
Rob 501 - Mathematics for Robotics

HW #9

Prof. Grizzle

Due Nov. 29, 2018

3PM via Gradescope

Remarks:

• If you have been hearing about �quadratic programs� (QPs), well, Problem 2 is a simple case of a QP.
You also solved one in HW 7 and in HW 1 (go back and look at Problem 6 of HW 1). We will do more
advanced QPs at the end of the term.

1. Consider the �nite dimensional vector space (X ,R), where X = span{1, t, t2, sin(πt)}. Equip it with

the inner product < f, g >:=
∫ 2

0
f(τ)g(τ)dτ . When working the problem, feel free to use MATLAB to

compute any required integrals, and you may compute them symbolically or numerically, as you wish.

(a) Find the vector of minimum norm that satis�es < f, t >= 2.

(b) Find the vector of minimum norm that satis�es < f, t >= 2 and < f, sin(πt) >= π.

2. Underdetermined Equations: We consider Ax = b, where b ∈ Rp, x ∈ Rn, n > p. Use the normal
equations derived in HW #8 to solve the following problems. The key is to interpret the rows of Ax = b
in terms of inner product conditions that look like < x, yi >= ci.

(a) We assume an inner product on Rn de�ned by < x, z >:= x>z, and thus ||x|| = (x>x)1/2. Show
that if the rows of A are linearly independent, then

x̂ := arg min
Ax=b

||x||

is given by x̂ = A>
(
AA>

)−1
b

(b) We assume an inner product on Rn de�ned by < x, z >:= x>Qz, where Q � 0, and thus
||x|| = (x>Qx)1/2. Show that if the rows of A are linearly independent, then

x̂ := arg min
Ax=b

||x||

is given by x̂ = Q−1A>
(
AQ−1A>

)−1
b.

Remark: A QP is an optimization problem of the form

x̂ := arg min
Aeqx = beq
Ainx ≤ bin

||x||2.

The key addition is that inequality constraints, Ainx ≤ bin, can also be included. We'll talk more
about this the last day of lecture.

1



3. We did one version of the QR factorization in lecture (we assumed A had linearly independent columns).
Scan MATLAB's documentation of the qr function and note its economy version, [Q,R]=qr(A,0).
Using Gram Schmidt, compute the QR factorization of the matrix A below �by hand� (you can do any
vector multiplications and such in MATLAB1). Compare your answer to MATALB's [Q,R]=qr(A) and
[Q,R]=qr(A,0) and discuss similarities and di�erences.

A =

 1 2
3 4
5 6


4. The following problem arises in camera calibration:

x̂ = arg min
x>x=1

x>A>Ax.

Show that if A is real2, then x̂ is given by the last column of V where A = UΣV > is the SVD of A.

5. Compute a rank 2 approximation of

A =

 4.041 7.046 3.014
10.045 17.032 7.027
16.006 27.005 11.048

 .
In particular, �nd ∆A of smallest norm such that Â := A + ∆A has rank 2. The matrix norm being
used is

||M ||2 =
√
λmax(M>M).

It is enough to give Â, the rank 2 approximation, in your solution.

6. This problem is just for fun. It will not show up on any exam. Download the �le zebra.jpg from the
MATLAB folder. Everything I know about image compression, I learned in 15 minutes with a google
search3 on �image svd�. I invite you to do the same! These commands show how you can read an
image into MATLAB, covert it to double precision arithmetic, perform a numerical operation on the
matrix, convert it back to binary grey scale, and print it to a �gure:

A = imread('zebra.jpg');

%throw away color information for this example

A=A(:,:,1);

% show the image

figure(1)

imshow(A)

%convert to double precision

B=double(A);

%Let's do a matrix operation; you will find something more imaginative to do

C=fliplr(B);

%convert back to binary

C=uint8(C);

%show the image

figure(2)

imshow(C)

1This is just to encourage you to do one QR factorization yourself without relying on MATLAB's built-in function.
2When we write down arg min, we should also have conditions so that the answer is unique. For this problem, we need the

smallest e-value of A>A to be unique, and even then, it is only unique up to a sign (i.e., if x̂ is an answer, then so is −x̂).
Unfortunately, in the literature, you typically see the problem given as stated.

3You might also try the last page of http://persson.berkeley.edu/18.335/lec3handout2pp.pdf and glance at
http://www.math.ucla.edu/~wittman/PCMI/pcmi1.pdf
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(a) Use the SVD to produce a low-rank approximation to the image and display it. Can you reduce
the rank by 75% and still have an acceptable image? Less? No, need more? The purpose is to
illustrate visually that the SVD can help you to �nd and eliminate redundant data. Turn in the
original image and your low rank approximation; state the rank of your approximation.

(b) Download a �wholesome� image4 from the internet and repeat the above.

7. Estimating derivatives of functions numerically. In this problem, we introduce a method to estimate
the Jacobian of a function numerically.

(a) Compute the Jacobian of the following function f : R3 → R analytically and evaluate it at the
point x∗ = [1 3 − 1]>

f(x1, x2, x3) = 3x1
[
2x2 − (x3)3

]
+

(x2)4

3
. (1)

Recall that the gradient of a scalar valued function is normally written as a row vector

∂f(x)

∂x
:= [

∂f(x)

∂x1

∂f(x)

∂x2

∂f(x)

∂x3
].

(b) In calculus, you learned that ∂f(x∗)
∂xi

:= limδ→0
f(x∗+δei)−f(x∗)

δ , where ei, i = 1 : 3 are the natural
basis vectors, and thus, for a �xed δ > 0, you might estimate the derivative by

∂f(x∗)

∂xi
≈ f(x∗ + δei)− f(x∗)

δ

It turns out that better numerical accuracy is usually obtained by a symmetric di�erence5

∂f(x∗)

∂xi
≈ f(x∗ + δei)− f(x∗ − δei)

2δ
. (2)

Compute a numerical approximation to the Jacobian of the function (1) using symmetric di�er-
ences and report the value(s) you used for δ. You are not obliged to use the same δ for each
partial derivative. Use the same x∗ as in part (a).

(c) When you already know the answer, it is easy to play with δ and come up with a good numerical
approximation to the derivative. What will you do when you do not know the answer before
hand? Let's �nd out! Download the function funcPartC.p from the MATLAB folder. It is a
hidden function f : R5 → R. Report its Jacobian at x∗ = [1, 1, 1, 1, 1].

Here is how to call the function

x0=[1 2 3 4 5];

f=funcPartC(x0)

f = 2.1281e+01

4Be considerate! Animals and scenery tend to be non-controversial.
5It can be shown that a symmetric di�erence is EXACT for a quadratic function. You might want to try that out.
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8. One step update of a robot's state using a Kalman �lter. You are given a simple robot that
moves in one dimension, say along the X-axis.

t0 = 0 t1 = 0.1
Landmark 
@ (x = 5)

z1

X

Figure 1: Robot's motion is along the X-axis. The landmark is a �xed point at x = 5m.

Your robot starts at a position6 x0, which is normally distributed x0 ∼ N (1, 0.25), i.e. µ0 = 1 and
Σ0 = σ2 = 0.25. The state of your robot at the next time step is given by the following equation

x1 = x0 + u1 · δt (state propagation model) (3)

where u1, the action taken, is also normally distributed7, u1 ∼ N (10, 16), i.e. û1 = 10, R = 16 and
δt = 0.1 is the time step.

Fortunately, your robot has a reasonably accurate time of �ight sensor8 which can measure the robot's
distance from a �xed landmark. Based on the physics of the situation, you expect the output of your
robot's sensor (i.e., the measurement) to be related to the robot's position by

ẑt =
2

c
(5− xt), (4)

where xt is the robot's position at time t, c is the speed of light9 and ẑt is the corresponding expected
output10(in seconds) from the sensor.

Because your sensor is a real device, it has error in its measurement; the actual sensor output is modeled
to be, z1 ∼ N (ẑt, Q), where Q is the uncertainty in the measurement. In this case, the manufacturer
tells you that your LiDAR has uncertainty, Q = 10−18.

Problem: Suppose at time t = 0.1s your robot takes action u1 and moves according to (3). Your
sensor outputs z1 = 2.2 × 10−8s. Estimate the position x1 of your robot at time t = 0.1 and the
uncertainty in its position. Give your answer in the form of a normal distribution x1 ∼ N (µ1,Σ1).

6We have used the notation, x ∼ N (µ,Σ), in previous HW sets.
7Why would the control signal be random? Well, what if the feet or the wheels of your robot are slipping in sand or wet

grass? Then the control signal you command to the motor is not the action that will be applied to the body of the robot!
8Understanding how LiDAR works https://www.youtube.com/watch?v=EYbhNSUnIdU. More information about LiDARs

speci�cally in mobile robots can be found here, https://www.clearpathrobotics.com/2015/04/robots-101-lasers/
9Use c = 3× 108 m/s

10The expected output, E{z} = µz , is the mean value
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Hints

Hints: Prob. 1 Apply Problem 6 from HW #8. You may enjoy the symbolic toolbox for doing the
calculations.

syms t pi

f=t^2;

g=exp(pi*t);

a=0; b=2;

G11=int(f*f,a,b);

G11=simple(G11)

Commands such as inv and numden work in the symbolic toolbox. Also checkout simplify and pretty.

Hints: Prob. 2 Decompose A by its rows,

A =


a1
a2
...
ap

 .
De�ne Ã = AQ−1 (why is Q invertible?), and de�ne vi ∈ Rn by

vi = (aiQ
−1)> = Q−1a>i ,

where we have used the fact that Q is symmetric. Show that

Ax = b⇔< vi, x >= bi, 1 ≤ i ≤ p.

Now, work out those normal equations from last week! If the above derivation confuses you, set Q = I and
you will get it! That is why I broke the problem into two parts.

Remark: Squaring the norm does not change the answer11 to the optimization problem because it is a
strictly monotonically increasing function.

x̂ := arg min
Ax=b

||x|| = arg min
Ax=b

||x||2 = arg min
Ax=b

x>Qx.

The corresponding QP is always written using the form on the right.

Hints: Prob. 3 Nothing exciting here. Just pointing out that there exist multiple versions of the QR
factorization.

Hints: Prob. 4 We have seen this problem before. Recall HW #2, Prob. 7-(b). How does the e-vector of
A>A corresponding to the minimum e-value relate to the columns of V ? (See statement of SVD Theorem
given in lecture).

Hints: Prob. 5 See the handout SVD_Rob501 in the resource folder...the one everyone slept through! If
this were not very useful and practical stu�, I would not pester you about it. I know, about this point in
the term, everyone is pretty tired.

11Yes, the value is squared, but the argument achieving the minimum, i.e., the x̂, does not change.
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Hints: Prob. 6 k=YourValue; C=U(:,1:k)*S(1:k,1:k)*V(:,1:k)'; Too much said. The problem is
for fun, but the message is interesting!

Hints: Prob. 7 Oh, the age-old problem, how to tune parameters in algorithms? In this case, a rule of

thumb is, if decreasing δ by a factor of 2 does not signi�cantly change the estimate, then you can stop.

Remark on exactness for a quadratic function: Let f(x) = ax2 + bx+ c be a quadratic. Performing
the symmetric di�erence quotient about a point x∗, we have

f(x∗ + h)− f(x∗ − h)

2h
=
a(x∗ + h)2 + b(x∗ + h) + c− (a(x∗ − h)2 + b(x∗ − h) + c)

2h

=
ax∗2 + 2ax∗h+ ah2 + bx∗ + bh+ c− ax∗2 + 2ax∗h− ah2 − bx∗ + bh− c

2h

=
4ax∗h+ 2bh

2h

=
2h(2ax∗ + b)

2h
= 2ax∗ + b,

where we recognize the last line as the derivative at x∗.

Hints: Prob. 8 You have all the values for the Kalman �lter available to you. Recall that you have seen
in the handout on Gaussian Random Variables that if x1 and x2 are uncorrelated and Y = Ax1 +Bx2, then

µy = Aµx1 +Bµx2

Σy = AΣx1A
> +BΣx2B

>

In this problem, you can see that A = 1 and B = 0.1, which will allow you to compute x̂1|0 and P1|0. The
rest of the data is available to you. Plug the values into the Kalman �lter equations and note that you want
to compute x̂1|1 and P1|1, i.e. x1 ∼ N (x̂1|1, P1|1)

Kalman Filter Equations with action model:

Prediction Step:

x̂k+1|k = Ax̂k|k +Bû1

Pk+1|k = APk|kA
> +BRB>

Measurement Update Step:

Kk+1 = Pk+1|kC
>(CPk+1|kC

> +Q)−1

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 − ẑk+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1CPk+1|k

ẑk+1|k is the expected output if the position and measurement were not stochastic, i.e. using (4),

ẑk+1|k =
2

c
(5− x̂k+1|k)
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