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PRKKACB

This book has been written not to expound anything new

but to provide a convenient and useful class manual. It

seeks to give first discipline and second useful knowledge.

This discipline should consist first in training to think, and

second in training to express thought.

This training to think will consist mainly in training to

form clear, precise, and correct mathematical concep-

tions and to form trains of deductive reasoning constructed

with perfect logical soundness and cogency. Hence the

student should be frequently required to give clear, precise,

and correct definitions of the terms he is using, to show every

point, line and angle discussed in a neat clear and correct

figure and to translate his final equation into ordinary lan-

guage until at last each letter and symbol in it shall at once,

and clearly, express to him the magnitude or the operation for

which it stands. He should also be required to state clearly

and correctly each step in the argument, to state it in its log-

ical order and to fortify each step by quoting the proof for

it ; so that when he reaches his final equation he shall feel

that it must necessarily be true. Hence an attempt has been

made in this book to cast the demonstrations as lar as possible

in the form of those given in elementary geometry.

In explaining his work at the blackboard, the student

should be required first to state his theorem in the best

language he can command, then to illustrate its meaning by

applying it to the figure, then to give his demonstration with

all logical rigor and clearness of language, and finally to

draw his conclusion correctly ; doing all this in the spirit of
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one who feels that he has something important which he

wishes to persuade his hearers is true.

Originality and skill in the art of manipulating the sym-

bols and in applying the methods of Analytic Geometry

will come from the solution of a large number of well-selected

examples.

In the making of this manual, Mr. James G. Hardy has

helped me very much by judicious and scholarly criticism and

suggestion.

Joseph J. Hardy.
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ERRATA
Page 16, line 8, for "of a" read "of the."

Page 18, Fig. 9, YOY' should be drawn through the left hand inter-

section of the curve and X'X.
Page 25, line 2, for "curves" read "loci."

Page 113, lines 16, 17, 19, for "=" read "=."

Page 117, line 11, for "opposite" read "same."

Page 117, line 12, for "from" read "as."

Page 122, line 2, for "+«2 s^^s ^/ _^^2 ^os 6*0 " read "+(^2 gj^a ^/_|_

Page 238, line 2, for "§ 15" read "[15]."

Page 261, line 15, for ''riB'^ix -\ j
" read "2^^

(
^ H j."

Page 339, lines 16, 17, for "= " read "^."

Page 345, line 10, for "—-" read "—^2'^."

Page 359, line 22, for "ADEA'GH" read "ADEA'GH, Fig. 163."

NoTiCK.

—

The references to geometry and trigonometry will be found

in the appendix, page 361.
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CHAPTER I

Constants and Voriablcs

Fig. I

I. In Fig. I let the point P move continually along the cir-

cumference of the circle. Then the sine PK, the cosine PH,
and the tangent SO will change their values continually and

may be made to take an infinite number of different values

in consequence of this change in the position of the point P.

The radius CP, however, will always retain the same value

throughout the operation of this change in the position of the

point P.

Hence we call the sine PK, the cosine PH, and the tangent

SO variables, but we call the radius CP a constant.

N P'

Fig. 2
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PK
2. In Fig. 2 the tangent of the angle POK is which

we will represent by t.

Now let the point P move continually along the line MN.
Then PK andOK will change their values continually, and may
be made to take an infinite number of different values in con-

sequence of this change in the position of the point P. The
tangent /, however, will always retain the same value during

the operation of this change in the position of the point P, be-

cause its angle POK does not change.

Hence we call PK and OK variables, but we call / a con-

stant.

Fig-- 3

3- In Fig. 3 let F' and F represent two fixed pins, to which

the ends of an inelastic thread are fastened. At P letapencil

be pressed against the thread. Let the point of the pencil be

moved continually so as always to keep the thread stretched.

The pencil will then trace out a curved line like APBDA.
Let the length of the thread F'P+ PF be represented by /,

the angle PF'F by a, and the angle PFF' by b.

Then F'P, FP and the angles a and b will change their

values continually, and may be made to take an infinite num-
ber of different values in conseouence of this chansre in the

position of the point P, but /, the length of the broken line

F'PF, and the length of F'F always retain the same value dur-

ing the operation of this change in the position of the point P.

We call F'P, FP, a and b va7dables, but we call / and F'F

constants.
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4. A Constant.—A constant quantity is one that always re-

tains the same value throughout the operation of a given

change.

5. A Variable.—A variable quantity is one that may be

made to take an infinite number of different values in conse-

quence of the operation of a given change.

6. The Change,—In analytic geometry the change which

affects the values of the quantities investigated is generally

the motion of a point along a given line or surface.

CHAPTER II

Location of Points in a Plane

7. The position of a point in a plane may be indicated by

means of its distances from any two fixed intersecting straight

lines in the plane, these distances being measured parallel to

the fixed lines.

X'

Y

H
P

K

Y'

X

Fig. 4

Thus, if YY' and XX' are any two fixed intersecting

straight lines in the plane YOX, we may indicate the posi-

tion of the point P in that plane by giving its distance HP
from the line YY', measured parallel to XX', and its distance

KP from the line XX', measured parallel to YY'.
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For convenience we will let the line XX' be horizontal.

8. The Coordinate Axes.—The fixed intersecting lines

YY' and XX' are called the axes of coordinates.

9. The Axes of Abscissas and Ordinates.—The hori-

zontal axis is called the X axis, or the axis of abscissas ; the

other axis is called the Y axis, or the axis of ordinates.

10. The Origin.—The point where the axes intersect each

other is called the origin.

11. Names of the Angles.—The four angles which the

axes make with each other are called the first, second, third

2Mdi fourth angles.

They^r^-/ angle is the one above the X axis and to the

right of the Y axis.

The second angle is the one above the X axis and to the

left of the Y axis.

The third angle is the one below the X axis and to the

left of the Y axis.

Th^ fourth angle is the one below the X axis and to the

right of the Y axis.

12. The Coordinates.—The distances of any point from the

axes, measured parallel to the axes, are called the coordinates

of the point.

13. The Abscissa.—That coordinate of a point which is

parallel to the X axis is called the abscissa of the point.

14. The Ordinate.—That coordinate of a point which is

parallel to the Y axis is called the ordinate of the point.

Thus in Fig. 4, PH is the abscissa of the point P.

Since PH = OK, OK is often called the abscissa of P.

PK is the ordinate of the point P.

15. An abscissa is considered positive when it extends from

the Y axis towards the right, and negative when it extends

from the Y axis towards the left.

16. An ordinate is considered positive when it extends from

the X axis upwards, and negative when it extends from the

X axis downwards.
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17. In giving the coordinates of a point we name the ab-

.scissa of the point first.

Thus when we say that the coordinates of a point are

—3> 5> we mean that its abscissa is —3, and its ordinate is 5.

Y

P

X'-

Y'
Fig. 5

18. To locate this point in the plane YOX, we take an}^

convenient length, as a quarter of an inch, for our unit of

length, and measure off, as in Fig. 5, 3 such units along the

X axis from the origin towards the left, since the abscissa is

—3, and from the point thus reached measure off 5 units from

the X axis parallel to the Y axis and upwards, since the ordi-

nate is 5. Hence P is the point whose coordinates are—3, 5.

ig. Again, to locate the point w^hose coordinates are 4, —6,

we measure off 4 units along the X axis from the origin to the

right, since the abscissa is positive, and from the point thus

reached measure off 6 units parallel to the X axis and down-

ward, since the ordinate is negative. Hence R is the point

whose coordinates are 4, —6.

20. Similarly locate in the plane YOX the following points :

The point whose coordinates are 4., 6.

2

3

4

5

6

7

3, —5.

b, 2.

7. 4-

0, 5-

4, 0.

0, 0.
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What are the signs of the coordinates of a point in the

third angle? of one in the first angle? of one in the second

angle ? of one in the fourth angle ?

CHAPTER III

The Construction of Loci

21. By means of an equation we can often locate one or

more series of points which together form a geometrical line

or figure.

KXAMPi^K I

Take the equation x^ -\-y^ = 25.

[i] x'+y' = 25,

[2]

[3]

Then

And
y — 2s—x''

y = ±l/2S X'

Now in [3] let x^o, i, 2, 3, etc., successively, and find

the corresponding values of y. Then let jr= — i, —2, —3,

etc., and find the corresponding values of y.

We will get

[I]

[2]

[3]

[4]

[5]

[6]

[7]

J^==t 5

y — ^^
r = ± 3

j= o

y=^V~- II

when X

X

X

X

X

X

X

o,

I,

2,

3,

4,

5,

6.

It isWe see from [7] that y is imaginary when ;r= 6,

also imaginary for all values of x greater than 6.

Now substituting the negative values of x in [3] we get
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[8] J' = ± 4-8 when X ^^ — i,

[9] r = ±4-5 " X— 2,

[10] J>' = ±4 " -^= 3>

[11] ^' = ± 3 " ^ = —4,

[.2] _j' = d= " -^ — — 5,

[13] ^ = ± l/--II " jr = — 6.

We see from [13] thatjF is imaginary when;i; = —6, and

that it is also imaginary for all values of x which are nega-

tive and whose absolute values are greater than 6.

Now taking the first set of values of x andjK, namely, x=ro

andy^dzS, we can locate, by the method given in Sec-

tions 18 and 19, two points on the axis of ordinates, one 5

units above the axis of abscissas, and the other 5 units below

it. Thus we get the two points A and B of Fig. 6.

X'

1

1 ^^ '—

Y

A
n
1

E

G

R/ • Co \ 1

\

\
T(

\

K
-5 -4

\

-3

\

—2 —I I 2 3 4

/

5

Ks 1 B 1 )

F

Y'

Fiof. 6

Taking the second set of values, namel}^ ;f = i andj' =
±4.8, we can locate two more points C and D of Fig. 6.

Taking the third set of values, namely, jt = 2 and,;^ =- ±4.5,
we can locate two more points E and F of Fig. 6.
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Similarly,

the 4th set of values gives us the points G and H,
" 5th " " " " " '' '' I and J,

" 6th '' " *' " " " point K.

The 7th set of values, namely, ;ir=6 and j/ rz: ^ |/—n,
shows that it is impossible to locate, by means of this equa-

tion, any point whose abscissa shall be —6.

Moreover, since jf is imaginary for all values of x greater

than 6, it is impossible, by this equation, to locate any real

point to the right of K.

Again,

by the 8th set of values we can locate the points L and M,
" " 9th " " " '' '' " " " NandO,

loth " " " " " '' " " P and Q,

nth " " " " " " '* " Rand S,

i2th " '* " " " " " point T.

( t (

(

( ( (

(

( < t <

The 13th set, namely, x =^6 andj|/=zhi/—n, shows that

it is impossible, by means of this equation, to locate any point

whose abscissa is —6.

Since y is imaginary for all negative values of x whose

absolute values are greater than 6, it is impossible, b}^ means

of this equation, to locate any point to the left of T.

By joining all the points located in this way we get the cir-

cle AKBT.
It is obvious, that if, in addition to the values of x used above,

we take fractional values between them as o.i, 0.2, 0.3, etc.
;

I.I, 1.2, 1.3, etc.; 2.1, 2.2, 2.3, etc.; points may be located

as near to each other as we please, and the line AKBT can be

made as nearly continuous as we please.

EXAMPLK 2

Take the equation xy = 10.

[i] xy— 10,

r -I
^°

[2] J=-.
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If in [2] we let ;i; = o, i, 2, 3, etc., and find the correspond-

ing values of y, we get

[I] y r= 00 v\"hen ;<; = 0,

[2] jK = 10 " r = I,

[3] y— 5
'' ^=2,

[4] 7= 3i " -^=3,

[5] >= 4 " -^ = 4,

[6J _y = 2 " -^ = 5,

[7] J^= l| '•
:r = 6,

[8] J^= if " x=7,

[9] y^ i\ "
Jt; = 8,

[to] y^ 4 " ^ = 9,

["] y— I " ;r := 10.

If we let X r= I, 2, 3, etc., we get

[12] jj/ = — 10 when X =^ — i,

[13] JJ^= — 5
" X— 2,

[14] y = — z\ " x — — ^.

[15] y— 2^ " ^= 4,

[16] jj/= 2 " ^= 5,

[17] j^= if " X ^^ — 6,

[18] j = - If " X— 7,

[19] y—— li " ^ = — 8,

[20] >^= 4 " •^= 9i

[21] j= — I "
;i; := — 10

Now, from the second set of values, namely, xz=^\, and

jj/=3 10, by the method given in Sections 18 and 19, we locate

the point A in Fig. 7.

By the third set, x^o. and jj^ = 5, we locate the point B.

By the fourth set, .^t^ = 3 and_y = 3^, we locate the point C.

By the fifth set we locate the point D.

By the sixth set we locate the point E.

Similarly, the remaining sets of positive values enable us
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Y

X''

c\

Fig. 7

to locate points to the right of the axis of ordinates and above

the axis of abscissas.

By joining these points we get the line ABCDE.
In the same way the 12th, 13th, 14th, etc. sets of values

enable us to locate points to the left of the axis of abscissas

and below the axis of ordinates.

Joining these points we get the line A'B'C.

It is obvious, that if, in addition to the values of x used

above, w^e take fractional values between them aso.i, 0.2,

0.3, etc., and i.i, 1.2, 1.3, etc., we can locate points as near

to each other as we please, and so make each of the lines

ABCDE and A'B'C as nearly continuous as we please.

The first set of values indicates that the point whose co-

ordinates are ;t:=o, and jj/= oo, is on the axis of ordi-

nates at an infinite distance above the axis of abscissas.

Hence the line EDCBA continually approaches the Y axis,

can be made to approach as near to it as we please, but can

never touch it.

If in [2] we make ;r 1= co
, we get jj/ = o. This set of

values, indicates that the point whose coordinates are

^=00 andjj/ = o is on the axis of abscissas at an infinite

distance to the right of the axis of ordinates. Hence

the line EDCBA continually approaches the X axis in the

same way as it approaches the Y axis.
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Show that A'B'C approaches the axes in the same way.

KXAMPLK 3

Take the equation i^y^— 9;^':=— 144.

[i]

r2]

[3]

[43

16/
1}— gx' = I44>

i6y 2= gx — 144,

f — 9 ^2 _— 16-^ -9,

y ^l/xe-^' — 9.

Now, in [4], if we let ;f = o, i, 2, 3, etc., and find the

corresponding values of jj/, we get

[i]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J = ± v-_

^ = ±1/-

^ = ±1/:

y ^ o

y = ± 2i

JJ/=:dz3.3

j/ = zb4-3

J = d= 6

;
7

'l"S"

31

5

when X ^o,
jf = I,

X ^ 2,

X— Z,

^ = 4,

X— 5,

;c = 6,

Ji:= 8.

If in [4] we let x = — i, —2, —3, etc., and find the cor-

responding values of jK, we get

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

y = ±i/-8tV when X — I,

y = ±:i/-6| ^ — 2,

y = ±V—3ii -^— 3,

J/ = X — 4,

r = d= 2i ^— 5,

>' = :t 3.3 X = —6,

y = ±: 4.3 ^_ 7,

y^^ 5.2 ;r = —8.
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Y

Fig. 8

The first four sets of values show that for this equation y
is imaginary when jr ^ o, i, 2, or 3, and hence it is impossi-

ble, by means of this equation, to locate any real point whose
abscissa shall be o, i, 2, or 3.

The fifth set of values, namely x^ 4. and j^ = o, enables us

to indicate the point A on the axis of abscissas to the right of

the axis of ordinates.

The 6th set of values locates the points B and C,

" 7th " " '* ** '' " Band K,

" 8th '' " " '* " " Fand G,

" 9th " " " " ** " H and I.

It is obvious that every set- of values of x greater than 8

will give two values of jk, which will be equal, but which will

have opposite signs, and hence that we may locate points

farther and farther to the right.

Joining the points located we get the line HDAEG.
The loth, nth, and 12th sets of value show that for this

equation y is imaginary when jr= — i, —2, or—3, and hence

that it is impossible, by means of this equation, to locate any

real points whose abscissas are — i, —2, or —3.

The 13th set locates the point K on the axis of abscissas to

the left of the axis of ordinates.
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The 14th set locates the points L and M.

Similarly each of the other sets enables us to locate two
points to the left of the axis of ordinates, and at equal dis-

tances above and below the axis of abscissas.

It is obvious that every negative value of x' whose absolute

value is greater than 8, will give us two values of y, which
will be equal, but which will have opposite signs, and hence

that we may locate points farther and farther to the left.

Joining the points located we get the line PI^KOQ.

It is obvious, that if, in addition to the values of y used

above, we use the fractional values between them, we can

locate points as near .to each other as we please, and so make
each of the lines HDAEG and PLKOQ as nearly continuous

as we please.

Draw the lines represented by the following equations

:

[4] 2>y— ^x— o,

[5] 3/ + 4-^ = o»

.
[6] 4/ = 3-^'>

[7] loy = x^ — X — 20,

[8] y - x\

. [9] y — X —\x\
[10] y'^ = \ox,

[11] i6y^ + 9Jt:' — 1441=0,

[12] i6jj/' — 9Jt:' -|- 144 = o.

In the next three examples substitute the values of x before

expanding the right hand members.

[13] y = C-^— 2) (-r— 7)-,

[14] y = (-^— 3) (-^— 7) (-^— 11),

[15] /= (-^— 3) (-^—7) (^— II) (^— 13)-

22. It is obvious from the method by which the points were

located in the line obtained by means of the equation of Ex-
ample I, that all points on the line AGKHBQTP, in Fig.

6, are fixed in position by one and the same law, namely,

that the square of the abscissa plus the square of the ordinate
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is always equal to 25. For if in each of the sets of values of x
and J/ taken to locate the points, we square the value of ;rand

also of jK, and add them, we will always get 25.

23. The line AGKHBQTP is called the locus of the equa-

tion x^-|-jj/^= 25.

24. It is also obvious from the method by which the points

were located in the lines ABC and A'B'C of Fig. 7, obtained

by means of the equation of Example 2, that all the points

on those lines are fixed in position by one and the same law,

namely, that the abscissa, multiplied by the ordinate, is

always equal to 10. For if in each of the sets of values of x
andjj/, taken to locate those points, we multiply the value of

X by that of jk, we get 10.

25. The lines ABC and A'B'C together are called the locus

of the equation ;rj/ = 10.

26. Similarly it may be shown that all the points on the

lines HAI and PKQ of Fig. 8, obtained by means of the

equation of Example 3, are fixed in position by one and the

same law, namely, that 16 times the square of the ordinate

minus 9 times the square of the abscissa is always equal to

— 144.

27. The lines HAI and PKQ together are called the loctis

of the equation i6y'^— gx' = — 144.

EXERCISK

28. Give the law according to which the points are fixed

in position in each of the lines obtained by means of each of

the equations given above, namely, equations 4, 5, 6, 7, etc.

Hence we may define a locus as follows :

29. A Locus.—A locus is the whole assemblage ofpoints , each

of which isfixed in position by one and the same law.

30. It is obvious, that if in Example i, page 6, in addition

to the values of x and jj/ there used, we consider the fractional

values between them, then there are an infinite number of sets

of values of x 2LVidLy, satisfying the equation corresponding to

an infinite number of points on the locus. Hence if the x and
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y of the equation represent a point P on the locus KGANR,
etc., then by moving the point P along the locus, we may
make the x andjj/ of the equation take an infinite number of

different values.

31. Hence the x and y of the equation x:' -{-y^ = 25 are

variables. by § 5.

32. The equation x' -\-y^ = 25 is called ^/le equation of the

locus KGPSJK (Fig. 6).

33. It is also obvious, that if in Example 2, page 8, in addition

to the values of x and jk there taken, we consider the fractional

values between them, then there are an infinite number of sets

of values of x and y satisfying the equation corresponding to

an infinite number of points on the locus. Hence if the x and y
of the equation represent the coordinates of a point P on the

locus, then by moving the point P along the locus we may
make the x andy of the equation take an infinite number of

different values.

34. Hence the x and y of the equation jrj/ = 10 are varia-

bles. . b}^ § 5.

35. The equation xy = 10 is called the equation of the

locus ABCA'B'C (Fig. 7).

36. In the same way we may show that by moving the

point P along the locus of the equation of Example 3, the x
andjK oi that equation may be made to take an infinite num-

ber of different values. Therefore the x and y of the equa-

tion i6jK^— <^x^ =— 144 are variables. by § 5.

37. The equation \6y^— 9;t:^= — 144 is called the equation

of the locus HBAIPKQ (Fig. 8).

38. It is obvious, from the method by which each of the

loci in Examples 1,2, and 3 was drawn, that the values of

the X and y in each of the sets of values which satisfy the

equations of the loci, are so related to each other that

ist, the X and y of each set of values of the variables

which satisfy the equation stand for the coordinates of a par-

ticular point on the locus, and
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2d, the values of the coordinates of each point on the locus

satisfy the equation of the locus.

Hence we may define the equation of a locus as follows :

39. The Equation of a Locus.—The equation of a locus is

one in which the variables stand for the coordinates of every

point on the locus.

40. Corollary I.— The values of the coordinates of every point

on a locus must satisfy the equation of a locus.

41. Corollary 2.—If the values of the coordinates ofapoint sat-

isfy the equation ofa locus, thatpoint miist be 07i the locus.

by § 38, ist

Measurement of Arcs

42. An arc of any circle whose length is equal to the length

of the radius of that circle is often taken as the unit for meas-

uring arcs of that circle.

[i] The circumference = ttD = 2 7rR by Geom. 29.

Now, when the length of the radius is taken as the unit for

measuring the lengths of arcs, [i] becomes

[2] The circumference =: 2 7r,

and

[3] The semi-circumference =: 7r= 3.1416.

That is, the length of the semi-circumference of any circle

is equivalent to 3.1416 units when each unit is as long as the

radius of the circle.

Hence, when the length of the radius is taken as the unit

for measuring arcs

[4] 180° = 3.1416,

[5] o° = o,

[6] 10' = 0.17,

[7] 20° = 0.35,

[8] 30° = 0.52,
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[9] 40° = 0.70,

[10] 50° = 0.87,

[11] 60° = 1.05,

[12] 70° ^= 1.22,

[13] 80° = 1.40,

[14] 90° = 1.57,

[15] 180' = 3.14,

[16] 190'' = 3.31,

[17] 200° = 3.49,

L18] 210° = 3.66,

[19] 220° = 3.84,

[20] 230° = 4.01,

[21] 240° = 4.19,

[22] ^ 250° — 4.36,

[23] 260° = 4.54,

[24] 270° = 4.71.

Corollary.—Since by equation 2

[l] 2 7t z^ 360'',

[2] Then 7t — 180°,

!3] and

EXAMPIvES

Draw the curves of sines whose equation is

[i] jK= sin X.

For the values of the arc x in this equation take the series

of values given in the second column of the table in § 42.

For the values ofj/ take from the Trigonometrical Tables the

natural sines of the number of degrees corresponding to each

of these values of x. In this way we will get the following

sets of values of x and y :
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When jr = o,

X =. 0.17,

^ = 0.35,

X =: 0.52,

X = 0.70,

X = 0.87,

X = 1.05,

X = 1.22,

X = 1.40,

•^ = i.57»

^ = 3-14,

^ = 3-31,

X = 3.49,

X = 3.66,

^ = 3.84,

X = 4.01,

:r = 4.19,

X — 4.36,

X = 4.54,

.^ = 4.71,

y — o,

y — 0.17,

y = 0-34,

JV = 0.50,

J/ = 0.64,

J/ — 0.77,

y = 0.87,

jj/ = 0.94,

y = 0.98,

j; z= 1.00,

_y = 0.00,

J/ = — 0.17,

;j/ = —0.34,

y — — 0.50,

JK = — 0.64,

y — — 0-77,

J^ = — 0.87,

y = —0.94,

jv == — 0.98,

_y = — 1. 00,

If with these values of x and j/ we locate a series of points

by the method given in §§ 18 and 19, we will get the following

locus

:

Y

Fig. 9

2, Draw the curve of tangents whose equation is

y = tan x.
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For the values of the arc x in this equation take the series

of values given in the second column of the table in § 42.

For the values of j' take from the Trigonometrical Tables the

natural tangents of the number of degrees corresponding to

each of these values of x. In this way we get the following

sets of values for x and y :

When ;t: := o.

;t: = ± 0.17,

X — :^ 0.35,

^ = zb 0.52,

;>; = rh 0.70,

*;f = d= 0.79,

Jt: = zb 0.87,

X — ±1 1.05,

;»; = zb 1.22,

;i; = rb 1.40,

X — ±: 1.57,

y — o,

y — ±, 0.18,

y — ^ 0.36,

^^ = ±0.58,

J = db 0.84,

>' = zb 1.00,

J = rb 1. 19,

JJ/=zb 1.73,

y — :^ 2.75,

y — ^ 5.67,

*x = zb 0.79 is the value of 45° obtained as in § 42.

If with these values of x andji^ we locate a series of points

by the method given in §§ 18 and 19, we will get the following

locus.

Y

3. Draw the curve of secants whose equation is

y z= sec X.



CHAPTER IV

The Intersection of Loci

KXAMPI^KS

43. Where does the locus of 167^ + gx'^ — 144 = o cut the

Y axis ? Where does it cut the X axis?

From Example 1 1 , p. 13, we learn that A'BAB' is the locus of

[i] i6y' + 9^'— 144 = 0.

Since the point B is on the locus, its coordinates must sat-

isfy the equation of the locus. by § 40.

But the coordinates of B are x = o andjK= OB.
Substituting these values for the x andjj/ of [i] we get

[2] 16.OB 144 = 0,

[3] or i6.0B= 144,

[4] OB = 9,

[5] OB = ±3.
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Hence i6r^ -j- qjt^ — 144 = o cuts the jf axis in two points,

one above and the other below the origin, and both at a dis-

tance of 3 units from it.

Since the point A is on the locus, its coordinates must sat-

isfy the equation of the locus. by § 40.

But the coordinates of A are x = OA and jk = o.

,
Substituting these values of x and j/ into [i] we get

[6] 9.0A'= 144,

[7] oa'= 16,

[8] OA = d= 4.

Hence 167^ + 9^^ — 144 = o cuts the X axis in two

points, one to the right and the other to the left of the origin,

and both at a distance of 4 units from it.

44. Where does the locus of i6j/' — 9-^' + 144 ^ o cut the

X axis ? Where does it cut the Y axis ?

Let A, Fig. 12, represent the point in which the locus of

this equation cuts the X axis.

Then since A is on the locus, its coordinates must satisfy

the equation of the locus. by § 40.

But the coordinates of A are x = OA and jk = o.

Substituting these for the x and y of equation

[i] 16/— 9x'-f 144 = o,

we get

[2] — 9.0A =— 144,

[3] OA = 16,

[4] OA = ± 4.

Hence this locus cuts the X axis in two points on opposite

sides of the origin, and both at a distance of 4 units from it.

Let B, Fig. 12, represent the point where the locus is sup-

posed to cut the Y axis.

Then if B is on the locus, its coordinates must satisfy the

equation of the locus. by § 40.
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But the coordinates of B are jf = o and j^ = OB.
Substituting these values for the x and^ of [i] we get

[5]

[6]

[7]

16.OB = — 144,

OB = — 9,

OB = zb 1/ — 9.

Equation [7] shows that it is impossible for this locus to

cut the Y axis.

From Example 3, p. 11, we learn that the locus of [i] is

LAKMA'N in Fig. 12.

r
Fig. 12 ,

Hence we may devise the following

45. Rule.—To find where any locus cuts the X axis, make

jF= o in the equation of the locus, and the values of x obtained

from the equation will be the absciSvSas of the cutting points.

For, the values of the coordinates of the cutting point must

be J/ = o, and x = the abscissa of the cutting point.

But since the cutting point is on the locus, the values of

these coordinates must satisfy the equation of the locus.

by § 40.

Hence, if we substitute these into the equation of the locus

the terms involving y will disappear and leave an equation
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whose only unknown quantity is x, the abscissa of the cutting

point.

Similarly, we may devise the following

46. Rule.—To find the point where any locus cuts the Y axis,

make ;t: := o in the equation of the locus, and the values of y
obtained from the equation will be the ordinates of the cutting

points.

EXAMPLEvS

Where do the loci of the following equations cut the axes ?

1. Jt:-+jF =9.

2. 2^y' -\- l6x^ := 400.

3. 25j^— i6;»;' = 400.

4. y^ ^ \ox.

5. y = {x— 2) (^—7)
6

Ans. jr := zt 3, JF = o.

y — ^^,x — o.

Ans. jc = zb 5, J^'
= o.

jj^ = it 4. -^ = o-

Ans. ^ = zb 5, y = o.

Ans. X = O^ y z:zz o.

Ans. j<; = 2 and 7.

y=(jf—3)(;>;—7)(;t:—ii)(;r—i3).Ans.:r=3,7, 11,13.

y.
y"^ = (jt:— a) (jr— <^) (;r— <;) . Ans. x ^ a, b and r.

EXAMPI.ES

47. Where does x'^ -\- y~ = 25 cut xy^ 10 ?

From Example i, p, 6, we see that ABD is the locus of

[i] ^'+/=25.
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From Example 2, p. 8, we see that RPSTU is the locus of

[2] xy = 10.

lyet x' and y' be the coordinates of the point P.

Then, since the cutting point P is on the locus ABD, its

coordinates must satisfy the equation of this locus. by § 40.

Hence, substituting them into [i] we get

[3] ^"+y^ = 25.

Since P is also on the locus RPSTU, its coordinates must

satisfy the equation of that locus. by § 40.

Hence, substituting them into [2] we get

[4] xy = 10.

Now, since ^'= OK andj/'= PK in both [3], and [4] these

equations are simultaneous and may be solved by algebra.

From [4] we get

[5]

Substituting this value of y' into [3] we get

[60
,

100
^ + ^n = 25,

[7] X^^ 2^X^^ = 100,

[8J
,4 ,., - 625 22s

x''— 25X" + ^ — ^
,

4 4

[9]
^'^= 20 or 5,

[10] ^' = rb 4.5 or d

Substituting these values of x^ separately into [3] we get

[11] r' =^ 2.2 when ;t:' = 4.5,

[12] y =i — 2.2 '* x' — --4.5.

[13] y = 4.5 " x' — 2.2,

[14] y = 4.5 " x' — -— 2.2.

Equations [11], [12], [13], and [14] show that the curves

cut in four points, P, S, F, and G.
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Hence we may derive the following

48. Rule.—To find where two curves cut each other, treat

their equations as simultaneous and solve them. The values

X and y thus found will be the coordinates of the cutting

points.

For, since as in Fig. 13 the cuttingpointPison both curves,

its coordinates must satisfy the equation of both curves.

by § 40.

Hence we may let the abscissa of the cutting point be rep-

resented by x\ and the ordinate of the cutting point be rep-

resented by y in the equation of both curves. Then the equa-

tions will be simultaneous and may be solved by algebra.

The values of x^ and y\ obtained by solving these equa-

tions, will be the coordinates of the cutting points.

EXAMPLES

Solve each of the following examples and illustrate it by

drawing its locus.

1. Where does 7 = ;r -j- 5 cut _y = ;r'^

?

Ans. :r = 2.8, jj/ =^ 7.8.

^ = 3-2,jK = — 1.8.

2. Where doesjj/ = 2x q.\x^. xy ^= 18? Ans. .r = 3, _y = 6.

x = — 3,jF= —6.

3. Where does x'^ -\-y'^ = 25 cut jj/ ^= x-

?

Ans. ;»; = dz 1.5, JK ^ 2.2.

4. Where does jk' = 4X cut ;i;^ -f-jj/^
= 25 ?

Ans. ^ = 3.4, jj/==dz3.7.

5. Where does j = x^ cut ^y^ = s^'^ ?

Ans. x = l,y=dzj\.
x^ o,y=o.

6. Where does x^ -\-y' ^ 16 cut 36)/^+ gx^ r= 324 ?

Ans.

7. Where does looy^ + 6/^x^ ^= 6400 cut 6^y^— 36;!;^ =
—2304 ? Ans.



CHAPTER V

The Straight Line

49. The Intercept.—The intercept of any Hne on either

axis is the distance from the origin to that line measured

along that axis.

50. Every line which cuts the X axis makes four angles

with it. Starting on the axis in the positive direction from

the common vertex of these angles and moving counter clock-

wise, the angles are named first, second, third, and fourth.

Y

r-

r
Fig 14

51. The Inclination.—The inclination of a line is the first

of the four angles which it makes with the X axis.

52. The Slope.—The slope of a line is the tangent of its in-

clination.

PROPOSITION I

53. The equation of a straight line in terms of its slope and Y
intercept is

y= sx-\-b,

in which s is its slope and b its Y intercept.

Let YY' be the axis of ordiiiates and XX' the axis of ab-

scissas, and let MN be any straight line in their plane.

Let ^= tan BRH, the slope of MN ; and ^= 0B, its Y in-

tercept.
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Fig. 15

Let P be any point on the line and draw its coordinates PH
and OH.

Let ;t:=OH andjF= PH.

We are to prove that

y =:i SX -\^ b

is the equation of MN.

Draw BK
|1 OH .

[i] z:pbk = z:1prh, by Geom. 8.

[2] hence tan PBK = tan PRH = >?,

[3]
PTC

tan PBK =—^, by Trig. 3.

[4] hence
PK
BK "'

[5] and PK-=^.BK.

L6] But BK = OH, by Geom. 17.

[7] hence PK = 5.0H.

[8] KH-=BO. by Geom. 17.

By adding [7] and [8] we get

[9] PK + KH = 5.OH + BO,

[10] or y^sx-\-b.

Now the X andj^ of [10] stand for the coordinates of the

point P. But, since P is any point on the line MN, we
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ma}' move it either way as far as we please along that line.

Hence the x andjK of [lo] stand for the coordinates of every

point on the line MN.
By moving the point P along the line, we may make the x

and y of [lo] take an i7ifinite number of different values.

They are therefore variables. by §5.

But s and b always retain the same values as the point P
moves along the line MN. They are therefore constants.

by §4.

Therefore, since the variables in [10] stand for the coordi-

nates of every point on the line MN, [10] must be the equa-

tion of the line MN. by § 39.

Q. K.D.

54. Corollary i.—Any equation of theform

y zzr co7istant.x-\- constant,

is the equation of some straight line.

For, since MN may be any straight line, its intercept b

may have any value from o to + co
, or to — 00 .

Hence b may be any constant whatever.

Also, since MN may be any straight line, its inclination

may have any value from 0° to 180°, and therefore its slope

may have any value from o to + 00
, from o to — 00 .

Hence s may be any constant whatever.

Therefore, y ^^ sx -\- b includes every equation of the form

y = const. :r + const.

Hence every equation of that form must be the equation of

some straight line.

55. Corollary 2.— The equation of a straight line passing

through the origin is

y = sx.

For, for every such line /^ = o, and [10] becomes

_y =r SX.

56. Corollary ^.— The equation of a straight line parallel to

the X axis is

y ^= b.
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For, for every such line the inclination must be 0° or 180°,

and hence the slope must be o, by Trig. 19, and [10] must
become

Similarly, it may be shown, that if c be any constant, then

:r = ^,

is the equation of a line parallel to the Y axis.

EXAMPLES

1. What is the inclination and slope of the line y :=

\x-\- ^t What is its Y intercept?

Its slope = \^

or the tangent of its inclination = |

,

hence its inclination = 26° 34'.

2, What is the inclination of each of the following lines

by § 53-

by § 52,

y — To-^ + 2. Ans. 30° 58'.

y— ^ + 3- Ans. 45".

y=i 3^+1. Ans. 71° 34'.

3. Which of the four angles made by the axes does the line

J/ =^ — 2J»; + 5 cross ?

X'

Y

1VI\
B

2 oX ^^^-<f^»
3 4

V

"^
^N

Fig. 16

The Y intercept of this line is 5. by § 53,

Hence the line cuts the Y axis 5 units above the origin,

at B.

The slope of the line is — 2. by § 53,

Hence the inclination is an obtuse angle. by Trig. 16,
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Therefore, y = — 2x-\- ^ must lie across the first of the

four angles made by the axes, as MN in Fig. i6.

4. Show which of the four angles each of the following lines

crosses :

J—-—2X— S,

jj/=2X— 5,

y= 2.r+5.

5. Show how each of the following lines lies

:

J/
= 2X,

r = — 5,

)/ = 6.

6. What are the intercepts of y =: ^x-\- 10 on the two

axes ?

7. What is the area of the triangle between y^=z^x-\- 10

and the two axes ?

8. What is the area of the triangle between _y = — ^x— 10

and the two axes ?

9. What is the area of the riangle between y := — iox-\- ^

and the two axes ?

PROPOSITION II

57. The equation of a straight line passing through a fixed

point is

y— y =: s {x'— x)
,

in which x' afidy' are the coordinates of the fixedpoint, x andy
the coordinates of any poi?it on the line and s is the slope of

the line.

Fig. 17
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lyCt YY' be the axis of ordinates and XX' the axis of ab-

scissas.

Let P' be the fixed point and MN any straight line passing

through that point.

Let P be any point on the line MN and draw the coordi-

nates of P and P'.

Let ^= OH and y= PH

,

x'=OH' '* y=P'H'.
Let s= tan PRH, the slope of MN.

We are to prove that

y'—y = s {x'—x)

is the equation of MN.
Draw PK

|{
XX'.

^P'PK= ^PRH, byGeom. 8.

hence tan P'PK — tan PRH — ^.

tan P'PK =:r 1^, by Trig. 3.

[I]

[2]

[33 hence

[4] But

hence

[5] and

[6]

[7]

P'K_
PK""""'

P'K = .y.PK:.

P'K = P'H'— PH =y--y, by Geom. 17.

PK = OH'— OH — x' — x, by Geom. 17.

Substituting these values of P'K and PK into [5] we get

[8] y'—y = s{x'~x).

Now the X and y of [8] stand for the coordinates of the

point P. But since P is any point on the line MN, we may
move it either way as far as we please along that line.

Hence the x andjF of [8] stand for the coordinates of every

point on the line MN.
By moving the point P along the line MN, we may make

the X andy of [8] take an infinite number of different values.

They are therefore variables. by § 5.

But s, x\ and J'' always retain the same value as the point P
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moves along the line MN. They are therefore constants.

by §4.

Therefore, since the variables in [8] stand for the coordi-

nates of every point on the line MN, [8] must be the equation

of that line. by § 39.

Q. E. D.

EXAMPI^ES

1. What is the equation of the line whose inclination is 45°

and which passes through the point whose coordinates are

—5, 10?

Since this is a straight line passing through a given point,

its equation must be of the form

[i] y—y—s{^x'— x), by §57.

in which ^= tan 45"^ =1, by Trig. 26.

;r' = — 5 andy == 10.

Substituting these values into [i] we get

[2]
' y—10— I (^ + 5).

Simplifying this equation we get

[3] y—x-\-\^,

which is the equation of the line passing through the

point — 5, 10, and whose inclination = 45°.

2. What is the equation of the line whose inclination is

45°, and which passes through the point whose coordinates

are — 5, — 10 ?

What intercepts does it cut from the axes ?

Ans. y ^=^ X— 5.

Y intercept = — 5,

X intercept = 5.

3. What is the area of the triangle between the axes and

the line whose inclination is 135°, and which passes through

the point whose coordinates are — 2, — 5 ?

Ans. JK = — X— 7.

Area of the triangle = 24J.

4. Where does the line whose slope is 10, and which passes

through the point whose coordinates are i, 5, cut the line
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whose slope is — 2, and which passes through the point whose
coordinates are — i ,

— 5 ?

PROPOSITION III

58. The equation of a straight line passing through two fixed

points is

in which x' andy^ are the coordinates of one of the fixed poi7its,

x" andy are the coordinates of the other ^ and x and y the coor-

dinates of a7iy pohit on the line.

Let YY' be the axis of ordinates and XX' the axis of ab-

scissas.

Let P' and P" be the two fixed points, and MN a straight

line passing through them.

Let P be any other point on the line MN, and draw the co-

ordinates of P, P' and P".

Let-r =OH andjK = PH,

x' =OH' " y =P'H',

y= OH" " y'=P"H".

We are to prove that

y-^=€^!(^'-^).X — X

is the equation of MN,
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Draw PK and P'K'
||
XX'.

[l] Now ^P"P'K' =:z:p'pk. by Geom. 8.

[2] Hence tan P"P'K' = tan P'PK.

[3] tanP"P'K'=^, by Trig. 3.

[4]
P'K

tanP'PK = -p^, by Trig. 3.

[5] hence
P"K'_P'K
P'K' — PK'

by [2].

[6] and
P"K'

P K — p,^, PK.

[7] But P'K=y->',

[8] p"K'=y' y,

[9] P'K' = ^"—

<

[10] PK r=;t''— ;r,

/'

^—X'
y"— y'

[11] Hence y'—y^-'-j,—^,{x'— x). by [6].

Now the X and j of [11] stand for the coordinates of the

point p. Since P is ' any point on the line MN, we may
move it either way as far as we please along that line.

Hence the x andjF of [11] stand for the coordinates of every

point on the line MN.
By moving the point P along the line MN, we may make the x

and jK of [11] take an infinite number of different values.

They are therefore variables. by § 5.

But x', x'',y andj/" always retain the same values as the

point P is moved along the line MN. They are therefore con-

stants, by § 4.

Therefore, since the variables in [11] stand for the coordi-

nates of every point on the line MN, [11] must be the equation

of MN. by § 39.

Q.K.D.

y"— y'

59. Corollary i.— Thefraction—̂
^

——^ is the slope of the line

which passes thro2igh the twofixed points whose coordinates a7'e

x\ y\ and x", y".
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For

[i] tan P"P'K' = 1^, by [3], §58.

[2] but tan P"P'K' = tan PRH, by Geom. 8.

P"K'
[3] hence tan PRH = -p^-

[4] But — -^ -^

P'K' x''—x" ^M

[5] hence "^^7^—=^ := tan PRH= the slope, by § 52.

60. Corollary 2.— The length of the linejoining any two given

points is

in which x", y" and x\ y' are the coordinates of the two given

points.

For, in Fig. 18

[i] P'P" = P"K' + P'K', by Geom. 26.

[2] hence P'P" =(/'—/)'+ (^" — ^')',

[3] or P'P" = -/(y'-y)^+(^"_;r')\

EXAMPI.ES

I. What is the equation of the line which passes through

the two points 3,5, and — 2, — 7 ?

The equation of this line must be of the form

[i] y_^:=^_^^(y_^), by §58.

in which

x' — z andy = 5,

;t:" =r — 2 and jj^" = — 7.

Substituting these values into [i] we get

[2] ^_5 = Z1I^(^_3).

Simplifying this equation we get
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[3]

ANALYTIC GEOMETRY

which is the equation of the line passing through the two

points 3, 5 and — 2, — 7.

2. What is the equation of the line which passes through

the two points— 5, 8 and 3, — 10 ?

Ans. jj/=

—

2\x— 3^.

3. Where does the line which passes through the points

— 3, — 5, and 5, 8 cut the axes ?

Ans. At the point y^g, — 1,

4. Where does the line which passes through — 5, 3 and

3, — 5 cut the line which passes through 5, 5 and the origin?

Ans. At the point — i, — i.

PROPOSITION IV

61. T/ie tangent of the angle betwee?i two straight lines is

given by the equation
c' c

tan cp =
] + s's'

in which cp is the angle between the two Ihies, s' is the slope of one

of the lines and s is the slope of the other.

Fig-, 19

Let MN and RS be any two straight lines.

[i] Let^= ^HPK.
Let j'= sx-\- b be the equation ofthe line MN.
[2] Then 5 ==: tan PHX. by §53"
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I^et JK = s^x -\- b' be the equation of the line RS.

[3] Then ^ = tan PKX. by § 53.

We are to prove that

s' ^
tan (p~

,
.

I -|- s s

[4] ^PKX=zlPHK4-^HPK, byGeom. 13.

[5] hence ^HPK = ^ PKX—ZPHK,
[6] and tan HPK = tan (PKX— PHK),

r -1 1 / * ^v tan A — tan B , ^ .

[7] but tan (A— B) = —j -, by Trig. 17.^'-' ^ ^
I + tan A tan B ^ ^ '

Since the A and B of [7] may be any angles whatever, let

A = PKX and B = PHK.
Substituting these values of A and B into [7] we get

r..n /-r^T^^^ -r^-r-r-r^X taUPKX taUPHK
[8] tan (PKX— PHK) ~ —.

—

—

t^tttf-*- -• ^ ^ I + tan PKX tan PHK
Comparing [6] and [8] we get

tan PKX— tan PHK
[9] tan HPK

—

I + tan PKX tan PHK"

Substituting the values ol tan HPK, tan PKX, and

tan PHK found in [i], [2] and [3] into [9] we get

[10] tan cp = s'— s

I + s's'

Q.E.D.

62. Corollary i.— Whenever two straight lines are perpendic-

ir to each other

i-\-s^s^=^o,

in which s' is the slope of one of the two lines aiid s is the slope of

the other.

For when RSJ_MN
[i] ^HPK= 90°,

[2] and tan cp = tan 90° = oo
,

by Trig. 19.

s'— s
[3] hence

, ,^
= co

,
by [10.]

I -]- -f ,>
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s'— ^
But when the value of the fraction —_. , is infinitely large

its denominator is infinitely small.

[4] Hence i -[- ^'^ ;= o.

63. Whenever two straight lines are parallel to each other

s'— s=: o,

i?i which j-' is the slope of one of the two lines and s is the slope of

the other.

For when RS || MN
[i] 5'=^, by Geom. 8.

[2] Hence 5' — s^o.

EXAMPLES

1. What is the angle between the two lines jk= 3^ + 1 and

Let ^'=3, the slope of the first line, and ^= |^, the slope of

the second line.

Substituting the values of ^ and s^ into [10], § 61 we get

Hence the angle between the lines = 45°.

2. What is the angle between the lines _y=3;r+ i, and

y^=x— 5? Ans. 26° 34'.

3. What is the angle between the lines y =^ x— 5, and

y^ — ;t: + 2 ? Ans. 90°.

4

.

What is the angle between jj^ = 3-^ + 2 , and y=^\x}
Ans. 45°

5. What is the angle between jf = j-V-^> andjF = fjr?

Ans. 32° 56' 36".
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64. The equatioji of a straight line in terms of its intercepts on

both axes is

X . V

in which a is itsX intercept and b is its Y intercept.

Y

W-s^ R

p

Y'— ^^<f^
A

^N
r

Fig. 20

Let MN be any straight line and P any point on it.

Let ^= OT and b= OR,

:r= OK " j/= PK.

We are to prove that the equation of MN is

X y
a^ b^^'

[I] KT : PK : : OT : OR, by Geom. 25 and 31

[2] or a — X \y : : a : b.

[3] Hence ab— bx =^ ay,

[4] or bx -\- ay = ab.

[5] hence
X . V

As in Propositions I and II we can show that the x and y
in [5] are variables and stand for the coordinates of every

point on the line MN. Therefore [5] is the equation of MN.
by § 39.
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EXAMPLES

I . Which of the four angles made by the axes is crossed by
the line

2 3

Multiplying the equation through by — i we get

2 3

Changing two of the signs of the first fraction we get

—2 3

This is the form of [5]. Hence

a^=— 2 ^ the X intercept of the line,

b ^= 3 ^ the Y intercept of the line.

X V
Hence the line —-

— ^^-=— i crosses the second angle.23
Which of the four angles made by the axes does each of

the following lines cross ?

2.

3.

4.

5.

PROPOSITION VI

65. The equation of a straight line in terms of the perpendic-

ular draw7i to it from the origin^ and the inclination 0/ this per-

pendicular is

X cos oL-\-y sin ol—p = o

in which p is the perpendicular and a the a7igle which it makes

with the X axis.

T+ y _
3

X y _
5 2

X y _
3 ^

X
2

y =2
3
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Fig. 21

Let MN be any straight line. Let OR be a straight line

drawn from the origin perpendicular to MN.

Let />^ OR and «= ZiROA.

Let P be any point on the line MN and draw its coordi-

nates PK and OK.

Let ;tr= OKandjK = PK.

We are to prove that the equation of MN is

X cos oc-^ y sin a—p= o.

Draw PH || OX.

The triangles PBH, ORB and ORA are similar.

by Geom. 54.

[i] Hence ^OBR = Z.'ROA = a byGeom.31.

[2] and ;^ : OB : . PH : PB, byGeom.31.

[3] hence /.PB = OB.PH= (BH+j/);r= BH..r-(-;t:;i/.

BH
[4] Now PB =

[5] hence by [i] PB =

[6] and

cos OBR'

BH

by Trig. 2.

cos a

x= PH = BH.tan a. by Trig. 3

Substituting the values of PB and x found in [5] and [6]

into [3] we get

BH
[7] P cos a

BYL.x + y.BH.tan a,
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ro-i P I
sin a

, >xA . ^
[8] or —t^~ =x-\-y , by Trig. 6.-*

cos ^ -^ cos «: ^ o

[9] hence ;i; cos «: +jk sin «:

—

p=^o.
Q.E.D.

66. Corollary I.— The equation of a straight line i7i terms of
the perpendicular drawn to it from the origin^ and the angles

which this perpendicular snakes with both axes is

X cos a -\-j/ cos /3—p= o.

Forlet y^^ZlBOR.
[i] Then cos /? = sin or. by Trig. 20.

Substituting this value of sin a into [9] we get

[2] ^ cos «r
-|- J/ cos /?

—

p= o

EXAMPLES

1. YV^3-^~l"ij^^5is the equation of a line in terms of the

perpendicular drawn to it from the origin and the inclination of

the perpendicular.

What angles does the perpendicular make with the axes ?

What is the length of the perpendicular ? Ans. a = 30°

/? = 60^

P = 5

2. A line drawn from the origin perpendicular to a second

line is 3 inches long, and its inclination is 45°. What is the

equation of the second line in terms of the perpendicular to it

from the origin, and the inclination of the perpendicular ?

3. A line whose inclination is 150° cuts y =sx five inches

from the origin. What is its equation in terms of the perpen-

dicular to it from the origin and the inclination of the perpen-

dicular ?

PROBLEM

To prove that

2X V
[i] 2 IJ = f {3^~\-J) — 5 is the equation of

a straight line.
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Clearing the equation of fractions we get

[2] 24— %x-\-\y— gj/= 24.x -\- Sy— 60.

Transposing we get

[3] —137=32-^— 84.

Dividing by — 13 we g«t

[4] ^ = -fl^ + H.

Now [4] is of the form j = const, x -f" const. Hence it is

the equation of a straight line. by. § 54.

PROPOSITION VII

67. Every equation of the first degree contai7iing two variables

only is the equation of a straight line.

For, as in the preceding problem, by clearing of fractions,

transposing, etc., every such equation can be reduced to the

form

[i] Aj/=B;t:+C,

in which A, B and C are constants.

Dividing [i] through b}^ A we get

r 1
B

,
C

1 . -,
B , Cm which —^ and —r- are constants.A A

Equation [2] is of the formj/= const.^+ const.

But every equation of that form is the equation of a straight

line. by § 54.

Therefore every equation of the first degree containing

two variables only is the equation of a straight line.

Q. E. D.

EXAMPI^KS

I. What are the slope and the intercepts of the line

^+2 . y X
/ s\ I :>

4 3 ^

s
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Clearing the equation of fractions, transposing, etc., we get

[i] 3j;+52y=66,

L2] j^ = — A-^ + fi

Hence 52 the slope,

ff= the Y intercept,

22 =: the X intercept,

by § 53-

by § 53-

by § 45-

What are the slope and the intercepts of each of the fol-

lowing: lines ? Draw the lines.

2.
X

3

2(j^—3) = \y
2X

+-I.

2{x-\- y)~ X
'y— z-\-

2X

4- -(t-3-^)=*K—) + -

PROPOSITION VIII

68. If the equation of a straight line be given in the form

Ax + By+C=zo,

then by dividing this equation through by —]/ A^ •\' B"^ ^ we will

get the equation of the same line in the form

X cos a -{- y sin ex—p i=: o.

Y

Fig. 22



THE STRAIGHT LINE 45

In Fig. 22 let

[i] Ax+ Bj'+C^o,

be the equation of the line AB. From O draw OD_LAB,
and let

We are to prove that if we divide [i] through by—y K^-\-W

we will get the equation of AB in the form

Dividing [i] through by — V^ + ^^ we get

r -, A B C
[2] >x y =0.

l/A^+B^ l/A^ + B^ |/A^ + B^

[3] Now
A AB'^

l/A^+B^
Xb^/a^+b^

B B

^' -A^ VU) +(a)
From [i] we get

r 1
AC

Making ;i; = o in [4] we get

[5] --^=0K. by §46.

Making j^ = o in [4] we get

[6] -^ = 0H. by§45-

C C
Substituting these values of ^^ and r- into the last

B A
member of [3] we get

r -, A _ OK _ OK
L7

J

—
, ^^^ — -^^^. by Geom. 26.

|./A^ + B^ l/OK-^ + OH^ KH
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OK
[8] But -=zr^ = sin (p = cos a, by Trig, i and 20.

Jvxi

[9] hence — - = cos a.

^ B
B AB

[10] Similarly

vA' + B^ _C
XbvA-^+b^

A _ OH
KH-

x/(l)+(f)'

|_i[J But rr^7^= cos ^ = sm <a:.

B
[12] Hence — = sm a.

yA' + B'

C C B.C.
by [12].

But by [5]

[14] - ^ = OK.

Hence [13] becomes

C
[15]

- = OK sin a.

l/A-' + B^

But by Trig, i

[16] OD = / = OK sin OKD -= OK sin a.

by Geom. 54 and 31.

Hence [15] becomes

[17] =A
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Hence by [9], [12J and [17], [2] becomes

[18] ;ir cos o' + _>' sin a:

—

p^zo.
Q. E.D.

6g. Scholium.—Let us agree to call the direction from the

origin to the line AB the positive direction. Then p will

always be positive. Let us agree also to use the positive

value of -|/A^ + B"''. Then from [17] we see that if, in any

equation of the form

Xx + By + C — 0,

the C be negative, we must change the signs of all the terms

in the equation, so as to make C positive, before computing

the value oi p.

EXAMPLES

[i] Given the equation of a line in the form

3^+4j+ 15 = 0,

to find the equation of the same line in the form [18].

What are the values of cos a^ sin a^ and/ ? Draw the line.

Ans. — f^ — 4)/ — 3 =:= o.

cos a zzz — |-.

sin a ^ — i.

/ = 3.

[2] Given the equation ^x— 3/— 15 = o, to change it into

the form [18]. Ans. fjr— fy— 3=0.

[3] Given the line 6y— 8-r = 5, to change it into the form

[18]. Ans. — t'o^+ t'oJ— 2 =0.

[4] Find the length of the perpendicular drawn from the

origin to the line i2y— 5^1;= 26, and the inclination of this

perpendicular. Ans./ = 2.

Inclination = 22° 37'.

PS.OPOSITION IX

70. The distance from any point whose coordiitates are x' and
y' to the line x cos a -\- y si?i cc—p =. o, is

x' cos a -\- y' sin oc— /.
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Fig. 23

Let M be any point, and AB any straight line.

Let X cos oL-\- y sin a—p ^ o be the equation of AB.

Draw ML _L AB. Let D= ML.

Let OH and MH be the coordinates of the point M, and let

-;c'=OH,y=MH.
We are to prove that

[i] D = ;f ' cos <a^ -f- j^' sin «:

—

p.

Draw OK _L AB.

Then since x cos (x-\-_y sin a— /> = o is the equation of AB,

[2] a /KOA, by §65.

[3] and p— OK. by §65.

Through M draw A'B'
II
AB.

Then A'B' 1 OK.
#

by Geom. 6.

Let /—OK'.

Then the equation of A'B' is

[4] X cosi a -\-
J/ sin a— p' = 0. by § 65.

[5] Hence />'—/= KK'.

[6] But KK'=LM=D, by Geom, 17.

[7] hence D =/' —p.

[8] Hence P'= P + D.

Substituting this value of /' into [4] we get
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[9] X cos oi +JJ/ sin a —p— D = o,

for the equation of A'B'.

Now, since the point M is on the line A'B', its coordinates

x^ and J/' must satisfy the equation of A'B'.

Hence substituting jr' andjj/' into [9] we get

[10] x^ cos Oi -\-y sin a — p— D = o.

[11] Hence T) =^ x' cos o^ -\- y' sin a—p.

Q. E. D.

Now by §69 the direction from O to K is the positive direc-

tion. Hence from [5] and [6] we see that D is positive.

Hence we have the following corollary :

7 1 , Corollary i .
— When D is positive

, the pointfrom which the

perpendicular is drawn is on the opposite side of AB from the

origin ; when D is 7iegative, the point from which the perpen-

dicular IS drawn is on the same side ofAB as the origin.

T2. Corollary 2

.

—Or, when D is positive , the directionfrom the

line AB to the pointfrom which the perpendicular is draw?i, is

the same as the direction from the origin to the li?ie AB ; and

when D is negative, the direction from AB to the point from
which the perpendicular is drawn is opposite to the direction from,

the origin to AB.

73. Corollary ^.— The distance from the point whose coordi-

nates are x\ y\ to the line Ax -f- By -[- C= o is

Ax'+ By+C
D=db

VK' + B^

For by [9], [12] and [17] of § 68

A
cos <a^ = —

sm Of 1= —
l/A^'+B'

B

Va' + B^

c
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Substituting these values of cos a^ sin a^ p into [ii] we get

Vl/A'+B" t/a^' + b' i/a^'+bv'

Ax' + B j>' + C

But the direction in which D is drawn from the line AB
may be the same as the direction of p, or the opposite.

Hence D may be positive or negative. Therefore [13] may
be written

P^^ Ax^+By + C

VkJ + B'^

EXAMPLES

1. Find the distance from the point 3, 2 to the line

3XH-4JJ/— 5=0.

Draw a figure showing the line, point, and distance.

Ans. D = 2f.

2. Find the distance from the point — 2, 5 to the line

4-^— 3J+8=o.
Draw a figure showing the line, point, and distance.

Ans. D — — 3.

3. Find the distance from the point — 3, — 3 to the line

3j/ + 1 1 =— 4:r.

Draw a figure showing the line, point, and distance.

Ans. D =— 2.

4. Find the distance from the point i, — i to the line

'^x— 12 = 4JK.

Draw a figure showing the line, point, and distance.

Ans. D — — I.
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Oblique Axes

74. Hitherto we have drawn the axes of coordinates per-

pendicular to each other. It is often more convenient, how-

ever, to take for the axes two lines which are oblique to each

other.

When the axes are perpendicular to each other they are

called Rectangular Axes, and the coordinates of a point are

called Rectangular Coordinates.

When the axes are oblique to each other they are called

Oblique Axes, and the coordinates of a point are called Ob-

lique Coordinates.

In both cases the axes are called Rectilinear Axes and the

coordinates of a point are called Rectilinear Coordinates.

PROPOSITION X

75. When the axes are oblique the equation oj a straight line is

sin I
, ,

-^ stn (go— /)

in which b is the Y'intercept, I the inclination of the line^ and go

the angle between the axes.

Y
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lyet YY' be the Y axis, and XX' the X axis,

and c»= ^YOX.
I^et PM be any line and let P be any point on that line.

Draw PK ||
YY'.

Let X = OK, y= PK, d= OL, and /=z: LMO.

We are to prove that the equation of PM is

sin /
, ,

JK = 7 77 X-\- d.
-^ sm (go — /)

Draw OH parallel to PM.

r n ^, HK sin HOK
, ^ .

I I Then ;—-— = ——^^^ -. bv Trisr. 14.
^ -^ OK sm OHK - ^ ^

[2] But ^OHK = z:LOH, byGeom. 7.

[3] and z:loh = z:i.ok— z:hok.

[4] Hence Z.OnK = Z.LOK — ^liOK.

Substituting this value of z^OHK into [i] we get

HK_ sin HOK
^^^ OK "~

sin (LOK — HOK)'

[6] z: HOK r= z£ LMO= /, byGeom. 8.

[7] and ZlIyOK—z:HOK= r«9— /.

HK sin /
[8] Hence OK sin ((»— /)'

[9] and HK = .
^^" ^

,, OK.
sm (Gi9— /)

[10] Now PH = OL. by Geom. 17.

Adding [9] and [10] we get

[11] PKzrz . f^^ OK+OIv,
sm [00— /)

[12] or y = -—7 7^^-r^-
/- -• -^ sm (Ce?— I)

Q. B. D.

76. Corollary I

.

—: The equation ofa straight li?ie through the

. . . sin I
oris:in is y = ——;—-

—

^r- x.^ -^ stn {go— I)
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76^. Corollary 2.— The equation of a line parallel to the Y
axis is X ^^ c^:^ any const,

77 . Scholium.—If the axes be made rectangular, then od= 90°

and

sin / sin / sin /
sin {oD— /) sin (90°—/) cos/

But by § 52 tan /is the slope of the line PM, which, as in

§ 53. we represent by s. Hence when the axes are rectangular

sin /

sin (gj— /) '

and [12] becomes

y~sx+d,
as in § 53.

PROPOSITION XI

78. Whe7t the axes are oblique the equation of a straight line

passing through afixed point is

,
sin /

•^ szn (go — /)

in which x' and y' are the coordinates of thefixed pointy I the in-

clination of the line and go the angle between the axes.

Fig-. 25

Let P' be any fixed point and MN any straight line passing

through that point.
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Let P be any point on MN and draw PH and P'H' H YY'
and PK

tl
XX'.

Let ;r = OH and j^ = PH,

^'=OH' " y=P'H',
and/=PRH" g^= YOX.

We are to prove that the equation of MN is

sin /
y —y — (x'—x)

[I

[2

[3

[4

[5

[6

[7

[8

[9

sin {00— I)

Z. P'PK =Z PRH = /. by Geom. 8

.

Z:RL0 =^YOX— z^LRO. by Geom. 13.

But Z. RIvO =Z PP'K. by Geom. 8.

Hence Zl PP'K^^Z!YOX— z:LRO== &?— /.

P'K sin P'PK sin/

hence

But

PK sinPP'K sin ((i?— /)'

sin /

by Trig. 14.

P'K=^ PK.
sin (&7— /)

P'K= P'H'— PH —y—y,
and PK = OH'— OH = Jc'— -r. by Geom. 17.

sin /
Hence J/'

—

y=
sin (Cfi? — /)

{x'— x). by [6].

Q. B. D.

79. Scholium.—If the axes be made rectangular, then

CD = 90° and

sin / sin / sin /

sin (C89 — /) sin (90°—/) cos/
= tan /.

But tan /is the slope of the line MN, which, as in § 53, we
will represent by 5. Hence when the axes are rectangular

sin /
sin {oa— /)

s.

and [9] becomes

as in § 57.

y— y= ^ {^x^— x^
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PROPOSITION XII

80. When the axes are oblique the equation oj a straight line

passing through two given points is

y —y — ZT,
—~, (^' —^)

.

in which x' andy are the coordinates of one oj the given points

and x" andj/" are the coordinates of the other.

Let P' and P" be the two given points, and MN a line pass-

ing through them.

Let P be any other point on the line MN and draw the

coordinates of P, P' and P".

Let;i: = OH and 7 = PH,

x' =0H' *' y =P'H',
^" = 0H" " y =P"H".

Draw PK and P'K' |1
XX'.

The demonstration is the same as in § 58.

EXERCISES

1. Prove that the lines jj/= -^ + i, J^= 2.^+ 2,jk = 3^+ 3

intersect in the point (— 1,0).

2. Find the angle which the lines yc—y = 5, 2y— x ;= 8

make with each other. Ans. 45°.
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3. Find the equations of the lines passing through the point

(3, — i) and making angles of 45° with 2/ + 3-^ = 6.

Ans. 5jK + ^ + 2 = o.

y— ^x-\- 16 = 0.

4. Find the equation of the line passing through (—3, 5)

perpendicular to 3jj/

—

2x— 2 = 0. Ans. 2y-\-'^x— i =: o.

5. Theverticesof atriangleare (2, 3), (4, — 5), (— 3^—6).

What are the equations of its sides ?

Ans. X— 7JK = 39.

^x— ^y—^.
4.x -\- y =1 II.

6. Let the sides of a triangle be given by jj/= ji: -|- i , jr == 4,

jj/ = — X— I . What are the equations of the sides of the tri-

angle formed by lines joining the middle points of the sides of

the given triangle ? Ans. jk = — .r+ 4.

y — x — 4.

2X—2,.

7. Required the equation of a straight line passing through

the origin and the intersection of the lines 3-r— 2jj/ + 4 = o

and 3x+ 4_>^ := 5. Also find the distance between the two

points. Ans. gx + 2y = o.

8. A parallelogram is formed by the lines

X ^=^ a ] x^=-b\y^^c', y^d\
what are the equations of its diagonals ?

Ans. {d— c)x— {b— a)y:^ad— be.

{d— c)x-\- (b— a)y ^= bd— ac.

9. Find the value of ^ provided the line y ^ sx passes

through (i, 4). Ans. ^=4.

10. Required the equation of a straight line perpendicular

to Ax+ B/+ C = o and making an intercept b on the Y axis.

Ans. Bx = A{y— b).

11. What is the equation of the line perpendicular to

X . y

Ans. ax— by = a^— b

+^ = I and passing through {a, b) ?
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12. Required the equations of the perpendiculars erected at

the middle points of the sides of the triangle whose vertices

are (5, — 7), (i, ii), (— 4, 13). Prove that these perpen-

diculars meet in a point.

13. The points (i, 2), (2, 3) being equidistant from the

point {x, y) , write the equation which expresses that fact.

Ans. {x-ir-^{y~2Y = {x-2y+(y-3y\
or jf-f-jK = 4.

14. Find the distance between the points (x"
,
j/")

,
{x.',y),

the axes making the angle cp with each other.

Ans. D=i/{x"—x'y+{y"—yy+2{x"—x'){y'—y)coscp.

15. What is the length of the perpendicular from the origin

to the line h ^ = i ?

3 4

16. Find the point equidistant from the three lines

4^ + 3_>/— 7 = 0, 5^+ i2_y— 20 = 0, 3^ + 4jj/— 8 = 0,

and its distance from each. Ans. (2,3); 2.

17. Two lines are given, one passing through the points

(i, 2), (— 4, — 3), the other through (i, — 3), and making
an angle of 45° with the first ; what are the equations of the

lines? Ans. ^ = x-|- I and^ = — 3.
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Transformation to New Axes

PROPOSITION XIII

81. If we have given the equation of a locus referred to any

pair of axes ^ we ca7i find the equation of the same locus referred

to anypair of axesparallel to thefirst byputting

m -\- x' for X,

and n +jk' for y,

'in the original equation ; m and n being the coordinates of the

new origin^ and x^ andy the coordi7tates ofany point on the locus

referred to the new axes.

In Fig. 27 let OY and OX be the original axes, and O'Y'

and O'X' be the new axes.

Let RS be any locus and P an}^ point on it.

Draw PH parallel to OY. Then OH and PH will be the

coordinates of the point P referred to the original axes, and

OX and PI< will be its coordinates referred to the new axes.

Ivet m = OK and n = O'K,

x'^=OX "y = PL.
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[i] Let f{x,y)—o,

be the equation of RS referred to the original axes. Then

;t = OHandjK= PH.

We are to prove that we can find the equation of RS re-

ferred to O'X' and O'Y' by putting

ni-\- x^ for X

and ^ +JK' for y
into [i].

[2] Now OH = OK + OX, by Geom. 17.

[3] or X ^^ 7n -\- x\

[4] and PH = PL + O'K. by Geom. 17.

[5] Hence y ^^ n -\;-y

.

If we substitute these values of x and jj/ into [i] we get

[6] f{m + x\ n +y) = o.

In this equation m and n are constants, but x^ and y' are the

coordinates of any point on RS. Hence [6] is the equation

of RS referred to the new axes. by § 39.

Q. E.D.

PROPOSITION XIV

82. If we have given the equation of any locus referred to any

pair of axes, we can find the equation of the same locus referred

to anyotherpair of axes having the.same origin by putting

x^ sin (6— a) + y' sin (6— 6) .—^ for X,
sin u

^ x' sin oc-{- y' sin (3
and -.

—=k for y,
sin u

into the equation of the locus ; x' andy' being the coordi?iates of

any point on the locus referred to the new axes, 6 the a?igle be-

tween the original axes, a the inclination of the new axis of X,

and § the inclination of the new axis of Y.
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In Fig. 28 let RS be any curve and P any point on it.

Let OY and OX be the original axes and OY' and OX' the

new axes.

Draw PM || OY and PN
||
OY'. Then OM and PM are the

coordinates of P referred to the original axes, and ON and

PN its coordinates referred to the new axes.

Let ^' = ON andy= PN.

[i] Let f{x,y) = o,

be the equation of RS referred to the original axes. Then

j»r=OM and ^'^PM.

Let a = X'OX,

yS = Y'OX,

8 = VOX.

We are to prove that we can find the equation of RS re-

ferred to OX' and OY' by putting

and

into [i].

x' sin {6 — a) +/ sin {0-/3)
sin 6

x' sin (X -\- y' sin /^

sm e

for X,

for y.
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Draw any line OL through the origin and let

^= z::ivOX.

Draw PH, NJ and MK _L OL.

Draw NT and MQ
Ij OL.

[2] Now OK = OM cos q). by Trig. 2.

[3] Hence OK = x cos 99 ;

[4] also MQ= PM cos PMQ, by Trig. 2.

[5] but MQ = KH, byGeom. 17.

[6] and z^PMQ =^YOH= ^— 0. byGeom. 11.

Substituting these values of MQ and PMQ into [4] we get

[7] KH=_)/cos (cp—d).

Adding [3] and [7], member to member, we get

[8> OK+KH:=^ cos cp+y cos (cp—O),

[9] or OH = Jt: cos ^ +JJ/ cos (^

—

6).

[10] Similarly OJ = ONcos(t^— ry) =: x' cos (cp— ex),

[11] and JH = NT= PN cos PNT = >/' cos {cp — (3)

.

Adding [10] and [11], member to member, we get

[12] OH = x' cos {cp— a) -\-y cos {'P — ft).

Hence from [9] and [12] we get

[13]

X cos (p -\- y cos {cp— 6) ^ x^ cos {cp— ol) -\- y cos{<p— ft).

Since OL is any line drawn through O, [13] must be true

whatever be the angle (p. Hence we may draw OL so that

[14] 9= l+e. see § 42, Cor

[15] then
7t

2

[16] Hence COS cp = — sin Q, by Trig. 21.
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7t

[17] and cos (<7?— 0) = cos— =0. by Trig. 19.

Again by [14]

n
[18] cos {cp— a) = cos ( \-0— a) = — sm(0— a).

by Trig. 21.

[18'] Similarly cos {(p— /3) =— sin {0-/3).

Hence by [16], [17], [18] and [18'], [13] becomes

— .r sin d =:— x' sin {d— a) — y' sin {6 — /3)

.

jr'sin {d—a) +ysin (0— /3)
[19] x =

sm d

Again, since [13] must be true whatever be the angle (p,

we may draw 01^ so that

^ = —

.

see § 42, Cor.

Then [13] becomes

y sin = x' sin (x -\- y' sin /?, by Trig. 19 and 20.

r-
-, ,

x' sin a -4-y sin /3
I 20 and y= -.—

^

.

sm C7

Substituting the values of x andy found in [19] and [20]

into [i] we get

[21]

'x' sin {6 — a) +jj/' sin {8— /3) x' sin a -j-y' sin /S'A o.
sin 6 '

sin

Now in [21] a^ /? and are constants, but x' and j/' are the

coordinates of any point on RS. Hence [21] is the equation

of RS referred to the new axes. by § 39.

Q. E. D.

83. Cor.—If we havegiven the equation of any locus referred

to any pair of rectangular axes, we can find the equation of the

satne locus referred to any otherpair of rectangular axes having

the same origin by ptitting

x' cos a -\-y si7i oi for x,
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and x' sin o^ -{- y' cos a for y^

into the equation of the locus.

For, if the axes are rectangular, then in Fig. 28

[22] e =— ,

[23] Hence -^—^YOX' = a:.

[24] Also z:y'ox'=-^.
2

[25] Hence ^ ~ Z.^01^ = ZM'ON

,

[26] and by [23] Z. Y'OY = a.

Now by Fig. 28

/j = o + z:y'oy.

[27] Henceby [22] and [26] /^ = 1- <af.

Hence since C7 =—

,

2

and p =— +^>
2

equations [19] and [20] become

[28] jc = ;t:' cos <a'
—y sin <x,

[29] jj/ = ;r' sin ^ +j' cos oc.

Substituting these values of x andjF into [i], we get

[30] f{x^ cos OL—y^ sin a^ x' sin a -|-ji^'cos«^) = o.

Since x' and jf' are the coordinates of any point on RS, [30]

must be the equation of RS referred to the new axes.

Q. E.D.
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PROPOSITION XV

84. If we have given the equation of a curve referred to any
pair of axes, we mayfind the equation of the same curve referred

to any other pair of axes by putting

. x''si?i(qj— a) -\- y" sin (o)— /3)m -\ -^ 7^-^ ^-^ -—^ for X,
sin (p

.
'

. x" sin ex 4- y" si7i .

a?ia n-\ -.

=^- for 1/,

siti cp

into the equation of the curve ; m and n being the coordinates of

the new origin^ arid x" andy" the coordinates of any point on the

curve referred to the new axes, a and ft the inclinations of the

new axis ofX and axis of Y respectively to the original axis of

X, ajid cp the angle between the original axes.

ft
P

8/X"

Fig. 29

In Fig. 29 let OX and OY be the original axes, and let

O'X" and O'Y" be the new axes.

Let OK and PK be the coordinates of P referred to the

original axes.

[i] Let f{x,y)=o
be the equation of any curve RS referred to the original axes,

and P be any point on that curve.

Then ji:= OK andji/= PK.

Let O'H and PH be the coordinates of P referred to the

new axes, and let x"^: O'H andj/"= PH
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The coordinates of the new origin are OQ and O'Q.

lyet ;;?^ OQ and n= O'Q.

/?=z:y"vx,
cp-^^Z. YOX.

We are to prove that the equation of RS referred to the

new axes is

^" sin (
cp—a) + jj/" sin ( ^— ^)f\m + sm q)

. .r"sin «'+J^"sin^\
^ )=o.
sm <z> /

n
9

Through O' draw O'X' ||
OX and O'Y'

|!
OY. The coordi-

nates of P referred to O'X' and O'Y' will be

;tr' = 0'J andy= PJ.

[2] Then x—m-{-x\ by § 81.

[3] and y^=^n-\-y\ by § 81,

[4] But^'= ^"^^°^^~">.+-^"^'"^^-^\
by §82.L^-" sm cp
^

r -. 1 /
;r"sin ar+J^"sin/5)

, ^^
[5] and y— ^:^^ ^-^. by §82.^^J -^ sm cp

'

Substituting these values of x^ and y into [2] and [3] we
get

;r"sin {cp—«)+y' sin {cp— yS)

[6] x^=-7n-\

[7] y = n-^

sm cp

;i;"sin a-\-j/" sin /?

sm (p.

Substituting these values of x and jv into [i] we get

x" sin (cp — a) -{- y" sin (cp— /?)
[8] f(m + sm cp

, x" sin oi 4- y" sin /3\
n -\ -.

—
I = o.

sm cp J

Now in [8] the ;«:" and y" are the coordinates of any point

on the curve RS referred to the new axes, but all the other
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quantities in the equation are constants. Hence [8] is the

equation of RS referred to the new axes. by Trig. 39.

EXAMPLES

1

.

Required the equation of the line j/ = 3;^ + i when we
remove the origin to (2, 3), the axes remaining parallel to

themselves. Ans. y =^ -^x -\- \.

2

.

Given the equation j/^+ ^^— 4-^ + 4 JJ^
—8^0; required

its form when the origin is at (2, — 2) Ans. x^ +y^ ^ 16.

3. If we turn the axes through an angle = 45°, what does

the equation jr' +j^^ = a^ become ?

4. What does the equation x'^ -\- y^— \x— 6ji/ = 18 become

when the origin is at the point (2, 3), the axes still being rec-

tangular ?

5. What do the following equations become when the ori-

gin is changed to the point given ?

X -\-y -(-2 = 0; the new origin (— 2, o) . Ans. x -\- y ^o.

3x' + 4xy + y'— sx— 6y— 3 = 0; (|-, —4).

Ans. i2jr^ + i6xy-\- 4jj^^= i.

x^— 6xy -\- y^— 6x -\- 2y -\- i ^ o; (o, i )

.

6. Show that the degree of an equation is not altered by a

transformation of coordinates.
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Polar Coordinates

85. The position of a point may be indicated by giving its

distance and direction from a given fixed point in a given

fixed straight line.

H

Fig. 30

For instance, if OX be a given fixed straight line, and O a

given fixed point in it, then we may indicate the position of

any point P by giving the angle, which a line drawn from O
through P makes with OX, and also the distance along this

line from O to P.

86. The Initial Line.—The given fixed straight line is

called the initial line.

87. The Pole.—The given fixed point is called ^^pole.

88. The Radius Vector.—A straight line drawn from the

pole to any point is called the radius vector of that point.

OP is the radius vector of the point P.

89. The Vectorial Angle.—The angle between the initial

line and the radius vector is called the vectorial angle.

POX is the vectorial angle.

go. The Vectorial Arc.—Th.Q. vectorial angle is measured

by an arc whose center is the pole, and which lies between
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the initial line and the radius vector. This is called the vec-

torial arc.

AB is the vectorial arc.

91. The z^^<:/^rz«/ «r<: is considered positive when it is gen-

erated by a point revolving about the pole, from the initial

line, counter clockwise.

92. The vectorial atigle is considered negative when it is

generated by a point revolving about the pole, from the ini-

tial line, clockwise.

93. The vectorial angle is said to be positive when the vec-

torial arc is positive, and negative when the vectorial arc is

negative.

94. The radius vector is positive when it is drawn from the

pole towards the terminus of the vectorial arc.

95. The radius vector is negative when it is drawn from the

pole in the direction opposite to that of the terminus of the

vectorial arc.

In Fig. 30 OP is positive.

96. We may indicate the position of the point P' by giving

the angle BOA and the distance OP'. In that case OP' is

negative.

The radius vector is denoted by r.

The vectorial angle is denoted by ^.

EXAMPIvES

Locate the points whose coordinates are given in the follow-

ing examples :

I. ^= — 5>^ = 45°-
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2. r— 5, (9= 225°.

69

3. r— 10, Q— 135°.

4. r— — io,d— I35^

What is the position of the pole with respect to the two

points in Examples 3 and 4 ?

5. r— 10, Q — 315°.

What is the position of this point with respect to that in

Example 4 ?

PROPOSITION XVI

97 . The polar equation of a straight line is

P
COS {6— ^)'

in which p represents the perpendicular from the pole to the line,

a the inclination of this perpendicular, p the radius vector of any
point on the line, and Q the vectorial angle.

Fig. 31

I^et OX be the initial line and O the pole.
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Let MN be any straight line, OK the perpendicular drawn

from the pole to this line, and P any point on the line MN.

Let «^= KOL and;^= OK,

<9= P0X " p = OP.

We are to prove that

H —
cos {d-ay

[I] cos POK = ^, by Trig. 2.

[2] or cos (^ —
p

[3] Hence f\
p

r —
COS {d-ay

Q. E. D.

98. Corollary /.

—

The equation of a li?ie perpendicular to

the initial line is

._ P
cos 0'

For if MN be _Lto OX, OK must coincide with OX.
by Geom. 5.

[i] Hence «r = o,

and [3] will become

[2] P^-^'-* cos u

99. Corollary 2.— Tofind where a straight line cuts the initial

line make 6 z=i o, and then p will be the distancefrom the pole to

the cutting point.

For, since in Fig. 31 P represents any point on the line MN,
it may represent the point L.

Then ^ = 0, and by [3], §97

[i] p= f-
.=:-^. by Trig. 12.

- -" cos (— ol) cos ol

[2] But 0L =—^sT=-^^- by Trig. 2.
*- ^ cos KOL cos OL

[3] Hence p = OL.
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EXAMPLES

1. The perpendicular from the pole to a straight line is 5

inches long and makes an angle of 60^ with the initial line.

What is the equation of the line? Where does it cut the ini-

tial line ?

Here oc = 60° and p -=^ S-

Substituting these values into [3] of § 97, we get

' cos ((9— 60°)'

which is the equation of the line.

To find where the line cuts the initial line :

I^et 0^0. by § 99.

Then P= / A o, =^= lo- by Trig. 12.
cos ( — 60 ) ^

2. The perpendicular from the pole upon a straight line is 10

inches long, and makes an angle of 240° wnth the initial line.

Where does it cut the initial line ?

Here a ^ 240° and p = 10.

Substituting these values into [3] of § 97, we get

10

^""cosC^— 240°)'

which is the equation of the line.

To find where it cuts the initial line :

I^et = o.

^, 10 10
Then p =

and

3. Show that the equation of transformation from a rec-

tangular to a polar sj^stem of coordinates, the origin, and

pole being non-coincident, are

jr = <2 + r cos {0 -\- cp)
^

ji' zz: ^ -|- r sin {6 -{- q))

,

where the origin is {a, d) , the ^cp is the z^of the initial line

wnth the X axis, and is the vectorial angle.

cos (— 240°) COS 240°

10p= 1
=~

2

20.



CHAPTER IX

The Ellipse

roo. The Ellipse.—An Ellipse is the locus of a point mov-
ing in a plane in such a way that the sum of its distances

from two fixed points in the plane is constant.

Fig. 32

Let F and F' be the two fixed points in the plane.

Let P be a point moving in this plane in such a way that

PF+ PF' is constant.

Then the locus ABA'B' traced out by P is an ellipse.

PROBI^KM

loi. To draw an ellipse.

Let F and F' in Fig. 32 represent two fixed pins. Take an

inelastic thread longer than the distance FF'. Fasten an end

of it to each pin. Press the point of a pencil against the

thread so as to stretch it. Then if, in the figure, P represent

the point of a pencil, F'PF will represent the thread.

Now move the .pencil so as always to keep the thread

stretched. Then since the thread is inelastic and is always

stretched, the sum of the distances PF and PF', from the pen-

cil point to the fixed pins, is constant. Hence the locus

traced out by the pencil point must be an ellipse by § 100.

Q. E.D.
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102. Corollary.—It is obvious that the ellipse is a closed curve^

and that it will cut the straight line drawn through the two fixed

points F a7id P in two points as A and A'.

103. The Foci.—The two fixed points F and F' are called

the foci.

104. The Focal Radii.—The distances from the foci to any

point on the ellipse are called the focal radii of that point.

FP and F'P are the focal radii of the point P.

105. The Vertices.—The points in which the ellipse cuts

the straight line which passes through the foci are called the

vertices of the ellipse.

A and A' are vertices.

106. The Transverse Axis.—The line which joins the

vertices is called the transverse axis of the ellipse.

AA' is the transverse axis.

107. The Center.—The middle of the transverse axis is

called the center of the ellipse.

108. The Conjugate Axis.—The conjugate axis is a straight

line drawn through the center perpendicular to the transverse

axis and terminated both ways by the ellipse.

BB' is the conjugate axis.

PROPOSITION I

109. The sum of the Jocal radii of any point on an ellipse is

equal to the transverse axes.

Fig. 33
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Let P be any point on the ellipse, r and r' its focal radii,

and AA' its transverse axis.

We are to prove that

r' + r=: AA'.

When the moving point P reaches A

[i] r'+r=FA + AF. by § loi.

When the moving point reaches A'

[2] r'4-r=FA'+FA'.

[3] Hence F'A + AF = FA'+ A'F',

[4] or FF'+ AF+ AF=FF' + A'F' + F'A'.

[5] FF' = FF'.

By subtracting we get

[6] 2AF=2A'F'.

[7] Hence AF = A'F'.

Substituting A'F' for AF in [i] we get

[8] /+ r= F'A H- A'F' = AA'.
Q. E. D.

1 10

.

Corollary.— Thefoci ofan ellipse are equally distantfrom
the center.

For

[i] CA:=CA', by §107.

[2I and AF = A'F', ' by § 109, [7].

[3] hence CA — AF = CA'— A'F',

[4] or CF = CF'.

PROPOSITION II

111. The equation of the ellipse is

ay+ ^V = a'b\

in which a represents the semi-transverse axis, b the semi-conjugate

axis, and x and y represent the coordinates of any point 07i the

ellipse.

Let ABA'B' be an ellipse, AA' its transverse axis, BB' its

conjugate axis, and C its center.

Let «^ CA and /^= CB.
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Let P be any point on the ellipse and draw its ordinate PK.

Let Jt= CK andy= PK.

We are to prove that

ay + b'x' = a'b'

is the equation of the ellipse.

Let F and F' be the foci, and draw the focal radii FP and

F'P.

Let r^ FP and r'= F'P

.

[I

[2

[3

[4

[5

[6

[7

[8

[9

[to

[II

Then

but

hence

and

Again

but

Hence

and

Now

Let c= CF.

CF' = ^,

2 2

r' = FK + P"K
,

FK = ;f— ^,

r-^{x-cy+y\

by § no.

by Geom. 26.

r=zy{x— cr + y\

r" = F'^+PK,

F'K = Ji;+^.

by Geom. 26.

r' -\- r— AA'= 2a, by § 109.

hence i/(:r— cY -\-
y"^

-{- \/ {x -\- cY -\-
y"^ = 2a.
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[12] V{x— cY^f = 2a— ^{x-^cf^y\

[13] {x—cy-{-y''= \a'—\a^{x-^cy-\-y''-\-{x-^cY-\ry''

[14] x'^ 2CX -\-C^ ^r. 4(2^ 4« y ( JT 4~ ^)
"^ 4~ J^'"f*^'+ 2^^ +<:^.

[15] ^ay^{x-\-cy +y =^a' + ^cx.

[16] a i/^+ f)^4-jF^ ^a^+^^-^-

[18] a^x^ -\- 2a'ex -\- a'^c^ + a^y^ z= a^ -\- 20^ex+ ^V.

[19] <2y + (<2'

—

c^)x'^ ^^d^{a^— r).

In [19] X andjF stand for the coordinates of any point on

ABA'B'. Hence the}^ may stand for the coordinates of the

point B, which are

X =^0 and jF = b.

Substituting these values of x and y into [19], we get

[20] a^b^:=^a^{a~— r),

[21] b' ^=- a^— c

.

Substituting this value of {d^ — r) into [19], we get

[22] d'y'-\-b''x''^a'b\

Since in [22] the x and y stand for the coordinates of any

point on the ellipse, that equation must be the equation of the

ellipse. by § 39.

Q. K.D.

112. Corollary.— The semi-transverse axis is equal to the

distancefrom thefocus to the extrcTnity of the conjugate axis.

[I] b'=a' -c\ by § III, [21]

[2] Hence a'=b' + c\

[3] but F'B = <5' + c\ by Geom. 26

[4] Hence a'' = F'B,

[5] and a = F'B.
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The Circle.—The circle is an ellipse in which the conju-

gate and transverse axes are equal to each other.

PROPOSITION III

113. The equation of the circle is

x'+y = r\

in which r is the radius of the circle.

Y

Fig- 35

Let P be any point on the ellipse and PK its ordinate.

jt: = CK andjK = PK.

^? = CA and ^ = CB.

The equation of the ellipse is

[i] ay-^b^x'z:^a'b\

Let bz=^a,

[2] then b^ — a\

Substituting a^ for U^ in [ i ] , we get

[3] ay'^ + <2V ^ a'^.

[4] Hence >'' -\~ x^ — ^^

by § III

[5] or

[6] but

[7] Hence

[8] hence

PK+CK = CA,

PK + CK = CP

.

2 2

CP = CA,

CP 1= CA.

by Geom. 26,
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Now, if the point P be moved along the ellipse, CP will

always retain the same value, since it is always equal to CA.
CP is therefore constant.

Since P is any point on the ellipse, and CP is constant, the

ellipse must be a circle. by Geom. i8.

Since in [4] the x and y stand for the coordinates of any

point on this circle, that equation must be the equation of the

circle. by § 39.

Substituting r for the a in [4], we get

[9] ^'+y=r^
which is the equation of the circle when the center is at the

origin.

114. Corollary i ,
— The circle is called the equilateral ellipse.

115. Corollary 2.— When the center is not the origin^ the

equation of the circle is

{x— my-\- (y— n)^^= r^.

r

Fig. 36

IvCt the new origin O be at any other point than C.

Let Y'C and X'C be the old axes and YO and XO be the

new axes.

Let P be any point on the circumference and let

x^OKand y^ PK,

^'^CR " y = PR,

m = OH '' n = CU.

and^-^CP.
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[i] Then

is the equation of the circle referred to the old axes.

by § 113.

[2] But x' =^ X— mandy=^j— n. by Geom. 17.

Substituting these values of x' and y' into [i], we get

[3] {x— ^)^ -{- {y— n)^=zr'.

Since x and y are the coordinates of any point on the cir-

cumference of the circle, [3] must be the equation of the cir-

cle referred to the new axes.
^

by § 39.

116. The Circumscribed Circle.—If from the center of an

ellipse as a center with a radius equal to the semi-transverse

axis of the ellipse, a circle be drawn, the circle is said to be

circumscribed about the ellipse.

117. Corresponding Ordinates.— Ordinates drawm from

the ellipse and from the circle on the same side of the trans-

verse axis, and meeting the transverse axis at the same point,

are called corresponding ordinates, and the points on the curves

from which they are drawn, corresponding points.

PROPOSITION IV

118. If a circle be circumscribed about an ellipse, any ordinate

of the ellipse is to the correspoiiding ordinate of the circle as the

semi-conjugate axis of the ellipse is to its semi-transverse axis.

X'

Y

\
D

P'

^f B ^

^NX

1
A'f V

^
G

Y'

(

^

'^ig-37
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Let P be any point on the ellipse and draw its ordinate PK.
Produce PK till it meets the circle at some point P'.

Let X = CK, jK = PK andy = P'K.

Let « = CA and ^ = CB.

We are to prove that

y \y :: b : a.

Since the point P is on the ellipse, its coordinates x and y
must satisfy the equation of the ellipse. by §40.

Hence, letting the x and y of that equation stand for the

coordinates of the point P, we have

[i] ay-{-b'x'^a'b\ by §111.

[2] hence y^^=i-^{a^— x'^).

Since the point P' is on the circle, its coordinates x and j/'

must satisfy the equation of the circle. by § 40.

Hence substituting x and y' for the x and y of that equa-

tion, we get

[3] ;r'+y' = r\ by § 113.

[4] Hence j/'^ = ^

—

x'.

But since, by s 116, r^= a, this equation becomes

[5] y-= a'-x\

Now, dividing the members of [2] by the corresponding

members of [5], we get

y'_b'
^ -" y a

[7] Hence y \ y \\b\a.
Q. K. D.

119. Corollary i

.

—Any two ordinates of an ellipse are to each

other as the corresponding ordinates of the circumscribed circle.

That is

PK : RH : : P'K:SH.

120. Corollary 2.—Iffrom the center of the ellipse a circle be

drawn havirig the conjugate axis as a diameter, the abscissa of
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any poirit on the ellipse will be to the abscissa of the corresponding

point on the circle as the semi- transverse axis is to the semi-con-

jugate axis.

121. Corollary j.— To draw an ellipse when its axes aregiven

.

Let XX' be the.X axis, and YY' the Y axis.

I^et <2= CA and ^= CB.

On a stiff ruler mark off a length PQ = ^, and a length

PR = b. Then place Q on the Y axis, as at Q in Fig. 38, and
place Rupon the X axis, as at R in the figure. ISJow slide

R and Q along the axes, and P will trace out an ellipse.

For, circumscribe a circle about the ellipse.

Through any point P on the ellipse, draw an ordinate PK
and produce it till it meets the circle at S.

Let jr= CK and j/= PK.

[I] Then PK:SK: :b:a. by § 118.

[2] Hence PK : \CS— CK : : 3 : a. by Geom. 27.

[3] or y -.y' a'^— x^ : : b : a.

[4] Hence ay^^b-\/a^ — x^, by Geom. 21.
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[5] hence aY -^ U"x' ^ a'b\

which is the equation of the ellipse. by § in.

Therefore, as the points R and Q move along the axes, P
traces out an ellipse. by § 41.

PROPOSITION V

1 22. The squares of the ordinatesofany two points on an ellipse

are to each other as the products of the segments which they make

on the transverse axis.

L,et P' and P" be any two points on an ellipse, and let P'K
and P"H be their ordinates.

Let y ^ CK and / = P'K.

y= CH '' y'= P"H.

We are to prove that

y ' : y^ : : A'K.KA : A'H.HA.

Let «= AC== A'C.

[i] Then A'K= «+ :tr' and KA = « — jc',

[2] also A'H = « + ;c" '' YLK — a—x'\

Since the point P is on the ellipse, its coordinates x' andy'

must satisfy the equation of the ellipse. by § 40.

Substituting x' and y' for x and y in that equation, we get

[3] ay + d'x" = a'd\ by § 1 1 1

.
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Since the point P" is on the ellipse, its coordinates must

also satisfy the equation of the ellipse. by § 40.

Substituting x^^ and j/" for the x and y of that equation,

we get

[4] ay ^ + ^v'^ = a^/^^

By transposing and factoring, [3] becomes

[5] ay' = b\a'-x"),

and [4] becomes

[6] aY'^b^a" —x'^'').

Dividing the members of [5] by the corresponding mem-
bers of [6] , we get

y^ _ a^—x'^ _ {a-\-x'){a— x')

[8] Hence y- :/" : : {a-\- x^){a— x') : (a+jt:") (a— ^"),

[9] or y :ji/"' : : A'K.KA : A'H.HA.
Q. E.D.

123. Corollary i

.

—Ordinates at equal distancesfrom the center

are equal.

Let CJ= x"' and LJ =y".

Let CJ = CH.
[i] Then ^ : y '^

: : AH.HA' : AJ.JA', by § 122.

[2] CJ z= CH,

[3] AC = A'C. by § 107.

Adding [2] and [3] we get

•

[4] AC + CJ = A'C + CH,

[5] that is AJ = HA'.

[6] Again A'C = AC,

[7] and CJ=CH.
Subtracting [7] from [6] we get

[8] A'C— CJ = AC— CH,

[9] that is JA'=AH.
Multiplying the members of [5] by the corresponding mem-

bers of [9J, we get
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[lo] AJJA'= AH.HA'

Hence [i] becomes

[II] ym
:y" : : AH.HA' : AH.HA'

[12] Hence
.jj/'"

yun — I-

[13] Hence ^m _ ^rff2^

[14] and 'y^^y\
Q. E. D.

124. The Parameter.—The parameter of an elHpse is the

double ordinate which passes through the focus.

Thus RS is the parameter.

The parameter is sometimes called the latus rectum.

125. Corollary 2.— The parameter is a third proportional to

the transverse and conjugate axes.

For, since the point R is on the ellipse, its coordinates CF'

and RF' must satisfy the equation of the ellipse. Hence sub-

stituting CF' for X and RF' for j' in that equation, we get

[i] «'R"F' + ^^CF =r a^^^ by §111.

[2] But CF'=F'B— 3^ by Geom. 27,

[3] and F'B=r«. by § 112.

[4] Hence CF'=a^ b\

[5] Hence «^RF' + /^^(a' b'^ =a'b\ by [i].

[6] or ^'RF' + ^^^~^ b' ^a'b\

[7] and «2RF' = b\

[8]
• «RF'=^^

[9] Hence 2^2RF' = ^b\

[10] and 2RF : 2b '. : 2b : 2a. by Geom. 56.

[II] 2RF'=RS by § 123.

[12] hence RS : BB' : : BB' : AA'.
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126. Corollary ^.— The ellipse is symmetrical with respect to

both axes.

127. Corollary 4.—If the ordinates of any two points on an

ellipse be equally distantfrom the center^ thepoints will be equally

dista?itfrom the adjace7it foci. That is

128. The Eccentricity.—The eccentricity of an ellipse is

the quotient of the distance from the center to the focus by the

semi-transverse axis.

Let ^— the eccentricity.

n Fi g. 39 let c CF , and a— CA.

[i] Then
CF c

^ CA a'

[2] and c=^ ae.

[3] But a' b' = c\

[4] Hence
a:' b'

a'

e ( c V
~

a' ~\ a ) ~'

[5] and
b'2=1 e-.
a

by § III, [21].

129. Corollary ^

.

— The eccentricity of an ellipse is less than i

.

For in [i] CF is less than CA.

130. Corollary 6.— The eccentricity of a circle is o.

For when the ellipse takes the form which we call the circle,

b^^ a and [4] becomes
*> 7 2

2
a~— o

a~ a^
'

EXAMPLES

I. The semi-transverse axis of the earth's orbit is about

93,000,000 miles, and its eccentricity is -^.

Find the length of the conjugate axis, the distance from the

focus to the center, and the greatest and least distance of the

earth from the sun, which is at one of the foci.
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2. The semi-transverse axis of Jupiter's orbit is 483,000,000

miles, and its semi-conjugate axis is 478,000,000 miles.

Find the eccentricity of the orbit, the distance from the

focus to the end of the conjugate axis, and the greatest and

least distance of Jupiter from the sun, which is at one of the

foci.

3. Find the semi-axes and eccentricity of each of the follow-

ing ellipses :

25 jj/^ + i6jr' = 400.

3 2

rj/^ -|- -^^ = ^'

4. The equation of an ellipse is 16y^ -\- gx^ = 144. What
is the distance of its foci from the center, and the distance of

each focus from the vertices ?

5. The distance from the focus to the end of the conjugate

axis of an ellipse is 5, and its eccentricity is f . What is the

equation of the ellipse and the distance of the focus from the

vertices ?

6. The semi-conjugate axis of an ellipse is 8, and the dis-

tance from its focus to its center is 6. What is the equation

of the ellipse ? Where does the ellipse cut the circle whose
radius is 9?

PROPOSITION VI

131. If r' be the longer and r be the shorterfocal radius of any
point on an ellipse^ theri

r' =^ a-\- ex,

and r=:i a — ex,

in which x is the abscissa of the point, e the eccent7'icity , and a

the semi-transverse axis of the ellipse.

Let r'= F'P and r^ FP,

^^CK *' ^= PK,

<f^CF '* ^= CA,

and e =the eccentricity.
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Fig. 40

[i] Then r'' = PK + F'K,

[2] but F'K = CK+CF'=:ji: + ^.

[3] Hence r" =f + {x + c)\

bv Geom. 26.

[4]

[5] But

[6] Hence

by Geom. 26.

FK = CK — CF = X— c

r' =y + (jc—cy\

By subtracting the members of [6] from the corresponding

members of [3], we get

[7] r"— r'= (x+ cy—{x— cy=^€X.

[8] Hence {^ -\- r) (/

—

r)=4cx.

r'+ r= 2a.

2a {r^— r) = 4 ex,

c

a

czzzae.

2a (r'— r) = ^.aex,

r'— r= 2ex.

r'-\-r^=2a. by § 109,

[9] But

[10] Hence

[11] But

[12] Hence

[13] Hence

[14] and

C15]

by § 109.

by § 128.

By adding [14] and [15]

[16] 2r' = 2^ -|- 2^x,

[17] and /=<2 + <?jr.
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By subtracting [14] from [15]

[18] 2r=2«

—

2ex.

[19] r ^=. a— ex.

132. The Secant.—A secaiit is a straight Hne cutting a

curve in two points.

If one of the two cutting points remains fixed and we
make the other move along the curve till the moving point

coincides with the fixed point, the secant will revolve about

the fixed point as a pivot.

133. The Tangent.—When the two points in which the

secant cuts the curve coincide, the secant is called a tange7it.

PROPOSITION VII

134. The equation of the tangent to an ellipse is

y—y = — ^r (^ —^) ,

in which x^ and y' are the coordinates oj the point of tangency

and a and b are the semi-axes.

Fig. 41

I^et P'T be a tangent to the ellipse at the point P'.

Let.r'= CK andy=P'K,
I.et« =CA " ^=CB.
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We are to prove that

is the equation of the tangent to the ellipse.

Let P'M be a secant cutting the ellipse at the two points P'

and P".

Let jr"=CH andy"= P"H.

Since the secant is a straight line passing through the two

points P' and P", its equation must be of the form

[i] y__^:=Z'_^|(^'_^). by §58.

Since P' is on the ellipse, its coordinates x^ andj^' must sat-

isfy the equation of the ellipse. by § 40.

Substituting x^ and ^ for the x and y in that equation, we
get

[2] d^y^^ -{- b'x^''^ == a~b\ by § III.

Similarly, since P" is on the ellipse, its coordinates ;tr" and
jj^" must satisfy the equation of the ellipse.

Substituting x^^ and j/" for the x andj/ in that equation, we
get

[3] ay" + b'x'" = arb\

Subtracting the members of [2] from the corresponding

members of [3], we get

[4] a\y'^—y'') -\-b\x"'— x") =0.

[5] b\x''''-x") =-a\y"-y").

[6] b'^ {x' +y ) (:r"-x')=-d {y' +/' ) (
/'-/ )

.

[7] x'^—x'~ a"{y'+ y")'

^ . . .
y" —y'

.

Substituting this value of-^7^—=^, into [i], we get

[8] •^-^ = - ^^(y+y) (^-^)'

Now let the point P" move along the ellipse towards P'.
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Then the secant P'M will revolve about the point P' and will

continually approach the tangent P'T, and when P" reaches

P' it wnll coincide with the tangent. But when P" reaches

P' we will have

[9] ;f" = ji;' andjj/" ^ jl/',

and the fraction in [8] will become

[10] •2 t
— 2 I'a 2y ay

Substituting this value of the fraction into [8], we get

b'' x^
[11] -^'~"-^=~^^-^'~-^)-

Now, the X and y of [8] stand for the coordinates of every

point on the secant in every position which it takes as it re-

volves about P'. Hence they stand for the coordinates of

every point on it when it coincides with the tangent.

But when the secant coincides with the tangent, [8] takes

the form of [11]. Hence the x and y of [11] stand for the

coordinates of every point on the tangent.

Therefore [11] is the equation of the tangent. by § 39.

Q.E.D.

b'' x^
135. Corollary i

.

— The fraction -^—^ is the slope of the tan-

gent.

y"—y'
For the fraction -^

„ ,
is the slope of P'M, by § 59, and

<^' x' v"— y'
5—i is the form that =^, , takes when the secant com-

a^ y' x" — x'

cides with the tangent.

136. Corollary 2

.

— The equation of the tangent to a circle is

x'y'—y=z— y{x'— x).

For when the ellipse takes the form which we call the circle

b=^a and [11] becomes

x'y'—y=—-y{x'—x).
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137. The Subtangent.—The subtangent is the distance

measured along the X axis, from the ordinate of the point of

tangency to the tangent.

138. Corollary j.

—

The length of the subtangent of an ellipse is

a — X
x'

For, since the point T is on the tangent P'T, its coordinates

X= CT and j^/ = o, must satisfy the equation of the tangent.

by §40.

Substituting CT and o for the x and y of that equation,

we get
b'' x^

[i] y=-V^,(y-cT),ay
[2] ay =— b'x'' + b'x'CT,

[3] «y^ + ^V^ = <^VCT.

Since the point P' is on the ellipse, its coordinates x' and j/'

must satisfy the equation of the ellipse. by § 40.

Substituting x^ and j/' for the x and y of that equation, we
get

[4] ay + b'x'' = a'b\

[5] Hence b'x^CT = a'b\ by [3]

.

[6] CT
a'

x^'

[7] and KT =CT— CK = -^— x^
a^ . a^—y^

X' x'

139. Corollary 4..— When the ellipse takes the form which we

call the circle^

the subtangent = ^^ .

For then

[i] a—r,

a'— x'' r'— x" y" -^ , ^
[2] and

^, = ^, =~x^\
by § 138.

Draw a figure showing all the lines referred to in this cor-

ollary.
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140. Co7vllary 5.

—

If different ellipses have the same trans-

verse axis, and ordinates be drawn to eachfrom the samepoint on

the transverse axis and tangejits be drawn at the extremities of

these ordinates, then all the subtangents will be equal to each

other.

For in the case of each ellipse

the siibtangent = ^—

.

by § 138.

Draw a figure showing all the lines referred to in this

corollary.

141. Corollary 6.— To draw a tangent to an ellipse from any

given point on it.

Circumscribe a circle about the ellipse, as in § 116. Draw
an ordinate, cutting both ellipse and circle. Draw a tangent

to the circle at the point where the ordinate cuts it. Join the

point where this tangent cuts the transverse axis produced to

the point where the ordinate cuts the ellipse. This last line

drawn will be the tangent required.

Draw a figure and give the proof.

EXAMPLES

Required the equation of the tangent to and find the sub-

tangent of each of the following ellipses :

1. 2x'^ -\r 4-y^ ^= 38, when (1,3) is the point of tangency.

2. jc- + 4r-= 20, " (2, 2) " " " "

3- -^+^ = I, " (^.n) " - - -m n

142. The Normal.—The normal to a curve is a straight

line perpendicular to the tangent at the point of tangency.

PROPOSITION VIII

143. The equatio7i of the normal to an ellipse is
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in which x' andy' are the coordinates of thepoint ofta^igency and

a and b the semi-axes.

Fig. 42

Let PN be the normal and PT the tangent to the ellipse at

the point P. Draw the ordinate PK.

Let x'= CK and 7'~ PK.

Let .y'= the slope of the tangent PT.

The normal is a. straight line passing through a fixed point,

namely, the point of tangency. by § 142.

• Hence its equation must be of the form

[i] y~-y::^s{x'~x), by §57.

in which x' and y' are the coordinates of the fixed point,

here the point of tangency, s is the slope of the line, that

is, the slope of the normal, and x and y the coordinates of

any point on the line, here the coordinates of any point on

the normal PN.

But the normal is perpendicular to the tangent. by § 142.

by § 62.

by § 135-

= o.

^2_ Hence I -j- ^^' = 0,

[3] but
d'x'

^ ~ a'y''

[4] Hence
,

/ b' x'\
'"' A a^yJ-

[5] Hence
a'y
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Substituting this value of ^ into [i], we get

[6] y-y ^"11^ ^^'- x^

.

Now, in [6], X andj/ are the coordinates of any point on

the normal PN. Hence [6] is the equation of the normal.

by § 39.

Q. E. D.

2 f

144. Corollary i.— Thefraction j^-^ is the slope ofthe normal.

145. The Subnormal.—The subnormal is the distance

measured along the transverse axis from the ordinate of the

point of tangency to the normal.

h'

146. Corollary 2.— The length of the subnormal is —^x'.

For in Fig. 42 the point N is on the normal, hence its co-

ordinates jm= o and X = CN must satisfy the equation of the

normal.

Substituting these values of x and y into the equation of

the normal, we get

[I] y-o=^,(x'-CN). by §143.

2 12

[2] Hence CN = ^
~

x'.- a

[3] But NK^CK— CN==y— "^
~^

x',

[4] Hence NK =- ^x'

.

146(2 . Corollary ^.— The intercept of the normal on the X axis

is equal to e'^x'.

For

a'—b'
a

Hence [2] becomes

CN = e'x'.

= e\ by §128, [4].
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147. Corollary 4..— The equation of the normal to the circle is

X

For when the ellipse takes the form which we call the cir-

cle, b^^ a and the equation of the normal becomes

V

EXAMPLES

1

.

A straight line touches the ellipse whose semi-axes are

4 and 3 at the point whose coordinates are — 3 and 1.9.

What is its slope ?

2. A line whose inclination is 45"" touches 25^ -\- i6j»r^=
400. What are the coordinates of the point of tangency ?

Ans. X = — 3.9.

y = 2.s.

3. Find the equation of the tangent drawn to i6y^ -\- gx^=i

144 at the extremity of the parameter.

Ans. _y = — 0.67^1; 4" 4.04.

4. Find the equation of the tangent to the ellipse a'y^ -\-

b^x' = a'^b'^ at the extremity of the parameter.

5. A straight line touches 25 jk^ + i6jc^ = 400 at the point

whose coordinates are — 3, 3.2. What are the angles which

it makes with the axes ? What is the area of the triangle

betw^een it and the axes ?

6. A tangent to a~y^ + U^x"^ = a^b^ makes equal angles with

the axes. What are the coordinates of the point of tangency ?

Ans. X ^ a'

Va
y

' + b'

b'

y —
'Va

the

•

.00 at

'+b'

point7. A normal is drawn to 2^y'^ -\- i6;t:^

whose coordinates are — 3 and 3.2. What are the angles

which it makes with the axes ? What are its intercepts ?

Find the distances measured along the normal from the point

of tangency to each of the axes.
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Find the equation of the normal and the value of the sub-

normal in each of the following ellipses :

8. 3jK^+ 4jr^ = 39, when (3, i) is the point of tangency.

9. jc' + 4y = 2o, .

" (2,2) " " " "

10. ay+^v=a"^' " («, o) " " " "

PROPOSITION IX

148. In an ellipse the normal bisects the inteHor^ and the tan-

gent the exterior a7igle between the focal radii of the point of

tangency.

Fig"- 43

Let PN be the normal and PM the tangent to the ellipse at

the point P.

Let FP and F'P be the focal radii of the point P.

We are to prove that the normal PN bisects the angle FPF'

and that the tangent PM bisects the angle FPQ.

[I]

[2]

[3]

[4]

[5]

[6]

CN = ^V. § i46<2.

NF=CF— CN= r—^V= «^—^V. by § 128, [2].

Hence NF --^ e{a — ex^) .

Similarly NF' = CF' + CN = ^(^+ ^jr').

NF _ a— ex'

NF " a+ ex''

NF r

Hence

and
NF'

by § 131.
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[7] or NF : NF' : : r : r\

Take QP = PF = r and draw QF.

Substituting this value of r into [7], we get

[8] NF : NF' : : QP : r\

Hence is QF
||
to PN. by Geom. 24.

[9] Hence ^ F'PN = z^! PQF, by Geom. 8.

[10] and ZL NPF == Z PFQ. by Geom. 7.

[11] But ^Pi^Q = ^PQF, by Geom. 16.

[12] hence Z. F'PN = z^ NPF.
Q. K.D.

Again

[13] Z^F'PR+ZlF'PN = z^FPN+^FPM, by§i42.

[14] and ^F'PN = z::FPN, by [12].

[15] hence zl F'PR = zl FPM.

[16] But Z. F'PR = Z. QPM, by Geom. 4.

[17] hence z:! QPM = zlFPM.

Q. E. D.

149. Corollary i

.

— To draw a tangent to an ellipse at a given

point on it.

Draw focal radii to the given point. Produce either of

these focal radii and bisect the exterior angle between them.

The bisector is the tangent. Draw a figure and give the

proof.

EXAMPI^ES

1. Focal radii are drawn to the point 3, 3.4 on the ellipse

Z^y^ + i6jt:^ = 576. Find the length of the focal radii and

the angle between them.

2. Focal radii are drawn to the point 3, 3.2, on the ellipse

25jj/' + 16^^ = 400. Find the angle which they make with a

tangent to the ellipse at the same point and the length of the

perpendicular drawn from the focus to the tangent.

150. A Chord.—A chord of an ellipse is a straight line

terminated both ways by the ellipse.
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Fig 44

Let RS, R'S', and R"S" be parallel chords, and P, P', and

P'' their middle points.

lyet MT and M'T' be two tangents parallel to these chords.

Conceive the number of parallel chords between MT and

M'T' to be increased continually until they touch each other

side by side. Then their middle points will also touch each

other and form a continuous line. Such a system is called a

complete system of parallel chords.

151, The Bisector of a Complete System of Parallel

Chords.—The bisector of a complete system of parallel chords is

the line which contains all the middle points of those chords.

152, The Diameter.—The diameter of an ellipse is that

part of the bisector of a complete system of parallel chords

which is terminated both ways by the ellipse.

PROPOSITION X

153. The equation of the diam,eter of an ellipse is

y ( ^ cot cp)x,
a

in which cp is the inclinatio?i of the system of chords bisected by

the diameter, and a and b are the semi-axes.

Let RS represent any one of a complete system of parallel

chords, cp its inclination, and P its middle point.
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]l'

[<] But

[3:] Hence

[4: 1
and

[5:

[6;] Hence

[-:] and

[«:

[9: Hence

[lo;
] and

by Geom. 8.

by Trig. 23,

by Trig. 2.

Let jr = CK and j = PK,

y = CH " y = RH,

and r= PR = PS.

Draw PO 1|
XX'.

z:RPO = ^PMK.
Z^PMK= 180— (?^.

z:: RPO = iSo—cp^

cos RPO =— cos ^.

PO = r cos RPO.

Hence by [4] PO= — r cos (p,

XI = CK— PO = x-\- r cos (p.

RO= rsin RPO. by Trig. i.

RO := r sin cp, by Trig. 22.

J''
= VK + RO = y + r sin <7?.

Now the point R is on the ellipse, and hence its coordinates

x' 2iVi& y' must satisfy the equation of the ellipse. by § 40.

Substituting x^ and jk' for the x and_y in the equation of the

ellipse we get

[it] a^f''^b'x''^a'b\ by §111.

Substituting the values of x' andy found in [7] and [10]

into [11], we get

[12] a'^iy -\- rsin cpY -\-b^\x +r cos cp)^ = a'^b'^.
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Squaring the binomials and factoring with respect to r^ and

r, we get

[13] {a^ sin^ ^~\- b' cos^ q))r'^ -^ 2 {ay sin (p-\- <^'Jt: cos (p)r=:

a'd'— ay'—d'x'.

Now, since P is the middle point of RS, the two values of

r in [13] must be equal to each other, and hence by the theory

of quadratic equations

[14] 2 (ay sin cp + ^'-^ cos (p) =^ o.

[15] ay sin cp =1— d^x cos cp.

[16] y=\ r-— j-^>

^cot ^1^. by Trig, 9 and 6.

Now the X and jf of [17] stand for the coordinates of the

point P. But since RS represents any one of the complete

system of parallel chords, P is any point on their bisector,

and since the diameter lyN is a part of the bisector, P is any

point on that diameter.

Hence the x andjF of [17] stand for the coordinates of any

point on the diameter which bisects the system of chords rep-

resented by RS, and therefore [17] is the equation of that

diameter. by § 39.

Q. E. D.

154, Corollary I

.

— The diameter of an ellipse is a straight line

passing through the center.

lyCt the chord RS move across the ellipse, always remain-

ing parallel to itself. Then its middle point P wall trace out

the diameter which bisects the system of chords represented

by RS.

Now as P moves along the diameter, a, b, and cp always re-

tain the same value and therefore are constants. by §5.

Hence the expression ^ cot <z^ is a constant. Now if we
a~

represent this constant by s, [17], which is the equation of

the diameter, may be written
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[i8] _)' = sx.

But [i8] is the equation of a straight line passing through

the origin. by § 55.

Hence, since the origin is at the center of the ellipse, the

diameter is a straight line passing through the center.

155, Corollary 2.—If 6 is the inclination of a7iy diameter,

and (p the inclination of its system of bisected chords, then

b'
tan 6 tan ^= —

a

Let be the inclination of any diameter. Then tan 6 is

its slope. by § 52.

Since by Corollary i, the diameter is a straight line, the

coefficient of x in its equation must be the slope of the diam-

eter.

[I]

[2]

[3]

Hence

But

tan a = ^ cot cp.
a

cot q) =
tan cp

Hence tan tan ^ =— b'

a'

by § 53.

by § 153-

by Trig 9.

Q. E.D-

PROPOSITION XI

^5^' ^J ^^y diameter bisect a system, of chords which are

parallel to a second diameter, then that second diameter will bisect

a system parallel to the first diameter.

Y
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Let the diameter MN bisect a system of parallel chords

represented by RS, and let the diameter OP bisect the sys-

tem represented by TU, and let RS be parallel to OP.

We are to prove that TU 1|
MN.

Let Q be the inclination of MN.
( >

^yj
( ( ( ( 4 (

i ( Cl\ ( ( ( ( ( t

9
f i i ( (

[i] Then

[2] and

tan tan ^ = —

tan 6' tan ^' = —

" RS.

" OP.

" TU.

by§ 155.

b'

a''

>' tan cp\

by hypoth.

by Geom. 8.

[3] Hence tan d tan cp^ tan Q' tan cp^

.

But RS is parallel to OP.

[4] Hence ^' = <p,

[5] and tan ^' = tan cp.

Substituting this value of tan q) into [3], we get

[6] tan Q tan & — tan d' tancp'.

[7] Hence tan 6 = tan cp',

[8] and = cp'.

Hence TU |1
MN, by Geom. 9.

and the system of chords parallel to TU will be parallel to

MN. by Geom. 10.

Therefore OP bisects a system of chords which are parallel

to MN.
Q. E.D.

157. Conjugate Diameters.—Two diameters are said to be

conJ2igate to each other when each bisects a system of chords

which are parallel to the other.

158, Corollary i

.

—If be the inclinatio7i of any diatneter, and
6' the inclination of its conjugate^ then

tan 6 ta7i 0'= ^.
a~
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[i] For

[2] But

[3] Hence

tan Q tan ^ =^ —

tan qj = tan Q\

a'

tan Q tan Q' — ^.
a'

by § 155-

by § 157.

PROPOSITION XII

159. The tangent to an ellipse at the extremity of any diam-

eter is parallel to the C07ijugate of that diaTneter.

Let OP be any diameter and MN its conjugate.

Let PT be the tangent at the extremity of OP.

We are to prove that PT
|!
MN.

Let RS be any one of the system of chords bisected by OP.

Let Q be the inclination of OP,

d

9

/ ( ( (

(

( ( (

(

" MN,
" RS,

" PT.and ^' '' "

Let y = CK andy= PK.

RS will be parallel to MN.

[i] Hence cp = 0\

[2] and tan ^= tan 0'.

by § 157'

by Geom. 8.
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Since the point P is on the diameter OP, its coordinates x^

and y must satisfy the equation of that diameter. by § 40.

The equation of the diameter OP is

[3] JV= (— ^cot ^)jf. by § 153.

Substituting x^ and j^' for the x and y of this equation, we
get

b'

[4] y=(- , cot cp^x\

[5] hence cot ip
ay

~
b'x''

[6] But cot q)
I

by Trig. 9.
tan (p'

[7l Hence
I

" 1ay
~

b'x^
'

tan (p

[8] and tan (p
_ b'x^—

•' (•ay

[9] Hence tan 0'
b'x^

by [2].—
1

•

ay

[10] But tan (p*
b'x'

by § 135.~ ay

'

[II] Hence tan^' = tan (p\ by [9] and [10].

[.2] and (9' = cp'.

Therefore PT
||
MN by Geom. 9.

Q. E. D.

160. Corollary i

.

— The two tangents at the extremities of a

diameter are parallel to each other.

161. Corollary 2.— Thefour tangents at the extremities of two

conjugate diametersform a parallelogram circumscribed about the

ellipse.

PROPOSITION XIII

162. Given the coordinates of one extremity of a?ty diameter of

an ellipse to find the coordinates of the extremities of its conju-

gate.
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X'

Y

t\

R -^^^

1 .>\t
\ " /^ Nv L

;
\

qV^^__
/
1

V
Fig 48

Let PQ be any diameter and RS its conjugate.

Let OK and PK be given.

We are to find OH and RH, and OL and LS.

Let y = OK and/ = PK.
*' y ^ OH andy = RH.

Draw PT tangent to the ellipse at the point P.

Since RS is a straight line passing through the origin, its

equation must be of the form

[I] y = SX. by § 55.

But RS 11
PT. by § 159.

[2] Hence z:rox = z:ptx, byGeom.8.

[3] and tan ROX = tan PTX.

[4] But tan ROX = s, by [i] and § 53.

[5] and
b^x'

tan PTX = Y-nay
by § 135.

[6] hence
b'x'

ay
If we substitute this value of s into [i], the equation of RS

becomes

[7] y = ^x-
a'y'
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Now since the point R is on the diameter RS, its coordi-

nates x" and J/" must satisfy the equation of RS. by § 40.

Hence substituting jf" andjF" for the x andj/ of [7], we get

[8] y = -
a'y

The equation of the ellipse is

[9] a-y'^ \- b^x'^ =! a^b-

,

by § iii.

and since the point R is on the ellipse, its coordinates :r" and
j/' must satisfy the equation of the ellipse. by § 40.

Hence substituting jf" and y" for the x andy of [9], we get

[10] ay" + b'x"'=^a'b\

Now since in both [8] and [10], x" stands for OH and y
stands for RH, these equations are simultaneous, and there-

fore can be solved by algebra.

Squaring both members of [8], we get

b'x''^

Substituting this value of y' , into [10], we get

[12] a' ^-^,x"' + b'x'" = a'b\- ay'

[13] l^x'- + X'- ^ a\

[14] b'x"x"' + ay'x'" = ay\

[15] {ay + b'x")x"' = ay\

Now since the point P is on the ellipse, its coordinates x'

and y must satisfy the equation of the ellipse.

Substituting x' andy' for the x andjK of [9], we get

[16] ay' + b'x" = a'b-\

Substituting the value of the left hand member of this

equation into [15], we get

[17] a'b'x"'^ay\

[r8] Hence x" = =ir -^y.
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That is, OH =— -^ y' and OL= -^ y'.

b b
-^

Substituting -\—j-y for ^" in [8], we get

[19] y — — -—y — x' — LS.ay b a

Substituting y-j/' for ;f" in [8], we get

r -1 ,/ ^^-^' a , b
, ^^^

[20] jf/" = —^, -j-y' = ^x'=: RH,
ajK b

'^
a

163. Corollary.—All diameters are bisected by the center.

[i] For OL==OH, by [18].

[2] and LS = RH. by [19] and [20].

[3] Hence OS = OR. by Geom. 15.

EXAMPLES

1. A straight line touches 36^ + i6.r^ ^ 576 at the point

whose coordinates are 3 and 3.4. What is the equation of

the diameter conjugate to the one which passes through the

point 3, 3-4?

2. The inclination of a diameter of 25^+16^^ = 400 is

45''. What is the equation of the tangent at the vertex ?

Ans. y——\tx^ 32.

3. A straight line touches iSy^ -\- gx^ ^= i4./\. at 2, 2.6.

Where does the diameter which is parallel to this line cut the

curve? Ans. At — 3.1, 1.5,

and at 3.1, — 1.5.

4. A diameter cuts 2sy' + i6x^ = 400 at — 3, 3.2. What
is the equation of the tangent parallel to that diameter ?

PROPOSITION XIV

164. The sum of the squares of any pair of co7ijugate diain-

eters is equal to the sum of the squares of the axes.
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Y

I/Ct PQ and RS be any pair of conjugate diameters, and

AA' and BB' the axes.

We are to prove that

2 2 ^
2 2

PQ + RS = AA'+BB'.

Lety ^CKandy ^PK.
;»;"= CH " y'= RH.

a ^AC " ^=BC.
a' CP ^'=CR.

[0 a"-= x" +y^ by Geom. 26.

[2] b" == x'" + y"\ by Geom. 26.

[3] But 112 4-^^ by § 162, [18],

[4] and y" = by S 162, [20].

[5] Hence b" = by [2].

Adding [i] and [5], we get

[6] a" + 6'^ = ^"'+^ ^" + -^y"+ y\

[7] and a" + ^ = {a'+ f) "^ + {a' + b') ^,
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[8]
„.^+ ^-=(««+ ^^)g+Z!).

Now since the point P is on the ellipse, its coordinates x^

andjj/' must satisfy the equation of the ellipse. by § 40.

Substituting jr' and jj/' for the x andj^in that equation, we get

[9] a'y' + b'x^' = a'b\ by § 1 1 1

.

[10] hence ~j^~\~~^^^^-

Substituting the value of the left hand member of this equa-

tion into [8], we get

[11] a^'' -\- y' ^ a" -\- b\

[12] Hence 4^'^ + 4<^'"= 4^^+ 4<^^-

[13J But a' — iPQ, b' — iRS, a — ^AA' and b — ^BB'.

by § 163.
2 2 2 2

[14] Hence PQ + RS = AA' + BB'. by Geom. 32.

Q. E. D.

PROPOSITION XV

165 . The parallelogramformed by tangents to an ellipse at the

extremities of any pair of conjugate diameters is equivalent to the

rectangle whose sides are equal to the axes of the ellipse.

Let PQ and RS be any pair of conjugate diameters, and let

L,MN O be the parallelogram formed by tangents at their ex-

tremities.

Let DBFG be the rectangle whose sides are equal to the

axes AA' and BB'.

We are to prove that

LMNO = DEFG.

Let« ^CA and^=CB,
a' =CP " <^'=CR,

jr' =CH " y =PH,
x"= CK " y'=RK,
o=^pcH** 99 =z:rch.



no ANALYTIC GEOMETRY

[i] LMNO = LO X NO sin I.ON. by Trig. 15.

LOURS, by § 159-

and NO 11
PQ. by § 159.

Zl lyON = ^ RCP, by Geom. 1 1

.

sin I,ON = sin RCP = sin ^cp — d).

\,0— RS. by Geom. 17.

RS= 2^'. by § 163.

LO = 2b\

NO = 2a\

[2] Hence

[3] and

[4]

[5]

[6] Hence

[7] Similarly

Substituting these values of sin LON, lyO andNO into [i],

we get

[8] LMNO = \a'b' sin {cp— d).

[9] sin ((^— ^) = sin ^ cos — cos ^ sin ^. by Trig. 13.

sin cp = sin RCK. by Trig. 22.

_ RK _ y
[10]

[11] But

[12] Hence

[13]

sin RCK RC
by Trig. i.

rs CH x^
COS0 =^p=^ by Trig. 2,
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[14] cos ^= — cos RCK. by Trig. 23.

[15] COS RCK = CR = ^. .

[i6] hence cos q)—
^, .

[17]
. ^ PH y

Substituting these values of sin cp, cos Q, cos <?? and sin Q

into [9] , we get

[18] sm(^-0) = f^ +^^=—^^.
[19] But •^" = ^y, by §162, [18].

[20] and jf" =—•^'. by § 162, [20].

r -1 XT w ^x
~^^ ^"^ ^v^ + «y^

[21] Hence sin (^

—

0) — ~ —
a'd'

~ a'd'ad '

Since the point P is on the ellipse, its coordinates jr' and_>''

must satisfy the equation of the ellipse. by § 40.

Substituting x' and_y' for the x and y in that equation, we
get

[22] ay' + d'x" = a-d\

Substituting the value of the left hand member of this

equation into [21], we get

Substituting this value of sin {cp — 0) into [8], we get

[24] LMNO = 4.a'd^ —^ = ^ad.

[25] But 4.ad= 2a2d — AA' X 'BB\

[26] and AA'=GF. by Hypoth.

[27] Hence 4a^=:GF X BB'= DEFG. by Geom. 28.
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[28] Therefore I.MNO = DKFG. by [24].

Q. K. D.

i66. Corollary.— The sides of the rectangle circumscribed abotd

an ellipse are equal to the axes.

PROPOSITION XVI

167. The area of an ellipse is n times the product of the semi-

axes.

Let i^'^the area of the ellipse.

" «^CA and /^= CB.

We are to prove that

E = nab.

Circumscribe a circle about the ellipse.

Draw ordinates to the circle, cutting the ellipse in the

points P, Q, and R.

Join the points P and Q, Q and R, R and B, S and T, T
and W, W and V.

[I]
ML

PQML = (PI. + QM) -^, by Geom. 61.

[2] and STML=(SL + TM)

2

ML by Geom. 61.
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[3] Hence ^^^ P^liQ^
L3J ^ence sTML SL + TM'

[4] PL : QM : : SL : TM. by § 119.

[5] Hence PL : SL : : QM : TM, by alternation.

[6] and PL + QM : SL + TM : : PL : SL. by Geom. 22.

[7] But PL:SL::^:a. by §118.

[8] Hence PL + QM : SL+ TM : : ^ : «,

r -1 PL + QM _ /^

LVJ KJL

SL + TM a'

Substituting the right hand member of this equation into

[3]> we get

[10]
PQML b

STML"~ a
'

[11] Similarly
QRNM_ d

TWNM ~ a
'

]l2J and
RBCN b

WVCN ~ a
'

[13] Hence
PQML QRNM RBCN
STML ~TWNM~ WVCN'

[14] or PQML+ QRNM + RBCN: STML +TWNM

+

WVCN :: PQML : STML. by Geom. 22.

Let C = the area of the circumscribing circle.

2Tc =^ the sum of the trapezoids in the quarter of the

circle and

2Tq= the sum of the trapezoids in the quarter of the

ellipse.

Then [14] will become

[15] :ST, : :^T, : : PQML : STML,

r Ai ^^e PQML b - K r n
[16] or ^^=STML =V ^^^'''^'

[17] Hence a2T^:= b^T^.
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Now let the number of trapezoids be increased continually.

Then the two members of [17] will be variables. by § 5,

[18] Hence limit ^-^Z'e = limit <^
-2" 71-. by Geom. 20.

But while the number of trapezoids increases, the a and b

of [17] always retain the same values. They are, therefore,

constants.

[19] Hence a limit ^T^^^ b limit ^T^.

E

by § 4,

JIO lyimit -^/"e = —

•

4
by Geom. 19.

[21] lyimit ^T^ =z— ,

4
by Geom. 19.

[22] Hence a— := b—

,

4 4
by [19;

.

[23; and aE ^= bC.

[24] But C = 7^<2^ by Geom. 30.

\2<\ Therefore E = nab.

Q. B. D.

PROPOSITION XVII

168. If the inclinations of two diameters be supplementary

angles, the diameters must be equal to each other.

Fig. 52

Let be the inclination of the diameter RS, and ^' be the

inclination of the diameter PQ.

Let 0' = 180° — e.



THE ELLIPSE "J

We are to prove that

RS = PQ.

[I] d' = 180° — e. by Hypoth

[2] Also 6' - iSo° ^PCA'. by Geom. 3

[3] Hence 180°

-

e - 180° /pcA',

[4] and e = /pcA'.

Now about BB' as an axis revolve BAB" till it comes into

the plane of BA'B'.

Then since

z:bcai=z:bca',

CA will take the direction of CA'.

And since

^-z:pca',
CR will take the direction of CP.

Now ARB and A'PB are symmetricar with respect to BB'.

by § 126.

Hence R will fall upon P, and therefore CR will coincide

with CP.

Therefore RS = PQ. by § 163.

Q. E. D.

PROPOSITION XVIII

i6g. The two conjugate diameters whose inclinations are sup-

plementary angles are^ when produced^ the diagonals ofthe rectan-

gleformed on the axes.

Let RS and PQ be two conjugate diameters whose inclina-

tions Q and ^' are supplementary angles.

Let LMNO be the rectangle on the axes.

We are to prove that RS and PQ produced are the diagonals

of the rectangle LMNO.

Since RS and PQ are conjugates

[i] tan ^ tan ^' = ^. by § 158.
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Fig. 53

But since d and ^' are supplementary

[2] —tan (9 — tan ^'. by Trig. 24.

Substituting this value of tan ^' into [i], we get

tan^ e =[3]

[4]

[5]

[6]

[7]

a 2

Hence tan^= d=
<2

or

But

or

h h
tan RCA=— , and tan RCA' ~

a a

tan LCA =

tan LCA =

LA
CA'

b

a

by Trig. 3.

Hence by [5] and [7] we get

[8] tan RCA := tan LCA.

[9] Hence ZRCA^^LCA.
Therefore the diameter RS coincides with the diagonal LN.

Similarly it may be shown that the diameter PQ coincides

with the diagonal OM,
Q. E. D.

170. Corollary 1

.

— The conjugate diameters whose inclinations

are siipplemejitary angles are equal to each other. by § 168.

171. Corollary 2.— There are only two conjugate diameters

whose inclinations are supplementary angles.
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For there are only two diagonals of the rectangle formed on

the axes. But the conjugate diameters whose inclinations

are supplementary coincide with these diagonals. by § 169.

Hence there can only be two such conjugate diameters.

172. Equi-Conjugate Diameters.—The two conjugate

diameters which, when produced, are the diagonals of the

rectangle formed on the axes are called the equi-conjugate

diameters of the ellipse.

The Directrix

173. The Directrix.—The^2y^^/r2.r of an ellipse is astraight

line drawn perpendicular to the X axis on the opposite side

of the focus from the vertex, and at such a distance from the

vertex that the distance from the focus to the vertex divided

by the distance from the vertex to the perpendicular is equal

to the eccentricity of the ellipse.

Fig. 54

In Fig. 54 if
FA
AE e, then DD' is the directrix.

174. Focal Radius.—The distance from au}^ point on the

ellipse to the focus is called \h.^ focal radius of that point.

.

175. The Directral Distance.—The distance from any point

on the ellipse to the directrix is called the directral distance

of that point.

PD is the directral distance of the point P.
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PROPOSITION XIX

176. The ratio between thefocal radius and the diredral dis-

tance of any point on an ellipse is constant and is equal to the ec-

centricity of the ellipse.

lyCt P be any point on the ellipse, and let DR be the direc-

trix and F the focus. Join P to F and draw PM perpendicu-

lar to DR.

Let ^^the eccentricity.

We are to prove that

PF _
PM ~^'

Draw the ordinate PK.

Let X = CK and J/
= PK.

a = CA,

^=CF,
and p = FH.

/ = FH=FA+AH.
FA

[i]

[2]

[3] Hence AH =

AH
FA a a ae

by § 173.

by § 128, [2].
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[4] Hence

^ . , a — ae .a — ae ,
a — ae

/ = FAH — = a— c-\ — =a— aeA, —-,
e e e

_ _ ae— ae^ + « — ae a{\ — ^^)

[5] or /=
^

.= .

[6] Also x — Q^\— YiY^ — c-\-p—m—c—{m—p).
The equation of the ellipse is

[7] a'f-\-b''x'—a''b\ by §111

Since the point P is on the ellipse, the ^ andj^' of the equa-

tion of the ellipse may stand for the coordinates of that point.

Hence substituting the value of x given in [6] into [7], we
get

[8] ay-\-b\c—{m—p)Y = cL'b\

[9] or «y + U'l/ — 2c{m —p) + {m—py\ — d'b'

.

b'C b~c b'
[lol Hence r^ -\ -. 2-^ im— p) -\ tt {m—pY = b'-

[11] But ^=i—e\ bv§i28, [5].
a

[12] and c--=za-e^. by § 128, [2].

Substituting these values into [10], we get

^ [13] y+^V— 2^(w—/) + (I— ^') {m~py~b\

[14]

a

[15]

y + (?^— /)^ = — ^V+ 2 ^^{m — p^-^r e'im — PY ^ b\

From [11] we get

[16] b'' — a\i~e').

Substituting this value of b'^ and the value of p given in

[5] into [15], we get

[17] y+(w

—

pY^=e'^ni^,

'+b'e'~2 ^{m—p)-\- {m—pY~e\m—pY~b\
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[i8] or PK+FK = ^'HK.

[19] Hence PF = ^"HK. by Geom. 26.

[20] But HK = PM. by Geom. 17.

[21] Hence PF = ^'PM,

PF
PM
PF

[22] and --—-: = e.

Q. K. D.

177. Corollary i

.

—In an ellipse thefocal distance is less than

the directral distance.

For e is less than i. by § 129.

Hence PF is less than PM.

178. Corollary 2.— The distancefrom- the centre of an ellipse

to the directrix is equal to
a

e

For in Fig. 55

[i] QV—c^ae, by §128, [2].
2

[2] and FH=/>= . by § 176, [5].

[3] Hence CH =: CF+ FH = a^+ ^—^' =—
-^

e e

PROPOSITION XX

179. The equation of the ellipse when any pair of conjugate

diameters are taken as the axes is

in which a' and d' are the semi-conjugate diameters.

lyCt P be any point on the ellipse, and L/M and NO be any

two conjugate diameters.

I^et lyM be the new axis of abscissas and NO the new axis

of ordinates.

Draw PS II YY' and PK II NO.
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Let X = CS and jK ^ PS.

y = CK " y = PK.
^' = CM " /^' = CN.

^=MCA" O'^NCA.

We are to prove that

is the equation of the ellipse referred to the diameters LM
and NO.

[r] PR= PK.sinPKR=ysin0'. by Trig, i and 22.

[2] RS = KH = CK. sin 6 =: x' sin 0. by Trig. i.

[3] Hence J/ = PR+RS=y sin ^' + ji;' sin 6.

[4] RK =: PK. cos PKR =—ycos 0'. by Trig. 2 and 23.

[5] CH = CK. cos ^ = x'cos ^.

[6] Hence ;r = CH— RK = jc' cos -^y cos 0'.

When XX' and YY' are taken as the axes the equation of

the ellipse is

[7] a-y -{- d~x^^=:a^d^. by §111.

Substituting for the x and j/ of this equation their values

given in [3] and [6], we get

[8] a'ly sin^ 6' + 2xy sin 6 sin d' + x" sin^ ^]

+ b'ly cos'O' + 2xy cos d cos O'+x" cos^ e-] = a'd\
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[9] Hence {a^ sin" 8 -\- b' cos'' Q)x^^

+ a^sin' 6>'+3^cos ^')y'

+ 2(a^ sin e sin (9' + <^^ cos 8 cos (9');i:>' :== a'K-.

h-

[10] But tan Q tan ^' = 3-. by § 158.

[11] Hence ^^ tan ^ = —
tan 6^"

[12] or a' s=— '^
-^—^/- bv Trig. 6,

cos C7 Sm C7'

[13] Hence a^ sin d sin 6^' = — b"' cos cos ^'.

[14] Hence a~ sin ^ sin Q^ + <^' cos Q cos 0' = o.

Substituting o for this binomial in [9] we get

[15] (a^sin^^+<^'cos^a)y^+(«^sin^6"+^^cos^6?')y^=«^^-\

Since the x^ and y' of this equation stand for the coordinates

of an}^ point on the ellipse when lyM and NO are taken as the

axes, this equation is the equation of the ellipse referred to

LM and NO as axes. by § 39.

Since the point M is on the ellipse, its coordinates ^' and o

must satisfy the equation of the ellipse. by § 40.

Substituting these values for the x^ andjj/' of [15], we get

[16] («-' sin^ e^-b' cos= e)a^''=d'b\

a-b'
[17] Hence a"^ sin^ ^ + ^' cos^ ^

a"

Since the point N is on the ellipse, its coordinates o and b^

must also satisfy the equation of the ellipse.

Substituting these values for the x' and y' of [15], we get

[18] («sin^ 6^'+^'cos^ e')b''^a'b\

[19] Hence a' sin^ 6^ + b^ cos' ^' = ^tt^-

Substituting the right hand sides of [17] and [19] into [15]

we get
1 LA 2 /,2

r 1 CI ^^ , CI ^^ 2,2
[20] -^ x^' + -^y =a b .

[21] Hence «V' + -^"•^" = ^"^".
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Since the old axes are no longer to be used, we may drop

the accents over the x and>' and write the equation

[22] ^.y + 3'v = ^''^'^

Q. E.D.

PROPOSITION XXI

180. The equation of the tangent to an ellipse when any pair

of conjugate diameters is taken as the axes is "
.

d'^x'

y —y — — -^A^ —^).

in which x' and y are the coordinates of the point of tangency

and «' and b' are the semi-conjugate diameters.

lyCt LM and NO be two conjugate diameters.

Let LM be taken as the X axis and NO as the Y axis.

Let PT be tangent to the ellipse at P.

Draw the ordinates PK and P'H.

Let x' = CK and J/'
= PK.

y=CH " y = P'H.

a' = CM " 3' =CN.
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We are to prove that

is the equation of the tangent PT.

The secant PP' is a straight line cutting the curve in two

points, therefore its equation must be of the form

[i] y—y= '^^n^,{^'—^)- by §58.

Since the point P is on the ellipse, its coordinates x' andj^'

must satisfy the equation of the ellipse.

Substituting them into the equation of the ellipse referred

to conjugate diameters, we get

[2] a'y + r-x" = a"d'\ by § 1 79.

Since the point P' is on the ellipse, its coordinates x" and

y must satisfy the equation of the ellipse.

Substituting them into the equation of the ellipse referred

to conjugate diameters, we get

[3] ay + d"x"' = a"d'\ by § 179.

Proceeding as in § 134, we get

PROPOSITION XXII

Q. K.D.

181. When anypair of conjugate diameters is taken as the

axes, the equation of the chord whichjoiyis the points of tangency of

two tangents drawn to an ellipsefrom the same poi7it without it, is

ayy + b''xx^ = a"b'\

in which x' and y' are the coordinates of the pointfro^n which the

two tangents are drawn, and a' and b' are the semi-co7ijugate

diameters.

Let PT and P'T be two tangents drawn to the ellipse from

the same point T,
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Fig 58

Let PP' be the chord joining their points of tangency.

Let any two conjugate diameters LM and NO be taken as

the axes, and draw the ordinates PK, P'H and TR.

Let x' = CR and y' = TR.

a' = CM " d' =CN.
We are to prove that

a'yy + d"xx'=a"d''\

is the equation of the chord PP'.

Let x" = CK and jv" = PK.

;*;'"= CH " y" = P'H.

The equation of PT is

[I] y —y V'x'
f2

a y
/fV-^ •^)

'

by § 180.

[2] Hence a^yy'^— a^^' =— b"xx" + b"x"\

[3] and a'yy"+ l>"xx" = a'y" + d"x"\

Since the point P is on the ellipse, its coordinates, x" and

y", must satisfy the equation of the ellipse.

Substituting them into the equation of the ellipse referred

to conjugate diameters, we get

[4] a'y'" + d"x"' = a"d' \ by § 179.

Hence substituting a'^d'^ for the second member of [3], we
get
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[5] a'^yy^^V'xx'^= a^H'\

which is the equation of PT.

Similarly we may show that the equation of P'T is

[6] «'>y" + /^"^;r^"' ^ ar^'^

Since the point T is on the tangent PT, its coordinates

x^ andjK', must satisfy the equation of PT.

Hence substituting them for the x and y in [5], we get

[7] «'»" + ^''^V = aJ'b'\

Similarly, since the point T is on the tangent P'T, by sub-

stituting the coordinates of T into [6], we get

[8] «'»'" + b^'x^x^^^= a^'V\

[9] Now a^'yy'+ V'xx^ = a^'b^\

is the equation of a straight line. by § 67.

But the coordinates x'\ y" of the point P will satisfy this

equation, for if they are substituted for the x and y in it, we
get a true equation, vz2., [7].

Hence the straight line represented by [9] must pass

through the point P.

The coordinates x'", y'" of the point P' will also satisfy [9],

for if they are substituted for the x and y in it, we get a true

equation, vzs., [8].

Hence the straight line represented by [9] must also pass

through the point P'.

Therefore since the line represented by [9] passes through

both points P and P', it must be the chord PP'.

Therefore [9] must be the equation of the chord PP'.

o. E. D.

182. Corollary.— When the transverse axis is taken as the

X axis and the conjugate axis as the Y axis^ the equation of the

chord becomes

ayy' -\- b'xx^ ^ a~b~.

EXAMPLES

I. From the point 10, 5, two tangents are drawn to
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i6jK^ + 9-^^ ^ 144. Find the slope of the chord which joins

the two points of tangency. Ans. Slope = — f

.

2. Two tangents are drawn to 1 6 jj/^ -|- 9-^^ ^= i44 at the

extremities of the chord y =^ — f-^ + 3- Where do the tan-

gents meet? Ans. x = 4,jj/= 3.

Construct a figure showing the tangents and the chord in

each example.

PROPOSITION XXIII

183. The two tangents at the extremities of any chord of an

ellipse meet on the diameter which bisects that chord.

Fig-. 59

Let PT and P'T' be two tangents to the ellipse at the ex-

tremities of the chord PP', and let LM be the diameter which

bisects that chord.

We are to prove that PT and P'T' meet on the diameter

LM.

Let NO be the diameter which is conjugate to LM.

Let LM be taken as the X axis and NO as the Y axis.

Let «' = CM and V = CN.

y = CK.

Now if R be the point where PT cuts the axis LM, then

by § 180 and § 45



128 ANALYTIC GEOMETRY

[I] CR = a

X'

Similarly, if R' be the point where *P'T' cuts the axis LM,

[2] then CR'

[3] Hence CR == CR'. byGeom. i.

Therefore the points R and R' coincide with each other and
the two tangents meet the diameter at the same point.

Q. E.D.

CR'.

PROPOSITION XXIV

183. If two tangents be drawn at the extremities of a?iy

focal chord',

(i) the two tangents will meet on the directrix, and
(2) the line joining the i?itersection of the two tangents to

the focus will be perpendicular to thefocal chord.

Y

D

\
P_-= _—

—

-r^ B "^^--v\^ '

—

-^ /^ / \
T-^

^5J/

C \
K \ J
D' \ BL--^

y^

Fig. 60

Let PT and P'T' be two tangents drawn to the ellipse at

the extremities of the focal chord PP'. Let R be the intersec-

tion of the two tangents, and DD' the directrix.

We are to prove

(i) that R will be on the directrix DD'.

(2) that RF will be the perpendicular to PP'.



THE ELLIPSE 129

Ivet ;c'= CK andy= RK.

lyet X and^ be the coordinates of any point on the chord

PP'.

The equation of the chord PP' is

[i] a^yy' + b'-xx' = a'b\ by § 182.

in which the x' and j/' are the coordinates of the point R.

[2] CF = «^. by § 128; [2].

Since the point F is on the chord PP', its coordinates ;«;= «^

andjj/ = o must satisfy the equation of that chord.

Substituting these values of x andjv into [i], we get

[3] b'^aex' =^arb'.

[4! Hence x' =—

.

But — is the distance from the center to the directrix.
e

by § 178.

Hence R, the intersection of the two tangents, must be on

the directrix.

Q. E.D.

Again, since RF is a straight line passing through the two

fixed points R and F, its equation must be of the form

[5] y-^=$Ei!(^'-^)- by §58.

In [5] let ^" and jj/" stand for the coordinates of the point

F, and x^ and y' stand for the coordinates of the point R.

Then y = ae, by § 128, [2].

andj>/" = o.

Substituting these values of ;»:" and y" into [5], we get

[6]
y_^^_^:LZl_(y_^).

ae—X

But ^'=T by [4].
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Substituting this value of x^ into [6] , we get

[7]
y_^::^_^>:L(y_^).

[8] Hence y

—

y= ^/-^ ,A x' — x)

,

which is the equation of RF.

[9] By [4] X

Substituting this value of x' into [i], we get

a
[10] a'yy = —b''^x-\-a''b\

e

[11] or a^ey^y^ — y^ax -\- a^ b^e

.

b""

ri2l Hence r= r(-^— ^^)-
aey

[13] But ^''^a^Ci— ^^). by §128, [5].

[141 Hence y=— -. (x— ae),
aey

which is the equation of the chord PP'.

lyCt s = the slope of the line RF,

and 5'= '' " ** '' " PP'.

From [8] we get

firi c- ""'y'
by §53-^'5J '-a'{i e')

From [14] we get

^ - aey
by § 53-

aev
"17] Hence 55'=-^-

—

-—^ X —
aey

[18] and I + ^i-' = 0.

Therefore RF and PP' are perpendicular to each other.

by § 62.

Q. E. D.
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PROPOSITION XXV

184. The locus of the intersection of two tangents to an ellipse

which are perpendicular to each other ^ is a circle whose center is

the center of the ellipse.

Fig. 61

Let PT and P'T be the two tangents to an ellipse at the

points P and P'. Let them be perpendicular to each other at

the point T.

Let P and P' move along the ellipse, but so that PTP' shall

always be a right angle.

We are to prove that the locus of the point T will be a cir-

cle whose center is at the origin.

Let x = CK andy = PK.

The equation of the tangent PT is

[i] y —y ay (x'— x). by § 134.

[2] Hence ay'jy = ay^ -\- d^x'^ — d^x'x.

Now since the point P is on the ellipse, its coordinates must
satisfy the equation of the ellipse. by § 39.

[3] Hence a^ + 5'x" = a'd't by § 1 1 1

.

Substituting this value of ay^ + d^x'''^ into [2], we get

[4] ^yy =^ cL'b^ — b'x^x.
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U" b~x'
[5] hence _^:^___^.

[6] But -^=^i;=^^^^^whichby[3]

[7] Hence ^=V^^+ .^-g;=V^^+.^(^;)\

Now substituting this value of —j into [5], we get

[8] ^=-5f;-+V*'+'''(5fy-
_ b'x'

a J/

then [8] becomes

[9] y ^^ sx -\" V b~ -\- a^s^
^

which is the equation of any tangent PT to an ellipse.

[10] Let y—s'x^ Vb' + a's'\

be the equation of the tangent P'T.

Then since FT and P'T are JL to each other

[11] iH-^5' = o. by §62.

[12! Hence / = — -—

.

.
s

Substituting this value of s' into [10], we get

[13] ,i' = -™+\/*' + iio S

which is the equation of P'T.

By transposition [9] and [13] become

[14] y — sx = Vb'+a's\

[15] y + ^^^^' + ^-
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From [14] we get by squaring

[16] y' — 2syx+ s^x- = Z>^ -|- «V, the equation of PT.

[17] From [15] y+2^+^ = *=+^.

Clearing [17] of fractions, we get

[18] ry + 2sxy+ x'= ^V+ a\ the equation of P'T.

Since the point T is on both tangents its coordinates must

satisfy [16 J and [18]. Hence we will let the x and_y of [16]

and [18] be the coordinates of T. Then these equations are

simultaneous and may be combined.

Adding [16] and [18], we get

[19] (1 + s')y+{i +s')x' = a\i +s')+d\L + s').

[20] Hence y -{- x^ =z a~ -\- d^,

in which x andjv are the coordinates of the point T.

Hence [20] is the equation of the locus traced out by the

point T when the points P and P' move along the ellipse.

by § 39.

Let a' + d' — r\

[21] Then [20] becomes x^ -\-y z= r^^

which is the equation of a circle whose center is at the

origin. by § 113.

Therefore the locus traced out by the point T is a circle

whose center is the center of the ellipse.

Q. K.D.
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PROPOSITION XXVI

185. If aiiy chord of an ellipse pass through afixed point and
tangents be drawn at its extremities, and if the chord be made to

revolve about the fixedpoint as a pivot, then the locus of the in-

tersection of the two tangents will be a straight line whose equa-

tion is

ayy+ b^'xx^ — a''b'\

in which x' andy are the coordinates of the fixed point about

ivhich the chord revolves, anda^ and b^ are the semi-conjugate diam-
eters which are taken as axes.

Figf. 62

L<et PP' be the chord passing through the fixed point R and

let PT and P'T be the two tangents drawn to the ellipse at its

extremities.

I^et lyM and NO be two conjugate diameters taken as axes.

lyet x' = CH andy = RH,

Let PP- revolve about R as a pivot.

We are to prove that the locus traced out by T is a straight

line and that its equation is

a'yy + b'^xx^^ = a"'b'\

Ivet ^" = CK andy ^ TK.
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The equation of the chord PP' is

[i] «''_>y+<5'''A-;^:" = «''^'^ by § 181.

Since the point R is on this chord, its coordinates must sat-

isfy the equation of this chord. by § 40.

Hence substituting Jt:' and _>/' for the ;»r andjf in [i], we get

[2] a'>y' + ^'vy zz:«'^^'^

Now as PP' revolves about R, T will trace out a locus.

Moreover [2] will be true for the coordinates of the point T
wherever it may be as it traces out this locus. Hence the jr"

andy of [2] stand for the coordinates of every point on the

locus traced out by T. Therefore [2] must be the equation

of that locus. by § 39.

This locus must also be a straight line. by § 67.

Since T is any point on the locus traced out by the inter-

section of the tangents, we may drop the accent marks from

its coordinates x" andy and write them x and y. Then [2]

may be written

[3] a'yy+d"xx'=a"d'\

Therefore the locus of T is a straight line and its equation

is [3]-

Q. E.D.

186. Corollary.— When the axes of the ellipse are taken as the

axes of coordinates, the equation of the locus of the i7itersection

of the tangents becomes

ayy' -f b'xx' — a:'b\

187. Supplemental Chords.—Two chords drawn from the

same point on an ellipse to the extremities of any diameter

are called supplemental chords.
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PROPOSITION XXVII

188. If a chord be parallel to any diameter of an ellipse, the

supplemental chord will be parallel to the conjugate of that diam-

eter.

Fig. 63

Let MC and MC be two supplemental chords drawn to the

extremities of the diameter CC
Let DD' and EE' be two conjugate diameters and let

MC
II EE'.

We are to prove that

MC
II
DD^

[I]
C'0_C'K
C'C~"C'M*

by Geom/ 23.

[2] But
CO ,

cc~^- by § 163.

[3] Hence
CK 1

CM~2'
[4] Hence CK= JC'M.

That is, the diameter EE' II
MC bisects a system of chords

II
MC. But by hypothesis EE' and DD' are conjugate, and

therefore EE' bisects a system of chords parallel to DD'.

by § 157-

Therefore MC
i|
DD'. by Geom. 10.

Q. K. D.
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Polar Equations of the Ellipse

PROPOSITION XXVIII

189. When the right hand focus is taken as the pole, the polar

equation of the ellipse is

a(i — e^)

I + ^ COS Q

in which a is the semi-transverse axis of the ellipse, e is its eccen-

t?^icity, r the radius vector of a7iy point on the ellipse, and d the

vectorial angle.

t

N. p
D/\

i
c A \k E

I K

0'

Fig. 64

Let F be the pole, XX' the initial line and DD' the direc-

trix.

Let P be any point on the ellipse. Draw PD _L the direc-

trix and PK_L XX'.

Let ^= XPFX, r= FP,and ^= the eccentricity.

We are to prove that

a{i — e'^)

I -\- e cos 6

is the polar equation of the ellipse.

]i" PF = ^PD. by s 176

^2] Hence PF = ^(EF— FK),

is] or PF = ^EF— ^FK.

>] But EF-"^^ ''\
by §176, [5;
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[5] and FK = r cos d. by Trig. 2.

[6] Hence by [3] PF = r=:<2(i

—

e^)— eraosQ,

[7] and r(i -j-^cos ^) — tz(i — e^)

.

Mail — e-)
Hence r — -^, ^.

^ -\- e cos C7

Q. E.D.

1 90

.

Corollary i .
— The polar equation of the ellipse will become

a(i — e')
r —^

I — e cos d

when the left handfocus is the pole.

191. Corollary 2.— The polar equation of the ellipse may be

writteji

pr=
2{\-\- e cosdy

in ivhich p is the param-eter

.

[i] For (i_^')=il. by §128, [5].

Substituting into [8], § 189, we get

b' 1

v^l a I -f- ^ (:os d'

Let/ be the parameter.

j! Then p
2

: b:: b: a.

'a. Hence p _b^
2 a

•

Substituting into
"2" we get

^5; r-
1

P
(I +^cos^)'

by § 125.

Q. K.D.

EXAMPLES

I. What is the value of r when = o? What line in Fig.

64 does r then represent ? Ans. rz=z a — ae.

r — FA.
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2. What is the value of r when d = 180° ? What line in

Fig. 64 does r then represent. Ans. r^=- a-\- ae.

r— FA'.

3. What is the value of Q when r is drawn to the extremity

of the conjugate axis?

Ans. ^ :=: cos""' (— (?) .

4. The eccentricity of an ellipse is \. What is the value of

B when r ^^\a'> Ans. ^ = o.

PROPOSITION XXIX

192. When the pole is at the center the polar equation of the

ellipse is

f^=
i—e'cos'd'

in which b is the semi-conjugate axis of the ellipse^ e its ecceii-

t7'icity, r the radius vector of a7iy point on the ellipse, and 6 the

vectorial angle.

Fig. 65

I^et P be any point on the ellipse and drawuts ordinate PK.

^=^PCK and /-^CP,

«= CA "
<^= CB.

We are to prove that

b''

r' =
I
— e^ cos^ 6'
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Let jr = CK and jK = PK.

[i] X = r cos Q

.

by Trig. 2.

[2] y = r sin 0. by Trig. i.

When YY' and XX' are taken as the axes of coordinates,

the equation of the ellipse is

[3] ay-\-b'x' = a'h\ by §111.

Substituting the values of x and y given in [i] and [2]

,

into [3] , we get

[4] a'r^ sin' 8 + b'r cos' Q = aH\

[5] Hence ^ ^ ^^^^ e + ^^o^S'

[6] But sin' d—\ — cos' Q. by Trig. 5.

. -, __ „
^'^'

L/J J-J-CIH^C r —
~ a' («' 3')cos'e'

>; and r'

^'

I 5— cos u

L9] But
a' b'

a

[10] Hence v —
I ^ COS u

by § 128, [4].

Q.E.D.

193. Corollary

.

— When the pole is at the center the polar equa-

tion of the ellipse may be written

a\i — e')
r- = —

,2 „„2 0-
I — e cos

3'

[i] For -^=i--e\ by §128, [5].

[2] Hence ^' = a'(i — ^').

Substituting this value of b^ into [10] § 192, we get

[3] r'= ^I— e' cos'
6'
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EXAMPI^ES

1. The center being the pole, what is the value of r when
0=0? Ans. r ^ a.

2. What is the value of r when d = 90° ? Ans. r^=d.

3. In an ellipse whose eccentricity is ^, what is the value

of ?" when =: 60° ? Ans. ^=0.89^.

4. What is the value of r in the equilateral ellipse?

Ans. r^ b.

5

.

Two tangents are drawn from a point to a circle ; re-

quired the equation of the chord of contact in the following :

(i) From (4, 2) to ^' +jK^ = 9. Ans. 4^1; +2^'= 9.

(2) From (<2, b^ X.o x^ \- y'^ ^r^ c^

.

Ans. ax-\-by^^c^.

6. Find the equation of a circle through (4, o), (o, 4),

(6,4). Ans. x^ -\-
y'^ — ^x — 6_>/ + 8 = o.

Suggestion.—^Join (4, o) to (o, 4) and to (6, 4) by straight lines ; then

erect perpendiculars at the middle points of these two lines ; their inter-

section will be the center of the circle, and the distance from this cen-

ter to any one of the points will be the radius. Then make use of

§115.

7. Find the equation of a circle through (o, o), (— 8«, o),

(o, 6a). Ans. x^ -{-
y -\- Sax— 6ajK = o.

8. Find the equation of a circle through (10, 4), (17, —3),

and radius =13.

9. Find the equation of a circle touching each axis at a

distance of 4 units from the origin.

Ans. x^-\-y— 8x— 8y -\- 16 — o.

10. Find the equation of a circle through (5, 6), and hav-

ing its center at the intersection ofjf= jx— 3 ;
4jj/— 3x= 13.

Ans. (x— lY -\- iy— 4)^=20.

11. What must be the value of ^ in order that the line

y ^ sx— 4 may touch the circle ;t^ + jk^ = 2 ?

Ans. ^ = ± |/ 7.

12. Required the equation of a tangent to the ellipse

X y
f- ^ := I, whose inclination to the X axis is 45°.
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13. If 3j = 5;f is a diameter of \-^^ = i, what is the
4 9

equation of the conjugate diameter ? Ans. 2oy-\- 29:^= o.

2 2
SV V

14. Required the area of \- ^^—- =1 i. Ans. 27ri/io.
4 ro ^

15. The extremities of a line of constant length slide along

the coordinate axes. Required the locus traced by any point

of the line.

16. If from the extremitj^ of any diameter straight lines be

drawn to the foci, prove that their product is equal to the

square of half the conjugate diameter.

17. Find the equation of a diameter parallel to the normal

drawn to the ellipse at {x, y) , the semi-axes being a and b.

18. Write the equations of diameters conjugate to the lines

X—y = o ; X -\-y ^=^ o \ ax = by ; ay =: bx.

Ans. b'^x+ a^y =: o ; b^x— a'^y r= o
;

a^y -|- b'^x = o ; bx -\- ay ::^ o.

19. The center of an ellipse is at (4, 7), the major and

minor axes are 14 and 8. Required its equation, the axes

being parallel to the axes of coordinates.

20. Prove that the length of a line drawn from the center to

a tangent and parallel to either focal radius of the point of

contact is equal to the semi-major axis.

21. The minor axis =12, the double focal ordinate = 5, re-

quired the equation of the ellipse, the origin being at the left

hand vertex.

Ans. ^^+y 1=5^.
144



CHAPTER X

The Hyperbola

194. The Hyperbola.—The hyperbola is the locus of a

point moving in a plane in such a way that the difference be-

tween its distances from two fixed points in the plane is con-

stant.

I^et F and F' be the two fixed points in the plane. Let P
be a point moving in this plane in such a way that PF'— PF
is constant.

Then the line PAR traced out by P is one branch of an h}^-

perbola.

The line P'A'R' traced out by a point P' moving in the

same way as P is another branch of the hyperbola.

The whole locus PARP'A'R' is an hyperbola.

PROBLEM

195. To draw an hyperbola.

Let F'H (Fig. 67) represent a ruler which maj^ be moved
about the point F' as a pivot.

Let /^the length of the ruler and a= any constant.

Take an inelastic thread whose length is /— 2a and fasten

one end of it at F and the other at H'. Place a pencil point
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Fig. 67

against the thread so as to form a loop at some point P on the

ed^e of the ruler. Now, keeping the thread stretched and the

pencil point against the edge of the ruler, turn the ruler about

the point F'.

As the point P moves F'P and FP are both increased or

both decreased by the same amount. Hence F'P — PF re-

mains constant, and therefore the locus traced out by P will

be one branch of an hyperbola.

The other branch of the hyperbola is drawn by taking the

point P as the pivot about which the ruler is turned.

It will be shown hereafter that in Fig. 67

196. Corollary.—// is obvious that the locus drawn hi this way
must cut the line F'Fin two points A and A'

.

197. The Foci.— -The two fixed points are called th^foci.

198. The Focal Radii.—The distances from the foci to any

point on the hyperbola are called the focal radii of that point.

199. The Vertices.—The points in which the hyperbola

cuts the straight line passing through the foci are called the

vertices of the hyperbola.

200. The Transverse Axis.—The line which joins the ver-

tices is called the transverse axis,

201. The Center.—The middle of the transverse axis is

called the center oi the hyperbola.
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202. The Conjugate Axis.—A straight line drawn through

the center perpendicular to the transverse axis, bisected by it

and equal to twice the square root of the difference between

the square of the distance from the focus to the center and

the square of the semi-transverse axis is called the conjugate

axis.

PROPOSITION I

203. The difference between thefocal radii ofany point on the

hyperbola is equal to the tra^isverse axis.

Fig". 68

Let P be any point on the hyperbola, r and r' its focal radii,

and AA' its transverse axis.

We are to prove that

r'— r=^M.

Let the point P move along the branch PAR of the hyper-

bola. When it reaches A we have

[i] r' F'A— FA. by § 195,

Now let P' move along the branch P'A'R' until it reaches

A^

[2] Then r' — r= FA' — F'A'.

From [i] and [2] we get

[3] F'A— FA = FA'— F'A'.

[4] Now F'A = F'A' + A'A,

[5] and FA' = FA + AA'.
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Substituting these values into [3] we get

[6] FA' + A'A— FA = FA + A'A— FA'
;

[7] hence 2F'A' = 2FA,

[8] and FA' = FA.

Substituting the right hand side of [4] into [i], we get

[9] r' — r = FA' + A'A— FA.

But from [8] we get

[10] FA' — FA = o.

Therefore [9] becomes

[11] r'— r=A'A.
Q. E. D.

PROPOSITION II

204. The equation ofan hyperbola is

aY — ^"^' = — a'd\

in which a is the semi-transverse axis, bthe semi-conjugate axis,

and X andy the coordinates of any point on the hyperbola.

Fig. 69

Let BB' be the conjugate and AA' the transverse axis of

the hj'perbola.

Let AA' and BB' produced be the axes of coordinates.

Draw PK 11 YY'.
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Ivet ^ = CK and 7 = PK,

We are to prove that

[i] a/y^ — b''x^ — —d'b''

is the equation of the hyperbola.

I.et r= PF, r' = PF', and c = CF.

[2' r'^ = F'K + PK. by Geom. 26.

[3] But V"^ = x+c.

'a. Hence

or

y^^^x + cY+f,

[5] r' = y{x^cy^y\

[6] r' = FK + PK. by Geom. 26.

[7] But FK = x— c.

>; Hence

or

r'= {x-cy+y\

's. r= y/{x— c)' + y\
10' But y— r = 2a. by § 203.

[11] Hence ^ {x + cY -^f ~ -y^ {x —cY ^ y- = 2a.

Clearing this equation of radicals as in § i it, [ii], we get

[12] ay — (r— a')x'' ^—a\c'—a^).

[13] But

[14] Hence

by § 202.b — y^c'— a\

b' ^r — a\

Substituting this value of c^ — a^into [12] , we get

[15] ay — b'x' = —a'b\

Since in [15] the x and y stand for the coordinates of any

point on the h5^perbola, that equation must be the equation of

the hyperbola.

Q. K. D.

205. Corollary I.—Since i?i the ellipse b'^ stands for a^— c^

but in the hyperbola it stands for c'—a^ z=. — {a^ — ^^), any

equation of the ellipse may be changed into the corresponding

equation of the hyperbola by substituting — b^ for b"^

.
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206. Corollary 2,— The distancefroin the center to the focus is

equal to the distancefrom the vertex to the extremity of the con-

jugate axis.

or

If ^^ a\ by § 202.

'2_ Hence r = a' + ^.

[3] But a=+3^ = AB. by Geom. 26.

[4] Hence c- = AB,

;5; and CF = AB.

207. The Equilateral Hyperbola.—The equilateral hyper-

bola is that hyperbola whose axes are equal to each other.

208. Corollary.— The equation of the equilateral hyperbola is

y — X =: — a i

in which a is the semi-transverse axis.

The equation of any hyperbola is

[i] d'y'— b^x'^^ — a'b'. by § 204.

But in the equilateral hyperbola

[2] «^ = <^^ by § 207.

Hence dividing [i] by [2] member by member, we get

[3] f — x'^—a:'

Compare with § 113.

PROPOSITION III

209. If to an hyperbola and the equilateral hyperbola which

has the same transverse axis^ ordinates be drawn to the same

point 071 the transverse axis, then the ordinate of the first hyper-

bola will be to the ordinate of the equilateral hyyerbola as the

conjugate axis is to the tra?isverse axis.

Let PAM be any hyperbola, AA' its transverse axis, and

BB' its conjugate axis.

,2
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Y

149

Y'
Fig. 70

Iret P'AL be the equilateral hyperbola having the same

transverse axis.

Draw the ordinates P'K and PK to the same point K.

Let ;i: ^ CK, J/= PK and/ = P'K.

Let « = CA and ^ = CB.

We are to prove that

PK : P'K :: BB' : AA'.

Since P is on the hyperbola PAM, its coordinates x and y
must satisfy the equation of that hyperbola. by § 40.

Hence, letting x and y of the equation of the hyperbola

stand for the coordinates of the point P, we get

[i] <2y — b'^x'^ =— a'U^, by § 204.

[2] or y= Tr(^^-^')a

Since the point P' is on the equilateral hyperbola PAL,
its coordinates x and_y' must satisfy the equation of the equi-

lateral hyperbola. by § 40.

Hence substituting x and >'for the x and _>/ of that equation,

we get

[3] y^ =. x'' — a\ by §208.

Dividing the members of [2] by the corresponding mem-
bers of [3] , we get
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[4]

[5] Hence

[6] or
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y~ a ~AA"

J :>' :: BB' : AA'.

Q. K. D.

210. Conjugate Hyperbolas.—Two hyperbolas are conju-

gate to each other when the transverse axis of each is the con-

jugate axis of the other.

PROPOSITION IV

211. The equation of the conjugate to any hyperbola is

aY—b'x'' = a'b\

in which b is the semi-transverse and a the semi-conjugate axis

of the conjugate hyperbola.

Let PBB'M be conjugate to the hyperbola RAA'S.

Let « = CA and b = CB.

Let P be any point on the conjugate hyperbola PBB'M.

We are to prove that the equation of the hyperbola PBB'M is

ay — b'x' = a'b\
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If for the conjugate hyperbola PBB'M we take YY' for the

X axis, and XX' for the Y axis, then since the point P is on

the hyperbola PBB'M, its coordinates x = PH and y = PK
must satisfy the equation of the hyperbola. by § 40.

But for the conjugate hyperbola, d is the semi-transverse

axis, and a is the semi-conjugate axis. by § 210.

Hence substituting PH for x, PK for jf, ^ for a and a for d

into the equation of the hyperbola, we get

[i] d'FK~a-YH = — a'd\ by § 204.

But for the hyperbola RAA'S and in all other theorems, we
have taken XX' for the X axis and YY' for the Y axis.

Hence for the sake of uniformity, we will do the same for the

present theorem.

Then PK = CH will be represented by x and PH will be

represented byjK.

Substituting x for PK and y for PH in [i], we get

[2] d'x'— ay' =— a'd\

[3] Hence aY— d'x' - a'b\

Now since in [3] x 2,w^ y are the coordinates of P, and

P is any point on the hyperbola PBB'M, [3] must be the equa-

tion of that hyperbola. by § 39.

Q. E. D.

Corollary,— The equations of any hyperbola and its conjugate

differ only in the signs of their absolute terms.

PROPOSITION V

212, The squares of the ordinates of any two points on an hy-

perbola are to each other as the products of the segments which

they make on the transverse axis.

lyCt P and P' be any two points on an hyperbola, and let

PK and P'H be their ordinates.

Let x^ = CK and / = PK.

;c"^CH " y' = P'H.
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Y

+B

C

P>

F K H

-Mil
B'

Y'

Fig. 72

We are to prove that

y :
>"^

: : A'K.KA : A'H HA.

Leta= CA=CA'.

[i] A'K = a^x' and KA =- ^' — a.

[2] A'H = a +y and YLK = x''— a.

Since the point P is on the hyperbola, its coordinates jr'

andjj/' nlust satisfy the equation of the hj-perbola. by § 40.

Substituting x^ andji^' for the x and y of that equation, we
get

[3] a^y'— b'x'' =— d'b\ by § 204.

Similarly, since the point P'is also on the hyperbola, we get

[4] d'y"- — b'x'" = — db\

By transposing and factoring, [3] becomes

[5] ay''=b'{x''-d),

and [4] becomes

[6] ay'^b^x'^— d).

Dividing the members of [5] by the corresponding mem-
bers of [6] , we get

[7]

y" _x'^
y/2 — ^fri

a'

a
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[8] Hence y''' -y'" v. {x' + a){x'—a) -{x''-^ a){x"—a)

,

[9] or y- :
y'" ':

: A'K.KA : A'H.HA.
O. E. D.

213. Corollary i

.

—Ordinates at equal dista^ices from the cen-

ter are equal.

214. Corollary 2.— The hyperbola is symmetrical with respect

to both axes.

215. Corollary ^.—If the ordinates of any two points on an

hyperbola be at equal distancesfrom the ceyiter^ the points will be

equally distant from the adjacent foci.

That is if CH = CH',

then will FT = FP'.

216. The Parameter.—The param.eter of an hyperbola is

the double ordinate which passes through the focus.

217. Corollary.— The parameter is a third proportional to the

transverse and conjugate axis.

Since the point R is on the hyperbola, its coordinates CF*

and RF must satisfy the equation of the hyperbola, by § 40.

Hence substituting CF for ^ and RF for y in that equation,

we get

]i] «-.RF b\Q,V = a'UK by § 204.

'2 But CF := a^ + b\ by § 202.

'.i.
Hence ^\RF b\a'^b')^ a'b'

)

'a. or a'.'R.^—a'b' — b'^— a'b\

[5] Hence a^RF = b\

'6\ ^.RF = b\

.7.
2a.2RF = ^b' .

-

>; 2RF : 2b : \ 2b : 2a. by Geom. 56.

[9] or RS : BB' :: BB' : AA'. by § 213.
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218, The Eccentricity.—The eccentricity of an hyperbola

is the quotient of the distance from the focus to the center

by the semi-transverse axis.

lyCt e = the eccentricity.

In Fig. 72 let ^= CF and a =, CA.

[I] Then ^=1^ = ^.

[2] and c = ae.

[3] But az-^-h' — c\ by § 202.

[4J Hence ^— = e%

[5] and

a

219. Corollary.— The eccentricity of an hyperbola is greater

than I

.

For in [i], § 218, CF is greater than CA.

KXAMPLES

1. What are the semi-axes and the eccentricities of the fol-

lowing hyperbolas ?

25j|/^— 16^^ =— 400,

3y— 2^' = 12,

and y- :=: ni,

4

2. The equation of an hyperbola is i6j/^

—

gx'^ :=: — 144.

What is the distance of the focus from the center, and the

distance of the focus from each of the vertices ?

3. The divStance from the vertex of an hyperbola to the end

of the conjugate axis is 5, and its semi-transverse axis is 4.

What is the eccentricity and^he equation of the hyperbola ?

4. Find the eccentricity of an equilateral hyperbola.
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PROPOSITION VI

220. If r' be the longer and r the shorter focal radius of any

point on the hyperbola, then

r' m ex -\- a,

and r = ex— a,

in which e is the eccentricity and a the semi-transverse axis ofthe

hyperbola.

In Fig. 73

let r'= F'P and r = FP,

^= CK " jj/ = PK,

and ^=CF " « = CA.

We are to prove that

r" ^=ex -\- a,

and r^ ex— a.

[i] r''=y-+{x + cy.

[2] Hence r'^ n^ y~ -\- x^ -\- 2cx -\- <f^

[3] But ^y— b'x'' = —a'b\

[4] Hence / ^K {x'— a'^

.

a~

Substituting^ this value of^ into [2], we get

byGeom. 26,

by § 204,

[5]
b'

a
{x^— a^) -\- x^ -\- 2CX -\-c^
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[6

[7

[8

[9
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But c'-b'-^a\ by§202.

}Ience r'- = -^ {x^ — a') -\- x' ~{- 2cx -\- a^ -\- b^
, ^

b'+ x'+2cx^a''+b\

by §2i8, [2].

x^ + 2aex + a^

,

or

Now

Hence r'

r" =
a'

a

[11] or r'^=^'^^+ 2^^Jt: + ^' = (^;r + <3;)^ by§2i8, [4].

[12] Hence r^ := ex -\- a.

Similarly it may be shown that

[13] r :^ ex— a.

Q. B. D.

PROPOSITION VII

221. The equation of the tangent to an hyperbola is

in which x' and y' are the coordinates of the point of tangency,

and a and b are the semi-axes.

Let PT be a tangent to the hyperbola at the point P.

Let x' = CK and 7' ^ PK.

^ = CA " b ^ CB.
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We are to prove that »

•^ -^ a'

y

Let PM be a secant cutting the hyperbola at the two points

P and P'.

Let ^"= CH and /'= P'H.

Since the secant is a straight line passing through two

fixed points, its equation must be of the form

[i] y—->'=-5E|;'^-^'-^)- by §58.

Since P is on the hyperbola, its coordinates x^ andy must

satisfy the equation of the hyperbola. by § 40.

Hence substituting ;r' and jv' for the ^ andjK of that equation,

we get

[2] ay'—d"-x" ^—a'b\ by § 204.

Similarly, since the point P' is on the hyperbola, its coor-

dinates Jtr" and J/" must also satisfy the equation of the hyper-

bola, by § 40.

Hence substituting ^" and y'^ for the x and y of that equa-

tion, we get

[3] a>"^— ^^^"^ =— a'b\ by § 204.

Subtracting the members of [2] from the corresponding

members of [3], we get

[4] aHy''' —y") — d'(x"'— x") = o,

[5] or ^'(y—y) = d'{x"'— x").

[6] Hence a'iy"—y){y -\-y') = d"-{x" —x') {x'-\-x")

,

y —y _ b' x' + x"
[7] and

x' a' y H-y

Substituting this value oi"^, =^ into [i], we get

.[8]
y_^=i; !;+£;;(..-.).

Now let the point P' move along the hyperbola towards P.
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Then the secant will revolve about the point P as a pivot and

will continually approach the tangent PT, and when P' reaches

P it will coincide with the tangent.

When P' reaches the point P we will have

[9] x" = x' and y" ^ y

,

and the fraction in [8] becomes

b^ 2x' _b'x'
'-''^-'

a' 2y'~ a'y"

and [8] becomes

b^ x^
[11] y—y= -^— (^x' —x).ay
Now the X and J/ of [8] stand for the coordinates of every

point on the secant in every position which it takes as it re-

volves about P. Hence they stand for the coordinates of

every point on it when it coincides with the tangent.

But when the secant coincides with the tangent, [8] takes

the form of [11]. Hence the x and y of [11] stand for the co-

ordinates of every point on the tangent.

Therefore [11] is the equation of the tangent. by § 39.

Q. E.D.

b"^ x'
222. Co7'ollary.— The fraction —^—

-,
is the slope of the tangent.

For proof compare § 135.

223. The Subtangent.—The subtangent is the distance

measured along the X axis from the ordinate of the point of

tangency to the tangent.

Corollary i.— The length of the subtangent is
x'^^ — a'

X'

For proof compare § 138.

224. Corollary 2.—If different hyperbolas have the same

trafisverse axis and ordinates be drawn to each from the same

point on the transverse axis, then all the subtangents will be

equal to each other.

Compare § 140.
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Draw a figure showing all the lines referred to in this cor-

ollary.

225. The Normal,—The ?2^r;;2<2/ to an hyperbola is a straight

line perpendicular to the tangent at the point of tangency.

PROPOSITION VIII

226. The equation of the normal to an hyperbola is

y
in which x' andy are the coordinates of the point of tangency,

and a and b are the semi-axes.

Let PN be the normal and PM the tangent to the hyper-

bola at the point P.

Let x' = CK andy = PK,

and s' ^ the slope of the tangent PM.

We are to prove that the equation of PN is

y —y —
ay
b^x

,{x'—x).

The normal is a straight line passing through a fixed point,

namely the point of tangency, by § 225.
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Hence its equation must be of the form

[i] y —y = s(yx'— x), by §57.

in which x' andjj/' are the coordinates of the fixed point, here

the point of tangenc}' ; ^ is the slope of the line, here the slope

of the normal ; and x and y the coordinates of any point on the

line, here the coordinates of any point on the normal PN.

The normal is perpendicular to the tangent. by § 225.

by § 62.

by § 222.

[2] Hence I -j- ^/ = 0.

[3] But ' ~a'y'

[4] Hence

cinrl

,
b'x'

a' y

Substituting this value of s into [i] , we get

[6] y-y=-"^(x'-x).

Now in [6] the x and y are the coordinates of any point on

the normal PN. Hence [6] is the equation of the normal.

by §39.

Q. K.D.

a^y
227. Corollary.— Thefraction — jr^} ^^ l^^ slope of the nor-

mal.

228. The Subnormal.—The subnormal is the distance

measured along the transverse axis from the ordinate of the

point of tangency to the normal.

229. Corollary.— The length of the snb?iorfnal is —^x\
a

For the proof compare § 146.

EXAMPLES

I. Required the equation of the normal and the value of

the subnormal in the following hyperbolas :
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X'

a
r
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— 36, the point of tangency being (4, ord. +)

I, the point of tangency being {-\/ a, o).

PROPOSITION IX

230. The tangent to an hyperbola bisects the interior^ and the

normal the exterior angle between the focal radii of the poijit of
tangency.

I^et PM be the tangent and PN the normal to the hyper-

bola at the point P.

Let FP and F'P be the focal radii at the point P.

We are to prove that

PM bisects Z. F'PF,

and that

PN bisects Z. FPO.

Since the point M is on the tangent, its coordinates -r= GM
a.ndy=^ o must satisfy the equation of the tangent, by § 40.

Hence substituting these values for the x and y of that

equation, we get

. bV b' x'
[I] y = -irj ^-7CM.

a~y a'

y
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Hence ay--d'x" = — CMb'x'.

But ay -— b'x = — a'd\ by § 221, [2].

[2] Then a'd' = CMb'x',

[3] or CM = ";

.

X

[4] Now MF = CF--CM,

or M^= ae-
a'

x''
by§2i8, [2].

[5] hence MF=;(,ex'— a)

.

'6 Also MF' = CF' + CM,

or MF' =ae-\-
a'

1
•

X

[7] UF'=^{ex'+a)

[8] Then from [5] and [7] ^rv^,=
^^

MF' ex' + a'

MF r
[9] Hence MF'^T^' by § 220, [12] and [13].

[10] or MF : MF' ::V: /.

Take PO = PF= r,

and draw OF.

Substituting this value of PF or r into [10], we get

[11] MF : MF' :: OP : r.

Hence OF
II
PM, by Geom. 24.

[12] and ^ F'PM =^ POF, by Geom. 8.

[13] and Z^FPM =zlPFO. by Geom. 7.

[14] But z:PFO =:Z:P0F. by Geom. i6.

[15] Hence z^ F'PM=^ ^ FPM.
Q. E. D.

Again

[16] z:F'PR + ^F'PM = ^FPM + ^FPN, by §225:

[17] and z:F'PM=z1FPM. by [15].
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[18] Hence

[19] But

[20] Hence

231. Corollary.-

Compare § 149.

^F'PR =z:OPN.
^FPN =^OPN.

by Geom. 4.

Q. E. D.

To draw a tangent to an hyperbola.

232. A Chord.—A chord oi an hyperbola is a straight line

terminated both ways by the hyperbola.

233. The Bisector of a Complete System of Parallel

Chords,—The bisector of a complete system of parallel chords is

the line which contains all the middle points of those chords.

234. The Diameter.—A diafueter of an hyperbola is that

part of the bisector of a complete system of parallel chords

which is bounded both ways by the hyperbola.

PROPOSITION X

235. The equation of a diafueter of an hyperbola is

y= y-^cot(pjx,

in which cp is the inclination of the system of chords bisected by

diameter^ and a and b are the semi-axes.

Let RS represent any one of a complete system of parallel
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chords, qy its inclination, and P its middle point. Let IvN

be the diameter which, when produced, bisects the system of

chords represented by RS.

We are to prove that the equation of LN is

Let ;i: = CK and 7 ^ PK,

^'=CH " y=RH,
and r= PR = PS.

[i] z^ RPO = z: PMK. by Geom. 8.

[2] cos RPO = cos PMK = cos cp.

[3] PO = r.cos RPO. by Trig. 2.

[4] PO = r.cos q).

[5] .;»;' = CK+PO = .r + r.cos cp.

[6] RO = r.sin RPO. by Trig. i.

[7] RO = r.sin q),

[8] y = PK+ RO =jj/+r.sin ^.

Now the point R is on the hyperbola, and hence its coordi-

nates x^ andy must satisfy the equation of the hyperbola.

by § 40.

Substituting x' and j/' for the x and jk of that equation,

we get

[9] a^y'^— d^x'- =^ — a'd^. by § 204.

Substituting the values of x' and y found in [5] and [8]

into [9], we get

[10] ^^(jK+ r.sin cpY— d'{x -\- r.cos (pY ^^— a'^b'^.

Squaring the binomials and factoring with respect to r^ and

r, we get

[11] (a^sin^ cp— d'cos^ cp) r' -{- 2 (ay sin (p— d^x cos<^)r=

Now since P is the middle point of RS, the two values of

r in [11] must be equal to each other, and hence by the the-

ory of quadratic equations
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[12] • 2(«^jj/ sin ^

—

U^x 0.0^ cp^ ^^o.

[13] Hence «^jf sin ^= <^^jtrcos ^.

b~ COS cp

141 Hence j/ = —-^ x.^ -^ a sm q)

[15] Hence jf = ( —y cot <^j;t:. by Trig. 6 and 9.

Now the X and jk of [15] stand for the coordinates of the

point P. But, since RS represents any one of the system of

parallel chords, P may be any point on their bisector PN, and

since the diameter I^N is a part of the bisector, P may be any

point on that diameter.

Hence the x 2iX\Ay of [15] stand for the coordinates of any

point on the diameter LN, which bisects the system of chords

represented by RS, and therefore [15] is the equation of that

diameter. by § 39.

Q. E. D.

236. Corollary i.^The diameter of an hyperbola is a straight

line passing through the center.

For proof compare § 154.

237. Corollary 2.—If 6 be the inclination of any diameter^

and cp the inclifiation of its system of bisected chords, then

b'
tan 6 tan cp =

For proof compare § 155.

a^
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PROPOSITION XI

238. If any diameter bisect a system of chords which are paral-

lel to a second diameter, then that second diameter will bisect a
system which are parallel to thefirst diameter.

Fig. 78

Let MN bisect a system of chords represented by RS, and

let RS be parallel to OP. Let OP bisect a system of parallel

chords represented by TU.

We are to prove that

TU
II
MN.

Let 6 be the inclination of MN,

9
ii tt (i K^

6' " " " '' OP,

and cp'
( ( ( ( ( i ( ( 'T^TT

[l] Then tan 6 tan <p=z ^^ by § 237.
CI'

[2] and tan 0' tan ^' := -^. by § 237.
Ch

[3! Hence tan Q tan q) =z tan 0' tan q)\

But RS 11 OP by Hypoth.

[4] Hence ^'=^,

[5] and tan 6^ = tan (p.
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Substituting this value of tan q) into [3], we get

[6] tan Q = tan cp',

[7] and = cp'.

Hence TU ||
MN. by Geom. 9.

and the system of chords parallel to TU will be parallel to MN.
by Geom. 10.

Therefore OP bisects a system of chords which are parallel

to MN.
Q. E. D.

239. Conjugate Diameters.—Two diameters are said to be

conjugate to each other when each bisects a system of chords

which are parallel to the other.

240. Corollary.—If Q be the inclination of any diameter, and
6' the i?iclination of its conjugate, then

b'
tan 6 tan 6' =

a'

For proof compare § 158.

PROPOSITION XII

241. The tangent to an hyperbola at the extremity of any

diam,eter is parallel to the conjugate of that diameter.

Fig". 79

Let OP be any diameter and MN its conjugate. Let PT
be a tangent at the extremity of OP.
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We are to prove that

PT
II
MN.

Let RS be any one of the system of chords bisected by OP.

Let Q be the inclination of OP,

6' " " '' " MN,
cp " " " " RS,

and ^' *' " " " PT.

Let x' = CK and / = PK.

We have RS
||
MN. by § 239.

[i] Hence cp = B\ by Geom. 8.

[2] and tan q) = tan d\

Since the point P is on the diameter OP, its coordinates x^

andj^' must satisfy the equation of that diameter which is

[3] J=(-^cot^jx. by §235.

Substituting x' and J/' for the x and y of this equation, we
get

[4] y=(^, cov<^x'.

[5] Hence

[6] But C^C\^ fTt by Trig. 9.cut tf
^

tan cp

[7] Hence
I _ a'y'

tan cp b'^ x''

[s; and
b'x'tan^= 2 f' ay

[9l
b^ x^

Hence by [2! tanO'=-^—;.

or y

]io] But
,

b'x'
tan cp' —

2 r^ a' y'
by § 222.

[II] Hence tan 6' = tan cp\

Therefore PT ||MN.

by [9] and [10].

by Geom. 9.

Q. K. D.
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242. Corollary i

.

— The two tangents at the extremities of any

diameter are parallel to each other.

243

.

Corollary 2.— Thefour tange7i ts at the extremities of any

pair of conjugate diameters form a parallelogram inscribed

within the two conjugate hyperbolas.

PROPOSITION XIII

244. Given the coordinates of the extremity of ajiy diameter to

find the coordinates of the extremities of its conjugate.

Let PQ and RS be any two conjugate diameters. Let OK
and PK be given.

We are to find OH and RH, OL and LS.

Let x' = OK and / = PK,

andjr'^= OH " jf" = RH.

Draw the tangent PT.

Since RS is a straight line passing through the origin, its

equation must be of the form

[i]
, y— sx. by § 55.

RS
II
PT. by §241.

[2] Hence Z. ROX = Z PTX, by Geom. 8.

[3] and tan ROX = tan PTX.
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[4] But by [i] tan ROX — s, by § 53.

[5] and tan PTX = ^,. by § 222.

[61 Hence s = —,

—

-..

^ -^
a'

y

If we substitute this value of s into [i], the equation of RS
becomes

[7] y=^—i^-ay
Now, since the point R is on the diameter RS, its coordi-

nates x" and jk" must satisfy the equation of RS. by § 40.

Hence substituting x" andy'^ for the x andj'of [7], we get

[8] y" = -A,^"'

Since R is also on the conjugate hyperbola RBB'S, its co-

ordinates x" nndy^ must satisfy the equation of that hyper-

bola, which is

[9] ay— b'x'= a'b\ by § 2 1 1

,

Hence substituting ^" andj^" for the x and y of that equa-

tion, we get

[10] «>"'— ^V'^=a^^^

Now, since in both [8] and [10] x" stands for OH and y"
stands for RH, these equations are simultaneous and there-

fore can be solved by algebra.

Squaring both members of [8] , we get

b^x'^
[11] y =-1-7-2-^ •

ay

Substituting this value of y^"^ into [10] , we get

[12] a'^^.x''' — b'x"''=a'b\
ay

[13] '~x"'^-x"'-= a\
"- ^'-' ay

A^.ri
[14] b'^x'^'x'" — ay'x'" = ay
[15] and {ay'— b'x")x"' = — ay\
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Now, since the point P is on the hyperbola PAA'Q, its co-

ordinates x' and y must satisfy the equation of that hyper-

bola, by § 40.

Hence substituting x' and / for the x and y of that equa-

tion, we get

[16] ay— b''x'''=^— arb\ by § 204.

Substituting the value of the left hand member of this

equation into [15], w^e get

[17] «'^v = «y^

[18] Hence x" = ±i -^ y' =^OYi or OL.

Substituting -|

—

j-y* for the x" in [8] , we get

r- n ,, b~ x^ a , b , ^^^
[19] y"= -J—, -ry' = ^x' = RH.

a y b a

Substituting —y' for x*^ in [8] , we get

[20] y'= _A^',= SI..
a

245. Corollary.—All diameters are bisected by the center.

For proof compare § 163.
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PROPOSITION XIV

246. The difference of the squares of any two conjugate

diameters of an hyperbola is equal to the difference of the squares

of its axes.

Fig. 8r

Let PQ and RS be any two conjugate diameters, and AA'
and BB' the axes.

We are to prove that

PQ — RS = AA' — BB'.

Let x' = CK andy = PK,

^"=CH " y = RH,

« = CA " <5 = CB,

and«' = CP " ^' = CR.

'l[ «'^ = ^'^+y^ by Geom. 26.

'2 and b'^^x'''^y"\ by Geom. 26.

'.i. But tl2 /2 by § 244,

'a. and
b^

y =
a' *

• by § 244.

[5] Hence by [2] b" = ^y^+^ x'\
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Subtracting the members of [5] from the corresponding

members of [i] , we get

[6] a" — b" .= ^''+y'—^y—^ x'\

[7] =.\.-^)^y\.-^).

[8] =^.'^ +^>.
[9] =^^^ —^^''•

[10] =.^.^_,»)(^'_^y

[11] «'^— ^'^= («'— ^^)-

!;2^/2 ^2^,/2

,/? /,'2 _ /'^S A2^
"-^ ^^

Since the point P is on the hyperbola, its coordinates x' and

y' must satisfy the equation of the hyperbola. by § 40.

Substituting x' andy for the x andjj/ of that equation, we
get

[12] a'y'' — b''x''=— d'l)\

[13] b^x^'— a'y^a'b'.

Substituting the value of the left hand member of this equa-

tion into [11], we get

[14] a'^ — b'^ = a' — b\

2 2 2 2

[15] Hence PQ — RS = AA' — BB^. by § 245.

Q. E.D.
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PROPOSITION XV

247. The parallelogram formed by tangents to tivo conJ2igate

hyperbolas at the exti^emities of any pair of conjugate diameters

is equal to the rectangle whose sides are equal to the axes of the

hyperbolas.

Fig. 82

Let PQ and RS be any pair of conjugate diameters, and

LMNO the parallelogram formed by tangents to the hyper-

bolas at the extremities of these diameters.

Let DEFG be the rectangle whose sides are equal to the

axes AA' and BB'.

We are to prove that

LMNO — DEFG.

Let « = CA and b = CB,

y = CH " y = PH,

;^;" = CK '' y = RK,

Q^Z. PCH and ^ = ^ RCK.

[i] LMNO = LO X NO sin LON. by Trig. 15.

[2] Hence LMNO = \a'V sin RCP, by § 245.

[3] or LMNO = \a'b' sin {cp— O).



[4

[5

[6

[7

[8

[9

[lO

[II
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sin \(p— 9) ^ sin cp cos Q— cos 9) sin 6. by Trig. 13.

RK _ y"

CR ~ b'

CH_ ^
CP " a'

CK _ ^
CR "" ^'

sm0 =^ = ^.

^'"^= CR=T
cose =— =^,

^°^^=CR= b'

Hence sm (9^- 0) =^^ -^^ =- -r^^.

But ^" = -t-JK', by § 244.

and /' =—x'

.

by § 244.
a

Substituting these values of ^" andj^" into [9], we get

[12] sm(^-^).^ ^^,
=___^____.

Now since the point P is on the hyperbola PAA'Q, its co-

ordinates jr' and J/' must satisfy the equation of that' hyperbola.

by § 40.

Substituting x^ andj^' for the x and y in that equation, we
get

[13] ay^— ^*^'^ =— a-y^. by § 202.

[14] Hence b'x"" —ay = a'd\

Substituting a^d^ for d'^x'^— a^'' in [12], we get

[15] ^>"('^-^) = «7^=7^-
Substituting this value of sin {cp — 6) into [3], we get

[16] IvMNO = 4a'd' 4rr = 4^^-
a

[17] But 4^3= 2«2^= AA'X BB', by § 245.

[18] and AA'=GF. by Geom. 17.
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[19] Hence 4«/^=:GF X BB'= DEFG.

Therefore from [16] and [19], we get

[20] LMNO = DEFG.

by Geom. 28.

Q. E.D.

The Directrix

248. The Directrix.—The directrix of an hyperbola is a

straight line drawn perpendicular to the X axis on the oppo-

site side of the vertex from the focus, and at such a distance

from the vertex that the distance from the focus to the vertex

divided by the distance from the vertex to the perpendicular

is equal to the eccentricity of the hyperbola.

X-

Y^

Fie:. 83

FA
In Fig. 83, if -—— = e, then DD' is the directrix.

AF
249. The Focal Distance.—The distance from any point

on an hyperbola to the focus is called Va^ focal dista?ice of that

point.

FP is the focal distance of the point P. '

250. The Directral Distance.—The distance from any
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point on an h3^perbola to the directrix is called the diredral

distance of that point.

PD is the directral distance of the point P.

PROPOSITION XVI

251. The ratio between thefocal and directral distances of aiiy

point on an hyperbola is constant and is equal to the eccentricity

of the hyperbola.

Let P be any point on the hyperbola, and let DR be the

directrix.

Join P to F and draw PM _L DR.

We are to prove that

PF
PM e.

[2]

Draw the ordinate PK.

Let X = CK, y = PK, ^ = HK,
^ = CA, ^= CF, and / = FH.

/>= FH= FA + AH.
FA
AH e. by § 248.
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[3] Hence AH = — — . by § 218, [2].

[4] Hence by [i]

_^ . , ae— a . ae— a
,
ae— a

p^YK-\ = <:— a -\
^^ ae— a -\

=
e e e

ae^— ae-\- ae— a

e

ae^— a ai^e"^— i)
[5] Hence p

[6] ;r=CH+HK = r—/>+y = r+ {x' — p)

.

The equation of the hyperbola is

[7] «y — h^x^ = — a'^b'. by § 204.

Since the point P is on the hyperbola, the x and y of [7]

may stand for the coordinates of that point.

Substituting the value of ;i: given in [6] into [7], we get

[8] ay-b\c^{x^-p)Y:=.-a^b\

[9] Hence a'y~— b'^c'^ 2c{x'—p)+ iyx'—pY^^ —a'b\

b'^c^ 2<^V b'^

[10] f-^-^{x^-P)-^{^'-py^-b\

[11] But -^ =^^-i, by §218, [5].

[12] and c^z^a^e' by § 218, [2].

[13] Hence

y — /^v — 2^(;p' —/)—(<?'— i)(x'—/>)'=— ^^

[14] y—(^v— 2^(y—/)—^H^'—/)^+(^-'—/)^=— ^^

[15] f-^^{x'-~py=b^e'^^2^{x^-p)^e\x'-py-b\

From [11] we get

[16] b'^a\e^—l^.

Substituting this value of b' and the value of p given in

[5] into [15], we get
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[17] y+ (^' -py = rx'\

[i8] or PK + FK = ^-HK.

J9. Hence PF = ^'HK,

"20' and PF = ^HK =

'21] Hence
PF
PA/r

^'

179

by Geom. 26.

Q. E. D.

252. Corollary i.—In an hyperbola thefocal distance isgreater

than the directral distance.

For e is greater than i. by § 219.

Hence in § 251, [21], PF must be greater than PM.

253. Corollary 2.— The distance from the center of an hyper-

bola to the directrix is equal to —

.

e

For in Fig. 84

[i] Q,-^~c—ae, by §218, [2].

2

[2] and FH = ^^—-^ by §251, [5].
e

[3] Hence CH = CF— FH = ae
ae^— a a

e
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PROPOSITION XVII
t

254. The equation of the hyperbola when anypai?' ofconjugate

diameters are taken as the axes is

hi which a^ and V are the semi-conjugate diameters.

Let P be any point on the hyperbola.

Let LM and NO be two conjugate diameters.

Let LM be the new axis of abscissas, and NO the new axis

of ordinates.

Draw PS
|i
YY' and PK

||
NO.

Let X = CS and j = PS.

-r' = CK " ;/' = PK,

«'^CM " ^' = CN.

= Z^KCX, 0' = NCX.

We are to prove that

is the equation of the hyperbola referred to the diameters LM
and NO.
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[i] PR= PKsinPKR = y sin <9'. by Trig. i.

and Geom. 1 1.

[2] RS = KH = CK.sin 8 — x' sin B. by Trig, i

.

[3] Hence j = PR + RS =y sin 0' +x' sin 0.

[4] AgainRK= PK.cos PKR=:y cos Q\ by Trig. 2.

and Geom. 11.

[5] and CH = CK.cos = jt:' cos 0. by Trig. 2.

[6] Hence jr = CH + RK = ;r' cos ^+y cos ^'.

When XX' and YY' are taken as the axes, the equation of

the hyperbola is

[7] aY— b''x^^— a'b\ by §204.

Substituting for the x and y of this equation their values

given in [3] and [6] , we get

[8] a' ly sin^ 6' + 2xy sin 6 sin 6'+ x" sin' O]

— b'[y" cos' 6' + 2xy cos ^ cos 6'+ x" cos' ei~—a'b\

[9] Or (a' sin' ^—<5' cos' 6^)^"

+ (a'sin'^'— ^'cos'^Oy

+ 2(a' sin 6 sin 6*'— <^' cos cos 0')xy =1— a^b'\

b^
[10] But tan tan ^' = —^

.

by § 240.

["] Hence 2 . ZD

"^ ^^''^-tan^^"

[12] or
, sin r 2 cos 0'

-u ^ • ^
a~ ^ = ^'-^—^,. by Trig. 6.

cos u sm fc/' ^

[13] Hence ^' sin Q sin 6' = ^' cos 6^ cos ^',

!i4; and a^ sin ^ sin 0' — ^' cos ^ cos Q' = 0.

[15] Substituting for this binomial in [9], we get

[16]

(<2' sin' 6 b'cos' 0)x"+ (^'sin' 6' ^'cos' 6')y'=: a'b\

which is the equation of the hyperbola when LM and NO are

taken as the axes of coordinates.

Since the point M is on the hyperbola, its coordinates a' and

o must satisfy the equation of the hyperbola. by § 40.
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Substituting these values for the x^ and_y' of [i6], we get

[17] {a" sin^ e — b' QOse)a'"- —— a'b\

a-b'
[18] }Ience a^ sin^ — b" cos^

a'^

Now, if instead of taking the point P, we had taken any point

P' on the conjugate hyperbola, and had taken YY'for the rectan-

gular X axis and XX' for the rectangular Y axis ; and had

taken NO for the oblique X axis and MI^ for the oblique Y
axis ; and also had taken BCN for d and BCM for Q' , then in

the same wa}^ that we obtained [16] we would have obtained

[19] (CB sin' BCN — CA cos" BCN)CK'+

(CB sin' BCM — CA cos' BCM) P'K' = — ^^^^^

If we take Mly for the X axis and NO for the Y axis, then

P'K' = CT may be represented by x" and CK'=: P'T by y'\

and [19] wnll become

[20]

(^'cos'^'— «'sin'0')y"+(^'cos'^— «'sin'a):r"'z=—«'<5'.

In [20] x" and J/" stands for the coordinates of any point

on the conjugate hyperbola when LM is taken as the X axis

and NO is taken as the Y axis.

Since the point N is on the conjugate hyperbola, its coor-

dinates o and b' must satisfy [20].

Substituting these values for the x" and jv" of [20] , we get

[21] (<^' cos-^ &— a' sin' e')b" — —a'b\

[22] a' sin' 0'— /^'cos' Q' = ^.
Substituting the right hand members of [18] and [22] into

[16], we get

2 L-2 2 7,2

[23] —-^ ^" + -j^y —

—

^'^'•

[24] Hence a'y— b^'x'' =^— a^'b'\

In [24] the x' and y' stand for the coordinates of any point
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on the h3^perbola PML, and hence [24] is the equation of that

hyperbola.

Now since the oblique axes only are to be used, there is no

further need of the accents over the x and jj/, and hence the

equation of the hyperbola may be written

[25] ^'y _^/V = — «'^^'^

Q. E.D,

PROPOSITION XVIII

255. When a7iy pair of conjugate diameters are taken as the

axes of coordinates^ the equation of the tangent to an hyperbola is

in which x* andy are the coordinates of the point of tangency,

and a' and b' are the semi-conjugate diatneters.

IrCt AA' and BB' be any two conjugate diameters.

Let AA' be the X axis and YY' the Y axis.

Let PT be tangent to the hyperbola PAA'D at the point P

Let x' = CK and / = PK,

a' = CA '' b' = CB.

We are to prove that

y — y

is the equation of PT.

b"x' ,_
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Let PM be a secant cutting the hyperbola at P and P'.

Let y = CH and /' = P'H.

Since the secant PM is a straight line passing through two

fixed points, its equation must be of the form

Since P is on the hyperbola, its coordinates x' and y' must

satisfy the equation of the h3^perbola when AA' and BB' are

taken as the axes.

Substituting x^ and j/' for the x and y of that equation, we
cet

[2] ajy — ^'V- =— a'''U\ by § 254.

Similarl}^ since the point P' is also on the hyperbola, we
may also get

[3] ^.y— b'^x"^ =— a"b'\

Now proceeding as in § 134, we get

Wx
[4] y—J^=^7y <-^'— ^)-

Q. K. D.

255^, Corollary,— The equation of the tangent may also be

written

[5] «'!r> —b"x'x=— a''b'\

PROPOSITION XIX

256. When any pair of conjugate diameters are taken as the

axes^ the equation of the chord which joins the points of tangeiicy

of two tangents drawn to an hyperbola from the same point

without it is

ayy' — b"xx' = —a"b'\

in which x' and y' are the coordinates of the point from which

the two tangents are drawn, and a' and U are the semi-conjtigate

diameters.
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Fig-. 87

Let PT and P'T be two tangents drawn to an hyperbola

from the same point T.

Let PP' be the chord joining the points of tangenc3\

Let any two conjugate diameters LM and NO be taken as

the axes.

Let x' = CR andy = TR,

^' = CM " /^' = CN.

We are to prove that

is the equation of the chord PP'.

Let x^' = CK and y" = PK.

x'^'^CK " y"=P'H.

The equation of PT is

[i] y —y=^^ny7(^"— ^)- by §255.

[2] Hence a'yy— a'y'" = d"xx'' — 3'V'^

[3] and a'yy" — d"xx"= a'y"— d"x"\

Since the point P is on the hyperbola, its coordinates x''

and jv" must satisfy the equation of the hyperbola.

Hence substituting x" and y" for the x and y of the equa-

tion of the hyperbola, we get
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[4] «'y — ^'V =— a'^b'\

Now substituting— a''^b'^^ for the right hand member of [3] ,

we get

[5] «'vy'— ^"•^•^" =— ^"^",

for the equation of PT.

Similarly we may show that the equation of P'T is

[6] a"yy"—b"xx''' =—a''b'\

Since the point T is on the tangent PT, its coordinates x'

andy must satisfy [5], the equation of PT.

Hence substituting x' andj/' for the x andjK of [5], we get

[7] «'>V'— ^"•^'^" = — a^'b'\

Similarly since the point T is also on the tangent P'T, we
get

[8] a'»"'— ^'V;r"' == — a'''y\

Now equation

[9] a'yy— b'\x'x——a'''b'''

is the equation of a straight line. by § 67.

But the coordinates x" 2ind.y" of the point P will satisfy this

equation, for if they are substituted for the x and y in it we
get [7].

Hence the straight line represented by [9] must pass

through the point P. by § 41.

The coordinates x'" and j/'" of the point P' will also satisfy

[9] , for if they are substituted for the x and^j/ in it we get [8] .

Hence the straight line represented by [9] must also pass

through the point P'. by § 41.

Hence, since the straight line represented by [9] passes

through both the points P and P', it must be the chord PP'.

Therefore [9] must be the equation of the chord PP'.

Q. K- D.

257. When the transverse axis of the hyperbola is taken as the

X axis and the conjugate axis as the Y axis, the equation of the

chord becomes

a^yy' — b^xx' == — a^b'

.
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PROPOSITION XX

258. The two tangents at the extremities of any chord of an

hyperbola meet on the diameter which bisects that chord.

Fig. 87a

Let PT and P'T' be tangents to the hyperbola at the ex-

tremities of the chord PP'.

Let LM be the diameter which bisects that chord.

We are to prove that that PT and P'T' meet on the diame-

ter LM.

Let ON be the diameter which is conjugate to LM.

Let LM be taken as the X axis and NO as the Y axis.

Let a' = CM, b' = CN, and x'= CK.

If R be the point where PT cuts LM, the X axis, then

as in [3] of § 230, we get

[I] CR = a'

X'
by § 45.

Similarly, if R' be the point where P'T' cuts LM, the

X axis, then

[2]

[3] Hence

CR' =

CR:=

X

CR',



188 ANALYTIC GEOMETRY

which shows that both tangents meet the diameter LM at the

same point.

Q. E. D.

PROPOSITION XXI

259. If two tangents be drawn through the extremities of any

focal chord of an hyperbola,

(7) the two tangeiits will meet o?i the directrix ;

{2) the Ii7iejoining the intersection of, the two tangents to the

focus will be perpendicular to thefocal chord.

Fig-. 88

Let PT and P^T' be two tangents drawn to the hyperbola

at the extremities of the focal chord PP'. Let R be the inter-

section of the two tangents.

Let DD' be the directrix.

We are to prove that R will be on the directrix DD'.

Let -r'= CK andy = RK,

i?= CA '^ b =CB.

Let X and y be the coordinates of any point on the chord PP'.

The equation of PP' is

[i] a'^yy' — b^xx' z=z — a'^b'^, by §257.

in which x^ and y' are the coordinates of the point R.
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Since the point F is on the chord PP', its coordinates x:=^ ae

and jK = o, must satisfy the equation of that chord. by § 40.

Substituting these values for the x 2.nd,y of [i], we get

[2] — b'aex' =. — a^F'

.

[3] Hence x' =—

.

But since by § 253, — is the distance from the center to
e

the directrix, R the intersection of the two tangents, must be

on the directrix.

Q. E. D.

Again, since RF is a straight line passing through the two

fixed points R and F, its equation must be of the form

[4]
y__y=-^J;zZ'(y_^). by §58.

In [4] let Jtr" and /' stand for the coordinates of the point

F, and x' and j/' stand for the coordinates of the point R.

Then x*^ = ae and jj/" = o.

Substituting these values of x'' andjF" into [4], we get

[5] y-^=<^(-'—)•

But jt' =—

.

by [3].

Substituting this value of x' into [5], we get

[6] V~y~ ^^
^
{x'—x),

^ -*
.

"^ a— ae

[7] Hence y'— J^
=

-27 '

—

2t(^-^'
—

•^).L/J ^ ^ ^2^j — ^Z^

which is the equation of the line RF.

[8] By [3]
a

e

Substituting this value of x' into [i] , we get

[9] ayy^b' -^x— a^b\
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\_ii\ Hence a^ey^y = U^ax — a^^V,

Pi 21 and r= r ix— ae).
^ -" -^ aey

[13] But b' — a\e'— Y):=^— a\i— e''). by §218, [5].

r T XT d'^i—e")
14 Hence r = — —

^,— {x — ae).

,

aey

which is the equation of the chord PP'.

Let s = the slope of the line RF,

and/= '' '^ " " chord PP'.

From [7] we get

[5] '= a\7-ey ^''^^^-

From [14] we^get

[16} .'=
^^^^. by §53.

[17] Hence ^^' =
,

,

—^r X ^^
1

=— i,
*- -^ a {1— e) aey

[18] or I -[- 5/ = o.

Therefore RF and PP' are perpendicular to each other.

by § 62.

g, K. D.

PROPOSITION XXII

260. The locus of the intersectio7i of two tangents to an hyper-

bola which are perpeiidicular to each other ^ is a circle whose center

is at the origin,

Let PT and P'T be two tangents to an hyperbola at the

points P and P'. Let them be perpendicular to each other at

the point T.

Let x' = CK andy= PK.

Let P and P' move along the hyperbola in such a wa}^ that

Z^PTP' shall always be a right angle.
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Y

191

Fiff.

We are to prove that the locus of the point T will be a circle

whose center is at the origin.

The equation of the tangent PT is

to y —y — -1—/ {x'—x) .

-ay
by § 221,

[2] Hence tz»— <?y' = ^V;i:— ^V^
[3] and ' ayy = b'x'x+ «>'' — b''x'\

Since the point P is on the hyperbola, its coordinates jc' and
y^ must satisfy the equation of the hyperbola,

[4] Hence a'y''— ^V= ^^ ~a'b\ by § 204,

Substituting this \^alue of ay^-— b'^x'^ into [3], we get

C5]

[6] Hence

a^yy= a^x^x— «^3'

b'^x'

^ ay' y

[7] Now y = ^-r, = \b'-^,, which by [4]

V'=\«5
T2 1'> 9 /

\
i4 2ox a'b'y

~ay^

[8]
(^^

/ d'^x'^ I (b'^ x'Y
Hence -7-= V^'^-T2 — ^' = \^ A^~/ J

—'^^
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Substituting this value of —y into [6] , we get

•^ ay ^ \a- y J

h^ x'Now let s^=^—y—i.

«

y

Then [9] becomes

[10] y =:l sx— ^«V — ^',

which is the equation of any tangent PT to an hyperbola.

[11] Let y = s'x— ^d's''— b\

be the equation of the tangent P'T, which is perpendicular

toPT.

Then

[12] i + 5/ = o. by § 62.

[13] Hence j' = .

Substituting this value of ^ into [n], we get

[14] y= J
— \-J-b\

for the equation of P'T.

By transposition [10] and [14] become

[15] y— sx^— -j/^V— b^,

[16] and yJr^=-\^-b\\ a'

By squaring [15] and [16] become

[1 7] y— 2sxy+ s^x"^ = «V — b^,

[18] and y + 2^ + ^=^-^'.
Clearing [18] of fractions, we get

[19] s~y' -\- 2sxy -\- x^ = d^— s'^b'^
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Adding [17] and [19], we get

[20] (I + /)y + (I +/)^^zz= «*xi + .o-(i + s')b\

[21] Hence y'' ^ x' ^ a"— b\

in which x and_>^ are the coordinates of the point T. by § 48.

Hence [21] is the equation of the locus traced out by T.

i by § 39.

Now let a'— y — r\

[22] Then by [21] ;i:'+y = r^

which is the equation of a circle whose center is at the ori-

gin, by § 113,

Therefore the locus traced out by T is a circle whose center

is at the origin.

Q. E. D.

PROPOSITION XXIII

261. If any chord of an hyperbola pass through a fixed point

and tangents be drawn at its extremities^ and ifthe chord be made
to revolve about the fixed point as a pivot, then the locus of the in-

tersection of the two tangents will be a straight line whose equa-

tion is

a''yy'— b^'xx'=—a^'b^\

in which jr' and y' are the coordiriates of thefixed point about

which the chord revolves, and a' and b' of the semi-conjugate di-

ameters which are taken as axes.

Fig. 90
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Let PS be a chord passing through the fixed point R, and

let PT and ST be tangents drawn at its extremities.

Let LM and NO be two conjugate diameters taken as axes.

Let x' = CH and / = RH,

Let PS revolve about R as a pivot.

We are to prove that the locus traced out by T is a straight

line and that its equation is

ayy — d"xx' = — a"d'\

Lety = CK and y' = TK.

The equation of the chord PS is

[i] a'yy — d''xx'' =z—a"d'\ by § 256.

Since the point R is on this chord, its coordinates x' ar\dy

must satisfy the equation of this chord. by § 40.

Substituting x' and_r' for the x andj' of [i] , we get

[2] ayy — U'^x'x" = — a'''b'\

Now as PS revolves about R, T will trace out a locus.

Moreover [2] will be satisfied by the coordinates of the point

T wherever it may be as it traces out this locus.

Hence the x" and y of [2] stand for the coordinates of

every point on the locus traced out by T.

Therefore [2] must be the equation of that locus, by § 39.

This locus must be a straight line. by § 67.

But since T is any point on this straight line traced out b}^

the intersection of the tangents, we may drop the accent marks
from its coordinates and write them x and y, hence [2] may
be written

[3] «'!ry — b'^xx' = — a''b'\

Therefore the locus traced out by T is a straight line and

its equation is

[4] a'^yy— b"xx' — — a"b'\
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262. Supplemental Chords.—Two chords drawn from the

same point on an hyperbola to the extremities of any diame-

ter are called supplemental chords.

PROPOSITION XXIV

263. If a chord be parallel to any diameter of an hyperbola the

supplemental chord will be parallel to the conjugate diameter.

^E'

Fig' 91

Let MC and MC be two supplemental chords drawn to the

extremities of the diameter CC.

Ivet DD' and KB' be two conjugate diameters.

Let MC
II EH'.

We are to prove MC
||
DD'.

]l^

[2] But

[3] Hence

[4] and

CO _ C K
C'C ~C'M'
C^O_,
C'C

""'•

CK_
,

CM'"^'

by Geom. 23.

by § 245.

C'K = iCM.

Hence the diameter BE' || MC bisects a system of chords

II
MC. But by hypothesis the diameters BE' and DD' are

conjugate ; and therefore BE' bisects ^ a system of chords

which are || DD'.

Therefore MC H DD'. by Geom. 10.

Q. E. D,
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Polar Equation of the Hyperbola

PROPOSITION XXV

264. When the right haridfocus is taken as the pole, the polar

equation of the hyperbola is

_ aie^— i)
,

I — e COS e

in which a is the semi-transverse axis of the hyperbola, e its eccen-

tricity , r the radius vector of any point on it, and d the vectorial

angle of that point.

Fig. 92

Let F be the pole, XX' the initial line, and DD' the direc-

trix.

Let P be any point on the hyperbola.

Let Q'^Z. PFX, r= FP, and e = the eccentricity.

We are to prove that

I — e cos d

is the polar equation of the hyperbola.

DrawPD_LDD' and PK J_ XX'.

[i] PF == ^PD. by §251.

[2] Hence PF = ^(EF+FK), by Geom. 17.

[3] or PF = ^.EF+ ^.FK.
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[4] But EF = ^^^^, by §251, [5].

[5] and FK = r cos Q. by Trig. 2.

Hence from [3] , [4] and [5] , we get

[6] r ^ a{e^ — i ) + <?r cos Q

.

[7] Hence r(i — ^ cos 6^)=^^(^^— i),

[8] and r= -^ ^.
*-

I — e cos C7

Q. E.D.

265. Corollary.— When the left ha7id focus is taken as the

pole, the polar equation of the hyperbola becomes

a(e^ — I

)

r :^=— •

.

e cos — I

'

EXA.MPLES

1. What is the equation of the hyperbola conjugate to

2^y^ — i6:r^ = — 400 ?

2. What is the eccentricity of the h3^perbola conjugate to

i6y^ — gx^ = —: 144 ?

5. Find the equations of the two tangents to 4y^— i2x^ =^

— 48, at the upper and at the lower extremities of the param-

eter. Ans. y =z 2X — 2.

jK = — 2;r+ 2

.

4. How far is it from the intersection of these tangents to

the directrix ?

5. What is the angle between the two tangents drawn to

i6y^— gx^ = — 144 at the extremities of the parameter ?

6. Find the equations of the two tangents drawn to

^y— b^x^ = — a'^b^ at the extremities of the parameter.

Ans. y =^ ex— a.

y = — ex -\- a.

7. Find the angle betweien these two tangents and the dis-

tance of their intersection from the directrix.

2e
Ans. tan~' — -.

I — ^

Distance = o.
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Y

8. Where does the tangent whose inclination is 45° touch

25 jj/"— i6x* = — 400 ? Ans. At x' = 8-^.

y = i\-

9. Where does the tangent whose inclination is 45° touch

«V" — b'^x'^ = — a'b'^ ?

Ans. At X =
1/ «^— ^

V a' — b'

10. Where does the tangent at the vertex of its conjugate

cut i6jj^^ — 9jr- 1= — 144? Ans. :ir = db 5.6.

11. Where does the tangent at the vertex of its conjugate

cut a^y^ — b'x'^ = — a^b^ ? Ans x = a^ 2.

12. Where does the tangent drawn from the upper vertex

of its conjugate touch \6y~ — <^x^ =— 144 ?

Ans. At ;r = 4^ 2.

13. Where does the tangent drawn from the upper vertex

of its conjugate touch ^y — b'^x' = — a'^b^.

Ans. At X ^= a.

jy = — b.

14. What are the coordinates of the upper end of the param-

eter of ay-— b^x'^ = — a"b^ ?

15. The equation of the tangent drawn through the upper

extremity of the parameter of an hyperbola is jf = ix— 4.

What is the equation of the hyperbola ?

Ans. i6j/^— 9^^ = — 144.

16. The tangent drawn through the upper end of the

parameter of an hyperbola whose . semi-transverse axis is 5,

passes through the vertex of the conjugate hyperbola. What
is the equation of the first hyperbola and what is its eccen-

tricity ? Ans. 2^^ — 25jr^ =— 625.

^ = 1/ 2.
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17. From what point must two tangents to qjk^ — i6;r* ^
— 144 be drawn that the}^ may touch the hyperbola at the ex-

tremities of a chord which passes through the vertex of the

hyperbola and the upper end of the parameter ?

Ans. From ^ := 3.

_y = 2.

18. iVbout what point must a chord of 36)/^— i^x' = —576

revolve in order that the locus of the intersection of the two

tangents drawn through the extremities of this chord may
bisect the positive halves of the axes of the hyperbola ?

Ans. x' = 12.

/ = —8.

19. About what point must a chord of ;^6y— i6x^ = — 576

revolve in order that the locus of the intersection of the two

tangents drawn through the extremities of this chord may
bisect the positive half of the transverse axis and the nega-

tive half of the conjugate axis ? Ans. x' z= 12.

y = 8.

20. About what point must a chord of <zy— d^x"=. — a^d^ re-

volve that the locus of the intersection of the two tangents

drawn through the extremities of the chord may bisect the

positive half of the transverse axis and the negative half of

the conjugate axis? Ans. x' = 2a.

y = 2d.

21. About what point must a chord of ay^ — d'^x^ =^ — a^d'

revolve in order that the locus of the intersection of the two

tangents drawn through the extremities of this chord ma}*

bisect the positive halves of the axes of the hyperbola ?

Ans. About x =z 2a.

y =— 2d.
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Asymptotes

266. The Asymptotes.—The diagonals of the rectangle

constructed upon the axes of an h3^perbola are called the

asymptotes of the hyperbola.

In Fig. 93 LM and NO are the asymptotes.

PROPOSITION XXVI

267. The equations of the asymptotes of an hyperbola are

b

a

and y
a

X,

in which a and b are the semi-axes of the hyperbola.

For in Fig. 93 the asymptote LM is a straight line passing

through the origin. by § 266.

Hence its equation must be of the form

[i] y — sx. by § 55.

[2] Hence s = tan MCA. by § 53.



ASYMPTOTES 201

[3] But . ....A MA b
tan MCA = 7—r- = —

.

C A a
by Trig. 3.

[4] Hence
b

a

Substituting this value of ^ into [i], we get

b
[5] y X,

a

for the equation of the asymptote LM.

Similarly it may be shown that the equation of the asymp-

tote NO is

[6] y= X.
a

PROPOSITION XXVII

268. As the asymptote extends outward from the center of the

hyperbola, the distance between it and the hyperbola continually

approaches o, and if the asymptote be made long enough this dis-

taiice may be made less than any assignable quantity, but the

asymptote can never touch the hyperbola.

Let lyM be one of the asymptotes of the hyperbola.

Let R be any point on it and draw RK JL XX' and cutting

the hyperbola at the point P.

Through P draw PSJ_ LM.

Let X = CK and y = PK.
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We are to prove that as the point S is taken further and fur-

ther from the center of the hyperbola, PS continually ap-

proaches o, can be made less than any assignable quantity,

but can never become o.

The equation of I^M is

b
[ij J = — X, by § 267.

[2] or RK = ^ CK.

The equation of the hyperbola is

[3] «y~ ^'-^^ =— ^'^'. by § 204.

[4] Hence y^— \/-^^— ^''

b
[5] or PK = ^^eK- a\

[6] Hence RP = RK— PK =— (CK— \'CK— «') •

[7] Hence

b CK — CK + «' ab
RP =

CK+ \/cK — a' C K+^CK— «^

[8] Now PS = RP.cos RPS, by Trig. 2.

[9] and z:RPS = z::LCA. by Geom. 12.

[10] Hence PS = RP cos I^CA.

Substituting the value of RP given in [7] into [10], we get

[11] PS=:
"^^

cos LCA.

CK + VcK— «.'

Now let the point R move along the asymptote away from

the center.

The quantities ab and cos LCA do not change their values

in consequence of this motion of the point R. The only part
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of the right hand member of [11] that does change its value

is the denominator of the fraction, which increases continually.

Since the numerator of this fraction is constant, and its de-

nominator is increasing, the value of the fraction is con-

tinually approaching o.

Since the denominator can be made as large as we please,

the value of the fraction can be made as small as we please.

Since the numerator is constant, the value of the fraction

can never become o.

Therefore, as the asymptote extends outward from the center

the distance PS between it and the hyperbola continually ap-

proaches o, can be made less than any assignable quantity,

but can never become o. Q. E. D.

269. Corollary.—As the asymptote extends outwards from the

center^ the distancefrom, it to the conjugate hyperbola continually

approaches o, but it can never touch the conjugate hyperbola.

It is obvious that any other straight line passing through

the center must meet either the hyperbola or its conjugate.

Hence we may define the asymptote as follows :

270. The Asymptote.—The asymptote of an hyperbola is

a straight line passing through the center, whose distance

from the hyperbola can be made less than any assignable

quantity by taking a point on the hyperbola far enough

from its center, but can never be made o.

PROPOSITION XXVIII

271. The tangent to an hyperbola can be made to coi7icide as

nearly as we please with the asymptote by moving the point of

tangencyfar enoughfroTn the ceyiter.

For, the equation of the tangent is

b'' x^
[l] y^ —y= ^{x'— x). by §221.

b'^x^x b^
[2! Hence y= —^

—

-. r

.

as in § 260, [61

.
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Since the point of tangency is on the h5^perbola, its coor-

dinates x^ andjj/' must satisfy the equation of the h^^perbola.

by § 40.

[3] Hence ay'— b''x"=— d'b\ by § 204.

[4] and -^' = ^\/^" a\

Substituting this value of jj/' into [2], we get

r -, b- x^ }f

a

\ t2 5-\X — a

[6] Hence jy= —-x
2

Now let the point {x, y) remain fixed and the point of tan-

gency move away from the center continually.

[7] Then limit r = limit ( — x —__-_—_- — —

V

V a
I
^ y J

x"

The value of -*
/

j ^ will continually approach i, and
^ x'^

the value of —^ will approach o.

/ a^
Thus as x' and y' increase indefinitely, the limit of a/ i ^

. . b'
IS I , and the limit of —r =0. by Geom. 19.

When these limits are substituted into [7], it becomes

[8] y^-^x,

which is the equation of the asymptote.

Hence by moving the point of tangency far enough from the

center we can make [6] coincide as nearly as we please with

[8].

Q. E. D.



ASYMPTOTES 205

PROPOSITION XXIX

272. When any pair of conjugate diameters are taken as the

axes of coordinates^ the equatio?is of the asymptotes are

a'

and y
U
ar-^»

in which a^ and h' are the semi-conjugate axes.

Fig:- 95

Let PQ and RS be the asymptotes.

Let LM and NO be any two conjugate diameters.

Let LM be the X axis and NO the Y axis.

Let a' = CL and b' = CO.

We are to prove that

[I]

is the equation of PQ,

[2] and

is the equation of RS.

y = -yx
a

d'
X
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When LM and NO are taken as the axes of coordinates,

the equation of the hyperbola is

a'y— ^'V =— «''3'^ by § 254.

Since this equation is of exactly the same form as [3] , § 268,

and since [i] is of exactly the same form as [i] of the same

section, then by the same method as was used in that section

b'
we may prove that the distance from jk = —r ^ to the hyper-

bola is continually approaching o, can be made less than any

assignable quantity, but that it can never become o.

Hence

b'

is the equation of the asymptote.

Similarly it may be shown that

by § 270.

y
N
X

a'

is the equation of the other asymptote.

Q. K. D.

PROPOSITION XXX

273. The asymptote is the diagonal of every parallelogram

whose sides are tangents parallel to two conjugate diameters.

Fig. 96
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Let LM and NO be two conjugate diameters.

Let LM be the X axis and NO the Y axis.

• Let a' = CL and V = CO.

Let PQ and RS be the asymptotes.

Draw the tangents LP and OP parallel to the conjugate

diameters LM and NO.

We are to prove that the diagonal PC of the parallelo-

gram PLCO coincides wnth PQ, and the diagonal KC of the

parallelogram KOCM coincides with RS.

Let /^z:PCL,
and Go=^OCh.

The equation of the diagonal PC will be

sin /
I

sin {CO— /)
by § 76.

[2] But Ge9--/=z:ocprrz:cPL. by Geom. 7.

[3] Hence
sin PCL

V = X.^ sin CPL

[4] PL ;: CL : : sin PCL : sin CPL. by Trig. 14.

[5] Hence d' ;\ a' \: sin PCL : sin CPL,

V sin PCLM °'- V = sha^PL-

Substituting the left hand member of this equation into [3],

we get

[7] ^=^^-

But this is the equation of PQ. by § 272.

Therefore the diagonal PC coincides with the asymptote PQ.

Similarl}^ it may be shown that the diagonal CK coincides

with the asymptote RS.
Q. E.D.
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PROPOSITION XXXI

274. When the asymptotes are taken as the axes of coordinates^

the equation of the hyperbola is

a' + b'
xy=

in which a and b are the semi-axes of the hyperbola.

Fig. 97

Let IvT and UV be the asymptotes of the hyperbola.

Let LT be taken as the Y axis and UV as the X axis.

Let P be any point on the hyperbola, and draw PM _L AA'

produced and PM'
|| LT.

Letjr = OM and JK = PM,

y = OM' " y = PM',

« = 0A " /5 = 0B.

We are to prove that

a' + U'
xy—
•^ 4

is the equation of the hyperbola.

[i] Now tanROA = —

,

•- -J a
by Trig. 3.

b
'2] and tan SOA = —

.

-J a
by Trig. 3.
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[3] Hence tau ROA = tan SOA,

[4] and ^ROA = z::SOA.

Let /? ^ zl ROA = Z. SOA.

[5] jf ==. ON + M'Q = OM'cos SOA + PM' cos PM'Q,
by Trig. 2.

[6] or jr= ;r' cos /?+y cos ^^ (:r' +_>/') cos ^.

[7] Again j = PQ— M'N=
PM'sinPM'Q— OM'sin SOA.

by Trig. i.

[8] or jK=ysin/?— .r'sin/?=(y — ^') sin/?.

Now when the axes of the hyperbola are taken as the axes

of coordinates, the equation of the hyperbola is

[9] d'f— b''x''= — a'b\ by §204.

Substituting the values of x and y given in [6] and [8]

into this equation, we get

[10] a\y'—xy-,Wft— b\x'-\-y'yQO<^'P= —a''b\

[11] Hence (^- cos'/?— a^ sin^y^) (;r'^ +y^)+
2 (^' cos' /? + «' sin' ^')x'y' = a'b\

[12] But tan^=-^ =—

,

by[i].

\n,\ or —

—

^ =—

.

by Trio:. 6.
- ^-' cos ^ a ^ o

[14] Hence a sin /3 = b cos /3.

[15] and a' sin' /? = ^' cos' /?.

Substituting these values into [11] , we get

[16] 4a' x'y sin' /3 =: a'b\

[17] 4xy sin'/?= b\

RA b
[18] But sm/3 — OR

1/ a' + b'

Substituting this value of sin /? into [17] , we get

[19] 4^y = a'-\-b\
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x'y'

ISIow since x^ and j/ are the coordinates of any point on the

hyperbola, this must be the equation of the hyperbola.

by § 39-

If the asymptotes are the onh^ axes used in any discussion,

we may drop the accent marks and write the equation

[21] xy-

Q. E. D.

275. Corollary.—Since ^ and b maybe any constants whatever

a'^ b' ^may be any constant.
4

^

Let this constant be represented by c.

Then the equation of the hyperbola may be written

xy = c.

PROPOSITION XXXII

276. When the asymptotes are taken as the axes of coordinates

the equation of the tangent to the hyperbola is

X y
in which x' and y' are the coordinates of the point of tangency.

N ^X
Fig.



ASYMPTOTES 2[i

Let IvT and RS be the asymptotes of the hyperbola.

Let LT be the Y axis and RS the X axis.

Let PM be a tangent to the hyperbola at any point P.

Let x' = OK andy = PK.

We are to prove that

4 + 4=2X y

is the equation of the tangent PM.

Let PN be a secant cutting the hyperbola at the two points

P and P'.

Let jc" = OH and y" = P'H.

Since the secant'PN is a straight line passing through the

two points P and P', its equation must be of the form

[i] y__y=-J^|(^'_^). by §58.

Since the point P is on the hyperbola, its coordinates x'

and y' must satisfy the equation of the hyperbola. by § 40.

2 I 7 2

[2] Hence x'y' = by § 274.
4

For the same reason x" andy", the coordinates of the point

P', must satisfy the equation of the hyperbola.

b}^ § 274.L3J Hence ^
4

[4] Hence x"y" = xy,

'.5. and

Substituting this value of y" into [i], we get

[6] y—y^— _ > {x'—x)

y'

[7] and y —y=—^ {x'—x).

Now let the point P' move along the curve towards P. The
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secant will continually approach the tangent, and when P'

reaches P the secant will coincide with the tangent and

[8] x'^ — x'.

Substituting this value of x" into [7], we get

[9] y —y X

fio] Hence i =V= — iH 7

y -^

[11] or

X

X' ^ y
Since the x and j/ of this equation are the coordinates of any

point on the tangent PM, it must be the equation of the tan-

gent, by § 39.

Q. K. D,

PROPOSITION XXXIII

277. The segment of ayiy tajigent to an hyperbola lying be-

tween the asymptotes is bisected by the point of tangency.

Fier. 99

Let LQ and RS be the asymptotes.

Let LQ be the Y axis and RS the X axis.

Let MT be any tangent to the hyperbola at the point P.

We are to prove that

PM = PH.



ASYMPTOTES 213

Draw PK ||
YY'.

Let x' = OK SLudy = PK.

The equation of MT is

[I]
x' ^ y -^• by § 276.

[2] Hence OH = 2x' — 2OK.

Since PK
II
OM,

by § 45-

[3] OK : OH :: PM : MH. by Geom. 23.

[4] And OK : 2OK :: PM : MH, by [2; .

[5] or
j_PM
'~MH'

[6] Hence MH = 2PM,

y. and PM = PH.
Q. E. D.

278. Corollary .
— The product of the segments ofthe asymptotes

between the ceiiter and any tangent is equal to the sum of the

squares of the sem,i-axes.

For

[i] OM = iy\ by § 276 and § 46.

[2] and OH = 2X^

.

by § 45.

[3] Hence OM.OH = \x'y\

[4] and OM.OH = ^' + ^'. by § 274.

PROPOSITION XXXIV

279. The area of the triangleformed by any tangent to an hy-

perbola, and the segtnents of the asymptotes between this tangent

and the center is equal to the rectangle of the semi-axes.

Let LT and RS be the asymptotes.

Let LT be the Y axis and RS the X axis.

Let MH be any tangent to the hyperbola.

Let a = OA and b = OB.
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Fig. 100

We are to prove that

the area of MOH = ab.

Let (i9=^D0A.

DA b
[I

[2

[3

[4:

[5

[6

[7

[8

[9

[10:

Then

or

Hence

and

Hence

tan ce? ^
O A

sin OD b

a

a

cos 00

a sin CO = b cos gl?,

a^ sin^ Gl> = ^^ cos" ooz=zb^— b~ sin^ oo.

by Trig. 3,

by Trig. 6.

sin OD = b'

Therefore i— cos 2<i9 1=

Hence cos 200=: i —

and cos^ 200 ^^

Hence sin" 2Go =z i—

and sin 200 =z

a'+b''

2b'

a' + b''

b' a'— b'

by Trig. 5,

by Trig. 18.

a'+b'~ a'+b''

{a'— b'y

(a' + b'y

(a'— b'y 4a'b'

{a' + b'y {a' + b'y

2ab

a' + U''
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[11] But 2c«9=:DOE. by Geom. 15.

Hence from [10] we get

[12] sin DOE = ^a I ^g .

[13] Now the area of MOH — ^OM.OH sin DOE,
by Trig. 31.

[14] and OM.OH — a^ \- b\ by § 278.

Hence substituting the right hand members of [12.] and

[14] into [13], we get

[15] the area of MOH = i(«'+^"0 ^^j. =ab.

Q. K.D.
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The Parabola

280. The Parabola.

—

The parabola is the locus of a point

moving in a plane in such a way that its distance from a

fixed point in the plane and its distance from a fixed line in

the plane are always equal to each other.

Let F be a fixed point and DG a fixed line, and let P be a

point moving in the plane DFG in such a way that PF and

PH shall always be equal to each other.

Then the line PAM traced out by P is -called a parabola.

281. The Focus.—The fixed point is called the focus.

282. The Directrix.—The fixed line is called the di-

rectrix.

283. The Focal Radius.—The distance from the focus to

the moving point is called the focal radius of that point.

284. The Axis.—The axis of the parabola is a straight line

drawn through the focus perpendicular to the directrix.

285. The Vertex.—The point where the parabola cuts the

axis is called the vertex of the parabola.
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PROPOSITION I

286, To draw a parabola which shall have a given point for

its focus and a given linefor its directrix.

FIRST METHOD ; BY THREAD AND RULER.

Fig. 102

lyCt F be the given focus and DR the given directrix.

Let LMO be a ruler in the form of a right triangle.

Take an inelastic thread whose length is equal to LO.
Fasten one end of it at L and the other end at F. Press the

thread against the ruler at P by the point of a pencil so as

always to keep it stretched.

Now move the ruler so that its side MO shall slide along DR.

The line PAN traced out by the pencil point will be a para-

bola.

For at every point P on this line we shall have

[i] LP + PO = I.P+ PF

[2] hence PF = PO.

Therefore PAN is a parabola. . by § 280.
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SECOND METHOD ; BY POINTS.

Let F be the given focus, and DK the given directrix.

Let XX' be the axis. Take any point A on the axis and

draw the perpendicular KAK'.

With AE as a radius and F as a center, draw a circle cut-

ting KK' in the two points P and P'.

P and P' will be on the parabola required.

For draw PG _L DE and join F with P.

[i] Then PG = EA. by Geom. 17.

[2] But EA == FP. by construction.

[3] Hence PG = FP.

Therefore P is on the parabola. by § 280.

Similarly it may be shown that P' is also on the parabola.

By drawing perpendiculars through B, C and H we can de-

termine other points R and R', S and S', T and T', by the

same method by which we determined P and P', and can

show that they are also on the parabola.

By taking a sufficient number of perpendiculars we can de-

termine as many points on the parabola and points as near to

each other as we please. By joining these points we get the

parabola required.
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PROPOSITION II

287. The equation of the parabola is

j>/' = 2px,

in which p represents the distance from the focus to the directrix.

Fig. 104

Let F be the focus, DE the directrix, and P any point on

the parabola.

Let X = OK, y ^ PK, and^ = KF.

We are to prove that

y^ = 2px

is the equation of the parabola.

2 "2 2

[i] Tf = fk + pe:. byGeom.26.

[2] PF = PD= KK.by §280, andGeom. 17.

[3] Hence PF = EK = /> + FK.

Substituting this value of PF into [i], we get

[4] (/ + FK)' = FK-f-PK.

[5] Hence /' + 2/FK + FK = FK + P"K,

[6] and / + 2/)FK==y.

[7] But FK = OK— OF = x— OF,

[8] and OF= OE = i/>. by § 280,
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[9] Hence FK = ^— \p.

Substituting this value of FK into [6] , we get

[10] p^ -\- 2p{x -- \p) =y\
[11] Hence p"^ -\- 2px— p^=y-^

[12] or J^'
"= 2p-^-

o. E. D.

288. Corollary I.— The squares of the ordinates of any two

points on a parabola are to each other as their abscissas.

289. Corollary 2.—Ordinates at equal distances from the ver-

tex are equal to each other.

290. The Principal Parameter.

—

'X\i^ principal parameter

of a parabola is the double ordinate that passes through the

focus, the axis of the parabola and the tangent at the vertex

being the axes of coordinates.

291. Corollary i.— The pri7icipal parameter of a parabola

is equal to twice the distancefro7n thefocus to the directrix.

In Fig. 104 let RS be the parameter.

[i] RF == RM. by § 280.

[2] RM = EF =p. by Geom. 17.

[3] Hence RF=:/).

[4] FS == RF. by § 289.

[5] Hence FS=/),

[6] and RS = RF + FS = 2p.

292. Corollary 2.— The principal parameter of a parabola is a

third proportional to any abscissa and its corresponding ordinate

.

Since in Fig. 104 the point P is on the parabola, its coordi-

nates must satisfy the equation of the parabola. by § 40.

Hence letting the x and y of that equation stand for the

coordinates of the point P, we get

]l" y^ = 2px. by § 287.

\2\ Hence X : y :: y : 2p. by Geom. 56.

[3] But 2p = the parameter. by § 291.

[4] Hence X : y :: y : Parameter.

Q. K. D.
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PROPOSITION III

293. The equation of the tangent to the parabola is

in which x' and y' are the coordinates of the point of tangency

andp is half the principal parameter

.

For proof compare § 134.

P
294. Corollary i.— The fraction ~ is the slope ofthe tangent.

295. Corollary 2.— The vertex of a parabola bisects the sub-

tangent.

PROPOSITION IV

296. The equation of the normal to a parabola is

y ,.y~y=—— (x'—x),

in which x' and y' are the coordinates of the point of tangency,

andp is half the principalparameter

.

For proof compare § 143.

y
297 . Corollary i

.

— Thefraction — -=^ is the slope ofthe normal,

298. Corollary 2.— The subnormal of a parabola is constant

and is equal to half the parameter.

299. A Diameter,—A diameter of a parabola is a straight

line drawn from any point on it in the positive direction par-

allel to the axis of the parabola.
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PROPOSITION V

300. (a) The tangent to a parabola bisects the angle between

the focal radius of the poijtt of tangency and a diameter produced

through the point oftangency.

{b) The normal bisects the angle between the focal radius of

the point of tangency and a diam^eter drawn from, the point of

tangency.

Fig. 105

Let PT be a tangent to the parabola at P, JH a diameter

produced through P, and FP the focal radius of the point P.

We are to prove that

^fpt = z:hpt.

Let x' = OK and _y' = PK.

Let p ^ EF and DR be the directrix.

FP = PH. by § 280.

PH = EK. by Geom. 17.

FP = EK = EO + OK.

EO = VO—\p. by § 280.

FP = i/> + ^'.

FT = FO + OT.

OT = OK = ^'. by §295.

Hence by [4] and [7] , [6] becomes

[8] FT = i/+ ;r'.

'

1_

\2\ But

[3] Hence

[4] But

[5] Hence

\6'_

'j\ But
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Hence from [5] and [8] , we get

[9] FP = FT.

[10] Hence ^FPT = /FTP. by Geom. 16.

["] But /^FTP := /HPT. by Geom. 7.

[12] Hence ^FPT := /HPT.
Q. E. D.

Again let PN be the normal to the parabola at the point P,

and PJ a diameter drawn from the point of tangency. •

We are to prove that

/FPNr=/NPJ.

[13] /TPL=:/TPN. by §142.

[14] /HPT=/:FPT. by [12].

[15] Hence /HPL=/FPN.
[16] But /HPL=/NPJ. by Geom. 4.

[17] Hence / FPN = / NPJ. by Geom. \\

Q. E. D.

PROPOSITION VI

301. When any diameter and the tangent at its extremity are

taken as the axes, the. equation of the parabola is

y- =z 2p X,

in ivhich p' is the principal parameter divided by the square of

the sine of the inclination of the tangent.

Let LN be any diameter and TR the tangent at its ex-

tremit^^

Let LN be taken as the new X axis and TR as the new Y
axis.

Let P be any point on the parabola, and draw PM
||
VY',

Let X = LM andji/ = PM.

Let/>'= . /^p..sm LRA
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Fisr. iq6

We are to prove that

y^ = 2p'x

is the equation of the parabola.

lyet x' = AJ and y ^ I,J,

y = AK " y'=PK.

[i] ;»;" = AK= AJ+IvM + MN = ^' + ^+jj/cosPMN.
by Trig. 2.

[2] But z^PMN==^I.RA. byGeom. II.

[3] Hence Ji/' = jr' + .r +ji/cos LRA.

[4]

y z=PK=I.J+PN=y + >/sin PMN=y + ysin LRA.
by Trig, i and Geom. 11.

Since x" and y" are the coordinates of any point on the

parabola, when AK and AS are taken as the axes of coordi-

nates, the equation of the parabola will be

[5] y = 2px". by § 287.

Now substituting the values of .r" and j/" found in [3] and

[4] into [5] , we get
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[6] (y + j/sin LRA)'i=2/'(x'+;tr + j/cos LRA.)

[7I Hence

y sin' LRA4-2j'(y sin LRA—/cos LRA)+y'—2/>;ir'=2;^;»r.

[8] tan LRA =^

,

by § 294.

r -. sin lyRA ;^ , /^ • ^

[9] or tVt = ^- by Trig. 6.'-^-' cosIyRA y ^ £>

[10] Hence j' sin lyRA—/ cos LRA ^ o.

Since the point L is on the parabola, its coordinates x' and

y must satisfy the equation of the parabola. by § 40.

Hence substituting them for the x and y in the equation of

the parabola, we get

[11] y^ = 2/^'.

[12] Hence jk'^ — 2px'=^o.

Substituting the right hand members of [10] and [12] into

[7], we get

[13] y sin^ lyRA = 2px.

[ 14] Hence y' = -Jf^ . x.

Now since

P

sin' LRA

,- P
sin%RA

[14] becomes

[15] y=:2/jr.
Q. E.D.

302, Corollary i

.

—Ordinates drawn to the sa?tie point on any

diameter are equal.

For since

[i] y^^2p'x, by §301.

[2] then y^^-[/2p*x. -

Now [2] shows that for every positive value of x there are

two values of jk numerically equal but with opposite signs.
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303. Corollary 2.—Every diameter bisects a system of chords

parallel to the tangent at its extremity.

Compare § 159.

304. The Parameter of any Diameter.

—

Th^ parameter of

any diameter is a third proportional to an}^ abscissa on that

diameter and its corresponding ordinate.

305. Corollary i

.

— The parameter of any diameter is equal to

the principalparameter divided by the square of the sine of the

inclination of the tangent at the vertex of the diameter.

For by [14] of § 301

[2! Hence x : y :: y : . ., \. ^ . . by Geom. 56.

2 p
Therefore . . f^ . = the parameter of the diameter LM.

sm LRA
by § 304.

306. Co7vllary 2.— The parameter of any diameter is four

times the distancefrom, thefocus to its extremity.

For in Fie:. 106

[I

[2

[3

[4

[5

[6

[7

[8

[9

[10:

FI.= FR. by §300, [9].

But FR r^ AF + AR,

and AR = AJ. by § 295.

Hence FR = AF + AJ.

Hence by [i] FL = AF+ AJ = i/+ y. by § 280.

Again y^=^2px'. by §287.

Hence x =^ =^.
2p

i)tanLRA=V. by § 294.

P
hence y' —

^^^ \-^p^
=/>cotIvRA, by Trig. 9.

and y =:;^-cot'I.RA.
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Substituting this value of y'^ into [7], we get

[11] ;r' = i;^cot'LRA.

Substituting this value of x^ into [5], we get

[12] FL^i/' + i/^cot^LRA,

[13] or Fl. = i/(i + cot^I,RA).

[14] hence FL := \p cosec^ LRA.

[15] Hence Fl. — ^
2 sin' IvRA

[16] Therefore Parameter
2p

sin' IvRA

by Trig. 10.

by Trig. 7.

4FI,. by §305.

Q. E.D.

PROPOSITION VII

307, The squares of ordinates to any diameter of a parabola

are to each other as the cor^'esponding abscissas.

Fig. 107

Let IvN. be any diameter and TR a tangent at its extremity.

Let LN be taken as the X axis and TR as the Y axis.

Let PM and P'N be any two ordinates drawn to the diame-

ter LN.

Let X = LM and y = PM.

^'=LN '' y=P'N.
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We are to prove that

2 /2

y y X : X

Since the point P is on the parabola, its coordinates must

satisfy the equation of the parabola.

by §301.

by § 301.

[I] Hence J/^ = 2p^X.

~_2 Similarly y = 2fx'.

'.'h.
Hence

y X
y'~~ x"

A or y : y^ \: X \ x'

Q. K. D.

PROPOSITION VIII

308. When any diameter and the tangent at its extremity are

taken as the axes of coordinates, the equation of any tangent to

the parabola is

_ P
y —y T (^'--^),

in which x' andy are the coordinates of the point of tangency of

the latter tangent, and p' is equal to half the principal parameter

divided by the square of the sine of the ijiclination of the tangent

taken as the Y axis.

Fig. 108
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Let LM be any diameter and RS the tangent at its ex-

tremity.

Let LM be the X axis and RS the Y axis.

Let PT be a tangent to the parabola at any point P.

Let ^' = LK and y = PK,

andlet/ = ^-^|^^.

We are to prove that

y— jj/=y (x'—x)

is the equation of the tangent to the parabola.

Let PP' be a secant cutting the parabola at the two points

P and P'.

Let x" = LH and /' = P'H.

For the method of demonstration see § 221.
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PROPOSITION IX

309. The equation of the chord which joins the points of tan-

gency of two tangents drawn to a parabola from any point

without it is

yy' — p{x-\-x'),

in which x' andy' are the coordinates of the point from which the

tangents are drawn, andp is half the principal parameter.

Fig. 109

Let PT and P'T be any two tangents drawn to the parabola

from the same point T.

Let PP' be the chord joining their points of tangency.

Let x' ^ AR and j/' = TR.

We are to prove that

yy' — p{x -\- x')

is the equation of PP'.

Let x" = AK and y = PK,

;t:'" = AH " y" = P'H.

The equation of PT is

[I]

[2] Hence

[3] and

y

y

-r =f (-' X) by § 293.

— yy" = px" — pX,

yy" — px +y" —px".
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Since the point P is on the parabola, its coordinates ;f" and

y must satisfy the equation of the parabola.

Hence substituting x" and y' for the x andjK of the equa-

tion of the parabola, we get

[4] y"^—2px". by §287.

Substituting this value ofy* into [3], we get

[5] yy"^P^x^x")
for the equation of PT.

Similarly we may show that the equation of P'T is

[6] yy''^p{x^x'").

Now since the point T is on the tangent PT, its coordinates

x' andy must satisfy the equation of PT.

Substituting x' and y' for the x and y of that equation,

we get

[7] yy'=/(^'+y').

Similarly, since the point T is on the tangent P'T, we get

[8] ^y"=/>(y+y").

Now equation

[9] yy' —p{x-\-x')

is the equation of a straight line. by § 67.

But the coordinates ^" andy" of the point P will satisfy this

equation, for if they are substituted for the x and y in it, we
get [7].

Hence the straight line represented by [9] must pass

through P. by § 41.

The coordinates x'" and y'" of the point P' will also satisfy

[9] , for if they are substituted for the x and y in it, we get [8] .

Hence the straight line represented by [9] must also pass

through P'. by § 41.

Therefore since the line represented by [9] passes through

both the point P and the point P', that equation must be the

equation of PP'. q. e. d.
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PROPOSITION X

310. If any chord of a parabola pass through a fixedpoint and
tangeiits be drawn at its extremities, and if the chord be made to

revolve about the fixed point, then the locus of the intersection of

the two ta7ige7its will be a straight line whose equation is

yy' — p{x -\- x')

,

in which x' and y' are the coordinates of the fixed point, and p
is half the principalparameter .

Fi.sr. no

Let PP' be a chord passing through the fixed point R, and

let PT and P'T be tangents drawn at its extremities and inter-

secting at the point T.

LetJc' = CH and y = RH.

Let PP' revolve about R as a pivot.

We are to prove that the locus traced out by T is a straight

line, and that its equation is

Let y = CK and j/" ^ TK.

The equation of the chord PP' is

[i] jj/jf"=/(^+ ^"). by § 309.

Since the point R is on this chord, its coordinates x^ and y'

must satisfy the equation of that chord. by § 40.
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Substituting x^ and j/' for the x and _y of [i], we get

[2] yy=p{x' + x").

Now let PP' revolve about R as a pivot. Then T will trace

out a locus. Moreover [2] will be satisfied by the coordi-

nates of the point T wherever it may be, as it traces out this

locus.

Hence x^^ andj/" of [2] stand for the coordinates of every

point on the locus traced out by T.

Therefore [2] must be the equation of that locus, by § 39.

This locus is a straight line. by § 67.

Since T stands for any point on this straight line traced out

by the intersection of the tangents, we may drop the accent

marks from its coordinates and write them x and j/. Hence [2]

may be written

jy' — p{x-{- x').

Therefore the locus is a straight line and its equation is

j/y' =ip{x-\- x')

.

Q.E.D.

PROPOSITION XI

311. If two tangents he drawn at the extremities of any focal

chord of a parabola

(i) the tangents will meet on the directrix ;

{2) the li7iejoining the hitersection of the two tajigents to the

focus will be perpendicular to the focal cho7^d.

L<et PT and P'T' (I^ig- m) be the two tangents drawn to

the parabola at the extremities of the focal chord PP', and let

R be the intersection of the two tangents.

Let DD' be the directrix.

We are to prove

(i), that R will be on the directrix DD', and

(2), that RF will be perpendicular to PP'.
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Fig-. Ill

Let x' = AK, y = RK, and/= FK.

The equation of PP' is

[i] yy' ~ p{x' -^ x)

,

by § 309.

in which x' and y' are the coordinates of the point R and x
and y are the coordinates of any point on the chord PP'.

Since the point F is on the chord PP', its coordinates

x:=^\p and j/= o must satisfy the equation of the chord.

by § 40.

Substituting these values for the x andjF of [i], we get

[2] o^p{x'^\p).

[3] Hence ^' = AK = — \p.

But — \p is the distance from the vertex of the parabola to

the directrix. . by § 280.

Therefore the point R is on the directrix, Q- E. d.

Since RF is a straight line passing through the two fixed

points R and F, its equation must be of the form

[4]
y'-y~y y-,^x'~x). by § 58.

X X'

Now in [4] let x" and j/" stand for the coordinates of the

point F, and x' andy the coordinates of the point R.

Then x" = ip and y = o.

Substituting these values into [4] , we get
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[5] y-y = .^^^Ax-~x).

[6] But x" — —\p. by [3].

y'

[7] Hence y—^= — —-(

—

\p— x).

[8] -y = -^{-hp-x)-y\

[9] y^^k-\p-x)^y'.

[10] ^=_z,+z.
which is the equation of the line RF. by § 39.

From [3] we get

[11] :r' = AK =— i/.

Substituting this value of x' into [i], ^ve get

[12] yy '=^p{—\p-\- x).

[13] j^ = -ya/-^),

[14] y ~ ^^ — —,^L -rj

y ^y

which is the equation of the chord PP'. by § 39.

Now let s = the slope of RF,

and / =. the slope of PP'.

Then from [10] we get

and from [14] we get

[16] ^' = 4-

[17] Hence ss' := — "— ^ = — i.

P y
[18] Hence i + ^5'=o.

Therefore RF is perpendicular to PP'. by § 62.

Q. E. D.
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PROPOSITION XII

312. The two tangejits drawn at the extremities of any foca

t

chord a7'e perpendicular to each other.

Fio'. 112

Let PT and P'T' be the two tangents drawn at the ex-

tremities of the focal chord PP'.

Let R be the point on the directrix at which the two tan-

gents meet.

We are to prove that PT is perpendicular to P'T'.

Let x' = AK and / = RK.
" y' = PM,x"^^AM

x'" = AN y P'N.

Since PT is a straight line passing through the two given

points P and R, its equation must be of the form

in vc^hich

[2]

y—y='^,—^j(y—^)
X X

y -y
X' X'

the slope of PT.

by § 58.

by § 59.
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[3] But A= the slope of PT. by i .94.

[4] Hence ''^•^^-
Since the point P is on the parabola,

[5] y'- — 2px". by § 287 and §40.

[6] Hence x"—^^,
2p

[7] Also x' ——\p. by §311, [3].

Substituting the right hand members of [6] and [7] into

[4] we get

[8]

2 p 2

[9] Hence j/"=—yy z=-^ + ^,

[10] y^'— 2y'y"—p\

[11] and' y'= VP"-\-y'" + y''

p p
[12] Hence^ =

;
= the slope of PT. by [3].

y yp +y -\-y

Since P'T' is also a straight line passing through the two

given points P' and R, its equation must be of the form

[13] y-j' = ~;^"iZ;^,' (^'-^), by §58.

in which

[14] ~^n,Z;^^ = ti^^ s^^p^ ^^ p"!^'- ^y § 59.

[15] But —^n— the slope of P'T'. by § 294.
y

r -1
—y"'—y p

[16] Hence —yT,"^:^, = — yr,-

Solving this equation as we did [4], we get

[17] y"' = Vf + y"--y'-
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[i8] Hence

P'T'.

Now
and

p_ _ p__
- = the slope of

by § 15.

[19] Then ss' = —

let ^= the slope of PT,
s' = the slope of P'T'

P
X /

^ p' +y'—y v^^' +y' +y

P'+y'-y
[20] Hence i -|- /^ r= o.

Therefore PT and P'T' are perpendicular to each other.

by § 62.

Q. E. D,

PROPOSITION XIII

313. When the focus is take?i as the pole, the polar equation

of the paiabola is

P
I— cos a '

in whichp is half the principal parameter, r is the radius vector

of any point 071 the parabola, and is its vectorial angle.

t

1}/
u

1Y

1

/
E i
\

F K

Hk
\

Fig. 113

lyCt the focus F be the pole.
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Let P be any point on the parabola, r its radius vector,

and its vectorial angle*

Let/ = one half the principal parameter HH'.

We are to prove that

P^^ ^ '

I cos C7

is the equation of the parabola.

Let DD' be the directrix.

DrawPDJ_DD' and PK_LXX'.

[i] FP = PD. by §280.

[2] But PD = EK. by Geom. 17.

[3] Hence FP = EK = EF+ FK,

[4] also EF =/>, by § 291.

[5] and FK = r cos Q. by Trig. 2.

[6] Hence by [3] FP^/+rcosO,

[7] or r =^ p -\- r Qos d

.

[8] Hence r(i

—

cosO) =z p.

[6] Therefore — cos

Q. K. D.

EXA.MPLES

1. What is the value of r when = o? Ans. r= oo.

2. What is the value of r when =^ 90° i*

Ans. r=/= FH.

3. What is the value of r when d = 180° ?

Ans. r—^ — AF.
2

4. What is the value of r when d = 60° ?

5. What is the value of r when Q = 270"^?



CHAPTER XIII

The Conic

314. The Conic.—A conic is the locus of a point moving in

a plane in such a way that its distance from a fixed point in

the plane, and its distance from a fixed line in the plane

always have the same ratio to each other.

315. The Focus.—The fixed point is called W\^ focus oiWv^

conic.

316. The Directrix.—The fixed line is called the directrix

of the conic.

PROPOSITION I

317. The ellipse is a conic.

For by § 176 the ellipse is only a particular case of the locus

defined in § 314.

318. Corollary.— The ellipse is a conic in which the distance of

any poifit on the conicfrom thefocus is less than its distancefrom
the directrix.

Compare §'176 and § 129.

PROPOSITION II

319. The hyperbola is a conic.

For by § 251 the hyperbola is only a particular case of the

locus defined in § 314.

320. Corollary.— The hyperbola is a conic in which the dis-

tance of any point on the conic from thefocus is greater tha7i its

distancefrom, the directrix

.

by § 252.
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PROPOSITION III

321. The parabola is a conic.

For by § 280 the parabola is onl}^ a particular case of the

locus defined in § 314.

322. Corollary.— The parabola is a conic in which the distance

of any point on the conic from the focus is equal to its distajice

fro7n the directrix. h\ § 280.

Poles and Polars

323. Equations [5], §255^, [9], §256, and [4], §261, and

the similar equations of the other conies show that the coor-

dinates of every point on the tangent and the coordinates of

the point of tangencA^ ; the coordinates of every point on

the chord of contact and the coordinates of the intersection of

the corresponding tangents ; and the coordinates of every

point on the locus of the intersection of two tangents, and

the coordinates of the fixed point about which the corres-

ponding chord of contact revolves, are connected in the same

wa}^

That is, each of these three lines is connected with a fixed

point in the same wa}' in which each of the other lines is con-

nected with a fixed point.

324. The Polar.—If the coordinates of every point on any

line have the same relation to the coordinates of a certain

fixed point that the coordinates of every point on a tangent

have to the coordinates of the point of tangency, that line is

called the polar of the fixed point.

325. A Pole.—The fixed point is called X\\^ poleoi the line.

When the pole is without the conic the polar is the chord of

contact of the two tangents drawn from the pole.

When the pole is on the conic the polar is a ta7igent to

the conic.

When the pole is within the conic the polar '\'$, the locus of
the i7itersection of the two tangents drawn at the extremities

of the chord of contact passing through the pole.
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PROPOSITION IV

326. In an hyperbola or an ellipse the polar of a point on any

diameter or on any diameterproduced is parallel to the conjugate

diameter.

I. FOR THE HYPERBOI^A.

Fig. 114

Let P be any fixed point on the diameter lyM produced, and

let ST be the polar of that point.

Let NO be conjugate to LM.

We are to prove that ST is parallel to NO.

Let x' = CK and j/' = PK,

Q = ZlMCK " 0' = ^NCK.

Since LM is a straight line passing through the two points

C and P, its equation must be of the form

[i]
7 — y

by § 58.X X

in which x" andy" are the coordinates of the point C, and x'

SLudy are the coordinates of the point P.

Since C is the origin,

x'' = o and jk" = o.

Substituting these values into [i], we get

[2] y—y—~{x'—x)
X

[3] Hence y'x'—yx'=^y'x'— jj/'jr,
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[4] and y
_y

X'
X,

which is the equation of LM,

[5] Hence

Since IvM and ^O are conjugate to each other,

^ = tan 0.
X

[6] tan 6 tan 6' =
a'

by § 55

by § 240.

y
fyl Hence —;^tan0'=^^'^ X a'

[8] Hence tan S' = '?'x^

?y

The equation of the polar ST is

[9] a^yy— U'-xx'^^— a'b^. by § 324 and § 221

[10] Hence

[11] Hence

y
b'x'
-2 ./ X—a y

tan SRK=
y
b' X^

2 Vay
By comparing [8] and [11], we get

[12] tan Q' = tan SRK.

Therefore ST is parallel to NO.

2. FOR THK ELIvIPSE).

Y vS

by § 53-

by Geom. 9,

Q. E. D.

Fig. 115

For demonstration compare that for the hyperbola.
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PROPOSITION V

327. For a pai^abola the polar of a point on any diameter is

parallel to the ordinates of that diameter.

Fig. 116

Let P be aii}^ fixed point on the diameter LM, and let ST
be the polar of that point.

Let NK be an ordinate to the diameter LM.

We are to prove ST
|i
NK.

Let LO be a tangent to the parabola at L-

Let LM be taken as the X axis and LO as the Y axis.

Then the equation of ST will be

[i] ,._,= .,._.,, .,.3.....,3.

[2] Hence yy :^ pi^x^ -\- x)

.

Now since the point P is on the X axis, jj/' = o and [2]

becomes

[3] x = —x\
But this is the equation of a line parallel to the Y axis.

by § 'j^a.

Hence ST
|| LO.

But NK
II LO. by § 14.

Therefore the polar ST [|,
the ordinate NK.
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328, Corollary.— The polar 0/ any poi?it on an axis of a conic

is perpe7idicular to that axis.

PROPOSITION VI

329. In an hyperbola and in an ellipse the distancefrom the cen-

ter measiired along ajiy diameter to the pvlar of any point on

that diameter or diameter produced , is a third proportio7ial to the

scTni-diameter and the distance of the pointfvm the center.

I. FOR THE HYPERBOLA.

Fig. 117

Let ST be the polar of the point P on the diameter lyM

produced, and let R be the point where this polar cuts LM.

Let a' = CM and ^ = CP.

We are to prove that

CR : a' :: a' : CP.

Let NO be conjugate to LM.

Let LM be taken as the X axis and NO as the Y axis.

Let ^' = CN.

Then the equation of the polar ST will be

[i] a'^yy— b''xx^ ^=— a'^V^

.

by § 324 and 255(2.

Now the polar ST cuts the X axis LM where y ^o and

-r=CR. by §45.
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Substituting these values into [i], we get

[2] — /^'VCR = — ^'-^^'^

[3] and

[4] Hence

[5] or

CR
a

X'

CR : a' :: a' : x\

CR : a' :: a' : CP.

2. FOR THE ELIvIPSE.

Q. E. D.

Fig. 118

t

lyet SR be the polar of the point P on the diameter LM,
and let R be the point where this polar cuts LM produced.

Let a' = CM and x' ^ CP.

We are to prove

CR : a' :: a' : CP.

For demonstration compare that of the hyperbola.

PROPOSITION VII

330. T/ie distance from the extremity of any diafneter of a

parabola measured along that diameter to the polar of any point

on it is equal to the distancefrom, the vertex to the pointy but is

measured in the opposite direction.
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For in § 327 we have proved that

in which x is the abscissa of any point on the polar, and x^ is

the abscissa of its pole.

o. E. D.

PROPOSITION VIII

331. In any conic the directrix is thepolar of the adjacentfocus.

I. FOR THE HYPERBOLA

Fig. 119

Let DD' be the directrix and F the adjacent focus.

We are to prove that DD' is the polar of the focus F.

Let « = CA and p = RF.

[i] Then CR = CF — RF.

[2] But - CF = ^=^^, by §218, [2]

a{e'^ — i)
[3] and RF =/> by § 251, [5]

[4] Hence by [i] CR= ae — a(^e^— i)

The directrix _L the X axis.

The equation of the polar of the focus is

by § 248.
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[5] / — r = -^/(-r'— x) , by § 324 and §221.
a'y

[6] Or a'yy' — U'xx' = —a'b\

in which x^ = ae and_>'' = o.

Substituting these values into [6], we get

[7] — y^xae = — a^d"^,

a
[8] and x

e

which is the equation of a line parallel to the Y axis, and at

a distance from the origin equal to —

.

by § 56.

The polar of the focus is therefore perpendicular to the X
axis. by Geoni. 6.

Since the origin is at the center, the distance of the polar

of the focus from the center is —

.

e

Hence from [4.] and [8] it follows that the directrix and

the polar of the focus are at the same distance from the cen-

ter and both perpendicular to the X axis.

Therefore the directrix coincides with the polar of the focus.

by Geom. 2.

Q. E.D.

2. FOR THE ELTvIPSK

For the demonstration of the ellipse compare that of the

hyperbola.

3. FOR THE PARABOIvA

lyCt DD' (Fig. 120) be the directrix and F the focus.

We are to prove that DD' is the polar of the focus F.

[i] AR==AF. by §280.

The distance of the polar of the focus from A is equal

to AF but measured in the opposite direction from A.

by § 330.
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Fig. 120

Therefore the directrix and the polar of the focus pass

through the same point R.

The directrix is perpendicular to the X axis. by § 284.

The polar of the focus is perpendicular to the X axis.

by § 327 and § [4.

Therefore the directrix coincides with the polar of the

focus. by Geom. 2.

Q. E.D.

EXAMPLES;

1. The slope of a tangent to the parabola j/^ = 6x is 3.

What is the equation of the tangent ? Ans. J^= 3-^ + y.

2. Given the parabola jj/^ = 8jr. What is the parameter of

the diameter jF

—

16=0? Ans. 136.

3. Required the chord of contact of tangents drawn from

(— 2, 5) tojj/^ = 8;t:. Ans. 5j/— ^x-\-8 = o.

4. A tangent to j/^ = 4.x makes an angle of 45° with the X
axis. What is the point of tangency ?

5. Given the parabola jj/^ = 4-^ ; required the equation of

the chord which is bisected by the point (2, i).

6. Required the equation of the right line passing through

the vertex of any parabola and the extremity of the focal

ordinate.
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7. The headlights on locomotives contain parabolic reflec-

tors. Why ?

8. The equation of a parabola is y^ = lox. Through the

point (7, ord. -|-) we draw a tangent and a normal. Required

the lengths of the tangent, normal, subtangent and sub-

normal.

9. Thepointsof contact of two tangents are (-^i,Ji), (-^...JKJ.

Find their intersection.

10. Find the equation of a straight line touching the parab-

olajK^= i6jr and passing through (— 4, 8).



CHAPTER XIV

The General Equation of the Second Degfree

PROPOSITION I

331 . To determine theforms of all the loci which are repre-

sented by equations of the second degree co?itaining two variables

only.

Fig:. 121

The general equation of the second degree may be written

[i] Ax" -\- 2Bxy -{- Cy^ -\- 2Dx -\- 2Ey -{- F=o.

If the X and y in this equation be variables and represent

the coordinates of a point moving in a plane, then whatever

real values its coefficients may have, the equation will repre-

sent some locus, real or imaginary.

Let LM of Fig. 121 represent that locus. We are to find

the forms of LM for all real values oi A, B, C, D, E, F.

It will be convenient to divide the investigation into tw^o

parts.

I St. To find the forms of LM when C f=^* o.

2nd. To find the forms of LM when C = o.

* Read ^f; "is not equal to."
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FIRST PART

C^ O.

Equation [i] may then be written

[2] Cf + 2{Bx-^E)y + Ax' + 2Dx + 7^= o.

Finding the values of jk from this, we get

[3] 7
Bx A- E I^ ± ~^^/\Bx^Ey—C{Ax'^2Dx^F)

C

[4] Let R^{Bx + EY— C{Ax' + 2Z?jr + F) .

[5] Then

^=BV + 2i?i5^;r + E' —ACx' — iCDx— CF,

[6] or ieEE(i5'^— ^0-r''+ 2(^9^5-— (ri>)jr+^'^—^Ci^.

^ ^ i7

[7] I^et ^= + B C E

D E F
Wentworth's College Alg., § 399.

The coefficients of [6] may easily be remembered by notic-

ing that they are the minors corresponding to F, Z^and A in /I.

A B
B' AC=

B C

B C
BE~CD =

D E
C E

E' CF=
E F

and

Multiplying both sides of [7] b}^ — C, we get

[8] —CA——ACF^ A CE'+ CW + CFB'— 2CBDE.

Adding B'E'— B'E' io the right hand member of [8], we get

[9] -CA =
— ACF+ ACE'— B'E' + CFB' + B'E'— 2CBDE+ CW

^ ACiE'— CF)—B\FJ— CF)-^ {BE— CDY
— {AC--B'){E'—CF)+ {BE — CDy.
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[10] or — Cz/=r ^BE—CDY— {B' — AC){E' — CF)

.

Ivet a^B- —AC,
b^BE— CD.

c= E' — CF.

Then equation [6] becomes

[11] R^=^ ax^ -\- 2bx -\- c,

and [10] becomes

[12] b'— ac=: — CA.

Now it will be found that the form of I^M depends largely

upon the coefficient of x^ in [6].

This coefficient may take three different values.

ist. B' — AC<o.
2nd. B' — AC>o.
3rd. B' — AC:^o.

First Case

B' — AC < o.

In this case we may have

ist. C^ < o,

2nd. Cz/ > o.

3rd. €/} = o.

First when C^ < o.

[13] Put ax~ + 2bx -\- c ^ o.

Now since C^ < o,

—C^ > o
;

hence by [12]

b^ — ac ^o.

Hence the roots of [13] are real and unequal.

Wentworth's College Algebra, § 141.

.Let these roots be x' and x" and let x^ < x"

,
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[14] then R=^ ax^ -\- 2bx -\- c^=i a{x— x^){x— x").

Wentworth's College Algebra, § 153.

But since in this first case B- — AC <^o, a is negative, and

[14] may be written

[15] R — — a{x— x'){x—x''').

Substituting R for the quantity, under the -j/ in [3] , we
o'et

r . T Bx \- E
^

I -7—
[16] J/

= ^ =±= -^ 1/7?.

[17] Ivet y = -^T/^

[18] then y^—?^^^^Y^
which is the equation of LM. by § 39.

If in Fig. 121 P be any point on LM, then in [18]

[19] 7=PK and ^ = OK.

Let AB be the line whose equation is

r ,
Bx-\-E

[20] y— -^
—

.

Let the coordinates of the point Q on this line be

;i: = OK and /" = QK.

Rx A- F
[21] Then /" =

c
' by §40.

Now if we subtract [21 from [18], member for member,

we get

[22] y-y">^^Y^

[23] or PK— QK = dry,

[24] or PQ = ± y-

Take HI = IJ,

and draw lY'
|| OY.

If now we take ooY' and cioX' as our axes of coordinates,

then Gi?Q and PQ will be the coordinates of the point P.
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\_2\a\ Let 0!9Q = X.

[24^] PQ= Y. by [24].

In Fig. 121 let O be so taken that

x' = OH and jt" = OJ.

Then x" — OH + 2HI,

hence x' ^ x" = 2 (OH+ HI),

[25] and ^^tj^ = 01.
2

Hence by [19] and [25], we get

[26] OK = ;t:=
^ +G^S.
2

Now by Trig. 14 and Geom. 11 w'e get

ce9S _ sin ce^QS _ sin CAP
69Q

""
sin Ce^SQ ~ sin COA"

-^ sin CAO . ^^ • ^ • ,7But —.—^^ is constant. Representmo: this constant bv k,
sm COA

we get

[27] —FV = ^^

[28] G9S=/^&?Q=^X by [24^].

Substituting into [26], w^e get

x' -4- jf"
[29] x^ ^

-\-kX.
2

Substituting this value of x into [15], we get

[30] R= — a{̂ ^'^
^"
+kX—x')(^''''^^ """ + kX—x"y

[31] whence R=— a (^kX+ '^'^^) (^kX—"^—) .

x"— x'
Now let /i = ,

2

[32] then ^= — a(^-X' — /z').

Substituting this value of R into [17], we get
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T

[33; Y— V a{k'X' If).

[34; CY'= ak'X' + ah\

L35. Y' — X'-\- I
ah' h ^ '

[36] Let
a I

ah' b"'
'

[37] and
k' I

h' a"'

Substituting into [35] , we get

[38]

[39] Whence a" Y' + b"X' = a"b'\

Now since b}^ [24a] and [24*5] A"=: ooQ and Ki= PQ, [39]

is the equation of the ellipse.

Second when C/i > o.

In this case, by [12], b' — ac <Ci o. Hence the roots of

ax' -\~ 2bx -\-c=^ o

are imaginary. Wentworth's College Algebra, § 141.

Hence ax^ -\- 2bx-\- c is negative when a is negative.

Wentworth's College Algebra, § 180.

But in this first case

B''—AC<Co,

[40] or a < o,

that is, a is negative. Hence ax^ -\- 2bx -\- c is negative.

Hence by [11] ^ is negative, and therefore |/ 7? is imagi-

nary.

Hence by [16] jj^ is imaginary.

Therefore when C^ > o, [i] cannot represent any real

locus.

Third when CA = o.

Since in this first part of the investigation C^ o, then z/= o.
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Hence by [12]

[41] /^" — ac = o.

Therefore the roots x' and .r" of [13J are real and equal.

Wentworth's College Algebra, § 141.

[42] Hence R=:- a{x— x'){x— x')^^a{x—x'Y,

and 'Y^V ^= ~7^ (-^
— ^') V ^'

Hence [16] becomes

r- -,
• Bx -\- E X — x' .

—
[43] y= -^— ± ^~^^'

Now since by [40] a is negative, the last term of this equa-

tion is imaginary, and the equation itself represents two im-

aginary straight lines.

Therefore when B'^ —AC <i o, and

ist. C^ < o, [i] represents an ellipse
;

2nd. CA > o, [i] represents an imaginary ellipse
;

3rd. CA = o, [i] represents two imaginary straight lines.

Second Case

B'—AC>o.
In this case again we may have

ist CA <^o.

2nd. CA ^ o.

3rd. CJ r^ o.

First let CJ < o.

By [12] we see that when CJ < o, b^— ac^o. Hence
again x' and .r" are both real and unequal. Also since

B' — ^C> o, ^ is positive. Therefore [33] will become

[44] Y^^y'^k'X'—h').

[45] C- r- = ak'X' — ah'.

[46] _^=^X'-:.
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C I
lyet

and

then [46] will become

[47] ^ = ^-1.

[48] and a'^y — V'X' — — a'''b'\

which is the equation of the hyperbola.

Second let C^ >o. Then by [12] b'^— ac<^o,

and the roots of [13] are imaginary.

Now since in this second case dispositive, as in [31], we get

^" — x\ ( . ,. jr" — x^R^a[ kX+ kX
2 / \ 2

but since x' and ^" are imaginary, we ma}^ write this

R= a{kX-\~ h^'^^i){kX— h y~^^i )

— a{k''X^^Jr^.

Therefore by [17] Y —~y'a{k''X' + h').

C'Y'z^ak'X' + ah\

C'Y'—ak'X'=^ah\

C^ I Jz' I

Y- X'
then -jjT, 72 = I

'

b a

or a'^Y'— b^'X-' — a'^b'^

which is the equation of the hyperbola conjugate to [48].

Third let 6^ = o.

Again b\^ [12], when CA = 0, b^— ac^=^ o, and the roots of

[13] will be real and equal; and again as in [42]
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[49] R^^a{x— x'Y,

and as in [43]

r-
-, Bx -\- E X — x' .

—
[50] r= -^ ± —-^—V a.

Now since a is positive, this equation represents two real

straight lines.

Therefore w^hen R-—AC > o, and

ist. CA <^ o, [1] represents an hyperbola;

2nd. CA > o, [i] represents the conjugate hyperbola
;

3rd. 6^ = 0, [i] represents two straight lines.

Third Case

B'—AC=o.
Since a = B'— AC,

[51] then « = o,

and by [6] w^e get

R— 2{BE— CD)x + E'— CF,

[52] or by [11] R^^2bx-\-c.

Substituting this value of R into [3], we get

Bx-^E
,

I

[53] y = ^
±-^^2bx-^c

r -, Bx+ E^ ^ J ,
^ \

Now the values of y given by this equation will be real so

Ions: asJ3

= c
X > 2b'

Since by [51]

<2 = o,

[55] then {^BE—CDf^-CA. by [10]

.

[56] Hence b''=i— CA,

so that when ^ — to o, CA is negative,
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[57] and when ^ = o, CA is o.

Hence in this case we can only have

ist. CA < o.

2nd. CA = o.

First let CA <Co.

Then by [17] and [52] we get

[58] r= -^ v^bx^c = ^V ^K ^+ ^)
In Fig. 121 let

I

thenby[58] Y=^ -^ y" 2b{x— x;)

Now as in [29] we may show that

;i: = jTj -(- kX.

I

[59] Hence K=—^ ]/ 2<5(;t:^ + /^X— x^),

[60] and r=— |/ 2^/^X,

[61] and Y'^2~X.

Let -^ = ^ '

[62] then F^ = 2/X,

which is the equation of the parabola.

Second let CA := o,

Then by [57]

<^ = o,

and [53] becomes

[63] J = 7^ ±

which is the equation of two parallel straight lines.
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Therefore when B'— AC^=-o, and

ist. CA << o, [i] represents a parabola.

2nd. C^ = 0, [i] represents two parallel straight lines.

SECOND PART

C=o.

Equation [i] may then be written

[64]

[65] y

[2{Bx+ E)']y+ Ax' + 2Dx -^ F=o.
Ax'^2Dx-^ F

2 {Bx+ E)

[66] y
A __D^ AE
2B "^ B ^ 2B' +

AE'
,
2DE . ^^i ^^ E

B'- B

[67] y
A _ AE D

+

2{Bx^E)

— AE'+ 2BDE—EB'
B

But when C= o,

A — —AE'-^2BDE— EB'

Hence [67] becomes

2B\Bx^ E)

[68] y
A AE

~B
+

A

r . A , AE E
,

[69] -^=-^^+5^-^ +

2B\Bx+E)'

A

2BHx +
E^

~B

Fisf. 122

In Fig. 122 let LM be the locus of [69], and let P be any

point on LM.
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Then ,r=OK and y=PK.

Let AX' be the line whose equation is

, , A , AE D '

.

[70] y=—^''^^F---B^
and let /" = QK,

r n 1 ,/,
^

,

AE D
[71] then y ^— -^^ -^ + ^^ — -;^-

by §40.

Then by subtracting [71] from [69], we get

A
[72] pQ__^_y"

2B'

A
i'+i)'

[73] Let V=VQ = -
. p.,

let oi = -~,

and let lY' be the line whose equation is

C74] ^'=-i-
E

[75] Then gl^S = x—x' ^= x-\- —^.

Then as in [28] of the first part

[76] c^(^^k\x+~).

Now if we take AX' for a new axis of X and lY' for the

new axis of Y, then the coordinates of P will be

[77] ^= ^Q and Y = PQ,

[78] and X=k'<^x^~\

[79] hence ^ +— = ^.
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Then [73] becomes

[80] Y=-' '''

^3 X 2B'X'
2B —

k'

[81] XY- ^
2B'

k'A ...
Since —-^^ is constant, [81] is the equation of an hyper-

bola referred to its asNanptotes. by '§ 275.

Therefore when C= o, [i] represents an hyperbola re-

ferred to its asymptotes.

SUMMARY

C=o.

Then when B'—AC <C o, and

I St. CJ < o, [i] represents an ellipse;

2nd. CJ > o, [i] represents an imaginary ellipse
;

3rd. CJ = o, [i] represents two imaginary straight lines.

When B'— ACy>o, and

I St. CJ < o, [i] represents an hyperbola
;

2nd. Cz/ > o, [i] represents the conjugate hyperbola;

3rd. C/l = 0, [i] represents two straight lines.

When B' — AC=o, and

ist. C/l << o, [i] represents a parabola;

2nd. C^ = 0, [i] reprasents two parallel straight lines.

C=o.

Then [i] represents an hyperbola.

33i<2 . Corollary.—Every equation of the second degree contain-

ing two variables only is the equation of a conic.

Remark.—The lines represented by [43], [49] and [61] of

§330 are limiting cases of the corresponding conies.
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332. A Non-Conic.—Any plain locus which is not a conic

we will call a non-conic. Among the non-conics are

Higher Plane Loci,

Spirals,

The Logarithmic Curve,

Trigonometric Loci.

HIGHER PLANE LOCI

333. A Higher Plane Locus.—A higher plane locus is a

locus whose equation is of a higher degree than the second.

The Lemniscate

334. The Lemniscate.—If from the center of an equi-

lateral h3^perbola a perpendicular be drawn to a tangent to the

hyperbola, and the point of tangency be made to move along

the hyperbola, the locus traced out by the intersection of the

perpendicular and tangent is called the lemniscate.

Let MAN be an equilateral hyperbola ; OT a perpendicular

drawn from the center to the tangent which touches the hy-

perbola at the point P, and let P move along the hyperbola.
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Then the locus traced out by T, the intersection of the per-

pendicular ajid the tangent, is the lemniscate.

PROPOSITION

335. The equation of the lemniscate is

{x'^+fy=^a\x'^—f).

Let X = OH and y = TH,

a = OA.

The equation of MAN is

[i] x'—y'=a\ by §208.

and since P is on the hyperbola

[2] x"—y" = a\ by §40.

Hence the equation of the tangent to the equilateral hyper-

bola may be written

x' a^
r^l r = —tX -. by §§ 221 and 207;-

y y
Therefore the equation of the perpendicular OT is

y'
[4] JK = J

X. by §§55 and 62.

Since the point T is on both the perpendicular and the tan-

gent, we may let the x andy in [3] and [4] stand for the co-

ordinates of the point T. by § 40.

Then [3] and [4] become simultaneous. Solving them we
get

[5] -^^ ^2 1 .,2
and y = —

x'-{-y'
-" x'+ y''

Substituting these values into [2] and reducing, we get

[6] {x'+yr = a'(x'-y).
Q. E. D.
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336. Corollary.— The polar equation of the lem7iiscate is

r' :=a''^ cos 2 6,

in which r^iOT and 6 ^ ^AOT reckoned counter clockwise.

This equation may be found by transforming [6] to polar

coordinates.

Scholium.—Let ^ = 0, then ;•= =h a.

Let o<0<45°,

then i>cos20>o.

Hence • <2' cos2^ <<2'"^,

and r^<Za'.

Therefore r has two values numerically equal, less than a,

and of opposite signs.

Let 6 = 45°, then r =: o.

Let 45° < < 135°, then r is imaginary.

Let d = 135'', then r = o.

Let 6 = 180°, then r = =b <a:.

The curve therefore consists of two loops, one to the right

and the other to the left of the origin, symmetrical with respect

to the X axis, and reaching to the distance a from the origin.

The Cissoid

337. The Cissoid.—If on opposite sides of the center of a

circle and at equal distances from it two ordinates be drawn

to any diameter ; and if through the upper extremity of

either ordinate and the extremity of the diameter farthest

from it a line be drawn, and this line be made to revolve about

the extremity of the diameter, then the locus of the point

where this line cuts the second ordinate is the cissoid.

Let QR and ST be two ordinates drawn to the diameter OA
at equal distances from C and on opposite sides of it, and let

OL be a line through S, the upper extremity of the ordinate

ST, and O the extremity farthest from ST of the diameter OA.
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Fig. 124

Let P be the point where OL cuts the second ordinate QR.
Now let OIv revolve about the point O.

Then the locus MPON traced out by P is the cissoid.

PROPOSITION

338. The equation of the cissoid is

r = x-'

2a— X

Let X = OR,
J^/
= PR and a = OC.

[i] CR = CT, by construction.

[2] hence OR = TA.

[3] Again ST — OT.TA, by Geom. 60.

[4] or ST = {2a— TA)TA.
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Hence by [2]

[5] st'= (2^— 0R)0R,

[6] or ST = i/x(2<a^— x).

Now OPR and OST are similar, by Geom. 51

[7] hence OR : PR :: OT : ST, by Geom. 31

[8] or X \ y w 2a —x : ST.

Hence by [6]

[9] X \ y \\ 2a —X : \/ x{^2a— jr).

xy x{2a— x)
[10] and v= — ^ z= rb \2a —X \

x'

2a— X
3X

fill Therefore y^ = .

-^ 2a —X
Q. E.D.

Scholiuw..—From [10] we see

( 1 ) that the curve is symmetrical with respect to the X axis,

(2) it passes through the origin,

(3) it has the line x =i2a for an asymptote.

339. Corollary,— The polar equation of the cissoid is

r^=-2a tan 6 sin 6

.

The Witch

340. The Witch.—If to any diameter of a circle an ordi-

nate be drawn and this ordinate be produced until the pro-

duced ordinate is to the ordinate itself as the whole diameter is

to either segment of the diameter, and then the ordinate be

moved continually in the direction of this segment ; the locus

of the extremity of the produced diameter is the witch.

In the circle OLM let LK be an ordinate to the diameter

OM. Let lyK be produced until

[i] PK : LK :: OM : KM,

and let PK move continually in the direction of the arrow.
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Fig. 125

Then NOPQ, the locus of the point P, is the witch.

Let ^ = OK, jK = PK and 2a = OM.

PROPOSITION

341. The equati07i of tke witch is

4.a~x
y
—

2a X

[2] OK : IvK :: LK : KM. by Geom. 60.

[3] Hence LK = i/OK.KM = yx{2a —x)

Therefore from [1] and [3] we get

[4] y : -|/jr(2<2— x) :: 2a : 2a— x.

[5] Hence y
^a X

2a — X
Q. K.D.

342 . Corollary .
—

(7) The witch is symmetrical tvith respect to the X axis ;
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(-?) // lies wholly to the right of the Y axis ;

(^) The line x ^=^ 2a is an asymptote to it.

The Conchoid

343. The Conchoid.—If while the center of a circle moves
along a fixed straight line, one of its diameters always passes

through a fixed point, then the locus of the extremities of the

diameter is the conchoid.

Figr. 126

Let the center C of the circle PQP' move along the fixed

line X'X, while the diameter PP' passes through the fixed

point M ; then the locus SPT-LMN of the extremities P and

P' of the diameter is the conchoid.

Let P be any point on the locus and drawMts ordinate PK.

LetJi: = OK and r = PK,

PROPOSITION

344. The equation of the conchoid is

xY^{b'^-f){a + yy

Draw MH 1|
CK.

Produce PK until it meets MH at H.
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Since the trianglesMPH and CPK are similar, byGeom. 25.

[i] PK : CK :: PH : MH. by Geom. 31.

[2] then PK ; VcP— PK :: PK + OM : OK,
by Geom. 27 and 17.

[3] or y : y^d''—y \\y-\-a : x,

[4] hence ;ry = (^^ —J'^)(^+J^')^
Q. K.D.

From [4] we get the equation of the conchoid in another

form

.

a-\-y
[5] x^^-^Vb'-f.

Scholium.—When ;i:=o, [5] becomes

Hence the curve cuts the Y axis above and below the origin

and b units from it.

When y is numerically less than b, [5] shows that every

real value of y, either positive or negative, gives two values

of X numerically equal, but with opposite signs.

Hence there is one branch of the curve above the X axis

and another below it, and the curve is symmetrical with re-

spect to the Y axis.

When y = o, we find :r = ri= 00 ,

Hence the branches extend an indefinite distance to the

right and left of the origin.

Let b> a.

Then when _y ^= — o., we have jr = o,

and when j = — b, we have ;ir = o.

Hence the curve cuts the Y axis below the origin at the

distance — a and — b from it.

When a <Cy< b, x has two values numerically equal, but

with opposite signs.

Hence there is a loop below the origin.
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If we take M for the pole and MY for the initial line and let

r=MP and = YMP,

we get the following :

345- Corollary.— The polar equation of the conchoid is

r= a. sec dz <^.

The Limacon

346. The Limacon of Pascal.- -If one of the two points

in which a secant cuts a circle remains fixed while the other

moves along the circumference of the circle, and if the length

of the exterior segment of the secant produced through this

latter point remains constant, then the locus of the extremity

of this secant is the limagon of Pascal.

Fig. 127

In Fig. 127 let the point O remain fixed while Q moves

along the circumference of the circle. OQQ'. lyCt the length

of the exterior segment PQ remain constant.

Then the locus of P is the limagon.
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Let jr = OK and y = PK,

^=OA *' >?=PQ.

PROPOSITION

347. 77z<? equation of the limago7i is

[i] For OP = j+OQ = i/^^+y, byGeom. 26.

[2] hence >? + ^.cosAOQ = |/^- 4-j/".

by Geom. 55, Trig. 2.

Now from the triangle OPK we get

cos AOQ =——^
.

t/ x'+y
[3] Hence by [2]

X

y x^-j-y

[4] or ^-|/;t:^ -\- y^ -\- dx = x'"' -f" JI/^

[5] Hence (jr'+/— ^;r)=^ = ^^(jc'^+y).

Q. K.D.

By expanding [5] we get

[6] y'-\-y\2x'—2dx— s') + x'\_{x—dy—s'l,= o.

[7] Let ^^=j)/^ ^= 2;r'^— 2^^— /,

and e^iX^\_{x— d)'— /] .

Then [6] becomes

[8] 2j' + dv+ c — o.

By the theory of quadratics we know that v will be real when

[9] d''— 4.c > o,

[10] that is, if (2^1;^— 2dx— s^)^— ^x'\_{x— d)^— -f^] ^. Oj

s'
[11] hence if x -^ .— \d

When X ^ d— s and x <^d-\- s,
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[12] c=:^x''\_{x— dY—s''']<o.

For let x^^d— s-\-r^

then by the second inequalit}^ above

d— s-\- r< ^-|-^.

Hence r^ < 2 r^.

Again let x^:^ d-\- s— r,

then also r' < 2rs.

But X—^=^— r,

hence (^— dy— ^^ = r"^ — 2rj < o,

and x^[{x— d)^— r] < o.

That is, ^ is negative, and therefore one of the values of v

in [8], say v^, is positive, and the other, say v^, is negative.

Hence from [7] we get

[13] • y=^i»
[14] and y — — z/,.

From [14] we see that two of the values of y in [8] will be

inaginary, and from [13] that the other two will be real, equal

and will have opposite signs.

From [5] we see that

ist, when ^ =: o and j}/=:o, the equation of the locus is

satisfied.

[15] Hence the limagon passes through the origin.

2nd, when J/
= o, then x = dzL s.

[16] Hence the limagon meets the X axis at two points.

x:=:d-{-s and x = d— s.

FIRST CASH

Let s <C d.

Then when x -< d— s,

^ < o,

and 2x'^— 2dx— ^^ < — 2ds + /.



NON-CONICS 275

But s < d,

hence 2X^— dx— ^^ < o,

[17] or ^ < o.

Consequently in this case both the values of v in [8] are

positive, and hence all four values of y in [6] are real and

equal two and two.

Hence we see by [11], [15], [16], that from

s'
X=z to X = O,

and from xz:^o to x =. d— s,

the limagon has two branches, both symmetrical with respect

to the X axis.

From [13] and [14] we see that from

;r=^— ^ to X ^= d -\- s,

the limagon has but one branch, and it is symmetrical with

respect to the X axis.

Therefore when s <C d, the limacon will be of the form given

in Fig. 127.

SECOND CASK

I^et s = d.

In this case
s' _ d
\d~ 4

and d— s = 0.

Hence again when jf << d— s = 0.

^ < 0.

Therefore from to o, y will have four real values equal
4

two and two ; the points

—

s will be at the origin ; the loop will

become the point O. From o to 2d, y will have two values

equal and of opposite signs, and the limagon will take the

form shown in the following figure.
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Y

Fig-. 128

The lima^on is then called the cardioid.

Since in this case s = d, [5] becomes

[17] (^^ +f - dxY^d^x' +y ),

which is the equation of the cardioid.

THIRD CASE

lyCt d <^s <Z 2^.

Then d— s is negative.

Also when x <^ d— s,

we have <5 < o.

Therefore from
^d

to d— s the J/ in [5] has four real

values equal two and two with opposite signs. From^

—

s to

d -\- s it has two real and equal values with opposite signs.

Since jr= o andjK = o satisfy [5], the origin is an isolated

point on the limagon. Hence in this case the limagon takes

the form shown in the following figure.
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Fig, 129

Then
/^d

FOURTH CASK

I^et S =: 2d.

= — d and d— s =^ — d.

Now when a- = — d in [8] , ^= o and r = o and the four

values of y in [6] become o.

From— d to 3d, j/ has two real and equal values with oppo-

site signs. Therefore the limagon takes the form of Fig. 130.

Fig. 130
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FIFTH CASE

Let ^ > 2d.

2

Then the values of y in [6] will be imaginary from ^
4^

to ^— s, but from d— ^ to d-\- s, y will have two real and
equal values with opposite signs. Therefore the limagon will

take the form shown in Fig. 131.

336. Corollary.— The polar equation of the limagon is

r=^s-\-dcosd.

In Fig. 127 let O be the pole and POX the vectorial angle.

Iyet(9=POX and r=OP.

Now AQO is a right angle, by Geom. 55.

[i] hence OQ = OA cos := d cos 0. by Trig. 2.

[2] But
'

^ = PQ + OQ,

[3] hence r = .y -f- ^cos ^.

Q. K. D.
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Scholium.—If we take the point P', then

[4] OQ'= OA.cosAOQ'=— OAcos AOP', by Trig. 23.

[5] or 0Q'=— ^cos6>.

[6] But r=OP' and 5 = Q'P',

[7] hence r z^ s— OQ'.

Substituting the value of OQ' given in [5] into [7], we get

[8] r=s-\-dcosO.

If we take the point P", then

[9] _oP- = — OQ" + Q"P",

[10] or OP'' = OQ"— Q"P".

[11] Hence rz=^s-\-d(ios>6.

SPIRALS

346. A Spiral.—A spiral is the locus traced out by a point

revolving in a plane about a fixed point and receding from it

according to some fixed law.

Logfarithmic Spiral

347. The Logarithmic Spiral.—The logarithmic spiral is

the locus of a point revolving about a fixed point in such a

way that the logarithm of its radius vector is always equal to

a constant multiplied by the number of radians in its vectorial

angle.
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PROPOSITION

348. The equation of the logarithmic spiral is

in Q

Fig. 132

In Fig. 132 let P move about the fixed point O in such

a way that the logarithm of OP is always equal to a constant

multiplied by the number of radians in ZlPOD. Then will

ABCDK, the locus traced out by P, be the logarithmic spiral.

Let O be the pole and OX the initial line.

Ivetr=OP,

= the number of radians in z^POD,

and m = any constant.

By the definition of the spiral we have

[i] log r^^md.

Then by the definition of a logarithm we have

[2] r = «^^®.

Q. E. D.

PROBLEM

349. To construct the logarithmic spiral whose equation is

[i] r=2d.

The number of degrees in one radian is 57°. 3. by Trig. 27.

Therefore by [i] we may make the following table.
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TABLE
Number of degrees in e- e. Length of r.

O I

57"-3

ii4".6

57-3
— 114.

6

I

2

— I

2

2

4

•5

•25

— 00 3

281

Since by the table r= i when =0, tlie point whose coor-

dinates are r= i, =0, is the point D in Fig. 132 at the dis-

tance of a unit from the pole.

Since by the table when the number of degrees in 6^= 57°. 3,

r=: 2, we may locate a second point P on the spiral by laying

off Z^ POX = 57°. 3 and making OP == 2. Similarly we may
locate the point K.

Since by the table r = 0.5 when 6 =: — 57°-3> we may
locate the point C in the figure b}^ laying off an angle of 57^.3

measured from OX clockwise, and making OC = 0.5. Simi-

larly we may locate the point B.

In this way we may locate any number of points and draw"

the spiral.

350. Corollary i.—Since when =z o, r =^ i, we see that any

logarithtnic spiral cuts the initial lijie at a unifs distance from
the pole.

Corollary 2.—Since when =— co
, r= o, the spiral makes an

infinite number of revolutions within the circle whose radius is i.

Corollary j.—Si?ice when ^ = 00
, r= co , the spiralmakes an

i7ifinite number of revolutions outside of the circle whose radius

is I

.

The Spiral of Archimedes

351. The Spiral of Archimedes.—The spiral of archimedcs

is the locus traced out by a point moving about a fixed point

in such a way that the ratio of its radius vector to its vector-

ial angle is constant.
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Fig". ^33

Let the point P revolve about the fixed point O in such a

OP
way that ^^^^ is constant ; then the locus OMPQ is the spiral

of archimedes.

PROPOSITION

352. The equation of the spiral of archimedes is

r= c.d.

Let r= OP and 6 = the number of radians in POX and

c = a constant.

Since by definition

[2] r=^c.e.
Q. K.D.

353. Corollary.—

(i) Since when B^^o^r^=^o, the spiralpasses through thepole ;

{2) Since when = 00 , r=: 00
, the spiral makes an infinite

number of turns about the pole.

The Hyperbolic Spiral

354. The Hyperbolic Spiral, or the reciprocal of the spiral

of Archimedes.—The hyperbolic spiral is the locus traced out
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by a point revolving in a plane about a fixed point in such a

way that the product of its radius vector and the number of

radians in its vectorial angle is constant.

Y

^
/

/

\
\

/ \ 0. ( \ ^
Q^ IS

H

Y'

D

Fig-- 134

In Fig. 134 let O be a fixed point and OX a fixed straight

line. IvCt P revolve about O in such a way that OP multi-

plied by the number of radians in ^ POD is constant ; then

will PQRS, the locus traced out by P, be the hyperbolic spiral.

PROPOSITION

355. The equation of the hyperbolic spiral is

rd=c.

Let r= OP, = the number of radians in POX, and c^=^

a constant.

Then by definition we get

[i] rd = c.

356. Corollary.—
(z) The spiral makes an infinite number of revolutions about

the pole before reaching it ;

c
{2) Si?zce r = -^, there is no point on the spiral whose vec-

torial angle is zero.
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357. Corollary 2.— The constant c is the circuynference of a

circle whose radius is equal to the length of the radius vector at

the end of thefirst revolution.

For at the end of the first revolution

[2] Q = 271.

lyet r' = r at the end of the first revolution.

Then by [i]

[3] 2nr'=c,

and 27tr' = the circumference of a circle whose radius = r\

by Geom. 29.

358. Corollary 3.— The arc of a circle between ajiypoint on the

spiral arid the ijiitial line is equal to the circumference of the cir-

cle whose radices is the lerigth of r at the end of the first revolu-

tio7i .

^4] For
r

=^' by Trig. 28.

[5] or arc PD = rQ.

Hence by [i]

[6] arc PD = c.

Therefore by §357 the arc PD is equal to the circumfer-

ence of the circle whose radius is equal to the length of r at

the end of the first rev^olution.

The Parabolic Spiral

359. The Parabolic Spiral.—The parabolic spiral is the

locus traced out by a point revolving in a plane about a fixed

point in such a way that the ratio of the square of its radius

vector to the number of radians in its vectorial angle is con-

stant.
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Fig. 135

PROPOSITION

360. The equation of the parabolic spiral is

e
'= c.

For the equation follows at once from the definition.

The Lituus

361. The Lituus.—The litzms is the locus traced out by

a point revolving in a plane about a fixed point in such a way
that the product of the square of its radius vector and the num-
ber of radians in its vectorial angle is constant.

Y

Fig. 136
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PROPOSITION

362. The equation of the liticus is

r'd = c.

The equation follows at once from the definition.

363. Corollary,— The initial li7ie is an asymptote to the lituus.

THE LOGARITHMIC CURVE

364. The Logarithmic Curve.—The logaidthmic curve is

the locus of a point moving in a plane in such a way that its

abscissa is always equal to the logarithm of its ordinate.

Fig- 137-

Let P be any point in the plane YOX.

Let P move in the plane YOX so that OK is always equal

to the logarithm of PK. Then RPQ will be the logarithmic

curve.

PROPOSITION

365, The equation of the logarithmic curve is

y ^^ a^

.

Let jr = OK and 7 = PK.
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Then by the definition of the curve

[i] x = \Qgy,

hence, by the definition of a logarithm,

[2] y = a''.

287

Q. E. D.

366. Corollary i.— The whole of the logarithmic curve lies

above the X axis.

For since negative numbers have no logarithms, y can never

be negative in [2] .

367. Corollary 2.—Every logarithmic curve must cut the Y
axis at a point one unit above the origin.

For when jf =r o,

[3] 7=^^° = !,

whatever may be the value of the base a.

368. Corollary j.— The X axis is an asymptote to the curve.

For when x = — co .

y a' = o.
a'

TRIGONOMETRICAL LOCI

369. A Trigonometrical Locus.—A trigonometrical locus is

a locus, one of whose rectangular coordinates is a trigonomet-

ricalfunction

.

The Cycloid

370. The Cycloid.—If a circle roll upon a fixed straight

line, the locus traced out by a given point on the circumfer-

ence of the circle is called a cycloid.
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lyCt X'X be the fixed straight line, and APBD a circle roll-

ing upon that straight line in the direction of OT. Let P be

a given point on the circumference of the circle.

Then the locus OPQRS, traced out by the point P, is a

cycloid.

PROPOSITION

371. The equation of the cycloid is

yX z=:.r vers—^ \/2ry— r^.
r \ ^ -

In Fig. 138 let

* X = OK and y = PK,

;.= cp " = z:pci..

[i] Now OK = OA— KA,

and, since the circle rolls in the direction OT,

[2] OA = the arc A P.

[3] But the arc AP = rd, by Trig. 28.

[4] hence OA = rO.

[5] Again KA = Ply, by Geom. 17.

[6] but PL = r sin(9, by Trig. i.

[7] Hence KA=rrsin^.

Substituting the values of OA and KiV found in [4] and

[7] into [i] , we get

[8] OK = r<9 — r sin Q.

[9] Therefore x = rd— r sin 0.

[10] AgainPK= AL = CA — CL. by Geom. 17.

[11] Now . CL = ^^ cos ^, by Trig. 2.

[12] hence PK = CA— rcos 0.

[13] PK —y and CA = r. by Geom. 18.
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Substituting the values of CA and PK found in [13] into

[12], we get

[14] y = ^— rcos 6.

Multiplying both, sides of [14] by 2r, we get

[15] 2?y = 27^— 2r' cos Q

.

Squaring both sides of [14], w^e get

[16] y'^ =^ r' — 2r' cos^ + ^'' cos"0.

Subtracting [16] from [15], we get

[i 7] 2ry—j/^ = r" — r^ cos ^Q =^7^ ( i — cos~ Q)

.

Now since i — cos^ d = sin^ Q^ by Trig. 5.

equation [17] becomes

[18] 2ry — JK^ =^ r^sin^ Q

,

[19] and -\/2ry — :j/^ = r sin 0.

Hence [9] becomes

[20] X ^=^ rd — y' 2ry— j/".

CI/
[21] Now cos =

,
by Trig. 2.

r22l hence cos = =^,

r

[23] or ^ = cos-i -. by Trig. 30.

Hence [20] becomes

[24] jr = r cos— ^ — |/ 2ry —y\

[25! cos— '^ ~ = vers—'- ( i —
)
= vers-^— .

r \ r .' r

by Trig. 29.

Hence [24] may be written

[26] X =^r vers-i-=^- ]/ 2ry — y-

.

Q. E. D.
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372. Coi'ollary.— When the highest point of the rolling circle

is taken as the origin, and the diameter perpeiidicular to the line

upon which the circle rolls as the X axis, the equation of the

cycloid is

yz^r vers^ (- -[/ 2rx X'

Fig. 139

In Fig. 139 let AT be the fixed straight line upon which

the circle ABOD rolls in the direction of the arrow. Let P
be any given point on the circle.

Let x^OK and y = PK,

[i] Then PK =^PJ + JK.

[2] Now PN = LM, by Geom. 57

I3] hence PJ- LK. by Geom. 59

'j\\ Again JK =: HA, by Geom. 17

hence [i] becomes

[5] PK =-- HA+LK.
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[6] Again AR == the arc AI^O,

[7] and HR = the arc HP,

[8] hence HA = the arc PQ.

[9] But PQN = IvOM,

[10] hence the arcPQ = the arc LO,

[11] hence by [8] HA == the arc LO.

[12] lyK = r sin 0.

291

by Geom. 58.

by Geom. 59.

Hence by [11] and [12], [5] becomes

[13] PK --= the arc LO + r sin 6.

[14] Hence y =^ rS -{- r sin 6. by Trig. 28.

[15] Also ;r= OK = CO—CK= r— rcos0. by Trig. 2.

Now from [14] and [15], as in the demonstration of the

proposition, we may get

[16] y^ r yers + |/^ 2rx — x'^

373. Other trigonometrical loci are the following

:

The curve of sines, see page 17.

The curve of tangents, see page 18.

The curve of secants, see page 19.
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CHAPTER I

Points and Directions in Space

374. Ihe posiiicn of a point in space may he indicated by

means of its distances from each of three well kiiown, fixed^ in-

tersecting planes which are pcrpe7idicular to each other.

Thus, in Fig. 140, let AB, CD and EF be three well known,

fixed, intersecting planes perpendicular to each other. I^et P

be any point in space, and draw

PS _L to the plane AB,

• PQ J_ " " " EF,

PM J_ " " " CD.

Then the position of the point P is indicated by giving the

lines PS, PQ, and PM.

375.^The Coordinate Planes.—The three well known,

fixed, intersecting planes are called the coordinate planes.

The plane AB is called the ZX plane.

(

(

*
s C\V) " " " ZY '

'

(

(

(
( TTF " ' ' " XY '

'

376. The Origin,—The point in which the coordinate planes

intersect each other is called the origin.

'^'j']. The Coordinate Axes.—The lines in which the coor-

dinate planes intersect each other are called the coordinate

axes.
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The line in which the plane ZX intersects the plane XY is

called the X axis.

The line in which the plane ZY intersects the plane XY is

called the Y axis.

The line in which the plane ZX intersects the plane ZY is

called the Z axis.

Fig. 140

378. Corollary.— The axes are perpendicular to each other.

For the plane ZX _L the plane ZY, by construction

and " " XY_L " " ZY, by construction

Hence the line XX' _L " " ZY, by Geom. 44

Hence XX' must be _L to YY' and ZZ'. by Geom. 33

Similarly it may be proved that ZZ' is _L to YY' and XX'
and that YY' is J_ to ZZ' and XX'.

379. The Coordinates of a Point.—The three distances of

a point from the coordinate planes are called \\\^ coordinates of

the point.

The coordinates of P are PM, PS and PQ, and they are

respectively parallel to the axes XX', YY' and ZZ'.

For PM is _L the plane ZY, by construction.

and it w^as shown in § 378 that XX' is _L the plane ZY.
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Hence PM || XX'. by Geom. 35.

Similarly it may be proved that

PS
II
YY' and PQ || ZZ'.

The coordinate || to the X axis is called the x coordinate.

< ( (

(

II

I i ( ( -VT" * < n 4 1 a ^. (1

<( ((
II
((((^ k( (( (( <( _ ((

Let X = the x coordinate.

2=. " ^

Pass a plane through PS and PQ ; another through PS and

PM, and another through PM and PQ.

PS is J_ the ZX plane. by construction.

Hence plane PQRS *' J_ " ZX " by Geom. 43.

Also PQ " _L " XY " by construction.

Hence " PQRS " _L " XY '' by Geom. 43.

Hence since the plane ZX is J_ to theplane PQRS,

and " " " XY " J_ " " " PQRS,

their intersection XX' '' _L " " " PQRS.
by Geom. 44.

Hence OR J_ SR. by Geom. 33.

Now OL _L OR, by § 378-

and we have just proved that

SR ±. OR.

Hence
'

OL || SR. by Geom. 46.

Similarly it may be proved that

SL 11 OR.

Hence OLSR is a parallelogram.

It may also be proved that OLMN, MNQP, PQRS, ONQR
and MLSP are all parallelograms.

Hence PM = QN -= OR = :*:,

PS = ML = ON= y,

and PQ = MN=OL = ^. by Geom. 47.
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Remark.—The coordinate planes need not be taken per-

pendicular to each other as above. When they are so taken

the system of coordinates is then called a rectangular sys-

tem, otherwise it is called an oblique system.

PROPOSITION I

380. If p be the distajicefrom the origin to any point and x,

jy, z be the coordinates of that pointy then

lf = x'+y' + 2\

In Fig. 140 let P be any point in space.

Let p = OP be its distance from the origin.

-^ = 0R, j = RQ andz = PQ.

Now PQ _L OQ. by Geom. 33.

[i] Hence ff = OQ + 2'^ by Geom. 26.

[2] But QQ = X- +y\ by Geom. 26.

[3] Hence p^ =^ x- -\-
y-

-\-
2'^

.

Q. E. D.

381. The Direction Cosines of a line drawn through the

origin.—The cosines of the three angles which any line pass-

ing through the origin makes with the axes are called the

direction cosines of the line.

In Fig. 140 let oi=,Z. POX,

^^^POY,

Then cos «', cos ^, and cos y are the direction cosines of

the line OP.

PROPOSITION II

382. If X, y ,z be the coordinates of any point in space, p the

length of the line drawn from the origin to that pointy afidcos a,

cos /^, cos y the direction cosines of this line^

then X =^ p cos a,

y = p cos /?,

z = p cos y.
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For in Fig. 140 OR _L PR. b}^ Geom. 33.

[i] Hence OR = OP cos POX, by Trig. 2.

[2] or X = p cos a.

Similarly for j/ and 2.

PROPOSITION III

383. If cos (X, cos /?, cos y be the direction cosines of any line

drawn through the origin^ then

cos'^ oc -\- COS' ft -f- COS' y =^ I.

For X' = p' COS" a^

y = p- cos^ ft,

z' = p^ cos^ y. by § 382.

[i] Hence ^' H-J^' ~h -s'^ = /^^(cos^ <a^4~ cos"' /? -(- cos^>^).

[2] But x-^y'^-^-z''— p\ by §380.

[3] Hence p^ = /o'(cos'^ a+ cos^ y^+ cos"' 7)

,

[4] and cos^ oc -\- cos"^ ft+ cos' y :=. \.

O. E. D.

PROPOSITION IV

384 . Ifx\ y' , z' be the coordinates of anypoin t i7i space ; x" ,y"

,

z" the coordinates of aity other point in space ; a7id D the length

of the line joining these points, then

D'= {x" —x'y+ {y" —yy+ {z" —z'y.

Fig. 141
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In Fig. 141 let P' and P" be the two points.

Z>=P'P",

x' = OL, y = IvK, z' = P'K,

jr"=OM, y'=MN, y'=P"N.

We are to prove that

D''— {^x" — x'Y -^ {y'—/y+ {2"— 2')'

As in §380, it ma}^ be shown that

[i] W" — P'R + RQ + P"Q.

[2] But V'V. — lL] — l^U = x"—x\ byGeom. 17.

[3] RQ=: JN = KH=y'~y, byGeom. 17.

[4] and P"Q = -?"— ^'.

Substitutino^ these values into [i], we get

[5] z^•-'=(x"-^')^+(y'-y)^+(y'-y)^
Q. E. D.

385. The Angle Between Two Lines in Space.—By the

angle between two lines iji space ^ which do not intersect, we
mean the angle between either of them, and a line drawn

through any point on it parallel to the other.

386. The Direction Angles Of Any Line in Space.—By
the direction angles of any line in space we mean the angles

w^hich a parallel to the given line drawn through the origin

makes with the axes.

387. The Direction Cosines of Any Line in Space.—By
the di7'ectio7i cosines of any line in space we mean the direction

cosines of a parallel to this line drawn through the origin.

PROPOSITION V

388. If x\ y\ z\ and x^\ y", 2" be the coordinates of any two

points in space, p the le?igth of the line joining them, a7id cos ct,

cos fi, cos y the direction cosines of that lijie, then

x" — x' = p cos oc,

y" — y =^ p cos p,

2" — 2' =: p COS y.
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In Fi^. 141 let OP'" be drawn through the origin
|! to P'P".

I.et«=P'"OX, /i = P'"OY, K = P'"OZ.

[i] Then P'R = P'P" cos P'T'R, by Trig. 2.

[2] or x" — x' = p cosV"?'V..

[3] Similarly /' —y' = p cos P"P'V,

[4] and 2-" — z' = p cos P"P'T.

[5] But P"P'R = P'"OX = a,

P'T'V -= P'"OY = /3,

and p'/p'T = P'"OZ = ;/. by Geom. 11.

Hence from [2], [3] and [4], we get

x" — x' zrz p cos a,

y —y ^= P cos y5,

Q. K.D.

2" — 2' z=^ p cos y

PROPOSITION VI

389. If cos oc^ cos P, cos y be the direction cosines of any line

in space, and /, w, 71 be any three quantitiesproportioiial to them,

then

cos OL =
-j//^ + ni^ + ^^

m
cos p =

COS y

^r + 77i' + n'

n

-|//~ -\- vi^ -\- n^

I m n
\i\ For =• -,,== . by hypothesis.
^ - cos c^ cos p cos y

_ /

[2] Now let r^ .

^ -* cos a

Then from [i] we also get

m 71 '

[3] ^ ^= 7? ^^^ ^ ^^
cos fi cos ;r*
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From [2] and [3] we get

[4] I z=z r cos <a', in = r cos y^, 71 ^=- r cos y.

Then by squaring and adding the corresponding mem-
bers of [4] , we get

[5]
/" + m^ + 71^ = r' (cos''' OL -f- cos* /5 + cos" x)

.

[6] But cos^ «' + cos~ /^ + cos^ 7 = I , by § 383.

[7

J

hence P -\- in~ -\- n' = r\

[8] and r — ^/
/'' -j- //i' -j- 71'.

From [4] we get

_/_

r
'

m
r

'

n

[9] cos OL =

[10] cos/5 =

[11] cos y =

Now substituting the value of r found in [8] into [9] , [10]

and [11] , we get

/
12] cos Oi =

^l^ + m' + n"

[13]
_ 1^1

LUb Z-'
-

—

l//-^ + nt" + 7i'

[14]
n

^l' + m' + n'

Q. K. D.

390. Corollary.— We can determine the directio7i of any line

by means of any three numbers proportional to the direction

cosines of that line.

391. Directors of a Line.—Any three numbers propor-

tional to the direction cosines of a line are called directors of

that line.

392. Corollary.— The direction cosines of a line are directors of

that line.
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For in [4], § 389, r may be any number whatever. It may
therefore be i. In that case we have

/ zr= cos a^ m = cos y^, n 1= cos y.

PROPOSITION VII

393. If the directors of any line are proportional to the directors

of a second line ^ the two lines aj^e parallel.

For let /, vt and n be the directors of the first line.,

and let /', ??^' and n^ be the directors of the second line.

by hypothesis.[i] Then
I' _ w'__ ?l'

I in n
'

[2] Let
V

Then from [i] we get

•[3] r := — and r :=
in

n

n

Hence from [2] and [3], w^e get

[4] /' = r/, in^ = rm^ and 7i^ = rn.

Now let cos ^, cos /?, cos y be the direction cosines of

the first line, and let cos o(.\ cos (i\ cos y be the direction

cosines of the second line. Then by § 389, [12] , [13] and [14]

and by [4] above, w^e get

/' rl

[5] cos ^' =
^r + in!'+ n'-' 1/ r'l'+ r'nt'+ r'n/

I
cos a.

yU- + m' + n'

|_6] Similarly cos /^' = cos /?,

[7] and cos y = cos y

.

Now since the direction cosines of the two lines are equal,

the lines are parallel.

Q. E. D.
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PROPOSITION VIII

394. If o^, /5, y ai^e the direction angles of any line ; a\ j5\ v'

the direction angles of any other line, and Vis the angle betiveeu

the two lines, the7i

V = cos a cos a'+ cos fS cos ft' -\- cos y cos y'.

Fig- 142

Let x^' = OH, y" = HK, 2" = PK,

x' = OH' y = H'K', y = P'K',

^ = pox, /i = POY, r = POz,

a' = P'OX, /i' = P'OY, f = P'OZ,

p" = OP and p' = OP'.

[i] Then
x" = p"cosa, y =1 p" cos /?, and 2:"=:p''cosy, by § 3S2.

[2] and

x' = p' cos «', y = p' cos (3\ and 2' = p' cos y' , by § 382,

[3] and D'={x" — x'y+{y"—y'Y+{2" — 2'y.

by § 384.

Hence by [i] and [2] we get

[4] D^= ip" QOS>a— p' cos a'Y+ ( p" cos /3 — p' cos /3'
)'

+ ip" cos y — p' cos y')\

[5] Hence Z>-= p"^ (cos* <a' + cos^/?-|- cos~ ;k)

+ p'- (cos^ a' + cos^ /3' + cos'V')

— 2p"p' (cos «' cos a' -\- cos /3 COS y5' -|- cos y cos x') •
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[6] Hence

E>-=p"--\-p'-— 2 p'p" {cos a cos <a:'-l-cos /^cosy^' + cos y cos;k').

[7] But i^^ =p""'— 2p'p"cos F+p'-. by Trig. 25.

[8] Hence p"- + p" — 2p'p" cos F=
p"- -|- p'- — 2p'p" (cos a cos «'' -|-cos ft cos /^'

-f- cos y cos x')-

[9] Hencecos F=:cos<^cos<a:'+ cos/?cos/5'-|- cos/cos x'.

Q. E. D.

395. Corollary i —If cos a, cos /?, cos y, and cos a\ cos /^',

cos y' be the direction cosines of two lines, then in order that the

two lines be perpejidicidar to each other we must have

[10] cos a cos OL^ -j- cos (3 cos (3' -j- cos y cos y' =:^ o.

For in order that the two lines shall be perpendicular to each

other, we must have in [9], § 394

cos K= o. by Trig. 19.

396. Corollary 2

.

—If /, m, n, and /', ni\ n' be directors of

two lines, then in order that the two lines shall be perpendicu-

lar to each other, we must have

IV -j- mm^ -\- 7i7i' = o.

For as in §389, [9], [10] and [11]

— z= COS oc, — = COS /?, and — = cos y ;

r r r

V 171 n
and —r = cos oc\ —;- = cos /5'', and —r ^ cos y'.

r r r .

Substituting these values of the direction cosines into

[10], § 395» we get .

^ ^ //' + mm' + nn'
[11] , = o.

[12] Hence //'+ min' + nn' 1= o.
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PROPOSITION IX

397. If a, b, c, and a\ b\ c' be the direction cosines of any two

lines ^ and V be the aiigle between them, then

sin'' V— {ab' — a'b)-+ {be' — b'cy+ {ca'— c'a)-.

[1] For sin" F= i — cos'' V. by Trig. 5.

[2] But i—a' + b'+r. by §383.

[3] Hence sin'^ V =: a'- -{-
b^

-{- c'— cos^ V.

But b}^ § 394

[4] COS' [' =
a'a'' + b'b'' + rd'+ 2aa'bb' + 2bb'cc' + 2cdaa'.

[5] Hence sin' F=
a' + ^'-p r"'— a' a''— b'^'b''— cd'— 2aa'bb' — 2bb'cd — 2cdaa\

[6] Hence sin' V—
a\i—a")+b\i— b"')+ c-{i~c") — 2aa'bb'—2bb'cd—2ccaa\

But by § 383

[7] i—a" = b''' + d\ i—b''^a"+d'
and i—c" — a"-\-b'\

[8] Hence sin' V=
a\b" + d'-) -h b\a"+ ^') + c\a" + b''')

— 2aa'bb' — 2bb'cd — 2cdaa\

[9] or sin' F= a"V'' — 2aa'bb' -|- a'^'b~

+ b'd'— 2bb'cd + b''r

a c — 2aa cc "^ a 'c

.

[10] Hence sin' F=
{aU— a'by^ {bd— b'cf-\- {ca'— day.

Q. E. D.
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Projections

398. To project any line upon a second line, draw from

each extreme of the first line a perpendicular to the second.

The segment of the second line between these perpendiculars

is called the projection of the first line upon the second.

Fig-. 143

To project the line extending from A to B upon the

line X'X, we draw a perpendicular from A and another from

B to the line X'X. Suppose these perpendiculars meet X'X
at the points K and L,. Then the line extending from K to

L, is the projection of AB on X'X.

399. If we take the direction X'X as the positive direction,

then Kly will be positive, and lyK will be negative.

400. lyct the projection of any line AB upon the X axis be

represented by ABx , its projection upon the Y axis by ABy
,

and its projection upon the Z axis by ABz .

401. The Projection of a Broken Line.—The projection

of a broken Ime is the algebraic sum of the projections of the

segments of that line.



3o6 ANALYTIC GEOMETRY

Fig. 144

Let the direction X'X be the positive direction.

The projection of ABCD on X'X is

KIv— ML + MN = KN.

PROPOSITION I

402. The projection of any closed contour upon a straight line

is zero.

r^ M N

Fig. 145

»x

Let X'X be any straight line. Let ABCDKA represent any

closed contour.

We are to prove that

ABCDEAx = o.

According to § 400 we will let

AB, = KL,

BCx =LM,
CDx = MN,

DKx = NO,

EAx = OK.
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[2]

ABCDx=KIv + I.M+ MN=: KN. by § 401.~ :NO +OK=NK=— KN.
by § 401 and § 399.

DEAx

Then by adding [i] and [2], we get

ABCDEAx = o.

PROPOSITION II

Q. K.D.

403. When any two broken lines or a straight line and a broken

line have the same extremities their projections on the same li?ie

are equal.

B c-

A( F

\
\p ^^

^ ViP/Z'W
\: L 1

' () n/I \
>A

Fig. 146

Let ABC and ADEFC be two broken lines having the same
extremities A and C.

Let X'X be any straight line upon which ABC and ADEFC
are projected.

We are to prove that

ABCx= ADEFCx.

Now since the two broken lines form a closed contour, we
have

[i] KL + EM + MN + NO + OP + PK = o. by § 402.

[2] Hence KE + EM = — MN— NO — OP— PK,

[3] and KE + EM = KP + PO + ON + NM.
by § 399.

[4] or ABCx = ADEFCx . by § 401

.

Q. E. D
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PROPOSITION III

404. The projection of any straight line tipon a second straight

line is equal to the length of the first multiplied by the cosine of

the a7igle between them.

Fig. 147

Let AB be any straight line and X'X the line upon which

we wish to project it.

We are to prove that ABx is equal to AB times the cosine

of the angle between AB and X'X.

Through A and B pass planes _L to X'X at the points K and D.

Draw AC ||
X'X and piercing the plane MN at C.

Draw BD and BC.

Since by construction ED is _L to the planes, MN and OP,

it must be _L to BD and AH. by Geom. 33

Hence ED is the projection of AB upon X'X. by § 398

The plane MN is
|1
to the plane OP.

[i] Hence AC= ED.

AC
II
X'X.

AC_Lthe plane MN,

AC J_BC.

AC = AB cos BAC.

Hence

and

[2] Then

Hence by [i] we get

[3] ED = AB cos BAC.

Now AC
II
X'X,

hence BAC is the Z. between AB and X'X.

by Geom. 38

by Geom. 40

by construction

by Geom. 36

by Geom. 33

by Trig. 2

by construction.

by § 385.
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Therefore by [3], KD, the projection of AB on X'X, is

equal to AB multiplied by the cosine of the angle between AB
and X'X.

Q. E.D.

PROPOSITION IV

405. If two straight lines be parallel, their projections 2ipon the

same pia 71e are parallel.

Fia:. 148

Let PB and KD be two parallel straight lines.

Let BQ and DM be their projections upon the plane ZX.

We are to prove that

BQ
II
DM.

Since Q is the projection of the point P on the plane ZX,

PQ is _L the plane ZX. byGeom.34.

Hence the plane PBQ is _L the plane ZX. byGeom.43,

Similarly the plane KDM is J_ the plane ZX.

Let R be any point on the line PB and draw

RH and PK _L DK.

[i] Then RH || PK. by Geom.46.
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Let S be the projection of the point R upon the plane ZX.

[2] Then RS || PQ. by Geom. 35.

Now since

j! RS
11
PQ,

[4] and RH
II
PK, by [i]

[5] the plane RSLH is
|| to the plane PQMK.

by Geom. 41.

[6] Hence SL II
QM. by Geom. 39.

[7] Draw HU_LRS and KT _L PQ.

[8] Now RS XSIv " PQ _L QM. by Geom. 33.

[9] Hence HU
II SL " KT

II
MQ. by Geom. 46.

[10] Hence by [6] HU
II
KT. by Geom. 37.

[II] But RS
II
PQ

II
KM

II
HL. by Geom. 35.

]l2" Hence HU = US and KT --= MQ. by Geom. 17.

Now since

[13] RH
II
PK, by [i].

>4; and HU
II
KT. by [10].

\\^'_ Then z^RHU = ^PKT. by Geom. 41.

;i6; Now HU = RH cos RHU, by Trig. 2.

[17] and KT = PK cos PKT. by Trig. 2.

[is; But RH = PK, by Geom. 17.

[19] and cos RHU = cos PKT. by [15;

.

Hence by [16], [17], [18] and [19]

[20] HU = KT.

Hence by [12]

[21] US = QM.

Now since by [6] and [21], LS and MQ are both equal and

parallel, SQMUis a parallelogram. by Geom. 48.

Hence BQ ||
DM.

Q. K. D.



CHAPTER III

Transformation of Coordinates

PROPOSITION I

406. If we have given the coordinates of a point referred to any

system of rectangular axes we can find the coordinates of the

same point referred to any other system of axes parallel to the

first by putting

X -:= m -\- x\

y z= n -\- y\
2- = -{- z\

in which x, y, z are the coordinates of the point referred to the

original axes, afid m, n, the coordinates of the new origin

referred to the original axes, and x\ y\ z' the coordinates of the

point referred to the new axes.
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In Fig. 149 let OX, OY and OZ te the old axes, and
0'X^ O'Y' and O'Z' be the new axes.

Let P be any point in space and draw its coordinates with

respect to each system of axes.

Let X ~ OH, J = HK and ^ = PK,

x' = O'R, y= RQ " 2' = PQ,

Fig. 149

Now using the notation of § 400, we have

"l[ OPx = OO'x+ O'Px . by § 403

[2] But OO'x— OLx+ LMx+ MO'x , by § 403

'X and 0'Px=0'Rx+RQx+PQx. by § 403

Hence

[4] OPx = OLx+ IvMx+ MO'x+ O'Rx+ RQx+ PQx

[5] But OPx=OHx+ HKx+PKx. by §403

[6] Hence OHx+ HKx+ PKx =
OLx+ LMx+ MO'x+ O'Rx+ RQx+ PQ.
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[7] Hence OH cos 0° 4- HK cos 90'' + PK cos 90° =^

OLcos o'' + IvM cos 90° + MO' cos 90° + O'R cos 0° +
RQ cos 90"" + PQ cos 90'

[8] Hence OH = OIv + O'R,

[9] or X =^ m-\- x'.

[10] Similarly y ^=: n +jf',

[11] and 2 =1 -{- s'.

by §404.

by Trig. 19,

Q. K. D

PROPOSITION II

407. If we have given the coordinates of a point referred to

any rectangular system of axes, we caji find the coordinates of the

same point referred to any other rectangular system having the

sa7ne origin by putting

X z=. x' cos a -\-y' cos a' -{- 2' cos a",

y ^:i x' cos fi -{- y' cos ^' -\- 2' cos /3",

2 z= x' cos y -\-y cos y + 2"' cos y",

in which x, y, 2 are the coordinates of the point referred to

the original axes ; x' y', 2' its coordiyiates referred to the new

axes; the a' s are the angles which the neiv axes make with the

original X axis ; the fi' s the angles which the new axes make
with the original Y axis ; and the y^s the angles which the

7iew axes make with the original Zaxis.

Fig. 150
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In Fig. 150 let OX, OY and OZ be the original axes, and

OX', OY' and OZ' the new axes.

Let P be any point in space and draw its coordinates with

respect to each system of axes.

Let;^=OH, y=HK and -^ = PK,

jr'=OM, y=MIv " y= pi„

and in the following table let the angle between any two axes

be in both the column and the horizontal line containing

those axes.

OX OY OZ

OX' a /i y

OY' a' f^' y'

OZ' a" fr y"

Thus a is the angle between OX' and OX,

and y" " " " " OZ' " OZ, etc.

Now in Fig. 150

[i] OHx+HKx+PKx=OMx+MLx+LPx.
by § 403.

[2] Hence OH coso°+ HK cos 90° -|- PK cos 90" =1

OM cos a+ ML cos «:' -|- LP cos a" . by § 404.

[3] Hence x = jf' aos (x -\-y qo^ a' -\- z\q.os a" . by Trig. 19.

Similarly by projecting upon the Y axis, we get

[4] jj/= ycos/?+jj/'cos /5' + y cos/^".

And by projecting upon the Z axis, we get

[5] z^=^ x' cos y -\-y cos y + z' cos 7".

o. E. D,

408. Corollary.—If zve project the coordinates of the point upon

the'new axes, we gel

[6]

[7]

[8]

X X cos oc -\- y COS i5 -|- z cos Y,

y' z=i X COS a'+ y COS ;3' -\- Z COS y\

2'' ;= X COS <a^"+_j^ cos/5"-|-^ cos;-".
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Equations [3], [4], [5], [6], [7] and [8] may be con-

venientl}^ indicated b}' means of the following

TABLE.

x' y' z'

X COS oc COS a' COS «'"

y COS iJ COS /5' cos /5"

z COS Y cos r' COS /'"

Equations [3], [4], [5], [6], [7] and [8] ma}' be readih-

obtained from the table above b}" means of the following rules :

409. Rule I

.

— The variable at the left on any horizontal line

is equal to the sum of the products obtained by ?nultiplying each

cosiiie on that line by the variable at the top of the column con-

taining the cosine.

410. Rule 2.— The variable at the top of a7iy cohon^i is equal

to the sum of the products obtained by multiplyi^ig each cosine

in that column by the variable at the left on the horizontal lijie

containi7ig the cosine.

411. Corollary i.—cos^ a -f- cos'^ /5 -j- cos' y =1 i^

cos'^ a' -f- cos^ /5' + COS' r'= ^,

cos' a" + cos' ;S" + cos' y" = z. by § 383.

412. Corollary 2.—cos a cos a' -f- cos /5 cos ^3' -|- cos y cos y' zzz o.

cos a cos a" -f- cos 3 cos ;5''+ cos y cos y" := o

.

cos oc' cos a" -f- cos, 'j' cos h" -\-cos y' cos y" =0.
by § 395.



CHAPTER IV

Spherical Coordinates of o Point in Space

Z

Fig- 151

In Fig. 151 let P be any point in space, and let

(p = QOX, = POQ and p = OP.

Then if we know cp, and p, we know the position of the

point P.

413. The Radius Vector.—The radius vector oi a point in

space is its distance from the origin.

414. The Latitude of a Point.—The latitude of a point in

space is the angle between its radius vector and the projection

of the radius vector upon the XY plane.

415. The Longitude of a Point.—The lojigitude of a point

is the angle betw^een the X axis and the projection of the

radius vector upon the XY plane.

416. The Spherical Coordinates of a Point.—Theradius

vector, the latitude and the longitude of a point are called its

spherical coordinates.
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PROPOSITION I

417. If we have given the rectangular coordinates of a pointy

we canfind its spherical coordinates by putti?ig

jT =: p COS cp cos 6,

y ^=. p COS cp sin 0,

2 -=z p sin &.

lyet X = OH, y = HK and 2 = PK.

Then in Fig. 151, since the axes are rectangular, KHO is

a right angle.

OH = OK cos KOH, by Trig. 2.

X = OK cos (p.

0K = p cos 0. by Trig. 2.

X ^=1 p cos (p cos 0.

KH = OK sin KOH, by Trig. i.

y = OK sin q).

OK = p cos 6. by Trig. 2.

y ^=: p sin (p COS 0.

PK = OP sin d, by Trig. i.

2- = p sin 6.

418. Corollary.—1/ cos a^ cos fd, cos y are the direction cosines

of the radius vector of a point in space, theji

cos a ^ cos cp cos 6,

cos (3 = cos cp sin 6,

cos y = sin 8.

'_1_ Hence

[2] or

[3] But

[4] Hence

[5] Again

>; or

[7] But

[8] Hence

'.9. Again

[lol or

For in Fig. 151

[i] 0H=: OP cos POH, by Trig. 2.

[2] or X = p cos a,

[3j and X = p cos (p cos 6. by §417, [4].

[4] Hence cos oc = cos cp cos 0.

[5] Similarly y = P cos POH z= p cos /3,

[6] and y — p sin (p cos 6. by §417, [8].

[7] Hence COS ^ = sin cp cos 0.

[8] Also cos y = sin d.



: CHAPTER V

The Plane

PROPOSITION I

419. The equatio7i of a plane is

X cos a-^ y cos fi -\- 2 cos y — /> = o,

171 which x,j/, z are the coordinates of any point in the plane

^

p the length of the perpendicular drawn from the origin to the

plane ^ and cos a, cos /?, cos y the direction cosines of this perpen-

dicular

.

Fig. 152

lyCt MN be any plane, and OS a line drawn from the origin

I to this plane at the point R.

Let P be any point in space and draw its coordinates PK,
KH and OH. '

Draw PQ _L to the plane MN.

Let a^ /5, y^ be the angles which OS makes with the axes.

Let/ = the length of OR.

Let PKs = the length of the projection of PK upon OS.
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Praject the two broken lines ORQP and OHKP upon the

line OS.

[i] Then OHs+ HKs + KPs= ORs+ RQs+ QPs.

by § 403.

[2] Hence x cos oc -\- y cos P -\- 2 cos y =
p cos 0° + RQ cos 90°+ ^cos o^, by § 404.

[3] or .r cos <a'-|-jj/ cos/? + ^-cos ;k ^=/ + (^. by Trig. 19.

[4] Hence .rcos <a' +JF cos /? -j- -s* cos }^

—

pz=^d.

If the point P is taken anywhere in the plane MN, then

^z= o, and [4] becomes

[5] X cos oc -|- jv cos (^ -\- 2 cos y —p = o.

Now cos oL^ cos /5, cos y , and p determine the point R.

And there can be but one plane drawn through R perpen-

dicular to/. by Geom. 53.

Hence since there can be but one plane whose perpendicular

from the origin has the length p and whose direction cosines

are cos 01., cos />, cos «', [5] determines the plane MN.

Since the x, y and z of [5] are the coordinates of any point

on this plane, then [5] must be the equation of that plane.

Q. K. D.

420 . Corollary .
—

The equation of a plane \ to the XYplane is z =^ p.

ZX " '' y=p.
' ZY " " X =p.

( 1 ( ( ( ( II ( ( ' <

( < k < i (

PROPOSITION II

421. Every equation of the first degree contaifiing three varia-

bles only is the equation of a plane.

[i] I.et Ax + By+ Cz-\- D = o,

be an}' equation of the first degree containing only three vari-

ables. Then if this be the equation of a plane, it must be
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but another form of the equation

[2] Ji: cos « -(- J/ cos /^ + 2- cos /

—

p= o. by § 419.

Therefore by muUiplying [i] through by some constant

as /V, we must be able to change [i] into the form of [2].

[3] That is XAx + XBy-{-XC2 + XD=^o,

must be only another form of [2]

.

[4] Hence XA = cos a,

XB = cos /?,

XC = cos y,

XD=—p.
Now since A^, XB and XC are the direction cosines of a

line through the origin, then

[5] AM^ + A^^^ + rC^^i, by §383.

[6] or X\A'+ B''+C')=i.

[7] Hence A. = ±

—

.

V A' + B' + C
Since A, B and C are real quantities, A. must be real.

Substituting the positive value of A. into [4], we get

[8]

A B .= cos <T

;

—^^:i:zz=^z=^^^= cos p ;

V A' + B' + C V A' + B'' + C

cos y ; —zzi^^^ziiz^i^zr = — P-
V A' + B' + C V A' + ^' + C

Substituting the positive value of A. into [3], we get

[9]
—z=-^+

^

—-y

V A'' + B' + C V A' -\- B' + C
.

C
,

D
• V A' -\- B' ^ C V A' + B' + C

Hence from [8] and [9], we get



THE PLANE 321

[10] JT cos <^+ jK cos ^ + -^ COS ;k—/ = o.

Therefore [i] is only another form of [2], and hence [i] is

the equation of a plane.

Q. E.D.

From [8] we get the following

422. Corollary.—If Ax -f- By -\- Cz -\- D z=iO be the equation

of a plane, p the J_ on itfrom the origin, and a, y5, y the direc-

tion angles of this J_, then

/ =— , cosa=.
V A' + B' -^ C V A' + B' + C'

COS p = — - and cosy=i-

V A' ^- B' + a V A' -^ B"- -{- c

PROPOSITION III

423 . If X cos a -\- y cos f^ -\- z cos y — /> = o

be the equatioji of a plane, then

X cos a -\- y cos fJ -{- z cos y — ^ ± ^ 1= o

is the equation of a plane pa^'allel to it.

For since the direction cosines of the J_ drawn from the

origin to the two planes are the same, by § 419.

these J_'s must coincide with each other. Hence the two

planes are JL to the same straight line and are therefore
||

.

by Geom. 38.

Q. K. D.

424. Corollary.— The distance between the two planes is dz d.

For the distance from the origin to the first plane is p, and

the distance from the origin to the second plane is/±^.
Hence the distance between the planes must be ± ^. by § 419.
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PROPOSITION IV

425. The distance frof-n any point x\ y' , z' to the plane

X cos a -\- y cos ft -\- z cos y — p :^ o

is

x' cos a -{-y COS f3 -\- 2' cos y — p.

For let X cos oc-\- y cos ft -\- z cos y—p =: o .

be the equation of any plane.

Let x\ y z' be the coordinates of any point in space.

Let d = the distance from x'
, y\ z' to the plane.

Pass a plane through the point x'
, y\ z'

||
to

x cos a -{- y cos ft -\- z cos y—p = o.

Since these
||
planes are everywhere equall}^ distant, ^ is the

distance between them, and the equation of the second plane is

[
I

]

X cos f^ -\- y cos ft -\- z cos y —p^ d^ o.

Now since the point x', y', z' is on the second plane, its co-

ordinates must satisfy the equation of that plane.

Hence substituting x',y\ z' into [i], we get

[2] x' cos oc-\- y' cos ft -\- 2' cos y—p d= ^= o.

[3] Hence ± d ^=^ x^ qos> oc -\- y' cos ft -\- z' cos y — p.

Q. E. D.

By §§ 422 and 425 we can easily prove the following

426. Corollary.—If d = the dista^icefrom thepoint x\ y\ z' to

the plane

Ax-\-By + Cz + D = o,

^ Ax' + By+Cz'+D
then d= ' -^ '

'

.

1/ A' + B'+ C

427. The Traces of a Plane.—The traces 0/ a plane are its

intersections with the three coordinate planes.
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Fig- 153

In Fig. 153 AB is the trace of the plane MN on the plane

ZX,
BC is its trace on the plane XY,

and AC is its trace on the plane ZY.

Let the equation of the plane MN be

[i] Ax^By+Cz -^ D^o.
Now the plane MN cuts the plane XY where ^ = o.

Hence making 2- = o in [i], we get

[2] Ax^ By^ D=o.
for the equation of BC the trace of MN on XY.

Similarly making j/ = o, we get

[3] Ax^Cz -^D^o,

for the equation of the trace on ZX.

[4] And making ;tr =1 o, we get

[5] By-YCz^D = o,

for the equation of the trace on ZY.
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428. Scholium.— The variables in the equation of a trace

indicate the coordinate plane on which the trace lies.

429. Intercepts of a Plane.—The distances along the axes

from the origin to any plane are called the intercepts of that

plane.

In Fig. 153 the intercepts are OA, OB, OC.

The coordinates of the point B are :ir = OB, y^^o, and

Since B is on the plane MN, its coordinates must satisfy

the equation of that plane.

Hence substituting jr = OB, j/ = o, and ^ = into the

equation

Ax-\- By^Cz-^ D — o,

we get

[i] ^(OB) + i9 = o.

[2] Hence OB = -j = the intercept on the X axis.A

[3] Similarly OC = ^ = the intercept on the Y axis.
Jd

[4] and OA = -^ = the intercept on the Z axis.



CHAPTER VI

Straigfht Lines

PROPOSITION I

430. The equations of a straight line in space are

X— x' y — y' z — 2'

cos OL COS f^ COS y

in which x'
,
y' z' are the coordinates of afixedpoint on the line ;

x^ y, z are the coordinates of any otherpohit on it ; a?id cos a, cos /?,

cos y are the direction cosines of the line.

Fi.?-. 154

IvCt AB be any line in space.

lyCt A be a fixed point on this line, and P be a7iy point on it.

Let the coordinates of A be x', y' z\ and

" ''
" " P " x,y, z.

Through each of the points A and P pass a plane _L to OX.

Then the plane RS is || to the plane PQ. by Geom. 38.
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Draw AK
||
to OX.

Then AK is _L to the plane PQ,

and AK_LtoPK,
and the Z- AKP is a right angle.

Through the origin draw

by Geom. 36.

b}' Geom. 33.

OH
II
AB.

[1] Then z^LOH = z^KAP. by Geom. 11.

I^et M be any point on OH and through it pass planes _L

to the axes.

The coordinates of M will be OL, LN and MN.

Join M with U, L and W.

OIv is _L LM. by Geom. 33.

Hence Z. OLM = right Z..

Therefore by [r] the two triangles OLM and AKP are

by Geom. 51.

AK_ AP
Ol7"" OM"

AK= SQ.

SQ _ AP

similar.

[2] Hence

[3] But

[4] Hence

by Geom. 31.

by Geom. 40.

[5] or

OIv OM'

x— x' AP
OL OM*

It may easily be shown that PJK and MNI^ are similar.

by Geom. 51.

JK PK AP
[6] Hence ^n^^ML-QM'

y—y'_ AP

by Geom. 31.

[7] or

[8] Similarly ^^

LN OM

z — z' _ AP
' OM"
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x — x' y— y' z
[9J Hence —

OIv I.N MN

Now let OM be taken as the unit of length. Then OL,

LN and MN are the direction cosines of the line, and [9] be-

comes

^ _, X — x^ y — y z — z'

[10]
-" -^ -

cos a cos (i cos y

Since x, y, z are the coordinates of an}^ point on the line

AB, and the other quantities in the equation are constants,

[10] must be the equation of the line.

Q. E. D.

PROPOSITION II

431. The equations of a straight line may be written

X ^=^ x' -\- Ip,

y =1 y -\- ?np,

z := z' -\- np,

in which x\ y' z' are the coordinates of a fixed point on the line ;

X, y, z the coordinates of any point on the line ; p the distance

between these points ; ajid I, m, n the directors of the li7ie.

In Fig. 154

[i] OL = OM cos a^

[2] LN = OW = OM cos /?,

[3] MN =1 OU = OM cos y. by Trig. 2.

Let/ be any constant whatever, then

[4] j^^.OL =/.0M cos o',

[5] /.LN =/.0M cos A
[6] /).MN = /.OM cos y.

Hence from [4], [5] and [6], we get

|-
-. /.OL _ ALN _ /.MN

cos a ^~
cos f^ cos y

'
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[8] Let

[9]

[10]

[II] d^p.OU.

Then by [7], [8], [9] and [10], we get

P -, a b c
[12]

cos a cos/^ cos y'

Let p = AP.

Then from § 430 [9] and the similar triangles KAP and

LOM, we get

J-

-. X— x' y — y' z — z' p
'-^^-'

01. "~ LM ~ MN "" OM*

Dividing this equation through by/, we get

X— X y —y P
^^^^ p.Oh p.LM />.MN /.OM

Hence by [8], [9], [10] and [11], [14] becomes

ri.i -^ -^ y — y z — z - _
I

L'^J a b c

"16] Hence
. . a

x = x' + ^ p.

-^7; y^y ^ d
^'

[18] z =^ z' + -^ p.

Now let / E

a b

- d' "" - d'
"

a

^
C

- d

;i9] Then
Ida cos a

m b b cos p'

d

b

"20] and
7)1 d b cos

71 C C COS

d

I
r'

by [12].

by [12].
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Then from [19] and [20], we get

^ -, I VI n
[21] = J.— .

cos a cos p cos y

Hence /, m and n are the directors of the line AB. by § 391

.

Substituting /, m and n into [16], [17] and [18], we get

[22] X ^^ x' -\- Ip,

[23]
_

'

y — y -\- mp,

[24] 2" = y -f" 7lp.

Now in Fig. 154, p is the distance along the line AB from

the given point x\ y\ 2' to the point P. If then the point P
be known, the value of p is known. Substituting this value

of p into [22] , [23] and [24] will give us one and only one

set of values for x, y and z.

On the other hand, if the values of x, y, 2 are given, then

[22], [23] and [24] will give us the length of p. Measuring

off this length from the point x'
,
y' ,

2' in the direction of the

line AB, we get one and only one point on the line.

Hence for each point P on the line AB there is one and only

one set of values of x, y, and 2 that will satisfy [22], [23] and

[24] ; and for each set of values of x,y and 2 satisfying these

equations there is one and only one point on the line AB.

Therefore
X = ^' + /p,

2=^ 2' -\- np,

determine the line AB and are called the equations of the line

AB.

PROPOSITION III

432, The equations of a straight line may be written

[i] x^=^sz-\-b,

[2] and y^=isz^-^h'.

Equation (z) being the equation of the projection of the liiie
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upon the ZX plane, s its slope upon the Z axis, and b its inter-

cept on the X axis.

Equation {2) being the equation of the projection of the line

on the ZYplane, s' its slope on the Z axis, and b' its intercept on

the Y axis.

Fig- 155

Ivet AB be any line in space.

" DC be its projection on the plane ZX.

Let s = tan ZEC,

b= DO,

5' = tan HJO,
/^' = H0.

Through the origin draw OM
||
to AB and a unit in length,

and let its direction cosines be cos «', cos ^, cos y.

Let OQ be the projection of OM on the ZX plane.

Through M pass planes J_ to the axes,

[i] Then OL = cos <:f, LN=3COs/5, MN = cos;k.
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r -1 XT OL IN SQ ^ ^W Now MN^lfN^OS- byGeom.47.

[3] But -^^=:tanQOS.

[4] Hence ^ = tan QOS.

Now OQisllDC. by §405.

[5] Hence tanQOS = tanZEC=: ^. byGeom. 11.

Hence by [4] and [5] , we get

^^^ MN - ^•

[7] Similarly -^^ — s'.

Now by § 430, the equation of the line AB is

[8] ^—^ =y^

=

^^i'.
cos (^ cos p COS y

Hence by [i] and [8] we get

X — x' y —y z — 2'

•-^^ OIv ~ IvN ~ MN •

Now let x', y, z' be the point A where AB pierces the XY
plane.

[10] Then x' = AH = DO = b,

[11] y = AD = HO = ^',

[12] and z' =. o.

Substituting these values of x\ y , z' into [9], we get

X— b y— V z
[13]

OIv LN MN

[14] hence
"^'^MN'^"^^"

Hence by [6] we get

[15] x — sz^b.
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Now if we consider OZ as the axis of abscissas, and OX
as the axis of ordinates, [15] will be the equation of the

line DC. b}^ § 53.

From [13] we also get

LN
[16] y MN z-^b\

Hence by [7] we get

[17] y=s'z^b\

which is the equation of KH. by § 53.

Now one plane and only one can be drawn _L to the plane

ZX, which shall contain the projection DC. by Geom. 45,

This plane will contain the lines DA andCB. by Geom. 42.

Hence since it contains the points A and B, it must contain

the line AB.

Similarly it may be shown that the only plane that can be

passed through the projection KH _L the plane ZY must also

contain the line AB. Hence AB must be the intersection of

these two planes.

Fig. 156
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Now since in Fig. 156 the only plane that can be passed

through the projection DC perpendicular to the plane ZX
must contain the line AB, and the only plane that can be

passed through the projection KH perpendicular to the plane

ZY must also contain the line AB, then the projections DC
and KH determine the line AB. Therefore the equations of

the projections DC and KH, namely,

y—s'zArb\

determine the line AB, and are called the equations of AB.

Q. E. D.
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Surfaces

PROPOSITION I

433. A surface may be represented by an equation of the form

f{x,y, z) = o.

Fig- 157

In Fig. 157 let MN represent any surface, and let OX, OY
and OZ be the axes of coordinates.

From any point P on the surface draw PK JL to the XY
plane. It will generally cut the surface in other determinate

points, as P', P", etc.

Draw KH
||
OY,

and' KJ II
OX.

Let X = OH,

J/ = KH,
^ = PK,

2' = P'K,

2'" = P"K.
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Now to the value of 2 belonging to each point on the sur-

face there corresponds one and only one value of x, and one

and onh' one value of y. That is, the coordinates of every

point on the surface have a definite relation to each other.

This relation may be expressed b}" the equation

/(^,jj/, 2) =0,

which is therefore called the equation of the surface.

434. The Equation of a Surface.—The equation of a sur-

face is one in which the variables represent the coordinates of

every point on the surface.

PROPOSITION II

435. Tofind where a straight line cuts a siirface^ we must treat

the equations of the straight liiie a7id of the surface as simulta-

neous and solve them. The values of x, y and z thus found are

the coordinates of the cutting points.

In Fig. 157 let MN represent any surface and RS any

straight line cutting it at the points R, R', R".

[i] IvCt /(jr, J, 5") =0,

be the equation of MN,

[2] and let ^ = .r' + /p,

[3] y —y' + ^p.

[4] z — 2' -\- np,

be the equations of the line RS. by § 431.

Let The any point on the line RS, whose coordinates x\

y\ 2"' we know.

Then by § 431, x\ y', z\ /, m, n in [2], [3] and [4] are

known and p = TR.

Now since each of the cutting points, as R, is on the sur-

face, the coordinates of R must satisfy [i] .

Since the point R is also on the line RS, its coordinates

must also satisfy [2], [3] and [4].
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Therefore let x, y and z represent the coordinates of the

point R. Then [i]
, [2] , [3] and [4] are simultaneous and

may be solved.

Hence substituting the values of x, y, z given in [2], [3]

and [4J into [i], we get an equation

/(x'+ Ip, y + mp, z' + 7zp) = o,

whose only unknown quantity is p.

Solving the equation

[5] /{^'+ ^p, y + ^^2p, ^' + np) — o,

we get the values of p, that is TR, TR', TR", etc, The num-

ber of values of p depends upon^'the degree of [5].

Substituting each of these values of p successively into [2] ,

[3] and [4], we get the coordinates of the points R, R', R",

etc.
O. K. D.

436. Corollary.— Tofind where two surfaces cut each other we

must treat the equations of the surfaces as shnultaneous and solve

them. The values of the variables thusfozmd a7^e the coordinates

of the cutting points.
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Quadfics

437. The Quadric.—The locus of every equation of the

second degree containing three variables only is called a

quadric.

PROPOSITION I

438. A straight line intersects a quadric i7i two real^ imagi?i-

ary or coincidentpoints

.

The general equation of the second degree containing three

variables onl}^ is
^

[i] Ax' +Ay"' + A"2' + 2By2+2B'zx+ 2B"xy+ 2Cx

By § 437 every quadric can be represented by some form of

this equation.

The equations of the straight line are

[2] jc = .r' + /p,

[3] y ~y' + ^P)

[4] z— z' -^ np. by §431.

Now to find where the straight line cuts the quadric, w^e

treat [i], [2], [3] and [4] as simultaneous and solve them.

by §435.

Hence substituting the values of ^, jK and z given in [2],

[3] and [4] into [i], we get an equation of the form

[5] A{x' + Ip) + A'iy + ^^P) + ^"(^' + np)

+ 2B{y + mp) {z' + np) + etc.

Since in [2], [3] and [4] x\ y' z\ /, m and n are known
quantities, p will be the only unknown quantity in [5].

Again [5] contains the second and no higher powers of p.

Hence when we solve it we get two and only two values for p.
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Substituting these two values of p successively into [2],

[3] and [4] , we will get two and only two sets of values of

;r, J/, z. But each of these sets of values of x, y, z locates a

cutting point.

Hence the straight line cuts the quadric in two points and

two only, which will be real or imaginary according as the

values of x, y and 2 are real or imaginary, and will be coin-

cident when the two sets of values are identical.

Q. K. D.

439. A Chord.—If a straight line cuts a quadric in two

points, the part of the line joining these points is called a

choi^d of the quadric.

PROPOSITION II

440. Every section of a quadric made by a plane is a conic.

V 'r

Fig. 158
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For in Fig. 158 let the curved surface represent a quadric,

and let

[i] Ax" + A'y" + A"z'+ 2Byz+ 2B'zxr^ iB^'xy + 2Cx

+ 2C'y+2C"z+ D — o,

be the equation of that quadric referred to the axes OX, OY
and OZ. Then to get the equation of the quadric referred to

any other system of axes OX', OY' and OZ' having the same
origin, we must put

[2] X = x' cos (X -{- y' cos a' -\- z' cos oc"

,

[3] y z= x' cos /? -\- y' cos /5' + 2' cos ji"

,

[4] z ^=. x' cos y -\- y' cos ;k' + z' cos /",

into [i]. by § 407.

[5] Let oi =: cos a,

[6] /3 = cos /i,

[7] r = cos r,

ex' ^ cos ^',

etc.=^etc.

in [2], [3] and [4] and substitute the results thus obtained

into [i] . We will then get

[8] A{ax' + a'y' +a"z'r -\- A' ifdx' + /3'y' -^ /3"z'y

+ A"i r
+ 2B{/3x' 4- /3'y' + ^"z') iyx' + v'y' + y"z')

+ 2B'{ )( )

+ 2B"( )( )

+ 2C(ax'+ ay+ a"z') + 2C'( )

+ 2C"( ) +I)= o.

[9] Now {ax'+a'y'-\-a"z'y =
a^x''' -|- ay + a^"z'^ + 2«'«'^>' + 2aa"x'z' + 2a'ayz\

[10] and (yS;r' + ySy+^V)(r-r'+ ry + r"^') =

It will be found that when the terms in [8] are expanded as

in [9] and [10] and the result is factored with respect to Jr'^

y''\ y^ x'y' , x'z\ x',y\ and^, we get an equation having ex-
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actly the same form as [i], which may therefore be written

[i I J ax''' + a'y'^+ a" ^4- 2by'z' -\- 2b'z'x'+ 2b"x'y

+ 2cx'+ 2c'y' -\- 2c"z' + Z^ = o.

The values of the coefficients a, b, c, etc., in this equation

will depend upon the values of «', ft, y, and A, B, C, etc. in [8] .

Now in Fig. 158 let M'N' be a plane 1| to the plane X'Y',

that is, the plane MN.

The equation of M'N' will be

[12] z =^ p. by § 420.

Since OX', OY' and OZ' may have any directions, the

plane MN may slope in any direction.

Hence since M'N' is parallel to MN, and p may have any

value, M'N' may represent any plane.

To find where the plane M'N' cuts the quadric, we must

treat [11] and [12] as simultaneous and solve them. § 436.

Hence substituting the value of z found in [12] into [11],

we get

[13] ax'' + a'y"+ «"/ + 2bpy + 2b'px' + 2b"xy'

-f- 2CX' -\- 2c'y -(- 2c"p -{- D ^=0.

Now since this is an equation of the second degree contain-

ing two variables only, it is the equation of a conic, by § 33i<2.

Hence in Fig. 158 RS, the common section of the plane and

quadric, is a conic.

Q. K. D.

441. The Center,—The center of a quadric is the point

which bisects every chord passing through it.

442. A Diameter.—A diameter of a quadric is any chord

passing through the center.
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PROPOSITION III

443. The eqjiaiiou of a quadric referred to its center is

Ax' + A'y' + A"2' + 2By2+ 2B'zx + 2B''xy\-D' — o.

For [i], § 440, is the equation of the quadric referred to the

axes OX, OY and OZ of Fig. 158.

Now to get the equation of the quadric referred to the || sys-

tem 0"X", 0"Y" and 0"Z", we must put

[14] X =^ m -\- x\

[15] J/ =^ n +y,
[16] 2=10 -\- 2', by §406.

into [i]. Making this substitution, we get

[17] Ax" +Ay + A" 2" + 2By2' + 2B'2'x' + 2B"xy

+ 2{Am+ B''n + B'o+ C)x'

+ 2{Ahi-\-Bo-^B''vi+ C')y'

-\- 2{A"o+ B'7n+ Bn + C")2'

-\- Am^ -\- A'n^ + A"o^ + 2Bno + 2B'om+ 2B"mn + 2C7;z

Now suppose the new origin O" in Fig. 158 to be such that

when the quadric is referred to the axes 0"X", 0"Y", 0"Z",

the coefficients of x\ y' and 2' in its equation become o.

Then from [17] we get

[18] Am + B"n + B'o + C =: o,

[19] A'u +Bo + B"7n + C = o,

[20] A"o + B'm+ Bn ^ C" — o,

or

[21] Am + B"7i -\- B'o = — C,

[22] B"m+A'7i -\- Bo = — C\

[23] B'm + Bn + A" — — C"

.
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—C B" B

—C A' B

—C B A"

n

_1-IV,V_ ffi- —
A B" B'

B" A' B

B' B A''

A —

C

B'

B" c B

B' C" A'

A i5" B''

B" A' B

B' B A"

A B" —C

B" A' —C
B' B C"

A B^' B'

^" A' B

B' B A"

Substituting these values of m, n and o into [17], we get

by [18], [19] and [20],

[25] Ax" + A'y" + ^'V^ + 2By'z' + 2B'z'x'

+ 2B"x'y' -\-D' = 0,

in which

[26] D' = Am-+ A'n' + A"o' + 2Bno + 2B'mo + 2B"mn
' + 2Cm + 2C'n + 2C"o + I?.

Since accents over the variables are no longer needed, we
may drop them from [25], when we will get

[27] Ax'+Ay+ A''2'+ 2By2+2B'x2+2B"xy+ T?'=o,

which is the equation of the quadric referred to the origin O".

Now the form of [27] shows that if x, y, z satisfy it, then

— -^j — J/ and — z must also satisfy it. That is, if any point

x,y, 2 be on the quadric, then the point — x, —y, — z will

also be on it. But these points are on opposite sides of the

origin and equally distant from it.
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Hence the origin O" bisects every chord passing- through it

and must therefore be the center of the quadric. b}' § 441.

Hence [27] is the equation of the quadric referred to its

center.

Q. E. D.

In [24] m^ n and are the coordinates of the origin O".

by § 406.

But we have just shown that O" is the center of the quadric.

Hence m, n and are the coordinates of the center.

444. Scholium.—The right hand member of [26] is a func-

tion of 7n^ n and of exactly the same form as the left hand

member of [i] , § 440.

By [24] we see that the coordinates of the center will be

real. That is, the quadric will have a center when the de-

terminant which forms the denominators of the fractions is not

o, and that these coordinates will be infinite, that is, the

quadric will have no center when this determinant is o.

445. Central Quadrics.—Quadrics which have a center

are called central quadrics.

446. Non-Central Quadrics.—Quadrics which have no

center are called non-central quadrics.
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Central Quadrics

PROPOSITION I

447. The equation of the central quadric may be written

rt -b^^d- = I—I

—

9 —I

—

7 9 —

I

9 -• •

a b^ c

For [27] is the equation of the quadric referred to the axes

0''X", 0"Y" and 0"Z" in Fig. 158.

To get the equation of the quadric referred to the axes

0"X"', 0"Y'", 0"Z"' we must, as in [8], put

X = ax' + a'y' -\- a"z'

,

y = fSx' + /?y + P"2\

2 = yx' + yy' + /"^',

into [27].

Now it may be shown, as it was for [8], that this will give

us another equation of exactly the same form as [27]

.

Hence this new equation may be written

[28] ax" +ay' + a''2" + by'z'+ b'z'x' + U'x'y' -^D' = 0,

By comparing this equation with [8], [9] and [10], it wnll

be seen that the cofficients a, a' , a" , b, b\ b" depend for their

values upon <^, a', a'\ /^, /5', /?", y^ y', y" , and upon the co-

efficients A, B, C, etc., of [i], § 440. The latter are known
and thefo rmer are direction cosines. by § 407.

Now let the axes 0"X'", 0"Y"', 0"Z'" be so chosen that

in [28]

[29] b = o,

[30] b'--=o,

[31] b''=o.
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Equations [29], [30] and [31], and§§ 411 and 412 give us

nine equations from which the nine direction cosines may be

found.

When these are found and substituted into [28], that equa-

tion will become by [29], [30] and [31]

[32] ay^ + ay^ + ^v^ + i;>'^o.

The accents over the variables being no longer needed, this

equation may be written

[33] «^^+«y + «v + z:)'=o,

\ n

[34] or ~";^-^ ~7/-^"~^^^'

which is the equation of the quadric referred to the axes

0"X"^ 0"Y"', 0"Z'".

Now since the nine direction cosines have been found, the

coefficients of [34] will depend only upon the coefiScients A,

B, C, A\ etc., of [i], § 440, and will be positive or negative

according as these latter are positive or negative.

Let us take the positive value of— and let \/-7c,=—

.

[35] Then ^ = -,.

Now since the a of [34] may be either positive or nega-

tive, the coefficient ^ may be either positive or negative.

Hence by [35] we get

[36] -^^^ = ±-,.
B' a

Similarly w^e may get

[37] -77-^=^ Tr
a" z^

[38] and —
-^, z'' = ± —,.

Hence by [36], [37] and [38], equation [34] may be written

2 O .)±^±^±1^ = 1

a/ b^ c;'
'
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= I,

or dropping subscripts,

[A] ±
â'

which is the equation of the central quadric. q. k. d.

448. Equation [A], § 447, the equation of the central quadric,
may take four different forms :

ist.
a'

"^
b' "^V - '•

2nd. d'^ b' T~^
A ^

4th. — X'

a'

+^ = .

449. The Ellipsoid.—If every section of a quadric made by
a plane parallel to one of the coordinate planes is an ellipse,
the quadric is called an ellipsoid.

PROPOSITION n
450. The equatio7i of the ellipsoid is

X'

a'

y

in whicha, band c represent the semi-principalaxes ofthe ellipsoid.

Fig-. 1^6



CENTRAL QUADRICS 347

To determine the quadric represented by

which is the first form of [A], § 447, we must determine the

sections formed on this quadric by planes parallel to the coor-

dinate planes.

IvCt ABD'B'DA' be the quadric represented by [i]

.

I^et MN be a plane
||
to the XY plane.

The equation of the plane MN is

[2] z ^= p. by § 420.

To determine the section formed on the quadric by the

plane MN, we must treat [i] and [2] as simultaneous and

solve them. by § 436.

There will be three cases

ist. when /><<:.

2nd. p = c.

3rd. / > ^.

FIRST CASE

P<c.
Substituting the value of z found in [2] into [i] , we get

[3] ^ + 7^+7^-'-

[4] Hence _^ + -^==i_-.

P' P'
Since in this case /> < c, then ^ < i, hence i — ^ is

c c
positive.

[5l Let ^-^ = ^'•

Then by [4] and [5] w^e get

[6] ^ + ^=?-

^7] Hence -|-^^ + ^,= i,
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which is the equation of the section EGE'H. by § 436.

Now [7] is the equation of an ellipse whose semi-axes are

aq and bq. by § 11 1.

[A] Hence KGE'H is an ellipse whose semi-axes are aq

and bq.

By [5] we see that

[s: q<i.

I9] Hence aq << a,

^10] and bq < b.

SECOND CASE

P=^c.

Since in this case p = c, then ^ =

]ii' q =0,
and hence [6] becomes

[12]

I, hence by [5] we get

[13] b^x- -\- a^yr = o.

Since in [13] «V and b'^y' are necessarily positive, this

equation can only be satisfied when ^ = o and jj/ = o, that is,

the ellipse KGE'H becomes a point.

[B] Therefore when p ^ c, the plane MN is tangent to

the quadric.

THIRD CASE

P> c.

Since in this case/ > c, then^ > i, hence by [5] ^^ will

be negative and [6] becomes
2 2

[14] ^+^ = -?^
o 2

V~ X
[15] hence l^ = — —^—q\
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Now from [15] we see that for every value of x,j/is

imaginary.

[C] Hence when /> > <: the plane MN cannot cut the

quadric.

Therefore from [A], [B] and [C] it follows that every sec-

tion of the quadric represented by [i], made by a plane par-

allel to the XY plane is an ellipse.

Similarly it may be shown that every section of this quadric,

made by a plane parallel to either of the other coordinate

planes, is an ellipse.

Therefore the quadric represented by [i] is an ellipsoid,

by § 449.

451. The Principal Axes.—
When/^o, [5] becomes

I = ?^

and [6] becomes

x^ v^
[16] ^+i = '-

which is the equation of the ellipse AD'A'D.

By [9] and [10] we see that the axes of this ellipse are

greater than those of any of the other ellipses made by planes

parallel to the XY plane.

Similarly we may show that the equation of the ellipse

BD'B'D is

2 2

[17] ^ + ^ = 1-

and that its axes d and c are greater than those of any of the

other ellipses like JKL made by planes parallel to the ZY
plane.

Hence a, h and c are called the principal axes of the quadric.

452. The Ellipsoid of Revolution.—The surface gener-

ated by revolving an ellipse about either of its axes is called

an ellipsoid of revolution.
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453. Co7'ollary.—If any two of the axes of an ellipsoid be

equal to each othei\ it will be an ellipsoid of revolutioji.

For if in [i] b and c be equal to each other, then every

section of the ellipsoid made by a plane
|1

to the ZY plane

will be a circle, and the ellipsoid in Fig. 159 may be gener-

ated by revolving the ellipse AB'A'B about the axis AA'.

If a > z^* = r, the ellipsoid is prolate.

'^ a <ib = c, '' " " oblate.

'' a = b = c, '' " "a sphere.

454. The Hyperboloid of One Nappe.—If a quadric be

continuous and every section of it made by a plane H to one

of the coordinate planes be an ellipse and every section of it

made by a plane
||
to either of the other coordinate planes be

an hyperbola, the quadric is called an hyperboloid of one nappe.

PROPOSITION III

455. The equation of the hyperboloid of one nappe is

X'
"^

b'a c

To determine the quadric represented by

[i]

2 2"X
_, y z'

which is the second form of [A] , § 448, we must determine

the sections formed on it by planes
|1 to the coordinate planes.

Let ABA'B'DD' be the quadric represented by [i]

.

Let MN be a plane || to the XY plane.

The equation of MN is

[2] z =P' by § 420.

Substituting this value of 2 into [i], we get

X'
[3] a

which is the equation of the section HHE'G. by § 436.
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Fig;. i5o

I P 2

q' > I,

X' ^ y

[4] Now let

[5] Then

and [3] becomes

1^^]
iaqY ' {bgY

which is the equation of an ellipse w^hose semi- axes are aq

and bq. by § 1 1 1

.

If the plane MN be passed through the center C then in [2]

[7] P = o,

[8] and ^ = !>

and [6] becomes
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r 1 X
\ y

[9] ^ +"7^ = ^'
a o

which is the equation of the ellipse Jly, whose semi-axes

are a and b.

Now by [5]

[10] aq ^ a.

[11] bq>b.

Hence by [6] and [9] we see that the size of the ellipse in-

creases continually as the plane MN is moved farther and

farther from the center C, and that the quadric is continuous.

JL is called the ellipse of the gorge.

Let M'N' be a plane
||
to the ZY plane. Its equation will be

[12] X ^ p. by § 420.

Substituting the value of x found in [12] into [i] , we get

[13] -^-^ = 1-^.

which is the equation of the hyperbola ORSTUV. by § 204.

Similarl}^ it may be proved that the equation of every sec-

tion of the quadric formed by a plane
||
to the ZX plane is

r 1
X z p

[14] -^ r = I i->^ - a c c

which is also the equation of an hyperbola.

Therefore by [6j, [13] and [14] we see that the quadric

represented by [i] is an hyperboloid of one nappe, § 454.

Q. K. D.

456. The Hyperboloid of Revolution of One Nappe.—
The surface generated by revolving an hyperbola about its

conjugate axis is called an hyperboloid of revolution of one

nappe.

457. Corollary.—If the two axes a and b of the hyperboloid of

one nappe are equal to each other it is an hyperboloid of rev-

olution of one nappe.
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458, The Hyperboloid of Two Nappes.—If a quadric is

discontinuous and every section of it made by a plane ||
to one

of the coordinate planes is an ellipse, and every section of it

made by a plane
||
to either of the other coordinate planes is

an hyperbola, the quadric is called an hyperboloid of two

nappes.

PROPOSITION IV

459- 1^^^^ equation of a7i hyperboloid of two nappes is

X'

a'

-2 ^,2 -2

Fia:. 161

The third form of equation [A] § 448 is

[I]
X'

a
r
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Dividing this equation through by — j, we get

2 2 2

Let ABA'B'DK be the quadric represented by [2].

Let MN be a plane || to the XY plane.

Then, as in the preceding proposition, the equation of the

section formed on the quadric by the plane MN is

[3!
a'
+ i;=-- +

-

[4] Let +$=-q'

then [3^ becomes

[5]
-
^' 4 f _
a'

"^
b'

~~--q\

which is the equation of an ellipse.

As in § 450 there may be three cases

ist. P <c.

2nd. P = c.

3rd. p> c.

by § III.

FIRST CASE

p <C.

In this case since /> < c, [4] shows that q^ must be negative

and [3] becomes

>; —q'

[7] Hence i—r- x'

a'

[7] shows that for every real value of x, y is imaginary,

that is, the ellipse is imaginary.

Therefore the plane MN does not cut the quadric repre-

sented by .[2] so long as /> < <:.

Hence the quadric represented by [2] is discontinuous.
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SECOND CASE

In this case [3] becomes

[8] i?+i=°'
and, as in §450, [13], it can be shown that the section be-

comes a point.

Therefore the plane is tangent to the quadric when/ = c,

THIRD CASE

P>c.
In this case since/ > c, [4] shows that q^ must be positive

and [3] becomes

[9] ^ + 7^ = ?^

2 2

[10] hence _^^ + ^^=i,

which is the equation of an ellipse whose semi-axes are aq

and bq. by § 1 11.

Now by [4] we see that after p becomes equal to c, q in-

creases continually as the plane MN is moved farther and

farther from O. Hence the semi-axes <2^ and bq must also in-

crease.

Therefore the ellipse HHE'G gets larger and larger as MN
is moved farther and farther from the origin.

As in the preceding proposition, it may be shown that every

section of the quadric made by any plane M'N'
i|

to the ZY
plane is an hyperbola, and that every section of it made by

any plane || to the ZX plane is also an hyperbola.

Since the quadric represented by [2] is discontinuous and

every section of it made by a plane
|| to the XY plane is an

ellipse, and every section of it made by a plane
|i
to either of

the other coordinate planes is an hyperbola, therefore the

quadric must be an hyperboloid of two nappes. by § 458.

O. E. D.
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460. The Hyperboloid of Revolution of Two Nappes.—
The surface generated by revolving an hyperbola about its

transverse axis is called an hyperboloid of revolution of two

nappes.

461. Corollary

.

—If the two imaginary axes a and b of the

hyperboloid of two nappes are equal to each other, it is an hyper-

boloid of revolutiofi of two ?iappes.

462. Scholium.—The fourth form of [A], §448, does not

represent a real surface. For dividing it through by — i,

we get

[I]
,2 ~r i2 + -:x= — I-

The equation of au}^ plane H to the XY plane is

[2] z—p.

Substituting this value of z into [i] we get

by §420.

[3] ^2 l~ i2 ^ Ji. 1a c

which is the equation of the section formed on the surface rep-

resented by [i] by any plane
|| to the XY plane. by § 436.

From [3] we get

Since every term in the second member of this equation is

necessarily negative, jk must be imaginary for every real value

of ;i; in it.

That is, no plane
|| to the XY plane and at a finite distance

from the origin can cut the surface represented by [i].

Similarly it may be showm that no plane
|1 to either of the

other coordinate planes can cut the surface represented by [i].

Therefore there can be no real surface represented by [i].



CHAPTER X

Non-Central Quadrics

463. On page 343, §444, we have shown that the quadric

will be non-central if

[i]

A B" B'

B" A' B

B' B A"

^= o.

In the more extensive treatises on this subject it is shown
that when this determinant is o, [i] § 440 can be reduced to

the form

[B] ^y + ^v + 2C^ = o.

Equation [B] may take two different forms according as

the signs of A' and ^" are alike or unlike.

ist. Ay + ^V — 2Cx.

2nd. Ay — A^'s' — 2Cx.

464. The Elliptic Paraboloid.—If every section of a non-

central quadric made by a plane
||
to one of the coordinate

planes is an ellipse, and the sections formed on it by planes
||

to the other two coordinate planes are parabolas, then the

quadric is called an elliptic paraboloid.
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PROPOSITION I

465. The equatio7i of an elliptic paraboloid is

Fig. 162

The first form of [B]
, § 463, is '

Let MN be a plane
1|
to the XY plane. Its equation is

[2] ^ — p. by §420.

The equation of the section CBP, made b)^ the plane MN
on the quadric represented by [i] , is

[3] Ay = 2Cx — A"p\ by §436.

which is the equation of a parabola. by § 287.

Hence every section of the quadric made by a plane
1| to the

XY plane is a parabola.

The equation of a section made by a plane
|| to the ZX

plane is

[4] A"^' = 2Cx — Ap\ by § 436.

which is also the equation of a parabola. by § 287.
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Hence every section of the quadric made by a plane
1| to the

ZX plane is a parabola.

The equation of the section AEGH, made by the plane

M'N'
II
to the ZY plane is

[5] ^y + ^v = 2rA by §436.

which is the equation of an ellipse. by § iii.

Since every section of the quadric represented by [i] made
by a plane

i|
to the ZY plane is an ellipse, and every section

of it made by a plane |1 to either of the other coordinate planes

is a parabola the quadric is an elliptic paraboloid. by § 464.

466. The Hyperbolic Paraboloid.—If every section of a

non-central quadric made by a plane
|| to one of the coordi-

nate planes is an hyperbola, and every section of it made by

planes
||

to the other coordinate planes is a parabola, the

quadric is called an hyperbolic pa^^aboloid.

467. The equation of an hyperbolic paraboloid is

Ay — A"2' z= 2Cx.

The second form of [B] , § 463, is

[i] A'y' — ^'V — 2Cx.

Let MN be any plane
|1
to the ZY plane. Its equation is

[2] X :^ p. by § 420.

The equation of the section ADEA'GH, made by the plane

MN on the quadric represented by [i] , is

[3] AY — A"2' = 2Cp, by § 436.

which is the equation of an h^^perbola. by § 204.

Hence every section of the quadric represented by [i],

made by a plane ||
to the ZY plane, is an hyperbola.
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Fig. 163

Similarly every section of the quadric made by a plane
|I
to

the ZX plane, is also an hyperbola.

The equation of the section RST, made by any plane || to

the XY plane, is

A'y^ = 2Cx + A''p\ by § 436.

which is the equation of a parabola. by § 287.

Hence every section of the quadric represented by [i], made
by a plane

|| to the XY plane, is a parabola.

Since every section of the quadric represented by [i] , made
by a plane

|| to the XY plane, is a parabola, and every section

of it made by a plane
||

to either of the other coordinate

planes, is an hyperbola, the quadric is an hyperbolic paraboloid.

by § 466.



APPENDIX

PROPOSITIONS REFERRED TO IN THE TEXT

GEOMETRY

1. Things which are equal to the same thing are equal to each other.

2. At any given point in a given straight line one perpendicular and

only one can be erected.

3. If two adjacent angles have their exterior sides in a straight line,

these angles are supplements of each other.

4. If one straight line intersects another straight line, the vertical

angles are equal.

5. From a point without a straight line one perpendicular, and only

one, can be drawn to this line.

6. If a straight line is perpendicular to one of two parallel lines, it

is perpendicular to the other also.

7. If two parallel straight lines are cut by a third straight line, the

alternate interior angles are equal.

8. If two parallel straight lines are cut by a third straight line, the

exterior interior angles are equal.

9. When two straight lines are cut by a third straight line, so as to

make the exterior interior angles equal, these two straight lines are

parallel.

10. Two straight lines which are parallel to a third straight line, are

parallel to each other.

11. Two angles whose sides are parallel, each to each, are either

equal or supplementary.

12. Two angles whose sides are perpendicular, each to each, are

either equal or supplementary.

13. The exterior angle of a triangle is equal to the sum of the two

opposite interior angles.

14. Two right angles are equal if the hypotenuse and an acute angle

of one are equal respectively to the hypotenuse and an acute angle of

the other.

15. Two right triangles are equal if their legs are equal, each to

each.
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i6. In an isosceles triangle the sides opposite the equal angles are

equal.

17. Parallel lines comprehended between parallel lines are equal,

18. A circle is a portion of a plane bounded by a curved line called

a circumference, all points of which are equally distant from a point

within called the center.

19. The limit of a variable is

(i) a constant,

(2) towards which the variable continually approaches,

(3) and from which it may be made to differ by a quantity

which is less than a given positive quantity however
small this latter may be made.

20. If two variables are constantly equal and each approaches a

limit, the limits are equal.

21. In every proportion the product of the extremes is equal to the

product of the means.

22. In a series of equal ratios, the sum of the antecedents is to the

sum of the consequents as any antecedent is to its consequent.

23. If a line be drawn through two sides of a triangle parallel to the

third side, it divides those sides proportionally.

24. If a straight line divides two sides of a triangle proportionally,

it is parallel to the third side,

25. If two triangles have their sides respectively parallel, or respect-

ively perpendicular, they are similar.

26. The sum of the squares of the two legs of a right triangle is equal

to the square of the hypotenuse.

27. The square of either leg of a right triangle is equal to the differ-

ence of the squares of the hypotenuse and the other leg,

28. The area of a rectangle is equal to the product of its base and
altitude.

29. The ratio of the circumference of a circle to its diameter is con-

stant. C= 27rR.

30. The area of a circle equals -k times the square of its radius.

31. Similar polygons are polygons having their homologous sides

proportional and their homologous angles equal,

32. The square on any line is four times the square on half the line.

33. A straight line is perpendicular to a plane if it is perpendicular

to every straight line of the plane drawn through its foot ; that is,

through the point where it meets the plane.

34. The projection of a point on a plane is the foot of the perpen-

dicular from the point to the plane.
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35. Two straight lines perpendicular to the same plane are parallel.

36. If one of two parallel lines is perpendicular to a plane, the

other is also perpendicular to the plane.

37. If tW'O straight lines are parallel to a third straight line they are

parallel to each other.

38. Two planes perpendicular to the same straight line are parallel.

39. The intersections of two parallel planes with a third plane are

parallel lines.

40. Parallel lines included between parallel planes are equal.

41. If two angles not in the same plane have their sides respectively-

parallel and lying in the same direction, they are equal, and their

planes are parallel.

42. If two planes are perpendicular to each other, a perpendicular

to one of them at any point of their intersection will lie in the other.

43. If a straight line is perpendicular to a plane, every plane passed

through the line is perpendicular to the first plane.

44. If two intersecting planes are each perpendicular to a third

plane, their intersection is also perpendicular to that plane.

45. Through a given straight line not perpendicular to a plane, one

plane, and only one, can be passed perpendicular to the given plane.

46. Two straight lines in the same plane perpendicular to the same
line are parallel.

47. In a parallelogram the opposite sides are equal and the opposite

angles are equal.

48. If two sides of a quadrilateral are equal and parallel, then the

other two sides are equal and parallel, and the figure is a parallelo-

gram.

49. A straight line is inscribed in a circle if it is a chord.

50. Two triangles are similar if two angles of the one are respect-

ively equal to two angles of the other.

51. Two right triangles are similar if an acute angle of the one is

equal to an acute angle of the other.

53. At a given point in a straight line one plane perpendicular to

the line can be drawn, and only one.

54. See 51.

55. An angle inscribed in a semicircle is a right angle.

56. If the product of any two factors be equal to the product of any

other two factors, we may take the factors of either product as the

means of a proportion if we take the factors of the other product as

the extremes.
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57. In the same circle or equal circles, chords equally distant from

the center are equal.

58. Bqual chords subtend equal arcs.

59. A radius perpendicular to a chord bisects the chord and also the

arc which it subtends.

60. The perpendicular from any point in the circumference to the

diameter of a circle is a mean proportional between the segments of

the diameter.

61. The area of a trapezoid is equal to one-half the sum of the

parallel sides multiplied by the altitude.

TRIGONOMETRY.

a opposite leg
1. sm A = = ^^

,
^.

c hypotenuse

b adiacent leg
2. cos A = = — ^.

c hypotenuse

a opposite leg

b adjacent leg

b adjacent leg

a opposite leg

b adjacent leg

4. cot A
a opposite leg'

5. sin^ A 4- cos^ A =^ \.

sin A
6. tan A = -.•

cos A
7. sin A X cosec A =^ \.

8. cos A X sec ^ — i.

9. tan A X cot A =^ \.

10. I + cot^ A = cosec^ A.

11. sin (— A) = —sinA, tan (

—

A) = — tan A.

12. cos (

—

A)=cosA, cot (

—

A) :;= — cot ^.

13. sin (A— B) = sin A cos B — cos A sin B.

14. The sides of a triangle are proportional to the sines of the op-

posite angles.

15. The area of a parallelogram is equal to the product of any two
adjacent sides by the sine of the included angle.

16. In quadrant 2 the sine and cosecant only are positive.

. ^ ^, tan A — tan B
17. tan {A—B)= —j— ^- ^.^

I + tan A tan B
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sin M - ± J ' ~ ^^' ^
;

cosi^ = ±J^ -f- cos A
2

0°. 90°. 180°. 270°. 360°.

cosine i ±0 — i ±0 i

'^' tangent ±0 ±00 ±0 ±00 ±0

20. sin A = cos B, cos A = sin B, when A -\- B ^=^ 90.

21. cos (90 + A') = — sin A.

22. sin (180 — ^) = sin ^.

23. cos (180 — A) = — cos y^.

24. tan (180 — A) = — tan A.

25. The square of any side of a triangle is equal to the sum of the

squares of the other two sides, diminished by twice their product into

the cosine of the included angle.

26. tan 45'^ = I.

27. A radian is the angle at the center of a circle subtended by an

arc whose length is equal to the radius of the circle. It is equal to 57°.

3

28. The number of radians in a given angle is equal to its arc divided

by the radius of the circle.

29. vers A = 1 — cos A.

_ r—-y T—y
30. cos ' is read thus : the arc whose cosine is .

r r

31. The area of a triangle is equal to half the product of two adjacent

sides by the sine of the included angle.
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