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High rates of male courtship
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In species with sex-specific signalling traits that appear to be
ornamental (i.e. are conspicuous and with no obvious natural
selection benefit), the ornamented sex typically initiates
courtship and is most active in courtship. Here, we report for the
first time courtship displays in the extremely sexually dimorphic,
female-ornamented wide-bodied pipefish (Stigmatopora nigra),
revealing unexpected behaviours. Females use their sex-specific
ornament during courtship displays, as expected, but rarely in
female–female interactions. Surprisingly, males initiated 61% of
reciprocated courtship bouts and chased females in 17% of the
bouts. This chasing behaviour could be a form of male
harassment or be indicative of female disinterest in ardent males,
either of which was unexpected to be found in this female-
ornamented species. Our results highlight the need to study the
details of species’ behaviours in considering the potential roles of
sexual selection and sexual conflict in shaping sexual dimorphism.
1. Introduction
Sexual selection favours traits that increase the ability to gain access
to fertilizations [1], such as pre-copulatory displays like ornaments
or armaments and post-copulatory competitive traits [2]. A great
deal of research has gone into understanding the mechanisms
impacting the strength of sexual selection (recently reviewed in
[3–5]), with key ideas focused around the importance of parental
investment [6], operational sex ratios [7] and potential
reproductive rates [8]. Nonetheless, the predominant views tend
to centre on the so-called ’Darwin–Bateman paradigm’, which
posits that when sexual selection is stronger in males than
females, (a) males have, in general, more variable reproductive
success than females; (b) each additional mating provides larger
fitness gains (i.e. more additional offspring per mating) for males
than females; and (c) males are generally eager to mate and
relatively indiscriminate, whereas female are more discriminating
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and less eager [1,9,10]. These basic principles are the foundation upon which current methods of estimating

the strength of sexual selection are founded (reviewed in [11–14]).
The third prediction is the element of the paradigm that enables the evolution of traits by sexual

selection, as the prediction that females are less discriminating is the method through which selection
can act on male traits. Measuring eagerness to mate and mate preferences can be challenging, as these
behaviours are influenced by factors that differ among environments and which can shift the trade-offs
made by individuals of either sex, often in ways that are not straightforward [15]. Some trade-offs arise
from biological constraints, such as previous investment into reproduction such as anisogamy [16] (but
see [17,18]), the latency between matings due to reproductive requirements such as pregnancy [15], or
costs associated with potential cuckoldry [19]. Other key factors can be more variable, such as the
availability of mates in the population (i.e. the operational sex ratio) [20,21] or population density
[e.g.22,23]), both of which shape the competitive environment for sexual selection. Furthermore,
behaviours are inherently plastic traits, and plasticity in mating behaviours based on environmental
conditions can impact mate availability over generations or even over the course of a season [3].

Although the Darwin–Bateman paradigm is articulated with males as eager and females as
discriminating, examples exist wherein females experience stronger sexual selection, and these
examples were in fact pivotal to helping Darwin and others articulate the predictions for sexual
selection [3]. For example, several bird species (e.g. phalaropes, jacanas) display male brood care and
females compete over access to mates, fish such as pipefish and some gobies display female
competition over males, and several insects such as honeylocust beetles and dance flies show female
competition over nuptial gifts (reviewed in [3]). Bateman’s principles have been tested in some of
these species and quantitative predictions that females have more variable reproductive success
(prediction (a) above) and increased pay-off per mating (prediction (b) above) have generally been
supported [24–28], with these metrics being used to identify if females in these species experience
stronger sexual selection than males. This reversal of sexual selection strengths is recommended to be
used as a way to define species as ‘sex-role reversed’ [3,12,26], although this term has deservedly been
criticized [3,29]. The extent to which the third prediction holds in these sex-role reversed species is
perhaps less clear, especially as many studies pre-identify species as role reversed based on broad
patterns of behaviour that sometimes reflect these mating behaviours but often instead refer to
parental care [29]. Furthermore, we know that variation among individuals in mating behaviours is
widespread [2,30] and that mutual mate choice can be beneficial for both sexes [31]. Therefore,
investigating the extent to which males and females fit into these defined categories of roles is crucial.

Here, we investigate the third element of the Darwin–Bateman paradigm—eagerness in courtship—
in a female-ornamented species, the wide-bodied pipefish (Stigmatopora nigra). This pipefish species has
male parental care and sexual dimorphism in size, body shape and coloration, with females bearing a
colourful ornament, which is hypothesized to be sexually selected [32] and used to attract males [33].
We investigate whether males and females differ in their ‘eagerness to mate’ by describing courtship
behaviours of males and females in experimental breeding populations. Specifically, we ask four
questions: (i) What are the intra-sexual and inter-sexual behaviours, and do the sexes differ in which
behaviours are most commonly used? (ii) Which sex initiates courtship most frequently? (iii) Do the
sexes differ in the duration of their courtship displays? (iv) Does the size of a courting group impact
courtship displays in both or either sex?
2. Methods
2.1. Study species
The wide-bodied pipefish is found throughout New Zealand and Australia [34,35] and is one of the most
abundant species in Australian seagrass beds [36–39]. Females of this species have a dorsoventrally
flattened belly with light and dark parallel stripes, an ornament which is correlated with fecundity
([32]; table 1 for images). Previous work identified the species as displaying female competition for
mates based on the presence of this female ornament [33,40] and inferred sequential polyandry due to
a larger number of mature eggs being present in female ovaries than numbers of developing embryos
in male brood pouches [33]. Males and females were found in roughly equal numbers with a slight
male bias in summer in an Australian seagrass bed [33], but the adult sex ratios in the New Zealand
populations, which are substantially genetically diverged from Australian populations [41], are
unknown.



Table 1. Ethogram of active and non-active courtship behaviours. Photography © Emily Beasley and Sarah Flanagan.

behaviour
name description image

sex displaying
the behaviour

wiggle Side-to-side movement of the upper half

of the body, displayed facing the

recipient in a vertical position.

On the left: male (left) wiggles

while female (right) poses.

males, females

occasionally

pose Female arches her back causing the belly

to round forward, creating an S-shape.

This ensured that the ornament was in

full display towards the recipient.

females

inactive Pipefish do not display active courtship

behaviours but remain close together

in courting group.

males, females

chasing Males were observed swimming parallel

to the female with speed.

males

surrounding Pipefish are surrounding the individual of

the opposite sex (e.g. multiple males

surrounding a single female).

males
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2.2. Pipefish experimental breeding populations

We collected pregnant male and ornamented female S. nigra (to ensure fish were sexually mature) in
November 2020 at two sites in Tauranga harbour (North Island, New Zealand): 38 females and 60 males
from Matua (latitude −37.66255, longitude 176.10827) and 62 females and 60 males from Plummers
Point (latitude −37.66173, longitude 176.04525); individuals from both sites were mixed together for the
study. Fish were caught using a 1.2 × 1.2 m push net with 1 mm mesh, housed overnight in flow-
through tanks at the University of Waikato Marine Ecology lab, and transported to the University of
Canterbury. Pipefish were then acclimatized to flow-through aquaria in 15 plastic 90 l tanks with white
plastic taped to either side of the tank to act as a visual barrier between neighbouring transparent tanks
(as in [42]). Pipefish were held at 18°C with a 12 h daylight cycle, comparable to conditions at the time
and site of collection, with artificial seagrass as refugia, with a diet of day-old enriched Artemia spp.
nauplii, provided twice daily, and supplemented by additional wild-caught zooplankton when available
(approx. once per week). Tank water was filtered through biofilters, with 10–20% water changes
performed daily. Males and females from each site were housed separately until all males had given
birth (similar to [43,44]). We established 10 experimental breeding populations, each containing eight
female and eight non-pregnant male pipefish, which experienced the same feeding and cleaning
conditions as holding tanks. An equal sex ratio is consistent with wild populations [33] and densities are
a little bit higher than capture rates in small patches of seagrass beds in natural populations [45] (though
higher than densities on a large scale; e.g. [46]), and consistent with the numbers of fish captured in a
single seine net pull when collecting the fish for this study. Prior to entering the experimental breeding
populations, all pipefish were photographed and body size (total length) measured in IMAGEJ [47]. The
average size of fish in each experimental breeding population was compared using a two-factor ANOVA
(trial-by-sex). Experimental breeding populations were filmed daily for 7 days using a single Panasonic
HC-V180 camcorder each from 8.00 to 10.00, when other syngnathids are known to have increased
courtship [48–51], and 12.00 to 13.00 to capture fully diurnal behaviours.

2.3. Courtship behaviour analysis
Courtship bouts were scored using BORIS v. 7.10.5 [52] for exact counts and durations of observed
behaviours (table 1). Courtship bouts were defined as groups of individuals displaying courtship
behaviours and included individuals within two body lengths (snout-to-tail) of courting individuals.
The initiating sex was identified by recording which sex performed the first active courtship
behaviour (pose or wiggle; following [48]). The arrival of new individuals into the group (within two
body lengths) and the departure of individuals were tracked and average group size over the duration
of each bout was calculated. Courtship bouts were considered finished when pipefish in the courting
group had displayed non-active behaviours for greater than 60 s or if courting individuals had moved
more than two body lengths (snout-to-tail) away from each other. For each behaviour observed, the
sex of the displaying individual was recorded. For active courtship behaviours (poses and wiggles),
the sex of the fish directly in front of the displaying individual was recorded as the receiving sex.
Behaviours were scored by sex as individuals could not be individually identified in the videos.
Owing to this constraint, the bouts include repeated measures of individuals within trials and are
unable to reflect variation among individuals. To account for the non-independence of events, all
statistical analyses include trial number as a random effect (see below).

All statistical analyses were conducted in R v. 4.0.5 [53]. The proportion of reciprocated courtship
bouts initiated by males was compared with a null expectation of 0.5 using a proportion test. To
determine whether females displayed their ornament more frequently during inter-sexual or intra-
sexual interactions, a proportion test was used to compare the proportion of female displays
performed towards males with 0.5. The frequency of unreciprocated courtship events was compared
between the sexes using a χ2-test.

We performed model selection of linear mixed models of the log-transformed durations of active
courtship behaviours to identify which factors were most important in predicting the duration of
active courtship behaviours. The fixed effects tested were sex of the individual displaying, the size of
the group when the display was performed, the time of day (morning or noon), the day in the trial
when the behaviour was recorded (days 1–7) and the total time of courtship in the bout. Bout
numbers nested within trial were included as random effects. Only reciprocated courtship bouts (i.e.
both sexes displayed active courtship) were included. Models with corrected Akaike information
criterion (AICc) scores that differed from the best-scoring model by 5 or fewer were further analysed
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Figure 1. Courtship behaviours differ between the sexes. (a) Males initiated most courtship displays, all of which were directed
towards females. (b) Female displays were primarily directed at males, and females primarily used poses instead of wiggles. (c)
Females had longer durations of displays than males, with a higher median (white dot) duration time. Box plots within the
violins show the interquartile range with lines extending to the 1.5× the interquartile range in both directions. (d ) Displays
are slightly longer in large groups for both males and females. All groups consist of a single female. The lines show the linear
relationship (with the 20% and 80% quantiles around the predicted durations shown) between duration and group size for
males and females separately. Note the log-scaled y-axis in c and d. Asterisks indicate significant differences between sexes.
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and their estimated means interpreted. We used MuMIn [54], lme4 [55], lmerTest [56] and emmeans v.
1.7.2 [57] to conduct this analysis and perform post hoc tests.

We predicted the probability that a courtship bout included chasing using a generalized linear mixed-
effects model with a binomial logit-link function, implemented with lme4 [55]. Group size, bout duration
and their interaction were included as predictor variables, with the time of day and trial number included
as random effects. We fit an equivalent model to predict the probability of a bout ending in chasing (i.e.
the final behaviour was chasing), but instead used a cloglog link function using VGAM [58,59] and back-
transformed fixed-effects estimates. We tested for a correlation between the proportion of bouts each trial
that contained chasing and the overall difference in female body lengths (i.e. amount of female variation)
using a Spearman rank correlation.
3. Results
Experimental breeding populations did not differ in the average size of male or female pipefish (F9,9 =
0.311, p = 0.97), although females were larger than males (F9,1 = 33.649, p < 0.001; average male: 93.40 ±
0.94, average female: 101.84 ± 1.06). Twenty-six males became pregnant in the experimental breeding
populations (32.5% of all males across trials, and greater than or equal to 1 pregnancy per trial),
although copulation was never recorded. Most trials experienced some mortality (average 1.5 males,
1.7 females per trial), but most deaths occurred after the filming was completed (i.e. after the first
week of the experimental breeding population). We recorded, in total, 22.58 h of courtship bouts,
which contained a total of 9.01 h of active behaviours (other than ‘inactive’ or ‘out of sight’), including
poses, wiggles, chasing and surrounding (table 1 for descriptions). Courtship bouts lasted from 12.22 s
to 50.03 min (mean = 3.47 min). Poses and wiggles were the most common active behaviours (83% of
active behaviours) followed by chasing and surrounding (12% of active behaviours). Poses and
wiggles were considered active courtship behaviours for the remaining analyses.

Of 391 courtship bouts scored, 77.5% were reciprocated. Males initiated 61% of these reciprocated
bouts, significantly more than females (proportion test: x21 ¼ 14:38, p-value < 0.001; figure 1a). Females
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displayed their ornament significantly more frequently towards males than females (proportion test:

x21 ¼ 1306:5, p-value < 0.001), and 97% of female displays were directed towards males (figure 1b).
Only 3% of female displays were directed at females, of which 68% were wiggles and 32%
were poses. Groups of displaying fish ranged from 2 to 7 individuals, with an average size of
2.54 individuals. All groups contained at least one female, and all groups comprising more than
two individuals included only one female (i.e. non-dyad groups consisted of one female and two or
more males).

Five models of active courtship durations had a ΔAICc≤ 5, all of which included the sex of the
displaying individual. Three of the top models included group size and two included time of day
(table 2). None of the top-ranked models included day of filming or total bout length. The best-
scoring model included only sex and the random effects (bout number nested within trial; ‘model 1’,
AICc = 5579.83, d.f. = 5; electronic supplementary material, table S1), with the second-best model
including sex and group size and the random effects (‘model 2’, ΔAICc = 1.12, d.f. = 6; electronic
supplementary material, table S1). In all top models, female displays were longer than male displays
(table 2 and figure 1c). Larger groups had lower durations per display behaviour (table 2 and
figure 1d ), although the effects are an order of magnitude smaller than sex effects (table 2).

Sixty-six of the 391 courtship bouts included chasing behaviours (16.88%). Of the bouts with chasing,
56.06% had chasing as the final behaviour. Without the inclusion of the group size or bout duration,
bouts were unlikely to include chasing, with an estimated less than 0.001% [95% CI: 0–0.0003%]
chance of chasing occurring (β =−14.04 ± 2.96, z =−4.74, p < 0.001). The inclusion of group size
increased the probability of chasing to 98.18% [95% CI: 86.89%–99.77%] (β = 3.99 ± 1.07, z = 3.73, p <
0.001), and the inclusion of duration alone increased the probability of chasing to 89.86% [95% CI:
73.56%–96.57%] (β = 2.18 ± 0.59, z = 3.69, p < 0.001). Including both group size and bout duration
increased the probability of chasing occurring by 33.65% [95% CI: 24.67%–43.99%] (β =−0.68 ± 0.22,
z =−3.04, p = 0.002). Larger groups and longer lasting bouts therefore increased the probability that a
bout would include chasing (figure 2). However, the probability of a bout ending with chasing as the
final behaviour could not be predicted by group size (β = 3.26 ± 2.05, z = 1.59, p = 0.112), duration (β =
1.86 ± 1.22, z = 1.53, p = 0.127), or their interaction (β =−0.71 ± 0.45, z =−1.59, p = 0.112). Chasing
tended to occur in trials with larger differences in length between the longest and shortest females,
but the relationship was not statistically significant (ρ = 0.558, p-value = 0.094). Owing to study design,
the size of individuals performing behaviours was unable to be measured.
4. Discussion
We describe for the first time the behaviours associated with courtship displays in the wide-bodied
pipefish (Stigmatopora nigra). Two key courtship behaviours were observed—poses and wiggles—
which were displayed with different frequencies in males and females. Males only wiggled, and
always wiggled towards females, whereas females displayed both poses and wiggles towards males,
and very rarely towards other females. Our results demonstrated that females use their ornament in
active courtship displays towards males, but not in competition with other females, providing
behavioural data to support a previously hypothesized use of this sexually dimorphic trait [33].
Females were generally more active in courtship than males, with longer display durations than
males. However, males initiated courtship more frequently than females and both sexes displayed for
shorter durations in larger groups of courting individuals. Furthermore, we documented an inter-
sexual chasing behaviour performed by males, which was associated with larger courting groups and
longer courtship bout durations. These observations portray nuanced patterns of behaviour consistent
with both sexes displaying active courtship and probably expressing mutual mate choice.

The wide-bodied pipefish did not follow the dichotomized sex roles predicted by the Darwin–
Bateman paradigm predictions. Females were ornamented, displayed multiple courtship behaviours
(both wiggles and poses), and displayed for longer durations within courtship bouts than males, but
they initiated courtship bouts less frequently than males. Given that the ornament reflects fecundity in
natural populations of S. nigra [32], males might use the ornament as an honest signal of offspring
quality and/or brood size, as seen in other pipefish [60–63], and males probably initiated courtship
with females with the largest ornament—but their high frequency of initiation suggests that males are
both eager and discriminating. We observed chasing behaviours in 17% of courtship bouts, which can
be interpreted in two ways: males use chasing behaviours to assess female quality, or chasing occurs
when a female does not want to pursue courtship further but males want to continue courting the
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female. Regardless of the motivation for chasing, combined with the male initiation, both males and
females are clearly eager in courtship.

The courtship dynamics observed here could be explained by several factors that are not mutually
exclusive. One factor is that male pipefish are removed from the pool of mating individuals after
becoming pregnant, which could impact our results in two ways: first, non-pregnant males might be
very eager to re-mate to maximize their lifetime reproductive success, similar to how long ‘dry time’
impacts sexual selection in theoretical models [15] and second, the operational sex ratio will shift in
the experimental breeding populations as males become pregnant. In this second scenario, the
operational sex ratio would shift to be female-biased, which in other pipefish can result in stronger
sexual selection on females [22], stronger male mate preferences [64], fewer overall associations
between males and females [65], and increases in female–female interactions [65,66]. We did not
observe any aggressive interactions, including disruption of courting pairs as seen in other pipefish
[50,51,67], and our best-fitting models of courtship durations showed no difference between day 1 and
day 7, so we do not have substantial evidence that small shifts in operational sex ratio due to males
becoming pregnant had a major impact on the behaviours observed here.

Although the mesocosms were initialized with equal adult sex ratios, with presumably sexually
mature fish, multiple males frequently courted a single female in groups, which raises questions about
why these groups form. One possibility is that males are choosy based on some threshold for
attractive female ornaments (or female sizes), so only a subset of females were sufficiently attractive—
probably the large, ornamented and active females [42,48,68–73]—resulting in a male-biased realized
operational sex ratio in the breeding tanks. In other pipefish, groups of multiple females can interrupt
a courting pair [50,67], so it is possible that groups are a way for males to compete with each other
over the most attractive females. This could be similar to a lek, although in most species the
ornamented sex is the one that displays in groups [74] (including in a pipefish, [75]), and none of our
groups included more than one female. Alternatively, males could perform mate copying, a
phenomenon observed in Syngnathus typhle [76]. A rich area for further study would be to investigate
the plasticity of the nuanced roles we have discovered, and for example see whether the composition
of the groups change in response to shifting operational sex roles over the course of a breeding season
[63,66] or the availability of resources in the environment (e.g. [77]).

The active roles of both sexes in courtship hint at possible evolutionary conflict over mating rate in
this species (i.e. inter-locus sexual conflict). Our finding that females display longer than males could
imply that a single courtship bout might be more energetically costly for females. Additionally, the
chasing behaviour could also negatively impact female fitness and behaviour, similar to how male



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:231428
9
harassment of females decreases female fitness (e.g. [78,79]) and can alter female movement and

dispersal [80] in species with conventional sex roles. If these costs do not trade off with other
components of fitness, the two sexes might have different optimal mating rates in this species, which
could result in sexual conflict. Further work is required to identify the costs and benefits to both sexes
of this chasing behaviour, and how consistently these behaviours are displayed in different contexts,
for example, female-biased operational sex ratios or lower densities of fish.

In other female-ornamented species, females initiate courtship [51,69], but we found evidence for
more nuanced sex roles, with females being ornamented and males ardent in courting. These nuanced
sex roles are consistent with complex patterns of behaviours described for other sex-role reversed
species [81,82]. We also document male chasing behaviours for the first time in a pipefish, which
could indicate that sexual conflict over mating rates or other courtship behaviours is occurring.
Further work is needed to establish how these behaviours respond to ecological and environmental
factors, and their associated direct and indirect fitness costs. While ornamentation does not appear to
trade off with fecundity in this species [32], it could have trade-offs in energetic costs if those females
are spending more energy courting or avoiding courtship by males. We find more nuanced patterns
of mating behaviours than predicted by the Darwin–Bateman paradigm for a female-ornamented species.
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