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In this work, teams of small mobile robots are used to test

hypotheses about cooperative transport by ants. This study

attempts to explain a decrease in steady-state transport speed

with increasing team size that was previously observed in the

ant Novomessor cockerelli. Two models of one-dimensional

collective towing are compared: one in which transporters

with different maximum speeds pull the payload with

continuous, variable forces and another in which transporters

with identical speeds pull with intermittent, unsynchronized

forces. A statistical analysis of ant data supports the

hypothesis that ants behave according to the first model, in

which the steady-state transport speed is the maximum speed

of the slowest teammate. By contrast, the ant data are not

consistent with the second model, which predicts constant

speed regardless of team size. To verify these predictions, the

ant behaviours in each model are translated into decentralized

controllers and implemented on teams of two to four robots.

The controller for the first model incorporates a real-time

reinforcement learning algorithm that successfully reproduces

the observed relationship between ant team size and

transport speed. The controller for the second model yields

the predicted invariance of transport speed with team size.

These results show the value of robotic swarms for testing

mechanistic hypotheses about biological collectives.
1. Introduction
Cooperative transport of large food items by ants is an impressive

example of robust multi-agent coordination that is fully

decentralized, scalable with the number of transporters, and

effective in unknown environments with uneven terrain and

obstacles. The ant behaviours that drive this phenomenon are

still poorly understood [1,2]; however, coordination among

transporters probably depends on indirect interactions through
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(a) (b)

Figure 1. Experimental set-up for tracking collective payload towing by teams of (a) Novomessor cockerelli and (b) Pheeno robots.
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the food item being carried [3,4]. These interactions are an example of stigmergy, a mechanism by which

individuals communicate through modifications to their environment (in this case, the payload).

However, stigmergic behaviour is most likely not the sole factor contributing to successful transport.

Coordination may also depend on the members of the transport team having some common

information, such as the direction to the nest, and may rely on direct or explicit communication

between transporters.

Further understanding of group food retrieval in ants can be applied toward developing control

policies for cooperative transport by robotic swarms. Cooperative multi-robot manipulation of heavy

payloads in unstructured environments has potential applications in disaster response and search-and-

rescue operations, as well as automated construction and assembly tasks in remote environments.

Previous approaches to multi-robot manipulation have relied on explicit communication between

robots, leader–follower strategies, and prior information about the environment, physical properties of

the payload, and configuration of robots around the payload [5–7]. In other approaches, collective

transport is indirectly effected through the pushing efforts of robots that make contact with the load

while responding to an external stimulus [4,8,9].

This study considers group transport of artificial payloads by Novomessor cockerelli, a species of desert

ant that is capable of highly coordinated, stable transport of large food items in teams [10]. An

experimental study of these ants [11] found that the steady-state load transport speed decreased with

increasing team size, even when the load weight per ant was held constant. The authors speculated

that this effect may be caused by variation in ant orientation with respect to the payload. That is,

teams usually distribute themselves along the load’s perimeter, and the force that an ant can apply

may vary according to its position. For instance, a dynamical model of the ant data in [11]

successfully reproduced transport dynamics by assuming that ants on the leading edge of the load

pulled and lifted, while ants on the trailing edge only lifted [12]. Effects such as these might be

expected to reduce speed for larger team sizes, if additional transporters are required to occupy less

advantageous positions. However, this idea was not supported by a more recent experimental study

in which all transporters adopted the same position [13]. This was achieved by requiring ants to move

a rectangular load by pulling on strings attached to one of its sides, as shown in figure 1a. The results

confirmed the relationship observed previously, in which load speed decreased as team size increased

and per capita load remained constant.

Buffin et al. [13] also noted a large variance in the speed of single ants towing a load by themselves,

suggesting that the members of transport teams vary in the maximum speeds and pulling forces they can

attain. They performed simulations that assembled virtual teams from random samples of a normally

distributed population of maximum individual speeds. If each team was assumed to have the speed

of its slowest member, the simulations reproduced the observed decline in transport speed with team

size [13]. However, that study did not examine the coordination mechanisms that would allow a team

to regulate its speed in this manner.

In the present study, a multi-robot testbed is used to test hypotheses about ant group transport

behaviours in order to gain insight into the observed relationship between load speed and team size

[11,13]. It is assumed that all the ants in the transport team know the direction to the goal (the ants’

nest) and can navigate even while moving backwards [14], but that they have no knowledge of the

load characteristics, the number of teammates or the teammates’ locations on the load relative to its

centre of mass. Section 2 describes the multi-robot testbed, figure 1b, that was designed to mimic

experiments that show a decrease in ant transport speed with increasing team size [13]. Section 3
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Figure 2. Details of the multi-robot towing experimental set-up. (a) A close-up, labelled view of a sensor suite attached to the
payload. (b) A single robot connected to the payload.
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presents two candidate models of collective towing behaviour in an effort to reproduce this observed

trend. The first model assumes a team of ants with heterogeneous maximum speeds that pull on the

load with continuous, variable forces, requiring the team to move at the speed of the slowest member

for stable transport to occur. The second model assumes a homogeneous team of ants that pull on the

load with intermittent, identical forces as they take uncoordinated steps backward toward the nest.

For both models, the average steady-state transport speed is predicted and compared to the ant data.

Section 4 proposes a decentralized robot controller for cooperative towing that can be implemented on

a team of robots with heterogeneous maximum speeds. The controller is based on a reinforcement

learning algorithm that uses only stigmergic feedback, similar to the type of information that would

be available to the ants. This controller was implemented on teams of two to four Pheeno robots [15]

that cooperatively towed a rectangular payload, along with a second controller that produced

intermittent, uncoordinated pulling forces. Section 5 presents the steady-state transport speeds in these

robot experiments and compares them to the transport speeds observed in the ant experiments.

Finally, §6 discusses possible causes and advantages of the observed transport strategy in N. cockerelli,
and §7 summarizes the results and outlines directions for future work.
2. Materials and methods: multi-robot experiments
Collective towing experiments were conducted with teams of two, three and four Pheeno robots. Each

team pulled a load in a parallel configuration designed to mimic the arrangement of pulling ants in

the experiments of Buffin et al. [13]. Figure 1b shows an overhead snapshot of the experimental set-up

with three robot transporters. The payload in these experiments was a 76.2 � 10.2 � 10.2 cm L-shaped

acrylic frame weighing 500 g. A three-dimensional-printed plastic basket attached to the frame

allowed different masses to be added. A sensor suite was designed for each robot to measure the

force vector that it applied to the load throughout the transport process. The sensor suite consisted of

a three-dimensional-printed sliding pressure plate mounted on a potentiometer that allowed 2708 of

rotation. A circular force-sensitive resistor was used to measure the magnitude of the force that the

pressure plate exerted due to the robot’s pulling force, and the potentiometer determined the direction

of the force with respect to the load’s orientation. The sensor suites were affixed to the payload, and a

hemp cord connected each robot to a sensor suite, as shown in figure 2. The experiments were filmed

with an overhead camera (Microsoft Life Cam, resolution of 720p) at a rate of 30 frames per second.

The robots and payload were marked with two-dimensional binary identification tags to enable real-

time tracking of their positions and orientations by the overhead camera.
3. Two models of ant behaviours and the resulting payload speed
3.1. Ants with continuous, adaptive pulling forces
Figure 3 plots data from Buffin et al. [13] that show a decrease in steady-state load speed with increasing

team size, even though each ant was pulling the same amount of weight. Tukey range tests showed that
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Figure 3. Blue plots: steady-state speed of an artificial load (0.3 g per ant) towed by different numbers of ants [13]. The circles with
error bars represent the mean + standard deviation across 30 experimental trials for one ant, 24 for two ants, 25 for three ants
and 20 for four ants. Red plots: mean + standard deviation of the first-order statistic of n ¼ 2, 3, 4 samples from a normal
distribution that is fit to individual ant transport speed data.
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individual transport speed was significantly faster than transport by teams of two ants ( p1,2 ¼ 0.014),

three ants ( p1,3 ¼ 1.60 � 1025) or four ants ( p1,4 ¼ 6.34 � 1026), but there was no significant difference

among teams of different size ( p2,3 ¼ 0.70, p2,4 ¼ 0.42 and p3,4 ¼ 0.96). The plot also reveals a large

variance in transport speed by single ants. As noted in Buffin et al. [13], this suggests that an ant

transport team can be modelled as a heterogeneous group whose members are capable of different

maximum speeds and pulling forces. Such a team would be able to cooperatively tow the load only

as fast as the speed of its slowest member, requiring coordination among the teammates.

In this model, it is assumed that an ant’s maximum towing speed is distributed according to a

Gaussian probability density function (pdf), f(v), with corresponding cumulative density function

(cdf), F(v) (see the electronic supplementary material). Under this assumption, a Gaussian

distribution was fitted to the data in figure 3 on the steady-state towing speed of a single ant (m ¼

0.7 cm s21, s ¼ 0.36 cm s21). The expected speed of the slowest member of a transport team with N
members was then computed using order statistics [16]. The expected mean of the rth-order statistic

from n samples of the distribution f(v), where 0 , r � n, is given by

E(r, n) ¼ n!

(r� 1)!(n� 1)!

ð1

�1

v[1�F(v)]n�rF(v)r�1f(v) dv: (3:1)

The variance of the rth-order statistic is

Var(r, n) ¼
ð1

�1

(v� E(r, n))2[1�F(v)]n�rF(v)r�1f(v) dv: (3:2)

The speed of the slowest member of a team is distributed according to the first-order statistic (r ¼ 1), for

which equations (3.1) and (3.2) simplify to

E(1, n) ¼ n
ð1

�1

v[1�F(v)]n�1f(v) dv (3:3)

and

Var(1, n) ¼
ð1

�1

(v� E(1, n))2[1�F(v)]n�1f(v) dv: (3:4)

To enforce realistic constraints on the range of possible ant speeds, the support of f(v) was truncated to

[0, vmax], where vmax ¼ 1.2 cm s21 is slightly higher than the fastest towing speed measured during

experiments with a single ant. The integral equations (3.3) and (3.4) were evaluated over the range of

v [ [0, vmax], after being renormalized to have a total probability of 1, for team sizes n ¼ 2, 3, 4. The

computed values of E(1, n)+Var(1, n) 1/2 for n ¼ 2, 3, 4 are plotted alongside the statistics of the ant

data in figure 3. The figure shows that the mean and standard deviation of the measured towing
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speed for each team size are very close to those of the corresponding first-order statistics. This similarity

supports the hypothesis that ant transport teams move at the speed of the slowest teammate, which

implies that the ants can coordinate transport in a decentralized fashion without explicit

communication, information about the payload, or knowledge of the team size and configuration.
lsocietypublishing.org
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3.2. Ants with intermittent, constant pulling forces
Besides the ants’ variability in speed, their unsynchronized gaits during transport could have contributed

to the decrease in load speed with increasing team size. The ants in a transport team were observed to

step backward while towing the load, and their out-of-phase stepping could have coincided with their

application of intermittent, uncoordinated forces on the load. In this section, a dynamical model is

developed to investigate the effect of this hypothetical behaviour on the steady-state transport speed.

Collective transport behaviours have previously been studied with the Kilobot robotic platform [17]

and the Bristlebot, Hexapod and mTug platforms [18]. Rubenstein et al. [17] found that the transport

speed remains the same regardless of team size when the payload mass per robot is kept constant.

However, this paper did not take into account out-of-phase stepping by the robots. Christensen et al.
[18] investigated the effect of uncoordinated stepping on effective force per robot during group

towing. They found no effect for the case where the robots’ gait is non-impulsive; e.g. the case where

each robot’s contact time with the ground, during which it exerts a pulling force on the load, is not

extremely short compared with the stride period of its gait. Here, the dynamic model presented in

[17] is combined with the gait consideration discussed in [18] to predict the effect of out-of-phase

stepping on the steady-state transport speed.

During the experiments, the ants transported the load along an approximately straight path and

produced very little load rotation. Hence, the load dynamics can be modelled as translation in the

plane using Newton’s second law of motion:

XN

i¼1

Fi þ Ff ¼ ma, (3:5)

where Fi [ R2 is the force applied by ant i, Ff [ R2 is the kinetic frictional force on the load, m is the

load’s mass and a [ R2 is the load’s acceleration. Using an ideal motor assumption to relate force to

velocity, the force applied by ant i can be modelled by the linear relation

Fi ¼ K(vmax � vi � x̂)x̂, (3:6)

where K . 0 is a constant gain, vmax is the maximum ant speed under no load, vi [ R2 is the velocity of

ant i and x̂ [ R2 is the direction of the load transport. Under the assumption that the load is in static

equilibrium in the vertical direction, the frictional force is given by

Ff ¼ �mkmgx̂, (3:7)

where mk is the coefficient of kinetic friction of the load on the ground, and g is the acceleration due to

gravity.

In this model, all ants move at the same speed. Since the ants pull on strings to tow the load, they are

rigidly attached to the load when applying force (e.g. the ants may not move faster than the load). This

model assumes that a transporting ant will not accumulate enough slack in its string such that its pulling

effort does not affect the payload, as was evident in the ant transport videos. During transport, the load

stops immediately when the ants stop pulling it. This allows for the use of the quasi-static motion

assumption [19,20], implying that the load velocity vL [ R2 is in the same direction as the net force

applied by the ants. These assumptions simplify the sum over the forces defined in equation (3.6) to,

XN

i¼1

Fi ¼ NK(vmax � kvLk)x̂: (3:8)

Inserting this total applied force into equation (3.5), along with the frictional force defined in equation

(3.7), and solving equation (3.5) for kvLk at steady-state (a ¼ 0) yields

kvLkss ¼ vmax �
mkmg
NK

: (3:9)

To include the effect of asynchronous ant gaits, the model can incorporate a probability pf ¼ tc/ts that an

ant applies a pulling force at any given time, where tc is its contact time with the ground and ts . tc is the
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period of its gait, as defined in [18]. In the case where N ants pull in parallel with their steps beginning at

independent, uniformly random starting times between 0 and ts, the number of transporters n � N that

apply force at the same time is described by the binomial distribution, n � B(N, pf ). Then, the average

total force exerted by the ants on the load is given by

XN

i¼1

Fi ¼ pf NK(vmax � kvLk)x̂: (3:10)

Inserting this total applied force into equation (3.5) and solving for the steady-state load velocity results

in an equation similar to equation (3.9):

kvLkss ¼ vmax �
mkmg
pf NK

: (3:11)

What is important to note in equation (3.11) is that the term producing a slowing effect, mkmg/pfNK,

includes the load mass m in the numerator and the team size N in the denominator. Therefore, if the

ratio m/N of the load mass to the team size is kept constant, as was done in the ant experiments,

then the steady-state load speed should remain the same regardless of the team size, as observed in

[17]. This contradicts the observed trend in load speed from the ant experiments.
80409
4. Design of robot controllers for adaptive, continuous pulling
One possible method for a heterogeneous transport team to adjust to the speed of its slowest member is

through learning based on stigmergic feedback; in this case, measurements of changes in the load’s

rotation in response to forces applied by all the transporters. As stated in §1, it is assumed that the

ants all know the direction to their nest and that they tow the load in this direction along a straight

line. Under these assumptions, the ants’ configuration on the load during the experiments (figure 1a)

would have resulted in a net zero moment on the load if all ants pulled with identical forces. Any

disparities in towing force would produce differences in the ants’ maximum possible steady-state

towing speeds as well as rotation of the transported load. However, significant rotation of the payload

was not observed in the ant experiments after the transport reached steady state (e.g. the load

oscillated slowly but did not rotate, which would have indicated that one ant was moving faster than

the others). We hypothesize that the ants detect small rotations of the load or rotational forces on the

load, and that they act to reduce these before they become large. We also assume that the ants do not

know their location on the load with respect to its centre of mass; i.e. they have no a priori knowledge

of how changing their speed of transport will affect the rotation of the load. Thus, they cannot be

using a simple feedback mechanism to reject the load’s rotation, since they do not know before

transport whether they should speed up or slow down when sensing a change in the load orientation.

Ants could have implicitly communicated their differences in towing speed by measuring the

collective effect of these differences on the load’s orientation and rotational dynamics during

transport. To illustrate, figure 4 shows a cooperative towing scenario with two robots. Robot R1 is

moving faster than robot R2, causing the load to rotate in the clockwise direction. If robot R2 were

moving faster than robot R1, then the load would rotate in the counterclockwise direction. By making

an association between the load’s direction of rotation and the required speed change to reject the

rotation, and by measuring its own pulling force, each robot should be able to learn the conditions

under which it should speed up or slow down in order to move at the same speed as the rest of the

transport team. These conditions do not require the robot to know its location on the load. When

there is an incentive for each robot to move as fast as possible, the competing objectives of preventing

load rotation and transporting the load quickly will cause the speeds of the faster team members to

oscillate around the speed of the slowest member when it is moving at its maximum speed.

A real-time reinforcement learning algorithm was developed to implement this behaviour on robots.

The algorithm drives a team of robots with heterogeneous maximum speeds to transport a load at the

speed of its slowest member. Each robot runs the two-layer neural network shown in figure 5. There

is no distinction between a learning phase and an exploitation phase; instead, an e-greedy algorithm

is chosen to adapt to the unpredictable and changing pulling forces during transport. This is done to

allow learning errors that can be made during the start of the transport to be corrected.

For this application, the goal is for the robots to learn the association between the direction of the

load’s rotation and the necessary adjustments to the individual speeds of the transporters to reject this

rotation and keep the load at its initial orientation. This learning is done at discrete times, where, for
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simplicity, the times are defined in unit increments. The input vector to the neural network of robot k at

time t, pk(t) ¼ [pk,1 pk,2 pk,3 pk,4]T ¼ [sign(u) sign( _u) sign(€u ) sign( _vk)]T, contains the directions of the load’s

orientation u, angular velocity _u, and angular acceleration €u, as well as the direction of the change in the

robot’s velocity _vk, all at time t. The output vector of the neural network of robot k is defined as ak ¼ [ak,1

ak,2] T ¼ [vkþ vk2] T, whose entries indicate a binary decision for the robot to speed up or slow down. Each

robot k computes the value ak,j(t) of its output neuron j [ f1, 2g at time t as

ak,j(t) ¼
X4

i¼1

wk,ij(t)pk,i(t), (4:1)

where wk,ij(t) is the weight value of the connection between the robot’s ith input neuron and jth output

neuron.

An e-greedy algorithm is applied to determine the action taken by the robot. With probability e, the

robot randomly chooses to speed up or slow down without using the neural network to make a decision.

Otherwise, the output neuron with the larger value is chosen as the winner. If vkþ � vk2, then robot k
speeds up; otherwise, it slows down, according to the following controller:

_vk ¼
Ka

ju j
umax
þ Kv 1� vk

vk, max

� �
, vkþ � vk� or Fk ¼ 0

�Ka
ju j
umax
� Kv 1� vk

vk, max

� �
, otherwise ,

8<
: (4:2)

where Ka and Kv are constant gains, umax ¼ p, vk,max is the robot’s maximum possible towing speed, and

Fk is the magnitude of the pulling force applied by the robot. When the robot measures Fk ¼ 0 during

some time period, it speeds up but does not update its weights wk,ij (learn) during that period.

The velocity controller in equation (4.2) drives inherently faster robots with higher maximum speeds

to be more agile than slower robots, since the quantity (1 2 vk/vk,max) is larger for faster robots for a given

robot speed vk, producing a higher acceleration. This component of the controller prevents the robots

from all making the decision to change their transport speeds by the same amount, which would

keep their relative speeds constant and, therefore, maintain the direction and speed of the load’s
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rotation. The robots would not learn anything substantial in this scenario, since any action they take

would not affect the load’s rotation and every decision would be penalized according to the reward

function described in the next paragraph, even if it were the correct one. The controller also makes

larger adjustments to the robots’ accelerations when the payload is far from its initial orientation. The

gains Ka and Kv weight the competing objectives of maintaining the load in its original orientation

and moving the load as fast as possible.

After taking an action of speeding up or slowing down, each robot computes a reward that is based

on the resulting change in the load’s orientation. The reward function at time t for robot k is defined as

Ek(t) ¼
umax�ju j
umax

þ vk
vk, max

, sign(u �u ) � 0,

� u
umax

���
���, otherwise.

8<
: (4:3)

The reward function can be interpreted as follows. When a robot’s action causes the load to rotate toward

its initial orientation (sign(u _u) , 0), return to its initial orientation (u ¼ 0), or stop rotating ( _u ¼ 0), the

robot is rewarded based on the ratio between its current and maximum speeds and the discrepancy

that it measures between the load’s current and initial orientations. The robot is penalized based on

this discrepancy if its action causes the load to rotate away from its initial orientation (sign(u _u) . 0).

The difference in reward values Ek(t 2 1) and Ek(t) at times t 2 1 and t, respectively, determines the

adjustments to the neural network weights according to the Instar rule [21]. Reward constants rk,j(t)
are defined at time t such that only the output neuron associated with the chosen action is rewarded

or penalized:

rk,j(t) ¼
1, Ek(t)� Ek(t� 1) � t and ak,j . ak,l, l = j
�1, Ek(t)� Ek(t� 1) � �t and ak,j . ak,l, l = j
0, otherwise,

8<
: (4:4)

where t is a threshold value chosen to differentiate between sensor noise and a significant reward

change. Then the weights are updated as follows:

wk,ij(t) ¼ (1� grk,j(t))wk,ij(t� 1)þ ark,j(t)pk,i(t), (4:5)

where g [ [0, 1] is a rate of forgetting and a [ [0, 1] is a rate of learning. These rates are chosen to bound

the maximum weight values of the update matrix to

wmax
k,ij ¼

a

g
: (4:6)

After updating the weights wk,ij, the process is repeated. A flowchart of the robot behaviour is shown in

figure 6.
5. Multi-robot experimental results
5.1. Continuous, adaptive pulling
The learning algorithm described in §4 was implemented on teams of two to four Pheeno robots to

investigate whether learning through stigmergic feedback could cause a transport team to tow the

payload at the speed of the slowest member. In these experiments, the mass of the load was

maintained at 500 g, which a single robot is capable of towing. This was done to ensure that the

decrease in payload speed could be attributed entirely to the learning algorithm, not to the

experimental set-up. To imitate the ants’ directionality of transport toward the nest, all the robots

were assigned to drive in the same direction. The robots changed their speed according to the

learning algorithm at a rate of 0.5 Hz. Each robot was programmed with a probability e ¼ 0.2 of

choosing a random action, a forgetting rate g ¼ 0.02, a learning rate a ¼ 0.1, a significance threshold

value t ¼ 0.5, and controller gains Ka ¼ 1 and Kv ¼ 0.8. Ten trials were run for each team size. Teams

of two, three and four robots consisted of members with maximum speeds of [4, 12] cm s21, [4, 8,

12] cm s21 and [4, 6, 9, 12] cm s21, respectively. The locations of the robots on the load were chosen

randomly for each trial.

The load and robot velocities during the experiments are plotted in figure 7. These results show that

the robots adjust their speed to the speed of the slowest transporter in the team, which moves at a

maximum speed of 4 cm s21. For all three team sizes, the 95% confidence interval for mean speed
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includes the value 4 cm s21 throughout the duration of towing. There are slight discrepancies between

the robots’ reference velocities and their actual velocities, which were measured from the robot

locations tracked by the overhead camera. These differences were caused by camera error, wheel slip

and tag placement error.

5.2. Intermittent, constant pulling
To simulate out-of-phase stepping during transport as described in §3.2, towing experiments with two to

four Pheeno robots were run in which the robots’ motors were periodically turned on and off to mimic

the contact and swing phases of an ant’s gait. The robots’ motors were turned on for 1.5 s during a total

step time of 3 s. The robots’ start times for each step were randomly drawn from a uniform distribution.

Each robot ‘stepped’ with the same maximum velocity of 8 cm s21. The load mass was scaled with

the number of robots in the team, with a constant mass of 500 g per robot. Ten trials were run for

each team size.

Figure 8 shows that the average steady-state payload speed during these experiments matches the

value predicted by the model equation (3.11). There was no significant difference in speed among

teams of different size (ANOVA: F2,27 ¼ 0.017, p ¼ 0.98). Thus, it can be concluded that out-of-phase

stepping is not the primary cause of the decrease in steady-state transport speed with respect to team

size that is observed in N. cockerelli.
In addition, out-of-phase stepping was tested on teams of Pheeno robots with different maximum

speeds. Under these conditions, the robot teams exhibited uncoordinated transport in which the load

was pulled into the slowest robot, which was then dragged along by the efforts of the other robots.

This type of behaviour was never observed during the ant towing experiments. Wheel slip ultimately

stalled the robots or made them uncontrollable and prevented further transport of the load.
6. Discussion
The statistical analysis in §3.1 of data on collective towing by Novomessor cockerelli ants and the results of

the multi-robot towing experiments described in §5.1 support the conclusion that ants adjust their speeds

during collective transport to accommodate the slowest member of the transport team. Hence, robotic

implementation of ant-like transport strategies could enable adaptive, decentralized transport by
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teams of robots with heterogeneous capabilities, manufacturing variations, differences in charge state

and other dissimilar properties.

Previous studies have addressed other scenarios where group efficiency is a sublinear function of

group size. Krieger et al. found that in a group of robots mimicking an ant foraging behaviour, the

contribution of each individual to the foraging process decreased as the group size increased due to

more time spent avoiding collisions [22]. Lerman & Galstyan also discovered this sublinear

relationship in foraging behaviours and predicted an optimal group size for foraging before

interference among individuals begins to lower the net group performance [23]. In contrast to these

group foraging examples, the sublinear relationship between transport speed and team size that has

been investigated here appears to be caused by heterogeneity of teammate capabilities rather than

interference arising from uncoordinated individual behaviours (e.g. out-of-phase stepping, unaligned

pulling angles or avoidance of fellow transporters).

The differences in individual N. cockerelli speeds could be due to variation among ants in fatigue,

health or age. However, they may also reflect behavioural differences with implications for colony

function [24]. Behavioural disparities may arise from genetic variation among ants or from differences

in nutrition, developmental environment or experience. Individual differences can also be amplified

via positive feedback generated by social interactions among colony members [25]. Potential benefits

of interindividual variation include improved resistance to pathogens and parasites, more efficient

allocation of distinct tasks among workers, and more robust response to perturbations [26,27]. For

example, honeybee colonies do better at keeping nest temperature within optimal bounds when their

workers vary in the temperature threshold that triggers thermoregulatory behaviour [28]. Whether
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differences in speed among individual N. cockerelli ants have similar effects on colony function remains to

be investigated.

Cooperative transport allows colonies to harvest large food items that would otherwise require

dissection into pieces small enough for single ants to carry [11]. In some ant species, particularly

Eciton burchellii and other swarm raiders, transport has the further advantage of being superefficient.
That is, groups can carry more weight per ant than solitary transporters, without any loss in speed

[1,29]. This property helps swarm raiders achieve the high rates of food capture needed to support

their large, fast-growing colonies. N. cockerelli, in contrast, have much smaller colonies and workers

forage largely on their own. They also compete with mass-recruiting ant species, such as Forelius
foetidus and Solenopsis xyloni, that can readily displace them from rich food items [10]. This

competition may not afford N. cockerelli the opportunity to wait for the fastest foragers to retrieve a

food item before it is claimed by other ants.

A heterogeneous transport team that adapts to its slowest member will move the load more slowly as

the team size increases; however, this strategy also has various benefits. If this adaptation did not occur,

the fastest individuals would need to overwhelm the efforts of the slowest members and handle a heavier

portion of the load, possibly dragging the slower teammates during the transport. By accommodating the

slowest member, large transport teams can use the strength of all teammates, not just the fastest ones and

thus can transport heavier loads. Another advantage may arise when the load must be transported over

different types of terrain. A large transport team could apply a high net force to a load in order to pull it

up a hill or over an obstacle. The presence of slow members in the team could potentially stabilize this

manoeuvre, since from a control-theoretic perspective, less aggressive systems are easier to control.

Therefore, an ant-like strategy could potentially increase the robustness of the transport to changing,

unanticipated environmental conditions.
7. Conclusion
In this work, we have investigated the observation that the transport speed of a load towed by several

Novomessor cockerelli ants decreases as a function of the team size, even with the same load mass per

ant. A control approach in which a homogeneous team of robots pull on the load with intermittent,

constant forces was tested as a possible ant towing behaviour. A dynamical model was used to

predict the steady-state speed of a load that is transported in this manner by a team of known size.

The predicted load speed was independent of team size, as long as the mass per transporter remained

constant, and the prediction was verified through experiments with teams of two to four small mobile

robots. Using order statistics, it was found that the load speed decrease can be attributed to the
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heterogeneous abilities of individual ants. Since ants within a given colony may move at a range of

possible speeds, as a result of differences in characteristics such as age, energy and ability to orient

during transport, it was hypothesized that an ant transport team must move at the speed of the

slowest member for successful load transport. Owing to their biological limitations, the ants would

need to identify the slowest member without explicit communication or global information. To

implement a multi-robot towing strategy with these constraints, a real-time reinforcement learning

algorithm was developed that relies on implicit communication through the load and local

measurements by each robot. This algorithm was tested on teams of two to four robots with

significantly different individual maximum speeds. The experimental results supported the hypothesis

that the ants are towing the load at the speed of the slowest team member.

The experiments on collective transport described in this paper have focused on one-dimensional

payload transport by both ants and robots in flat environments with no obstacles. In the future,

experiments and analyses should be conducted for transport along two-dimensional trajectories

through more complex environments. To more closely emulate the ant behaviours, multi-robot

experiments can be performed using legged robots that are closer in design to the ants’ anatomy. In

addition, a rigorous analysis of the reinforcement learning algorithm presented in this work is needed

to characterize the existence and stability of equilibrium payload speeds. This analysis would provide

theoretical guarantees on the transport dynamics, and therefore enable more confidence in the

algorithm’s effectiveness in a wide range of scenarios.
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