made,	and	also	use	the	tip	that	the	parameter	passed	to		copy()		was	invalid	(out	of	bounds)	to	work	out	what	the	code	is
doing	wrong.

When	Things	Go	Wrong	With	Fontforge	Itself

160

Designing	Devanagari	Typefaces

Thanks	to	Adam	Twardoch,	Erin	McLaughlin,	Neelakash	Kshetrimayum,	Dan	Reynolds,	Pooja	Saxena,	Dr	Girish	Dalvi	for
contributing	many	of	the	ideas	on	this	page

Designing	a	new	and	original	Devanagari	typeface	follows	a	process	much	like	the	process	for	a	new	and	original	Latin.	The
unique	benefit	of	libre	in	libre	fonts	is	that	you	can	modify	and	reuse	them	for	new	purposes	that	their	initial	creators	never
thought	of	-	for	example,	designing	a	Devanagari	and	adapting	an	existing	Latin	font	to	go	with	it.

Devanagari	Glyphs
Devanagari	fonts	contain	these	different	types	of	glyphs:

consonants	(36)
independent	vowels	(28)
vowel	maatras
word	space(s)
Devanagari	numerals	(10)
Latin	numerals	(new,	or	if	already	present	then	adjusted	to	work	within	pure	Devanagari	text)
nukta	composites
half-forms
conjuncts	(unique	ligature	glyphs)
"I"	vowel	maatras	of	differing	lengths
Devanagari	punctuation,	marks,	and	symbols
Latin	punctuation,	marks,	and	symbols	(new,	or	adjusted	if	already	present)
Latin	letters

Consult	the	Unicode	Chapter	12	on	Indian	Scripts,	(Devanagari	Unicode	page),	as	well	as	the	(Microsoft	Devanagari	OpenType
Font	Development	page)	to	learn	more	about	these	glyphs	and	how	the	Indic	shaping	engine	works.

It	is	helpful	to	do	some	calligraphy	or	closely	study	writing	manuals	to	learn	how	the	script	works,	so	you	understand	which
letters	should	be	like	which	other	letters	in	structure.	These	2	pages	from	Aksharaya's	Devanagari	calligraphy	Manual	can	be
used	as	a	reference	for	pen	angle	and	letter	proportions.

What	To	Do	First
When	designing	a	Devanagari	and	Latin	typeface,	its	important	to	start	by	draw	the	Latin	alongside	the	Devanagari.	In	the
earliest	stages	are	designing	the	"key"	glyphs,	to	establish	the	personality	of	the	typeface	through	fundamental	shapes	and
spacing	(which	in	Latin	may	be	'adhesion'	or	'videospan'.)	Design	the	lowest	and	highest	"height	extremes"	glyphs	early	in	the
process.

You'll	need	plenty	of	vowel	signs	to	begin	testing	texture	and	scale.

The	professor	of	typography	at	IIT	Bombay,	Dr	Girish	Dalvi,	wrote	in	his	PhD	thesis,

Designing	Devanagari	Typefaces

161

http://en.wikipedia.org/wiki/Devanagari
http://www.unicode.org/versions/Unicode8.0.0/ch12.pdf
http://www.unicode.org/charts/PDF/U0900.pdf
http://www.microsoft.com/typography/OpenTypeDev/devanagari/intro.htm
https://groups.google.com/d/msg/googlefonts-discuss/XRYMYHZpUVc/_mLQWbr8rp8J

Through	the	results	of	this	study	we	can	deduce	that	the	ten	letters	अ	इ	ए	ख	त	भ	द	ध	थ	ष	can	almost	capture	all	the	formal
properties	of	remaining	Devanagari	letters.	Within	these	letters	the	letters	अ	इ	ख	भ	द	ध	ष	are	most	critical	as	they	define
features	for	the	majority	of	the	letters.	We	can	hence	suggest	that	by	designing	these	letters	first;	the	process	of
Devanagari	font	design	can	be	simplified	for	students	well	as	type	designers	as	the	remaining	letters	can	be	derived	from
these	ones.

Erin	McLaughlin	suggested	these	glyphs	as	an	initial	progression:	पाव	+	िकमीनफूु	+	भरसगदह	+	मो	ड्डू	(height	extremes)	+
यथधआछड	…	continue	character	set	and	suggested	to	focus	on	the	"Au"	vowel	sign	+	reph	+	anusvara	combo!,	the	Ma	is	just
there	for	posterity.

The	height	extremes	glyphs	allow	you	to	determine	the	vertical	metrics,	and	how	to	scale	the	two	writing	systems	to	work
together.	Adobe	publishes	very	large	type	families	that	cover	very	different	orthographies.	These	are	split	into	families	with
shared	general	proportions;	Myriad	Pro	has	Latin,	Greek	and	Cyrillic,	but	the	Hebrew	and	Arabic	designs	are	packaged	as
separate	families	which	include	modified	Latins.

Here	is	Myriad	Pro	Latin	and	Myriad	Arabic	juxtaposed:

(Spot	Adobe's	designers	neat	decision:	the	cap	height	of	the	Latin	in	Myriad	Arabic	is	the	x	height	of	the	Myriad	Pro	Latin.)

Note	that	in	the	Lohit	character	set,	the	lowest	glyphs	are	forms,	meant	to	go	below	characters	that	descend	very	far	below	the
baseline:

(Vattu	is	the	below-base	form	of	reph.	See	the	Microsoft	terminology	page	for	more	details)

Ideally,	these	should	stack	below	your	lowest	vertically-stacking	conjunct,	like	the	example	on	the	left	(Lohit,	which	doesn't	quite
vertically	fit,	is	on	the	right):

Spacing	approach
Designing	Latin	fonts	typically	involves	a	series	of	spacing	strings	like	this:

HHxHOHOxOO
nnXnonoXoo

Designing	Devanagari	Typefaces

162

https://www.microsoft.com/typography/otfntdev/indicot/terms.htm

Where	the	X	represents	the	letter	you	are	focused	on	spacing,	and	the	concept	is	looking	at	this	letter	next	to	a	somewhat	flat-
sided	character	and	a	round	character.

Pa,	and	Va	or	Da	are	Devanagari	equivalents:

पपXपवपवXवव
पपXपदपदXदद

When	just	beginning	a	project,	start	with	filling	a	page	entirely	with	Pa	in	order	to	get	the	right	balance	of	stroke	thickness,
counter	size,	and	spacing.

पपपपपपपपपपपपपपपपपपपपप

Once	the	Pa	has	the	right	"color",	you	can	begin	adding	these	other	basic,	common	characters:

पपपवपपपपपवपववपपव	(va,	randomized)
पपपापपपपापपाप	(Aa	maatra,	randomized)
पपपदपपपपपदपददपपद	(da,	randomized)

Then,	you	can	begin	using	the	spacing	strings	shown	above,	in	order	to	add	more	glyphs:

पपरपदपदरदद
पपकपदपदकदद
पपलपदपदलदद
पपपीपदपदपीदद

and	so	on!

You'll	want	to	look	at	these	in	a	long	list	like	that,	so	you	can	compare	from	one	glyph	to	another,	as	you	scroll	downward	-	both
on	screen	and	in	print.	Doing	a	vertical	check	is	more	effective	than	just	a	long	line	of	continuous	text.	Here's	why:

When	you	look	at	the	spacing	strings	in	vertical	columns,	you	can	easily	compare	the	spacing	with	the	lines	previously	above
and	below	the	current	character.	In	the	same	way	that	we	can	easily	recognize	"rivers"	in	badly-set	full-justified	text,	it	will	be
easier	to	see	white	gaps	or	dark	spots	in	spacing	if	you	are	comparing	against	a	spacing	string	that	remains	constant.

The	spacing	string	above	allows	you	to	compare	very	disparate	shapes,	so	that	spacing	is	more	even	throughout	(instead	of	all
of	the	round	characters	being	too	loose	or	too	tight)

And	the	four	glyphs	in	the	middle,	Pa/Da/Pa/Da	allow	you	to	compare	the	tested	character	against	two	sets	of	three,	if	you	just
look	at	Pa/Da/Pa	or	Da/Pa/Da.

Designing	Devanagari	Typefaces

163

After	drawing	and	spacing	a	handful	of	vowels	and	consonants,	you'll	be	able	to	make	a	limited	number	of	words	with	only
those	letters,	and	begin	testing	your	design	with	real	text.

Work	Breakdown	Structure
In	any	typeface	design	project,	its	a	great	idea	to	sketch	out	a	Work	Breakdown	Structure.

For	someone	very	experienced,	it	is	possible	to	design	the	initial	Light	and	Bold	weights	of	a	Devanagari	typeface	in	around	4-6
months.

Here	is	a	sample	schedule	for	an	interpolated	family	of	9	weights,	upright	and	slanted,	of	a	somewhat	simple	'sans'	design,	by	a
very	experienced	designer:

Designing	Devanagari	Typefaces

164

Week Goal Glyphs

1 Establish	design	in	7-10	key	glyphs 10

2 Refine,	design	tallest	glyphs,	match	heights	and	weights	to	Latin	in	Regular	&	Bold,	test	screen
rendering	with	ttfautohint 20

3 Refine	proportions	with	native	reader	feedback 40

4 Get	native	reader	feedback,	refine	and	add	more	conjuncts 100

5 Get	native	reader	feedback,	refine	and	add	more	conjuncts 200

6 Get	native	reader	feedback,	refine	and	add	more	conjuncts 300

7 Get	native	reader	feedback,	refine	and	add	more	conjuncts 400

8 Get	native	reader	feedback,	refine	and	add	more	conjuncts 500

9 Get	native	reader	feedback,	refine	and	add	more	conjuncts 600

10 Get	native	reader	feedback,	refine	and	add	more	conjuncts 700

11 Get	native	reader	feedback,	refine	and	add	more	conjuncts 800

12 Get	native	reader	feedback,	refine	and	add	more	conjuncts 900

13 Derive	Bold 1,800

14 Refinements,	Kerning,	testing	with	native	reader	feedback 1,800

15 Extrapolation	and	clean-up	of	Thin	and	Black	weights,	generation	and	clean-up	of	slanted	styles 3,600

16 Interpolated	styles	refinement 3,600

17 General	refinement	of	spacing,	kerning	&	testing	in	all	styles 3,600

18 Finalisation 3,600

You	may	want	to	work	with	a	font	that	has	no	sources	available,	only	binary	OpenType	GPOS/GSUB	tables.	There	are	a	few
tools	that	can	convert	those	into	the	Adobe	FEA	syntax,	including	FontForge,	but	the	output	of	each	tool	will	require	reworking
by	hand.

The	Adobe	FDK	contains	a	'spot'	tool,	that	can	be	used	like	this:

spot	-t	GSUB=7	Font.otf	>	GSUB.fea

The	noto	project	has	a	dump_otl.py

The	'Fontlab	Studio'	and	'OpenType	Master'	proprietary	application	have	converters	too.

Useful	Resources

Introductions

http://www.linotype.com/6896/devanagari.html

Where	to	look	for	inspiration	and	ideas

Look	at	the	Devanagari	fonts	on	the	http://indiantypefoundry.com	website,	and	those	that	were	just	released	through	Google
Fonts,	for	inspiration	on	shapes	of	letters	can	vary.

Designing	Devanagari	Typefaces

165

https://github.com/googlei18n/nototools/blob/master/nototools/dump_otl.py
http://www.linotype.com/6896/devanagari.html
http://indiantypefoundry.com

Another	good	place	to	search	for	Hindi	“e-paper”	newspaper	sites	to	see	actual	fonts-in-use	-	advertisements	usually	have	more
diversity	in	fonts.	http://epaper.jagran.com	is	a	very	largely	circulated	Indian	e-paper.

Flickr	is	also	a	good	source	of	ideas	for	imagery:

https://www.flickr.com/groups/devanagari-script/
https://www.flickr.com/groups/37703106@N00/
https://www.flickr.com/groups/indicscripts/
https://www.flickr.com/photos/pauldhunt/sets/72157603715699186

Historical	sources

Get	your	hands	on	copies	of	Introduction	to	the	Devanagari	Script	by	H.	M.	Lambert,	Oxford	University	Press	1953	and
Typography	of	Devanagari	(three	volumes)	by	B.	S.	Naik,	Directorate	of	Languages,	Bombay	1971.

Beyond	that,	there	are	at	least	two	general	sources	of	19th	Century	type	from	Europe	worth	looking	at:	the	typefaces	from
Britain	and	those	from	Germany	(mostly	from	Leipzig).	These	types	were	used	more	for	the	setting	of	Sanskrit	texts	than	for
Hindi	texts.

Do	also	try	to	find	samples	of	19th	and	20th	C.	text	typefaces	from	Indian	type	foundries.	They	are	significantly	less
Europeanized,	as	you	might	expect.	There	is	wonky	stuff	going	on	in	European	academic	sanskritic	faces	from	the	19th	century
that	doesn’t	seem	to	appear	in	20th	century	Indian	typography	at	all.	These	Indian	sources	are	probably	more	difficult	to	find	in
Western	libraries,	but	perhaps	Erin	McLaughlin	has	more	leads.	Matthew	Carter’s	1970s	Linotype	Devanagari	is	based	on
typefaces	from	the	Nirnaya	Sagar	foundry,	for	instance.	Samples	of	their	types,	and	the	Bombay	Type	Foundry’s	types,	should
be	accessible	in	some	western	university	and/or	national	libraries.	I’d	also	recommend	looking	at	Monotype’s	Devanagari	and
Linotype	Devanagari	(the	1970s	version	and	1980/90s	update,	not	the	original	1935	one,	which	only	bore	the	same	name).

There	is	no	Devanagari	type	in	Typefounders	in	The	Netherlands	(Charles	Enschede,	Harry	Carter	1978).	Whatever	you	do,
don’t	look	at	Bodoni’s	types	from	his	1818	manual.

Some	German-made	Devanagari	type	from	H.	Berthold	AG	may	be	seen	in	Alphabete	und	Schriftzeichen	des	Morgen-	und	des
Abendlandes,	from	the	Reichsdruckerei,	Berlin	1924,	p.	45–47.

Articles

Sarang	Kulkarni	wrote	"Issues	with	Devanagari	Display	Type	(PDF)"

Yashodeep	Gholap	wrote	Designing	a	Devanāgarī	text	font	for	newspaper	use	(PDF)

Vaibhav	Singh's	MATD	disertation,	Devanagari	in	multi-script	typography

Lohit2	Devanagari

Lohit2	Devanagari	can	be	used	as	a	base	for	new	OFL	fonts	by	using	its	Glyph	List	and	OpenType	Layout	code.	It	is	available
as	original	FontForge	sources	or	as	a	UFO	zip	download

OpenType	Layout

Microsoft	Devanagari	OpenType	Font	Development	page

Devanagari	Anatomy

TDIL	Devanagari	Script	Grammar	(PDF)

Designing	Devanagari	Typefaces

166

http://epaper.jagran.com
https://www.flickr.com/groups/devanagari-script/
mailto:https://www.flickr.com/groups/37703106@N00/
https://www.flickr.com/groups/indicscripts/
https://www.flickr.com/photos/pauldhunt/sets/72157603715699186
http://www.typoday.in/2013/spk_papers13/sarang-kulkarni-typographyday2013.pdf
http://www.typoday.in/2012/spk_papers/yashodeep-gholap-typographyday2012.pdf
http://issuu.com/typefacedesign/docs/vaibhav_singh_dissertation
https://github.com/pravins/lohit2/tree/master/devanagari
https://github.com/frank-trampe/lohit2/archive/master.zip
http://www.microsoft.com/typography/OpenTypeDev/devanagari/intro.htm
http://www.tdil-dc.in/tdildcMain/articles/82170Devanagari%20Script%20Behaviour%20for%20Hindi%20%20ver%201.4.10.pdf

2	pages	from	Aksharaya's	Devanagari	calligraphy	Manual,	which	can	be	used	as	a	reference	for	pen	angle	and	letter
proportions.

Professor	Girish	Davli	of	IIT	Bombay	IDC	(comparable	to	the	USA's	MIT	Media	Lab)	published	this	Devanagari	Anatomy	article
(PDF)

If	you're	new	to	Devanagari	script,	it's	important	to	become	aware	of	traditional	calligraphic	pen	stress,	which	is	different	than	in
Latin.	Here's	a	quick	demonstration	of	the	stroke	angle,	and	how	curves	were	traditionally	weighted.	Your	design	will	be	more
successful,	and	appear	less	"Latinized",	if	you	draw	your	curves	according	to	these	weight	principles,	rather	than	cutting-and-
pasting	Latin	alphabet	letter	parts.

The	Devanagari	Unicode	page	shows	the	basic	letters,	but	not	the	conjuncts

Testing	Tools

Adobe	InDesign's	support	for	OpenType	Fonts	for	non-European	scripts	only	became	reliable	with	Creative	Cloud,	and	the
World	Ready	Composer	paragraph	option	must	be	enabled;	even	the	latest	version	can	be	improved.	The	libre	harfbuzz	and
Microsoft	OpenType	implementations	are	the	most	complete,	so	you	should	test	your	fonts	in	the	latest	versions	of	Chrome,
Firefox	and	Microsoft	Word,	on	both	Windows	and	Mac	OS	X,	to	ensure	errors	in	shaping	are	due	to	the	fonts	and	not	the
underlying	engine.

Pablo	Impallari's	Devanagari	Testing	Page	(with	sources	on	github!)	provides	some	ready-made	testing	layouts,	and	you	can
drag	and	drop	your	OTF	or	TTF	right	into	the	page	to	load	it.

Pooja	Saxena's	Type	Tools	(with	sources	on	github!)	generates	test	texts	for	letter	combinations.

The	Adhesion	Text	Devanagari	is	a	special	version	of	the	a	tool	built	by	Miguel	Sousa	to	make	dummy	text	comprised	only	of
the	words	possible	to	write	with	the	glyphs	you	have	already	drawn.	Insert	the	glyphs	(अआईईउऊ	etc)	that	you've	drawn,	and	out
will	come	some	sample	words	for	you	to	use	in	proofs.

The	Huerta	Tipografica's	Devanaguide	is	an	open	source	tool	to	see	and	compare	different	devanagari	fonts.	It	also	allows	you
to	type	a	text	and	preview	it	in	all	the	fonts	at	the	same	time.	The	Devanaguide	also	includes	a	Devanagari	word	list	which	is
helpful	for	test	text	design.

Other	Links

Designing	Devanagari	Typefaces

167

https://groups.google.com/d/msg/googlefontdirectory-discuss/XRYMYHZpUVc/_mLQWbr8rp8J
https://web.archive.org/web/20130913220315/http://www.idc.iitb.ac.in/resources/dt-jan-2009/Anatomy%20of%20Devanagari.pdf
http://www.unicode.org/charts/PDF/U0900.pdf
http://blogs.adobe.com/vikrant/2012/05/indesign-cs6-indic-support-and-preferences/
http://www.impallari.com/testing/index-devanagari.php
https://github.com/impallari/font-testing-page/
https://anexasajoop.github.io/devanagari-type-tools
https://github.com/anexasajoop/devanagari-type-tools
http://www.adhesiontext.com/devanagari/
http://devanaguide.huertatipografica.com/
https://github.com/andrestelex/devanaguide/blob/master/deva-dictionary.txt

Books	&	References	for	Devanagari	typography	Projects	is	a	list	of	resources	which	will	probably	fulfill	most	of	the	research
requirements	of	most	projects.	Compiled	by	Professor	Girish	Davli	of	IIT	Bombay	IDC.

Forum	Discussions

Typophile

Adobe	Devanagari

Google	Fonts	Directory	Discuss

A	note	on	conventions	for	the	placement	of	shoulder	line,	descenders,	ascenders	and	so	forth	in	relation	to	the	latin?
Starting	from	Lohit2	and	pdf
Adobe	Glyph	Lists
rVocalic	and	rrVocalic
Devanagari	Character	Priorities

Designing	Devanagari	Typefaces

168

http://dsquare.in/devft/en/books.php
http://typophile.com/node/95460
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/TaX0NKHket4
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/VAhs5MnjZ30
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/_3gtTalzKUQ
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/q8CQHVxVZ0Y
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/eYmmBQENBb8
https://groups.google.com/forum/#!topic/googlefontdirectory-discuss/7dtNw8wwJzI

Importing	Glyphs	from	Other	Programs

It	is	possible	to	draw	glyphs	in	a	general	purpose	illustration	application	(Inkscape,	Adobe	Illustrator,	etc)	and	import	them	as
EPS	or	SVG.

Hand-coded	SVG

How	to	prepare

The	SVG	file	does	need		viewBox="0	0	1000	1000"	

Width	actually	doesn't	matter,	as	long	as	it	is	wider	than	your	glyph.	But	the	height	at	1000	is	important	for	easiest	import.

	y=0		will	be	the	ascender	line	and		y=1000		will	be	the	descender	line.

(There	may	be	a	few	glyphs	that	go	beyond	those	lines,	perhaps	FontForge	will	do	the	right	thing	but	we	haven't	tested	it.)

By	default	FontForge	will	set	up	your	baseline	at		y=800	.	In	the	FontForge	coordinate	system,	the	baseline	is	at	their		0	
point	on	their	vertical	access.

To	set	the	baseline	where	you	want	it	in	FontForge,	take	the	y	coordinate	for	your	baseline	in	SVG.	That	will	be	the
FontForge	vertical	point	for	the	ascender	line	in	their	coordinate	system.	(1000	-	y)	for	the	descender.	Go	to		Element,	Font
Info		and	in	the	General	menu,	place	the	ascender	value	in	the	"Ascent"	input	and	the	decender	in	the	"Descent"	menu.
Both	will	be	positive.	The	Em	Size	should	remain	at	1000	(as	that	is	the	height	in	SVG	units)

When	drawing	the	glyph,	I	like	to	use	relative	coordinates.	So	I	start	the	glyph	with		<path	d="M	Xvalue,Yvalue	.	If	I	can	draw
the	glyph	starting	at	a	point	all	the	way	on	the	left,	then	XValue	will	be	the	default	LeftBearing	that	FontForge	uses.	You	can
adjust	that	easily	after	glyph	import	and	may	need	to	anyway	after	testing	the	font.	The	Yvalue,	when	I	can	start	drawing
from	the	baseline,	it's	nice	to	use	that	baseline	value	for	Yvalue.

Always	finish	the	path	d	attribute	with	a	z.	It	will	import	without	it,	but	the	glyph	won't	display	right	in	the	main	window	until
you	restart	fontforge	if	you	forget	to	put	a	z	after	the	last	point	in	the	path.

When	drawing	holes	(like	for	letter	P)	don't	start	a	new	path	node,	just	use	a	z	at	end	of	the	first	path	and	start	new	with
mNewX,NewY	to	then	start	drawing	the	hole.	Use	the	attribute	fill-rule="evenodd"	for	the	path	and	it	will	work	right.

Workflow

Use	a	web	browser	to	render	the	SVG	you	are	working	on.	You	can	use	a	file	called	"template.svg"	that	is	1200	by	1200	but
renders	at	800	by	800	so	that	it	doesn't	scroll	in	the	browser	window.

In	that	template,	draw	guidelines	at		y=100,	y=1100,	y=(100	+	{baseline,	capheight,	etc.},	x=100,	x=1100	

Then	import	the	SVG	glyph	you	are	working	on	into	that	document	with		<image	xlink:href="LC_p.svg"	x="100"	y="100"
width="1000"	height="1000"	/>	

You	can	now	hand-code	you	letter	in	one	window,	and	refresh	the	browser	in	the	other	to	see	it	drawn	on	top	of	the	guidelines.

Custom	Glyph	Lists
1.	 Create	a		namelist.txt		file,	perhaps	using	a	spreadsheet	to	list	unicode	codepoints	and	glyph	names.	For	example:

Importing	Glyphs	from	Other	Programs

169

0xEC00	octDotDhe

0xEC01	octDotDheDbl

0xEC02	octDotDheTrpl

0xEC03	octDotDheQdrpl

0xEC04	octDotLik

0xEC05	octDotLikDbl

0xEC06	octDotLikTrpl

0xEC07	minirLik

0xEC08	minirDhe

0xEC09	minirBawah

0xEC0A	soroganDhe

0x-001	soroganLik

For	glyphs	without	a	Unicode	point,	use	a	codepoint	of	-1,	such	as	in	the	last	line	of	the	above	example.

Then	load	FontForge	and	go	to		Encoding,	Load	NameList		and	then	use		Rename	glyphs		(Since		Load	NameList		only	adds	the
custom	namelist	to	the	set	of	options	available	in	subsequent	rename	commands.)

Importing	Glyphs	from	Other	Programs

170

Adding	Glyphs	to	an	Arabic	Font

Introduction
In	some	cases	a	font	may	lack	a	glyph	that	is	essential	for	its	use	in	your	application.	Arabic	fonts	present	special	issues	here,
because	the	shape	of	the	glyph	depends	not	only	on	its	position	in	the	word,	but	also	on	the	attributes	of	the	letter	itself.	Thus
(using	the	nonsense	sequence	babab),	the	letter	beh	has	three	different	shapes	depending	on	whether	it	comes	initially,
medially,	or	finally.	However	(using	the	nonsense	sequence	dadad),	the	letter	dal	has	only	one	shape,	no	matter	where	it	occurs
in	the	word.

Fonts	under	open	licenses	(e.g.	GPL	or	OFL	allow	the	user	to	make	modifications.	If	you	adapt	a	font	that	was	originally	under
an	open	licence	and	then	distribute	it,	you	must	retain	the	original	author's	copyright	notices	and	licensing	information,	although
you	can	append	a	note	at	the	end	of	the	copyright	notice	covering	your	contribution.

This	chapter	walks	through	adding	a	glyph	to	an	Arabic	font.	The	font	we	will	use	is	Graph,	and	the	glyph	we	will	add	is	peh
(U+067E),	which	does	not	occur	in	Arabic	itself,	but	designates	p	in	some	languages	for	which	Arabic	script	is	used	(for	a	full
listing	of	the	glyphs	available	for	Arabic	script,	see	the	Unicode	charts.

Make	a	working	copy	of	the	font
Download	the	font	from	the	webpage	and	unzip	it.	Launch	FontForge	and	load	the	font.	Save	it	as	an	sfd	file,	editing	the
suggested	name	to	read	GraphNew.sfd	before	saving.

Rename	the	font

Why	should	I	rename	the	font?

If	you	do	not	rename	the	font,	your	adapted	font	will	not	install	separately	from	the	original	–	you	will	have	to	uninstall	the
original	font	first.	It	is	also	sensible	to	rename	the	font	if	you	are	going	to	distribute	your	adaptations	–	if	the	original	author	of	the
font	has	reserved	the	font	name	under	the	Reserved	Font	Name	(RFN)	mechanism,	that	original	name	can	only	be	used	with
the	original	author's	version	of	the	font.

Change	the	name	data

Adding	Glyphs	to	an	Arabic	Font

171

http://gnu.org/copyleft/gpl.html
http://scripts.sil.org/OFL-FAQ_web
http://openfontlibrary.org/en/font/graph
http://www.unicode.org/charts

Select	Element	→	Font	Info,	and	in	the	PS	Names	panel,	change	Fontname,	Family	Name,	and	Name	For	Humans	to
GraphNew.

If	desired,	you	can	place	an	'Additional	glyphs	added	by'	message	after	the	text	already	in	the	entry	for	Copyright.

In	the	TTF	Names	panel,	the	names	for	Family	and	Fullname	are	taken	from	the	PS	Names	entries,	and	should	already	be
showing	GraphNew	(you	cannot	edit	them	directly).	Change	the	entries	for	Preferred	Family	and	Compatible	Full	to	GraphNew.
These	name	changes	will	now	allow	you	to	install	this	font	alongside	the	original	one	if	you	wish.

If	desired,	you	can	place	an	'Additional	glyphs	added	by'	message	after	the	text	already	in	the	entry	for	Designer.

Click	OK	to	save	these	changes.	You	will	get	a	message	about	generating	a	new	UniqueID	(XUID)	for	the	font	–	click	Change.

Add	the	glyph	for	the	isolated	form	of	peh
Go	to	the	Arabic	section	of	the	font	chart:	select	View	→	Go	to,	click	the	dropdown	box	and	select	Arabic,	then	click	OK.

Clicking	on	a	cell	in	the	font	chart	will	show	its	Unicode	number	and	name	in	blue	at	the	top	of	the	panel.	Go	to	position	1662	,
which	will	show	in	blue	as	1662	(0x67e)	U+067E	``uni067E''	ARABIC	LETTER	PEH.	The	cell	below	the	reference	glyph
contains	a	grey	X,	showing	that	the	font	does	not	include	this	glyph.

Adding	Glyphs	to	an	Arabic	Font

172

We	will	make	peh	by	copying	beh	(U+0628)	and	swapping	its	single	dot	for	three	dots.

Click	on	the	beh	cell	(position	1576),	then	right-click	and	select	Copy.	Then	right-click	on	the	peh	cell	and	select	Paste.	Now
that	beh	is	now	copied	into	the	peh	cell,	the	next	thing	is	to	change	the	dot.

Find	a	glyph	with	three	dots	–	sheen	(position	1588,	U+0634)	will	do.	Double-click	on	the	cell	–	this	will	open	a	glyph	design
panel.	Press	V	to	ensure	the	pointer	tool	(arrowhead)	in	the	toolbox	is	selected,	and	press	Z	and	enlarge	the	panel	to	give	you	a
good	view	of	the	glyph.

Click	and	drag	so	that	the	nodes	of	the	three	dots	above	sheen	change	colour	from	pink	to	beige.	If	you	accidentally	include	or
omit	a	node,	deselect	or	select	it	by	pressing	Shift	and	clicking.	Press	Alt+C	to	copy.

Adding	Glyphs	to	an	Arabic	Font

173

Go	back	to	the	font	chart	and	double-click	on	the	peh	cell	–	this	will	load	peh	into	another	tab	in	the	glyph	design	panel,
alongside	the	sheen	tab.

Click	and	drag	to	highlight	the	dot	below	peh,	then	press	Delete.	Press	Alt+V	to	paste	in	the	three	dots,	which	will	likely	appear
above	the	body	of	peh.	Leave	the	dot	nodes	highlighted	so	that	you	can	invert	and	move	them	more	easily.

Adding	Glyphs	to	an	Arabic	Font

174

Invert	the	dots:	select	the	flip	tool	(two	triangles	with	a	red	dashed	line	between	them)	from	the	toolbox.	(Alternatively,	right-click
in	the	middle	of	the	dots,	and	select	Flip	the	selection	from	the	popup.)	Click	on	one	of	the	dot	nodes	and	drag	the	mouse
slightly	left	or	right.

Adding	Glyphs	to	an	Arabic	Font

175

Move	the	inverted	dots:	press	V	to	select	the	pointer	tool	again,	click	on	one	of	the	dot	nodes,	and	drag	them	down	below	the
body	of	the	glyph.	Position	them	centrally,	above	the	ArabicBelow	mark.

Adding	Glyphs	to	an	Arabic	Font

176

Close	the	glyph	design	panel.	There	should	now	be	a	new	glyph	for	peh	in	the	font	chart.	Save	the	adapted	font	(File	→	Save).

Adding	Glyphs	to	an	Arabic	Font

177

Add	the	glyphs	for	the	connected	forms	of	peh
However,	this	is	only	the	isolated	(standalone)	form	of	the	glyph.	If	you	try	to	use	your	adapted	font,	you	will	find	that	initial,
medial	and	final	forms	are	not	available.	These	have	to	be	created	separately.	"The[se]	forms	are	built	as	unencoded	glyphs
(glyphs	whose	encoding	is	-1	in	FontForge	conventions).	Th[ey]	have	no	predefined	slots."	(Khaled	Hosny)

Select	Encoding	→	Add	Encoding	Slots	and	enter	the	number	of	the	glyphs	you	want	–	in	this	case	3.	FontForge	will	add	the
same	number	of	slots	at	the	very	end	of	the	font,	and	you	will	be	moved	there	in	the	font	chart.	The	last	three	cells	(positions
65537,	65538,	65539)	have	a	question	mark	as	a	reference	glyph,	and	it	is	in	those	cells	that	you	will	add	the	unencoded	glyphs
by	repeating	the	process	above.

Note	that	if	by	mistake	you	start	typing	when	the	font	chart	still	has	focus,	you	get	moved	to	the	European	section	at	the	top.	To
get	back	to	the	bottom,	select	**View	→	Go	to**,	click	the	dropdown	box	and	select	**Not	a	Unicode	Character**,	and	then	click
OK.

Create	the	final	form

Roll	the	font	chart	up	a	bit	until	you	come	to	a	set	of	Arabic	glyphs	at	position	65152	(U+FE80)	onwards.	At	U+FE90	(position
65168)	you	will	see	a	behfinal	glyph	–	click	on	it	and	press	Ctrl+C	to	copy	it.	Roll	down	to	the	third	last	cell	in	the	chart	(position
65537),	click	on	it,	and	press	Ctrl-V	to	paste	in	the	behfinal	glyph.

Right-click	on	the	cell	and	select	Glyph	Info.	The	naming	convention	is	to	use	the	number	of	the	isolated	glyph	+	a	suffix	for	the
form,	so	change	Glyph	Name	to	uni067E.fina,	and	click	OK.	The	question	mark	in	the	reference	cell	will	change	to	peh.

Adding	Glyphs	to	an	Arabic	Font

178

Get	the	three	dots:	double-click	on	sheen	(U+FEB5)	to	load	it	into	the	glyph	design	panel,	select	the	three	dots	and	press
Ctrl+C.

Double-click	on	the	new	pehfinal	to	load	it	into	the	glyph	design	panel,	click	and	drag	to	highlight	the	nodes	of	the	dot	and	press
Delete.

Ctrl+V	to	insert	the	three	dots	from	sheen,	flip	them,	and	move	them	into	position	below	the	glyph	body.	Press	Ctrl+S	to	save
the	revised	font	chart.

Create	the	initial	and	medial	forms

Copy	the	initial	form	U+FE91	(position	65169)	to	the	penultimate	cell	(position	65538),	delete	the	single	dot	and	paste	in	the
three	dots.

Right-click	the	cell,	select	Glyph	Info,	change	Glyph	Name	to	uni067E.init,	and	click	OK.

Copy	the	medial	form	U+FE92	(position	65170)	to	the	last	cell	(position	65539),	delete	the	single	dot	and	paste	in	the	three
dots.

Right-click	the	cell,	select	Glyph	Info,	change	Glyph	Name	to	uni067E.medi,	and	click	OK.

Adding	Glyphs	to	an	Arabic	Font

179

Select	File	→	Save	to	save	the	revised	font	chart.

Add	the	lookups
The	isolated	form	has	to	be	mapped	(linked)	to	its	initial,	medial	and	final	forms.

Select	Element	→	Font	Info	→	Lookups.

Click	on	the	+	beside	the	entry	'init'	Initial	Forms	in	Arabic	lookup	2.	This	will	open	a	submenu	of	the	same	name.	Click	on	this
submenu.

The	Edit	Data	button	on	the	right	will	now	become	available	–	click	it.

In	the	Lookup	Subtable	panel	that	pops	up,	ensure	that	the	Unicode	button	is	checked.	Roll	the	list	of	characters	down	until	you
come	to	the	end.

In	the	box	beside	Default	Using	Suffix,	enter	the	relevant	suffix	(in	this	case,	init),	and	then	click	Default	Using	Suffix.

A	new	mapping	will	be	added	to	the	list	of	characters,	from	uni067E	(the	isolated	form	of	peh)	to	uni067E.init	(the	initial	form).
Click	OK.

Adding	Glyphs	to	an	Arabic	Font

180

Do	the	same	for	the	submenus	under	the	entries	'medi'	Medial	Forms	in	Arabic	lookup	2	and	'fina'	Terminal	Forms	in	Arabic
lookup	2,	choosing	medi	and	fina	as	the	relevant	suffix.

Click	OK	again	to	close	the	panel,	and	save	the	font	chart	(Ctrl+S).

Note	that	Default	Using	Suffix	only	seems	to	work	on	glyphs	in	the	Unicode	06	(Arabic)	block	–	glyphs	in	Unicode	07	(Arabic
Supplement),	e.g.	ain	with	two	dots,	may	have	to	be	added	manually	by	clicking	the	line	marked	New	and	typing	in	the	names.

Generate	the	adapted	font

Select	File	→	Generate	Fonts.

In	the	dropdown	showing	PS	Type	1	(Binary),	select	TrueType,	and	check	that	the	filename	reads	GraphNew.ttf.

Navigate	to	where	you	want	to	save	the	font,	and	then	click	Generate.	Click	Yes	and	Generate	to	the	two	information
messages	that	come	up.

You	can	then	use	your	normal	font	installation	procedure	to	install	the	adapted	font.	The	new	glyph	peh	can	then	be	used
alongside	the	existing	glyphs	in	the	same	nonsense	examples	as	at	the	beginning	of	this	chapter:

Note	that	if	you	are	using	a	font	in	LibreOffice	and	make	changes	to	that	font,	you	need	to	restart	LibreOffice	to	have	it	see	any
changes	–	otherwise	it	will	use	the	previous	version	of	the	font,	and	not	the	one	with	the	new	changes.

Adding	Glyphs	to	an	Arabic	Font

181

Thanks	to	Khaled	Hosny	for	his	advice	on	using	FontForge	to	edit	Arabic	glyphs.

Further	Reading
http://lists.nongnu.org/archive/html/freetype-devel/2015-08/msg00016.html	has	a	tip	about	how	to	draw	the	overlapping
parts	of	Arabic	glyphs

Adding	Glyphs	to	an	Arabic	Font

182

http://khaledhosny.org
http://lists.nongnu.org/archive/html/freetype-devel/2015-08/msg00016.html

Further	Reading

Videos
Optical	Compensation	by	Thomas	Phinney	and	FontLab
Type	Review	Videos
Lato:	The	Making	Of

Websites

Other	Resource	Lists

Thomas	Phinney's	Type	Design	Resources

Curve	Math

http://pomax.github.io/bezierinfo/	Excellent	guide	to	the	math	of	Bezier	curves
http://raph.levien.com/phd	Raph	Levien's	PhD	on	Spiro	curves

Business

ILT:	Why	Did	I	Start	A	Foundry
ILT	Leonidas	on	Typeface	Design	practice

Typography

Typekit:	Practice

Latin

The	MyFonts	Foundry	Guides	are	fantastic:	foundry.myfonts.com/guides

Frere	Jones:	Typeface	Mechanics	1
Frere	Jones:	Typeface	Mechanics	2
Letter-by-letter	tutorials
Adobe:	Designing	Multiple	Master	Typefaces
University	of	Reading	Type	Design	Intensive	Review
On	Tilde
ILT:	On	Diacritics
Twardoch:	Polish	Diacritics
Logotype:	Quora	logo
Victor	Gaultney:	Latin	Diacritics

ILT	Example	Projects:

Novel

Further	Reading

183

https://www.youtube.com/watch?v=LR-CG5eB3nQ
https://vimeo.com/typereview/videos
https://youtu.be/4-oo8o-tyqU
http://www.thomasphinney.com/type-design-resources/
http://pomax.github.io/bezierinfo/
http://raph.levien.com/phd
http://ilovetypography.com/2010/05/06/why-did-i-start-a-type-foundry/
http://ilovetypography.com/2010/03/25/a-few-things-i%E2%80%99ve-learned-about-typeface-design/
http://practice.typekit.com/
https://foundry.myfonts.com/guides/
http://www.frerejones.com/blog/typeface-mechanics-001/
http://www.frerejones.com/blog/typeface-mechanics-002/
http://letterpunch.blogspot.com/
https://www.google.com/search?q=Designing+Multiple+Master+Typefaces
http://www.creativebloq.com/typography/design-your-own-typeface-8133919
http://www.shadycharacters.co.uk/2015/03/miscellany-60-tilde/
http://ilovetypography.com/2009/01/24/on-diacritics/
http://www.twardoch.com/download/polishhowto/
https://www.quora.com/How-is-the-new-Quora-logo-different-from-the-old-one/answer/Christian-Schwartz-1
http://gaultney.org/jvgtype/research/
http://ilovetypography.com/2012/05/15/making-fonts-novel-typeface/

Questa
Sindelar
GT	Sectra
FF	Tundra
Acorde
Ode
Biome
Vesper	(also	see	github.com/motaitalic/vesper-libre

Greek

Greek	Typefaces	Worth	Studying

Cyrillic

Learn	Cyrillic
Serbian	Cyrillic
Bulgarian	Cyrillic
http://www.lettersoup.de/what-shall-be-done-for-bulgarian-cyrillic-loclbgr/
Paratype	Language	Help	-	Cyrillic	encodings
Cyrillic	Typography	on	Facebook
http://luc.devroye.org/cyrillic.html
The	ATypI	Cyrillic	SIG	mailing	list

Arabic

Khaled	Hosney's	FontForge	Guide
Example	Project:	Arabic	Zapfino
Parachut:	Interview	with	Hasan	Abu	Afash
Arabic	Typefaces	Worth	Studying
Arabic	Type	Anatomy

Hebrew

Adi	Stern's	MATD	Dissertation

Devanagari

Microsoft	Specifications	for	Devanagari	Fonts
South	Asia	Language	Resource	Center	The	University	of	Chicago
Professor	Mahendra	Patel
Dhruvi	Tolia	Graduation	Report
Sanchit	Sawaria	Project	3	Document
Yashodeep	Gholap	-	Designing	a	Devanagari	text	font	for	newspaper	use
Mustafa	Saifee	-	Devanagari	Font	for	Optical	Character	Recognition
Vaibhav	Singh	-	Devanagari	in	multi-script	typography
Virtual	Keyboards:	lexilogos	and	branah

Books

Further	Reading

184

http://ilovetypography.com/2014/10/08/questa-fonts-project/
http://ilovetypography.com/2015/05/05/making-fonts-sindelar
http://ilovetypography.com/2015/01/13/making-fonts-gt-sectra
http://ilovetypography.com/2011/10/05/the-making-of-ff-tundra/
http://ilovetypography.com/2010/10/10/the-making-of-acorde-2/
http://ilovetypography.com/2010/09/01/ode-fresh-start-for-a-broken-script/
http://ilovetypography.com/2010/07/01/font-design-biome-the-making-of-a-typeface/
http://ilovetypography.com/2009/12/15/font-design-vesper-typeface-devanagari/
https://github.com/motaitalic/vesper-libre
http://leonidas.org/greek-type-design/greek-typefaces-worth-studying/
http://learncyrillic.tumblr.com
http://tipometar.org/indexEng.html
http://www.cyrillicsly.com/
http://www.lettersoup.de/what-shall-be-done-for-bulgarian-cyrillic-loclbgr/
http://www.paratype.com/help/language/
https://www.facebook.com/groups/170175253103197/
http://luc.devroye.org/cyrillic.html
http://ojuba.org/wiki/docs/%D8%AA%D8%B7%D9%88%D9%8A%D8%B1_%D8%A7%D9%84%D8%AE%D8%B7%D9%88%D8%B7
http://ilovetypography.com/2015/02/22/making-arabic-fonts-climbing-everest/
http://upscaletypography.com/?p=1646
http://tntypography.eu/resources-list/arabic-typefaces-worth-studying-2/
http://blog.29lt.com/2015/07/30/arabic-type-anatomy-typographic-terms/
http://issuu.com/gerryleonidas/docs/2003_dissertation_adistern
http://www.microsoft.com/typography/OpenTypeDev/devanagari/intro.htm
http://salrc.uchicago.edu/
http://patelmc.wordpress.com/mahendrapatel/typedesign/
http://issuu.com/dhruvi/docs/graduation_report
http://issuu.com/sanchitsawaria/docs/kathandoc
http://www.yashodeepgholap.com/Article.html
https://www.behance.net/gallery/11968313/Devanagari-Font-for-Optical-Character-Recognition
http://issuu.com/typefacedesign/docs/vaibhav_singh_dissertation
http://www.lexilogos.com/keyboard/devanagari.htm
http://www.branah.com/devanagariinscript

University	of	Reading	MA	Typeface	Design	Summer	Reading	List
http://www.type-library.com	has	an	extensive	list	of	books

Title:	Detail	in	Typography	(Paperback)

Author:	Jost	Hochuli	(Author)

Title:	ISBN:	9780907259343

Title:	Adrian	Frutiger	-	Typefaces:	The	Complete	Works

Authors:	Heidrun	Osterer,	Philipp	Stamm,	Swiss	Foundation	Type	and	Typography

Title:	ISBN:	9783764385811

Title:	Printing	Types:	Their	History,	Forms,	and	Use:	A	Study	in	Survivals	(with	ILLUSTRATIONS)

Author:	D.	B	Updike,	Daniel	Berkeley	(Authors)

Title:	Creative	Characters	Format:	Flexibound

Author:	Jan	Middendorp	(Editor)

Title:	ISBN:	9789063692247

Title:	Now	Read	This:	The	Microsoft	Cleartype	collection

Author:	John	D.	Berry	(Author)

Title:	The	Stroke:	Theory	of	Writing	(Paperback)

Author:	Gerrit	Noordzij	(Author)

Title:	ISBN:	9780907259305

Title:	Shaping	Text:	Type,	Typography	and	the	Reader

Author:	Jan	Middendorp	(Author)

Title:	ISBN:	9063692234

Title:	Thinking	with	Type:	A	Critical	Guide	for	Designers,	Writers,	Editors,	&	Students	(Design	Briefs)

Author:	Ellen	Lupton	(Author)

Title:	ISBN:	9781568984483

Further	Reading

185

http://blog.8faces.com/post/53602804428/summer-reading
http://www.type-library.com

Title:	LETTERS	OF	CREDIT:	A	view	of	type	design

Author:	Tracy,	Walter	(Author)

Title:	ISBN:	0879236361	/	0-87923-636-1

Title:	The	Elements	Of	Typographic	Style:	Version	3.1

Author:	Bringhurst,	Robert	(Author)

Title:	ISBN:	0881792063	/	0-88179-206-3

Title:	Type:	The	Secret	History	of	Letters

Author:	Simon	Loxley	(Author)

Title:	ISBN:	1845110285

Title:	Type	Designs

Author:	AF	Johnson	(Author)

Title:	Typography:	Macro	&	Microaesthetics

Author:	Willy	Kunz	(Author)

Title:	ISBN:	3721203488

Title:	Fonts	and	encodings

Author:	Yannis	Haralambous	(Author),	P	Scott	Horne	(Translator)

Title:	ISBN-10:	0596102429	|	ISBN-13:	978-0596102425

Title:	The	Unicode	Standard,	Version	7.0.0

Author:	The	Unicode	Consortium	(Author)

ISBN:	978-1-936213-09-2

Further	Reading

186

http://www.unicode.org/versions/Unicode7.0.0/

Glossary

A

Abjad

Abjad	is	the	technical	term	for	the	type	of	writing	system	used	by	Semitic	languages	(Hebrew,	Arabic,	etc.),	where	there	are
glyphs	for	all	the	consonants	but	the	reader	must	be	prepared	to	guess	what	vowel	to	add	between	two	consonants.

Both	Hebrew	and	Arabic	have	optional	vowel	marks	and	are	called	"impure"	abjads.	Ancient	Phoenician	had	nothing	but
consonants	and	is	a	"pure"	abjad.

See	Also:	alphabet,	abugida,	syllabary	and	the	relevant	Wikipedia	article.

Abugida

An	abugida	is	somewhere	in	between	an	alphabet	and	a	syllabary.	The	Indic	writing	systems	are	probably	the	best	known
abugidas.

In	most	abugidas	there	are	independent	glyphs	for	the	consonants,	and	each	consonant	is	implicitly	followed	by	a	default	vowel
sound.	All	vowels	other	than	the	default	will	be	marked	by	either	diacritics	or	some	other	modification	to	the	base	consonant.

An	abugida	differs	from	a	syllabary	in	that	there	is	a	common	theme	to	the	images	representing	a	syllable	beginning	with	a
given	consonant	(that	is,	the	glyph	for	the	consonant),	while	in	a	syllabary	each	syllable	is	distinct	even	if	two	start	with	a
common	consonant.

An	abugida	differs	from	an	abjad	in	that	vowels	(other	than	the	default)	must	be	marked	in	the	abugida.

See	Also:	alphabet,	abjad,	syllabary	and	the	relevant	Wikipedia	article.

Accent

See	Diacritics

Advance	Width

The	distance	between	the	start	of	this	glyph	and	the	start	of	the	next	glyph.	Sometimes	called	the	glyph's	width.	See	also
Vertical	Advance	Width.

Alphabet

A	writing	system	where	there	are	glyphs	for	all	phonemes	—	consonants	and	vowels	alike	--	and	(in	theory	anyway)	all
phonemes	in	a	word	will	be	marked	by	an	appropriate	glyph.

See	Also:	abjad,	abugida,	syllabary	and	the	relevant	Wikipedia	article.

Apple	Advanced	Typography

Glossary

187

http://en.wikipedia.org/wiki/Abjad
http://en.wikipedia.org/wiki/Abugida
http://en.wikipedia.org/wiki/Alphabet

Apple's	extension	to	basic	TrueType	fonts.	Includes	contextual	substitutions,	ligatures,	kerning,	etc.	Also	includes	distortable
fonts.

Arm

The	piece	of	the	letter	r	that	hangs	off	to	the	right.

Ascender

A	stem	on	a	lower	case	letter	which	extends	above	the	x-height.	"l"	has	an	ascender.
See	also	X-height,	Cap-height,	Descender,	Overshoot,	Baseline

Anchor	Class

Used	to	specify	mark-to-base	and	cursive	GPOS	subtables.

Ascent

In	traditional	typography	the	ascent	of	a	font	was	the	distance	from	the	top	of	a	block	of	type	to	the	baseline.

Its	precise	meaning	in	modern	typography	seems	to	vary	with	different	definers.

ATSUI

Apple's	advanced	typographical	system.	Also	called	Apple	Advanced	Typography.

B

Baseline

The	baseline	is	the	horizontal	line	on	which	the	(latin,	greek,	cyrillic)	letters	sit.	The	baseline	will	probably	be	in	a	different	place
for	different	scripts.	In	Indic	scripts	most	letters	descend	below	the	baseline.	In	CJK	scripts	there	is	also	a	vertical	baseline
usually	in	the	middle	of	the	glyph.	The	BASE	and	bsln	tables	allow	you	to	specify	how	the	baselines	of	different	scripts	should
be	aligned	with	respect	to	each	other.

See	also	X-height,	Cap-height,	Ascender,	Descender,	Overshoot

Bézier	curve	or	Bézier	splines

Bézier	curves	are	described	in	detail	in	the	Bézier	section	of	the	main	manual.

Bidi

Bi-Directional	text.	That	is	a	section	of	text	which	contains	both	left-to-right	and	right-to-left	scripts.	English	text	quoting	Arabic,
for	example.	Things	get	even	more	complex	with	nested	quotations.	The	Unicode	standard	contains	an	algorithm	for	laying	out
Bidi	text.	See	also:	Boustrophedon.

Black	letter

Any	of	various	type	families	based	on	medieval	handwriting.

Glossary

188

See	also	gothic.

BMP	(Basic	Multilingual	Plane)

The	first	65536	code	points	of	Unicode.	These	contain	most	of	the	ordinary	characters	in	the	modern	world.	See	Also

SMP:	Supplementary	Multilingual	Plane	(0x10000-0x1FFFF)
SIP:	Supplementary	Ideographic	Plane	(0x20000-0x2FFFF)
SSP:	Supplementary	Special-purpose	Plane	(0xE0000-0xEFFFF)

Bold

A	common	font	style.	The	stems	of	the	glyphs	are	wider	than	in	the	normal	font,	giving	the	letters	a	darker	impression.	Bold	is
one	of	the	few	LGC	styles	that	translate	readily	to	other	scripts.

Bowl

The	round	part	of	the	letter.

Bopomofo

A	(modern~1911)	Chinese	(Mandarin)	alphabet	used	to	provide	phonetic	transliteration	of	Han	ideographs	in	dictionaries.

Boustrophedon

Writing	"as	the	ox	plows",	that	is	alternating	between	left	to	right	and	right	to	left	writing	directions.	Early	alphabets	(Old
Canaanite,	and	the	very	early	greek	writings	(and,	surprisingly,	fuþark))	used	this.	Often	the	right	to	left	glyphs	would	be	mirrors
of	the	left	to	right	ones.	As	far	as	I	know,	no	modern	writing	system	uses	this	method	(nor	does	OpenType	have	any	support	for
it).	See	Also	Bidi.

C

Cap-height

The	height	of	a	capital	letter	above	the	baseline	(a	letter	with	a	flat	top	like	"I"	as	opposed	to	one	with	a	curved	one	like	"O").

See	also	X-height,	Ascender,	Descender,	Overshoot,	Baseline

CFF

Compact	Font	Format	most	commonly	used	within	OpenType	postscript	fonts,	but	is	a	valid	font	format	even	without	a	SFNT
wrapper.	This	is	the	native	font	format	for	fonts	with	PostScript	Type2	charstrings.

Character

A	character	is	a	Platonic	ideal	reified	into	at	least	one	glyph.	For	example	the	letter	"s"	is	a	character	which	is	reified	into	several
different	glyphs:	"S",	"s",	"s",	"ß",	long-s,	etc.	Note	that	these	glyphs	can	look	fairly	different	from	each	other,	however	although
the	glyph	for	an	integral	sign	might	be	the	same	as	the	long-s	glyph,	these	are	in	fact	different	characters.

Character	set

Glossary

189

A	character	set	is	an	unordered	set	of	characters.

CID

Character	Identifier,	a	number.	In	some	CJK	PostScript	fonts	the	glyphs	are	not	named	but	are	referred	to	by	a	CID	number.

CID-keyed	font

A	PostScript	font	in	which	the	glyphs	are	indexed	by	CID	and	not	by	name.

CJK

Chinese,	Japanese,	Korean.	These	three	languages	require	fonts	with	a	huge	number	of	glyphs.	All	three	share	a	writing
system	based	on	Chinese	ideographs	(though	they	have	undergone	separate	evolution	in	each	country,	indeed	mainland
Chinese	fonts	are	different	from	those	used	in	Taiwan	and	Hong	Kong).

Japanese	and	Korean	also	have	phonetic	syllabaries.	The	Japanese	have	two	syllabaries,	Hiragana	and	katakana	which	have
about	60	syllables.	The	Koreans	have	one	syllabary,	hangul	with	tens	of	thousands	of	syllables.

CJKV

Chinese,	Japanese,	Korean,	Vietnamese.	These	four	languages	require	fonts	with	a	huge	number	of	glyphs.

Condensed

A	condensed	font	is	one	where	the	space	between	the	stems	of	the	glyphs,	and	the	distance	between	glyphs	themselves	has
been	reduced.

Conflicting	hints

If	a	glyph	contains	two	hints	where	the	start	or	end	point	of	one	is	within	the	range	of	the	other	then	these	hints	conflict.	They
may	not	be	active	simultaneously.

Counter

The	counter	of	a	glyph	is	the	white	part	which	is	either	fully	or	partially	enclosed.	The	o	and	n	both	have	counters.	The	i	and	l	do
not.	The	e	and	both	have	counters.	The	B	has	two	counters.

D

Descender

A	stem	on	a	lower	case	letter	which	extends	below	the	baseline.	"p"	has	a	descender.
See	also	X-height,	Cap-height,	Ascender,	Overshoot,	Baseline

Descent

In	traditional	typography	the	descent	of	a	font	was	the	distance	from	the	bottom	of	a	block	of	type	to	the	baseline.

Its	meaning	in	modern	typography	has	become	less	precise.

Glossary

190

Device	Table

A	concept	in	OpenType	which	allows	you	to	enter	spacing	adjustments	geared	to	rasterization	at	particular	pixel	sizes.	If	a
kerning	value	that	works	most	of	the	time	leads	to	an	ugly	juxtaposition	of	glyphs	on	a	12	pixel	high	font,	then	you	can	add	a
special	tweak	to	the	spacing	that	only	is	applicable	at	12	pixels	(and	another	one	at	14	and	18,	or	whatever	is	needed).	Similar
functionality	is	needed	for	anchored	marks.

Diacritics

Many	languages	use	letters	which	have	marks	above	or	below	them	or	even	crossing	the	letters.	These	marks	are	called
diacritics.	Sometimes	they	are	also	called	"accents"	although	this	is	a	less	precise	term.	Examples	of	these	letters	include	À	à	å
Å	Ü	ü	Ø	ø	Ç	ç.

Didot	point

The	European	point.	62	2/3	points	per	23.566mm	(2.66pt/mm	or	67.55pt/inch).	There	is	also	a	"metric"	didot	point:	.4mm.

Distortable	font

See	Multi-Master

E

em

A	linear	unit	equal	to	the	point	size	of	the	font.	In	a	10	point	font,	the	em	will	be	10	points.	An	em-space	is	white-space	that	is	as
wide	as	the	point	size.	An	em-dash	is	a	horizontal	bar	that	is	as	wide	as	the	point	size.

An	em-square	is	a	square	one	em	to	each	side.	In	traditional	typography	(when	each	letter	was	cast	in	metal)	the	glyph	had	to
be	drawn	within	the	em-square.

em	unit

In	a	scalable	font	the	"em"	is	subdivided	into	units.	In	a	postscript	font	there	are	usually	1000	units	to	the	em.	In	a	TrueType	font
there	might	be	512,	1024	or	2048	units	to	the	em.	In	an	Ikarus	font	there	are	15,000	units.	FontForge	uses	these	units	as	the
basis	of	its	coordinate	system.

en

One	half	of	an	"em"

Encoding

An	encoding	is	a	mapping	from	a	set	of	bytes	onto	a	character	set.	It	is	what	determines	which	byte	sequence	represents	which
character.	The	words	"encoding"	and	"character	set"	are	often	used	synonymously.	The	specification	for	ASCII	specifies	both	a
character	set	and	an	encoding.	But	CJK	character	sets	often	have	multiple	encodings	for	the	character	set	(and	multiple
character	sets	for	some	encodings).

In	more	complicated	cases	it	is	possible	to	have	multiple	glyphs	associated	with	each	character	(as	in	arabic	where	most
characters	have	at	least	4	different	glyphs)	and	the	client	program	must	pick	the	appropriate	glyph	for	the	character	in	the
current	context.

Glossary

191

Eth	—	Edh

The	old	germanic	letter	"ð"	for	the	voiced	(English)	"th"	sound	(the	sound	in	"this"	—	most	English	speakers	aren't	even	aware
that	"th"	in	English	has	two	sounds	associated	with	it,	but	it	does,	see	also	Thorn)

Even-Odd	Fill	rule

To	determine	if	a	pixel	should	be	filled	using	this	rule,	draw	a	line	from	the	pixel	to	infinity	(in	any	direction)	then	count	the
number	of	times	contours	cross	this	line.	If	that	number	is	odd	then	fill	the	point,	if	it	is	even	then	do	not	fill	the	point.	This
method	is	used	for	fonts	by	postscript	rasterizers	after	level	2.0	of	PostScript.	See	Also	Non-Zero	Winding	Number	Fill.

Extended

An	extended	font	is	one	where	the	space	between	the	stems	of	the	glyphs,	and	the	distance	between	glyphs	themselves	has
been	increased.

Extremum	(plural:	Extrema)

An	extremum	is	the	point	on	a	mathematical	curve	where	the	curve	attains	its	maximum	or	minimum	value.	On	a	continuous
curve	this	can	happen	at	the	endpoints	(which	is	dull)	or	where	dx/dt=0	or	dy/dt=0.

In	font	design,	the	extrema	of	a	glyph	are	the	top-most	and	bottom-most	points	of	the	outline,	as	well	as	its	left-most	and	right-
most	points.	Making	sure	that	a	glyph	has	on-curve	points	at	all	of	its	extrema	is	important,	because	it	simplifies	text	rendering
when	the	font	is	used.

F

Features	(OpenType)

When	creating	fonts	for	complex	scripts	(and	even	for	less	complex	scripts)	various	transformations	(like	ligatures)	must	be
applied	to	the	input	glyphs	before	they	are	ready	for	display.	These	transformations	are	identified	as	font	features	and	are
tagged	with	(in	OpenType)	a	4	letter	tag	or	(in	Apple)	a	2	number	identifier.	The	meanings	of	these	features	are	predefined	by
Microsoft	and	Apple.	FontForge	allows	you	to	tag	each	lookup	with	one	or	several	features	when	you	create	it	(or	later).

Feature	File

This	is	a	text	syntax	designed	by	Adobe	to	describe	OpenType	features.	It	can	be	used	to	move	feature	and	lookup	information
from	one	font	to	another.

Feature/Settings	(Apple)

These	are	roughly	equivalent	to	OpenType's	Features	above,	they	are	defined	by	Apple.

Font

A	collection	of	glyphs,	generally	with	at	least	one	glyph	associated	with	each	character	in	the	font's	character	set,	often	with	an
encoding.

A	font	contains	much	of	the	information	needed	to	turn	a	sequence	of	bytes	into	a	set	of	pictures	representing	the	characters
specified	by	those	bytes.

Glossary

192

In	traditional	typesetting	a	font	was	a	collection	of	little	blocks	of	metal	each	with	a	graven	image	of	a	letter	on	it.	Traditionally
there	was	a	different	font	for	each	point-size.

Font	Family,	or	Family

A	collection	of	related	fonts.	Often	including	plain,	italic	and	bold	styles.

FreeType

A	library	for	rasterizing	fonts.	Used	extensively	in	FontForge	to	understand	the	behavior	of	TrueType	fonts	and	to	do	better
rasterization	than	FontForge	could	accomplish	unaided.

Fuþark	(Futhark)

The	old	germanic	runic	script.

G

Ghost	Hint

Sometimes	it	is	important	to	indicate	that	a	horizontal	edge	is	indeed	horizontal.	But	the	edge	has	no	corresponding	edge	with
which	to	make	a	normal	stem.	In	this	case	a	special	hint	is	used	with	a	width	of	-20	(or	-21).	A	ghost	hint	must	lie	entirely	within
a	glyph.	If	it	is	at	the	top	of	a	contour	use	a	width	of	-20,	if	at	the	bottom	use	-21.	Ghost	hints	should	also	lie	within	BlueZones.
(The	spec	also	mentions	vertical	ghost	hints,	but	as	there	are	no	vertical	bluezones	it	is	not	clear	how	these	should	be	used).

Glyph

A	glyph	is	an	image,	often	associated	with	one	or	several	characters.	So	the	glyph	used	to	draw	"f"	is	associated	with	the
character	f,	while	the	glyph	for	the	"fi"	ligature	is	associated	with	both	f	and	i.	In	simple	latin	fonts	the	association	is	often	one	to
one	(there	is	exactly	one	glyph	for	each	character),	while	in	more	complex	fonts	or	scripts	there	may	be	several	glyphs	per
character	(In	renaissance	printing	the	letter	"s"	had	two	glyphs	associated	with	it,	one,	the	long-s,	was	used	initially	and
medially,	the	other,	the	short-s,	was	used	only	at	the	end	of	words).	And	in	the	ligatures	one	glyph	is	associated	with	two	or
more	characters.

Fonts	are	collections	of	glyphs	with	some	form	of	mapping	from	character	to	glyph.

Grid	Fitting

Before	TrueType	glyphs	are	rasterized	they	go	through	a	process	called	grid	fitting	where	a	tiny	program	(associated	with	each
glyph)	is	run	which	moves	the	points	on	the	glyph's	outlines	around	until	they	fit	the	pixel	grid	better.

Gothic

The	German	monks	at	the	time	of	Gutenberg	used	a	black-letter	writing	style,	and	he	copied	their	handwriting	in	his	typefaces
for	printing.	Italian	type	designers	(after	printing	spread	south)	sneered	at	the	style,	preferring	the	type	designs	left	by	the
Romans.	As	a	term	of	contempt	they	used	the	word	gothic,	the	style	of	the	Goths	who	helped	destroy	the	roman	empire.

Graphite	tables

Glossary

193

Graphite	is	an	extension	to	TrueType	which	embeds	several	tables	into	a	font	containing	rules	for	contextual	shaping,	ligatures,
reordering,	split	glyphs,	bidirectionality,	stacking	diacritics,	complex	positioning,	etc.

This	sounds	rather	like	OpenType	—	except	that	OpenType	depends	on	the	text	layout	routines	knowing	a	lot	about	the	glyphs
involved.	This	means	that	OpenType	fonts	cannot	be	designed	for	a	new	language	or	script	without	shipping	a	new	version	of
the	operating	system.	Whereas	Graphite	tables	contain	all	that	hidden	information.

Apple's	Advanced	Typography	provides	a	better	comparison,	but	Graphite	tables	are	supposed	to	be	easier	to	build.

SIL	International	provides	a	free	Graphite	compiler	.

Grotesque

See	also	sans-serif.

H

Han	characters

The	ideographic	characters	used	in	China,	Japan	and	Korea	(and,	I	believe,	in	various	other	asian	countries	as	well
(Vietnam?)),	all	based	on	the	writing	style	that	evolved	in	China.

Hangul

The	Korean	syllabary.	The	only	syllabary	(that	I'm	aware	of	anyway)	based	on	an	alphabet	—	the	letters	of	the	alphabet	never
appear	alone,	but	only	as	groups	of	two	or	three	making	up	a	syllable.

Hanja

The	Korean	name	for	the	Han	characters

Hints

These	are	described	in	detail	in	the	main	manual.	They	help	the	rasterizer	to	draw	a	glyph	well	at	small	pointsizes.

Hint	Masks

At	any	given	point	on	a	contour	hints	may	not	conflict.	However	different	points	in	a	glyph	may	need	conflicting	hints.	So	every
now	and	then	a	contour	will	change	which	hints	are	active.	Each	list	of	active	hints	is	called	a	hint	mask.

Hiragana

One	of	the	two	Japanese	syllabaries.	Both	Hiragana	and	Katakana	have	the	same	sounds.

I

Ideographic	character

A	single	character	which	represents	a	concept	without	spelling	it	out.	Generally	used	to	mean	Han	(Chinese)	characters.

Glossary

194

Italic

A	slanted	style	of	a	font,	often	used	for	emphasis.

Italic	differs	from	Oblique	in	that	the	transformation	from	the	plain	to	the	slanted	form	involves	more	than	just	skewing	the
letterforms.	Generally	the	lower-case	a	changes	to	a,	the	serifs	on	lower-case	letters	like	i	(i)	change,	and	the	font	generally
gains	a	more	flowing	feeling.

J

Jamo

The	letters	of	the	Korean	alphabet.	These	are	almost	never	seen	alone,	generally	appearing	in	groups	of	three	as	part	of	a
Hangul	syllable.	The	Jamo	are	divided	into	three	categories	(with	considerable	overlap	between	the	first	and	third),	the
choseong	—	initial	consonants,	the	jungseong	--	medial	vowels,	and	the	jongseong	--	final	consonants.	A	syllable	is	composed
by	placing	a	choseong	glyph	in	the	upper	left	of	an	em-square,	a	jungseong	in	the	upper	right,	and	optionally	a	jongseong	in	the
lower	portion	of	the	square.

K

Kanji

The	Japanese	name	for	the	Han	characters.

Katakana

One	of	the	two	(modern)	Japanese	syllabaries.	Both	Hiragana	and	Katakana	have	the	same	sounds.

Kerning

When	the	default	spacing	between	two	glyphs	is	inappropriate	the	font	may	include	extra	information	to	indicate	that	when	a
given	glyph	(say	"T")	is	followed	by	another	glyph	(say	"o")	then	the	advance	width	of	the	"T"	should	be	adjusted	by	a	certain
amount	to	make	for	a	more	pleasing	display.

In	the	days	of	metal	type,	metal	actually	had	to	be	shaved	off	the	slug	of	type	to	provide	a	snugger	fit.	For	instance,	the	"F"
would	have	had	some	metal	removed	so	that	a	lower	case	letter	could	snuggle	closer	to	it.

Kern	pair

A	pair	of	glyphs	for	which	kerning	information	has	been	specified.

Kerning	by	classes

The	glyphs	of	the	font	are	divided	into	classes	of	glyphs	and	there	is	a	large	table	which	specifies	kerning	for	every	possible
combination	of	classes.	Generally	this	will	be	smaller	than	the	equivalent	set	of	kerning	pairs	because	each	class	will	usually
contain	several	glyphs.

Knuth,	Donald

Glossary

195

A	mathematician	who	got	so	fed	up	with	bad	typesetting	back	in	the	1970	&	80s	that	he	created	his	own	font	design	system	and
typographical	layout	program	called,	respectively,	MetaFont	and	TeX.

L

Left	side	bearing

The	horizontal	distance	from	a	glyph's	origin	to	its	leftmost	extent.	This	may	be	negative	or	positive.

Lemur

A	monotypic	genus	of	prosimian	primates,	now	found	only	on	Madagascar	but	formally	(about	50	million	years	ago)	members	of
this	family	were	much	more	wide	spread.

Ligature

A	single	glyph	which	is	composed	of	two	adjacent	glyphs.	A	common	example	in	the	latin	script	is	the	"fi"	ligature	which	has	a
nicer	feel	to	it	than	the	sequence.

Linespace

The	distance	between	successive	lines	of	type.

LGC

Latin,	Greek,	Cyrillic.	These	three	alphabets	have	evolved	side	by	side	over	the	last	few	thousand	years.	The	letter	forms	are
very	similar	(and	some	letters	are	shared).	Many	concepts	such	as	"lower	case",	"italic"	are	applicable	to	these	three	alphabets
and	not	to	any	others.	(OK,	Armenian	also	has	lower	case	letters).

M

Manyogana

An	early	Japanese	script,	ancestral	to	both	hiragana	and	katakana.	Manyogana	used	kanji	for	their	phonetic	sounds,	and	over
the	years	these	kanji	were	simplified	into	hiragana	and	katakana.

Monospace

A	font	in	which	all	glyphs	have	the	same	width.	These	are	sometimes	called	typewriter	fonts.

Multi-layered	fonts

(FontForge's	own	term)	PostScript	type3	fonts	and	SVG	fonts	allow	for	more	drawing	possibilities	than	normal	fonts.	Normal
fonts	may	only	be	filled	with	a	single	color	inherited	from	the	graphics	environment.	These	two	fonts	may	be	filled	with	several
different	colors,	be	stroked,	include	images,	have	gradient	fills,	etc..

Multiple	Master	Font

Glossary

196

A	multiple	master	font	is	a	PostScript	font	schema	which	defines	an	infinite	number	of	related	fonts.	Multiple	master	fonts	can
vary	along	several	axes,	for	example	you	might	have	a	multiple	master	which	defined	both	different	weights	and	different	widths
of	a	font	family,	it	could	be	used	to	generate:	Thin,	Normal,	Semi-Bold,	Bold,	Condensed,	Expanded,	Bold-Condensed,	etc.
Adobe	is	no	longer	developing	this	format.	Apple	has	a	format	which	achieves	the	same	effect	but	has	not	produced	many
examples.	FontForge	supports	both.

N

Namelist

A	mapping	from	Unicode	code	point	to	glyph	name.

Non-Zero	Winding	Number	Fill	rule

To	determine	if	a	pixel	should	be	filled	using	this	rule	draw	a	line	from	here	to	infinity	(in	any	direction)	and	count	the	number	of
times	contours	cross	this	line.	If	the	contour	crosses	the	line	in	a	clockwise	direction	add	1,	if	the	contour	crosses	in	a	counter
clockwise	direction	subtract	one.	If	the	result	is	non-zero	then	fill	the	pixel.	If	it	is	zero	leave	it	blank.	This	method	is	used	for
rasterizing	fonts	by	TrueType	and	older	(before	version	2)	postscript.

See	Also	Even-Odd	Fill	Rule.

O

Ogham

The	old	Celtic	inscription	script.

OpenType

A	type	of	font.	It	is	an	attempt	to	merge	postscript	and	TrueType	fonts	into	one	specification.
An	OpenType	font	may	contain	either	a	TrueType	or	a	postscript	font	inside	it.

It	contains	many	of	the	same	data	tables	for	information	like	encodings	that	were	present	in	TrueType	fonts.

Confusingly	it	is	also	used	to	mean	the	advanced	typographic	tables	that	Adobe	and	Microsoft	(but	not	Apple)	have	added	to
TrueType.	These	include	things	like	contextual	ligatures,	contextual	kerning,	glyph	substitution,	etc.

And	MS	Windows	uses	it	to	mean	a	font	with	a	'DSIG'	(Digital	Signature)	table.

OpenType	Tables

Each	OpenType	font	contains	a	collection	of	tables	each	of	which	contains	a	certain	kind	of	information.

Oblique

A	slanted	style	of	a	font,	generally	used	for	emphasis.

Oblique	differs	from	Italic	in	that	the	transformation	from	the	plain	to	the	slanted	form	involves	a	mathematical	or	mechanical
skewing	the	letterforms.

Overshoot

Glossary

197

In	order	for	the	curved	shape	of	the	"O"	to	appear	to	be	the	same	height	as	the	flat	top	of	the	"I"	it	tends	to	"overshoot"	the	cap-
height	(or	x-height),	or	undershoot	the	baseline	by	about	3%	of	the	cap-height	(or	x-height).	For	a	triangular	shape	(such	as	"A")
the	overshoot	is	even	greater,	perhaps	5%.

These	guidelines	are	based	on	the	way	the	eye	works	and	the	optical	illusions	it	generates	and	are	taken	from	Peter	Karow's
Digital	Formats	for	Typefaces,	p.	26).

The	overshoot	is	also	dependent	on	the	point-size	of	a	font,	the	larger	the	point-size	the	smaller	the	overshoot	should	be.
Generally	modern	fonts	will	be	used	at	multiple	point-sizes,	but	in	some	font	families	there	are	multiple	faces	for	the	different
point-sizes,	and	in	such	a	case	the	overshoot	will	probably	vary	from	face	to	face.

See	also	X-height,	Cap-height,	Ascender,	Descender,	Baseline

P

Panose

A	system	for	describing	fonts.	See	Panose	Font	Classification	System	Metrics	Guide.	There	is	also	an	extension	called	Panose
2.0.

FontForge	only	knows	about	the	classification	scheme	for	Latin	fonts.	Other	schemes	exist	for	other	scripts.

PfaEdit

This	was	the	early	name	for	FontForge.	The	original	conception	was	that	it	would	only	edit	type1	ASCII	fonts	(hence	the	name),
it	quickly	metamorphosed	beyond	that	point,	but	it	took	me	three	years	to	rename	it.

Phantom	points

In	a	TrueType	font	there	are	a	few	points	added	to	each	glyph	which	are	not	specified	by	the	contours	that	make	up	the	glyph.
These	are	called	phantom	points.	One	of	these	points	represents	the	left	side	bearing,	and	the	other	the	advance	width	of	the
glyph.	TrueType	instructions	(hints)	are	allowed	to	move	these	points	around	just	as	any	other	points	may	be	moved	—	thus
changing	the	left-side-bearing	or	the	advance	width.	Early	versions	of	TrueType	supplied	just	these	two	phantoms,	more	recent
versions	also	supply	a	phantom	for	the	top	sidebearing	and	a	phantom	for	the	vertical	advance	width.

Pica

A	unit	of	length	defined	(in	the	US	at	least)	to	be	35/83cm	(or	approximately	1/6th	of	an	inch).	This	was	used	for	measuring	the
length	of	lines	of	text	(as	"30	picas	and	4	points	long"),	but	not	for	measuring	font	heights.

In	Renaissance	typography,	before	there	were	points,	sizes	of	type	had	names,	and	"pica"	was	used	in	this	context.	As:	"Great
Canon",	"Double	Pica",	"Great	Primer",	"English",	"Pica",	"Primer",	"Small	Pica",	"Brevier",	"Nonpareil"	and	"Pearl"	(each	name
representing	a	progressively	smaller	size	of	type)	and	see	Caslon's	type	specimen	sheet	on	Wikipedia.

Pica	point

The	Anglo-American	point.	With	72.27	points	per	inch	(2.85pt	/mm).

Point

Glossary

198

http://monotype.de/services/pan1
http://www.w3.org/Fonts/Panose/pan2.html
https://en.wikipedia.org/wiki/Alphabet#/media/File:A_Specimen_by_William_Caslon.jpg

A	point	is	a	unit	of	measurement.	There	were	three	(at	least)	different	definitions	for	"point"	in	common	usage	before	the	advent
of	computers.	The	one	in	use	in	the	Anglo-Saxon	printing	world	was	the	"pica	point"	with	72.27	points	per	inch	(2.85pt	/mm),
while	the	one	used	in	continental	Europe	was	the	didot	point	with	62	2/3	points	per	23.566mm	(2.66pt/mm	or	67.54pt/inch)	and
the	French	sometimes	used	the	Median	point	(72.78	points	per	inch,	2.86pt/mm).

The	didot	and	pica	points	were	so	arranged	that	text	at	a	given	point-size	would	have	approximately	the	same	cap-height	in
both	systems,	the	didot	point	would	have	extra	white-space	above	the	capitals	to	contain	the	accents	present	in	most	non-
English	Latin	based	scripts.

This	has	the	interesting	side	effect	that	a	font	designed	for	European	usage	should	have	a	smaller	proportion	of	the	vertical	em
given	over	to	the	text	body.	I	believe	that	computer	fonts	tend	to	ignore	this,	so	presumably	European	printers	now	set	with
more	leading.

As	far	as	I	can	tell,	computers	tend	to	work	in	approximations	to	pica	points	(but	this	may	be	because	I	am	in	the	US),
PostScript	uses	a	unit	of	1/72nd	of	an	inch.

Originally	fonts	were	not	described	by	point	size,	but	by	name.	It	was	not	until	the	1730s	that	Pierre	Fournier	that	created	the
point	system	for	specifying	font	heights.	This	was	later	improved	upon	by	François-Ambroise	Didot	(hence	the	name	of	the
point).	In	1878	the	Chicago	Type	Foundry	first	used	a	point	system	in	the	US.	In	1886	the	US	point	was	standardized	—	the
pica	was	defined	to	be	35/83cm,	and	the	pica	point	defined	to	be	1/12th	of	that.

Point	Size

In	traditional	typography	a	10pt	font	was	one	where	the	block	of	metal	for	each	glyph	was	10	points	high.	The	point	size	of	a
font	is	the	unleaded	baseline	to	baseline	distance.

Point	of	inflection

A	point	on	a	curve	where	it	changes	from	being	concave	downwards	to	concave	upwards	(or	vice	versa).	Or	in	mathematical
terms	(for	continuous	curves)	where	d²y/dx²=0	or	infinity.
Cubic	splines	may	contain	inflection	points,	quadratic	splines	may	not.

PostScript

PostScript	is	a	page-layout	language	used	by	many	printers.	The	language	contains	the	specifications	of	several	different	font
formats.	The	main	(FontForge)	manual	has	a	section	describing	how	PostScript	differs	from	TrueType.

Type	1:	This	is	the	old	standard	for	PostScript	fonts.	Such	a	font	generally	has	the	extension	.pfb	(or	.pfa).	A	type	1	font	is
limited	to	a	one	byte	encoding	(i.e.	only	256	glyphs	may	be	encoded).
Type	2/CFF:	This	is	the	format	used	within	OpenType	fonts.	It	is	almost	the	same	as	Type	1,	but	has	a	few	extensions	and
a	more	compact	format.	It	is	usually	inside	a	CFF	wrapper,	which	is	usually	inside	an	OpenType	font.	The	CFF	font	format
again	only	allows	a	1	byte	encoding,	but	the	OpenType	wrapper	extends	this	to	provide	more	complex	encoding	types.
Type	3:	This	format	allows	full	postscript	within	the	font,	but	it	means	that	no	hints	are	allowed,	so	these	fonts	will	not	look
as	nice	at	small	point-sizes.	Also	most	(screen)	rasterizers	are	incapable	of	dealing	with	them.	A	type	3	font	is	limited	to	a
one	byte	encoding	(i.e.	only	256	glyphs	may	be	encoded).
Type	0:	This	format	is	used	for	collecting	many	sub-fonts	(of	Type	1,	2	or	3)	into	one	big	font	with	a	multi-byte	encoding,
and	was	used	for	CJK	or	Unicode	fonts.
Type	42:	A	TrueType	font	wrapped	up	in	PostScript.	Sort	of	the	opposite	from	OpenType.
CID:	This	format	is	used	for	CJK	fonts	with	large	numbers	of	glyphs.	The	glyphs	themselves	are	specified	either	as	type1	or
type2	glyph	format.	The	CID	font	itself	has	no	encoding,	just	a	mapping	from	CID	(a	number)	to	glyph.	An	set	of	external
CMAP	files	are	used	to	provide	appropriate	encodings	as	needed.

Glossary

199

Python

A	computer	programming	language	that	emphasizes	code	readability.

R

Reference

A	reference	is	a	way	of	storing	the	outlines	of	one	glyph	in	another	(for	example	in	accented	glyphs).	Sometimes	called	a
component.

Right	side	bearing

The	horizontal	distance	from	a	glyph's	rightmost	extent	to	the	glyph's	advance	width.	This	may	be	positive	or	negative.

S

Sans	Serif

See	Serif.

Script

A	script	is	a	character	set	and	associated	rules	for	putting	characters	together.	Latin,	arabic,	katakana	and	hanja	are	all	scripts.

Serif

Back	two	thousand	years	ago	when	the	Romans	were	carving	their	letters	on	stone	monuments,	they	discovered	that	they
could	reduce	the	chance	of	the	stone	cracking	by	adding	fine	lines	at	the	terminations	of	the	main	stems	of	a	glyph.

These	fine	lines	were	called	serifs,	and	came	to	have	an	aesthetic	appeal	of	their	own.	Early	type	designers	added	them	to	their
fonts	for	aesthetic	rather	than	functional	reasons.

At	the	end	of	the	nineteenth	and	beginning	of	the	twentieth	centuries,	type-designers	started	designing	fonts	without	serifs.
These	were	initially	called	grotesques	because	their	form	appeared	so	strange,	they	are	now	generally	called	sans-serif.

Other	writing	systems	(Hebrew	for	one)	have	their	own	serifs.	Hebrew	serifs	are	rather	different	from	latin	(cyrillic,	greek)	serifs
and	I	don't	know	their	history.	Hebrew	serifs	only	occur	at	the	top	of	a	glyph.

SFD

SplineFont	Database.	These	are	FontForge's	own	personal	font	representation.	The	files	are	ASCII	and	vaguely	readable,	the
format	is	described	here.	As	of	14	May	2008	the	format	has	been	registered	with	IANA	for	a	MIME	type:	application/vnd.font-
fontforge-sfd.
Other	people	use	the	acronym	'sfd'	too.	(Unfortunately)

Tops-10,	on	the	Digital	PDP-10	used	sfd	to	mean	"Sub	File	Directory".	Tops-10	made	a	distinction	between	top-level
(home)	directories,	called	"user	file	directories",	and	sub-directories.
TeX	uses	it	to	mean	"Sub	Font	Definition"	where	a	TeX	sfd	file	contains	information	on	how	to	break	a	big	CJK	or	Unicode
font	up	into	small	sub-fonts,	each	with	a	1	byte	encoding	which	TeX	(or	older	versions	of	TeX)	needed.

Glossary

200

SFNT

The	name	for	the	generic	font	format	which	contains	TrueType,	OpenType,	Apple's	bitmap	only,	X11's	bitmap	only,	obsolete
'typ1'	fonts	and	Adobe's	SING	fonts	(and	no	doubt	others).	The	SFNT	format	describes	how	font	tables	should	be	laid	out	within
a	file.	Each	of	the	above	formats	follow	this	general	idea	but	include	more	specific	requirements	(such	as	what	tables	are
needed,	and	the	format	of	each	table).

SIP

Supplementary	Ideographic	Plane	(0x20000-0x2FFFF)	of	Unicode.	Used	for	rare	Han	characters	(most	are	no	longer	in
common	use)	See	Also

BMP:	Basic	Multilingual	Plane	(0x00000-0x0FFFF)
SMP:	Supplementary	Multilingual	Plane	(0x10000-0x1FFFF)
SSP:	Supplementary	Special-purpose	Plane	(0xE0000-0xEFFFF)

SMP

Supplementary	Multilingual	Plane	(0x10000-0x1FFFF)	of	Unicode.	Used	for	ancient	and	artificial	alphabets	and	syllabaries	—
like	Linear	B,	Gothic,	and	Shavian.	See	Also

BMP:	Basic	Multilingual	Plane	(0x00000-0x0FFFF)
SIP:	Supplementary	Ideographic	Plane	(0x20000-0x2FFFF)
SSP:	Supplementary	Special-purpose	Plane	(0xE0000-0xEFFFF)

Spline

A	curved	line	segment.	The	splines	used	in	FontForge	are	all	second	or	third	order	Bézier	splines	(quadratic	or	cubic),	and
Raph	Levien's	clothoid	splines.

SSP

Supplementary	Special-purpose	Plane	(0xE0000-0xEFFFF)	of	Unicode.	Not	used	for	much	of	anything.	See	Also

BMP:	Basic	Multilingual	Plane	(0x00000-0x0FFFF)
SMP:	Supplementary	Multilingual	Plane	(0x10000-0x1FFFF)
SIP:	Supplementary	Ideographic	Plane	(0x20000-0x2FFFF)

State	machine

A	state	machine	is	like	a	very	simple	little	program,	they	are	used	on	the	mac	for	performing	contextual	substitutions	and
kerning.	The	state	machine	dialog	is	reachable	from	Element->Font	Info->Lookups.

The	"state	machine"	consists	of	a	table	of	states,	each	state	in	turn	consists	of	a	series	of	potential	transitions	(to	the	same	or
different	states)	depending	on	the	input.	In	state	machines	within	fonts,	the	machine	starts	out	in	a	special	state	called	the	start
state,	and	reads	the	glyph	stream	of	the	text.	Each	individual	glyph	will	cause	a	state	transition	to	occur.	As	these	transitions
occur	the	machine	may	also	specify	changes	to	the	glyph	stream	(conditional	substitutions	or	kerning).

Stem

A	stem	is	the	part	of	the	letter	which	is	vertical.	The	I	and	l	are	all	stem	except	for	serifs.	The	H	consists	of	two	stems	and	a
crossbar.	Other	glyphs	with	stems	include	B	b	F	f	K	k	P	p	R	r	1	and	4.

Glossary

201

Strike

A	particular	instance	of	a	font.	Most	commonly	a	bitmap	strike	is	a	particular	pixelsize	of	a	font.

Style

There	are	various	conventional	variants	of	a	font.	In	probably	any	writing	system	the	thickness	of	the	stems	of	the	glyphs	may
be	varied,	this	is	called	the	weight	of	a	font.	Common	weights	are	normal	and	bold.

In	LGC	alphabets	an	italic	(or	oblique)	style	has	arisen	and	is	used	for	emphasis.

Fonts	are	often	compressed	into	a	condensed	style,	or	expanded	out	into	an	extended	style.

Various	other	styles	are	in	occasional	use:	underline,	overstrike,	outline,	shadow.

SVG

Scalable	Vector	Graphics.	An	XML	format	used	for	drawing	vector	images.	It	includes	a	font	format.

Syllabary

A	syllabary	is	a	phonetic	writing	system	like	an	alphabet.	Unlike	an	alphabet	the	sound-unit	which	is	written	is	a	syllable	rather
than	a	phoneme.	In	Japanese	KataKana	the	sound	"ka"	is	represented	by	one	glyph.	Syllabaries	tend	to	be	bigger	than
alphabets	(Japanese	Katakana	requires	about	60	different	characters,	while	the	Korean	Hangul	requires	tens	of	thousands).

See	Also:	abjad,	abugida,	alphabet	and	the	relevant	Wikipedia	article.

T

Terminal

The	terminal	of	a	glyph	is	the	part	where	the	stroke	ends.	The	Top	of	the	f	has	a	terminal.	The	s	has	two	terminals.	When	a
glyph	has	serifs	the	serifs	are	considered	different	from	the	terminals.	Because	the	bottom	of	the	f	would	have	a	serif	if	it	is	in	a
serif	style	bottom	is	not	considered	a	terminal.	The	bottom	of	the	j	and	y	are	however	considered	terminals.	Similarly	the	3	has
two	terminals	one	at	the	top	and	one	the	bottom.	The	middle	is	considered	to	be	a	join	rather	than	a	terminal.	The	classification
of	these	parts	is	perhaps	more	determined	by	convention	than	by	a	strict	logic.

TeX

A	typesetting	package.

Thorn

The	germanic	letter	"þ"	used	for	the	unvoiced	(English)	"th"	sound	(as	in	the	word	"thorn"),	I	believe	this	is	approximately	the
same	sound	value	as	Greek	Theta.	Currently	a	corrupt	version	of	this	glyph	survives	as	"ye"	for	"the".	See	also	Eth.

True	Type

A	type	of	font	invented	by	Apple	and	shared	with	Microsoft.	It	specifies	outlines	with	second	degree	(quadratic)	Bézier	curves,
contains	innovative	hinting	controls,	and	an	expandable	series	of	tables	for	containing	whatever	additional	information	is
deemed	important	to	the	font.

Glossary

202

http://en.wikipedia.org/wiki/Syllabary

Apple	and	Adobe/Microsoft	have	expanded	these	tables	in	different	ways	to	include	advanced	typographic	features	needed	for
non-latin	scripts	(or	for	complex	latin	scripts).	See	Apple	Advanced	Typography	and	OpenType.

TrueType	Tables

Each	truetype	font	contains	a	collection	of	tables	each	of	which	contains	a	certain	kind	of	information.

Type	1

A	type	of	PostScript	font.

Type	2

A	type	of	PostScript	font,	used	within	OpenType	font	wrappers.

Type	3

A	very	general	type	of	PostScript	font.

Type	0

A	type	of	PostScript	font.

Type	High

In	the	days	of	metal	type	this	was	the	height	of	the	piece	of	metal	—	the	distance	from	the	printing	surface	to	the	platform	on
which	it	rested.

Typewriter

See	Monospace.

U

Unicode

A	character	set/encoding	which	tries	to	contain	all	the	characters	currently	used	in	the	world,	and	many	historical	ones	as	well.
See	the	Unicode	consortium.

BMP:	Basic	Multilingual	Plane	(0x00000-0x0FFFF)
SMP:	Supplementary	Multilingual	Plane	(0x10000-0x1FFFF)
SIP:	Supplementary	Ideographic	Plane	(0x20000-0x2FFFF)
SSP:	Supplementary	Special-purpose	Plane	(0xE0000-0xEFFFF)	More	info.

Undershoot

See	Overshoot.

UniqueID

Glossary

203

http://www.unicode.org/

This	is	a	field	in	a	PostScript	font,	it	was	formerly	used	as	a	mechanism	for	identifying	fonts	uniquely,	then	Adobe	decided	it	was
not	sufficient	and	created	the	XUID	(extended	Unique	ID)	field.	Adobe	has	now	decided	that	both	are	unneeded.

There	is	a	very	similar	field	in	the	TrueType	'name'	table.

UseMyMetrics

This	is	a	truetype	concept	which	forces	the	width	of	an	composite	glyph	(for	example	an	accented	letter)	to	be	the	same	as	the
width	of	one	of	its	components	(for	example	the	base	letter	being	accented).

V

Vertical	Advance	Width

CJK	text	is	often	written	vertically	(and	sometimes	horizontally),	so	each	CJK	glyph	has	a	vertical	advance	as	well	as	a
horizontal	advance.

W

Weight

The	weight	of	a	font	is	how	thick	(dark)	the	stems	of	the	glyphs	are.	Traditionally	weight	is	named,	but	recently	numbers	have
been	applied	to	weights.

Name Number

Thin 100

Extra-Light 200

Light 300

Normal 400

Medium 500

Demi-Bold 600

Bold 700

Heavy 800

Black 900

Nord

Ultra

White	space

The	white	space	of	the	type	design	includes	the	space	between	lines	of	text,	the	space	between	the	letters,	the	word	space	and
the	spaces	inside	the	letters.	It	is	a	broad	and	encompassing	term.

Width

Glossary

204

This	is	a	slightly	ambiguous	term	and	is	sometimes	used	to	mean	the	advance	width	(the	distance	from	the	start	of	this	glyph	to
the	start	of	the	next	glyph),	and	sometimes	used	to	mean	the	distance	from	the	left	side	bearing	to	the	right	side	bearing.

X

X-height

The	height	of	a	lower	case	letter	above	the	base	line	(with	a	flat	top	like	"x"	or	"z"	or	"v"	as	opposed	to	one	with	a	curved	top	like
"o"	or	one	with	an	ascender	like	"l")	.

See	also	Cap-height,	Ascender,	Descender,	Overshoot,	Baseline.

XUID

Extended	Unique	ID	in	a	PostScript	font.	Now	somewhat	obsolete.	See	Unique	ID.

Glossary

205

	Introduction
	What Is a Font
	Trusting Your Eyes
	Planning Your Project
	The EM Square
	Installing Fontforge
	Configuring Fontforge
	General UI introduction
	Using the Fontforge Drawing Tools
	Drawing With Spiro
	Creating “o” and “n”
	Font Info & Metadata
	Word Space
	Creating Your Type DNA
	Capital Letters
	Line Spacing
	Punctuation and Symbols
	Completeing the Lower Case
	Diacritics and Accents
	Numerals
	Bold and Other Weights
	Italic
	Spacing, Metrics and Kerning
	Making Sure Your Font Works, Validation
	The Final Output Generating Font Files
	When Things Go Wrong With Fontforge Itself
	Designing Devanagari Typefaces
	Importing Glyphs from Other Programs
	Adding Glyphs to an Arabic Font
	Further Reading
	Glossary

